
(19) United States
US 200600262OOA1

(12) Patent Application Publication (10) Pub. No.: US 2006/0026200 A1
Cabillic et al. (43) Pub. Date: Feb. 2, 2006

(54) METHOD AND SYSTEM FOR SHARED
OBJECT DATA MEMBER ZONES

(75) Inventors: Gilbert Cabillic, Brece (FR);
Jean-Philippe Lesot, Etrelles (FR)

Correspondence Address:
TEXAS INSTRUMENTS INCORPORATED
PO BOX 655474, M/S 3999
DALLAS, TX 75265

(73) Assignee: Texas Instruments Incorporated, Dal
las, TX (US)

(21) Appl. No.: 11/187,199

(22) Filed: Jul. 22, 2005

(30) Foreign Application Priority Data

Jul. 27, 2004 (EP).. 04291918.3

JAVA APPLICATIONS

BYTECODES

120- JAVAAPIs

112

124- JAVA NATIVE API
108

106 114

Publication Classification

(51) Int. Cl.
G06F 1700 (2006.01)

(52) U.S. Cl. .. 707/103 R

(57) ABSTRACT

Methods, computer-readable media, and Systems for Sharing
duplicate data between objects in object-oriented applica
tions are provided. In Some illustrative embodiments, a
method for Sharing data member Zones of objects in a
Software application executing on a processor is provided.
The method includes instantiating a first object comprising
a first plurality of data members and instantiating a Second
object comprising a Second plurality of data members. The
method further includes defining a first shared data member
Zone comprising a first portion of the first plurality of data
members and a Second portion of the Second plurality of data
members, and modifying a value of a data member in the
first portion, the modification making the value available to
a read access of a corresponding data member in the Second
portion.

100
118 f

COMPLER 110

116

Patent Application Publication Feb. 2, 2006 Sheet 1 of 4 US 2006/0026200 A1

FIG. I.

120- JAVAAPIs 100
JAVA APPLICATIONS 118 /

BYTECODES

coMPLER |-110
112

124- JAVA NATIVE API

106 114 116

FIG. 2

SHARED
2ONE 204

2O2
OBJECTB

200
OBJECT A

W 10BT80 008

O 103080Z08
708

US 2006/0026200 A1

ENOZ909ENOZ

708

ENOZ

OHHVHS

Patent Application Publication

GL/ 0 || 1

US 2006/0026200 A1

8 | 1•W 10BT80

008

909ENOZ

0 || 7

§ 91. H.

Patent Application Publication Feb. 2, 2006 Sheet 3 of 4

US 2006/0026200 A1

METHOD AND SYSTEM FOR SHARED OBJECT
DATA MEMBER ZONES

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims the benefit of European
Patent Application No. 04291918.3, filed Jul. 27, 2004,
incorporated by reference herein as if reproduced in full
below.

BACKGROUND OF THE INVENTION

0002. In software applications written in object-oriented
languages Such as Java", C++, and Smalltalk, objects are
generally allocated as individual entities. That is, each object
has its own memory Space with private data that is not
shared with or accessible by any other object. However,
there are many applications that duplicate Subsets of data
between objects, Such as network protocol management,
multimedia decoding, Sound generation, network packet
encoding and decoding, and audio/video Streaming.
Enhancements to improve Sharing of duplicate data between
objects in object-oriented applications are desirable.

SUMMARY

0003. Accordingly, there are disclosed herein methods,
computer-readable media, and Systems for Sharing duplicate
data between objects in object-oriented applications. Some
embodiments provide a method for sharing data member
Zones of objects in a Software application executing on a
processor. The method includes instantiating a first object
comprising a first plurality of data members and instantiat
ing a Second object comprising a Second plurality of data
members. The method further includes defining a first shared
data member Zone comprising a first portion of the first
plurality of data members and a Second portion of the Second
plurality of data members, and modifying a value of a data
member in the first portion, the modification making the
value available to a read access of a corresponding data
member in the Second portion.
0004 Some embodiments provide a computer-readable
medium that Stores a Software program that when executed
by a processor performs the above-described method. Other
embodiments provide a System that comprises a processor,
an implementation of an object-oriented language that
executes on the processor, and a Software program that
executes on the implementation of the object-oriented lan
guage. The Software program is configured to perform the
above-described method.

NOTATION AND NOMENCLATURE

0005 Certain terms are used throughout the following
description and claims to refer to particular System compo
nents. AS one skilled in the art will appreciate, Semiconduc
tor companies may refer to a component by different names.
This document does not intend to distinguish between
components that differ in name but not function. In the
following discussion and in the claims, the terms “includ
ing” and “comprising” are used in an open-ended fashion,
and thus should be interpreted to mean “including, but not
limited to Also, the term “couple' or “couples” is
intended to mean either an indirect or direct connection.
Thus, if a first device couples to a Second device, that

Feb. 2, 2006

connection may be through a direct connection, or through
an indirect connection via other devices and connections.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 For a more detailed description of the preferred
embodiments of the present invention, reference will now be
made to the accompanying drawings, wherein:
0007 FIG. 1 shows a diagram of a system in accordance
with embodiments of the invention;
0008 FIGS. 2-6 illustrate methods for shared object data
Zones in accordance with embodiments of the invention; and
0009 FIG. 7 depicts an illustrative embodiment of the
System described herein.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0010. The following discussion is directed to various
embodiments of the invention. Although one or more of
these embodiments may be preferred, the embodiments
disclosed should not be interpreted, or otherwise used, as
limiting the Scope of the disclosure, unless otherwise Speci
fied. In addition, one skilled in the art will understand that
the following description has broad application, and the
discussion of any embodiments is meant only to be exem
plary of those embodiments, and not intended to intimate
that the Scope of the disclosure, is limited to those embodi
mentS.

0011. The subject matter disclosed herein is directed to
methods that provide Shared object data Zones in object
oriented languages. In embodiments of these methods, two
or more objects may share one or more data Zones. After the
objects are instantiated in memory, a method provided by a
Virtual machine or run time implementing the language is
called to define the shared Zones between pairs of objects.
Once the shared Zones are defined, the virtual machine is
responsible for maintaining consistency between the shared
Zones, if Such consistency maintenance is needed. Merely by
way of example, the embodiments described herein are
directed to Java and a Java Virtual Machine implemented on
a Java processor referred to herein as a Java Stack Machine.
These embodiments should not be construed as limitations
of the scope of this disclosure. The methods described herein
are applicable to other object-oriented languages Such as
C++ and Smalltalk, and to other processors including gen
eral purpose processors.
0012 FIG. 1 shows a system 100 in accordance with
embodiments of the invention. As shown, the system 100
may comprise at least two processors 102 and 104. Proces
Sor 102 may be referred to for purposes of this disclosure as
a Java Stack Machine ("JSM") and processor 104 may be
referred to as a Main Processor Unit (“MPU”). The system
100 may also comprise memory 106, and a display 114
coupled to both the JSM 102 and MPU 104 via one or more
busses 122. At least a portion of the memory 106 may be
shared by both processors, and if desired, other portions of
the memory 106 may be designated as private to one
processor or the other. Other components Such as disk drives
and controllers (not specifically shown) may be included as
desired for various applications.
0013 The system 100 also comprises a Java Virtual
Machine (“JVM”) 108, compiler 110, Java APIs 120, Java

US 2006/0026200 A1

native APIs 124, and Java applications 118. The JVM may
comprise a class loader, bytecode Verifier, garbage collector,
and a bytecode interpreter loop to interpret the bytecodes
that are not executed on the JSM processor 102. The Java
applications 118 are written in Java language Source code
and may comprise references to one or more classes of the
Java Application Program Interfaces (“APIs”) 120 and the
Java native APIs 124. The Java native APIs 124 comprises
interfaces to classes and methods implemented in other
languages Such as C++, C or assembler.

0.014. The Java source code is converted or compiled to
a series of bytecodes 112, with each individual one of the
bytecodes referred to as an “opcode.” Bytecodes 112 are
provided to the JVM 108, possibly compiled by compiler
110, and provided to the JSM 102 and/or MPU 104 for
execution. In some embodiments, the JSM 102 may execute
at least Some Java bytecodes directly. When appropriate,
however, the JVM 108 may also request the MPU 104 to
execute one or more Java bytecodes not executed or execut
able by the JSM 102. In addition to executing compiled Java
bytecodes, the MPU 104 also may execute non-Java instruc
tions.

0015 The MPU 104 may also host an operating system
(“O/S”)(not specifically shown) which performs various
functions Such as System memory management, the System
task management that Schedules the Software aspects of the
JVM 108 and most or all other native tasks running on the
System, management of the display 114, and receiving input
from input devices (e.g., device 116). Java code may be used
to perform any one of a variety of applications Such as
multimedia, games or web based applications in the System
100, while non-Java code, which may comprise the O/S and
other native applications, may still run on the System on the
MPU 104.

0016 Java bytecodes perform stack-based operations.
For example, an “IADD” (integer add) Java opcode pops
two integers off the top of the Stack, adds them together, and
pushes the Sum back on the Stack. A "simple' opcode is one
in which the JSM 102 may perform an immediate operation
either in a single cycle (e.g., an IADD opcode) or in several
cycles (e.g., “DUP2 X2'). A “complex” opcode is one in
which Several memory accesses may be required to be made
within the JVM data structure for various verifications (e.g.,
NULL pointer, array boundaries).
0017 AJSM processor 102 in accordance with embodi
ments of the invention may execute, in addition to the Java
bytecodes, a second instruction set other than JavaTM byte
codes. In Some embodiments, the Second instruction Set may
comprise register-based and memory-based operations
rather than Stack-based operations. This Second instruction
Set complements the Java instruction Set and, accordingly,
may be referred to as a complementary instruction Set
architecture (“C-ISA'). By complementary, it is meant that
Some complex Java bytecodes may be replaced by a “micro
Sequence' comprising C-ISA instructions. The execution of
JavaTM code may thus be made more efficient and run faster
by replacing Some opcodes with more efficient micro
Sequences of C-ISA instructions. For example, the compiler
110 may Scan a Series of Java bytes codes and replace one
or more of Such bytecodes with an optimized code Segment
mixing CISA and bytecodes and which is capable of more
efficiently performing the function(s) performed by the

Feb. 2, 2006

initial group of Java bytecodes. In at least this way, Java
execution may be accelerated by the JSM 102.

0018. In some embodiments, the JVM 108 provides a
method for Sharing data member Zones between two or more
Java objects. AS used herein, a data member is a field or
instance variable of a Java class, and a data member Zone is
one or more data members allocated in contiguous memory
locations in a Java object. Each Java object may have its own
View of the shared data member Zone. There is no require
ment that the names or types of the data members in the
shared data member Zone be the same in each object. The
only requirement is that the shared data member Zone must
be the same physical size in each object. For example, as
illustrated in FIG. 2, Object A 200 and Object B 202 may
share a data member Zone 204. Object A200 may define the
shared data member Zone 204 as an array of four integers
and those data members are accessed using array operations.
Object B 202 may define the shared data member Zone 204
as four integer fields and those data members are accessed
using Java field operations.

0019. In some embodiments, the JVM 108 comprises a
Java native method, referred to herein as ShareObject Zone,
that is used to define data member Zones shared between two
Java objects. This Java native method comprises five param
eters: the two objects, e.g., object A 200 and object B 202,
which share a data member Zone 204, the base of the shared
data member Zone of object A 200, the base of the shared
data member Zone of object B 202, and the size of the shared
data member Zone 204. In at least one embodiment, the call
to ShareObject Zone must be done after the sharing objects
are instantiated and before any of the sharing objects are
used. AS will be explained in more detail in reference to
FIGS. 4 and 5 below, once the shared data member Zone
204 is defined, any changes made to the shared data member
Zone 204 of Object A 200 may be automatically made
available in the shared data member Zone of Object B 202
and Vice versa.

0020 Data member Zones may be shared between two or
more objects and may be layered. For example, as illustrated
in FIG. 3, Object A 300 and Object B 302 share a data
member Zone 306, and Object A300, Object B 302, and
Object C 304 all share a data member Zone 308. Note that
shared data member Zone 308 is part of shared data member
Zone 306, and any changes made in Shared data member
Zone 308 are automatically made in shared data member
Zone 306. Any changes made to the shared data member
Zone 308 in any one of three objects 300, 302,304 may be
automatically made available in the shared data member
Zones of the other two objects. In Some embodiments,
multiple calls to ShareObject Zone are used to define the
sharing of data member Zone 306 and data member Zone 308
between the pairs of objects.

0021. The JVM 108 performs any necessary operations to
maintain consistency between objects sharing data member
Zones. How this consistency is maintained depends on the
internal object representation used by the JVM 108, and in
Some embodiments, a consistency policy defined for the
sharing objects. In the JVM 108, each Java object is com
prised of a Small fixed-sized group of metadata fields
(Sometimes referred to as a header), and Some number of
instance fields, i.e., data members. The data members of an
object are allocated contiguously in memory and may be

US 2006/0026200 A1

accessed via fixed offsets from the beginning of the con
tiguous memory Space. In Some embodiments, the metadata
for an object is allocated in a separate area of memory apart
from the data members. In Such embodiments, the metadata
comprises a reference or pointer to the memory containing
the data members. In other embodiments, the metadata for
an object is allocated in memory contiguously with the data
members, either preceding or following the data members,
and no pointer is needed in the metadata.

0022 FIG. 4 illustrates a method for sharing data mem
ber Zones between objects when the metadata for an object
is allocated in a separate area of memory. In embodiments
such as that illustrated by FIG.4, the JVM 108 allocates the
metadata 410,412,414, for Object A300, Object B302, and
Object C 304 in memory apart from the memory containing
the data members of the objects. Each of the metadata blocks
410, 412, 414 contains a pointer or reference to the block of
memory containing the data members of the object. To
create the shared data member Zone 306 between Object A
300 and Object B 302, the pointer to the data member
memory of Object B 302 contained in the metadata of Object
B 412 is changed to point to the beginning of the shared data
member Zone 306 in the memory allocated for Object A300.
Similarly, to define the shared memory data Zone 308, the
pointer to the data member memory of Object C 304
contained in the metadata of Object C 414 is changed to
point to the beginning of the shared data member Zone 308
in the memory allocated for Object A300.

0023. In these embodiments, the shared data member
Zones 306 and 308 are in the same physical memory and no
additional work is required of the JVM 108 to maintain
consistency between the Shared data members of the three
objects. For example, if a data member of shared data
member Zone 308 is changed by a Java field access in Object
C 304, the change is actually made in the physical memory
of Object A300. If a read of the corresponding data member
of the shared data member Zone 308 is performed by a Java
field access in Object B 302, the value is read from the
physical memory allocated to Object A300.

0024. In addition, in these embodiments, the garbage
collector may need to be augmented to recognize that
multiple objects have references to a shared data member
Zone. For example, since Object B 302 and Object C 304
access the physical memory allocated to Object A300, the
garbage collector Should not free up the memory allocated to
Object A 300 unless all three objects are no longer live.
Therefore, if Object A300 is reachable from the root context
of the garbage collector, Object B 302 and Object 304 must
also be reachable from that root context. In Some embodi
ments, the JVM 108 may maintain a simple table of the
shared data member Zones to be used by the garbage
collector.

0.025 FIG. 5 illustrates a method for sharing data mem
ber Zones between objects when the metadata for an object
is allocated contiguously with the data members of the
object. In embodiments such as that illustrated by FIG. 5,
the JVM 108 allocates the metadata 410, 412, 414, for
Object A300, Object B 302 and Object C 304 in memory
contiguous to the data members of the objects. Object A300
and Object B 302 each have separate physical memory
representations of the shared data memory Zone 306, and
Object A300, Object B 302, and Object C 304 each have

Feb. 2, 2006

Separate physical memory representations of the shared data
memory Zone 308. In these embodiments, the JVM 108 is
configured to maintain consistency between these Separate
physical memory representations. In Some embodiments,
each time a data member in shared data member Zone 306
or shared data member Zone 308 is modified by an access in
one of the sharing objects, the JVM 108 automatically
copies, i.e., propagates, the modification to the correspond
ing data members in the other sharing objects. For example,
if a data member of shared data member Zone 308 is changed
by a Java field access in Object C 304, the JVM 108 also
changes the corresponding data member in Object B302 and
Object A300.

0026 Invarious embodiments, the JVM 108 provides the
capability to Specify consistency attributes for shared data
member Zones rather than automatically performing copies
each time a data member in a shared data member Zone is
changed. In Such embodiments, when a shared data member
Zone 306 or 308 is defined, consistency attributes may also
be defined to indicate which changes should be propagated
automatically. In Some embodiments, a consistency attribute
may be set for an entire Shared data member Zone. In other
embodiments, a consistency attribute may be set for each
data member of a shared data member Zone. Other embodi
ments allow, on a per shared data member Zone basis, Setting
a consistency attribute for the entire shared data member
Zone or for individual data members within the shared data
member Zone. In any of these embodiments, the consistency
attribute may be set to indicate whether a change to the
shared data member Zone or to the shared data member is to
be propagated automatically when the change is made or
not.

0027 Some embodiments also comprise a native method,
e.g., MakeMySharedZoneConsistent, in the JVM 108 that
may be called by a Java application to propagate changes
made to a shared data member Zone and/or to individual data
members in a shared data member Zone as needed. In at least
one embodiment, this native method comprises two param
eters, a reference to an object sharing a shared data member
Zone, and a reference to the base of the shared data member
Zone in that object to be updated. The native method causes
any changes made in the corresponding shared data member
Zones of other objects to be propagated to the shared data
member Zone of the referenced object.
0028. A Java application may use consistency attributes
and/or the Java native method to Set up a consistency policy
that matches the application's use of a shared data member
Zone. For example, when shared data member Zone 308 is
defined, the defining Java application may specify that all
modifications made to the shared data member Zone 308
made in Object C304 should be automatically propagated to
the shared Zones in Object A300 and Object B 302, but no
changes made in the shared data memory Zone 308 in Object
A 300 should be automatically propagated to the shared
Zones in Object B 302 or Object C 304. If the Java
application periodically needs to have the changes made in
the shared data memory Zone 308 in Object A300 propa
gated to the other sharing objects, the Java application may
invoke the Java native method as needed to perform the
copying.

0029. In the previous embodiments described herein, the
shared data member Zones of the objects have been nested,

US 2006/0026200 A1

i.e. all data members of one member of each sharing pair of
objects are shared with the other member of the pair. For
example, all of the data members of Object C 304 are in the
shared data member Zone 308, and all of the data members
of Object B 302 are in shared data member Zone 306. FIG.
6 illustrates a method for sharing one or more Subsets of data
members between objects while keeping other Subsets pri
vate. As shown in FIG. 6, a shared data member Zone 618
is defined between Object A 600 and Object B 602, a shared
data member Zone 622 is defined between Object A 600 and
Object C 604, and a shared data member Zone 620 is defined
between Object A 600, Object B 602, and Object C 604.
Object A 600 has private data member Zones 614 and 616,
Object B has private data member Zones 606 and 608, and
Object C has private data member Zones 610 and 612. In
Some embodiments, multiple invocations of ShareObject
Zone are used to create the various shared data member
Zones 618, 620, 622.
0030) The JVM 108 is configured to recognize which
Subsets of the object data members are private and which are
shared. In Some embodiments, when a data member in a
shared data member Zone is changed in one of the Sharing
objects, the JVM 108 automatically propagates the change
to the corresponding shared Zone in any other sharing
objects. For example, if a data member in the shared data
member Zone 620 is changed in Object C 604, the JVM 108
automatically makes the change in the corresponding data
members in Object A 600 and Object B 602. In other
embodiments, the JVM 108 provides the capability to
Specify consistency attributes for shared data member Zones
rather than automatically performing copies each time a data
member in a shared data member Zone is changed. Such
consistency attributes are described in more detail in refer
ence to FIG. 5.

0031) System 100 may be implemented as a mobile
device 715 Such as that shown in FIG. 7. As shown, the
mobile device 715 includes an integrated keypad 712 and
display 714. The JSM processor 102 and MPU processor
104 and other components may be included in electronics
package 710 connected to the keypad 712, display 714, and
radio frequency (“RF") circuitry 716. The RF circuitry 716
may be connected to an antenna 718.
0032. While the various embodiments of the invention
have been shown and described, modifications thereof can
be made by one skilled in the art without departing from the
Spirit and teachings of the invention. The embodiments
described herein are illustrative only, and are not intended to
be limiting. Many variations and modifications of the inven
tion disclosed herein are possible and are within the Scope of
the invention. Accordingly, the Scope of protection is not
limited by the description set out above. Each and every
claim is incorporated into the Specification as an embodi
ment of the present invention.

What is claimed is:
1. A method for Sharing data member Zones of objects in

a Software application executing on a processor, the method
comprising:

instantiating a first object comprising a first plurality of
data members,

instantiating a Second object comprising a Second plural
ity of data members,

Feb. 2, 2006

defining a first shared data member Zone comprising a
first portion of the first plurality of data members and
a Second portion of the Second plurality of data mem
bers, and

modifying a value of a data member in the first portion,
the modification making the value available to a read
access of a corresponding data member in the Second
portion.

2. The method of claim 1, wherein modifying a value
further comprises propagating the value to a physical
memory location of the corresponding data member.

3. The method of claim 2, wherein

defining a first shared data member Zone further com
prises Setting a consistency attribute of the first portion
to indicate whether modifications of data members in
the first portion should be propagated, and

propagating the value further comprises propagating the
value if the consistency attribute is Set to indicate that
modifications should be propagated.

4. The method of claim 2, wherein

defining a first shared data member Zone further com
prises Setting a consistency attribute of the data mem
ber in the first portion to indicate whether modifications
to the data member should be propagated, and

propagating the value further comprises propagating the
value if the consistency attribute of the data member is
Set to indicate that modifications should be propagated.

5. The method of claim 1, wherein

defining a first shared data member Zone further com
prises configuring the first object to cause an access of
the data member in the first portion to access a physical
memory location of the corresponding data member in
the Second portion, and

modifying a value further comprises placing the value in
the physical memory location.

6. The method of claim 5, wherein configuring the first
object further comprises causing a pointer field in a header
of the first object to point to the Second portion.

7. The method of claim 1, further comprising:
instantiating a third object comprising a third plurality of

data members,

defining a Second shared data member Zone comprising a
third portion of the third plurality of data members, a
Subset of the first portion, and a Subset of the Second
portion, wherein the third plurality and the Subsets are
the same size; and

modifying a value of a data member in the third portion,
the modification making the value available to a read
access of a corresponding data member in the Subset of
the first portion and a corresponding data member in
the Subset of the Second portion.

8. The method of claim 7, wherein modifying a value of
a data member in the third portion further comprises propa
gating the value to a physical memory location of the
corresponding data member in the Subset of the first portion
and a physical memory location of the corresponding data
member in the Subset of the Second portion.

US 2006/0026200 A1

9. The method of claim 8, wherein

defining a Second shared data member Zone further com
prises Setting a consistency attribute of the third portion
to indicate whether modifications of data members in
the third portion should be propagated, and

propagating the value to the physical memory locations of
the corresponding data members in the Subsets of the
first and Second portions further comprises propagating
the value if the consistency attribute is Set to indicate
that modifications should be propagated.

10. The method of claim 7, wherein

defining a Second shared data member Zone further com
prises configuring the third object to cause an access of
the data member in the third portion to access a
physical memory location of the corresponding data
member in the Subset of the Second portion, and

modifying a value of a data member in the third portion
further comprises placing the value in the physical
memory location of the corresponding data member in
the Subset of the Second portion.

11. The method of claim 10, wherein configuring the third
object further comprises causing a pointer field in a header
of the third object to point to the Subset of the second
portion.

12. The method of claim 1, wherein the first object and the
Second object are Java objects.

13. A computer-readable medium storing a Software pro
gram that, when executed by a processor, performs a method
for Sharing data member Zones of objects comprising:

instantiating a first object comprising a first plurality of
data members,

instantiating a Second object comprising a Second plural
ity of data members,

defining a first shared data member Zone comprising a
first portion of the first plurality of data members and
a Second portion of the Second plurality of data mem
bers, and

modifying a value of a data member in the first portion,
the modification making the value available to a read
access of a corresponding data member in the Second
portion.

14. The computer-readable medium of claim 13, wherein
modifying a value further comprises propagating the value
to a physical memory location of the corresponding data
member.

15. The computer-readable medium of claim 14, wherein
defining a first shared data member Zone further com

prises Setting a consistency attribute of the first portion
to indicate whether modifications of data members in
the first portion should be propagated, and

propagating the value further comprises propagating the
value if the consistency attribute is Set to indicate that
modifications should be propagated.

16. The method of claim 14, wherein

defining a first shared data member Zone further com
prises Setting a consistency attribute of the data mem
ber in the first portion to indicate whether modifications
to the data member should be propagated, and

Feb. 2, 2006

propagating the value further comprises propagating the
value if the consistency attribute of the data member is
Set to indicate that modifications should be propagated.

17. The computer-readable medium of claim 13, wherein

defining a first shared data member Zone further com
prises configuring the first object to cause an access of
the data member in the first portion to access a physical
memory location of the corresponding data member in
the Second portion, and

modifying a value further comprises placing the value in
the physical memory location.

18. The computer-readable medium of claim 17, wherein
configuring the first object further comprises causing a
pointer field in a header of the first object to point to the
Second portion.

19. The computer-readable medium of claim 13, wherein
the first object and the Second object are Java objects.

20. A System, comprising:

a proceSSOr,

an implementation of an object oriented language config
ured to execute on the processor, and

a Software program configured to execute on the imple
mentation of the object-orientated language, wherein
the Software program is configured

to instantiate a first object comprising a first plurality of
data members,

to instantiate a Second object comprising a Second plu
rality of data members,

to define a first shared data member Zone comprising a
first portion of the first plurality of data members and
a Second portion of the Second plurality of data mem
bers, and

to modify a value of a data member in the first portion, the
modification making the value available to a read
access of a corresponding data member in the Second
portion.

21. The system of claim 20, wherein the software program
is further configured to modify a value by propagating the
value to a physical memory location of the corresponding
data member.

22. The System of claim 21, wherein the Software program
is further configured to define a first shared data member
Zone by Setting a consistency attribute of the first portion to
indicate whether modifications of data members in the first
portion should be propagated, and propagating the value
further comprises propagating the value if the consistency
attribute is set to indicate that modifications should be
propagated.

23. The system of claim 21, wherein the software program
is further configured to define a first shared data member
Zone by Setting a consistency attribute of the data member in
the first portion to indicate whether modifications to the data
member should be propagated, and propagating the value
further comprises propagating the value if the consistency
attribute of the data member is set to indicate that modifi
cations should be propagated.

US 2006/0026200 A1

24. The system of claim 20, wherein the software program
is further configured

to define a first shared data member Zone by configuring
the first object to cause an access of the data member
in the first portion to access a physical memory location
of the corresponding data member in the Second por
tion, and

to modify a value by placing the value in the physical
memory location.

Feb. 2, 2006

25. The system of claim 24, wherein configuring the first
object further comprises causing a pointer field in a header
of the first object to point to the Second portion.

26. The system of claim 20, wherein the implementation
of the object-oriented language comprises a Java Virtual
machine.

27. The system of claim 20, wherein the system comprises
a mobile device.

