Abstract: Compositions and methods for identifying polyribonucleotides that binds with high affinity to a metallo-β-lactamase. The polyribonucleotides inhibit the activity of the metallo-β-lactamase.
INHIBITION OF METALLO-BETA-LACTAMASE BY RNA

BACKGROUND

[0001] One aspect of the current invention involves nucleic acid ligands that inhibit an activity of lactamase enzymes, wherein the lactamase is a bacterial Class B, metallo-β-lactamase. In a preferred embodiment, a specific 30 mer nucleic acid ligand is used to inhibit a *B. cereus* 5/B/6 metallo-β-lactamase. Another preferred embodiment includes a specific 11 mer nucleic acid ligand is used to inhibit a *B. cereus* 5/B/6 metallo-β-lactamase.

[0002] Since the discovery of penicillin, β-lactam antibiotics are among the most prescribed antibacterial chemotherapeutic agents against the treatment for infectious diseases (Maugh, 1981). β-lactam antibiotics, which also include cephalosporins, monobactams and carbapenems, are analogs of peptidoglycans that are involved in the bacterial cell wall synthesis. β-lactam antibiotics target DD-peptidases (D-analyl-D-alanine carboxypeptidases/transpeptidases) that form the peptide cross-links of the peptidoglycan in the final stages of the bacterial cell wall synthesis; this takes place on the external surface of the cytoplasmic membrane and is easily accessible for the antibacterial agents. The β-lactam antibiotics inhibit DD-peptidases by forming a rather stable covalent acylenzyme complex with the DD-peptidases that has a much longer half-life than that formed with the peptidoglycan, thus disrupting the construction of the bacterial cell walls and leading to death of the bacteria (Kelly et al., 1988; Ghuysen, 1988). Because mammalian cells have a different membrane with no cell wall, β-lactams are highly specific for bacteria and even at high concentrations of β-lactams, mammalian cells are not affected.

[0003] β-lactam antibiotics all share the presence of the β-lactam ring, a four-membered ring in which a carbonyl and a nitrogen are joined in an amide linkage. Figure 1 shows the general structures of two classes of β-lactam antibiotics: penicillin and cephalosporin. β-lactam and the adjacent atoms have similar spatial configuration to that of peptidoglycan compounds. The comparison of the structure of penicillins with the structure of D-alanyl-D-alanine-peptidoglycan are shown in Figure 2. (Suskovic et al., 1991).
[0004] A major mechanism of resistance to β-lactam antibiotics is the production of β-lactamases (β-lactamhydrolyases, EC 3.5.2.6). β-lactamases are highly efficient enzymes that catalyze the hydrolysis of the β-lactam rings, thus rendering the loss of bactericidal activity of β-lactam antibiotics. The catalysis of hydrolysis for a generic β-lactam by a β-lactamase is shown in Figure 3 (Livermore, 1991).

[0005] Genes for the production of β-lactamases are widely distributed among bacteria and an increasing number of pathogenic species are found to have developed multiple-drug resistance. Overcoming β-lactamases are of obvious clinical importance and studies of the mechanisms of β-lactamases are vital in the development in new β-lactam antibiotics and β-lactamase inhibitors. Slight alterations in the structures of existing β-lactam antibiotics have been utilized in response to the spread of bacterial drug-resistance; for example, cephalosporins have passed through four generations (Maugh, 1981; Pitout et al., 1997). The use of β-lactam/β-lactamase inhibitor combinations has also increased. There are limits on the chemical manipulation of the existing groups of antibiotics and it is increasingly important to design new types of antibiotics and mechanism-based β-lactamase inhibitors. Because the rational design of a β-lactam antibiotic or β-lactamase inhibitor requires a detailed understanding of the function of β-lactamases, there is great interest in the study of the mechanisms of β-lactamases.

[0006] Classification of β-lactamases. A wide range of bacteria produces β-lactamases; an incomplete list of bacteria that produce β-lactamases include *Bacillus cereus*, *Bacillus fragilis*, *Escherichia coli*, *Aeromonous hydrophilia*, *Bacteroides*, *Staphylococcus epidermidis*, *Streptococcus*, *Pseudomonas aeruginsa*, *Providencia*, *Haemophilus*, *Xanthomonas maltophilia*, *Acinetobacter*, *Citrobacter*, *Enterobacter* and *Branhamella* (Danziger and Pendland, 1997). There are four classes of β-lactamases: class A, B, C and D (Ambler, 1980; Ambler et al., 1991; Joris et al., 1991; Frere, 1995). Class A, C and D β-lactamases are active-site serine enzymes that resemble serine proteases and form an acyl-enzyme intermediate with an active-site serine during the catalysis of β-lactam antibiotics (Rahil and Pratte, 1991). Class A β-lactamases are soluble enzymes as are class D; however, class C β-lactamases are membrane-bound (Hussain, Pastor and Lampen, 1987). Class D β-lactamases do not exhibit primary sequence similarities to class A and C enzymes (Joris et al., 1991; Ledent et al., 1993).
Class B β-lactamases are quite different from the other classes; these are metallo-β-
lactamases which require divalent metal ion for enzymatic activity (Ambler, 1980;
Abraham and Waley, 1979). Native class B enzymes have been isolated with one or two
zinc ion(s) bound to their active sites (Carfi et al., 1995; Concha et al., 1996).

[0007] The characteristic feature of the substrate profile of class B β-
lactamases is that a wide variety of β-lactam antibiotics are hydrolyzed at comparable rates
while the other classes of β-lactamases have narrower substrate spectra (Abraham and
Waley, 1979). β-lactam antibiotics that are substrates of class B β-lactamases include
penicillin derivatives and cephalosporin derivatives (Felici et al., 1993). β-lactam
antibiotics, such as carbapenem, cefamycins and imipenem, which are resistant to the
serine β-lactamases are hydrolyzed by the class B β-lactamases (Felici et al., 1993;
Rasmussen et al., 1994). The inhibitors for other classes of β-lactamases such as penem,
6-β-iodopenicillanic acid and penicillinic acid sulfone, do not inhibit class B β-lactamases
(Felici and Amicosante, 1993). A series of mercaptoacetic acid thiol esters (Payne et al.,
1997; Yang and Crowder, 1999) and thiomanedelic acid (Mollard et al., 2001) have been
identified as metallo-β-lactamase inhibitors and understanding the structure and dynamics
of metallo-β-lactamases has been studied (Carfi et al., 1995; Concha et al., 1996; Scrofani
et al., 1999). However, there is still a need to develop more effective inhibitors of
metallo-β-lactamases as these enzymes have been detected in an increasing number of
pathogenic bacteria (Neu, H., 1992; Payne et al., 1997).

[0008] **Metallo-β-lactamase from Bacillus cereus 5/B/6.** The metallo-β-
lactamase was first identified in *B. cereus* 569. It was shown that a part of the
cephalosporinase activity in the crude penicillinase preparation from *B. cereus* 569
required Zn²⁺ for maximum activity. The enzyme has unique thermal stability; heating at
60°C for 30 min. does not abolish the catalytic activity (Crompton et al., 1962; Davies et
al., 1974). The first purified metallo-β-lactamase was obtained in a protein-carbohydrate
complex (Kuwabara, Adams and Abraham, 1970) from *B. cereus* 569/H, a spontaneous
mutant of strain 569 that produces class B β-lactamase constitutively (Kogut et al., 1956).
The protein purification was later modified to separate carbohydrate from the protein by
gel filtration chromatography (Kuwabara and Lloyd, 1971).
Another *B. cereus* strain 5/B was found to produce one class A β-lactamase and one metallo-β-lactamase; this metallo-β-lactamase is very similar to the metallo-β-lactamase produced by *B. cereus* 569 and 569/H but with slightly different substrate specificity (Crompton et al., 1962). *B. cereus* 5/B/6, a mutant form of *B. cereus* 5/B, only produces the metallo-β-lactamase due to a mutation in the structural gene required for the synthesis of the class A β-lactamase (Davies et al., 1975; Abraham and Waley, 1979). The metallo-β-lactamase from *B. cereus* 5/B/6 was later purified in a similar manner from *B. cereus* 569/H/9 (Thatcher, 1975).

B. cereus 569/H/9 and 5/B/6 constitutively produce and secrete large amounts of metallo-β-lactamases and these enzymes, which are isolated with Zn$^{2+}$ at the active site, are among the best-studied class B enzymes (Ambler, 1986; Bicknell et al., 1986; Sutton et al., 1987; Meyers and Shaw, 1989). The metallo-β-lactamases from these two strains are very similar; they both consist of 227 amino acid residues, among which 209 residues are identical (Lim, Pene and Shaw, 1988). Although these β-lactamases are isolated with Zn$^{2+}$ bound at the active site, some other metal ions including Co$^{2+}$, Cd$^{2+}$, Mn$^{2+}$, Hg$^{2+}$ and Cu$^{2+}$ support some catalytic activity of the enzyme (Davies and Abraham, 1974; Hilliard and Shaw, 1992; Hilliard, 1995).

The metallo-β-lactamase from *B. cereus* 5/B/6 has a 29 amino acid leader sequence before it is secreted from the cell. The gene for this enzyme has been cloned, sequenced, and characterized in great detail in *E. coli*. It has also been expressed as an intracellular enzyme with the signal sequence at relatively low levels in *E. coli*; it was also revealed that the metallo-β-lactamases from *B. cereus* strains 5/B/6 and 569/H/9 differ by 18 amino acid residues (Lim, Pene and Shaw, 1988). Even though the procedure for production and purification of metallo-β-lactamase from *B. cereus* 5/B/6 was greatly improved (Meyers and Shaw, 1989), hyperexpression in *E. coli* was still desirable. The cause of the low levels of expression was postulated to be the presence of the 29 amino acid leader peptide at the 5'-end which signals the secretion of the enzyme from *B. cereus* cell (Shaw et al. 1991).

Site-directed mutagenesis was performed to remove the leader sequence and to introduce a NdeI restriction endonuclease site at the initiator codon of the *B. cereus* 5/B/6 β-lactamase structural gene (Shaw et al., 1991); this resulted in the *B. cereus* 5/B/6
β-lactamase structural gene to be in a fragment between a NdeI and a SacI site. This construct allowed the cloning of the B. cereus 5/B/6 β-lactamase structural gene into the E. coli expression vector pRE2 (Reddy, Peterkofsky and McKenney 1989); this plasmid is denoted at pRE2/bla. The recombinant plasmid pRE2 was chosen because a gene cloned into its unique NdeI and SacI restriction endonuclease sites within its polylinker region is under the control of its strong λ P_L promoter. In the E. coli MZ-1, the temperature sensitive cI repressor binds to the P_L promoter and prevents the expression of the B. cereus 5/B/6 β-lactamase gene on plasmid pRE2/bla at low temperatures. At higher temperatures, the cI protein is denatured, thus, allowing the expression of B. cereus 5/B/6 β-lactamase at high levels. Subsequent purifications of wild type and mutant B. cereus 5/B/6 β-lactamases resulted in a high yield of the metallo-β-lactamases which were identical (Meyers and Shaw 1989; Shaw et al., 1991).

[0013] SELEX and enzyme inhibition. In vitro selection, in vitro evolution, and Systematic Evolution of Ligands by Exponential Enrichment ("SELEX") are common names for a technique which allows the simultaneous screening of a large number of nucleic acid molecules for different functionalities. In SELEX, large random pools of nucleic acids can be screened for a particular functionality, such as the binding to small organic molecules (Klug and Famulok, 1994), large proteins (Tuerek and Gold, 1990) or the alteration or de novo generation of ribozyme catalysis (Robertson and Joyce, 1990; Bartel and Szostak, 1993). Functional molecules are selected from a mainly non-functional pool of RNA or DNA by column chromatography or other selection techniques that are suitable for the enrichment of any desired property.

[0014] US patent 5,637,459 entitled "Systematic Evolution of Ligands by Exponential Enrichment: Chimeric Selex" issued on June 30, 1998 with Burke et al., listed as inventors, and 5,773,598 entitled "Systematic Evolution of Ligands by Exponential Enrichment: Chimeric Selex" issued on June 30, 1998 with Burke et al., listed as inventors, both of these patents describe and elaborate on the SELEX process in great detail. Both cited patents are herein incorporated by reference. Included are targets that can be used in the process; methods for partitioning nucleic acids within a candidate mixture; and methods for amplifying partitioned nucleic acids to generate enriched candidate mixture. The SELEX Patents also describe ligands obtained to a number of
target species, including both protein targets where the protein is and is not a nucleic acid binding protein.

[0015] SELEX method is conceptually straightforward. A starting, degenerate oligonucleotide pool is generated using a standard DNA-oligonucleotide synthesizer; the instrument synthesizes an oligonucleotide with a completely random base-sequence, which is flanked by defined primer binding sites. The immense complexity of the generated pool justifies the assumption that it may contain a few molecules with the correct secondary and/or tertiary structures that bind tightly and specifically to a target enzyme and inhibit the enzymatic activity. These molecules are selected, for example, by affinity chromatography or filter binding. Because a large, random pool can be expected to contain only a very small number of functional molecules, several purification steps are required. Only "active" molecules are amplified by polymerase chain reaction (PCR). Iterative cycles of selection are carried out for successive selection and amplification cycles in the exponential increase in the abundance of functional sequences, until they dominate the population.

[0016] A pool of 88-mer oligonucleotides containing an internal 30-nucleotide random sequence were synthesized; this would give a possibility of \(4^{30}\) \((1.2 \times 10^{15})\) different sequences projected from the possibility of any four nucleotides in 30 positions. The internal 30-nucleotide region is flanked by defined primer sites which are 43 and 15 nucleotides at their 5' and 3' termini, respectively. These were later transcribed and the single-stranded RNA has been selected that not only binds tightly and specifically to the \(B.\ cereus\ 5/B/6\) metallo-\(\beta\)-lactamase but also inhibits this enzyme.

[0017] Prediction of secondary structure of aptamers. MFold program is an adaptation of the MFold package (version 2.3) by Zuker (1989) and Jaeger et al. (1989, 1990) that has been modified to work with the Wisconsin Package™. Their method uses the energy rules developed by Freier et al. (1986) to predict optimal secondary structures for an RNA molecule and the energy rules complied and developed by Turner et al. (1988) to predict optimal and sub-optimal secondary structures for a single-stranded RNA molecule. This approach can provide a first-approximation prediction of a nucleic acid secondary structure from a nucleic acid sequence.
[0018] The invention described herein has utilized the method of SELEX to develop nucleic acid ligands for a lactamase enzyme. The nucleic acid ligands are utilized as metallo-β-lactamase inhibitors.
SUMMARY

[0019] Generally, the current invention comprises high affinity polyribonucleotides useful for inhibiting the activity of bacterial lactamase enzymes. More specifically, the current invention involves relatively short high affinity polyribonucleotides ligands that inhibit an activity of Class B metallo-β-lactamase. In a preferred embodiment, a 30 mer polyribonucleotide selectively binds the Class B lactamase. In another preferred embodiment, an 11 mer polyribonucleotide selectively binds the Class B lactamase. Both the 30-mer and 11 mer polyribonucleotides specifically inhibit *B. cereus* 5/B/6 metallo-β-lactamase.

[0020] The method used to generate the high affinity polyribonucleotides comprises several steps that initially involve preparing a candidate mixture of nucleic acids. The candidate mixture of nucleic acids is then allowed to make contact with the lactamase enzyme under controlled conditions of temperature, ionic strength and pH; the combination forms a candidate-enzyme mixture. Not all candidates bind tightly to the enzyme. The target nucleic acids may be easily partitioned from the remainder of the candidate mixture. Partitioning the target-nucleic acids from the remainder of the candidate mixture can be performed by many methods known to one skilled in the art. Once the target nucleic acids have been partitioned, they can be amplified to yield a pool of nucleic acids enriched with target nucleic acid sequences. The enriched pool of target nucleic acids have a relatively higher affinity and specificity for binding to the lactamase, whereby nucleic acid ligand of the lactamase may be identified through methods known to one skilled in the art of molecular biology (e.g. DNA and RNA sequencing).
BRIEF DESCRIPTION OF THE DRAWINGS

[0021] The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

[0022] Figure 1 shows structures of two classes of β-lactam antibiotics: Penicillins and Cephalosporin;

[0023] Figure 2 shows the comparison of the structure of penicillins with the structure of D-alanyl-D-alanine-peptidoglycan;

[0024] Figure 3 shows catalysis of hydrolysis of a generic β-lactam by a β-lactamase;

[0025] Figure 4 shows transcripts of double-stranded oligomers in a 12% polyacrylamide/7M urea gel;

[0026] Figure 5 shows the evidence for a complex of the B. cereus 5/B/6 metallo-β-lactamase and the RNA;

[0027] Figure 6 shows RT-PCR products;

[0028] Figure 7 shows the determination of IC₅₀ for B. cereus 5/B/6 metallo-β-lactamase by the 30-mer RNA;

[0029] Figure 8 shows a Lineweaver-Burk plot of inhibition of B. cereus 5/B/6 metallo-β-lactamase by EDTA;

[0030] Figure 9 shows a Lineweaver-Burk plot of inhibition of B. cereus 5/B/6 metallo-β-lactamase by the 30-mer RNA;

[0031] Figure 10 shows slope and intercept replots to estimate Kᵢ and Kᵢ’ for the 30-mer RNA;

[0032] Figure 11 shows an inhibition of B. cereus 569/H/9 β-lactamase I by various concentrations of the 30-mer RNA;
Figure 12 shows an inhibition of bovine carboxypeptidase A by various concentrations of the 30-mer RNA;

Figure 13 shows a determination of IC₅₀ for B. cereus 5/B/6 metallo-β-lactamase in the presence of Zn²⁺ ions by the 30-mer RNA;

Figure 14 shows predicted structures of the 30-mer RNA calculated by Mfold program;

Figure 15 shows a predicted secondary structure of 11-mer RNA;

Figure 16 shows determination of IC₅₀ for B. cereus 5/B/6 metallo-β-lactamase by the 11-mer RNA;

Figure 17 shows determination of IC₅₀ for B. cereus 5/B/6 metallo-β-lactamase by the random pool RNA;

Figure 18 shows inhibition of metallo-β-lactamase by 30-mer RNA and 10-mer ssDNA;

Figure 19 shows types of inhibition by 30-mer RNA and 10-mer ssDNA; and
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0041] Terms:

[0042] The term "binding" of a polyribonucleotide to a metalloenzyme, typically is performed under moderate to stringent enzyme binding conditions. Stringent conditions include, incubating in NaCl concentrations in the range of 10 to 20 mM. Additional guidance regarding such conditions is readily available in the art, for example, (WO 2004/031142 A2 entitled “Inhibition of Metallo-Beta-Lactamase” published on April 15, 2004 with Shaw et al., listed as inventors.)

[0043] The term "candidate mixture" is a mixture of nucleic acids of differing sequence from which to select a desired ligand. The source of a candidate mixture can be from naturally occurring nucleic acids or fragments thereof, chemically synthesized nucleic acids, enzymatically synthesized nucleic acids or nucleic acids made by a combination of the foregoing techniques. In a preferred embodiment, each nucleic acid has fixed sequences surrounding a randomized region to facilitate the amplification process.

[0044] The term "complementary" means that one nucleic acid molecule has the sequence of the binding partner of another nucleic acid molecule. Thus, the sequence 5'-ATGC-3' is complementary to the sequence 5'-GCAT-3'.

[0045] The term "codon" as used herein refers to any group of three consecutive nucleotide bases in a given messenger RNA molecule, or coding strand of DNA that specifies a particular amino-acid, or a starting or stopping signal for translation. The term codon also refers to base triplets in a DNA strand.

[0046] The term "coding region" as used herein refers to any portion of the DNA sequence that is transcribed into messenger RNA (mRNA) and then translated into a sequence of amino acids characteristic of a specific polypeptide.

[0047] The term "heterologous nucleic acid sequence" as used herein is defined as a DNA sequence consisting of differing regulatory and expression elements.

[0048] The term "hybridization" signifies hybridization under conventional hybridizing conditions, preferably under stringent hybridization conditions, as described

[0049] The term "identical" in the context of two nucleic acid or polypeptide sequences refers to the residues in the two sequences which are the same when aligned for maximum correspondence. When percentage of sequence identity is used in reference to proteins or peptides it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acids residues are substituted for other amino acid residues with similar chemical properties (e.g. charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a fill mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., according to known algorithm. See, e.g., Meyers and Miller, Computer Applic. Biol. Sci., 4: 11-17 (1988); Smith and Waterman (1981) Adv. Appl. Math. 2: 482; Needleman and Wunsch (1970) J. Mol. Biol. 48: 443; Pearson and Lipman (1988) Proc. Natl. Acad. Sci. USA 85: 2444; Higgins and Sharp (1988) Gene, 73: 237-244 and Higgins and Sharp (1989) CABIOS 5: 151-153; Corpet, et al. (1988) Nucleic Acids Research 16, 10881-90; Huang, et al. (1992) Computer Applications in the Biosciences 8, 155-65, and Pearson, et al. (1994) Methods in Molecular Biology 24, 307-31. Alignment is also often performed by inspection and manual alignment.

[0050] A "labile ligand" as used herein means a nucleic acid ligand identified by the SELEX process that has a greatly decreased affinity for its target based on an adjustment of an environmental parameter. In the preferred embodiment, the environmental parameter is temperature, and the affinity of a ligand to its target is decreased at elevated temperatures.

[0051] "Nucleic Acid" means either DNA, RNA, single-stranded or double-stranded and any chemical modifications thereof. Modifications include, but are not
limited to, those that provide other chemical groups that incorporate additional charge, polarizability, hydrogen bonding, electrostatic interaction, and fluxionality to the nucleic acid ligand bases or to the nucleic acid ligand as a whole. Such modifications include, but are not limited to, 2'-position sugar modifications, 5-position pyrimidine modifications, 8-position purine modifications, modifications at exocyclic amines, substitution of 4-thiouridine, substitution of 5-bromo or 5-iodo-uracil, backbone modifications, methylations, unusual base-pairing combinations such as the isobases isocytidine and isoguanidin and the like. Modifications can also include 3' and 5' modifications such as capping.

[0052] "Nucleic Acid Ligand" as used herein is a non-naturally occurring nucleic acid having a desirable action on a target. A desirable action includes, but is not limited to, binding of the target, catalytically changing the target, reacting with the target in a way which modifies/alters the target or the functional activity of the target, covalently attaching to the target as in a suicide inhibitor, facilitating the reaction between the target and another molecule. In the preferred embodiment, the action has specific binding affinity for a target molecule, such target molecule being a three dimensional chemical structure other than a polynucleotide that binds to the nucleic acid ligand, wherein the nucleic acid ligand is not a nucleic acid having the known physiological function of being bound by the target molecule. The target molecule in a preferred embodiment of this invention is a lactamase. Nucleic acid ligands include nucleic acids that are identified from a candidate mixture of nucleic acids, said nucleic acid ligand being a ligand of a given target by the method comprising: a) contacting the candidate mixture with the target, wherein nucleic acids having an increased affinity to the target relative to the candidate mixture may be partitioned from the remainder of the candidate mixture; b) partitioning the increased affinity nucleic acids from the remainder of the candidate mixture; and c) amplifying the increased affinity nucleic acids to yield a ligand-enriched mixture of nucleic acids.

[0053] "SELEX" methodology involves the combination of selection of nucleic acid ligands that interact with a target in a desirable manner, for example binding to a protein, with amplification of those selected nucleic acids. Iterative cycling of the selection/amplification steps allows selection of one or a small number of nucleic acids.
that interact most strongly with the target from a pool that contains a very large number of nucleic acids. Cycling of the selection/amplification procedure is continued until a selected goal is achieved. In the present invention, the SELEX methodology is employed to obtain nucleic acid ligands to a lactamase enzyme.

[0054] The term "Target" means any compound or molecule of interest for which a ligand is desired. A target can be a protein, peptide, carbohydrate, polysaccharide, glycoprotein, hormone, receptor, antigen, antibody, virus, substrate, metabolite, transition state analog, cofactor, inhibitor, drug, dye, nutrient, growth factor, etc. without limitation. In this application, the target is a lactamase. In a preferred embodiment the lactamase is a class B metallo-lactamase.

EXAMPLE 1

[0055] The invention comprises general and specific methods and compositions for producing inhibitors for Metallo-β-lactamase, including SELEX technology. Although specific materials and methods have been used as illustrative examples, other similar types of materials and methods that inhibit Metallo-β-lactamase using nucleic acids are not considered to deviate from the spirit and scope of the claimed invention.

[0056] Metallo-β-lactamase. Metallo-β-lactamase from B. cereus 5/B/6 was produced from E. coli TAP56 carrying the pRE2/bla plasmid and purified according to procedures described previously (Shaw et al., 1991). The purity of the enzyme was ascertained by specific activity, native and SDS-PAGE, and DE-MALDI-TOF. T4 DNA ligase was purchased from Promega. Restriction endonucleases NdeI and SacI were purchased from New England Biolabs, Inc. and were used according to manufacturer’s recommendations. DNA molecular weight markers, BstNI digested pBR322 and BstEII digested λ DNA, were purchased from New England Biolabs, Inc. DEAE-Sephacel, Sephadex G-25 (superfine) and CM-Sepharose CL 6B and various columns were purchased from Pharmacia or Bio-Rad Laboratories. The Gene Clean II Kit was purchased from BIO101. The 88-mer was purchased from Midland Certified Reagent Company. PCR reactions were carried out using a Perkin Elmer Certus Thermal Cycler. Pfu polymerase was purchased from Stratagene. The cell suspensions were sonicated
using a Heat System Ultrasonics, Inc. model W-375 sonicator. PCI (phenol: chloroform: isoamyl alcohol (25:24:1)) and electrophoresis grade agarose were obtained from Amresco. Bovine carboxypeptidase A and hippuryl-L-phenylalanine were purchased from Sigma. PCR 20 bp low ladder, ethidium bromide, dimethylsulfoxide (DMSO), acrylamide, bisacrylamide, benzylpenicillin, cephalosporin C (potassium salt), ampicillin, ethylenediaminetetraacetic acid (EDTA), ethanol, glucose, sodium hydroxide (NaOH), potassium hydroxide (KOH), N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES), rubidium chloride, urea, 3-[N-morpholino]propanesulfonic acid (MOPS), Tris, ZnSO₄, deoxyribonucleoside triphosphates (dNTPs), ribonucleoside triphosphates (NTPs), dithiothreitol (DTT) and various other inorganic salts and organic solvents of reagent grade or better were obtained from Sigma Chemical Co. Difco brand bacto-agar, casamino acids and yeast extract used to make all media and plates were obtained through Fisher Scientific.

[0057] Assay of the purified B. cereus 5/B/6 metallo-β-lactamase and B. cereus 569/H/9 β-lactamase I. Metallo-β-lactamase activity assays using cephalosporin C as substrate were determined as previously reported (Myers and Shaw, 1989). The cephalosporin C absorbance maximum at 260 nm was monitored as a function of time (Davies et al., 1974). One unit of activity is generally defined as the amount of enzyme required to catalyze the hydrolysis of about 1 μmol of β-lactam substrate (cephalosporin C) per minute at 30°C at pH 7.0. All activity assays were carried out near V_{max} using 4.3 mM cephalosporin C dissolved in 50 mM MOPS/1 mM ZnSO₄, pH 7.0 buffer. The assays were carried out at 30°C in a 0.1 cm path length quartz cell and the total assay volume was 250 μL.

[0058] The β-lactamase I activity assays used was modified from Davies et al. (1974), which described a general method of β-lactamase I activity assays. Briefly, the enzyme was incubated with 20 mM EDTA (pH 7.0) for 15 min. at room temperature prior to the assay. The enzymatic hydrolysis of 1.1 mM benzylpenicillin in 10 mM MOPS (pH 7.0) and 1 mM EDTA was continuously monitored at 231 nm at 30°C in a 1-cm pathlength quartz cell in a total volume of 1 mL. One unit of β-lactamase activity was generally defined as the amount of enzyme required to hydrolyze about one μmole of substrate/min. at 30°C at pH 7.0.
The protein concentrations were determined by the method of Lowry (Lowry et al., 1951) using bovine serum albumin as a standard. This method was used throughout for all protein determinations.

Assay of bovine carboxypeptidase A. The assay of bovine carboxypeptidase A is based on the method of Folk and Schirmer (1963). The rate of hydrolysis of hippuryl-L-phenylalanine is determined by monitoring the increase in absorbance at 254 nm (25°C, pH 7.5). The enzyme was dissolved in 10% lithium chloride to a concentration of 1 – 3 units per mL. Hippuryl-L-phenylalanine (0.001 M) was dissolved in 0.05 M Tris-HCl, pH 7.5, with 0.5 M sodium chloride. In a 1-cm pathlength cuvette, 1.0 mL of substrate was added and incubated in the spectrophotometer at 25°C for 3-4 minutes to reach temperature equilibration and to establish blank rate. 50 µL of diluted enzyme was added to record the increase in Abs254.

Reversible inhibition studies for metallo-β-lactamase. To test for reversible inhibition, metallo-β-lactamase was incubated with various concentrations of the possible inhibitors in 50 mM MOPS buffer, pH 7.0. The enzyme activity remaining was determined (Myers and Shaw, 1989).

SELEX. An 88-mer oligonucleotide was synthesized by The Midland Certified Reagent Company. This 88-mer contained 30 bases of randomized sequence between two primer regions encompassing SacI and NdeI recognition sites Seq ID No.: 1:

5’-GCACATATGCTAATACGACTCATAAGAAACAGTCGAGCC-(N)30-

NdeI

CGCGCGAGCTCGCG-3’

SacI

The 5’-end and 3’-end primers were synthesized using a Beckman Instruments, Inc. OLIGO 1000M DNA synthesizer:

5’-GCACATATGCTAATACGACTCATAAGAAACAGTCGAGCC-3’

NdeI
3'-end primer: (15-mer) possessing SacI site (Seq ID No. 3):

5'-CGCGAGCTCCGCAGCG-3'

SacI

Double-stranded 88-mer. To anneal the 3'-end primer to the 88-mer, the following steps were performed. 75 pmol of 88-mer, 150 pmol of 3'-end primer and 500 mM NaCl in a total reaction volume of 100 µL were incubated at 92°C for one minute. The reaction was cooled to room temperature and the oligonucleotides were precipitated by adding 2.5 volumes of cold ethanol. This was placed in -84°C for one hour. The primer was extended to synthesize the second strand by the following: 0.5 mM dNTPs, 100 mM HEPES/NaOH, pH 6.9, 70 mM KCl, 10 mM MgCl₂, 2.5 mM DTT were added to the primed 88-mer in a total reaction of 10 µL. One hundred units of Klenow enzyme were added to the reaction and the mixture was incubated at room temperature for one hour. Another 100 units of Klenow enzyme were added and the mixture was incubated for another hour at room temperature. The enzyme was extracted by adding an equal volume of phenol:chloroform:isoamyl alcohol (PCI) and vortexed for one minute; the mixture was centrifuged for one minute to separate the aqueous layer and the top layer was saved. An equal volume of chloroform:isoamyl alcohol (CI) was added and the mixture was vortexed and centrifuged for one minute each. The top layer was saved for ethanol precipitation.

Transcription. For production of ssRNAs, 3 mM ribonucleoside triphosphates (NTPs), 1 mM MgCl₂, 200 mM HEPES-KOH, pH 8.0, 40 mM dithiothreitol (DTT) and 2 mM spermidine were added to the dsDNA mixture to a total volume of 20 µL. This was incubated at 37°C for one hour with 20 units of T7 RNA polymerase. 2 units of DNase were added and the reaction was incubated at 37°C for 15 minutes to denature the DNA. This was followed by PCI/CI extraction to extract the enzymes. One-tenth volume of 5 M ammonium acetate was added with ethanol for ethanol precipitation. The RNA products were separated on a 12% (w/v) polyacrylamide/7M urea gel as previously described in Molecular Cloning: A Laboratory Manual (Sambrook, Fritsch, and Maniatis, 1989). The resulting gel was soaked in incubation buffer with ethidium bromide for 10 minutes and destained in d₂H₂O for ten minutes. The RNA products were
visualized by UV illumination using TM-36 Chromato-UVE transilluminator from UVP Inc. and were excised. The RNA bands were extracted by a modified crush and soak method (Maxam and Gilbert, 1977) with the following modifications: the bands were crushed in a microcentrifuge tube using a disposable pipette tip. The bands were weighed to determine their total weight and 0.1 mL of elution buffer (0.5 M ammonium acetate, 1 mM EDTA, pH 8.0, and 0.1% (w/v) SDS) was added for every gram of gel bands. The tubes were incubated at 45°C on a rotary platform for 2.5-3.0 hours. The tubes were then centrifuged at 12,000 g for 1 minute and the supernatant was transferred to a new microcentrifuge tube containing a plastic column packed with glass wool. A one-half volume of elution buffer was added to the remaining gel pieces to be vortexed and centrifuged. The additional supernatant was added to the column/tube and the column/tube was centrifuged for 15 seconds to separate the gel pieces from the supernatant and to collect the supernatant in the microcentrifuge tube. 2.5 volumes of ethanol and 1/10th volume of 5 M ammonium acetate were added for ethanol precipitation of the recovered RNA products.

[0068] Gel shift assay. The electrophoretic mobility shift assay used 6% (w/v) polyacrylamide gels (29:1 mono:bis) in 20 mM Tris-acetate (TA) buffer, pH 7.0, polymerized with 0.07% (w/v) ammonium persulfate and 0.028% (v/v) TEMED. The stock enzyme in 150 mM ammonium sulfate, 10 mM sodium citrate, pH 7.0, 1 mM ZnSO4, and 30% (v/v) glycerol, was heated for 30 minutes at 60°C to denature any possible other proteins. The enzyme was centrifuged for one minute and the supernatant was collected. The enzyme was diluted with dilution buffer (20 mM TA and 1 mM ZnSO4, pH 7.0). The purified RNA products were used for SELEX selection. The RNA products were incubated with enzyme at 30°C for 15 minutes in TA buffer in a total reaction volume of 20 μL. In order to gradually increase the stringency of inhibitor binding, increasing concentrations of NaCl were added to the incubation of the RNA products with the enzyme. In rounds 5-8, the NaCl concentration was 10mM; in rounds 9-12, the NaCl concentration was 20 mM. After 15 minutes, 5 μL 40% (v/v) glycerol was added to the sample and the 6% (w/v) polyacrylamide gel was run at 200 V for 25-30 minutes. The enzyme:RNA complex band was excised, crushed and soaked and ethanol-precipitated as previously described.
[0069] **Reverse transcription/PCR.** For production of cDNAs, 500 μM deoxynucleotide triphosphates (dNTPs) and 10 ng of 3'-end primer were added to the recovered RNAs to a total reaction volume of 17.0 μL. This was incubated at 85°C for 10 minutes and placed on ice. Two μL of 10X RT-PCR buffer and 100 units of reverse transcriptase were added; this was incubated at 42°C for 50 minutes. For amplification of cDNAs, the following steps were taken. Ten μL of 10X Pfu buffer, 0.2 mM dNTPs, 250 ng of 5'-end primer, 250 ng of 3'end primer and 2.5 units of Pfu enzyme were added to 5.0 μL of cDNA solution to a total reaction volume of 100 μL. The reaction was subjected to 30 cycles at 94°C for 45 sec, 40°C for 45 sec, and 72°C for 11 sec. This was followed by 10 minutes at 72°C to allow all annealed primers to finish extending. The PCR products were purified from 6% (w/v) polyacrylamide gel as described above.

[0070] **Cloning and sequencing.** The plasmid pRE2 was digested with restriction endonucleases NdeI and SacI. The linearized pRE2 vector was electrophoretically separated on 1.0% (w/v) agarose gel in 0.045 M Tris-borate/0.001 M EDTA (TBE) buffer at 60 V for 3 hours. The linearized pRE2 vector was localized by staining the gel in 5 μg/mL ethidium bromide solution and visualized under UV. The bands were excised from gel and were extracted by the Gene Clean Kit (purchased from BIO 101).

[0071] The purified PCR products described above were also digested with restriction endonucleases NdeI and SacI and purified on a 6% (w/v) polyacrylamide gel.

[0072] Digested PCR products were ligated into linear pRE2 vector with T4 DNA ligase (purchased from Promega Co.) at 4°C overnight. For each ligation, 300 ng of linearized pRE2 vector, 10 ng of PCR products and 3 units of T4 DNA ligase were mixed together in ligation buffer in a total reaction volume of 10 μL. After incubation, the mixture was used to transform *E. coli* strain TAP 56 competent cells prepared by the Hanahan method (Hanahan, 1983). The resultant colonies were grown in an LB medium, pH 7.0, of 1.0% (w/v) casamino acid, 0.5% (w/v) yeast extract, 0.5% (w/v) sodium chloride and 50 μg/mL ampicillin. The culture was incubated at 30°C overnight. The subcloned plasmid DNA was purified using QIAprep Spin Miniprep kit (purchased from Qiagen, Inc.). The purified plasmid was sequenced by an ABI PRISMTM 310 Genetic
Analyzer. After finding the sequence, the 30-mer insertion was synthesized by Integrated DNA Technologies.

[0073] Inhibition assays of 30-mer RNA and random pool RNA. Various assays were conducted with the 30-mer RNA in the presence of metallo-β-lactamase to determine its inhibition values (IC$_{50}$, K_i, and K_i'). The 30-mer RNA was tested for inhibition of β-lactamase I and bovine carboxypeptidase A. The 30-mer RNA was also tested for inhibition of metallo-β-lactamase in the presence of Zn$^{2+}$.

[0074] A pool of degenerate RNA before the first incubation with enzyme was synthesized as described in Methods and tested for inhibition of metallo-β-lactamase.

[0075] Prediction of secondary structures of RNA. The secondary structure of the 30-mer RNA was predicted by the MFold program (Zuker, 1989). Three different secondary structures of the 30-mer RNA were predicted; the structure predicted with the lowest energy showed an 11-mer loop region (SeqID No.: 5): 5'-GGGUGCUGGCCC-3'. This loop shows the closest homology to a previously determined 10-mer ssDNA inhibitor of metallo-β-lactamase (S.K. Kim, 2002) and this result suggests that the loop structure may be important for interaction with metallo-β-lactamase.

[0076] To confirm the loop structure of the 11-mer, the secondary structure of the 11-mer was predicted by the MFold program and the 11-mer RNA sequence was synthesized by Integrated DNA Technologies. The 11-mer RNA was tested for inhibition of metallo-β-lactamase.

EXAMPLE 2

[0077] Combinatorial approach to inhibition of metallo-β-lactamase: SELEX. A pool as many as 4^{30} (1.2 x 1018) 88-mer oligonucleotides was synthesized. The complimentary strands of the 88-mer were synthesized and the double-stranded oligomers were amplified by PCR. The PCR products were purified through a native polyacrylamide gel and this was followed by transcription of the double-stranded oligomers and purification of the RNA products from a denaturing gel.
Figure 4 shows the various RNA products that were produced. The transcripts shown in Figure 4 are double-stranded oligomers in a 12% polyacrylamide/7M urea gel. The figure shows a band of the full-length transcripts followed by various migrations of incomplete transcripts. The transcripts were purified from the denaturing polyacrylamide gel and the pool of RNA was incubated with metallo-β-lactamase to form an enzyme:RNA complex.

The enzyme:RNA complex was then separated from unbound RNA by electrophoresis. As shown in Figure 5A, the enzyme bound RNAs are visualized using an ethidium bromide staining procedure. The B. cereus 5/B/6 metallo-β-lactamase is a cationic enzyme. Although not wanting to be bound by theory, if there were no RNA binding to the enzyme, the enzyme would not migrate into the gel but would rather travel toward the cathode and out of the sample well area. The bound RNA provides negative charges for migration through the gel toward the anode. The bound RNA can be visualized by ethidium bromide fluorescence (Figure 5A) and the enzyme can be visualized by Coomassie Brilliant Blue R250 staining (Figure 5B). The complex of the B. cereus 5/B/6 metallo-β-lactamase and the RNA shown in Figure 5 was separated in a 6% polyacrylamide gel.

As noted previously, the concentration of salt added to the incubation of RNA with enzyme was increased with successive rounds, which was used to increase the stringency of selection during the course of the SELEX rounds. The range of salt concentrations used to increase stringent conditions were from about 10 mM to about 20 mM. The electrophoretic separation allows the visualization of each selection round, thus, revealing whether ligand binding has occurred and the making apparent the relative amounts of bound RNA.

The bound RNA was purified from the gel and the cDNA was synthesized by reverse transcription. This was followed by another round of PCR which amplified the selected RNA products in their dsDNA form. Figure 6 shows a round of PCR products which run right above the 80 base-pair ladder. This step shows the completion of one cycle of SELEX and that “active” RNA products are purified and amplified through SELEX. The RNA products shown in Figure 6 were separated using a
6% polyacrylamide gel, wherein Lanes 1-4 shown the RT-PCR products and Lane 5 shows a standard base-pair ladder.

[0082] This process was repeated through twelve rounds. After the twelfth round, the PCR products were cloned into the vector pRE2 and the plasmid was sequenced.

[0083] The sequence of the 30-mer region (SeqID No.: 5) is shown:

5'-UGG CUG CAG GGU CUG GCC CCC CGU UUG GUG-3'

[0084] The 30-mer RNA was synthesized by Molecula and Integrated DNA Technologies and was tested for inhibition of metallo-β-lactamase and other enzymes.

[0085] 30-mer RNA. The IC₅₀ value for the 30-mer RNA was determined by measuring the rate of enzymatic hydrolysis of cephalosporin C with different amounts of the 30-mer RNA. The determination of IC₅₀ for B. cereus 5/B/6 metallo-β-lactamase by the 30-mer RNA was determined and the concentration of the substrate (cephalosporin C) was 4.3 mM in the buffer (50 mM MOPS, pH 7.0). Thus, the IC₅₀ of the 30-mer was 11 nM, as shown in Figure 7.

[0086] From a steady-state kinetic study, the 30-mer showed a noncompetitive inhibition, as shown in Figure 9. The value of Kᵢ (dissociation constant for the inhibitor from the enzyme-inhibitor complex) for the 30-mer was 2 nM and the value of Kᵢ' (dissociation constant for the inhibitor from the enzyme-substrate-inhibitor complex) for the 30-mer was 15 nM as determined by slope and intercept replots, as shown in Figure 10.

[0087] A Lineweaver-Burk plot of the inhibition of B. cereus 5/B/6 metallo-β-lactamase by EDTA is shown in Figure 8, wherein the Diamond: [I] = 0 μM; square: [I] = 3 μM; triangle: [I] = 5 μM. I = EDTA.:

[0088] A Lineweaver-Burk plot of inhibition of B. cereus 5/B/6 metallo-β-lactamase by the 30-mer RNA is shown in Figure 9, wherein the Diamond: [I] = 0 nM; square: [I] = 1 nM; triangle: [I] = 2 nM; circle: [I] = 3 nM. I = the 30-mer RNA.
As shown in Figure 10A, a slope replot was used to estimate K_i for the 30-mer RNA. Slope values ($K_m/V_{max} * (1 + [I]/K_i)$) were plotted versus corresponding inhibitor concentrations. The x-intercept in this plot is $-K_i$. Figure 10B shows the intercept replot to estimate K'_i for the 10-mer. Intercept values ($1/V_{max} * (1 + [I]/K_i)$) were plotted versus corresponding inhibitor concentrations. The x-intercept in this plot is $-K'_i$.

An experiment was performed to test the specificity of inhibition of the 30-mer (Seq ID No.:6). The inhibition of *B. cereus* 569/H/9 β-lactamase I (Seq ID No.:7) was tested using various concentrations of the 30-mer RNA. The concentration of the substrate (benzylpenicillin) was 1.1 mM in the buffer (50 mM MOPS (pH 7.0)/ 1 mM EDTA). As shown in Figure 11, 250 nM of the 30-mer (23 x IC$_{50}$ for the metallo-β-lactamase) has no effect on the activity of the *B. cereus* 569/H/9 β-lactamase I (a class A β-lactamase).

In addition, the zinc dependent bovine carboxypeptidase A was used to test the specificity of inhibition by this 30-mer. The inhibition of bovine carboxypeptidase A was tested using various concentrations of the 30-mer RNA. The concentration of the substrate (hippuryl-L-phenylalanine) was 1 mM in the buffer (0.05 M Tris-HCl, pH 7.5, with 0.5 M sodium chloride). As shown in Figure 12, 250 nM of the 30-mer (23 x IC$_{50}$ for the metallo-β-lactamase) has no effect on the activity of the zinc-dependent carboxypeptidase A.

As a control experiment, in order to check to see if the 30-mer binds to metal ion(s) in the active site of the metallo-β-lactamase, the assay for the metallo-β-lactamase was carried out in the presence of 1 mM ZnSO$_4$. The IC$_{50}$ value for the 30-mer was greatly elevated up to 19.3 μM because of the excess Zn$^{2+}$ ions. As shown in Figure 13, the determination of IC$_{50}$ for *B. cereus* 5/B/6 metallo-β-lactamase in the presence of Zn$^{2+}$ ions by the 30-mer RNA. The concentration of the substrate (cephalosporin C) was 4.3 mM in the buffer (50 mM MOPS and 1 mM ZnSO$_4$, pH 7.0).

11-mer RNA. As discussed above, MFold program (Zuker, 1989) calculated several possible structures for the 30-mer RNA, as shown in Figure 14. Upon inspection of the various loops, the 11-mer loop from the first structure showed the closest
homology to the 10-mer (Seq ID No 6) ssDNA inhibitor of metallo-β-lactamase, as shown in Figure 15. This 11-mer RNA (5'-GGGUCUGGCC-3') (Seq ID No.: 4) was synthesized and tested for inhibition.

The IC₅₀ value for the 11-mer was determined by measuring the rate of enzymatic hydrolysis of cephalosporin C assayed in presence of different amounts of the 11-mer RNA. The determination of IC₅₀ for B. cereus 5/B/6 metallo-β-lactamase by the 11-mer RNA was carried out using a concentration of the substrate (cephalosporin C) of about 4.3 mM in the buffer (50 mM MOPS, pH 7.0). The IC₅₀ value for the 11-mer was 430 nM, as shown in Figure 16.

Random pool RNA. The IC₅₀ value for the random pool RNA was determined by measuring the rate of enzymatic hydrolysis of cephalosporin C assayed in presence of different amounts of the random pool RNA. The determination of IC₅₀ for B. cereus 5/B/6 metallo-β-lactamase by the random pool RNA was determined using the concentration of the substrate (cephalosporin C) of about 4.3 mM in the buffer (50 mM MOPS, pH 7.0). The IC₅₀ was determined to be 21 pM, as shown in Figure 17.

EXAMPLE 3

The SELEX methodology was utilized to generate high-affinity oligonucleotides that inhibit metallo-β-lactamase. By increasing the salt concentrations during the course of SELEX an increase in the stringency of selection was achieved, which helped to eliminate nonspecific-binding oligonucleotides and for the RNA experiments. Using this strategy, a single nucleic acid sequence was found after twelve rounds of SELEX. Although not wanting to be bound by theory, the inhibitor data indicate that that the 30-mer RNA may be noncompetitive inhibitor similar to EDTA. The IC₅₀ value for the 30-mer RNA in the presence of excess Zn²⁺ was greatly elevated compared to the assay with no Zn²⁺ present, although not wanting to be bound by theory, such data may suggest that the 30-mer RNA may bind the metal ion(s). Similar to the chelation of metal ions to EDTA, the 30-mer RNA may bind to one or more Zn²⁺ ions in the active site of the enzyme. Several crystal structures of metallo-β-lactamase in complex with inhibitors are available (García-Saez, I., et. al., 2003; Fitzgerald, P. M. et. al., 1998;
Concha, N. O. et. al., 2000; Toney, J. H. et. al., 2001); all characterized inhibitors are able to bind to the active-site metal ions.

[0097] A 10-mer ssDNA was identified as an efficient inhibitor of the enzyme in the international patent application WO 2004/031142 A2 entitled “Inhibition of Metallo-Beta-Lactamase” published on April 15, 2004 with Shaw et al., listed as inventors. One aspect of the current invention used SELEX to identify a 30 mer RNA-based inhibitor of a metallo-β-lactamase. Although not wanting to be bound by theory, the 30-mer RNA inhibitor and the 10-mer ssDNA both show inhibition in the nanomolar range, as shown in Figure 18.

[0098] An assay for the 30-mer RNA with β-lactamase I was conducted to determine whether or not the 30-mer RNA competed for the substrate-binding site of the enzyme. Generally, the 30-mer RNA has no effect on the activity of β-lactamase I. This is consistent with the noncompetitive inhibition pattern discussed previously and further demonstrates the selective nature of the 30-mer RNA for metallo-β-lactamase.

[0099] Bovine carboxypeptidase A is a metal-dependent enzyme which has been compared to the metallo-β-lactamase as a model in terms of structural and mechanistic features (Alberts et al., 1998: Bouagu et al., 1998). The lack of inhibition for carboxypeptidase A in the presence of 30-mer RNA that is more than 23 x IC₅₀ for the metallo-β-lactamase shows the exquisite specificity for the metal ion of metallo-β-lactamase. Unlike EDTA or other metal chelators, it has been shown that the 30-mer RNA does not indiscriminately chelate all zinc sources even though the kinetic data suggest metal coordination by the 30-mer RNA. Although not wanting to be bound by theory, the inhibition by the 30-mer RNA is very specific to metallo-β-lactamase.

[0100] Generally, both oligomers (e.g. 30-mer RNA and 10-mer ssDNA) have IC₅₀’s in the nanomolar range and have a specificity for metallo-β-lactamase, wherein the oligomers do not show inhibition for β-lactamase I nor carboxypeptidase A, as shown in Figure 19.

[0101] The MFold program predicted an 11-mer loop in the 30-mer structure that shares some homology to the 10-mer ssDNA. Both are of short length containing a
duplex GC-stem region and the oligonucleotides comprising the loops are of similar bases. Comparing the loop structures of the 10-mer ssDNA and the 11-mer RNA, both have two purine bases followed by two to three pyrimidine bases, as shown in Figure 17. These similarities suggest that the stem or the loop region may be important for the inhibition of the enzyme. By comparing the IC\textsubscript{50} values of the 30-mer RNA and the 11-mer RNA, much inhibition is lost upon shortening the oligonucleotide. Although not wanting to be bound by theory, modifications can be made by either shortening the stem region of the loop or changing the nucleotides within the stem and/or the loop. The 11-mer is an effective inhibitor in the nanomolar range and upon modifications of both the 30-mer and 11-mer RNAs, any increase in inhibition of metallo-β-lactamase can be tested. Another aspect of the current invention suggests that other possible loop structures formed from the predicted secondary structures of the 30-mer RNA can be utilized as inhibitors. Likewise, these structures can also be shortened and modified for inhibition.

[0102] Currently, there are several aptamers which are in clinical trials as inhibitors and the first modified-oligonucleotide drug has achieved marketing clearance. AGRO100, a G-rich oligonucleotide, is in clinical trials as an anti-cancer drug for the treatment of solid tumors (Aptamera, 2004); AGRO100 represents a potentially powerful example of “molecularly targeted” cancer drugs. Macugen is currently being studied for treatment of age-related macular degeneration and diabetic macular edema (Eyetech Pharmaceuticals, 2004). Macugen is an aptamer that is attached to a molecule of polyethylene glycol (PEG); this PEGylation increases the half-life of the product, which in turn increases the time that Macugen is available in the eye. Vitrawene is a 21-nucleotide phosphoromonothioate antisense drug that is used to treat a condition called cytomegalovirus retinitis in people with AIDS (Novartis Ophthalmics, 2004). Vitrawene demonstrates the effectiveness of an aptamer drug in the treatment of local disease; it demonstrates that an aptamer drug can be federally approved and can be manufactured for commercial use.

[0103] So far what is known about these aptamers in clinical trials are that, in general, they tend not to trigger adverse immune responses. This is advantageous as aptamers combine the optimal characteristics of high specificity and affinity, biological and chemical stability, and yet, they are effective drugs at low toxicity. In contrast to
other therapeutic approaches, such as monoclonal antibodies, aptamers are chemically synthesized rather than biologically expressed, offering a significant cost advantage. Although not wanting to be bound by theory, aptamers could potentially be used in a wide range of disease areas including bacterial infectious diseases.

[0104] The 11-mer and 30-mer RNAs and the 10-mer DNA are among the most effective inhibitors of metallo-β-lactamase. Other known inhibitors of metallo-β-lactamases that have been identified have IC₅₀ values in the micromolar range (Garcia-Saez, I., et al., 2003; Payne et al., 1997; Yang and Crowder, 1999; Scrofani et al., 1999); one exception is a tricyclic natural product with an IC₅₀ value of 300 nM (Payne et al., 2002). For a preliminary study, the random RNA pool before the first SELEX round was tested for inhibition of metallo-β-lactamase. The random RNA pool exhibited strong inhibition estimated to be in the picomolar range. Although not wanting to be bound by theory, this suggests the possibility of a more effective inhibitor present in the pool that was not selected or possibly that the inhibition is due to a combination of inhibitors. In the future, another SELEX experiment will be conducted with the random pool to determine the presence of more efficient RNA inhibitors.

[0105] The compositions and methods described herein are by no means all-inclusive, and further methods to suit the specific application will be apparent to the ordinary skilled artisan. The scope of the ligands covered by this invention extends to all nucleic acid ligands of lactamase and metallo-lactamases. Moreover, the effective amount of the compositions can be further approximated through analogy to compounds known to exert the desired effect.
REFERENCES CITED

[0106] The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

PATENT DOCUMENTS

WO 2004/031142 A2 entitled “Inhibition of Metallo-Beta-Lactamase” published on April 15, 2004 with Shaw et al., listed as inventors.

REFERENCES CITED

Edited Combinatorial Selection of Phosphorothioate Aptamers Targeting Human Nuclear Factor-κB RelA/p50 and RelA/RelA. *Biochemistry.* 43, 9105-9115.

WHAT IS CLAIMED:

1. An isolated polynucleotide comprising a sequence that can bind to a Class B metallo-β-lactamase under stringent conditions.

2. The isolated polynucleotide of claim 1, wherein the isolated polynucleotide is at least 95% identical to SEQID#4.

3. The isolated polynucleotide of claim 1, wherein the isolated polynucleotide is at least 95% identical to SEQID#5.

4. The isolated polynucleotide of claim 1, wherein the Class B metallo-β-lactamase comprises a B. cereus 5/B/6 metallo-β-lactamase.

5. The isolated polynucleotide of claim 1, wherein the Class B metallo-β-lactamase is at least 85% identical to SEQID # 7.

6. The isolated polynucleotide of claim 1, wherein stringent conditions comprise a salt concentration in the range of about 10 mM to about 20 mM.

7. An isolated polynucleotide represented by the following formula:

8. An isolated polynucleotide represented by the following formula:
9. An isolated polyribonucleotide represented by the following formula:

10. An isolated polyribonucleotide represented by the following formula:

11. A method of killing Class B metallo-\(\beta\)-lactamase producing bacteria comprising:

 (a) a \(\beta\)-lactam antibiotic; and

 (b) an isolated polyribonucleotide that is at least 95% identical to SEQID#4 and capable of binding to a Class B metallo-\(\beta\)-lactamase.
12. The method of claim 12, wherein the \(\beta\)-lactam antibiotic comprises a penicillin or a penicillin analog.

13. The method of claim 12, wherein the \(\beta\)-lactam antibiotic comprises a cephalosporin or a cephalosporin analog.

14. The method of claim 12, wherein the Class B metallo-\(\beta\)-lactamase is at least 50\% identical to SEQ ID No.: 8.

15. The method of claim 12, wherein the Class B metallo-\(\beta\)-lactamase is at least 85\% identical to SEQ ID No.: 7.

16. An method of killing Class B metallo-\(\beta\)-lactamase producing bacteria comprising: contacting the bacteria with at least:
 (a) a \(\beta\)-lactam antibiotic; and
 (b) an isolated polyribonucleotide that is at least 95\% identical to SEQID\#5 and capable of binding to a Class B metallo-\(\beta\)-lactamase.

17. The method of claim 16, wherein the \(\beta\)-lactam antibiotic comprises a penicillin or a penicillin analog.

18. The method of claim 16, wherein the \(\beta\)-lactam antibiotic comprises a cephalosporin or a cephalosporin analog.

19. The method of claim 16, wherein the Class B metallo-\(\beta\)-lactamase is at least 50\% identical to SEQ ID No.: 8.

20. The method of claim 16, wherein the Class B metallo-\(\beta\)-lactamase is at least 85\% identical to SEQ ID No.: 7.
Transcripts of double-stranded oligomers in a 12% polyacrylamide/7M urea gel.

Figure 4
A complex of the B. cereus 5B6 metallo-\beta-lactamase and RNA shown in a 6% polyacrylamide gel.
RT-PCR products on a 6% polyacrylamide gel with a standard base-pair ladder

Figure 6
Determination of IC₅₀ for B. cereus 5/B/6 metallo-β-lactamase by the 30-mer RNA.
Figure 8

Lineweaver-Burk plot of inhibition of B. cereus 5/B/6 metallo-β-lactamase by EDTA.
Lineweaver-Burk plot of inhibition of *B. cereus* 5/B/6 metallo-β-lactamase by the 30-mer RNA.

Figure 9
Inhibition of *B. cereus* 569/H/9 β-lactamase I by various concentrations of the 30-mer RNA.
Inhibition of bovine carboxypeptidase A by various concentrations of the 30-mer RNA.
Determination of IC₅₀ for B. cereus 5/B/6 metallo-β-lactamase in the presence of Zn²⁺ ions by the 30-mer RNA.
Predicted structures of the 30-mer RNA calculated by MFold program.
Secondary structure of 11-mer RNA (a), and secondary structure of 10-mer ssDNA (b).

Figure 15
Determination of IC₅₀ for B. cereus 5/B/6 metallo-β-lactamase by the 11-mer RNA.

Figure 16

Log (activity remaining) vs. [nM] 30-mer RNA
Determination of IC_{50} for B. cereus 5/6 metallo-β-lactamase by the random pool RNA.
Inhibition of metallo-β-lactamase by 30-mer RNA and 10-mer ssDNA.

<table>
<thead>
<tr>
<th></th>
<th>IC$_{50}$</th>
<th>K_i</th>
<th>K_i'</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-mer RNA</td>
<td>11 nM</td>
<td>2 nM</td>
<td>15 nM</td>
</tr>
<tr>
<td>10-mer ssDNA</td>
<td>1 nM</td>
<td>0.31 nM</td>
<td>1.5 nM</td>
</tr>
</tbody>
</table>

Figure 18
Reversible inhibition by 30-mer RNA and 10-mer ssDNA.

<table>
<thead>
<tr>
<th>Type of inhibition</th>
<th>30-mer RNA</th>
<th>10-mer ssDNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-lactamase I</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
<tr>
<td>Carboxypeptidase A</td>
<td>No inhibition</td>
<td>No inhibition</td>
</tr>
</tbody>
</table>
SEQUENCE LISTING

<110> Texas Tech University
 Shaw, Robert W.
 Kim, Kyu M

<120> Inhibition of Metallo-Beta-Lactamase by RNA

<130> TXTECH -0002WO (218601.00009)

<160> 8

<170> PatentIn version 3.3

<210> 1
<211> 88
<212> DNA
<213> Artificial Sequence

<220>
<223> 88 mer contain 30 base of randomized sequences

<220>
<221> Random
<222> (44) ..(73)
<223> 88-mer containing 30 bases of randomized sequences between two primer regions.

<220>
<221> misc_feature
<222> (44)..(73)
<223> n is a, c, g, or t

<400> 1
 gcgcatactc taatacgact cactataggg aacagtccga gcnnnnnnnn nnnnnnnnn 60
 nnnnnnnnn nnnncgcgcgg agctcgcc 88

<210> 2
<211> 43
<212> DNA
<213> artificial sequence

<220>
<223> A 43 mer with a Nde I restriction site for SELEX.

<400> 2
 gcgcatactc taatacgact cactataggg aacagtgcga gcc 43

<210> 3
<211> 15
<212> DNA
<213> artificial sequence

<220>
<223> A 15 mer with a Sac I restriction site for SELEX.

<400> 3
cgcgagctcc gcgcg

<210> 4
<211> 11
<212> RNA
<213> artificial sequence

<220>
<223> 11 mer stem loop region

<400> 4
gggucuggccc c

<210> 5
<211> 30
<212> RNA
<213> artificial sequence

<220>
<223> This is the 30 mer RNA inhibitor.

<400> 5
uggcugcagg gucuggcccc ccguuuggug

<210> 6
<211> 10
<212> DNA
<213> artificial sequence

<220>
<223> 10 mer stem loop DNA

<400> 6
ccaaccttg

<210> 7
<211> 228
<212> PRT
<213> artificial sequence

<220>
<223> This is the amino acid sequence of metallo-b-lactamase

<400> 7
Met Glu Arg Thr Val Glu His Lys Val Ile Lys Asn Glu Thr Gly Thr
 1 5 10 15
Ile Ser Ile Ser Gln Leu Asn Lys Asn Val Trp Val His Thr Glu Leu
 20 25 30
Gly Tyr Phe Ser Gly Glu Ala Val Pro Ser Asn Gly Leu Val Leu Asn
 35 40 45
Thr Ser Lys Gly Leu Val Leu Val Asp Ser Ser Trp Asp Asp Lys Leu
50 55 60

Thr Lys Glu Leu Ile Glu Met Val Glu Lys Phe Lys Lys Arg Val
65 70 75 80

Thr Asp Val Ile Ile Thr His Ala His Ala Asp Arg Ile Gly Gly Met
85 90 95

Lys Thr Leu Lys Glu Arg Gly Ile Lys Ala His Ser Thr Ala Leu Thr
100 105 110

Ala Glu Leu Ala Lys Lys Asn Gly Tyr Glu Glu Pro Leu Gly Asp Leu
115 120 125

Gln Ser Val Thr Asn Leu Lys Phe Gly Asn Met Lys Val Glu Thr Phe
130 135 140

Tyr Pro Gly Lys Gly His Thr Glu Asp Asn Ile Val Val Trp Leu Pro
145 150 155 160

Gln Tyr Gln Ile Leu Ala Gly Gly Cys Leu Val Lys Ser Ala Ser Ser
165 170 175

Lys Asp Leu Gly Asn Val Ala Asp Ala Tyr Val Asn Glu Trp Ser Thr
180 185 190

Ser Ile Glu Asn Val Leu Lys Arg Tyr Gly Asn Ile Asn Leu Val Val
195 200 205

Pro Gly His Gly Glu Val Gly Asp Arg Gly Leu Leu Leu His Thr Leu
210 215 220

Asp Leu Leu Lys
225

<210> 8
<211> 215
<212> PRT
<213> Artificial Sequence

<220> Consensus sequence of β-lactamase at the 50% level.

<220>
<221> misc_feature
<222> (26),(26)
<223> Xaa can be any amino acid.
Val Ile Lys Asn Glu Thr Gly Thr Ile Ser Ile Ser Gln Leu Asn Lys

1 5 10 15

Asn Val Trp Val His Thr Glu Leu Gly Xaa Phe Asn Gly Glu Ala Val

20 25 30

Pro Ser Asn Gly Leu Leu Ser Thr Ser Lys Gly Leu Val Leu Val

35 40 45

Asp Ser Ser Trp Asp Lys Leu Thr Lys Glu Leu Ile Glu Met Leu Glu

50 55 60

Lys Lys Phe Pro Lys Val Thr Asp Val Ile Thr His Ala His Ala

65 70 75 80

Asp Arg Ile Gly Gly Ile Lys Thr Leu Lys Glu Arg Gly Ile Lys Ala

85 90 95

His Ser Thr Ser Leu Thr Ala Glu Leu Ala Lys Lys Ser Gly Tyr Glu

100 105 110

Glu Pro Leu Gly Asp Leu Gln Ser Leu Thr Ser Leu Lys Phe Gly Asn

115 120 125

Met Lys Val Glu Thr Phe Tyr Pro Gly Lys Gly His Thr Glu Asp Asn

130 135 140

Ile Val Val Trp Leu Pro Glu Tyr Pro Leu Leu Val Gly Gly Cys Leu

145 150 155 160

Val Lys Ser Ala Ala Lys Asp Leu Gly Asn Leu Xaa Asp Ala Tyr Val

165 170 175

Asn Glu Trp Ser Thr Ser Ile Glu Asn Val Leu Lys Arg Tyr Ser Asn

180 185 190

Ile Asn Ala Val Val Pro Gly His Gly Val Gly Asp Gly Leu Leu Leu

195 200 205

His Thr Leu Asp Leu Leu Lys

210 215