a2 United States Patent

Mostow

US008209658B2

(10) Patent No.: US 8,209,658 B2
(45) Date of Patent: Jun. 26, 2012

(54)

METHOD OF CREATING SIGNATURES FOR
CLASSIFYING PROGRAM FAILURES

(56) References Cited

U.S. PATENT DOCUMENTS

(75) Inventor: Mark Alan Mostow, Haifa (IL) 5,655,072 A * 8/1997 WOolffcoooooviviiii 714/25
7,333,962 B2* 2/2008 Zencc..... 706/15
. . . . 2004/0194054 Al* 9/2004 McGrath et al. 717/100
(73) Assignee: International Business Machines 2005/0257086 Al* 11/2005 Triouetal. ... 714/25
Corporation, Armonk, NY (US) 2009/0265681 Al* 10/2009 Betoetal.cccoceeeenee 717/100
2010/0088661 Al* 4/2010 Langworthy etal. 717/100
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35 Primary Examiner — Don Wong
U.S.C. 154(b) by 787 days. Assistant Examiner — Lynda Dinh
(74) Attorney, Agent, or Firm — Zaretsky & Associates PC
(21) Appl. No.: 12/391,467 (57) ABSTRACT
A novel and useful method of creating signatures for use in
(22) Filed: Feb. 24, 2009 classifying failures of software programs in general and cir-
cuit design simulation tests in particular. Upon failure of a
(65) Prior Publication Data processor simulation test, the method of the present invention
creates a signature comprising the sequence of source code
US 2010/0218049 A1 Aug. 26,2010 commands executed shortly before the failure. The created
signature, along with the reported error message together
51y Int. Cl provides a functional grouping of the tests into groups of
(1) Int.Cl. similar failures. After executing a suite of processor simula-
GOGF 1107 (2006.01) tion test programs the resulting signatures are classified by
(52) US.CL ... 717/100; 714/38; 714/E11.024; their respective error messages and signatures. The results are
714/E11.029 then analyzed to pinpoint any program errors, or (in the case
(58) Field of Classification Search 717/100; ?fliffo?lessm design tests) design flaws causing the simulation
714/38,E11.024,E11.029 est faitures.
See application file for complete search history. 20 Claims, 5 Drawing Sheets
23
LAN /WAN
/7 6 /20 /22 25
DATA 1/0 ALPHA—-NUMERIC
FLASH | 18 | R 21 | COMMUNICATIONS| ~ 24 INPUT 26
[[4
ROM DATA DISPLAY POINTING
STORAGE DEVICE DEVICE
14 / /7 2
PROCESSOR

10

e DSP/CPU/ASIC/FPGA

US 8,209,658 B2

Sheet 1 of 5

Jun. 26, 2012

U.S. Patent

' DId
\\S
v9d4/2I1SY/Nd0/dsda
¥0SSID0¥d
o
\I
30IA3d 30IA3d 39v401S NON
9NIINIOd AV1dSId V1vd
/ / / /
97 1NdNI VoA SNOILVOINNWWNOD | ;7 VY ol HSY
OIMINNN—YHJ TV 0/! vlvd
/ / / /
5z zZ 0z 9l
A

U.S. Patent Jun. 26, 2012 Sheet 2 of 5 US 8,209,658 B2

PROCESSOR
DESIGN
¢ ///32
SIMULATION
TEST
SUBSYSTEM
TEST SEQUENCE TEST
PROGRAM 24 CLASSIFICATION|——= FAILURE
EXECUTABLE e SUBSYSTEM SIGNATURE
SOURCE CODE 36
MATCHING
SUBSYSTEM
T 30
TEST PROGRAM
SOURCE CODE
FIG.2
/V///40
42 44 46
/ \

REPORT OF TEST FAILURES:

“ERROR MSG <LINK TO LAST INSTRUCTIONS TEST NAME
BEFORE FAILURE

MAX' CYCLES REACHED SEQ23 TEST 1

MAX CYCLES REACHED SEQ23 TEST 75
MAX CYCLES REACHED SEQ41 TEST 76
MAX CYCLES REACHED SEQ41 TEST 92

FIG.3

U.S. Patent Jun. 26, 2012 Sheet 3 of 5 US 8,209,658 B2

PROCESSOR DESIGN
TEST FAILURE SIGNATURE
CREATION METHOD
50

LOAD PROCESSOR DESIGN | ~
TO0 BE TESTED

! 52
LOAD TEST PROGRAM %
EXECUTABLE
!

ACTIVATE EXECUTABLE _/54

INSTRUCTION TRACING

! 56
EXECUTE TEST PROGRAM |
! 58
CREATE OBJECT | 3
CODE LOG FILE
60 !
? SUCCESSFUL \UYES
TERMINATION?
NO
62 !
Y MAXIMUM CYCLES \UYES
REACHED? y +
¢NO CREATE] 66
CREATE ABNORMAL | 27 'NE:EHETULSS i
TERMINATION SIGNATURE ¢

H—

PRESENT RESULTS %
TO USER

END

F1G.4

U.S. Patent Jun. 26, 2012 Sheet 4 of 5 US 8,209,658 B2

INFINITE LOOP SIGNATURE
CREATION METHOD
+ /0
LOAD EXECUTED OBJECT |
CODE LOG FILE
LOAD ASSOCIATED /72

SOURCE CODE FILE

!

MATCH EXECUTABLE INSTRUCTIONS IN /4
THE OBJECT CODE LOG FILE TO —
CORRESPONDING LINES IN SOURCE CODE

IDENTIFY REPEATING SEQUENCE OF A
INSTRUCTIONS IN' OBJECT CODE LOG FILE

LOCATE INSTRUCTION IN IDENTIFIED SEQUENCE /78

OCCURRING EARLIEST IN THE SOURCE CODE

!

CREATE INFINITE LOOP SIGNATURE 80
COMPRISING CORRESPONDING SOURCE |
CODE OF IDENTIFIED SEQUENCE STARTING
WITH LOCATED INSTRUCTION

Y 82

MATCHING INFINITE LOOP SIGNATURE NO 86
EXISTS IN TEST RESULT DATABASE? /

YES ASSIGN A NEW NAME
TO THE NEW INFINITE
LOOP SIGNATURE
|
ADD A NEW ENTRY IN THE TEST /84

RESULT DATABASE FOR THE INFINITE
LOOP SIGNATURE INSTANCE

END

FIG.5

U.S. Patent Jun. 26, 2012 Sheet 5 of 5 US 8,209,658 B2

SIGNATURE CREATION METHOD

\
DEFINE A NUMBER OF INSTRUCTIONS /90
TO STORE IN SIGNATURE

V
92
LOAD EXECUTED OBJECT CODE LOG FILE |~

C ABNORMAL TERMINATION)

!
94
LOAD ASSOCIATED SOURCE CODE FILE |~

]
MATCH EXECUTABLE INSTRUCTIONS IN THE | 96

OBJECT CODE LOG FILE TO —
CORRESPONDING LINES IN SOURCE CODE

‘

IDENTIFY THE LAST DEFINED NUMBER
OF INSTRUCTIONS EXECUTED IN | 96

OBJECT CODE LOG FILE, PLUS ANY
JUMP TO FAIL/ERROR LABEL

w
CREATE ABNORMAL TERMINATION SIGNATURE
COMPRISING CORRESPONDING SOURCE | f00
CODE OF IDENTIFIED INSTRUGTIONS,
PLUS ANY JUMP TO FAIL/ERROR LABEL

!

102 MATCHING ABNORMAL 0
TERMINATION SIGNATURE EXISTS IN
TEST RESULT DATABASE? | /706

&S ASSIGN A NEW NAME
TO THE NEW ABNORMAL
TERMINATION SIGNATURE
— |
V
ADD A NEW ENTRY IN THE TEST 104

RESULT DATABASE FOR THE ABNORMAL |~
TERMINATION SIGNATURE INSTANCE

Y
END

F1G.6

US 8,209,658 B2

1
METHOD OF CREATING SIGNATURES FOR
CLASSIFYING PROGRAM FAILURES

FIELD OF THE INVENTION

The present invention relates to the field of software testing
processor design verification, and more particularly relates to
a method of processor design verification by creating an
executed instruction sequence signature prior to a computer
program failure.

SUMMARY OF THE INVENTION

There is thus provided in accordance with the invention, a
method of defining a test failure signature of an executed
computer program, the computer program failing to terminate
normally, the method comprising the steps of detecting an
error message resulting from the executed computer program
failing to terminate normally, identifying a series of one or
more object code instructions executed prior to the failure of
the executed computer program and matching each series of
executed object instructions to its associated source code
instruction.

There is also provided in accordance of the invention, a
computer program for defining a test failure signature of an
executed computer program, said computer program failing
to terminate normally, comprising a computer usable medium
having computer usable code embodied therewith, the com-
puter program product comprising computer usable code
configured for detecting an error message resulting from the
executed computer program failing to terminate normally,
computer usable code configured identifying a series of one
or more object code instructions executed prior to the failure
of'the executed computer program and computer usable code
configured matching each series of executed object instruc-
tions to its associated source code instruction.

There is further provided a method of defining a test failure
signature of an executed computer program, the execution of
said computer program terminating while in an infinite loop,
the method comprising the steps of identifying a series of
object code instructions executed in a single iteration of the
infinite loop and matching each series of executed object
instructions to its associated source code instruction.

There is also provided a method defining a test failure
signature of an executed computer program, the execution of
the computer program terminating after executing a jump
instruction to an error label in the computer program, the
method comprising the steps of identifying a series of one or
more object code instructions executed prior to the jump to an
error label and matching each series of executed object
instructions to its associated source code instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only,
with reference to the accompanying drawings, wherein:

FIG. 11s ablock diagram illustrating an example computer
processing system adapted to implement the processor design
test failure signature creation method of the present inven-
tion;

FIG. 2 is a block diagram illustrating an example computer
system suitable to implement the processor design test failure
signature creation method of the present invention;

FIG. 3 is an example of a log file comprising signatures
created by the processor design test failure signature creation
method of the present invention;

5

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 is a flow diagram illustrating the processor design
test failure signature creation method of the present inven-
tion;

FIG. 5 is a flow diagram illustrating the infinite loop sig-
nature creation method of the present invention; and

FIG. 6 is a flow diagram illustrating the abnormal termi-
nation signature creation method of the present invention.

DETAILED DESCRIPTION OF THE INVENTION
Notation Used Throughout

The following notation is used throughout this document:

Term Definition

ASIC Application Specific Integrated Circuit
CD-ROM Compact Disc Read Only Memory

CPU Central Processing Unit

DSP Digital Signal Processor

EEROM Electrically Erasable Read Only Memory
EPROM Erasable Programmable Read-Only Memory
FPGA Field Programmable Gate Array

FTP File Transfer Protocol

HTTP Hyper-Text Transport Protocol

/O Input/Output

LAN Local Area Network

NIC Network Interface Card

RAM Random Access Memory

RF Radio Frequency

ROM Read Only Memory

URL Uniform Resource Locator

WAN Wide Area Network

DETAILED DESCRIPTION OF THE INVENTION

The present invention is a method of creating signatures
used to classify failures of processor design simulation tests.
Upon failure of a processor simulation test, the method of the
present invention creates a signature comprising source code
for the sequence of instructions (assembly language, low
level programming language or high level programming lan-
guage) executed immediately prior to the failure. The created
signature, along with the reported error message, provides a
functional grouping of the tests into groups of similar failures.
Debugging one test from each of group of failures enables
debugging the processor design.

After running a suite of processor simulation test pro-
grams, the test failures are classified by their respective error
messages and signatures. The results are then analyzed to
help pinpoint any design flaws causing the simulation test
failures. The present invention is operative to aid in the design
and debugging of both single and multiprocessor circuit
designs. In addition to processor design, the present invention
is a useful method for both detecting design flaws in complex
software systems and for classifying and resolving software
program failures.

As will be appreciated by one skilled in the art, the present
invention may be embodied as a system, method, computer
program product or any combination thereof. Accordingly,
the present invention may take the form of an entirely hard-
ware embodiment, an entirely software embodiment (includ-
ing firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod-
ule” or “system.” Furthermore, the present invention may take
the form of a computer program product embodied in any

US 8,209,658 B2

3

tangible medium of expression having computer usable pro-
gram code embodied in the medium.

Any combination of one or more computer usable or com-
puter readable medium(s) may be utilized. The computer-
usable or computer-readable medium may be, for example
but not limited to, an electronic, magnetic, optical, electro-
magnetic, infrared, or semiconductor system, apparatus,
device, or propagation medium. More specific examples (a
non-exhaustive list) of the computer-readable medium would
include the following: an electrical connection having one or
more wires, a portable computer diskette, a hard disk, a ran-
dom access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a transmission
media such as those supporting the Internet or an intranet, or
a magnetic storage device. Note that the computer-usable or
computer-readable medium could even be paper or another
suitable medium upon which the program is printed, as the
program can be electronically captured, via, for instance,
optical scanning of the paper or other medium, then com-
piled, interpreted, or otherwise processed in a suitable man-
ner, ifnecessary, and then stored in a computer memory. In the
context of this document, a computer-usable or computer-
readable medium may be any medium that can contain, store,
communicate, propagate, or transport the program for use by
or in connection with the instruction execution system, appa-
ratus, or device. The computer-usable medium may include a
propagated data signal with the computer-usable program
code embodied therewith, either in baseband or as part of a
carrier wave. The computer usable program code may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc.

Computer program code for carrying out operations of the
present invention may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

The present invention is described below with reference to
flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart illus-
trations and/or block diagrams, can be implemented by com-
puter program instructions. These computer program instruc-
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer-readable medium that can direct a computer or
other programmable data processing apparatus to function in

20

25

30

35

40

45

50

55

60

65

4

a particular manner, such that the instructions stored in the
computer-readable medium produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.

A block diagram illustrating an example computer pro-
cessing system adapted to implement the data processor
design test failure signature creation method of the present
invention is shown in FIG. 1. The computer system, generally
referenced 10, comprises a processor 12 which may comprise
a digital signal processor (DSP), central processing unit
(CPU), microcontroller, microprocessor, microcomputer,
ASIC or FPGA core. The system also comprises static read
only memory 18 and dynamic main memory 20 all in com-
munication with the processor. The processor is also in com-
munication, via bus 14, with a number of peripheral devices
that are also included in the computer system. Peripheral
devices coupled to the bus include a display device 24 (e.g.,
monitor), alpha-numeric input device 25 (e.g., keyboard) and
pointing device 26 (e.g., mouse, tablet, etc.)

The computer system is connected to one or more external
networks such as a LAN or WAN 23 via communication lines
connected to the system via data /O communications inter-
face 22 (e.g., network interface card or NIC). The network
adapters 22 coupled to the system enable the data processing
system to become coupled to other data processing systems or
remote printers or storage devices through intervening private
or public networks. Modems, cable modem and Ethernet
cards are just a few of the currently available types of network
adapters. The system also comprises magnetic or semicon-
ductor based storage device 21 for storing application pro-
grams and data. The system comprises computer readable
storage medium that may include any suitable memory
means, including but not limited to, magnetic storage, optical
storage, semiconductor volatile or non-volatile memory, bio-
logical memory devices, or any other memory storage device.

Software adapted to implement the processor design test
failure signature creation method of the present invention is
adapted to reside on a computer readable medium, such as a
magnetic disk within a disk drive unit. Alternatively, the
computer readable medium may comprise a floppy disk,
removable hard disk, Flash memory 16, EEROM based
memory, bubble memory storage, ROM storage, distribution
media, intermediate storage media, execution memory of a
computer, and any other medium or device capable of storing
for later reading by a computer a computer program imple-
menting the method of this invention. The software adapted to
implement the processor design test failure signature creation
method of the present invention may also reside, in whole or
in part, in the static or dynamic main memories or in firmware
within the processor of the computer system (i.e. within
microcontroller, microprocessor or microcomputer internal
memory).

Other digital computer system configurations can also be
employed to implement the processor design test failure sig-
nature creation method of the present invention, and to the
extent that a particular system configuration is capable of
implementing the system and methods of this invention, it is

US 8,209,658 B2

5

equivalent to the representative digital computer system of
FIG. 1 and within the spirit and scope of this invention.

Once they are programmed to perform particular functions
pursuant to instructions from program software that imple-
ments the system and methods of this invention, such digital
computer systems in effect become special purpose comput-
ers particular to the method of this invention. The techniques
necessary for this are well-known to those skilled in the art of
computer systems.

It is noted that computer programs implementing the sys-
tem and methods of this invention will commonly be distrib-
uted to users on a distribution medium such as floppy disk or
CD-ROM or may be downloaded over a network such as the
Internet using FTP, HTTP, or other suitable protocols. From
there, they will often be copied to a hard disk or a similar
intermediate storage medium. When the programs are to be
run, they will be loaded either from their distribution medium
or their intermediate storage medium into the execution
memory of the computer, configuring the computer to act in
accordance with the method of this invention. All these opera-
tions are well-known to those skilled in the art of computer
systems.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

Processor Design Test Failure Signature Creation
Method

In accordance with the invention, a suite of software simu-
lation test programs are executed to verify the design of a
circuit comprising one or more processors. For each test
which fails, a list (in a file or in a data structure of a computer
program or script) is created comprising all machine code
instructions which were executed in the course of the test, in
the order of their execution. The machine code instruction
information is obtained from the test engine executing the test
(details of this step are dependent on the specifics of the
particular verification environment). Aside from the executed
machine code instruction, the program counter and any other
data needed to locate the corresponding instruction in the
source code compiled to create the executed machine code are
stored as well.

Using the collected information, the source code command
corresponding to the machine code instruction is identified as
it appears in the original source code file which generated the
executable program, or in the listing file of its compilation.
While the executable program comprises a series of machine
code instructions, the source code file comprises a program
written in either (but not limited to) assembly language, a low

20

25

30

35

40

45

50

55

60

65

6

level computer programming language or a high level com-
puter programming language. The corresponding source
code may contain useful labels such as Errorl and corre-
sponding instructions Jump To Errorl. If this type of label and
jump instruction are found in the source code, they are used to
assist in classifying the program execution failure.

After the source code commands are identified and stored
in a list, the source code commands are preprocessed into a
canonical form, thereby converted to a standard form to aid
with source code comparison. For example, the assembly
language command

Line 123: Add C, OXxFFF
is preprocessed to

Add C, OXFFF
In this example, any line numbers are removed, since the
same code sequence can occur at different locations (i.e. line
numbers) in either different source code files or different
versions of the same source code file. In addition, multiple
spaces are reduced to single spaces. Additional examples of
preprocessing include omitting comments and leading and
trailing blanks.

After preprocessing the list of source code commands, the
end of the sequence of executed machine code instructions is
examined to determine if the test ended while repeatedly
executing the same sequence of machine code more than a
certain configurable number of times, (e.g., 500). The test is
terminated because it reached a maximum number of cycles
or executed instructions. In this case, the termination is des-
ignated to be due to an infinite loop, and the list of last
executed source code instructions comprises the list of source
code instructions executed in a single iteration of the loop,
starting with earliest occurring source code instruction in the
source code file.

In the case where the software simulation test terminates
prematurely (i.e. the test failed, but not due to an infinite
loop), the first executed source code instruction is found (if
any), which has a conditional or unconditional jump to a label
containing a key word such as Error or Fail, when that jump is
actually performed during execution. Detecting whether or
not the jump was actually taken is determined by checking
either the program counter of the next instruction executed or
its relative position in the source code or its compilation
listing. Details of this step depend on the naming convention
used in the tests to denote failing conditions. In this case, the
list of last commands is defined to be the last specified number
of source code commands executed (e.g., 10, but this number
is configurable) leading up to the jump to error.

In the case where the termination of the failing software
simulation test was neither due to an infinite loop nor a jump
to a label designating an error or failure, the list of last com-
mands is defined to be a specific number of source code
commands executed at the end of the test.

In all the cases discussed supra (i.e. infinite loop, termina-
tion with an error label or termination without an error label)
the list of last commands is written to a file for that test and
stored as a multi-line string in a database of all test failures.
The list of last commands contains only source code com-
mands, not program counters or other information which
varies from test to test.

After running the suite of processor test simulations, all test
failures are then listed, grouped first by first error message,
then by the list of last commands. Alternatively, the test fail-
ures are displayed in a graphical user interface, adding a
unique short code name (e.g. LastCmds0031) for each dis-
tinct value of the list of last commands. This enables grouping
together test failures by the first error message and same code

US 8,209,658 B2

7

name. When the user clicks on the code name, the actual list
of last commands is then displayed.

A block diagram illustrating an example computer suitable
for use with the present invention is shown in FIG. 2. The
block diagram, generally referenced 30, comprises simula-
tion test subsystem 32, source code matching subsystem 34
and sequence classification subsystem 36.

In operation, both the processor design and simulation test
program executable files are loaded to the simulation test
subsystem. Results from the simulation test, including the
executed instruction log file and any error messages are sent
to the sequence classification subsystem. The simulation test
program executable and source code files are sent to the
source code matching subsystem, where a mapping is created
between the source and executable code files, including any
labels (e.g., jump to on error labels) in the source code. The
matched source and executable files are then sent to the
sequence classification system, which then uses the simula-
tion test results and mapped source code to create a test failure
signature.

An example of output generated by a computer system
implementing the method of the present invention is shown in
FIG. 3. The report generally referenced 40 comprises col-
umns for error messages 42, sequence of executed instruc-
tions before simulation test program failure 44, and test pro-
gram name 46. For example, the first report entry shows an
error message of Max cycles reached, indicating an infinite
loop. The unique signature that was detected by the method of
the present invention prior to the program failure was Seq23,
which was located in program Test 1.

A flow diagram illustrating the delayed processor design
test failure signature creation method of the present invention
is shown in FIG. 4. First the processor design file defining the
processor to be tested is loaded (step 50). Next, the processor
simulation test executable file is loaded (step 54), instruction
tracing is activated (step 56), the processor simulation test is
executed (step 56) and an object code log file is created (step
58). If the processor simulation test completes successfully
(step 60), then the results are presented to the user (step 68).
If the processor simulation test does not complete success-
fully and an infinite loop was detected, typically by receiving
a Max Cycles Reached error message (step 62) then an infi-
nite loop signature is created (step 66) and the method of the
present invention continues with step 68. If the processor
simulation test does not complete successfully and an infinite
loop was not detected then an abnormal termination signature
is created (step 64), and the method of the present invention
concludes with step 68.

A flow diagram illustrating the infinite loop signature cre-
ation method of the present invention is shown in FIG. 5.
First, the object code log file is loaded (step 70) and is asso-
ciated source code file is also loaded (step 72). Executable
instructions in the object code log file are then matched to
their corresponding source code commands in the source
code file (step 74). A repeating sequence of instructions in the
object code log file is identified (step 76) and the instruction
in the sequence with the lowest address is located (step 78).
An infinite loop signature is created comprising the corre-
sponding source code of the identified sequence starting with
the located lowest address instruction (step 80). If a matching
infinite loop signature already exists in the test result database
(step 82) then a new entry in the test result database is added
for the infinite loop signature instance (step 84). If no match-
ing infinite loop signature was found in the test result data-
base, then a new name is assigned to the created infinite loop
signature (step 86), and the method of the present invention
concludes with step 84.

20

25

30

35

40

45

50

55

60

65

8

A flow diagram illustrating the abnormal termination sig-
nature creation method of the present invention is shown in
FIG. 6. First, the number of instructions to store in the signa-
ture (for example, 10) is defined (step 90). Then the object
code log file is loaded (step 92) and is associated source code
file is also loaded (step 94). Executable instructions in the
object code log file are then matched to their corresponding
source code commands in the source code file (step 96). The
last (i.e. the defined number of) instructions in the object code
log file are identified, ending at the first jump to fail or jump
to error label taken (if one exists), or at the end of the test,
otherwise (step 98). An abnormal termination signature is
then created comprising the corresponding source code of the
identified instructions, plus any jump to error or jump to fail
label (step 100). If a matching abnormal termination signa-
ture already exists in the test result database (step 102) then a
new entry is added for this abnormal termination signature
instance (step 104). If no matching abnormal termination
signature already exists in the test result database, then a new
name is assigned to the created abnormal termination signa-
ture (step 106), and the method of the present invention con-
cludes with step 104.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

It is intended that the appended claims cover all such fea-
tures and advantages of the invention that fall within the spirit
and scope of the present invention. As numerous modifica-
tions and changes will readily occur to those skilled in the art,
it is intended that the invention not be limited to the limited
number of embodiments described herein. Accordingly, it
will be appreciated that all suitable variations, modifications
and equivalents may be resorted to, falling within the spirit
and scope of the present invention.

What is claimed is:
1. A method of defining a test failure signature of an
executed computer program failing to terminate normally, the
method comprising the steps of:
detecting an error message resulting from said executed
computer program failing to terminate normally;

identifying a series of one or more object code instructions
executed prior to said failure of said executed computer
program; and

matching each said series of executed object code instruc-

tions to its associated source code instruction

wherein said associated source code instruction is from the

group consisting of an assembly language instruction, a
low level programming instruction and a high level pro-
gramming instruction; and

wherein said associated source code instruction is prepro-

cessed into a canonical form.

2. The method according to claim 1, wherein said detected
error message comprises detection of an infinite loop.

US 8,209,658 B2

9

3. The method according to claim 2, wherein test failure
signature comprises source code associated with said series
of object code instructions executed in a single iteration of
said infinite loop.

4. The method according to claim 3, wherein first said
object code instruction of said infinite loop comprises said
object code instruction occurring said first within source code
file.

5. The method according to claim 1, wherein said detected
error message comprises a jump to an error label.

6. The method according to claim 1, wherein a defined
maximum number of associated source code instructions is
associated with said test failure signature.

7. The method according to claim 1, wherein each observed
instance of said test failure signature is stored in a log file,
each record of said log file comprising:

a unique name for said test failure signature;

said detected error message; and

an identity of said executed computer program.

8. A computer program product for defining a test failure
signature of an executed computer program failing to termi-
nate normally, comprising:

a non-transitory computer usable medium having com-
puter usable code embodied therewith, the computer
program product comprising:

computer usable code configured for detecting an error
message resulting from said executed computer pro-
gram failing to terminate normally;

computer usable code configured identifying a series of
one or more object code instructions executed prior to
said failure of said executed computer program; and

computer usable code configured matching each said series
of executed object code instructions to its associated
source code instruction

wherein said associated source code instruction is from the
group consisting of an assembly language instruction, a
low level programming instruction and a high level pro-
gramming instruction; and

wherein said associated source code instruction is prepro-
cessed into a canonical form.

9. The computer program product according to claim 8,
wherein said detected error message comprises detection of
an infinite loop.

10. The computer program product according to claim 9,
wherein test failure signature comprises source code associ-
ated with said series of object code instructions executed in a
single iteration of said infinite loop.

11. The computer program product according to claim 10,
wherein first said object code instruction of said infinite loop
comprises said object code instruction occurring said first in
source code file.

12. The computer program product according to claim 8,
wherein said detected error message comprises jump to an
error label.

20

25

30

35

40

45

50

10

13. The computer program product according to claim 8,
wherein a defined maximum number of said associated
source code instruction is associated with said test failure
signature.

14. The computer program product according to claim 8,
wherein each observed instance of said test failure signature
is stored in a log file, each record of said log file comprising:

a unique name for said test failure signature;

said detected error message; and

an identity of said executed computer program.

15. A method of defining a test failure signature of an
executed computer program terminating while in an infinite
loop, the method comprising the steps of:

identifying a series of object code instructions executed in

a single iteration of said infinite loop; and

matching each said series of executed object code instruc-

tions to its associated source code instruction

wherein said associated source code instruction is from the

group consisting of an assembly language instruction, a
low level programming instruction and a high level pro-
gramming instruction; and

wherein said associated source code instruction is prepro-

cessed into a canonical form.

16. The method according to claim 15, wherein first said
object code instruction of said infinite loop comprises said
object code instruction occurring said first in source code file.

17. The method according to claim 15, wherein each
observed instance of said test failure signature is stored in a
log file, each record of said log file comprising:

a unique name for said test failure signature;

said detected error message; and

an identity of said executed computer program.

18. A method of defining a test failure signature of an
executed computer program terminating after executing a
jump instruction to an error label in said computer program,
the method comprising the steps of:

identifying a series of one or more object code instructions

executed prior to said jump to an error label; and
matching each said series of executed object instructions to
its associated source code instruction

wherein said associated source code instruction is from the

group consisting of an assembly language instruction, a
low level programming instruction and a high level pro-
gramming instruction; and

wherein said associated source code instruction is prepro-

cessed into a canonical form.

19. The method according to claim 18, wherein a defined
maximum number of associated source code instructions is
associated with said test failure signature.

20. The method according to claim 18, wherein each
observed instance of said test failure signature is stored in a
log file, each record of said log file comprising:

a unique name for said test failure signature;

said detected error message; and

an identity of said executed computer program.

#* #* #* #* #*

