发明专利申请公布说明书

申请人：江苏奥赛康药业有限公司
地址：211112 江苏省南京市江宁科学园科建路 699 号

发明人：叶东 戴建国 赵小伟 戴艳

摘要
本发明涉及的是一种盐酸苯达莫司汀冻干粉针剂及其制备方法。通过该方法制备的盐酸苯达莫司汀冻干粉针剂可以用于慢性淋巴细胞白血病（CLL）和在利妥昔单抗（rituximab，美罗华）或含利妥昔单抗方案治疗过程中，或者治疗 6 个月内，病情仍然进展的慢性 B 细胞非霍奇金淋巴瘤（NHL）患者的治疗。一种盐酸苯达莫司汀冻干粉针剂，含有盐酸苯达莫司汀，并在配制过程中使用叔丁醇和注射用水组成的混合溶剂，其中盐酸苯达莫司汀在混合溶剂的浓度为 5～10mg/ml，溶剂的体积配比为：叔丁醇 5～50%，注射用水余量，总量 100%。其制备过程为：量取叔丁醇，加注射用水，混匀并冷却至 2～15℃保温，再加入盐酸苯达莫司汀，搅拌使溶，过滤，灌装，加塞，装盒，冻干，压塞，出箱，扎盖，包装，即得。
1. 一种盐酸苯达莫司汀冻干粉针剂，其特征在于含有盐酸苯达莫司汀，并在配制过程中使用叔丁醇和注射用水组成的混合溶剂，其中盐酸苯达莫司汀在混合溶剂的浓度为 5～10mg/ml，溶剂的体积配比为：
 叔丁醇 5～50%
 注射用水 余量
 总量 100%。

2. 根据权利要求1所述的盐酸苯达莫司汀冻干粉针剂，其特征在于所述的溶剂的体积配比为：
 叔丁醇 10～30%
 注射用水 余量
 总量 100%。

3. 根据权利要求1所述的盐酸苯达莫司汀冻干粉针剂，其特征在于还含有赋形剂。

4. 根据权利要求3所述的盐酸苯达莫司汀冻干粉针剂，其特征在于所述的赋形剂选自甘露醇、乳糖、右旋糖酐、葡萄糖中的一种。

5. 权利要求1所述的盐酸苯达莫司汀冻干粉针剂的制备方法，其特征在于制备方法为：

 量取叔丁醇置容器中，加入注射用水，搅拌并混合均匀，将混合溶剂冷却至 2～15℃并保温，再加入盐酸苯达莫司汀，搅拌使其溶解并混合均匀，中间体检查合格后，用蠕动泵送至无菌室中经 0.22μm 的微孔滤膜过滤至澄清，灌装于棕色西林瓶中，部分塞上丁基橡胶塞，装盘；将装盘待冻干样品置于冻干箱中，关闭箱门，开机，打开循环泵、压缩机和板冷阀，利用导热油使制品温度下降，当制品温度达到-35℃时，关闭板冷阀，开启电加热和掺冷阀自动设置，保持该制品温度 2～4 小时，而后开启冷凝器阀，当冷凝器阀温度达到-45℃时，开启真空系统，当前箱真空达到 20Pa 以下时，开始升温升华干燥，最后的干燥温度为 28℃，保持该温度 2～4 小时，至关闭中隔阀前箱真空无显著变化后，压塞，出箱，用铝塑组合盖扎口，经质检合格后包装，即得。
盐酸苯达莫司汀冻干粉针剂

技术领域

本发明涉及了一种盐酸苯达莫司汀冻干粉针剂及其制备方法，通过该方法制备的盐酸苯达莫司汀冻干粉针剂可以用于慢性淋巴细胞性白血病（CLL）和利妥昔单抗（rituximab 美罗华）或含利妥昔单抗方案治疗过程中，或者治疗 6 个月内，病情仍然进展的惰性 B 细胞非霍奇金淋巴瘤（NHL）患者的治疗。

背景技术

盐酸苯达莫司汀（Bendamustine Hydrochloride）是携带一个嘌呤样苯并哌啶环的氮芥衍生物，兼具烷化剂和嘌呤类似物（抗代谢药）的双重作用机制。能通过几种不同途径导致细胞死亡，而且对静止期和分裂期细胞均有效。其血浆蛋白结合率为 94%～96%，数据显示该药一般不会与其他高蛋白结合药物相互置换。盐酸苯达莫司汀平均稳态分布容积约为 25L，其全血/血浆浓度比为 0.84～0.86。盐酸苯达莫司汀主要通过水解反应进行代谢，同时形成细胞毒性较低的代谢产物。该药经 CYP1A2 代谢途径可产生 M3 和 M4 两种活性代谢产物，但两者血浆浓度只分别相当于母体化合物的 1/10 和 1/100，因此，可以推测苯达莫司汀的细胞毒性作用主要来自于其本身，而非其代谢物。

盐酸苯达莫司汀主要用于慢性淋巴细胞性白血病（CLL）和利妥昔单抗（rituximab 美罗华）或含利妥昔单抗方案治疗过程中，或者治疗 6 个月内，病情仍然进展的惰性 B 细胞非霍奇金淋巴瘤（NHL）患者的治疗。以注射形式给药。

由于盐酸苯达莫司汀稳定性极差，极易水解，高温和光照下极易降解，使得药物疗效降低并产生引发毒副作用的杂质。现有公知技术也没有改善以上缺陷的建议。

发明内容

本发明的目的是针对以上不足之处提供一种盐酸苯达莫司汀冻干粉针剂及其制备方法，通过该方法可以大大提高盐酸苯达莫司汀冻干粉针剂的稳定性，使其在制备、运输和贮存过程中具有更好的稳定性，避免了因药物降解带来的疗效
降低和降解产生杂质给患者用药安全带来的隐患。

盐酸苯达莫司汀的化学名称为：4-[[5-[双(2-氯乙基)氨基]-1-甲基苯并咪唑-2-基]丁酸盐酸盐，结构式为：

分子式为：C_{16}H_{21}Cl_{2}N_{3}O_{2} \cdot HCl
分子量为：394.72。

一种盐酸苯达莫司汀冻干粉针剂，含有盐酸苯达莫司汀，并在配制过程中使用叔丁醇和注射用水组成的混合溶剂，其中盐酸苯达莫司汀在混合溶剂的浓度为5～10mg/ml，溶剂的体积配比为：

<table>
<thead>
<tr>
<th>叔丁醇</th>
<th>5～50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>注射用水</td>
<td>余量</td>
</tr>
<tr>
<td>总量</td>
<td>100%。</td>
</tr>
</tbody>
</table>

一种盐酸苯达莫司汀冻干粉针剂，所述的溶剂的体积配比为：

<table>
<thead>
<tr>
<th>叔丁醇</th>
<th>10～30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>注射用水</td>
<td>余量</td>
</tr>
<tr>
<td>总量</td>
<td>100%。</td>
</tr>
</tbody>
</table>

一种盐酸苯达莫司汀冻干粉针剂，还含有赋形剂。

一种盐酸苯达莫司汀冻干粉针剂，所述的赋形剂选自甘露醇、乳糖、右旋糖酐和葡萄糖。

一种盐酸苯达莫司汀冻干粉针剂，其制备过程为：

量取叔丁醇置容器中，加入注射用水，搅拌并混合均匀，将混合溶剂冷却至2～15℃并保温，再加入盐酸苯达莫司汀，搅拌使其溶解并混合均匀，中间体检验合格后，用蠕动泵送至无菌室中经0.22μm的微孔滤膜过滤至澄清，灌装于棕色西林瓶中，部分塞上丁基橡胶塞，装盘；将装盘待冻干样品置冻干箱中，关闭箱门，开机，打开循环泵、压缩机和板冷阀，利用加热油使制品温度下降，当制品温度达到-35℃时，关闭板冷阀，开启电加热和掺冷阀自动设置，保持该制品
温度2～4小时，而后开启冷凝器阀，当冷凝器阀温度达到-45℃时，开启真空系统，当前箱真空达到20Pa以下时，开始升温升华干燥，最后的干燥温度为28℃，保持该温度2～4小时，至关闭中隔阀前箱真空无显著变化后，复制，出箱，用铝塑组合盖封口，经质检合格后包装，即得。

本发明一种盐酸苯达莫司汀冻干粉针剂及其制备方法，通过该方法可以大大提高盐酸苯达莫司汀冻干粉针剂在制备过程的稳定性，制备的盐酸苯达莫司汀冻干粉针剂有关物质含量更低，质量均一稳定，水分干燥彻底，在运输和贮存过程中的稳定性更好，同时也避免了因药物降解带来的疗效降低和降解产生杂质给患者用药安全带来的隐患。本发明制备工艺简单，方便可行，重复性好，生产成本较低，很容易实现工业化大生产，从而可以产生可观的经济和社会效益。

具体实施方式

下面通过实施例来进一步说明本发明。应该正确理解的是：本发明的实施例仅仅是用于说明本发明而作出的，而不是对本发明的限制，所以，在本发明的方法前提下对本发明的简单改进均属本发明要求保护的范围。

实施例1：

处方

<table>
<thead>
<tr>
<th>药物</th>
<th>量</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>盐酸苯达莫司汀</td>
<td>100g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>甘露醇</td>
<td>170g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>叔丁醇</td>
<td>3000ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>注射用水</td>
<td>加至10000ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>共制成</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000瓶</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

量取叔丁醇置于容器中，加入注射用水，搅拌并混合均匀，将混合溶剂冷却至6℃并保温，再加入盐酸苯达莫司汀和甘露醇，搅拌使其溶解并混合均匀，中间体检查合格后，用蠕动泵送至无菌室中经0.22μm的微孔滤膜过滤至澄清，灌装于棕色西林瓶中，部分塞上丁基橡胶塞，装盘；将装盘待冻干样品置于冻干箱中，关闭箱门，开机，打开循环泵、压缩机和板冷阀，利用导热油使制品温度下降，当制品温度达到-35℃时，关闭板冷阀，开启电加热和掺冷阀自动设置，保持该制品温度2小时，而后开启冷凝器阀，当冷凝器箱温度达到-45℃时，开启真空系统，当前箱真空达到20Pa以下时，开始升温升华干燥，最后的干燥温度为28℃。
℃，保持该温度4小时，至关闭中间隔膜箱真空无显著变化后，压塞，出箱，用
铝塑组合盖扎口，经质检合格后包装，即得。

实施例2:

处方

<table>
<thead>
<tr>
<th>成分</th>
<th>重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>盐酸苯达莫司汀</td>
<td>100g</td>
</tr>
<tr>
<td>甘露醇</td>
<td>300g</td>
</tr>
<tr>
<td>水丁醇</td>
<td>7500ml</td>
</tr>
<tr>
<td>注射用水加至</td>
<td>15000ml</td>
</tr>
<tr>
<td>共制成</td>
<td>1000瓶</td>
</tr>
</tbody>
</table>

量取叔丁醇置容器中，加入注射用水，搅拌并混合均匀，将混合溶剂冷却至
8℃并保温，再加入盐酸苯达莫司汀和甘露醇，搅拌使其溶解并混合均匀，中间
体检查合格后，用蠕动泵送至无菌室中经0.22μm的微孔滤膜过滤至澄明，灌装
于棕色西林瓶中，部分塞上丁基橡胶塞，装盘；将装盘待冻干样品置冻干室中，
关闭箱门，开机，打开循环泵、压缩机和板冷阀，利用导热油使制品温度下降，
当制品温度达到-35℃时，关闭板冷阀，开启电加热和掺冷阀自动设置，保持该
制品温度3小时，而后开启冷冻器阀，当冷冻器温度达到-45℃时，开启真空
系统，当前箱真空达到20Pa以下时，开始升温升华干燥，最后的干燥温度为28
℃，保持该温度3小时，至关闭中间隔膜箱真空无显著变化后，压塞，出箱，用
铝塑组合盖扎口，经质检合格后包装，即得。

实施例3:

处方

<table>
<thead>
<tr>
<th>成分</th>
<th>重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>盐酸苯达莫司汀</td>
<td>100g</td>
</tr>
<tr>
<td>乳糖</td>
<td>200g</td>
</tr>
<tr>
<td>水丁醇</td>
<td>1000ml</td>
</tr>
<tr>
<td>注射用水加至</td>
<td>10000ml</td>
</tr>
<tr>
<td>共制成</td>
<td>1000瓶</td>
</tr>
</tbody>
</table>

量取水丁醇置容器中，加入注射用水，搅拌并混合均匀，将混合溶剂冷却至
2℃并保温，再加入盐酸苯达莫司汀和乳糖，搅拌使其溶解并混合均匀，中间体
检查合格后，用蠕动泵送至无菌室中经0.22μm的微孔滤膜过滤至澄明，灌装于
棕色西林瓶中，部分塞上丁基橡胶塞，装盘；将装盘待冻干样品置冻干箱中，关
闭箱门，开机，打开循环泵、压缩机和冷凝阀，利用导热油使制品温度下降，当
制品温度达到−35℃时，关闭板冷阀，开机电加热和掺冷阀自动设置，保持该制
品温度4小时，而后开启冷凝器阀，当冷凝器阀温度达到−45℃时，开启真空系
统，当前箱真空达到20Pa以下时，开始升温升华干燥，最后的干燥温度为28℃，
保持该温度4小时，至关闭中隔阀前箱真空无显著变化后，压塞，出箱，用铝塑
组合盖扎口，经质检合格后包装，即得。

实施例4：

处方

盐酸苯达莫司汀 100g
葡萄糖 100g
叔丁醇 4000ml
注射用水 加至 20000ml

共制成 1000瓶

量取叔丁醇置容器中，加入注射用水，搅拌并混合均匀，将混合溶剂冷却至
15℃并保温，再加入盐酸苯达莫司汀和葡萄糖，搅拌使其溶解并混合均匀，中间
体检查合格后，用蠕动泵送至无菌室中经0.22μm的微孔滤膜过滤澄清明，灌装
于棕色西林瓶中，部分塞上丁基橡胶塞，装盘；将装盘待冻干样品置冻干箱中，关
闭箱门，开机，打开循环泵、压缩机和冷凝阀，利用导热油使制品温度下降，当
制品温度达到−35℃时，关闭板冷阀，开机电加热和掺冷阀自动设置，保持该制
品温度3小时，而后开启冷凝器阀，当冷凝器阀温度达到−45℃时，开启真空系
统，当前箱真空达到20Pa以下时，开始升温升华干燥，最后的干燥温度为28℃，
保持该温度2小时，至关闭中隔阀前箱真空无显著变化后，压塞，出箱，用铝塑
组合盖扎口，经质检合格后包装，即得。

实施例5：

处方

盐酸苯达莫司汀 100g
右旋糖酐 200g
叔丁醇 4000ml
注射用水 加至 10000ml

共制成 1000 瓶

量取叔丁醇置容器中，加入注射用水，搅拌并混合均匀，将混合溶剂冷却至8°C并保温。再加入盐酸苯达莫司汀和右旋糖酐，搅拌使其溶解并混合均匀，中间体检查合格后，用蠕动泵送至无菌室内经 0.22μm 的微孔滤膜过滤至澄清，灌装于棕色西林瓶中，部分塞上丁基橡胶塞，装盘；将装盘待冻干样品置于冻干箱中，关闭箱门，开机，打开循环泵、压缩机和板冷阀，利用导热油使制品温度下降，当制品温度达到-35°C时，关闭板冷阀，开启电加热和掺冷阀自动设置，保持该制品温度4小时，而后开启冷凝器阀，当冷凝器阀温度达到-45°C时，开启真空系统，当前箱真空达到 20Pa 以下时，开始升温升华干燥，最后的干燥温度为 28°C，保持该温度3小时，至关闭中隔阀前箱真空无显著变化后，压塞，出箱，用铝塑组合盖扎口，经质检合格后包装，即得。

实施例6:

处方

盐酸苯达莫司汀 100g
叔丁醇 6000ml
注射用水 加至 20000ml

共制成 1000 瓶

量取叔丁醇置容器中，加入注射用水，搅拌并混合均匀，将混合溶剂冷却至6°C并保温。再加入盐酸苯达莫司汀，搅拌使其溶解并混合均匀，中间体检查合格后，用蠕动泵送至无菌室内经 0.22μm 的微孔滤膜过滤至澄清，灌装于棕色西林瓶中，部分塞上丁基橡胶塞，装盘；将装盘待冻干样品置于冻干箱中，关闭箱门，开机，打开循环泵、压缩机和板冷阀，利用导热油使制品温度下降，当制品温度达到-35°C时，关闭板冷阀，开启电加热和掺冷阀自动设置，保持该制品温度3小时，而后开启冷凝器阀，当冷凝器阀温度达到-45°C时，开启真空系统，当前箱真空达到 20Pa 以下时，开始升温升华干燥，最后的干燥温度为 28°C，保持该温度4小时，至关闭中隔阀前箱真空无显著变化后，压塞，出箱，用铝塑组合盖扎口，经质检合格后包装，即得。

实施例7:
处方

盐酸苯达莫司汀 100g
右旋糖酐 300g
叔丁醇 500ml
注射用水 加至 10000ml
共制成 1000 瓶

量取叔丁醇置容器中，加入注射用水，搅拌并混合均匀，将混合溶剂冷却至2℃并保温，再加入盐酸苯达莫司汀和右旋糖酐，搅拌使其溶解并混合均匀，中间体检查合格后，用蠕动泵送至无菌室中经 0.22μm 的微孔滤膜过滤至澄清，灌装于棕色西林瓶中，部分塞上丁基橡胶塞，装盘；将装盘待冻于样品置冻干箱中，关闭箱门，开机，打开循环泵、压缩机和板冷阀，利用导热油使制品温度下降，当制品温度达到-35℃时，关闭板冷阀，开启电加热和掺冷阀自动设置，保持该制品温度2小时，而后开启冷凝器阀，当冷凝器阀温度达到-45℃时，开启真空系统，当前箱真空达到 20Pa 以下时，开始升温升华干燥，最后的干燥温度为 28℃，保持该温度2小时，至关闭中隔阀前箱真空无显著变化后，压塞，出箱，用铝塑组合盖扎口，经质检合格后包装，即得。

实施例8：

处方

盐酸苯达莫司汀 100g
乳糖 400g
叔丁醇 1500ml
注射用水 加至 15000ml
共制成 1000 瓶

量取叔丁醇置容器中，加入注射用水，搅拌并混合均匀，将混合溶剂冷却至15℃并保温，再加入盐酸苯达莫司汀和乳糖，搅拌使其溶解并混合均匀，中间体检查合格后，用蠕动泵送至无菌室中经 0.22μm 的微孔滤膜过滤至澄清，灌装于棕色西林瓶中，部分塞上丁基橡胶塞，装盘；将装盘待冻于样品置冻干箱中，关闭箱门，开机，打开循环泵、压缩机和板冷阀，利用导热油使制品温度下降，当制品温度达到-35℃时，关闭板冷阀，开启电加热和掺冷阀自动设置，保持该制
晶温度 4 小时，而后开启冷却器阀，当冷凝器阀温度达到-45℃时，开启真空系统，当前箱真空达到 20Pa 以下时，开始升温升华干燥，最后的干燥温度为 28℃，保持该温度 3 小时，至关闭中隔阀前箱真空无显著变化后，压塞，出箱，用铝塑组合盖扎口，经质检合格后包装，即得。

实施例 9:

处方

盐酸苯达莫司汀 100g
葡萄糖 200g
叔丁醇 2000ml

注射用水 加至 10000ml

共制成 1000 瓶

量取叔丁醇置容器中，加入注射用水，搅拌并混合均匀，将混合溶剂冷却至 6℃并保温，再加入盐酸苯达莫司汀和葡萄糖，搅拌使其溶解并混合均匀，中间体检查合格后，用蠕动泵送至无菌室中经 0.22μm 的微孔滤膜过滤至澄清，灌装于棕色西林瓶中，部分塞上丁基橡胶塞，装盘；将装盘待冻干样品置冻干箱中，关闭箱门，开机，打开循环泵、压缩机和板冷阀，利用导热油使制品温度下降，当制品温度达到-35℃时，关闭板冷阀，开启电加热和掺冷阀自动设置，保持该制品温度 2 小时，而后开启冷却器阀，当冷凝器阀温度达到-45℃时，开启真空系统，当前箱真空达到 20Pa 以下时，开始升温升华干燥，最后的干燥温度为 28℃，保持该温度 2 小时，至关闭中隔阀前箱真空无显著变化后，压塞，出箱，用铝塑组合盖扎口，经质检合格后包装，即得。

实施例 10:

按实施例 1～9 各分别制备盐酸苯达莫司汀冻干粉针剂，再分别检查其外观、可见异物、不溶性微粒、含量、有关物质和水分，其结果见表 1。
<table>
<thead>
<tr>
<th>实施例</th>
<th>外 观</th>
<th>可见异物</th>
<th>不溶性微粒</th>
<th>含量(%)</th>
<th>有关物质(%)</th>
<th>水分(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>白色疏松块状物</td>
<td>符合规定</td>
<td>符合规定</td>
<td>99.23</td>
<td>0.31</td>
<td>0.67</td>
</tr>
<tr>
<td>2</td>
<td>白色疏松块状物</td>
<td>符合规定</td>
<td>符合规定</td>
<td>99.87</td>
<td>0.34</td>
<td>0.83</td>
</tr>
<tr>
<td>3</td>
<td>白色疏松块状物</td>
<td>符合规定</td>
<td>符合规定</td>
<td>100.4</td>
<td>0.27</td>
<td>0.54</td>
</tr>
<tr>
<td>4</td>
<td>白色疏松块状物</td>
<td>符合规定</td>
<td>符合规定</td>
<td>99.65</td>
<td>0.29</td>
<td>0.69</td>
</tr>
<tr>
<td>5</td>
<td>白色疏松块状物</td>
<td>符合规定</td>
<td>符合规定</td>
<td>98.13</td>
<td>0.36</td>
<td>0.78</td>
</tr>
<tr>
<td>6</td>
<td>白色疏松块状物</td>
<td>符合规定</td>
<td>符合规定</td>
<td>99.05</td>
<td>0.32</td>
<td>0.85</td>
</tr>
<tr>
<td>7</td>
<td>白色疏松块状物</td>
<td>符合规定</td>
<td>符合规定</td>
<td>99.22</td>
<td>0.24</td>
<td>0.77</td>
</tr>
<tr>
<td>8</td>
<td>白色疏松块状物</td>
<td>符合规定</td>
<td>符合规定</td>
<td>100.2</td>
<td>0.35</td>
<td>0.65</td>
</tr>
<tr>
<td>9</td>
<td>白色疏松块状物</td>
<td>符合规定</td>
<td>符合规定</td>
<td>101.1</td>
<td>0.31</td>
<td>0.90</td>
</tr>
</tbody>
</table>