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US 8,762,652 B2 
1. 

CACHE COHERENCY PROTOCOL.IN ADATA 
PROCESSING SYSTEM 

CROSS-REFERENCE TO RELATED 

APPLICATION(S) 

This application is related to U.S. patent application Ser. 
No. 12/112,508, filed on even date, entitled “Cache Coher 
ency Protocol in a Data Processing System.” naming William 
C. Moyer as inventor, and assigned to the current assignee 
hereof. 

BACKGROUND 

1. Field 
This disclosure relates generally to data processing sys 

tems, and more specifically, to a cache coherency protocol in 
a data processing system. 

2. Related Art 
Cache coherency protocols are typically used in multi 

processor systems. One such protocol is the MESI protocol. 
However, in order to implement a MESI protocol, the bus 
protocol of the multi-processor system needs to Support par 
ticular bus transaction types. Furthermore, the MESI protocol 
may be too complex or costly for lower-end systems. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention is illustrated by way of example and 
is not limited by the accompanying figures, in which like 
references indicate similar elements. Elements in the figures 
are illustrated for simplicity and clarity and have not neces 
sarily been drawn to scale. 

FIG. 1 illustrates a data processing system in accordance 
with one embodiment of the present invention. 

FIG. 2 illustrates a portion of a processor of the data pro 
cessing system of FIG. 1, in accordance with one embodi 
ment of the present invention. 

FIG. 3 illustrates a state diagram of a cache coherency 
protocol implemented by the processor of FIG. 2, in accor 
dance with one embodiment of the present invention. 

FIG. 4 illustrates a table which provides encodings of an 
HBURST bus signal, in accordance with one bus protocol. 

FIG. 5 illustrates a table which provides encodings of an 
HPROT bus signal, in accordance with one bus protocol. 

FIGS. 6-9 illustrate, in flow diagram form, various embodi 
ments for determining whether cache coherency operations 
(e.g. Snooping) are to be performed. 

DETAILED DESCRIPTION 

In one embodiment, a cache coherency protocol may use 
separate transitions and states for coherent and non-coherent 
writes. In one embodiment, this cache coherency protocol 
uses the write-through page attribute provided by a memory 
management unit (MMU) as a control value to define one or 
more transitions between coherency states. In one embodi 
ment, the cache coherency protocol relies on a write-through 
operation for coherent traffic, and Supports copyback trans 
actions for non-coherent data. Furthermore, this cache coher 
ency protocol may be used with standard bus protocols which 
do not currently support cache coherency. Also, in one 
embodiment, a subset of bus transactions may be selected for 
which cache coherency is required. That is, based on one or 
more factors, a particular bus transactions may or may not 
result in a cache coherency operation (e.g. may or may not 
result in generation of a Snoop request). Furthermore, in one 
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2 
embodiment, the one or more factors used to perform selec 
tive Snooping are present in existing industry standard bus 
protocols such that no additional signaling mechanisms or 
other modifications to standard bus protocols are required. 
As used herein, the term “bus' is used to refer to a plurality 

of signals or conductors which may be used to transfer one or 
more various types of information, Such as data, addresses, 
control, or status. The conductors as discussed herein may be 
illustrated or described in reference to being a single conduc 
tor, a plurality of conductors, unidirectional conductors, or 
bidirectional conductors. However, different embodiments 
may vary the implementation of the conductors. For example, 
separate unidirectional conductors may be used rather than 
bidirectional conductors and vice versa. Also, plurality of 
conductors may be replaced with a single conductor that 
transfers multiple signals serially or in a time multiplexed 
manner. Likewise, single conductors carrying multiple sig 
nals may be separated out into various different conductors 
carrying Subsets of these signals. Therefore, many options 
exist for transferring signals. 
The terms “assert” or “set and “negate' (or “deassert” or 

“clear) are used herein when referring to the rendering of a 
signal, status bit, or similar apparatus into its logically true or 
logically false state, respectively. If the logically true state is 
a logic level one, the logically false state is a logic level Zero. 
And if the logically true state is a logic level Zero, the logically 
false state is a logic level one. 

Each signal described herein may be designed as positive 
or negative logic, where negative logic can be indicated by a 
bar over the signal name oran asterix (*) following the name. 
In the case of a negative logic signal, the signal is active low 
where the logically true state corresponds to a logic level Zero. 
In the case of a positive logic signal, the signal is active high 
where the logically true state corresponds to a logic level one. 
Note that any of the signals described herein can be designed 
as either negative or positive logic signals. Therefore, in alter 
nate embodiments, those signals described as positive logic 
signals may be implemented as negative logic signals, and 
those signals described as negative logic signals may be 
implemented as positive logic signals. 

Brackets are used hereinto indicate the conductors of abus 
or the bit locations of a value. For example, “bus 607:0” or 
“conductors 7:O of bus 60' indicates the eight lower order 
conductors of bus 60, and “address bits 7:0' or “ADDRESS 
7:0' indicates the eight lower order bits of an address value. 
The symbol “S” preceding a number indicates that the num 
ber is represented in its hexadecimal or base sixteen form. The 
symbol “96' preceding a number indicates that the number is 
represented in its binary or base two form. 

FIG. 1 illustrates a block diagram of a data processing 
system 10 in accordance with one embodiment of the present 
invention. System 10 may be a system-on-chip. System 10 
may be implemented on a single integrated circuit or on a 
plurality of integrated circuits. System 10 includes a system 
interconnect 12 which may be, for example, a system bus. In 
one embodiment, the system interconnect 12 is a system bus 
which operates according to the AMBAAHB or AXI protocol 
(AMBA, AXI, and AHB are trademarks of ARM Ltd.). Sys 
tem 10 includes any number of processors, such as processors 
14 and 16, a system transaction arbiter 32, a cache coherency 
manager 18, a memory 20, a level 2 cache 41, other master(s) 
22, other slave(s) 24, an input/output (I/O) module 26, and a 
direct memory access (DMA) module 40, each bidirection 
ally coupled to system interconnect 12. Processor 14 includes 
a cache 28, and processor 16 includes a cache 30. Cache 
coherency manager 18 includes a coherent master control 
register 19. Cache coherency manager 18 is also bidirection 
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ally coupled to each of L2 cache 41, processor 14, and pro 
cessor 16 via a Snoop control interface which may be separate 
to system interconnect 12. Additionally, cache coherency 
manager 18 may be bidirectionally coupled to other masters 
within system 10. Alternate embodiments of system 10 may 
include additional circuitry which is not illustrated in FIG. 1, 
or may include less circuitry than illustrated. In some embodi 
ments, cache coherency manager 18 may be distributed 
within processors 14 and 16, or may not be present. 

FIG. 2 is a block diagram of processor 14 associated with 
data processing system 10 of FIG. 1. Processor 14 may be 
implemented to perform operations in a pipelined fashion, 
and may include an instruction pipe 23, execution units 25. 
instruction fetch unit 27, control circuitry 17, general purpose 
registers 31, load/store unit 33, bus interface unit (BIU) 48, a 
memory management unit (MMU) 42, and cache 28. In one 
embodiment, control circuitry 17 is bidirectionally coupled to 
each of BIU 48, cache 28, MMU 42, instruction fetch unit 27, 
instruction pipe 23, execution units 25, and load/store unit 33. 
Instruction pipe 23 is bidirectionally coupled to instruction 
fetch unit 27, execution units 25, and load/store unit 33. 
Execution units 25 is bidirectionally coupled to each of MMU 
42, cache 28, and general purpose registers 31. Load/store 
unit is bidirectionally coupled to general purpose registers 31, 
MMU 42, and cache 28. Processor 14 may communicate with 
other components of data processing system 10 via system 
interconnect 12 coupled to BIU 48. Cache 28 includes control 
circuitry 29 which, in one embodiment, implements a cache 
coherency protocol for cache 28 based, at least in part, on a 
memory page attribute provided by MMU 42. Cache 28 
includes a plurality of cache entries (also referred to as cache 
lines) where each cache entry includes an address tag, corre 
sponding data, and status information, including information 
related to its current cache coherency protocol state. Note that 
processor 14, with the exception of control circuitry 29 and 
any circuitry for implementing the cache coherency protocol, 
operates as known to one skilled in the art and therefore, will 
not be discussed in further detail herein. 
MMU 42, as known in the art, translates virtual addresses 

(which may be received from, for example, execution units 
25, load/store unit 33, and instruction fetch unit 27) to physi 
cal addresses. MMU 42 provides the translated addresses to 
cache 28. That is, MMU 42 provides the physical address 
along with the page attributes for the page of memory corre 
sponding to the physical address. For example, entries within 
cache 28 may correspond to storage locations of memory 20, 
where memory 20 includes units of storage referred to as 
pages. Therefore, the page attributes provided by MMU 42 
along with the physical address translation information may 
be programmed into storage circuitry of MMU 42 (or else 
where within processor 14) and correspond to the particular 
page which includes the provided physical address. In one 
embodiment, these page attributes includes a write-through 
required attribute (W) and any one of the following attributes: 
caching inhibited (I), memory coherence required (M) 
(which may also be referred to as globally shared (SG)), 
guarded (G), Endianness (E), and User-Definable (e.g. U0. 
U1, U2, U3). For example, in one embodiment, MMU 42 
includes a translation look-aside buffer (TLB) whose entries 
store address translations along with these attributes, and thus 
controls the manner in which processor 14 performs storage 
accesses in the page associated with each TLB entry. In one 
embodiment, the page attributes for each page includes both 
W and M, where each of the W and Mattributes can be set 
independently of each other. 

Typically, cache coherency is Supported to allow for 
memory coherency in multi-master systems. Coherency may 
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4 
be maintained though the use of cache coherency operations. 
In one embodiment, these cache coherency operations 
includes Snoop requests (i.e. Snoop invalidation requests) pro 
vided to a processor, such as processor 14. In one embodi 
ment, these Snoop requests are provided by cache coherency 
manager 18 to each of processors 14 and 16. These Snoop 
invalidation requests are received by the processor so that the 
processor can determine if the addresses corresponding to the 
Snoop invalidation requests are stored within the cache. 
Therefore, a cache coherency operation may refer to a Snoop 
look-up where a look-up in the cache is performed to deter 
mine whether the cache contains data associated with the 
Snooped transaction. That is, a cache coherency operation 
may include searching at least one cache of the data process 
ing system (Such as data processing system 10) to determine 
whether at least one cache contains data associated with the 
memory address of the Snooped bus transaction. Then, if the 
cache does contain data associated with the Snooped transac 
tion (includes an entry matching the memory address corre 
sponding to the Snoop request), then the processor can per 
form the appropriate coherency operation for that entry or 
over-write that entry. In one embodiment, a Snoop invalida 
tion coherency operation is utilized in the cache coherency 
protocol, and this matching entry is invalidated because it is 
likely that the snooped transaction, which is performed by 
another bus master, is modifying the data stored at that 
address. Alternatively, note that a cache coherency operation 
can refer to the changing of the state of a cache entry. 

FIG. 3 illustrates a cache coherency protocol 100 having 
four states: a modified, non-coherent state (M), an invalid 
state (I), an unmodified, non-coherent state (N), and an 
unmodified coherent state (C). In this four state protocol, 
separate transitions and states are used for coherent and non 
coherent writes. In one embodiment, cache coherency proto 
col 100 uses the W page attribute provided by MMU 42 as a 
control value to define one or more transitions between coher 
ency states. In one embodiment, the cache coherency protocol 
relies on a write-through operation for coherent traffic, and 
Supports copyback transactions for non-coherent data. For 
example, as will be described further below, coherent writes 
utilize the I and C states, and are performed as write-through 
writes. Non-coherent writes utilize the I, N, and M states and 
are performed as copyback writes. 
The state diagram of FIG. 3 will be described be described 

in reference to processor 14. That is, in one embodiment, 
control circuitry 29 within cache 28 implements the state 
diagram of FIG. 3. Each cache entry in cache 28 includes one 
or more status indicators to indicate the state (M., I, N, or C) of 
the cache entry. (Note that a cache entry may also be referred 
to as a cache line.) As illustrated in FIG. 3, state 102 corre 
sponds to the I state, state 104 corresponds to the N state, state 
108 corresponds to the M state, and state 106 corresponds to 
the C state. As used with respect to cache coherency protocol 
100, when a cache entry is “unmodified, the data of the cache 
entry in cache 28 of processor 14 has not been modified with 
respect to the copy in memory 20 since it was allocated. When 
a cache entry is “modified, the data of the cache entry in 
cache 28 of processor 14 has been modified with respect to the 
copy in memory 20 since it was allocated. When a cache entry 
is “coherent the data of the cache entry in cache 28 is the 
same as in memory 20 and as in any valid entry in any cache 
in system 10 (such as cache 30) corresponding to the same 
address location. “Non-coherent refers to being non-coher 
ent with other caches. That is, when a cache entry is “non 
coherent, the data of the cache entry in cache 28 may have a 
different value than a valid entry of another cache, such as 
cache 30, corresponding to the same address location of 
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memory 20. Note that since “non-coherent refers to being 
non-coherent with other caches, when a cache entry is “non 
coherent’, the data of the cache entry may be the same as in 
memory 20. Non-coherency may occur when cache coher 
ency operations have not been performed for a particular 
address location in memory. 

Coherent cache entries may be in either the C state or the I 
state. Cache entries which do not require coherency may 
assume the I, N, or M states. Note that no Modified or Shared 
state (as is used in the MESI protocol) is supported for coher 
ent cache entries, thus no Snoop copyback or intervention 
operations are required. Non-coherent cache entries may still 
assume a modified State. In one embodiment, memory 
regions (such as in memory 20) requiring coherency opera 
tions are marked as “memory coherence required’ (with its M 
bit set to one) and as “write through required” (with its W bit 
set to one). Note that protocol 100 may be used with a bus 
protocol which does not comprehend or Support cache coher 
ency operations, such as, for example, the AMBA AHB or 
AXI protocol. With a bus protocol which does not support 
cache coherency, the MESI protocol cannot be implemented. 
For example, there may be no way to signal a transition from 
the S state to the M state of the MESI protocol, which utilizes 
an “address only transaction', which does not exist in the 
AMBA AHB protocol. Furthermore, such a bus protocol 
which does not support MESI cache coherency transactions 
does not support “read with intent to modify” transactions 
which are utilized for implementing transitions from the I 
state to the E state in the MESI protocol. Other transaction 
types required for Such a protocol also are not defined by the 
AMBAAHB or AXIbus protocols. Therefore, in one embodi 
ment, note that cache coherency protocol 100 may be overlaid 
on existing bus protocols which currently do not support 
cache coherency. 

Referring to FIG. 3, when a cache entry is in the invalid 
state, and a cache miss occurs which results in an allocation to 
the invalid cache entry, the W page attribute is used to deter 
mine whether to transition to state N (a non-coherent state) or 
state C (a coherent state). When the cache miss occurs and 
W=0, indicating that write-through is not performed for this 
address, then the State of the cache entry transitions from state 
I to state N via transition 110. Since a write-through is not 
performed for this address, the data of the cache entry cannot 
be guaranteed to be coherent. Since a write-through is not 
performed, write transactions to this cache entry are not 
placed on system interconnect 12 and thus the transactions 
cannot be Snooped by cache coherency manger 19 (or by 
other caches). Therefore, since no coherency operation will 
be performed, it is considered non-coherent. Since the cache 
entry is newly allocated, its data is considered unmodified. 

However, when a cache miss occurs and W=1, indicating 
that a write-through is performed for writes to this address, 
then the state of the cache entry transitions from state I to state 
C via transition 128. Since a write-through is performed for 
writes to this address, coherency is maintained. For example, 
for a write-through on a write miss, the data stored in the 
cache entry newly allocated upon transition 128 is also pro 
vided via system interconnect 12 to memory 20. For a write 
through on a read miss, data for storage into the newly allo 
cated cache entry is provided by memory 20 to processor 14 
via system interconnect 12. Therefore, in performing a write 
through, the data stored in the newly allocated cache entry is 
provided via system interconnect 12 which is monitored by 
cache coherency manager 18. Therefore, cache coherency 
manger 18 can perform a cache coherency operation by 
Snooping the address on system interconnect 12 correspond 
ing to the write-through transaction and perform a cache 
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6 
coherency operation. For example, cache coherency manager 
18 can provide a Snoop invalidate request to processor 16 Such 
that processor 16 can determine if the Snooped address hits in 
cache 30, and if so, invalidate it. 
Once in state C, any read or write hit to the cache entry 

causes the cache entry to remain in state C. In the case of a 
write hit, a write-through is performed (since the W page 
attribute for the address was set), which allows coherency to 
be maintained. That is, upon a write-through, a cache coher 
ency operation can be performed. For example, as described 
above, cache coherency manager 18 can generate Snoop 
invalidate requests to processor 16 so that coherency can be 
maintained. A cache invalidate operation on the cache entry 
returns the cache entry to state I via transition 130. Note also 
that in state C, processor 14 may receive cache coherency 
operations, such as a Snoop invalidate request, from cache 
coherency manager 18 when the data associated with the 
address of the cache entry is modified by another processor, 
Such as by processor 16. In this case, a Snoop invalidate 
request would hit the cache entry in processor 14 and cause 
the state of the cache entry to transition back to state I via 
transition 129. 
Cache flush operations (which may also be referred to as 

flush cache operation commands) may also be performed by 
processor 14 or 16 to locations in memory 20 to cause 
memory 20 to be updated with any modified data present in 
cache 28 or cache 30, respectively. In one embodiment, these 
cache flush operations may be specified to flush any modified 
data to memory 20 and then leave the cache entry in a valid 
state (i.e. a cache flush operation without an invalidate), or 
alternatively, to flush any modified data to memory 20, and 
after performing the flush, to place the cache entry in an 
invalid state (i.e. a cache flush operation with invalidate). 
Cache flush operations provide an address for lookup in the 
cache, without apriori knowledge of the existence of data 
corresponding to the address being present in the cache, or the 
state of the cache entry containing the data. Therefore, in one 
embodiment, a flush operation is an operation in which a 
matching cache entry is written back to memory if the cache 
entry has any modified data. That is, if the cache line or entry 
is dirty, then it is written back to memory (e.g. memory 20). If 
there is no modified data, then no write back to memory is 
needed. Note also that a flush can be performed with or 
without invalidate. 

Still referring to state C, upon performing a cache flush 
operation without an invalidate, the W page attribute is again 
checked to determine how to transition among states. If, upon 
a cache flush operation without an invalidate, the W page 
attribute is now cleared to zero (for example, as a result of 
software modifying the W page attribute for the correspond 
ing page in memory 20), then the state of the cache entry 
transitions to state N via transition 134. That is, the cache 
entry is not invalid (since the flush is performed without an 
invalidation), but now, write-throughs will no longer be per 
formed. Thus, again, coherency cannot be guaranteed. Also, 
since a flush is requested, the data is known to be unmodified 
at the completion of the flush operation. If a flush is per 
formed with an invalidate, then, after the flush operation is 
performed, the cache entry is invalidated, thus transition back 
to state I (via transition 130). If a flush is performed without 
an invalidate, the cache entry remains valid after the flush 
operation, and the state (whether remaining in state C or 
transition to state N) is determined based on the W page 
attribute. 
Once in state N, any read hit to the cache entry causes the 

cache entry to remain in State N. A cache invalidate operation 
on the cache entry returns the cache entry to state I via tran 
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sition 112. A cache flush operation without invalidate may 
cause a transition to state C depending on the value of the W 
page attribute. For example, ifa cache flush operation without 
invalidate is performed and the W page attribute is still zero, 
then the state of the cache entry remains in state N. If a cache 
flush operation without invalidate is performed and the W 
page attribute is now one (changed, for example, by Soft 
ware), then the state of the cache entry transitions from State 
N to state C, in which, due to the flush, the data remains 
unmodified, and, due to write-throughs now being performed, 
coherency is maintained. If a flush with invalidate is per 
formed, then after the flush operation, the state of the cache 
entry transitions back to I (via transition 112). Upon a write 
hit to the cache entry in state N, the state of the cache entry 
transitions from state N to state M via transition 114. There 
fore, the cache entry is still non-coherent since a write 
through is not performed; however, now it is considered 
modified since it was modified since it was allocated upon 
transition 110 from state I to state N. 
Once in state M, any hit to the cache entry causes the cache 

entry to remain in state M. If a cache flush operation without 
invalidate is performed, then, as described above, a copy back 
to memory (e.g. memory 20) is performed and the cache entry 
is not invalidated. Then, based on the W page attribute, the 
cache entry transitions from state M to state Nor C. In the case 
of W=0, the state of the cache entry transitions back to state N 
via transition 116 where the data is now unmodified again 
(due to the flush operation) and write-throughs are not per 
formed (thus not guaranteeing coherency). In the case of 
W=1, the state of the cache entry transitions back to state C 
via transition 126 where the data is now unmodified again 
(due to the flush operation) and write-throughs are performed 
(thus maintaining coherency). In state M, if a flush with 
invalidate is performed, then a copyback to memory is per 
formed, as described above, and the cache entry is invali 
dated, returning the State of the cache entry to state I via 
transition 124. If a replace operation is performed on a cache 
entry in state M, the modified data is first copied back to 
memory 20. Then the data in the cache entry is first invali 
dated (transitioning to state I via transition 124) and then 
overwritten (resulting in a transition to state N or C, depend 
ing on the value of the W page attribute, since an allocate in 
effect occurs). Also, if an invalidate operation is performed, 
the state of the cache entry transitions from state M to state I 
via transition 122 without performing a copyback operation. 

Therefore, it can be appreciated how a cache coherency 
protocol may use separate transitions and states for coherent 
and non-coherent writes. In one embodiment, cache coher 
ency protocol 100 uses the W page attribute provided by 
MMU 42 as a control value to define one or more transitions 
between coherency states. In one embodiment, the cache 
coherency protocol relies on a write-through operation for 
coherent traffic, and Supports copyback transactions for non 
coherent data. Therefore, a cache coherency protocol 100 
may be used with standard bus protocols which do not pro 
vide for cache coherency operations. 

In one embodiment, cache coherency manager 18 may 
select a Subset of bus transactions for which cache coherency 
is required. That is, based on one or more factors, as will be 
discussed below in reference to FIGS. 4-9, particular types of 
transactions will or will not be snooped and thus will or will 
not resultina cache coherency operation. Furthermore, in one 
embodiment, the one or more factors used to perform selec 
tive Snooping are present in existing industry standard bus 
protocols such as the AMBAAHB or AXI. In this manner, no 
additional signaling mechanisms or other modifications to 
standard bus protocols are required. 
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8 
In one embodiment, cache coherency manager 18 Snoops 

and performs cache coherency operations based on whether a 
bus transaction is a single beat transaction or a burst transac 
tion. For example, in one embodiment, Snooping and cache 
coherency operations are performed if the bus transaction is a 
single beat transaction but not if it is a burst transaction. This 
may be because bursts initiated by a processor are typically 
doing a copyback transaction, thus cache coherency opera 
tions are not needed for these burst transactions. However, in 
one embodiment, if the transaction is a burst transaction, but 
is initiated by DMA 4.0 rather than by a processor (such as 
processor 14 or 16), Snooping is still performed because 
typically burst transactions initiated by a DMA are not per 
forming a copyback, meaning cache coherency operations 
may still be needed. Therefore, in one embodiment, the deci 
sion whether or not to Snoop may be based on both the type of 
bus transaction and which master or type of master initiated 
the bus transaction. As will be described below other factors 
or combination of factors may be used within system 10, such 
as by cache coherency manager 18 or other cache coherency 
control circuitry, to determine whether or not Snooping is to 
be performed. Note that, in one embodiment, a master iden 
tifier (master ID) is provided with each bus transaction iden 
tifying which master initiated the transaction. The determi 
nation of mastership may be indicated as part of the bus 
transaction by the initiating master as an attribute of the 
transfer address, or may be indicated or signaled in other 
ways. In one embodiment, the determination of which mas 
ters to perform a coherency operation if a burst write access is 
initiated may be programmatically selected by a user of sys 
tem 10. In one embodiment, a control register may be pro 
vided within system 10 to indicate one or more masters for 
which coherency operations should be performed, based on 
the type of transfer (burst or non-burst, or selective within a 
set of particular burst types). 
Using the AMBAAHB protocolas an example, burst infor 

mation is provided using a 3-bit bus signal, HBURST2:0. 
which encodes eight possible types of transactions. These 
encodings are provided in FIG. 4. For example, a value of 
“000 for HBURST indicates a single transfer (i.e. a single 
beat transaction), whereas the other 7 values indicate differ 
ent types of burst transactions. In one embodiment, when 
cache coherency manager 18 determines that the value of 
HBURST is 000 (indicating a single transfer), Snooping will 
be performed; however, if it is determined that the value of 
HBURST is 010 (indicating a 4-beat wrapping burst), 011 
(indicating a 4-beat incrementing burst), 100 (indicating an 
8-beat wrapping burst), 101 (indicating an 8-beat increment 
ing burst), 110 (indicating a 16-beat wrapping burst), or 111 
(indicating a 16-beat incrementing burst), Snooping is not 
performed. Depending on the embodiment, when the value of 
HBURST is 001 (indicating an incrementing burst of 
unspecified length), Snooping may or may not be performed. 
As discussed above, the decision whether to Snoop or not may 
further be based on which master or type of master initiated 
the bus transaction or transfer. 

In one embodiment, the decision whether or not to Snoop 
may further be qualified by whether or not the current access 
(the current bus transaction) is cacheable or not. Still using the 
AMBA AHB protocol as an example, an HPROT3:0 signal 
is provided with the access address of a bus transaction an 
indicates, for example, whether the transfer is an opcode fetch 
or data access, a privileged mode access or user mode access, 
and, for master with an MMU, indicate whether the current 
access is cacheable or not. The encodings for the HPROT3:0 
signal are provided in FIG. 5. For example, when HPROT3 
has a value of 0, Snooping is not performed because the access 
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of the bus transaction is not cacheable, whereas when HPROT 
3 has a value of 1, Snooping is performed because the access 
of the bus transaction is cacheable. Therefore, in addition to 
or instead of using the factors described above, the HPROT 
signal may also be used to determine whether or not Snooping 
is to be performed. In another example embodiment, when 
HPROT2 has a value of 0, snooping is not performed 
because the access of the bus transaction is not bufferable, 
whereas when HPROT2 has a value of 1, Snooping is per 
formed because the access of the bus transaction is bufferable. 
In some embodiments, depending on the particular master 
which initiates the bus access, the values of the HPROT bits 
may be programmatically used to control whether a coher 
ency operation is performed. Therefore, in addition to or 
instead of using the factors described above, the HPROT 
signals may also be used to determine whether or not Snoop 
ing is to be performed, optionally in conjunction with a deter 
mination of the identity of the master initiating a transaction. 
For example, it may be possible that a user of system 10 
programs one or more control registers or register fields in 
Such a manner as to effect coherency operations being per 
formed for master X when HPROT3=1, for master Y when 
HPROT2=1, and for master Z when HPROT3=1 and 
HPROT2=0. Alternatively, other realizable control combi 
nations may be used. 

FIGS. 6-9 illustrates various examples offlow diagrams for 
determining whether cache coherency operations (e.g. Snoop 
ing) are to be performed. As discussed above, a cache coher 
ency operation may include generating a Snoop request to 
other caches, ifany, within system 10 where those caches then 
process that Snoop request. In one embodiment, the cache 
coherency operation may include changing of the state of a 
cache entry. In one embodiment, each of the flows may be 
implemented by cache coherency manager 18. Alternatively, 
other cache coherency control circuitry may perform any of 
these functions and be present anywhere in system 10. In one 
embodiment, each individual cache or cache control circuitry 
may perform the functions illustrated in FIGS. 6-9. FIG. 6 
illustrates a flow 500 which begins with block 502 in which a 
bus transaction is initiated by a bus master, Such as, for 
example, processor 14, processor 16, DMA 4.0, or other mas 
ter 22. Flow proceeds to decision diamond 504 where it is 
determined whether or not a write transaction is being per 
formed. If not, flow proceeds to block 514 where a cache 
coherency operation is not performed. That is, in the illus 
trated embodiment of FIG. 6, read transactions are not 
Snooped. If, at decision diamond 504, it is determined that the 
bus transaction is a write transaction, flow proceeds to deci 
sion diamond 506 where it determined whether the bus trans 
action is a single beat (i.e. single transfer) transaction. If not, 
flow proceeds to block 514. If the bus transaction is a single 
beat transaction, flow proceeds to block 512 where a cache 
coherency operation on the data of the write transaction is 
performed. Therefore, in flow 500, a cache coherency opera 
tion is only performed if the bus transaction is a single beat 
write transaction. 

FIG. 7 illustrates a flow 600 which begins with block 602 in 
which a bus transaction is initiated by a bus master, Such as, 
for example, processor 14, processor 16, DMA 4.0, or other 
master 22. Flow proceeds to decision diamond 604 where it is 
determined whether or not a write transaction is being per 
formed. If not, flow proceeds to block 614 where a cache 
coherency operation is not performed. That is, in the illus 
trated embodiment of FIG. 7, read transactions are not 
Snooped. If, at decision diamond 604, it is determined that the 
bus transaction is a write transaction, flow proceeds to deci 
sion diamond 606 where it determined whether the bus trans 
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10 
action is a single beat (i.e. single transfer) transaction. If so, 
flow proceeds to block 612 where a cache coherency opera 
tion on the data of the write transaction is performed. If not, 
flow proceeds to block 608 where the master ID of the trans 
action is determined. That is, as described above, in one 
embodiment, a master ID is provided with each bus transac 
tion to identify the initiating master. Flow then proceeds to 
decision diamond 610 where it is determined if the master ID 
indicates a DMA, such as DMA 4.0. If so, then flow proceeds 
to block 612 where a cache coherency operation on the data of 
the write transaction is performed. In not, then flow proceeds 
to block 614. That is, even if the write transaction is a burst 
write (i.e. the “no branch from decision diamond 606), a 
cache coherency operation is still performed if the imitating 
master is a DMA. However, if the write transaction is a burst 
write and the initiating master is not a DMA, then no cache 
coherency operation is performed, since it is likely, in this 
case, that the burst transaction is a copyback transaction. 

FIG.8 illustrates a flow 700 which begins with block 702 in 
which a bus transaction is initiated by a bus master, such as, 
for example, processor 14, processor 16, DMA 4.0, or other 
master 22. Flow proceeds to decision diamond 704 where it is 
determined whether or not a write transaction is being per 
formed. If not, flow proceeds to block 714 where a cache 
coherency operation is not performed. That is, in the illus 
trated embodiment of FIG. 8, read transactions are not 
Snooped. If, at decision diamond 704, it is determined that the 
bus transaction is a write transaction, flow proceeds to deci 
sion diamond 706 where it determined whether the bus trans 
action is a single beat (i.e. single transfer) transaction. If so, 
flow proceeds to block 712 where a cache coherency opera 
tion on the data of the write transaction is performed. If not, 
flow proceeds to block 708 where the master ID of the trans 
action is determined. That is, as described above, in one 
embodiment, a master ID is provided with each bus transac 
tion to identify the initiating master. Flow then proceeds to 
decision diamond 710 where it is determined if the master ID 
indicates a selected master. If so, then flow proceeds to block 
712 where a cache coherency operation on the data of the 
write transaction is performed. In not, then flow proceeds to 
block 714. In one embodiment, cache coherency manager 18 
includes a coherent master control register 19 which indicates 
which masters require coherency. For example, control reg 
ister 19 may be programmable with the IDs of those masters 
in system 10 for which cache coherency is desired or required. 
Therefore, in decision diamond 710 of FIG. 8, the master ID 
of the master which initiates the bus transaction in block 702 
can be compared to control register 19 to determine if the 
master ID of the initiating master corresponds to a selected 
master indicated by control register 19. Alternatively, other 
circuitry or methods may be used to identify for which imi 
tating masters a cache coherency operation should be per 
formed. Therefore, even if the write transaction is a burst 
write (i.e. the “no branch from decision diamond 606), a 
cache coherency operation may still be performed if the imi 
tating master is a master selected by coherent master control 
register 19. In alternate embodiments, the determination step 
710 may be performed utilizing other predetermined selec 
tion criteria within system 10. In one embodiment, this selec 
tion criteria may be programmed by a user of system 10. 

FIG.9 illustrates a flow 800 which begins with block 802 in 
which a bus transaction is initiated by a bus master, such as, 
for example, processor 14, processor 16, DMA 4.0, or other 
master 22. Flow proceeds to decision diamond 804 where it is 
determined whether or not a write transaction is being per 
formed. If not, flow proceeds to block 814 where a cache 
coherency operation is not performed. That is, in the illus 
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trated embodiment of FIG. 9, read transactions are not 
Snooped. If, at decision diamond 804, it is determined that the 
bus transaction is a write transaction, flow proceeds to deci 
sion diamond 806 where a cacheability field or signal of the 
bus transaction is read. For example, this can refer to HPROT 5 
3 or HPROT2 described above. Flow then proceeds to 
decision diamond 808 where it is determined If the cache 
ability field or signal indicates a cacheable transaction or not. 
If not, flow proceeds to block 814. If so, flow proceeds to 
decision diamond 810 where it is determined if the write 10 
transaction is a single beat write. If not, flow proceeds to 
block 814. If so, flow proceeds to block 812 in which a cache 
coherency operation is performed for the write transaction. 
That is, in the example of FIG.9, cache coherency operations 
are only performed on cacheable single write transactions. 15 
That is, burst transactions would result in no cache coherency 
operation, as would any transaction which is indicated as a 
non-cacheable transaction by, for example, a signal provided 
according to a bus protocol of system interconnect 12. In 
alternate embodiments, the determination step 808 may be 20 
followed by a determination step which identifies the master 
initiating the transaction in a similar manner to the determi 
nation performed by steps 708 and 710 of FIG. 8. In one 
embodiment, the result of this determination may serve as a 
further factor in deciding whether a cache coherency opera- 25 
tion is to be performed for the bus transaction. 

Therefore, it can be appreciated how a variety of different 
factors may be used, alone or in various combinations with 
each other, to determine whether or not cache coherency 
operations (e.g. Snooping) is performed. This selective per- 30 
formance of cache coherency operations may, for example, be 
implemented using existing standard bus protocols. 

Because the apparatus implementing the present invention 
is, for the most part, composed of electronic components and 
circuits known to those skilled in the art, circuit details will 35 
not be explained in any greater extent than that considered 
necessary as illustrated above, for the understanding and 
appreciation of the underlying concepts of the present inven 
tion and in order not to obfuscate or distract from the teach 
ings of the present invention. 40 

Although the invention has been described with respect to 
specific conductivity types or polarity of potentials, skilled 
artisans appreciated that conductivity types and polarities of 
potentials may be reversed. 

Moreover, the terms “front,” “back,” “top,” “bottom.” 45 
“over,” “under and the like in the description and in the 
claims, if any, are used for descriptive purposes and not nec 
essarily for describing permanent relative positions. It is 
understood that the terms so used are interchangeable under 
appropriate circumstances such that the embodiments of the 50 
invention described hereinare, for example, capable of opera 
tion in other orientations than those illustrated or otherwise 
described herein. 
The term “program, as used herein, is defined as a 

sequence of instructions designed for execution on a com- 55 
puter system. A program, or computer program, may include 
a Subroutine, a function, a procedure, an object method, an 
object implementation, an executable application, an applet, a 
servlet, a source code, an object code, a shared library/dy 
namic load library and/or other sequence of instructions 60 
designed for execution on a computer system. 
Some of the above embodiments, as applicable, may be 

implemented using a variety of different information process 
ing systems. For example, although FIG. 1 and the discussion 
thereof describe an exemplary information processing archi- 65 
tecture, this exemplary architecture is presented merely to 
provide a useful reference in discussing various aspects of the 

12 
invention. Of course, the description of the architecture has 
been simplified for purposes of discussion, and it is just one of 
many different types of appropriate architectures that may be 
used inaccordance with the invention. Those skilled in the art 
will recognize that the boundaries between logic blocks are 
merely illustrative and that alternative embodiments may 
merge logic blocks or circuit elements or impose an alternate 
decomposition of functionality upon various logic blocks or 
circuit elements. 

Thus, it is to be understood that the architectures depicted 
herein are merely exemplary, and that in fact many other 
architectures can be implemented which achieve the same 
functionality. In an abstract, but still definite sense, any 
arrangement of components to achieve the same functionality 
is effectively “associated such that the desired functionality 
is achieved. Hence, any two components herein combined to 
achieve a particular functionality can be seen as “associated 
with each other such that the desired functionality is 
achieved, irrespective of architectures or intermedial compo 
nents. Likewise, any two components so associated can also 
be viewed as being “operably connected,” or “operably 
coupled to each other to achieve the desired functionality. 

Also for example, in one embodiment, the illustrated ele 
ments of system 10 are circuitry located on a single integrated 
circuit or within a same device. Alternatively, system 10 may 
include any number of separate integrated circuits or separate 
devices interconnected with each other. For example, 
memory 20 may be located on a same integrated circuit as 
processors 14 and 16 or on a separate integrated circuit or 
located within another peripheral or slave discretely separate 
from other elements of system 10. Other slave(s) 24 and I/O 
circuitry 26 may also be located on separate integrated cir 
cuits or devices. Also for example, system 10 or portions 
thereof may be soft or code representations of physical cir 
cuitry or of logical representations convertible into physical 
circuitry. As such, system 10 may be embodied in a hardware 
description language of any appropriate type. 

Furthermore, those skilled in the art will recognize that 
boundaries between the functionality of the above described 
operations merely illustrative. The functionality of multiple 
operations may be combined into a single operation, and/or 
the functionality of a single operation may be distributed in 
additional operations. Moreover, alternative embodiments 
may include multiple instances of a particular operation, and 
the order of operations may be altered in various other 
embodiments. 

All or some of the software described herein may be 
received elements of system 10, for example, from computer 
readable media such as memory 35 or other media on other 
computer systems. Such computer readable media may be 
permanently, removably or remotely coupled to an informa 
tion processing system Such as system 10. The computer 
readable media may include, for example and without limi 
tation, any number of the following: magnetic storage media 
including disk and tape storage media; optical storage media 
such as compact disk media (e.g., CD-ROM, CD-R, etc.) and 
digital video disk storage media; nonvolatile memory storage 
media including semiconductor-based memory units such as 
FLASH memory, EEPROM, EPROM, ROM: ferromagnetic 
digital memories; MRAM; Volatile storage media including 
registers, buffers or caches, main memory, RAM, etc.; and 
data transmission media including computer networks, point 
to-point telecommunication equipment, and carrier wave 
transmission media, just to name a few. 

In one embodiment, system 10 is a computer system such 
as a personal computer system. Other embodiments may 
include different types of computer systems. Computer sys 
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tems are information handling systems which can be 
designed to give independent computing power to one or 
more users. Computer systems may be found in many forms 
including but not limited to mainframes, minicomputers, 
servers, workstations, personal computers, notepads, per 
Sonal digital assistants, electronic games, automotive and 
other embedded systems, cellphones and various other wire 
less devices. A typical computer system includes at least one 
processing unit, associated memory and a number of input/ 
output (I/O) devices. 
A computer system processes information according to a 

program and produces resultant output information via I/O 
devices. A program is a list of instructions such as a particular 
application program and/or an operating system. A computer 
program is typically stored internally on computer readable 
storage medium or transmitted to the computer system via a 
computer readable transmission medium. A computer pro 
cess typically includes an executing (running) program or 
portion of a program, current program values and State infor 
mation, and the resources used by the operating system to 
manage the execution of the process. A parent process may 
spawn other, child processes to help perform the overall func 
tionality of the parent process. Because the parent process 
specifically spawns the child processes to perform a portion 
of the overall functionality of the parent process, the func 
tions performed by child processes (and grandchild pro 
cesses, etc.) may sometimes be described as being performed 
by the parent process. 

Although the invention is described herein with reference 
to specific embodiments, various modifications and changes 
can be made without departing from the scope of the present 
invention as set forth in the claims below. Accordingly, the 
specification and figures are to be regarded in an illustrative 
rather than a restrictive sense, and all such modifications are 
intended to be included within the scope of the present inven 
tion. Any benefits, advantages, or Solutions to problems that 
are described herein with regard to specific embodiments are 
not intended to be construed as a critical, required, or essential 
feature or element of any or all the claims. 
The term “coupled as used herein, is not intended to be 

limited to a direct coupling or a mechanical coupling. 
Furthermore, the terms 'a' or “an as used herein, are 

defined as one or more than one. Also, the use of introductory 
phrases such as “at least one' and “one or more' in the claims 
should not be construed to imply that the introduction of 
another claim element by the indefinite articles “a” or “an 
limits any particular claim containing Such introduced claim 
element to inventions containing only one such element, even 
when the same claim includes the introductory phrases "one 
or more' or 'at least one' and indefinite articles such as “a” or 
“an.” The same holds true for the use of definite articles. 

Unless stated otherwise, terms such as “first and “second 
are used to arbitrarily distinguish between the elements such 
terms describe. Thus, these terms are not necessarily intended 
to indicate temporal or other prioritization of such elements. 
Additional Text: 
1. A data processing system (for example, 10), comprising: 

a first master (for example, 14), the first master including a 
cache (for example, 28); 

a second master (for example, 16); 
a memory (for example, 20), the memory operably coupled 

to the first master and the second master via a system 
interconnect (for example, 12); 

wherein the cache includes a cache controller (for example, 
29), the cache controller implementing a set of cache 
coherency states (for example, I, N, C.M) for data units 
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14 
(for example, cache entries or cache lines) of the cache, 
the cache coherency states including: 
an invalid State (for example, I); 
an unmodified non-coherent state (for example, N), the 

unmodified coherent state indicating that data in a 
data unit of the cache has not been modified and is not 
guaranteed to be coherent with data in at least one 
other storage device of the data processing system; 
and 

an unmodified coherent state (for example, C), the 
unmodified coherent state indicating that the data of 
the data unit has not been modified and is coherent 
with data in the at least one other storage device of the 
data processing system. 

2. The data processing system of item 1 wherein a transition 
from the invalid state to the unmodified non-coherent state 
of a data unit of the cache is made in response to a read miss 
to the cache wherein the data of the read miss is written to 
the data unit, wherein no cache coherency operation is 
performed on any other cache in the data processing system 
in response to the read miss. 

3. The data processing system of item 1 wherein: 
in response to a write cache miss, a transition from the 

invalid state to the unmodified non-coherent state of a 
data unit of the cache where the data of the write miss is 
written, does not generate a cache coherency operation 
in the other caches in the data processing system. 

4. The data processing system of item 1 wherein a transition 
from the invalid state to the unmodified non-coherent state 
of a data unit of the cache does not cause a look up opera 
tion into other caches of the data processing system to 
determine whether those caches contain a memory address 
corresponding to the data being written to the data unit. 

5. The data processing system of item 1 wherein when a data 
unit of the cache is in the unmodified non-coherent state, 
Snoop transactions directed towards that data unit do not 
result in a change of coherency state for that data unit. 

6. The data processing system of item 1, wherein in response 
to a cache miss in which the data of the cache miss is 
written to a data unit of the cache: 
a transition (for example, transition 110) to the unmodified 

non-coherent state from the invalid state of the data unit 
of the cache is made in response to a write through 
required attribute indicating that a write through is not 
required for the data written to the data unit; 

a transition (for example, transition 128) to the unmodified 
coherent state from the invalid state of the data unit of the 
cache is made in response to the write through required 
attribute indicating that a write through is required for 
the data written to the data unit of the cache. 

7. The data processing system of item 6 wherein: 
the cache miss is a write miss; 
the data of the write miss is not written in a Subsequent 

copyback bus transaction to the memory if the write 
through required attribute indicates that a write through 
is required for the data of the write miss. 

8. The data processing system of item 1 wherein the cache 
coherency states further include: 
a modified non-coherent state (for example, M), the modi 

fied non-coherent state indicating that data in a data unit 
of the cache has been modified and is not guaranteed to 
be coherent with the data in the at least one other storage 
device of the data processing system. 

9. The data processing system of item 8 wherein a transition 
(for example, transition 114) from the unmodified non 
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coherent state to the modified non-coherent state of a data 
unit of the cache is made in response to a write hit to the 
data of the data unit. 

10. The data processing system of item 9 wherein: 
when in the unmodified coherent state, a write hit to data of 

a data unit of the cache generates a write through of the 
data to the memory (for example, transition 132); 

when in the unmodified non-coherent state, a write hit to 
the data of a data unit of the cache does not generate a 
write through operation of the data. 

11. The data processing system of item 8 wherein a transition 
(for example, transition 116) from the modified non-coher 
ent state to the unmodified non-coherent state of a data unit 
of the cache is made in response to a flush cache operation 
command for the data unit without an invalidate cache 
operation command for the data unit and a write through 
required attribute indicates that a write through is not 
required for the data of the data unit. 

12. The data processing system of item 8 wherein a transition 
(for example, transition 126) from the modified non-coher 
ent state to the unmodified coherent state of a data unit of 
the cache is made in response to a flush cache operation 
command for the data unit and a write through required 
attribute of the data indicates that a write through is 
required for the data. 

13. The data processing system of item 8 wherein when a 
write through required attribute for data in a data unit 
indicates that a write through is not required for the data, a 
transition from the modified non-coherent state to the 
invalid state of the data unit of the cache is made in 
response to: 
a flush cache operation command for the data unit without 

an invalidate cache operation command for the data unit, 
wherein the data is written to the memory with a copy 
back bus transaction in response to the flush cache 
operation command (for example, transition 124); or 

an invalidate cache operation command for the data unit 
(for example, transition 122). 

14. The data processing system of item 1 wherein when a 
write through required attribute indicates that a write 
through is required for data of a data unit of the cache, a 
transition (for example, transition 120) to the unmodified 
coherent state from the unmodified non-coherent state of 
the data unit of the cache is made in response to a flush 
cache operation command for the data unit without an 
invalidate cache operation command for the data unit. 

15. The data processing system of item 1 wherein when a 
write through required attribute indicates that a write 
through is not required for the data, a transition (for 
example, transition 134) to the unmodified non-coherent 
state from the unmodified coherent state of a data unit of 
the cache is made in response to a flush cache operation 
command for the data unit without a invalidate cache 
operation command for the data unit. 

16. The data processing system of item 1 wherein a transition 
from each of the unmodified non-coherent state and the 
unmodified coherent state (for example, transitions 112 
and 130) to the invalid state of a data unit of the cache is 
made in response to an invalidate cache operation com 
mand for the data unit. 

17. A method of operating a data processing system (for 
example, 10), the method comprising: 
performing a write transaction of data by a first master (for 

example, 16) that generates a write miss to a cache (for 
example, 30) of the data processing system, the first 
master is operably coupled to a system interconnect (for 
example, 12), the data processing system including a 
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second master (for example, 14) and a memory (for 
example, 20) operably coupled to the system intercon 
nect, 

in response to the write miss, writing the data to the cache; 
performing a write through of the data to the memory if a 

write though required attribute (for example, W) for the 
data of the write transaction indicates that a write 
through of the data is required, wherein no write through 
of the data is performed if the write though required 
attribute indicates that no write through of the data is 
required; 

searching into at least one other cache (for example, 28) of 
the data processing system to determine whether the at 
least one other cache contains a memory address corre 
sponding to the write transaction if the write through 
required attribute indicates that a write through of the 
data is required, wherein no searching of the at least one 
other cache is performed if the write through required 
attribute indicates that no write through of the data is 
required. 

18. A data processing system (for example, 10), comprising: 
a processor (for example, 14), the processor including a 

cache (for example, 28); 
a second master (for example, 16); 
a memory (for example, 20), the memory operably coupled 

to the processor and the second master via a system 
interconnect (for example, 12); 

memory attribute logic (for example, within MMU 42 or 
elsewhere within processor 14 or system 10) for provid 
ing a plurality of attributes associated with locations of 
the memory, wherein one of the plurality of attributes is 
a write through required attribute (for example, W); 

wherein the cache includes a cache controller (for example, 
29), the cache controller including circuitry implement 
ing a set of cache coherency states for data units of the 
cache, wherein the cache controller utilizes the write 
through required attribute for determining whether 
memory coherency is required for one or more locations 
within the memory. 

19. The data system of item 18 further comprising: 
a cache coherency manager (for example, 18) operably 

coupled to the system interconnect, wherein when the 
write through required attribute indicates that memory 
coherency is required for a write transaction, the cache 
coherency manager indicates to other caches (for 
example, 30, 41) of the data system to perform a cache 
coherency lookup operation for a memory address of the 
write transaction. 

20. The data system of item 19 wherein when the write 
through required attribute indicates that memory coher 
ency is not required for the write transaction, no memory 
coherency transaction in the data system is perform for the 
write transaction. 
What is claimed is: 
1. A data processing system, comprising: 
a first master, the first master including a cache; 
a second master, 
a memory, the memory operably coupled to the first master 

and the second master via a system interconnect; 
wherein the cache includes a cache controller, the cache 

controller implementing a set of cache coherency states 
for data units of the cache, the cache coherency states 
including: 
an invalid State; 
an unmodified non-coherent state, the unmodified non 

coherent state indicating that data in a data unit of the 
cache has not been modified and is not guaranteed to 
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be coherent with data in at least one other storage 
device of the data processing system; and 

an unmodified coherent state, the unmodified coherent 
state indicating that the data of the data unit has not 
been modified and is coherent with data in the at least 
one other storage device of the data processing sys 
tem. 

2. The data processing system of claim 1 wherein a transi 
tion from the invalid state to the unmodified non-coherent 
state of a data unit of the cache is made in response to a read 
miss to the cache wherein the data of the read miss is written 
to the data unit, wherein no cache coherency operation is 
performed on any other cache in the data processing system in 
response to the read miss. 

3. The data processing system of claim 1 wherein: 
in response to a write cache miss, a transition from the 

invalid state to the unmodified non-coherent state of a 
data unit of the cache where the data of the write miss is 
written, does not generate a cache coherency operation 
in other caches in the data processing system. 

4. The data processing system of claim 1 wherein a transi 
tion from the invalid state to the unmodified non-coherent 
state of a data unit of the cache does not cause a look up 
operation into other caches of the data processing system to 
determine whether those caches contain a memory address 
corresponding to the data being written to the data unit. 

5. The data processing system of claim 1 wherein when a 
data unit of the cache is in the unmodified non-coherent state, 
Snoop transactions directed towards that data unit do not 
result in a change of coherency state for that data unit. 

6. The data processing system of claim 1, wherein in 
response to a cache miss in which the data of the cache miss 
is written to a data unit of the cache: 

a transition to the unmodified non-coherent state from the 
invalid state of the data unit of the cache is made in 
response to a write through required attribute indicating 
that a write through is not required for the data written to 
the data unit; 

a transition to the unmodified coherent state from the 
invalid state of the data unit of the cache is made in 
response to the write through required attribute indicat 
ing that a write through is required for the data written to 
the data unit of the cache. 

7. The data processing system of claim 6 wherein: 
the cache miss is a write miss; 
the data of the write miss is not written in a Subsequent 

copyback bus transaction to the memory if the write 
through required attribute indicates that a write through 
is required for the data of the write miss. 

8. The data processing system of claim 1 wherein the cache 
coherency states further include: 

a modified non-coherent state, the modified non-coherent 
state indicating that data in a data unit of the cache has 
been modified and is not guaranteed to be coherent with 
the data in the at least one other storage device of the data 
processing System. 

9. The data processing system of claim 8 wherein a transi 
tion from the unmodified non coherent state to the modified 
non-coherent state of a data unit of the cache is made in 
response to a write hit to the data of the data unit. 

10. The data processing system of claim 9 wherein: 
when in the unmodified coherent state, a write hit to data of 

a data unit of the cache generates a write through of the 
data to the memory; 

when in the unmodified non-coherent state, a write hit to 
the data of a data unit of the cache does not generate a 
write through operation of the data. 
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11. The data processing system of claim 8 wherein a tran 

sition from the modified non-coherent state to the unmodified 
non-coherent state of a data unit of the cache is made in 
response to a flush cache operation command for the data unit 
without an invalidate cache operation command for the data 
unit and a write through required attribute indicates that a 
write through is not required for the data of the data unit. 

12. The data processing system of claim 8 wherein a tran 
sition from the modified non-coherent state to the unmodified 
coherent state of a data unit of the cache is made in response 
to a flush cache operation command for the data unit and a 
write through required attribute of the data indicates that a 
write through is required for the data. 

13. The data processing system of claim 8 wherein when a 
write through required attribute for data in a data unit indi 
cates that a write through is not required for the data, a 
transition from the modified non-coherent state to the invalid 
state of the data unit of the cache is made in response to: 

a flush cache operation command for the data unit without 
an invalidate cache operation command for the data unit, 
wherein the data is written to the memory with a copy 
back bus transaction in response to the flush cache 
operation command; or 

an invalidate cache operation command for the data unit. 
14. The data processing system of claim 1 wherein when a 

write through required attribute indicates that a write through 
is required for data of a data unit of the cache, a transition to 
the unmodified coherent state from the unmodified non-co 
herent state of the data unit of the cache is made in response 
to a flush cache operation command for the data unit without 
an invalidate cache operation command for the data unit. 

15. The data processing system of claim 1 wherein when a 
write through required attribute indicates that a write through 
is not required for the data, a transition to the unmodified 
non-coherent state from the unmodified coherent state of a 
data unit of the cache is made in response to a flush cache 
operation command for the data unit without a invalidate 
cache operation command for the data unit. 

16. The data processing system of claim 1 wherein a tran 
sition from each of the unmodified non-coherent state and the 
unmodified coherent state to the invalid state of a data unit of 
the cache is made in response to an invalidate cache operation 
command for the data unit. 

17. A method of operating a data processing system, the 
method comprising: 

performing a write transaction of data by a first master that 
generates a write miss to a cache of the data processing 
system, the first master is operably coupled to a system 
interconnect, the data processing system including a 
second master and a memory operably coupled to the 
system interconnect; 

in response to the write miss, writing the data to the cache; 
performing a write through of the data to the memory if a 

write though required attribute for the data of the write 
transaction indicates that a write through of the data is 
required, wherein no write through of the data is per 
formed if the write though required attribute indicates 
that no write through of the data is required; 

searching into at least one other cache of the data process 
ing system to determine whether the at least one other 
cache contains a memory address corresponding to the 
write transaction if the write through required attribute 
indicates that a write through of the data is required, 
wherein no searching of the at least one other cache is 
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performed if the write through required attribute indi 
cates that no write through of the data is required. 
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