(86) Date de dépôt PCT/PCT Filing Date: 2005/06/02
(87) Date publication PCT/PCT Publication Date: 2005/12/15
(85) Entrée phase nationale/National Entry: 2006/11/16
(86) N° demande PCT/PCT Application No.: US 2005/019641
(87) N° publication PCT/PCT Publication No.: 2005/117978
(30) Priorité/Priority: 2004/06/04 (US60/576,993)

(54) Titre : METHODE DE TRAITEMENT DE LA SCLEROSE EN PLAQUES
(54) Title: METHOD FOR TREATING MULTIPLE SCLEROSIS

(57) Abrégé/Abstract:
Methods for treating multiple sclerosis (MS) with a CD20 antibody using special dosing regimens and protocols are described. Articles of manufacture for use in such methods are also described.
METHOD FOR TREATING MULTIPLE SCLEROSIS

WO 2005/117978 A3

Published: with international search report before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

Date of publication of the international search report: 22 June 2006.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Title: METHOD FOR TREATING MULTIPLE SCLEROSIS

Abstract: Methods for treating multiple sclerosis (MS) with a CD20 antibody using special dosing regimens and protocols are described. Articles of manufacture for use in such methods are also described.
METHOD FOR TREATING MULTIPLE SCLEROSIS

Field of the Invention

The present invention concerns methods for treating multiple sclerosis (MS) in a subject using special dosing regimens and protocols, and an article of manufacture with instructions for such use.

Background of the Invention

Multiple Sclerosis

Multiple Sclerosis (MS) is an inflammatory and demyelinating degenerative disease of the human central nervous system (CNS). It is a worldwide disease that affects approximately 300,000 persons in the United States; it is a disease of young adults, with 70%–80% having onset between 20 and 40 years old (Anderson et al. Ann Neurology 31(3):333–6 (1992); Noonan et al. Neurology 58:136–8 (2002)). MS is a heterogeneous disorder based on clinical course, magnetic resonance imaging (MRI) scan assessment, and pathology analysis of biopsy and autopsy material (Lucchinetti et al. Ann Neurol 47:707–17 (2000)). The disease manifests itself in a large number of possible combinations of deficits, including spinal cord, brainstem, cranial nerve, cerebellar, cerebral, and cognitive syndromes. Progressive disability is the fate of most patients with MS, especially when a 25-year perspective is included. Half of MS patients require a cane to walk within 15 years of disease onset. MS is a major cause of neurologic disability in young and middle-aged adults and, until the past decade, has had no known beneficial treatments. MS is difficult to diagnose because of the non-specific clinical findings, which led to the development of highly structured diagnostic criteria that include several technological advances, consisting of MRI scans, evoked potentials, and cerebrospinal fluid (CSF) studies. All diagnostic criteria rely upon the general principles of scattered lesions in the central white matter occurring at different times and not explained by other etiologies such as infection, vascular disorder, or autoimmune disorder (McDonald et al. Ann Neurol 50:121–7 (2001)). MS has four patterns of disease: relapsing-remitting MS (RRMS; 80%–85% of cases at onset), primary progressive MS (PPMS; 10%–15% at onset), progressive relapsing MS (PRMS; 5% at onset); and secondary progressive MS (SPMS) (Kremenichzky et al. Brain 122 (Pt 10):1941–50 (1999); Confavreux et al. N Engl J Med 343(20):1430–8 (2000)). An estimated 50% of patients with RRMS will develop SPMS in 10 years, and up to 90% of RRMS patients will eventually develop SPMS (Weinschenker et al. Brain 112(Pt 1):133–46 (1989)).

Currently, six drugs in four classes are approved in the United States for the treatment of RRMS, whereas no drugs have been approved for PPMS. The RRMS treatments include the following: interferon class, IFN-beta-1a (REBIF® and AVONEX®) and IFN-beta-1b (BETASERON®); glatiramer acetate (COPAXONE®), a polypeptide; natalizumab (TYSABRI®); and mitoxantrone (NOVANTRONE®), a cytotoxic agent. Other drugs have been used with varying
degrees of success, including corticosteroids, methotrexate, cyclophosphamide, azathioprine, and intravenous (IV) immunoglobulin. The benefits of currently approved treatments are relatively modest (~30%) for relapse rate and prevention of disability in RRMS as suggested by two recent meta-analyses (Filippini et al. Lancet 361:545–52 (2003)).

Other clinical studies evaluated other immunomodulatory agents in MS, including tumor necrosis factor-α inhibitors and altered peptide ligands, which aggravated rather than improved MS (Leneccept Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Neurology 53:457–65 (1999); Bielekova et al. Nat Med 2000;6:1167–75 (2000), erratum appears in Nat Med 6:1412 (2000)).

The predominant view of MS pathophysiology has held that inflammation is principally mediated by CD4+ Th1 T cells. Therapeutic approaches based on this theory such as IFN-beta and glatiramer acetate decrease, but do not fully prevent, occurrence of exacerbations or accumulation of disability.

Anti-myelin antibodies (myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG)) have been detected in the serum of patients with progressive and relapsing forms of MS (Reindl et al. Brain 122:2047–56 (1999); Egg et al. Mult Scler 7(5):285–9 (2001)). Anti-myelin antibodies have also been detected in the CSF of MS patients (Reindl et al. Brain 122:2047–56 (1999); Egg et al. Mult Scler 7(5):285–9 (2001); Andersson et al. Eur J Neurol 9:243–51 (2002)). Additional types of antibodies such as anti-ganglioside antibodies or anti-neurofilament antibodies have been observed in patients with MS (Mata et al. Mult Scler 5:379–88 (1999); Sadatipour et al. Ann Neurol 44:980–3 (1998)). A recent report indicated that the presence of serum anti-MOG and anti-MBP antibodies was a strong predictor of progression from a clinically isolated demyelinating event to definite RRMS (Berger et al. N Engl J Med 349:139–45 (2003)). The adjusted hazard ratio for experiencing an exacerbation was 76.5 for patients who were seropositive for both antibodies and 31.6 for patients who were seropositive only for anti-MOG.

An international pathology consortium found that antibodies bound to myelin are present in the majority of patients with MS, with plasma cells and B cells also found in MS lesions, providing

In subjects with RRMS or opsoconus-myoclonus syndrome, Rituximab reportedly depleted peripheral B cells in all subjects and decreased the number of CSF B cells in some patients (Pranzatelli et al. *Neurology* 60(Suppl1) PO5.128:A395 (2003); Cross et al. “Preliminary Results from a Phase II Trial of Rituximab in MS” (abstract) *Eighth Annual Meeting of the Americas Committees for Research and Treatment in Multiple Sclerosis ACTRIMS* 20–1 (October, 2003)). See also Cree et al. “Tolerability and Effects of Rituximab “Anti-CD20 Antibody” in Neuromyelitis Optica and Rapidly Worsening Multiple Sclerosis” *Meeting of the Am. Acad. Neurol.* (April, 2004).

CD20 Antibodies and Therapy Therewith

Lymphocytes are one of many types of white blood cells produced in the bone marrow during the process of hematopoiesis. There are two major populations of lymphocytes: B lymphocytes (B cells) and T lymphocytes (T cells). The lymphocytes of particular interest herein are B cells.

B cells mature within the bone marrow and leave the marrow expressing an antigen-binding antibody on their cell surface. When a naive B cell first encounters the antigen for which its membrane-bound antibody is specific, the cell begins to divide rapidly and its progeny differentiate into memory B cells and effector cells called “plasma cells”. Memory B cells have a longer life span and continue to express membrane-bound antibody with the same specificity as the original parent cell. Plasma cells do not produce membrane-bound antibody but instead produce the antibody in a form that can be secreted. Secreted antibodies are the major effector molecule of humoral immunity.

The CD20 antigen (also called human B-lymphocyte-restricted differentiation antigen, Bp35) is a hydrophobic transmembrane protein with a molecular weight of approximately 35 kD located on pre-B and mature B lymphocytes (Valentine et al. *J. Biol. Chem.* 264(19):11282-11287 (1989); and Einfeld et al. *EMBO J.* 7(3):711-717 (1988)). The antigen is also expressed on greater than 90% of B-cell non-Hodgkin’s lymphomas (NHL) (Anderson et al. *Blood* 63(6):1424-1433 (1984)), but is not found on hematopoietic stem cells, pro-B cells, normal plasma cells or other normal tissues (Tedder et al. *J. Immunol.* 135(2):973-979 (1985)). CD20 regulates an early step(s) in the activation process for cell cycle initiation and differentiation (Tedder et al., supra) and possibly functions as a calcium ion channel (Tedder et al. *J. Cell. Biochem.* 14D:195 (1990)).

Given the expression of CD20 in B-cell lymphomas, this antigen can serve as a candidate for “targeting” of such lymphomas. In essence, such targeting can be generalized as follows: antibodies specific to the CD20 surface antigen of B cells are administered to a patient. These anti-CD20
antibodies specifically bind to the CD20\(^a\) antigen of (ostensibly) both normal and malignant B cells; the antibody bound to the CD20 surface antigen may lead to the destruction and depletion of neoplastic B cells. Additionally, chemical agents or radioactive labels having the potential to destroy the tumor can be conjugated to the anti-CD20 antibody such that the agent is specifically "delivered" to the neoplastic B cells. Irrespective of the approach, a primary goal is to destroy the tumor; the specific approach can be determined by the particular anti-CD20 antibody that is utilized and, thus, the available approaches to targeting the CD20 antigen can vary considerably.

The Rituximab (RITUXAN\(^\text{®}\)) antibody is a genetically engineered chimeric murine/human monoclonal antibody directed against the CD20 antigen. Rituximab is the antibody called "C2B8" in US Patent No. 5,736,137 issued April 7, 1998 (Anderson et al.). RITUXAN\(^\text{®}\) is indicated for the treatment of patients with relapsed or refractory low-grade or follicular, CD20-positive, B-cell non-Hodgkin's lymphoma. In vitro mechanism of action studies have demonstrated that RITUXAN\(^\text{®}\) binds human complement and lyses lymphoid B-cell lines through complement-dependent cytotoxicity (CDC) (Reff et al. Blood 83(2):435-445 (1994)). Additionally, it has significant activity in assays for antibody-dependent cellular cytotoxicity (ADCC). More recently, RITUXAN\(^\text{®}\) has been shown to have anti-proliferative effects in tritiated thymidine incorporation assays and to induce apoptosis directly, while other anti-CD19 and CD20 antibodies do not (Maloney et al. Blood 88(10):637a (1996)). Synergy between RITUXAN\(^\text{®}\) and chemotherapies and toxins has also been observed experimentally. In particular, RITUXAN\(^\text{®}\) sensitizes drug-resistant human B-cell lymphoma cell lines to the cytotoxic effects of doxorubicin, CDDP, VP-16, diphtheria toxin and ricin (Demidem et al. Cancer Chemotherapy & Radiopharmaceuticals 12(3):177-186 (1997)). In vivo preclinical studies have shown that RITUXAN\(^\text{®}\) depletes B cells from the peripheral blood, lymph nodes, and bone marrow of cynomolgus monkeys, presumably through complement and cell-mediated processes (Reff et al. Blood 83(2):435-445 (1994)).

Rituximab was approved in the United States in November 1997 for the treatment of patients with relapsed or refractory low-grade or follicular CD20\(^+\) B-cell non-Hodgkin's lymphoma (NHL) at a dose of 375 mg/m\(^2\) weekly for four doses. In April 2001, the Food and Drug Administration (FDA) approved additional claims for the treatment of low-grade NHL: retreatment (weekly for four doses) and an additional dosing regimen (weekly for eight doses). There have been more than 300,000 patient exposures to Rituximab either as monotherapy or in combination with immunosuppressant or chemotherapeutic drugs. Patients have also been treated with Rituximab as maintenance therapy for up to 2 years (Hainsworth et al. J Clin Oncol 21:1746-51 (2003); Hainsworth et al. J Clin Oncol 20:4261-7 (2002)).

Rituximab has also been studied in a variety of non-malignant autoimmune disorders, in which B cells and autoantibodies appear to play a role in disease pathophysiology (Edwards et al. Biochem Soc Trans 30:824–8 (2002)). Rituximab has been reported to potentially relieve signs and symptoms of rheumatoid arthritis (RA) (Leandro et al. Ann Rheum Dis. 61:883–8 (2002); Emery et

A Phase II study (WA16291) has been conducted in patients with rheumatoid arthritis (RA), providing 48-week follow-up data on safety and efficacy of Rituximab (Emery et al. Arthritis Rheum 48(9):S439 (2003); Szczepanski et al. Arthritis Rheum 48(9):S121 (2003)). A total of 161 patients were evenly randomized to four treatment arms: methotrexate, Rituximab alone, Rituximab plus methotrexate, Rituximab plus cyclophosphamide (CTX). The treatment regimen of Rituximab was 1 g administered intravenously on Days 1 and 15. Infusions of Rituximab in most patients with RA were well tolerated by most patients, with 36% of patients experiencing at least one adverse event during their first infusion (compared with 30% of patients receiving placebo). Overall, the majority of adverse events were considered to be mild to moderate in severity and were well balanced across all treatment groups. There were a total of 19 serious adverse events across the four arms over the 48 weeks, which were slightly more frequent in the Rituximab/CTX group. The incidence of infections was well balanced across all groups. The mean rate of serious infection in this RA patient population was 4.6 per 100 patient-years, which is lower than the rate of infections requiring hospital admission in RA patients (9.57 per 100 patient-years) reported in a community-based epidemiologic study (Doran et al. Arthritis Rheum 46:2287–93 (2002)).

The reported safety profile of Rituximab in a small number of patients with neurologic disorders, including autoimmune neuropathy (Pestronk et al. J Neurol Neurosurg Psychiatry 74:485–9 (2003)), opsoclonus/myoclonus syndrome (Pranzatelli et al. Neurology 60(Suppl) PO5.128:A395 (2003)), and RRMS (Cross et al. Preliminary results from a phase II trial of Rituximab in MS (abstract) Eighth Annual Meeting of the Americas Committees for Research and Treatment in Multiple Sclerosis 20–1 (2003)), was similar to that reported in oncology or RA. In an ongoing investigator-sponsored trial (IST) of Rituximab in combination with interferon-beta (IFN-beta) or glatiramer acetate in subjects with RRMS (Cross et al., supra), 1 of 10 treated subjects was admitted to the hospital for overnight observation after experiencing moderate fever and rigors following the first infusion of Rituximab, while the other 9 subjects completed the four-infusion regimen without any reported adverse events.

Summary of the Invention

The present invention involves, at least in part, the selection of a dose for a CD20 antibody that provides a safe and active treatment regimen in subjects with multiple sclerosis, such as PPMS or RRMS.

Accordingly, the invention concerns a method of treating multiple sclerosis in a subject comprising administering an effective amount of a CD20 antibody to the subject to provide an initial antibody exposure of about 0.5 to 4 grams followed by a second antibody exposure of about 0.5 to 4 grams, the second exposure not being provided until from about 16 to 60 weeks from the initial
exposure, and each of the antibody exposures is provided to the subject as one or two doses of antibody.

In addition, the invention concerns an article of manufacture comprising: (a) container comprising a CD20 antibody; and (b) a package insert with instructions for treating multiple sclerosis in a subject, wherein the instructions indicate that an amount of the antibody is administered to the subject that is effective to provide an initial antibody exposure of about 0.5 to 4 grams followed by a second antibody exposure of about 0.5 to 4 grams, the second exposure not being administered until from about 16 to 60 weeks from the initial exposure, and each of the antibody exposures is provided to the subject as one or two doses of antibody.

Brief Description of the Drawings

FIG. 1A is a sequence alignment comparing the amino acid sequences of the light chain variable domain (V_L) of each of murine 2H7 (SEQ ID NO:1), humanized 2H7.v16 variant (SEQ ID NO:2), and the human kappa light chain subgroup I (SEQ ID NO:3). The CDRs of V_L of 2H7 and hu2H7.v16 are as follows: CDR1 (SEQ ID NO:4), CDR2 (SEQ ID NO:5), and CDR3 (SEQ ID NO:6).

FIG. 1B is a sequence alignment comparing the amino acid sequences of the heavy chain variable domain (V_H) of each of murine 2H7 (SEQ ID NO:7), humanized 2H7.v16 variant (SEQ ID NO:8), and the human consensus sequence of the heavy chain subgroup III (SEQ ID NO:9). The CDRs of V_H of 2H7 and hu2H7.v16 are as follows: CDR1 (SEQ ID NO:10), CDR2 (SEQ ID NO:11), and CDR3 (SEQ ID NO:12).

In FIG. 1A and FIG. 1B, the CDR1, CDR2 and CDR3 in each chain are enclosed within brackets, flanked by the framework regions, FR1-FR4, as indicated. 2H7 refers to the murine 2H7 antibody. The asterisks in between two rows of sequences indicate the positions that are different between the two sequences. Residue numbering is according to Kabat et al. *Sequences of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), with insertions shown as a, b, c, d, and e.

FIG. 2 shows the amino acid sequence of the mature 2H7.v16 light chain (SEQ ID NO:13)
FIG. 3 shows the amino acid sequence of the mature 2H7.v16 heavy chain (SEQ ID NO:14).
FIG. 4 shows the amino acid sequence of the mature 2H7.v31 heavy chain (SEQ ID NO:15).

The L chain of 2H7.v31 is the same as for 2H7.v16.

FIG. 5 shows an alignment of the mature 2H7.v16 and 2H7.v511 light chains (SEQ ID NOS. 13 and 16, respectively), with Kabat variable domain residue numbering and Eu constant domain residue numbering.
FIG. 6 shows an alignment of the mature 2H7.v16 and 2H7.v511 heavy chains (SEQ ID NOS. 14 and 17, respectively), with Kabat variable domain residue numbering and Eu constant domain residue numbering.

Detailed Description of the Preferred Embodiments

I. Definitions

A “B-cell” is a lymphocyte that matures within the bone marrow, and includes a naive B cell, memory B cell, or effector B cell (plasma cells). The B-cell herein may be a normal or non-malignant B cell.

A “B-cell surface marker” or “B-cell surface antigen” herein is an antigen expressed on the surface of a B cell that can be targeted with an antibody that binds thereto. Exemplary B-cell surface markers include the CD10, CD19, CD20, CD21, CD22, CD23, CD24, CD37, CD40, CD53, CD72, CD73, CD74, CDw75, CDw76, CD77, CDw78, CD79a, CD79b, CD80, CD81, CD82, CD83, CDw84, CD85 and CD86 leukocyte surface markers (for descriptions, see The Leukocyte Antigen Facts Book, 2nd Edition. 1997, ed. Barclay et al. Academic Press, Harcourt Brace & Co., New York).

Other B-cell surface markers include RP105, FcRH2, B-cell CR2, CCR6, P2X5, HLA-DOB, CXCR5, FcER2, BR3, Btg, NAG14, SLGCl6270, FcRH1, IRTA2, ATWD578, FcRH3, IRTA1, FcRH6, BCMA, and 239287. The B-cell surface marker of particular interest herein is preferentially expressed on B cells compared to other non-B-cell tissues of a mammal and may be expressed on both precursor B cells and mature B cells. The preferred B-cell surface marker herein is CD20.

The "CD20" antigen, or "CD20," is an about 35-kDa, non-glycosylated phosphoprotein found on the surface of greater than 90% of B cells from peripheral blood or lymphoid organs. CD20 is present on both normal B cells as well as malignant B cells, but is not expressed on stem cells. Other names for CD20 in the literature include "B-lymphocyte-restricted antigen" and "Bp35". The CD20 antigen is described in Clark et al. Proc. Natl. Acad. Sci. (USA) 82:1766 (1985), for example.

An “antibody antagonist” herein is a antibody that, upon binding to a B cell surface marker on B cells, destroys or depletes B cells in a mammal and/or interferes with one or more B-cell functions, e.g. by reducing or preventing a humoral response elicited by the B cell. The antibody antagonist preferably is able to deplete B cells (i.e. reduce circulating B-cell levels) in a mammal treated therewith. Such depletion may be achieved via various mechanisms such antibody-dependent cell-mediated cytotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC), inhibition of B-cell proliferation and/or induction of B-cell death (e.g. via apoptosis).

“Antibody-dependent cell-mediated cytotoxicity” and “ADCC” refer to a cell-mediated reaction in which nonspecific cytotoxic cells that express Fc receptors (FcRs) (e.g. Natural Killer (NK) cells, neutrophils, and macrophages) recognize bound antibody on a target cell and subsequently cause lysis of the target cell. The primary cells for mediating ADCC, NK cells, express FcγRIII only, whereas monocytes express FcγRI, FcγRII and FcγRIII. FcR expression on hematopoietic cells in
summarized is Table 3 on page 404 of Ravetch and Kinet, *Annu. Rev. Immunol. 9*:457-92 (1991). To assess ADCC activity of a molecule of interest, an *in vitro* ADCC assay, such as that described in US Patent No. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed *in vivo*, e.g., in an animal model such as that disclosed in Clynes *et al.* *PNAS (USA)* 95:652-656 (1998).

"Human effector cells" are leukocytes that express one or more FcRs and perform effector functions. Preferably, the cells express at least FcγRIII and carry out ADCC effector function. Examples of human leukocytes that mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred.

The terms "Fc receptor" or "FcR" are used to describe a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one that binds an IgG antibody (a gamma receptor) and includes receptors of the FcγRI, FcγRII, and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcγRII receptors include FcγRIIA (an "activating receptor") and FcγRIIB (an "inhibiting receptor"), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor FcγRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcγRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain. (see Daëron, *Annu. Rev. Immunol. 15*:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, *Annu. Rev. Immunol 9*:457-92 (1991); Capel *et al.*, *Immunodrugs 4*:25-34 (1994); and de Haas *et al.*, *J. Lab. Clin. Med.* 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term "FcR" herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer *et al.*, *J. Immunol. 117*:587 (1976) and Kim *et al.*, *J. Immunol. 24*:249 (1994)).

"Complement dependent cytotoxicity" or "CDC" refer to the ability of a molecule to lyse a target in the presence of complement. The complement activation pathway is initiated by the binding of the first component of the complement system (C1q) to a molecule (e.g. an antibody) complexed with a cognate antigen. To assess complement activation, a CDC assay, e.g. as described in Gazzano-Santoro *et al.*, *J. Immunol. Methods 202*:163 (1996), may be performed.

"Growth inhibitory" antibodies are those that prevent or reduce proliferation of a cell expressing an antigen to which the antibody binds. For example, the antibody may prevent or reduce proliferation of B cells *in vitro* and/or *in vivo*.

Antibodies that "induce apoptosis" are those that induce programmed cell death, e.g. of a B cell, as determined by standard apoptosis assays, such as binding of annexin V, fragmentation of DNA, cell shrinkage, dilation of endoplasmic reticulum, cell fragmentation, and/or formation of membrane vesicles (called apoptotic bodies).
The term "antibody" herein is used in the broadest sense and specifically covers monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g. bispecific antibodies) formed from at least two intact antibodies, and antibody fragments so long as they exhibit the desired biological activity.

"Antibody fragments" comprise a portion of an intact antibody, preferably comprising the antigen binding region thereof. Examples of antibody fragments include Fab, Fab', F(ab')2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.

For the purposes herein, an "intact antibody" is one comprising heavy and light variable domains as well as an Fc region.

"Native antibodies" are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V_H) followed by a number of constant domains. Each light chain has a variable domain at one end (V_L) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the particular domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains.

The term "variable" refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called hypervariable regions both in the light chain and the heavy chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FRs). The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).

Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a single antigen-binding site, and a residual "Fc" fragment, whose name reflects
its ability to crystallize readily. Pepsin treatment yields an F(ab')₂ fragment that has two antigen-binding sites and is still capable of cross-linking antigen.

"Fv" is the minimum antibody fragment that contains a complete antigen-recognition and antigen-binding site. This region consists of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association. It is in this configuration that the three hypervariable regions of each variable domain interact to define an antigen-binding site on the surface of the V₇-V₅ dimer. Collectively, the six hypervariable regions confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three hypervariable regions specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear at least one free thiol group. F(ab')₂ antibody fragments originally were produced as pairs of Fab' fragments that have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

The "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains.

Depending on the amino acid sequence of the constant domain of their heavy chains, antibodies can be assigned to different classes. There are five major classes of intact antibodies: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2. The heavy chain constant domains that correspond to the different classes of antibodies are called α, δ, ε, γ, and μ, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.

"Single-chain Fv" or "scFv" antibody fragments comprise the V₇ and V₅ domains of antibody, wherein these domains are present in a single polypeptide chain. Preferably, the Fv polypeptide further comprises a polypeptide linker between the V₇ and V₅ domains that enables the scFv to form the desired structure for antigen binding. For a review of scFv see Plückthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenberg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994).

The term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy chain variable domain (V₇) connected to a light chain variable domain (V₅) in the same polypeptide chain (V₇ - V₅). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are
described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical and/or bind the same epitope, except for possible variants that may arise during production of the monoclonal antibody, such variants generally being present in minor amounts. In contrast to polyclonal antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Patent No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991), for example.

The monoclonal antibodies herein specifically include "chimeric" antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)). Chimeric antibodies of interest herein include "primatized" antibodies comprising variable domain antigen-binding sequences derived from a non-human primate (e.g. Old World Monkey, such as baboon, rhesus or cynomolgus monkey) and human constant region sequences (US Pat No. 5,693,780).

"Humanized" forms of non-human (e.g., murine) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor
antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence, except for FR substitution(s) as noted above. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region, typically that of a human immunoglobulin. For further details, see Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992).

The term “hypervariable region” when used herein refers to the amino acid residues of an antibody that are responsible for antigen binding. The hypervariable region comprises amino acid residues from a “complementarity determining region” or “CDR” (e.g. residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)) and/or those residues from a “hypervariable loop” (e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)). "Framework" or "FR" residues are those variable domain residues other than the hypervariable region residues as herein defined.

A “naked antibody” is an antibody (as herein defined) that is not conjugated to a heterologous molecule, such as a cytotoxic moiety or radiolabel.

Examples of antibodies that bind the CD20 antigen include: “C2B8,” which is now called “Rituximab” (“RITUXAN®") (US Patent No. 5,736,137); the yttrium-[90]-labeled 2B8 murine antibody designated “Y2B8” or “Ibritumomab Tiuxetan” (ZEVALIN®) commercially available from IDEC Pharmaceuticals, Inc. (US Patent No. 5,736,137; 2B8 deposited with ATCC under accession no. HB11388 on June 22, 1993); murine IgG2a “B1,” also called “Tositumomab,” optionally labeled with 131I to generate the “131I-B1” or “iodine 131 tositumomab” antibody (BEXXAR™) commercially available from Corixa (see, also, US Patent No. 5,595,721); murine monoclonal antibody “1F5” (Press et al. Blood 69(2):584-591 (1987) and variants thereof including “framework patched” or humanized 1F5 (WO03/002607, Leung, S.; ATCC deposit HB-96450); murine 2H7 and chimeric 2H7 antibody (US Patent No. 5,677,180); humanized 2H7; huMax-CD20 (Gennab, Denmark, WO2004/035607); AME-133 (Applied Molecular Evolution); A20 antibody or variants thereof such as chimeric or humanized A20 antibody (cA20, hA20, respectively) or IMMU-106 (US 2003/0219433, Immunomedics); CD20-binding antibodies, including epitope-depleted Leu-16, 1H4, or 2B8, optionally conjugated with IL-2, as in US 2005/0069545A1 and WO 2005/16969 (Carr et al.); bispecific antibody that binds CD22 and CD20, for example, hLL2xA20 (WO2005/14618, Chang et al.); monoclonal antibodies L27, G28-2, 93-1B3, B-C1 or NU-B2 available from the International Leukocyte Typing Workshop (Valentine et al., In: Leukocyte Typing III (McMichael,
The terms “Rituximab” or “RITUXAN®” herein refer to the genetically engineered chimeric murine/human monoclonal antibody directed against the CD20 antigen and designated “C2B8” in US Patent No. 5,736,137, including fragments thereof that retain the ability to bind CD20. Rituximab is commercially available from Genentech.

Purely for the purposes herein and unless indicated otherwise, “humanized 2H7” refers to a humanized antibody that binds human CD20, or an antigen-binding fragment thereof, wherein the antibody is effective to deplete primate B cells in vivo, the antibody comprising in the H chain variable region (V_H) thereof at least a CDR H3 sequence of SEQ ID NO:12 (Fig. 1B) from an anti-human CD20 antibody and substantially the human consensus framework (FR) residues of the human heavy-chain subgroup III (V_HIII). In a preferred embodiment, this antibody further comprises the H chain CDR H1 sequence of SEQ ID NO:10 and CDR H2 sequence of SEQ ID NO:11, and more preferably further comprises the L chain CDR L1 sequence of SEQ ID NO:4, CDR L2 sequence of SEQ ID NO:5, CDR L3 sequence of SEQ ID NO:6 and substantially the human consensus framework (FR) residues of the human light chain subgroup I (V_L), wherein the V_H region may be joined to a human IgG chain constant region, wherein the region may be, for example, IgG1 or IgG3. In a preferred embodiment, such antibody comprises the V_H sequence of SEQ ID NO:8 (v16, as shown in Fig. 1B), optionally also comprising the V_L sequence of SEQ ID NO:2 (v16, as shown in Fig. 1A), which may have the amino acid substitutions of D56A and N100A in the H chain and S92A in the L chain (v96). Preferably the antibody is an intact antibody comprising the light and heavy chain amino acid sequences of SEQ ID NOS:13 and 14, respectively, as shown in Figs. 2 and 3. Another preferred embodiment is where the antibody is 2H7.v31 comprising the light and heavy chain amino acid sequences of SEQ ID NOS:13 and 15, respectively, as shown in Figs. 2 and 4. The antibody herein may further comprise at least one amino acid substitution in the Fc region that improves ADCC and/or CDC activity, such as one wherein the amino acid substitutions are S298A/E333A/K334A, more preferably 2H7.v31 having the heavy chain amino acid sequence of SEQ ID NO:15 (as shown in Fig. 4). Any of these antibodies may further comprise at least one amino acid substitution in the Fc region that decreases CDC activity, for example, comprising at least the substitution K322A. See U.S. Patent No. 6,528,624B1 (Idusogie et al.).

A preferred humanized 2H7 is an intact antibody or antibody fragment comprising the variable light chain sequence:

DIQMTQSPSSLSASVRLVRQASQTVSPYFLFHYQKSNTAGNLSSY Rashid (1984)); 1H4 (Haas et al. Blood 92:184 (1998)); anti-CD20 auristatin E conjugate (Seattle Genetics); anti-CD20-IL2 (EMD/Bioviation/City of Hope); anti-CD20 MAb therapy (Epicyte); and anti-CD20 antibody TRU 015 (Trubion).

The terms “Rituximab” or “RITUXAN®” herein refer to the genetically engineered chimeric murine/human monoclonal antibody directed against the CD20 antigen and designated “C2B8” in US Patent No. 5,736,137, including fragments thereof that retain the ability to bind CD20. Rituximab is commercially available from Genentech.

Purely for the purposes herein and unless indicated otherwise, “humanized 2H7” refers to a humanized antibody that binds human CD20, or an antigen-binding fragment thereof, wherein the antibody is effective to deplete primate B cells in vivo, the antibody comprising in the H chain variable region (V_H) thereof at least a CDR H3 sequence of SEQ ID NO:12 (Fig. 1B) from an anti-human CD20 antibody and substantially the human consensus framework (FR) residues of the human heavy-chain subgroup III (V_HIII). In a preferred embodiment, this antibody further comprises the H chain CDR H1 sequence of SEQ ID NO:10 and CDR H2 sequence of SEQ ID NO:11, and more preferably further comprises the L chain CDR L1 sequence of SEQ ID NO:4, CDR L2 sequence of SEQ ID NO:5, CDR L3 sequence of SEQ ID NO:6 and substantially the human consensus framework (FR) residues of the human light chain subgroup I (V_L), wherein the V_H region may be joined to a human IgG chain constant region, wherein the region may be, for example, IgG1 or IgG3. In a preferred embodiment, such antibody comprises the V_H sequence of SEQ ID NO:8 (v16, as shown in Fig. 1B), optionally also comprising the V_L sequence of SEQ ID NO:2 (v16, as shown in Fig. 1A), which may have the amino acid substitutions of D56A and N100A in the H chain and S92A in the L chain (v96). Preferably the antibody is an intact antibody comprising the light and heavy chain amino acid sequences of SEQ ID NOS:13 and 14, respectively, as shown in Figs. 2 and 3. Another preferred embodiment is where the antibody is 2H7.v31 comprising the light and heavy chain amino acid sequences of SEQ ID NOS:13 and 15, respectively, as shown in Figs. 2 and 4. The antibody herein may further comprise at least one amino acid substitution in the Fc region that improves ADCC and/or CDC activity, such as one wherein the amino acid substitutions are S298A/E333A/K334A, more preferably 2H7.v31 having the heavy chain amino acid sequence of SEQ ID NO:15 (as shown in Fig. 4). Any of these antibodies may further comprise at least one amino acid substitution in the Fc region that decreases CDC activity, for example, comprising at least the substitution K322A. See U.S. Patent No. 6,528,624B1 (Idusogie et al.).

A preferred humanized 2H7 is an intact antibody or antibody fragment comprising the variable light chain sequence:

DIQMTQSPSSLSASVRLVRQASQTVSPYFLFHYQKSNTAGNLSSY Rashid (1984)); 1H4 (Haas et al. Blood 92:184 (1998)); anti-CD20 auristatin E conjugate (Seattle Genetics); anti-CD20-IL2 (EMD/Bioviation/City of Hope); anti-CD20 MAb therapy (Epicyte); and anti-CD20 antibody TRU 015 (Trubion).
Where the humanized 2H7 antibody is an intact antibody, preferably it comprises the light chain amino acid sequence:

\[
\begin{align*}
5 & \text{DIQMTQSPSLSLASVGDRVTITCRASNESSVSVMHYWQQKPGKAPKPLIYAPSNLASHVSFP}\ldots \\
10 & \text{EVQLVESGGGLVQPGGSLRLSCAASGYFTFTSYNYMHWVRQAPGKGLEWVGAIYPNGDTS} \\
15 & \text{YQQKPGKAPKPLIYAPSNLASHVSFP}\ldots \\
20 & \text{EVQLVESGGGLVQPGGSLRLSCAASGYFTFTSYNYMHWVRQAPGKGLEWVGAIYPNGDTS} \\
25 & \text{YQQKPGKAPKPLIYAPSNLASHVSFP}\ldots \\
\end{align*}
\]

and the heavy chain amino acid sequence:

\[
\begin{align*}
5 & \text{NQKFKGRTISVDKS NTLYLOQMSLRAR DigCyVYCAR VYYS NYWFDVWGQGTLVTV}\ldots \\
10 & \text{NQKFKGRTISVDKS NTLYLOQMSLRAR DigCyVYCAR VYYS NYWFDVWGQGTLVTV}\ldots \\
15 & \text{NQKFKGRTISVDKS NTLYLOQMSLRAR DigCyVYCAR VYYS NYWFDVWGQGTLVTV}\ldots \\
20 & \text{NQKFKGRTISVDKS NTLYLOQMSLRAR DigCyVYCAR VYYS NYWFDVWGQGTLVTV}\ldots \\
25 & \text{NQKFKGRTISVDKS NTLYLOQMSLRAR DigCyVYCAR VYYS NYWFDVWGQGTLVTV}\ldots \\
\end{align*}
\]

In the preferred embodiment of the invention, the variable region of variants based on 2H7 version 16 will have the amino acid sequences of v16 except at the positions of amino acid substitutions that are indicated in the table below. Unless otherwise indicated, the 2H7 variants will have the same light chain as that of v16.

<table>
<thead>
<tr>
<th>2H7 Version</th>
<th>Heavy chain (V(H)) changes</th>
<th>Light chain (V(L)) changes</th>
<th>Fc changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
<td>S298A, E333A, K334A</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>D56A, N100A</td>
<td>S92A</td>
<td></td>
</tr>
</tbody>
</table>
An "isolated" antibody is one that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody *in situ* within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

A "subject" herein is a human subject. Generally, the subject is eligible for treatment for multiple sclerosis. For the purposes herein, such eligible subject is one who is experiencing, has experienced, or is likely to experience, one or more signs, symptoms or other indicators of multiple sclerosis; has been diagnosed with multiple sclerosis, whether, for example, newly diagnosed (with "new onset" MS), previously diagnosed with a new relapse or exacerbation, previously diagnosed and in remission, etc; and/or is at risk for developing multiple sclerosis. One suffering from or at risk for suffering from multiple sclerosis may optionally be identified as one who has been screened for elevated levels of CD20-positive B cells in serum, cerebrospinal fluid (CSF) and/or MS lesion(s) and/or is screened for using an assay to detect autoantibodies, assessed qualitatively, and preferably quantitatively. Exemplary such autoantibodies associated with multiple sclerosis include anti-myelin basic protein (MBP), anti-myelin oligodendrocytic glycoprotein (MOG), anti-ganglioside and/or anti-neurofilament antibodies. Such autoantibodies may be detected in the subject’s serum, cerebrospinal fluid (CSF) and/or MS lesion. By "elevated" autoantibody or B cell level(s) herein is meant level(s) of such autoantibodies or B cells which significantly exceed the level(s) in an individual without MS.

"Treatment" of a subject herein refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the multiple sclerosis as well as those in which the multiple sclerosis is to be prevented. Hence, the subject may have been diagnosed as having the multiple sclerosis or may be predisposed or susceptible to the multiple sclerosis.

A “symptom” of MS is any morbid phenomenon or departure from the normal in structure, function, or sensation, experienced by the subject and indicative of MS.

“Multiple sclerosis" refers to the chronic and often disabling disease of the central nervous system characterized by the progressive destruction of the myelin. There are four internationally
recognized forms of MS, namely, primary progressive multiple sclerosis (PPMS), relapsing-remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS), and progressive relapsing multiple sclerosis (PRMS).

"Primary progressive multiple sclerosis" or "PPMS" is characterized by a gradual progression of the disease from its onset with no superimposed relapses and remissions at all. There may be periods of a leveling off of disease activity and there may be good and bad days or weeks. PPMS differs from RRMS and SPMS in that onset is typically in the late thirties or early forties, men are as likely women to develop it, and initial disease activity is often in the spinal cord and not in the brain. PPMS often migrates into the brain, but is less likely to damage brain areas than RRMS or SPMS; for example, people with PPMS are less likely to develop cognitive problems. PPMS is the sub-type of MS that is least likely to show inflammatory (gadolinium enhancing) lesions on MRI scans. The Primary Progressive form of the disease affects between 10 and 15% of all people with multiple sclerosis. PPMS may be defined according to the criteria in McDonald et al. Ann Neurol 50:121–7 (2001). The subject with PPMS treated herein is usually one with probable or definitive diagnosis of PPMS.

"Relapsing-remitting multiple sclerosis" or "RRMS" is characterized by relapses (also known as exacerbations) during which time new symptoms can appear and old ones resurface or worsen. The relapses are followed by periods of remission, during which time the person fully or partially recovers from the deficits acquired during the relapse. Relapses can last for days, weeks or months and recovery can be slow and gradual or almost instantaneous. The vast majority of people presenting with MS are first diagnosed with RRMS. This is typically when they are in their twenties or thirties, though diagnoses much earlier or later are known. Twice as many women as men present with this sub-type of MS. During relapses, myelin, a protective insulating sheath around the nerve fibers (neurons) in the white matter regions of the central nervous system (CNS), may be damaged in an inflammatory response by the body's own immune system. This causes a wide variety of neurological symptoms that vary considerably depending on which areas of the CNS are damaged. Immediately after a relapse, the inflammatory response dies down and a special type of glial cell in the CNS (called an oligodendrocyte) sponsors remyelination - a process whereby the myelin sheath around the axon may be repaired. It is this remyelination that may be responsible for the remission. Approximately 50% of patients with RRMS convert to SPMS within 10 years of disease onset. After 30 years, this figure rises to 90%. At any one time, the relapsing-remitting form of the disease accounts around 55% of all people with MS.

"Secondary progressive multiple sclerosis" or "SPMS" is characterized by a steady progression of clinical neurological damage with or without superimposed relapses and minor remissions and plateaux. People who develop SPMS will have previously experienced a period of RRMS which may have lasted anything from two to forty years or more. Any superimposed relapses and remissions there are, tend to tail off over time. From the onset of the secondary progressive phase
of the disease, disability starts advancing much quicker than it did during RRMS though the progress can still be quite slow in some individuals. After 10 years, 50% of people with RRMS will have developed SPMS. By 25 to 30 years, that figure will have risen to 90%. SPMS tends to be associated with lower levels of inflammatory lesion formation than in RRMS but the total burden of disease continues to progress. At any one time, SPMS accounts around 30% of all people with multiple sclerosis.

"Progressive relapsing multiple sclerosis" refers to "PRMS" is characterized by a steady progression of clinical neurological damage with superimposed relapses and remissions. There is significant recovery immediately following a relapse but between relapses there is a gradual worsening of symptoms. PRMS affects around 5% of all people with multiple sclerosis. Some neurologists believe PRMS is a variant of PPMS.

The expression "effective amount" refers to an amount of the antibody (or other drug) that is effective for preventing, ameliorating or treating the multiple sclerosis. Such an effective amount will generally result in an improvement in the signs, symptoms or other indicators of MS, such as reducing relapse rate, preventing disability, reducing number and/or volume of brain MRI lesions, improving timed 25-foot walk, extending the time to disease progression (e.g. using Expanded Disability Status Scale, EDSS), etc.

"Antibody exposure" refers to contact with or exposure to the antibody herein in one or more doses administered over a period of time of about 1-20 days. The doses may be given at one time or at fixed or irregular time intervals over this period of exposure. Initial and later (e.g. second or third) antibody exposures are separated in time from each other as described in detail herein.

The term "immunosuppressive agent" as used herein for adjunct therapy refers to substances that act to suppress or mask the immune system of the mammal being treated herein. This would include substances that suppress cytokine production, down-regulate or suppress self-antigen expression, or mask the MHC antigens. Examples of such agents include 2-amino-6-aryl-5-substituted pyrimidines (see U.S. Pat. No. 4,665,077); nonsteroidal anti-inflammatory drugs (NSAIDs); ganciclovir, tacrolimus, glucocorticoids such as cortisol or aldosterone, anti-inflammatory agents such as a cyclooxygenase inhibitor, a 5-lipoxygenase inhibitor, or a leukotriene receptor antagonist; purine antagonists such as azathioprine or mycophenolate mofetil (MMF); alkylating agents such as cyclophosphamide; bromocryptine; danazol; dapsone; glutaraldehyde (which masks the MHC antigens, as described in U.S. Pat. No. 4,120,649); anti-idiotypic antibodies for MHC antigens and MHC fragments; cyclosporin A; steroids such as corticosteroids or glucocorticosteroids or glucocorticoid analogs, e.g., prednisone, methylprednisolone, and dexamethasone; dihydrofolate reductase inhibitors such as methotrexate (oral or subcutaneous); hydroxychloroquine; sulfasalazine; leflunomide; cytokine or cytokine receptor antagonists including anti-interferon-alpha, -beta, or gamma antibodies, anti-tumor necrosis factor-alpha antibodies (infliximab or adalimumab), anti-TNF-alpha immunoahesin (etanercept), anti-tumor necrosis factor-beta antibodies, anti-interleukin-2
antibodies and anti-IL-2 receptor antibodies; anti-LFA-1 antibodies, including anti-CD11a and anti-CD18 antibodies; anti-L3T4 antibodies; heterologous anti-lymphocyte globulin; pan-T antibodies, preferably anti-CD3 or anti-CD4/CD4a antibodies; soluble peptide containing a LFA-3 binding domain (WO 90/08187 published 7/26/90); streptokinase; TGF-beta; streptodornase; RNA or DNA from the host; FK506; RS-61443; deoxyspergualin; rapamycin; T-cell receptor (Cohen et al., U.S. Pat. No. 5,114,721); T-cell receptor fragments (Offner et al., Science, 251: 430-432 (1991); WO 90/11294; laneway, Nature, 341: 482 (1989); and WO 91/01133); and T cell receptor antibodies (EP 340,109) such as T10B9.

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g. At\(^{211}\), I\(^{131}\), I\(^{125}\), Y\(^{90}\), Re\(^{186}\), Re\(^{188}\), Sm\(^{153}\), Bi\(^{212}\), P\(^{32}\) and radioactive isotopes of Lu), chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, or fragments thereof.

A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer.

Examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN® cyclophosphamide; alkyl sulfonates such as busulfan, imposulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenamines and methylamelamines including altretamine, triethyleneemelamine, triethylenephosphoramide, triethylenetriphosphoramide and trimethylolelamelone; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chloraphazine, chlorophosphamide, estramustine, ifosfamide, mechlorethamine, mechloretamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as Carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimustine; antibiotics such as the enediyne antibiotics (e.g., calicheamicin, especially calicheamicin gamma1I and calicheamicin omega1I (see, e.g., Agnew, Chem Intl. Ed. Engl., 33: 183-186 (1994)); dynemicin, including dynemicin A; bisphosphonates, such as clodronate;
an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antibiotic chromophores), aclacinomycins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabici, carminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as
methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogues such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogues such as ancitabine, azacitidine, 6-azaauridine, carmofur, cytarabine, dideoxyuridine, 5-fluorouridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitestosterone, testolactone; anti-adrenals such as aminogluthethimide, mitotane, trilostane; folic acid replenisher such as folic acid, acetylazometone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; ansacrine; bestrabucil; bisantrene; edatuxate; defoamide; demecolcine; diziquone; elfornithine; elliptinium acetate; an epothilone; etogulcid; gallium nitrate; hydroxyurea; lentinan; lonidamine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidamol; nitaerine; pentostatin; phenamet; pirarubicin; losoxantrone; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK® polysaccharide complex (JHS Natural Products, Eugene, OR); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2',2"-trichloroethylylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); uthan; vindesine; dacarbazine; mannoumustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); cyclophosphamide; thiopetax; taxoids, e.g., TAXOL® paclitaxel (Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANE® Cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, Illinois), and TAXOTERE® doxetaxel (Rhône-Poulenc Rorer, Antony, France); chloranbucil; GEMZAR® gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogues such as cisplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine; NAVELBINE® vinorelbine; novantron; teniposide; edatrexate; daunomycin; aminopterin; xeloda; ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as retinoic acid; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above.

Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including NOLVADEX® tamoxifen), raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and FARESTON toremifene; aromatase inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminogluthethimide, MEGASE® megestrol acetate, AROMASIN® exemestane, formestane, fadrozole, RIVISOR® vorozole, FEMARA® letrozole, and ARIMIDEX® anastrozole; and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; as well as troxacabine (a 1,3-dioxolane nucleoside cytokine analog); antisense oligonucleotides, particularly those that inhibit expression of genes in signaling pathways implicated in abherent cell proliferation, such as, for example, PKC-alpha, Rall and H-Ras; vaccines such as gene therapy vaccines, for example, ALLOVECTIN® vaccine, LEUVECTIN® vaccine, and VAXID® vaccine; PROLEUKIN® rIL-2;
The term "cytokine" is a generic term for proteins released by one cell population that act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines; interleukins (ILs) such as IL-1, IL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-11, IL-12, IL-15; a tumor necrosis factor such as TNF-α or TNF-β; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence cytokines, including synthetically produced small-molecule entities and pharmaceutically acceptable derivatives and salts thereof.

The term "hormone" refers to polypeptide hormones, which are generally secreted by glandular organs with ducts. Included among the hormones are, for example, growth hormone such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); prolactin, placental lactogen, mouse gonadotropin-associated peptide, inhibin; activin; nullerian-inhibiting substance; and thrombopoietin. As used herein, the term hormone includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence hormone, including synthetically produced small-molecule entities and pharmaceutically acceptable derivatives and salts thereof.

The term "growth factor" refers to proteins that promote growth, and include, for example, hepatic growth factor; fibroblast growth factor; vascular endothelial growth factor; nerve growth factors such as NGF-β; platelet-derived growth factor; transforming growth factors (TGFs) such as TGF-α and TGF-β; insulin-like growth factor-I and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon-α, -β, and -γ; and colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocyte-macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF). As used herein, the term growth factor includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence growth factor, including synthetically produced small-molecule entities and pharmaceutically acceptable derivatives and salts thereof.

The term "integrin" refers to a receptor protein that allows cells both to bind to and to respond to the extracellular matrix and is involved in a variety of cellular functions such as wound healing, cell differentiation, homing of tumor cells and apoptosis. They are part of a large family of cell adhesion receptors that are involved in cell-extracellular matrix and cell-cell interactions. Functional integrins consist of two transmembrane glycoprotein subunits, called alpha and beta, that are non-covalently bound. The alpha subunits all share some homology to each other, as do the beta subunits. The receptors always contain one alpha chain and one beta chain. Examples include Alpha6beta1,
Alpha beta1, Alpha beta1, LFA-1, alpha 4 integrin etc. As used herein, the term integrin includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence integrin, including synthetically produced small-molecule entities and pharmaceutically acceptable derivatives and salts thereof.

Examples of “integrin antagonists or antibodies” herein include an LFA-1 antibody such as Efalizumab (RAPTIVA®) commercially available from Genentech; an alpha 4 integrin antibody such as natalizumab (TYSABRI®) available from Biogen; diazacyclic phenylalanine derivatives (WO 2003/89410); phenylalanine derivatives (WO 2003/70709, WO 2002/28830, WO 2002/16329 and WO 2003/53926); phenylpropionic acid derivatives (WO 2003/10135); enamine derivatives (WO 2001/79173); propanoic acid derivatives (WO 2000/37444); alkanoic acid derivatives (WO 2000/32575); substituted phenyl derivatives (US Pat. Nos. 6,677,339 and 6,348,463); aromatic amine derivatives (US Pat. No. 6,369,229); and ADAM disintegrin domain polypeptide (US2002/0042368), antibodies to alphavbeta3 integrin (EP 633945); aza-bridged bicyclic amino acid derivatives (WO 2002/02556) etc.

A “TNF-alpha inhibitor” herein is an agent that inhibits, to some extent, a biological function of TNF-alpha, generally through binding to TNF-alpha and neutralizing its activity. Examples of TNF inhibitors specifically contemplated herein are Etanercept (ENBREL®), Infliximab (REMICADE®) and Adalimumab (HUMIRA™).

Examples of “disease-modifying anti-rheumatic drugs” or “DMARDs” include hydroxychloroquine, sulfasalazine, methotrexate, leflunomide, etanercept, infliximab (plus oral and subcutaneous methotrexate), azathioprine, D-penicillamine, Gold (oral), Gold (intramuscular), minocycline, cyclosporine, Staphylococcal protein A immunoadsorption, including salts and derivatives thereof, etc.

Examples of “nonsteroidal anti-inflammatory drugs” or “NSAIDs” are acetylsalicylic acid, ibuprofen, naproxen, indomethacin, sulindac, tolmetin, including salts and derivatives thereof, etc.

“Corticosteroid” refers to any one of several synthetic or naturally occurring substances with the general chemical structure of steroids that mimic or augment the effects of the naturally occurring corticosteroids. Examples of synthetic corticosteroids include prednisone, prednisolone (including methylprednisolone), dexamethasone, glucocorticoid and betamethasone.

A “package insert” is used to refer to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage,
administration, contraindications, other therapeutic products to be combined with the packaged product, and/or warnings concerning the use of such therapeutic products, etc.

II. Therapy

The present invention provides a method of treating multiple sclerosis in a subject suffering therefrom, comprising administering an effective amount of an antibody that binds to a B-cell surface marker (preferably a CD20 antibody) to the subject. The MS to be treated herein includes primary progressive multiple sclerosis (PPMS), relapsing-remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS), and progressive relapsing multiple sclerosis (PRMS), but therapy of either PPMS or RRMS are the preferred embodiments herein.

According to a preferred dosing protocol, the method comprises administering an effective amount of a CD20 antibody to the MS subject to provide an initial antibody exposure of about 0.5 to 4 grams (preferably about 1.5 to 2.5 grams) followed by a second antibody exposure of about 0.5 to 4 grams (preferably about 1.5 to 2.5 grams), the second antibody exposure not being provided until from about 16 to 60 weeks from the initial antibody exposure. For purposes of this invention, the second antibody exposure is the next time the subject is treated with the CD20 antibody after the initial antibody exposure, there being no intervening CD20 antibody treatment or exposure between the initial and second exposures.

The interval between the initial and second or subsequent antibody exposures can be measured from either the first or second dose of the initial antibody exposure, but preferably from the first dose of the initial antibody exposure.

In the preferred embodiments herein, the antibody exposures are approximately 24 weeks or 6 months apart; or approximately 48 weeks or 12 months apart.

In one embodiment, the second antibody exposure is not provided until about 20 to 30 weeks from the initial exposure, optionally followed by a third antibody exposure of about 0.5 to 4 grams (preferably about 1.5 to 2.5 grams), the third exposure not being administered until from about 46 to 60 weeks (preferably from about 46 to 54 weeks) from the initial exposure, and then, preferably no further antibody exposure is provided until at least about 70-75 weeks from the initial exposure.

In an alternative embodiment, the second antibody exposure is not provided until about 46 to 60 weeks from the initial exposure, and subsequent antibody exposures, if any, are not provided until about 46 to 60 weeks from the previous antibody exposure.

Any one or more of the antibody exposures herein may be provided to the subject as a single dose of antibody, or as two separate doses of the antibody (i.e., constituting a first and second dose). The particular number of doses (whether one or two) employed for each antibody exposure is dependent, for example, on the type of MS treated, the type of antibody employed, whether and what type of second medicament is employed, and the method and frequency of administration. Where two separate doses are administered, the second dose is preferably administered from about 3 to 17 days, more preferably from about 6 to 16 days, and most preferably from about 13 to 16 days from the
time the first dose was administered. Where two separate doses are administered, the first and second dose of the antibody is preferably about 0.5 to 1.5 grams, more preferably about 0.75 to 1.3 grams.

In one embodiment, the subject is provided at least about three, or at least four exposures of the antibody, for example, from about 3 to 60 exposures, and more particularly about 3 to 40 exposures, most particularly, about 3 to 20 exposures. Preferably, such exposures are administered at intervals each of approximately 24 weeks or 6 months, or 48 weeks or 12 months. In one embodiment, each antibody exposure is provided as a single dose of the antibody. In an alternative embodiment, each antibody exposure is provided as two separate doses of the antibody. However, not every antibody exposure need be provided as a single dose or as two separate doses.

The antibody may be a naked antibody or may be conjugated with another molecule such as a cytotoxic agent such as a radioactive compound. The preferred antibody herein is Rituximab, humanized 2H7 (e.g. comprising the variable domain sequences in SEQ ID NOS. 2 and 8) or humanized 2H7 comprising the variable domain sequences in SEQ ID NOS. 23 and 24, or huMax-CD20 (Genmab).

In one embodiment, the subject has never been previously treated with drug(s), such as immunosuppressive agent(s), to treat the multiple sclerosis and/or has never been previously treated with an antibody to a B-cell surface marker (e.g. never previously treated with a CD20 antibody).

The antibody is administered by any suitable means, including parenteral, topical, subcutaneous, intraperitoneal, intrapulmonary, intranasal, and/or intraliesional administration. Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. Intrathecal administration is also contemplated (see, e.g., US Patent Appln No. 2002/0009444, Grillo-Lopez, A concerning intrathecal delivery of a CD20 antibody). In addition, the antibody may suitably be administered by pulse infusion, e.g., with declining doses of the antibody. Preferably, the dosing is given intravenously, subcutaneously or intrathecally, most preferably by intravenous infusion(s).

While the CD20 antibody may be the only drug administered to the subject to treat the multiple sclerosis, one may optionally administer a second medicament, such as a cytotoxic agent, chemotherapeutic agent, immunosuppressive agent, cytokine, cytokine antagonist or antibody, growth factor, hormone, integrin, integrin antagonist or antibody (e.g. an LFA-1 antibody such as efalizumab (RAPTIVA®) commercially available from Genentech, or an alpha 4 integrin antibody such as natalizumab (TYSABRI®) available from Biogen) etc, with the antibody that binds a B cell surface marker (e.g. with the CD20 antibody).

In the preferred embodiment of combination therapy, the antibody is combined with an interferon class drug such as IFN-beta-1a (REBI® and AVONEX®) or IFN-beta-1b (BETASERON®); an oligopeptide such a glatiramer acetate (COPAXONE®); a cytotoxic agent such as mitoxantrone (NOVANTRONE®), methotrexate, cyclophosphamide, chlorambucil, azathioprine;
intravenous immunoglobulin (gamma globulin); lymphocyte-depleting therapy (e.g., mitoxantrone, cyclophosphamide, Campath, anti-CD4, cladribine, total body irradiation, bone marrow transplantation); corticosteroid (e.g. methylprednisolone, prednisone, dexamethasone, or glucocorticoid), including systemic corticosteroid therapy; non-lymphocyte-depleting immunosuppressive therapy (e.g., mycophenolate mofetil (MMF) or cyclosporine); cholesterol-lowering drug of the “statin” class, which includes cerivastatin (BAYCOL®), fluvastatin (LESCOL®), atorvastatin (LIPITOR®), lovastatin (MEVACOR®), pravastatin (PRAVACHOL®), Simvastatin (ZOCOR®); estradiol; testosterone (optionally at elevated dosages; Stuve et al. Neurology 8:290–301 (2002)); hormone replacement therapy; treatment for symptoms secondary or related to MS (e.g., spasticity, incontinence, pain, fatigue); a TNF inhibitor; disease-modifying anti-rheumatic drug (DMARD); non-steroidal anti-inflammatory drug (NSAID); plasmapheresis; levodopa; cyclosporin A; somatostatin analogue; cytokine or cytokine receptor antagonist; anti-metabolite; immunosuppressive agent; rehabilitative surgery; radioidine; thyroidectomy; another B-cell surface antagonist/antibody; etc.

The second medicament is administered with the initial exposure and/or later exposures of the CD20 antibody, such combined administration includes co-administration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities.

Aside from administration of antibodies to the subject the present application contemplates administration of antibodies by gene therapy. Such administration of nucleic acid encoding the antibody is encompassed by the expression administering an “effective amount” of an antibody. See, for example, WO96/07321 published March 14, 1996 concerning the use of gene therapy to generate intracellular antibodies.

There are two major approaches to getting the nucleic acid (optionally contained in a vector) into the subject's cells; in vivo and ex vivo. For in vivo delivery the nucleic acid is injected directly into the subject, usually at the site where the antibody is required. For ex vivo treatment, the subject's cells are removed, the nucleic acid is introduced into these isolated cells and the modified cells are administered to the subject either directly or, for example, encapsulated within porous membranes that are implanted into the subject (see, e.g. U.S. Patent Nos. 4,892,538 and 5,283,187). There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. A commonly used vector for ex vivo delivery of the gene is a retrovirus.
The currently preferred in vivo nucleic acid transfer techniques include transfection with viral vectors (such as adenovirus, Herpes simplex I virus, or adeno-associated virus) and lipid-based systems (useful lipids for lipid-mediated transfer of the gene are DOTMA, DOPE and DC-Chol, for example). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins that bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins that undergo internalization in cycling, and proteins that target intracellular localization and enhance intracellular half-life. The technique of receptor-mediated endocytosis is described, for example, by Wu et al., J. Biol. Chem. 262:4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA 87:3410-3414 (1990). For review of the currently known gene marking and gene therapy protocols see Anderson et al., Science 256:808-813 (1992). See also WO 93/25673 and the references cited therein.

III. Production of Antibodies

The methods and articles of manufacture of the present invention use, or incorporate, an antibody that binds to a B-cell surface marker, especially one that binds to CD20. Accordingly, methods for generating such antibodies will be described here.

The B cell surface marker to be used for production of, or screening for, antibodies may be, e.g., a soluble form of the marker or a portion thereof, containing the desired epitope. Alternatively, or additionally, cells expressing the marker at their cell surface can be used to generate, or screen for, antibodies. Other forms of the B cell surface marker useful for generating antibodies will be apparent to those skilled in the art.

A description follows as to exemplary techniques for the production of the antibodies used in accordance with the present invention.

(i) Polyclonal antibodies

Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl₂, or R¹N=C=NR, where R and R¹ are different alkyl groups.

Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining, e.g., 100 μg or 5 μg of the protein or conjugate (for rabbits or mice, respectively) with 3
volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.

(ii) Monoclonal antibodies

Monoclonal antibodies are obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical and/or bind the same epitope except for possible variants that arise during production of the monoclonal antibody, such variants generally being present in minor amounts. Thus, the modifier "monoclonal" indicates the character of the antibody as not being a mixture of discrete or polyclonal antibodies.

For example, the monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Patent No. 4,816,567).

In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).

The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Maryland USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal

Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).

The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al., Anal. Biochem., 107:220 (1980).

After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.

The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol., 5:256-262 (1993) and Plückthun, Immunol. Revs., 130:151-188 (1992).

The DNA also may be modified; for example, by substituting the coding sequence for human heavy- and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, et al., Proc. Natl Acad. Sci. USA, 81:6851 (1984)), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.

Typically such non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.

(iii) **Humanized antibodies**

Methods for humanizing non-human antibodies have been described in the art. Preferably, a humanized antibody has one or more amino acid residues introduced into it from a source that is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeven et al., Science, 239:1534-1536 (1988)), by substituting hypervariable region sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence that is closest to that of the rodent is then accepted as the human framework region (FR) for the humanized antibody (Sims et al., J. Immunol., 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)). Another method uses a particular framework region derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chain variable regions. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol., 151:2623 (1993)).

It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and
various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available that illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding.

(iv) Human antibodies

As an alternative to humanization, human antibodies can be generated. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy chain joining region (J_{H}) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggermann et al., Year in Immuno., 7:33 (1993); and US Patent Nos. 5,591,669, 5,589,369 and 5,545,807.

Alternatively, phage display technology (McCafferty et al., Nature 348:552-553 (1990)) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B cell. Phage display can be performed in a variety of formats; for their review see, e.g., Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3:564-571 (1993). Several sources of V-gene segments can be used for phage display. Clackson et al., Nature, 352:624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by
Human antibodies may also be generated by in vitro activated B cells (see US Patents 5,567,610 and 5,229,275).

(v) Antibody fragments

Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992) and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. For example, the antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab'-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab')2 fragments (Carter et al., Bio/Technology 10:163-167 (1992)). According to another approach, F(ab')2 fragments can be isolated directly from recombinant host cell culture. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In other embodiments, the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; US Patent No. 5,571,894; and US Patent No. 5,587,458. The antibody fragment may also be a “linear antibody”, e.g., as described in US Patent 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific.

(vi) Bispecific antibodies

Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of the B cell surface marker. Other such antibodies may bind the B cell surface marker and further bind a second different B-cell surface marker. Alternatively, an anti-B cell surface marker binding arm may be combined with an arm that binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2 or CD3), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the B cell. Bispecific antibodies may also be used to localize cytotoxic agents to the B cell. These antibodies possess a B cell surface marker-binding arm and an arm that binds the cytotoxic agent (e.g. saporin, anti-interferon-α, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')2 bispecific antibodies).

Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually
done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., *EMBO J.*, 10:3655-3659 (1991).

According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance.

In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., *Methods in Enzymology*, 121:210 (1986).

According to another approach described in US Patent No. 5,731,168, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers that are recovered from recombinant cell culture. The preferred interface comprises at least a part of the C\text{H3} domain of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (*e.g.* tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (*e.g.* alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (US Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089).
Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in US Patent No. 4,676,980, along with a number of cross-linking techniques.

Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethanol and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy chain variable domain (VH) connected to a light chain variable domain (VL) by a linker that is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (scFv) dimers has also been reported. See Gruber et al., J. Immunol., 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. For example, trispecific antibodies are used in the methods or included in the articles of manufacture herein is optionally conjugated to a cytotoxic agent. For instance, the antibody may be conjugated to a drug as described in WO2004/032828.

Chemotherapeutic agents useful in the generation of such antibody-cytotoxic agent conjugates have been described above.
Conjugates of an antibody and one or more small molecule toxins, such as a calicheamicin, a maytansine (US Patent No. 5,208,020), a trichothene, and CC1065 are also contemplated herein. In one embodiment of the invention, the antibody is conjugated to one or more maytansine molecules (e.g. about 1 to about 10 maytansine molecules per antibody molecule). Maytansine may, for example, be converted to May-SS-Me, which may be reduced to May-SH3 and reacted with modified antibody (Chari et al. Cancer Research 52: 127-131 (1992)) to generate a maytansinoid-antibody conjugate.

Alternatively, the antibody is conjugated to one or more calicheamicin molecules. The calicheamicin family of antibiotics are capable of producing double-stranded DNA breaks at sub-picomolar concentrations. Structural analogues of calicheamicin that may be used include, but are not limited to, γ_1^1, α_2^1, α_3^1, N-acetyl-γ_1^1, PSAG and θ_1^1 (Hinman et al. Cancer Research 53: 3336-3342 (1993) and Lode et al. Cancer Research 58: 2925-2928 (1998)).

Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolacca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, saponaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. See, for example, WO 93/21232 published October 28, 1993.

The present invention further contemplates antibody conjugated with a compound with nucleolytic activity (e.g. a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase).

A variety of radioactive isotopes are available for the production of radioconjugated antibodies. Examples include At211, I131, I125, Y90, Re186, Re188, Sm153, Br212, P32 and radioactive isotopes of Lu.

Conjugates of the antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazenium derivatives (such as bis-(p-diazeniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al. Science 238: 1098 (1987). Carbon-14 labeled 1-isothiocyanatobenzyl-3-methyl-dithylenetriaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026. The linker may be a "cleavable linker" facilitating release of the cytotoxic drug in the cell. For example, an acid-labile linker,
peptidase-sensitive linker, dimethyl linker or disulfide-containing linker (Chari et al. Cancer Research 52: 127-131 (1992)) may be used.

Alternatively, a fusion protein comprising the antibody and cytotoxic agent may be made, e.g. by recombinant techniques or peptide synthesis.

In yet another embodiment, the antibody may be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the subject, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g. avidin) that is conjugated to a cytotoxic agent (e.g. a radionucleotide).

The antibodies of the present invention may also be conjugated with a prodrug-activating enzyme that converts a prodrug (e.g. a peptidyl chemotherapeutic agent, see WO81/01145) to an active anti-cancer drug. See, for example, WO 88/07378 and U.S. Patent No. 4,975,278.

The enzyme component of such conjugates includes any enzyme capable of acting on a prodrug in such a way as to covert it into its more active, cytotoxic form.

Enzymes that are useful in the method of this invention include, but are not limited to, alkaline phosphatase useful for converting phosphate-containing prodrugs into free drugs; arylsulfatase useful for converting sulfate-containing prodrugs into free drugs; cytosine deaminase useful for converting non-toxic 5-fluorocytosine into the anti-cancer drug, 5-fluorouracil; proteases, such as serratia protease, thermolysin, subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), that are useful for converting peptide-containing prodrugs into free drugs; D-alanylcarboxypeptidases, useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as β-galactosidase and neuraminidase useful for converting glycosylated prodrugs into free drugs; β-lactamase useful for converting drugs derivatized with β-lactams into free drugs; and penicillin amidases, such as penicillin V amidase or penicillin G amidase, useful for converting drugs derivatized at their amine nitrogens with phenoxyacetyl or phenylacetyl groups, respectively, into free drugs. Alternatively, antibodies with enzymatic activity, also known in the art as "abzymes", can be used to convert the prodrugs of the invention into free active drugs (see, e.g., Massey, Nature 328: 457-458 (1987)). Antibody-abzyme conjugates can be prepared as described herein for delivery of the abzyme to a tumor cell population.

The enzymes of this invention can be covalently bound to the antibody by techniques well known in the art such as the use of the heterobifunctional crosslinking reagents discussed above. Alternatively, fusion proteins comprising at least the antigen binding region of an antibody of the invention linked to at least a functionally active portion of an enzyme of the invention can be constructed using recombinant DNA techniques well known in the art (see, e.g., Neuberger et al., Nature, 312: 604-608 (1984)).
Other modifications of the antibody are contemplated herein. For example, the antibody may be linked to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol. Antibody fragments, such as Fab', linked to one or more PEG molecules are an especially preferred embodiment of the invention.

The antibodies disclosed herein may also be formulated as liposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82:3688 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA, 77:4030 (1980); U.S. Pat. Nos. 4,485,045 and 4,544,545; and WO97/38731 published October 23, 1997. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of an antibody of the present invention can be conjugated to the liposomes as described in Martin et al. J. Biol. Chem. 257: 286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al. J. National Cancer Inst. 81(19)1484 (1989).

Amino acid sequence modification(s) of the antibody are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of the antibody are prepared by introducing appropriate nucleotide changes into the antibody nucleic acid, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the antibody, such as changing the number or position of glycosylation sites.

A useful method for identification of certain residues or regions of the antibody that are preferred locations for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells Science, 244:1081-1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with antigen. Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the
performance of a mutation at a given site, Ala scanning or random mutagenesis is conducted at the
target codon or region and the expressed antibody variants are screened for the desired activity.

Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in
length from one residue to polypeptides containing a hundred or more residues, as well as
intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions
include an antibody with an N-terminal methionyl residue or the antibody fused to a cytotoxic
polypeptide. Other insertional variants of the antibody molecule include the fusion to the N- or C-
terminus of the antibody of an enzyme, or a polypeptide that increases the serum half-life of the
antibody.

Another type of variant is an amino acid substitution variant. These variants have at least one
amino acid residue in the antibody molecule replaced by different residue. The sites of greatest
interest for substitutional mutagenesis of antibody antibodies include the hypervariable regions, but
FR alterations are also contemplated. Conservative substitutions are shown in Table 1 under the
heading of "preferred substitutions". If such substitutions result in a change in biological activity,
then more substantial changes, denominated "exemplary substitutions" in Table 1, or as further
described below in reference to amino acid classes, may be introduced and the products screened.

Table 1

<table>
<thead>
<tr>
<th>Original Residue</th>
<th>Exemplary Substitutions</th>
<th>Preferred Substitutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala (A)</td>
<td>Val; Leu; Ile</td>
<td>Val</td>
</tr>
<tr>
<td>Arg (R)</td>
<td>Lys; Gln; Asn</td>
<td>Lys</td>
</tr>
<tr>
<td>Asn (N)</td>
<td>Gln; His; Asp, Lys, Arg</td>
<td>Gln</td>
</tr>
<tr>
<td>Asp (D)</td>
<td>Glu; Asn</td>
<td>Glu</td>
</tr>
<tr>
<td>Cys (C)</td>
<td>Ser; Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Gin (Q)</td>
<td>Asn; Glu</td>
<td>Asn</td>
</tr>
<tr>
<td>Glu (E)</td>
<td>Asp; Glu</td>
<td>Asp</td>
</tr>
<tr>
<td>Gly (G)</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>His (H)</td>
<td>Asn; Gln; Lys; Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Ile (I)</td>
<td>Leu; Val; Met; Ala; Phe; Norleucine</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu (L)</td>
<td>Norleucine; Ile; Val; Met; Ala; Phe</td>
<td>Ile</td>
</tr>
<tr>
<td>Lys (K)</td>
<td>Arg; Gln; Asn</td>
<td>Arg</td>
</tr>
<tr>
<td>Met (M)</td>
<td>Leu; Phe; Ile</td>
<td>Leu</td>
</tr>
<tr>
<td>Phe (F)</td>
<td>Trp; Leu; Val; Ile; Ala; Tyr</td>
<td>Tyr</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Pro (P)</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Ser (S)</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Thr (T)</td>
<td>Val; Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>Trp (W)</td>
<td>Tyr; Phe</td>
<td>Tyr</td>
</tr>
<tr>
<td>Tyr (Y)</td>
<td>Trp; Phe; Thr; Ser</td>
<td>Phe</td>
</tr>
<tr>
<td>Val (V)</td>
<td>Ile; Leu; Met; Phe; Ala; Norleucine</td>
<td>Leu</td>
</tr>
</tbody>
</table>

Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Amino acids may be grouped according to similarities in the properties of their side chains (in A. L. Lehninger, in *Biochemistry*, second ed., pp. 73-75, Worth Publishers, New York (1975)):

1. non-polar: Ala (A), Val (V), Leu (L), Ile (I), Pro (P), Phe (F), Trp (W), Met (M)
2. uncharged polar: Gly (G), Ser (S), Thr (T), Cys (C), Tyr (Y), Asn (N), Gln (Q)
3. acidic: Asp (D), Glu (E)
4. basic: Lys (K), Arg (R), His(H)

Alternatively, naturally occurring residues may be divided into groups based on common side-chain properties:

1. hydrophobic: Norleucine, Met, Ala, Val, Leu, Ile;
2. neutral hydrophilic: Cys, Ser, Thr, Asn, Gln;
3. acidic: Asp, Glu;
4. basic: His, Lys, Arg;
5. residues that influence chain orientation: Gly, Pro;
6. aromatic: Trp, Tyr, Phe.

Non-conservative substitutions will entail exchanging a member of one of these classes for another class.

Any cysteine residue not involved in maintaining the proper conformation of the antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).

A particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody. Generally, the resulting variant(s) selected for
further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants is affinity maturation using phage display. Briefly, several hypervariable region sites (e.g., 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g., binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or in addition, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and antigen. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.

Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. Such altering includes deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.

Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxypoline or 5-hydroxylysine may also be used.

Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).

Where the antibody comprises an Fc region, the carbohydrate attached thereto may be altered. For example, antibodies with a mature carbohydrate structure that lacks fucose attached to an Fc region of the antibody are described in US Pat Appl No US 2003/0157108 A1, Presta, L. See also US 2004/0093621 A1 (Kyowa Hakko Kogyo Co., Ltd) concerning a CD20 antibody composition. Antibodies with a bisecting N-acetylgalcosamine (GlcNAc) in the carbohydrate attached to an Fc
region of the antibody are referenced in WO03/011878, Jean-Mairet et al. and US Patent No. 6,602,684, Umana et al. Antibodies with at least one galactose residue in the oligosaccharide attached to an Fc region of the antibody are reported in WO97/30087, Patel et al. See, also, WO98/58964 (Raju, S.) and WO99/22764 (Raju, S.) concerning antibodies with altered carbohydrate attached to the Fc region thereof.

Nucleic acid molecules encoding amino acid sequence variants of the antibody are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the antibody.

It may be desirable to modify the antibody of the invention with respect to effector function, e.g. so as to enhance antigen-dependent cell-mediated cytotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) of the antibody. This may be achieved by introducing one or more amino acid substitutions in an Fc region of an antibody antibody. Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176:1191-1195 (1992) and Shopes, B. J. Immunol. 148:2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research 53:2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and may

WO00/42072 (Presta, L.) describes antibodies with improved ADCC function in the presence of human effector cells, where the antibodies comprise amino acid substitutions in the Fc region thereof. Preferably, the antibody with improved ADCC comprises substitutions at positions 298, 333, and/or 334 of the Fc region. Preferably the altered Fc region is a human IgG1 Fc region comprising or consisting of substitutions at one, two or three of these positions.

Antibodies with altered C1q binding and/or complement dependent cytotoxicity (CDC) are described in WO99/51642, US Patent No. 6,194,551B1, US Patent No. 6,242,195B1, US Patent No. 6,528,624B1 and US Patent No. 6,538,124 (Idusogie et al.). The antibodies comprise an amino acid substitution at one or more of amino acid positions 270, 322, 326, 327, 329, 313, 333 and/or 334 of the Fc region thereof.

To increase the serum half life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an antibody fragment) as described in US Patent 5,739,277, for example. As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgG1, IgG2, IgG3, or IgG4) that is responsible for increasing the in vivo serum half-life of the IgG molecule. Antibodies with substitutions in an Fc region thereof and increased serum half-lives are also described in WO00/42072 (Presta, L.).

Engineered antibodies with three or more (preferably four) functional antigen binding sites are also contemplated (US Appln No. US2002/0004587 A1, Miller et al.).

V. Pharmaceutical Formulations

Therapeutic formulations of the antibodies used in accordance with the present invention are prepared for storage by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or
sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG).

Exemplary anti-CD20 antibody formulations are described in WO98/56418. This publication describes a liquid multidose formulation comprising 40 mg/mL Rituximab, 25 mM acetate, 150 mM trehalose, 0.9% benzyl alcohol, 0.02% polysorbate 20 at pH 5.0 that has a minimum shelf life of two years storage at 2-8°C. Another anti-CD20 formulation of interest comprises 10mg/mL Rituximab in 9.0 mg/mL sodium chloride, 7.35 mg/mL sodium citrate dihydrate, 0.7mg/mL polysorbate 80, and Sterile Water for Injection, pH 6.5.

Lyophilized formulations adapted for subcutaneous administration are described in US Pat No. 6,267,958 (Andya et al.). Such lyophilized formulations may be reconstituted with a suitable diluent to a high protein concentration and the reconstituted formulation may be administered subcutaneously to the mammal to be treated herein.

Crystalized forms of the antibody or antibody are also contemplated. See, for example, US 2002/0136719A1 (Shenoy et al.).

The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. For example, it may be desirable to further provide a cytotoxic agent; chemotherapeutic agent; immunosuppressive agent; cytokine; cytokine antagonist or antibody; growth factor; hormone; integrin; integrin antagonist or antibody (e.g. an LFA-1 antibody such as efalizumab/RAPTIVA commercially available from Genentech, or an alpha 4 integrin antibody such as natalizumab/TYSABRI®) available from Biogen); interferon class drug such as IFN-beta-1a (REBIF® and AVONEX®) or IFN-beta-1b (BETASERON®); an oligopeptide such a glatiramer acetate (COPAXONE®); a cytotoxic agent such as mitoxantrone (NOVANTRONE®), methotrexate, cyclophosphamide, chlorambucil, or azathioprine; intravenous immunoglobulin (gamma globulin); lymphocyte-depleting drug (e.g., mitoxantrone, cyclophosphamide, Campath, anti-CD4, or cladribine); non-lymphocyte-depleting immunosuppressive drug (e.g., mycophenolate mofetil (MMF) or cyclosporine); cholesterol-lowering drug of the “statin” class; estradiol; testosterone; hormone replacement therapy; drug that treats symptoms secondary or related to MS (e.g., spasticity, incontinence, pain, fatigue); a TNF inhibitor; disease-modifying anti-rheumatic drug (DMARD); non-steroidal anti-inflammatory drug (NSAID); corticosteroid (e.g. methylprednisolone, prednisone, dexamethasone, or glucocorticoid); levothyroxine; cyclosporin A; somatostatin analogue; cytokine antagonist; anti-metabolite; immunosuppressive agent; integrin antagonist or antibody (e.g. an LFA-1 antibody, such as efalizumab or an alpha 4 integrin antibody such as natalizumab); or another B-cell surface antagonist/antibody; etc in the formulation. The type and effective amounts of such other agents depend, for example, on the amount of antibody present in the formulation, the type of multiple sclerosis being treated, and clinical parameters of the subjects. These are generally used in
the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore employed dosages.

The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxyethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980).

Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g. films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D(-)-3-hydroxybutyric acid.

The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

VI. Articles of Manufacture

In another embodiment of the invention, an article of manufacture containing materials useful for the treatment of multiple sclerosis described above is provided. Preferably, the article of manufacture comprises: (a) a container comprising a composition comprising an antibody that binds to a B-cell surface marker (e.g. a CD20 antibody) and a pharmaceutically acceptable carrier or diluent within the container; and (b) a package insert with instructions for administering the composition to a subject suffering from multiple sclerosis to the subject to provide an initial antibody exposure of about 0.5 to 4 grams followed by a second antibody exposure of about 0.5 to 4 grams, the second exposure not being provided until from about 16 to 60 weeks from the initial exposure; or instructions for administering the composition to a subject suffering from PPMS.

The article of manufacture comprises a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds or contains a composition that is effective for treating the multiple sclerosis and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is the antibody. The label or package insert indicates that the composition is used for treating multiple sclerosis in a subject suffering therefrom with specific guidance regarding dosing amounts and
intervals of antibody and any other drug being provided. The article of manufacture may further comprise a second container comprising a pharmaceutically acceptable diluent buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer’s solution and dextrose solution. The article of manufacture may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.

Optionally, the article of manufacture herein further comprises a container comprising an agent other than the antibody for treatment and further comprising instructions on treating the mammal with such agent, such agent preferably being a chemotherapeutic agent or immunosuppressive agent, interferon class drug such as IFN-beta-1a (REBIF® and AVONEX®) or IFN-beta-1b (BETASERON®); an oligopeptide such a glatiramer acetate (COPAXONE®); a cytotoxic agent such as mitoxantrone (NOVANTRONE®), methotrexate, cyclophosphamide, chlorambucil, or azathioprine; intravenous immunoglobulin (gamma globulin); lymphocyte-depleting drug (e.g., mitoxantrone, cyclophosphamide, Campath, anti-CD4, or cladribine); non-lymphocyte-depleting immunosuppressive drug (e.g., mycophenolate mofetil (MMF) or cyclosporine); cholesterol-lowering drug of the “statin” class; estradiol; hormone replacement therapy; drug that treats symptoms secondary or related to MS (e.g., spasticity, incontinence, pain, fatigue); a TNF inhibitor; disease-modifying anti-rheumatic drug (DMARD); non-steroidal anti-inflammatory drug (NSAID); corticosteroid (e.g. methylprednisolone, prednisone, dexamethasone, or glucocorticoid); levothyroxine; cyclosporin A; somatostatin analogue; cytokine or cytokine receptor antagonist; anti-metabolite; immunosuppressive agent; integrin antagonist or antibody (e.g. an LFA-1 antibody, such as efalizumab or an alpha 4 integrin antibody such as natalizumab); and another B-cell surface marker antibody; etc.

Further details of the invention are illustrated by the following non-limiting Examples. The disclosures of all citations in the specification are expressly incorporated herein by reference.

EXAMPLE 1

TREATMENT OF PRIMARY PROGRESSIVE MULTIPLE SCLEROSIS (PPMS)

A subject with diagnosis of PPMS as defined by McDonald et al. Ann Neurol 50:121–7 (2001) is treated with a CD20 antibody in this example.

Rituximab, commercially available from Genentech, is formulated for IV administration as a sterile product in 9.0 mg/mL sodium chloride, 0.7 mg/mL polysorbate 80, 7.35 mg/mL sodium citrate dehydrate, and Sterile Water for Injection (pH 6.5).
The first course of treatment will consist of a dose of 1 g intravenous (IV) Rituximab administered on each of Days 1 and 15. Subjects will receive acetaminophen (1 g) and diphenhydramine HCl (50 mg), or equivalent, by mouth 30–60 minutes prior to the start of each infusion.

Subsequent courses of treatment will be administered starting at Week 24 (Day 169), Week 48 (Day 337), and Week 72 (Day 505). The second infusion of the subsequent courses of treatment will be 14 ± 1 days after the first infusion.

Subjects who experience a first relapse may receive rescue treatment with IV or oral corticosteroids. Systemic corticosteroids may be administered using a regimen that does not exceed exposure or duration of treatment appropriate for an MS relapse. A relapse is defined as all of the following:

- An acute appearance of a neurologic abnormality that persists for at least 24 hours
- A change not attributable to fever, infection, trauma, concomitant medications, or other etiology
- An event with objective change on examination by the blinded examining investigator, including a minimum of 1-point change on one of the following FS scales: pyramidal, cranial nerves, cerebellar, sensory, vision, or gait

The following regimen of corticosteroids may be used: 1 g IV methylprednisolone daily for 3 days, followed by 60 mg prednisone daily for 5 days, and decreasing by 10-mg increments each day thereafter. If IV methylprednisolone is not available, then 150 mg IV dexamethasone daily for 3 days may be substituted. Only one course of corticosteroids should be administered for an exacerbation. Subsequent immunological studies and MRI scans should be obtained at least 4 weeks after completion of the corticosteroid regimen. Corticosteroid inhalers (oral and nasal) or intra-articular injections may be used.

Additional treatments to be optionally combined with the CD20 antibody include IFN-beta, glatiramer acetate, methotrexate, cyclophosphamide, or mitoxantrone.
The primary efficacy outcome measure is the time to confirmed disease progression. Disease progression is defined as an increase of ≥ 1.0 point from baseline Expanded Disability Status Scale (EDSS) (Kurtzke J, Neurology 33(11):1444–52 (1983)), if the baseline EDSS is between 2.0 and 5.5 points (inclusive), or an increase of ≥ 0.5 point if the baseline EDSS is ≥ 5.5 points (inclusive), for which change is not attributable to another etiology (e.g., fever, concurrent illness, MS relapse or exacerbation, or concomitant medication). Confirmation of disease progression may occur at a regularly scheduled visit that is at least 12 weeks (84 days) after the initial progression.

Secondary efficacy outcome measures include:

- Change from baseline to Week 96 in the total volume of T2 lesions on brain MRI scan
- Change from baseline to Week 96 in brain volume on brain MRI scan

Optionally, improvement in any one or more of:

- Multiple Sclerosis Functional Composite Scale (MSFCS)
- EDSS
- Proportion of subjects with confirmed disease progression at Week 96, as determined using EDSS
- Upper extremity function, as measured by the 9-Hole Peg Test (a subscale of the MSFCS)
- Ambulation, as measured by the Timed 25-Foot Walk (a subscale of the MSFCS)
- Cognition, as measured by the Paced Auditory Serial Addition Test (3 seconds only; a subscale of the MSFCS)
- Total volume of brain T2 lesions on MRI scans (Weeks 48 and 122)
- Total volume of brain T1 lesions on MRI scans
- Cross sectional area of the cervical spinal cord on MRI scans
- Brain volume on MRI scans (Weeks 48 and 122)

The subject treated with Rituximab as described herein will show improvement in the signs, symptoms or other indicators of PPMS according to any one or more of the above outcome measures.
EXEMPLARY 2

TREATMENT OF RELAPSING-REMITTING MULTIPLE SCLEROSIS

Subjects with RRMS as defined by McDonald et al. Ann Neurol 50:121–7 (2001) are treated with a CD20 antibody in this example, where the antibody exposures are approximately 6 months apart.

Rituximab, commercially available from Genentech, is formulated for IV administration as a sterile product in 9.0 mg/mL sodium chloride, 0.7 mg/mL polysorbate 80, 7.35 mg/mL sodium citrate dehydrate, and Sterile Water for Injection (pH 6.5).

The first course of treatment will consist of a dose of 1 g intravenous (IV) Rituximab administered on each of Days 1 and 15. Subjects will receive acetaminophen (1 g) and diphenhydramine HCl (50 mg), or equivalent, by mouth 30–60 minutes prior to the start of each infusion.

Subsequent courses of treatment will be administered starting at Week 24 (Day 169), Week 48 (Day 337), and Week 72 (Day 505). The second infusion of the subsequent courses of treatment will be 14 ± 1 days after the first infusion.

Preferably Rituximab is the only agent administered to treat the RRMS. However, subjects may optionally receive IV or oral corticosteroids, IFN-beta, glatiramer acetate, methotrexate, cyclophosphamide, or mitoxantrone.

Subjects who experience a first relapse may receive rescue treatment with IV or oral corticosteroids. Systemic corticosteroids may be administered using a regimen that does not exceed exposure or duration of treatment appropriate for an MS relapse. A relapse in this Example is defined as:
The appearance of new or recurrent neurological symptoms consistent with MS lasting more than 48 hours in a subject who has been in a relatively stable or improving neurologic state for at least 30 days. The change in neurologic symptoms must be accompanied by objective neurologic worsening consistent with an increase of at least half a step on the EDSS, or 2 points on one of the appropriate functional system scores (FSS), or 1 point on two or more of the appropriate FSS. The change must be verified by the examining investigator and must affect the selected FS scales (i.e., pyramidal, gait, cerebellar, brainstem, sensory, or visual). Symptoms must persist for ≥ 24 hours and should not be attributable to confounding clinical factors (e.g., fever, infection, injury, adverse reactions to concomitant medications). A single episode of a paroxysmal symptom (e.g., tonic spasm) is not a relapse, but the new onset of multiple occurrences of a paroxysmal symptom over at least 24 hours can be a relapse if accompanied by new, corresponding objective manifestations. Sensory symptoms with no change on clinical examination, fatigue, mood change, or bladder or bowel urgency or incontinence will not be sufficient to establish a relapse.

The primary efficacy outcome measure is the MRI endpoint of gadolinium-enhancing lesions, or time to confirmed disease progression (defined as an increase of ≥ 1.0 point from baseline Expanded Disability Status Scale (EDSS); Kurtzke J. Neurology 33(11):1444–52 (1983)). The primary efficacy endpoint may be the total number of gadolinium-enhancing T1 lesions observed on serial MRI scans of the brain at Weeks 12, 16, 20, and 24.

Secondary efficacy outcome measures include frequency of relapse; change from baseline to Week 96 in the total volume of T2 lesions on brain MRI scan (e.g. change in total volume of T2 lesions on MRA scans of the brain from screening to weeks 24 and 36); change from baseline to Week 96 in brain volume on brain MRI scan; Multiple Sclerosis Functional Composite Scale (MSFCS) and its subscales; upper extremity function, as measured by the 9-Hole Peg Test (a subscale of the MSFCS); ambulation, as measured by the Timed 25-Foot Walk (a subscale of the MSFCS); cognition, as measured by the Paced Auditory Serial Addition Test (a subscale of the MSFCS); Multiple Sclerosis Quality of Life–54 (MSQOL-54) questionnaire; total volume of brain T1 lesions on MRI scans (e.g. total number of gadolinium-enhancing T1 lesions observed on serial MRA scans of the brains at weeks 20, 28, and 36); cross sectional area of the cervical spinal cord on MRI scans; proportion of subjects relapsing by weeks 24 (i.e. between week 0 and week 24) and 36 (i.e. between week 0 and week 36); the Combined Unique Activity Measure at week 24 and 36.

The patient treated with Rituximab as described above will display an improvement in any one or more of the above outcome measures.
EXAMPLE 3

TREATMENT OF RELAPSING-REMITTING MULTIPLE SCLEROSIS

A subject with RRMS as defined by McDonald et al. Ann Neurol 50:121–7 (2001) is treated with a CD20 antibody herein. In this example, the antibody exposures are approximately 1 year apart.

Rituximab, commercially available from Genentech, is formulated for IV administration as a sterile product in 9.0 mg/mL sodium chloride, 0.7 mg/mL polysorbate 80, 7.35 mg/mL sodium citrate dehydrate, and Sterile Water for Injection (pH 6.5).

The first course of treatment will consist of a dose of 1 g intravenous (IV) Rituximab administered on each of Days 1 and 15. Subjects will receive acetaminophen (1 g) and diphenhydramine HCl (50 mg), or equivalent, by mouth 30–60 minutes prior to the start of each infusion.

Subsequent courses of treatment will be administered starting at Week 48, and Week 96. The second infusion of the subsequent courses of treatment will be 14 ± 1 days after the first infusion.

Preferably Rituximab is the only agent administered to treat the RRMS. However, subjects may optionally receive IV or oral corticosteroids, IFN-beta, glatiramer acetate, methotrexate, cyclophosphamide, or mitoxantrone.

Subjects who experience a first relapse may receive rescue treatment with IV or oral corticosteroids. Systemic corticosteroids may be administered using a regimen that does not exceed exposure or duration of treatment appropriate for an MS relapse. A relapse in this Example is defined as:
The appearance of new or recurrent neurological symptoms consistent with MS lasting more than 48 hours in a subject who has been in a relatively stable or improving neurologic state for at least 30 days. The change in neurologic symptoms must be accompanied by objective neurologic worsening consistent with an increase of at least half a step on the EDSS, or 2 points on one of the appropriate functional system scores (FSS), or 1 point on two or more of the appropriate FSS. The change must be verified by the examining investigator and must affect the selected FS scales (i.e., pyramidal, gait, cerebellar, brainstem, sensory, or visual). Symptoms must persist for ≥ 24 hours and should not be attributable to confounding clinical factors (e.g., fever, infection, injury, adverse reactions to concomitant medications). A single episode of a paroxysmal symptom (e.g., tonic spasm) is not a relapse, but the new onset of multiple occurrences of a paroxysmal symptom over at least 24 hours can be a relapse if accompanied by new, corresponding objective manifestations. Sensory symptoms with no change on clinical examination, fatigue, mood change, or bladder or bowel urgency or incontinence will not be sufficient to establish a relapse.

The primary efficacy outcome measure is the MRI endpoint of gadolinium-enhancing lesions, or time to confirmed disease progression (defined as an increase of ≥ 1.0 point from baseline Expanded Disability Status Scale (EDSS); Kurtzke J. Neurology 33(11):1444–52 (1983)). The primary efficacy endpoint may be the total number of gadolinium-enhancing T1 lesions observed on serial MRI scans of the brain at Weeks 12, 16, 20, and 24.

Secondary efficacy outcome measures include frequency of relapse; change from baseline to Week 96 in the total volume of T2 lesions on brain MRI scan (e.g. change in total volume of T2 lesions on MRA scans of the brain from screening to weeks 24 and 36); change from baseline to Week 96 in brain volume on brain MRI scan; Multiple Sclerosis Functional Composite Scale (MSFCs) and its subscales; upper extremity function, as measured by the 9-Hole Peg Test (a subscale of the MSFCs); ambulation, as measured by the Timed 25-Foot Walk (a subscale of the MSFCs); cognition, as measured by the Paced Auditory Serial Addition Test (a subscale of the MSFCs); Multiple Sclerosis Quality of Life–54 (MSQOL-54) questionnaire; total volume of brain T1 lesions on MRI scans (e.g. total number of gadolinium-enhancing T1 lesions observed on serial MRA scans of the brains at weeks 20, 28, and 36); cross sectional area of the cervical spinal cord on MRI scans; proportion of subjects relapsing by week 24 (i.e between week 0 and week 24) and week 36 (i.e. between week 0 and week 36); the Combined Unique Activity Measure at week 24 and 36.

The patient treated with the above with Rituximab will display an improvement in any one or more of the above outcome measures.
EXAMPLE 4

HUMANIZED 2H7 VARIANTS

This example describes humanized 2H7 antibody variants for use in the methods disclosed herein. The humanized 2H7 antibody preferably comprises one, two, three, four, five or six of the following CDR sequences:

CDR L1 sequence RASSVSYXH wherein X is M or L (SEQ ID NO: 18), for example SEQ ID NO:4 (Fig. 1A),
CDR L2 sequence of SEQ ID NO:5 (Fig. 1A),
CDR L3 sequence QQWXFNPTP wherein X is S or A (SEQ ID NO: 19), for example SEQ ID NO:6 (Fig. 1A),
CDR H1 sequence of SEQ ID NO:10 (Fig. 1B),
CDR H2 sequence of AYPGNGXTSYNQKFKG wherein X is D or A (SEQ ID NO: 20), for example SEQ ID NO:11 (Fig. 1B), and

CDR H3 sequence of VVYYSSXYWVYFV wherein the X at position 6 is N, A, Y, W or D, and the X as position 7 is S or R (SEQ ID NO: 21), for example SEQ ID NO:12 (Fig. 1B).

The CDR sequences above are generally present within human variable light and variable heavy framework sequences, such as substantially the human consensus FR residues of human light chain kappa subgroup I (V_{k1}I), and substantially the human consensus FR residues of human heavy chain subgroup III (V_{hIII}). See also WO 2004/056312 (Lowman et al.).

The variable heavy region may be joined to a human IgG chain constant region, wherein the region may be, for example, IgG1 or IgG3, including native sequence and variant constant regions.

In a preferred embodiment, such antibody comprises the variable heavy domain sequence of SEQ ID NO:8 (v16, as shown in Fig. 1B), optionally also comprising the variable light domain sequence of SEQ ID NO:2 (v16, as shown in Fig. 1A), which optionally comprises one or more amino acid substitution(s) at positions 56, 100, and/or 100a, e.g. D56A, N100A or N100Y, and/or S100AR in the variable heavy domain and one or more amino acid substitution(s) at positions 32 and/or 92, e.g. M32L and/or S92A, in the variable light domain. Preferably, the antibody is an intact antibody comprising the light chain amino acid sequences of SEQ ID NOs. 13 or 16, and heavy chain amino acid sequences of SEQ ID NO. 14, 15, 17, 22 or 25.

A preferred humanized 2H7 antibody is ocrelizumab (Genentech).

The antibody herein may further comprise at least one amino acid substitution in the Fc region that improves ADCC activity, such as one wherein the amino acid substitutions are at positions 298, 333, and 334, preferably S298A, E333A, and K334A, using Eu numbering of heavy chain residues. See also US Patent No. 6,737,056B1, Presta.
Any of these antibodies may comprise at least one substitution in the Fc region that improves FcRn binding or serum half-life, for example a substitution at heavy chain position 434, such as N434W. See also US Patent No. 6,737,056B1, Presta.

Any of these antibodies may further comprise at least one amino acid substitution in the Fc region that increases CDC activity, for example, comprising at least a substitution at position 326, preferably K326A or K326W. See also US Patent No. 6,528,624B1 (Idusogie et al.).

Some preferred humanized 2H7 variants are those comprising the variable light domain of SEQ ID NO:2 and the variable heavy domain of SEQ ID NO:8, including those with or without substitutions in an Fc region (if present), and those comprising a variable heavy domain with alteration N100A; or D56A and N100A; or D56A, N100Y, and S100aR; in SEQ ID NO:8 and a variable light domain with alteration M32L; or S92A; or M32L and S92A; in SEQ ID NO:2.

M34 in the variable heavy domain of 2H7.v16 has been identified as a potential source of antibody stability and is another potential candidate for substitution.

In a summary of some various preferred embodiments of the invention, the variable region of variants based on 2H7.v16 comprise the amino acid sequences of v16 except at the positions of amino acid substitutions that are indicated in the table below. Unless otherwise indicated, the 2H7 variants will have the same light chain as that of v16.

Exemplary Humanized 2H7 Antibody Variants

<table>
<thead>
<tr>
<th>2H7 Version</th>
<th>Heavy chain (VH) changes</th>
<th>Light chain (VL) changes</th>
<th>Fc changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 for reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>S298A, E333A, K334A</td>
</tr>
<tr>
<td>73</td>
<td>N100A</td>
<td>M32L</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>N100A</td>
<td>M32L</td>
<td>S298A, E333A, K334A</td>
</tr>
<tr>
<td>96</td>
<td>D56A, N100A</td>
<td>S92A</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>D56A, N100A</td>
<td>M32L, S92A</td>
<td>S298A, E333A, K334A</td>
</tr>
<tr>
<td>116</td>
<td>D56A, N100A</td>
<td>M32L, S92A</td>
<td>S298A, K334A, K322A</td>
</tr>
<tr>
<td>375</td>
<td></td>
<td></td>
<td>K334L</td>
</tr>
<tr>
<td>588</td>
<td></td>
<td></td>
<td>S298A, E333A, K334A, K326A</td>
</tr>
</tbody>
</table>
One preferred humanized 2H7 comprises 2H7.v16 variable light domain sequence:

```
DIQMTQSPSSLSASVGDRVTITCRASSSVSYMHWYYQQKPGKAPKPLIYAPSNLASGVPSRFSG
SGSGTDFTLTISLQPEDFATYYCQWAFNPPTFGQGTKVEIKR (SEQ ID NO:2);
```

and 2H7.v16 variable heavy domain sequence:

```
EVQLVESGGGLVQPGSPRLSCAASGFTSYTFTSVMHWVRQAPGKGLLEWGAIFYPGNQDDSY
NQSFGRFTISVTYQKLQLMSPGASNQVYDGlvQWQGTLVTVSS (SEQ ID NO:8).
```

Where the humanized 2H7.v16 antibody is an intact antibody, it may comprise the light chain amino acid sequence:

```
DIQMTQSPSSLSASVGDRVTITCRASSSVSYMHWYYQQKPGKAPKPLIYAPSNLASGVPSRFSG
SGSGTDFTLTISLQPEDFATYYCQWAFNPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG
TASVVCLLNRFYPREAKVQWKDVNALQSGNSQESVTEQDSKSTYSLLSTLSDKYVEKH
KYYACEVTHQGGSGPVTSKSFNREGC (SEQ ID NO:13);
```

and the heavy chain amino acid sequence of SEQ ID NO. 14 or:

```
EVQLVESGGGLVQPGSPRLSCAASGFTSYTFTSVMHWVRQAPGKGLLEWGAIFYPGNQDDSY
NQSFGRFTISVTYQKLQLMSPGASNQVYDGlvQWQGTLVTVSS (SEQ ID NO:8).
```

Another preferred humanized 2H7 antibody comprises 2H7.v511 variable light domain sequence:

```
DIQMTQSPSSLSASVGDRVTITCRASSSVSYMHWYYQQKPGKAPKPLIYAPSNLASGVPSRFSG
SGSGTDFTLTISLQPEDFATYYCQWAFNPPTFGQGTKVEIKR (SEQ ID NO:23)
```

and 2H7.v511 variable heavy domain sequence:

```
EVQLVESGGGLVQPGSPRLSCAASGFTSYTFTSVMHWVRQAPGKGLLEWGAIFYPGN
GATSYNQKFKGRFTISVTYQKLQLMSPGASNQVYDGlvQWQGTLVTVSS (SEQ ID NO:24).
```

Where the humanized 2H7.v511 antibody is an intact antibody, it may comprise the light chain amino acid sequence:

```
DIQMTQSPSSLSASVGDRVTITCRASSSVSYMHWYYQQKPGKAPKPLIYAPSNLASGVPSRFSG
SGSGTDFTLTISLQPEDFATYYCQWAFNPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG
TASVVCLLNRFYPREAKVQWKDVNALQSGNSQESVTEQDSKSTYSLLSTLSDKYVEKH
KYYACEVTHQGGSGPVTSKSFNREGC (SEQ ID NO:16);
```
and the heavy chain amino acid sequence of SEQ ID NO. 17 or:

EVQLVESGGGLVQPGGLSLRLSCAASGYTFTSRYNHWVRQAPGKGLEWVGAIPGNGATS
YQKFKGRFTISVDKSKNTLYLQMNSLRAEDTAAYYCARVYYSYRYWYFDVWQGTLVT
VSSASTKGPSVFPLAPSSKSSTSGTALAGCLVKDYFPEPVTVSWNNSGALTSGVHTFPAVLQSS
GLYSLSSVTVPSSSLGTQTYICNVMNKPSNTKVDKKEPKSCDKHTCPPCPAPELGGPSV
FLFPPKDTLMISRTPEVTCVVVDVSHDEPEVKFNWYVDGVEVHNAKTTPPEEQYNATVR
VVSVLTLHQLQDWNLGKEYKCKVSNAALPAPIAATISAKGQPREPQVYTLPPREMTKNQ
VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFYLTLVAYKSRWQQGNVSN
CSVMHEALHNHYTQKSLSLSPG (SEQ ID NO. 25).
WHAT ISclaimed is:

1. A method of treating multiple sclerosis in a subject comprising administering an effective amount of a CD20 antibody to the subject to provide an initial antibody exposure of about 0.5 to 4 grams followed by a second antibody exposure of about 0.5 to 4 grams, the second exposure not being provided until from about 16 to 60 weeks from the initial exposure, and each of the antibody exposures is provided to the subject as one or two doses of antibody.

2. The method of claim 1 wherein the second exposure is not provided until from about 20 to 30 weeks from the initial exposure.

3. The method of claim 1 or 2 wherein the initial and second antibody exposures are each provided in amounts of about 1.5 to 2.5 grams.

4. The method of any one of claims 2-3 additionally comprising administering to the subject an effective amount of the CD20 antibody to provide a third antibody exposure of about 0.5 to 4 grams, the third exposure not being administered until from about 46 to 60 weeks from the initial exposure.

5. The method of claim 4 wherein the third antibody exposure is provided in an amount of about 1.5 to 2.5 grams.

6. The method of claim 4 or 5 wherein the third exposure is not provided until from about 46 to 54 weeks from the initial exposure.

7. The method of any one of claims 4-6 wherein no further antibody exposure is provided until at least about 70-75 weeks from the initial exposure.

8. The method of claim 1 wherein the second exposure is not provided until from about 46 to 60 weeks from the initial exposure.

9. The method of any one of claims 1-8 wherein each of the antibody exposures is provided to the subject as one dose of antibody.

10. The method of any one of claim 1-8 wherein each of the antibody exposures is provided to the subject as two doses of antibody, wherein the two doses constitute a first dose and a second dose.

11. The method of claim 10 wherein the second dose is administered from about 3-17 days from the time the first dose was administered.

12. The method of claim 11 wherein the second dose is administered from about 6-16 days from the time the first dose was administered.

13. The method of claim 12 wherein the second dose is administered from about 13-16 days from the time the first dose was administered.

14. The method of any one of claims 10-13 wherein the first and second dose of antibody are each about 0.5 to 1.5 grams.
15. The method of any one of claims 10-14 wherein the first and second dose of antibody are each about 0.75 to 1.3 grams.

16. The method of any one of the claims 1-15 wherein three or more antibody exposures are administered to the subject.

17. The method of any one of claims 1-16 wherein four or more antibody exposures are administered to the subject.

18. The method of any one of claims 1-17 wherein a second medicament is administered with the initial exposure or later exposures, wherein the CD20 antibody is a first medicament.

19. The method of claim 18 wherein the second medicament is selected from the group consisting of an interferon, glatiramer acetate, a cytotoxic agent, chemotherapeutic agent, mitoxantrone, methotrexate, cyclophosphamide, chlorambucil, azathioprine, gamma globulin, Campath, anti-CD4, cladribine, corticosteroid, mycophenolate mofetil (MMF), cyclosporine, cholesterol-lowering drug of the statin class, estradiol, testosterone, hormone replacement drug, a TNF inhibitor, disease-modifying anti-rheumatic drug (DMARD), non-steroidal anti-inflammatory drug (NSAID), levothyroxine, cyclosporin A, somastatatin analogue, cytokine or cytokine receptor antagonist, anti-metabolite, immunosuppressive agent, integrin antagonist or antibody, LFA-1 antibody, efalizumab, alpha 4 integrin antibody, natalizumab, and another B-cell surface marker antibody.

20. The method of any one of claims 1-19 wherein the multiple sclerosis is relapsing-remitting multiple sclerosis (RRMS).

21. The method of any one of claims 1-19 wherein the multiple sclerosis is primary progressive multiple sclerosis (PPMS).

22. The method of any one of claims 1-21 wherein the subject has never been previously treated with a CD20 antibody.

23. The method of any one of claims 1-22 wherein the antibody is a naked antibody.

24. The method of any one of claims 1-22 wherein the antibody is conjugated with another molecule.

25. The method of claim 24 wherein the other molecule is a cytotoxic agent.

26. The method of any one of claims 1-25 wherein the antibody is administered intravenously.

27. The method of claim 26 wherein the antibody is administered intravenously for each antibody exposure.

28. The method of any one of claims 1-25 wherein the antibody is administered subcutaneously.

29. The method of any one of claims 1-25 wherein the antibody is administered intrathecally.
30. The method of any one of claims 1-29 wherein the CD20 antibody is the only medicament administered to the subject to treat the multiple sclerosis.

31. The method of any one of claims 1-30 wherein the antibody is Rituximab.

32. The method of any one of claims 1-30 wherein the antibody is humanized 2H7 comprising the variable domain sequences in SEQ ID NOS. 2 and 8.

33. The method of any one of claims 1-30 wherein the antibody is humanized 2H7 comprising the variable domain sequences in SEQ ID NOS. 23 and 24.

34. The method of any one of claims 1-34 wherein the subject has elevated anti-myelin basic protein (MBP), anti-myelin oligodendrocyte glycoprotein (MOG), anti-ganglioside and/or or anti-neurofilament antibody level(s).

35. The method of any one of claims 1-34 wherein elevated levels of B cells are present in cerebrospinal fluid (CSF), multiple sclerosis lesion, or serum of the subject.

36. An article of manufacture comprising:

(a) a container comprising a CD20 antibody; and

(b) a package insert with instructions for treating multiple sclerosis in a subject, wherein the instructions indicate that an amount of the antibody is administered to the subject that is effective to provide an initial antibody exposure of about 0.5 to 4 grams followed by a second antibody exposure of about 0.5 to 4 grams, the second exposure not being administered until from about 16 to 60 weeks from the initial exposure, and each of the antibody exposures is provided to the subject as one or two doses of antibody.

37. The article of claim 36 further comprising a container comprising a second medicament, wherein the CD20 antibody is a first medicament, and further comprising instructions on the package insert for treating the subject with the second medicament.

38. The article of claim 37 wherein the second medicament is selected from the group consisting of an interferon, glatiramer acetate, a cytotoxic agent, chemotherapeutic agent, mitoxantrone, methotrexate, cyclophosphamide, chlorambucil, azathioprine, gamma globulin, Campath, anti-CD4, cladribine, corticosteroid, mycophenolate mofetil (MMF), cyclosporine, cholesterol-lowering drug of the statin class, estradiol, testosterone, hormone replacement drug, a TNF inhibitor, disease-modifying anti-rheumatic drug (DMARD), non-steroidal anti-inflammatory drug (NSAID), levothyroxine, cyclosporin A, somatostatin analogue, cytokine or cytokine receptor antagonist, antimitabolite, immunosuppressive agent, and another B-cell surface marker antibody.
Sequence Alignment of Variable Heavy-Chain Domain

FR1 CDR1 FR2 CDR2 FR3
10 20 30 40
2H7 QAXLQQSGAELRPGASVVSCKAS [GYFTSYNGK] WVKQT
** ** ** ** ** ** ** ** **
hu2H7.v16 EVQLVESGGLVQPGSSLRLSCAAS [GYFTSYNGK] WVRQA
** ** **
hum III EVQLVESGGLVQPGSSLRLSCAAS [GYFTSYNGK] WVRQA

FR4 CDR3
50 60 70 80
2H7 PRQCLEWIG [AIYPNCDTSYNQFKG] KATLYVQNKSSSTAYM
** ** ** ** ** ** **
hu2H7.v16 PKGLBEWVG [AIYPNCDTSYNQFKG] RPTISDVRKSTLNL
** **** ** ****
hum III PKGLBEWVG [AIYPNCDTSYNQFKG] RPTISDVRKSTLNL

CDR3 FR4
abc 90 100 abcde 110
2H7 QLSILTSED3AVYFCAR [VVYGSNYMYFDV] WQGTTTVSS
** ** ** ** **
hu2H7.v16 QMNELRAEDTAVYFCAR [VVYGSNYMYFDV] WQGTLTVSS
****** ****
hum III QMNELRAEDTAVYFCAR [GRVGSRY---DY] WQGTLTVSS
Humanized 2H7.v16 Light Chain

DIQMTQSPSLSASVGVDRVTITCRASSEVSQHYWQQKPGKAPPKLIIYAPSNLASCVPSSRGSGGSGTDFTLTISSLQEDFATYYCQWSPNPPTFGQGTVKVEIKRTVAPAIVFPSFPSDEQLKS
GTVULCCLNNFYPREAVKQWKDNLQSGNSQESVTQDKSTYLSLTLTSLKADYEHK
VYACEVTHQGLSSPVTKSFNRECG (SEQ ID NO:13)

FIG._2

Humanized 2H7.v16 Heavy Chain

EVQLVESGGGLVQPGGLRLCAASGYTFTSYMNHWVRQAPKGRLEWGAIYPNGDTSYNQ
FKGRFTISVDKSKNTLYQMNLSRAEDTAHYCARVVFYVSVSNYSWDPWQGTLVTSASSK
GPSVPFLAPSSKSTSGTGAALGCLKDVEPVTWNSGALTSGVHTFPALQVSSGLYLSS
VVTVPSSSLGTQTYICNVTSPNKDVKKEPKSCDKHTCPAPELLGGPSVFLLPPKP
KDTLMISRTPEVTCVSVDSEPDVKFNNWYDGEVHNAKTPREEQYNSTYRVSVLTGLH
QDWLNGKEYKCKSVNKALPAPIETIKSKAKQPREPQVTLTSPSREEMTKNQVSLTCLVKGFY
PSDIAVEWESNGQPENNYKTTPVLDSDGGSFFLYSKLTVDKSRWQQGNVFSCVMHEALHNHY
TQKSLSLSPGK (SEQ ID NO:14)

FIG._3

Humanized 2H7.v31 Heavy Chain

EVQLVESGGGLVQPGGLRLCAASGYTFTSYMNHWVRQAPKGRLEWGAIYPNGDTSYNQ
FKGRFTISVDKSKNTLYQMNLSRAEDTAHYCARVVFYVSVSNYSWDPWQGTLVTSASSK
GPSVPFLAPSSKSTSGTGAALGCLKDVEPVTWNSGALTSGVHTFPALQVSSGLYLSS
VVTVPSSSLGTQTYICNVTSPNKDVKKEPKSCDKHTCPAPELLGGPSVFLLPPKP
KDTLMISRTPEVTCVSVDSEPDVKFNNWYDGEVHNAKTPREEQYNATYRVVSVLTLH
QDWLNGKEYKCKSVNKALPAPIATIKSKAKQPREPQVTLTSPSREEMTKNQVSLTCLVKGFY
PSDIAVEWESNGQPENNYKTTPVLDSDGGSFFLYSKLTVDKSRWQQGNVFSCVMHEALHNHY
TQKSLSLSPGK (SEQ ID NO:15)

FIG._4
Light Chain Alignment

hu2H7.v16 DIQMTQSPSSLSASVGSDDVITCRASSVSYSYQQHQQKPGKAPKPLYYAP
hu2H7.v511 DIQMTQSPSSLSASVGSDDVITCRASSVSYSYQQHQQKPGKAPKPLYYAP

hu2H7.v16 SNLAVGVSROFSSGSGTDFTLTISLQPEDFATYFCQQWSFNPPTFGG
hu2H7.v511 SNLAVGVSROFSSGSGTDFTLTISLQPEDFATYFCQQWSFNPPTFGG

hu2H7.v16 TKVEIKRTVAAPSVIFPPSDEQLKSGTASVCLLNNFYPREAKVQWKVD
hu2H7.v511 TKVEIKRTVAAPSVIFPPSDEQLKSGTASVCLLNNFYPREAKVQWKVD

hu2H7.v16 NALQSGNSQESVTEQDSKSTYLSSTLTLSKADYEHKTVACEVTHQGL
hu2H7.v511 NALQSGNSQESVTEQDSKSTYLSSTLTLSKADYEHKTVACEVTHQGL

hu2H7.v16 SSPVTKSFNRGEC
hu2H7.v511 SSPVTKSFNRGEC

FIG. 5
Heavy Chain Alignment

hu2H7.v16
EVQLVESGGGLVQPGSRSLRLSCAASGYTFTSYNMHW

hu2H7.v511
EVQLVESGGGLVQPGSRSLRLSCAASGYTFTSYNMHW

37
VRQAPGKCLEWVGAYPGNGDT SYNQKFGRFTISVDKS KNTLYLQMNSL

hu2H7.v16
VRQAPGKCLEWVGAYPGNGAT SYNQKFGRFTISVDKS KNTLYLQMNSL

83
RAEDTAVYYCARVVYYSNYFWFQGTLTVSS

hu2H7.v511
RAEDTAVYYCARVVYYSRYFWFQGTLTVSS

118
ASTKGPSVFPLAPS

hu2H7.v511
ASTKGPSVFPLAPS

132
SKSTSGCTALGCLVDYFPEPVT VSWSGALTSGVHTFPAVLQPSSGLYS

hu2H7.v511
SKSTSGCTALGCLVDYFPEPVT VSWSGALTSGVHTFPAVLQPSSGLYS

182
LSSVVTIPSSLSTQTYICINNVHKPSNTKVDKVEPKSCDKHTCPCCPA

hu2H7.v511
LSSVVTIPSSLSTQTYICINNVHKPSNTKVDKVEPKSCDKHTCPCCPA

232
PELLGGPSVFLFPPKPDTLMISRTPEVT CVVVDVSHEDPEVFKNWYVDG

hu2H7.v511
PELLGGPSVFLFPPKPDTLMISRTPEVT CVVVDVSHEDPEVFKNWYVDG

282
VEVHAHTKPREEQYNSTYRVVSVLT VHLQDWNLGKEYCKVSNKLAP

hu2H7.v511
VEVHAHTKPREEQYNATYRVVSVLT VHLQDWNLGKEYCKVSNALAP

332
IETKISKAKQGQPYPQVTLLPPSREEMTKOVSLTCLVKGFYPSDIAVEW

hu2H7.v511
IATKISKAKQGQPYPQVTLLPPSREEMTKOVSLTCLVKGFYPSDIAVEW

382
ESNGQPENNYKTTPPVLDSDGSSFY SkLTVDKSRWQQGNVFCSVMHEA

hu2H7.v511
ESNGQPENNYKTTPPVLDSDGSSFY SkLTVDKSRWQQGNVFCSVMHEA

432
LHNYTQKSLSLSPGK

hu2H7.v511
LHNYTQKSLSLSPGK

447

FIG. 6