
US008762652B2

(12) United States Patent (10) Patent No.: US 8,762,652 B2
Moyer (45) Date of Patent: Jun. 24, 2014

(54) CACHE COHERENCY PROTOCOL INA DATA 7,234,029 B2 6/2007 Khare et al.
PROCESSING SYSTEM 7,373.462 B2 5/2008 Blumrich et al.

2003,0005236 A1 1/2003 Arimilli et al.
O O 2003/0195939 A1 10, 2003 Edirisooriva et al.

(75) Inventor: William C. Moyer, Dripping Springs, 2004/O123046 A1 6/2004 Hum et y
TX (US) 2005, 0071573 A1 3, 2005 Dodson et al.

2005/0251626 A1* 11/2005 Glasco T11 133
(73) Assignee: Freescale Semiconductor, Inc., Austin, 2005/0251628 A1 11/2005 Jarvis et al.

TX (US) 2008/009 1884 A1* 4/2008 Piry et al. 711 141
2008/O183972 A1 7/2008 Diefenderfer

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 1666 days. U.S. Appl. No. 12/053,761 filed.

Office Action mailed Feb. 18.2011 in U.S. Appl. No. 12/112,508.
(21) Appl. No.: 12/112,502 U.S. Appl. No. 12/112,796, filed Apr. 30, 2008.

U.S. Appl. No. 1 1/969,112, filed Jan. 3, 2008.
(22) Filed: Apr. 30, 2008 PCT Application No. PCT/US2009/034.866; Search Report and Writ

9 ten Opinion mailed Sep. 30, 2009.
(65) Prior Publication Data Office Action mailed May 26, 2011 in U.S. Appl. No. 12/112,796.

US 2009/0276578 A1 Nov. 5, 2009 (Continued)

(51) Int. Cl. Primary Examiner — Reginald Bragdon
G06F 12/00 (2006.01) Assistant Examiner — Hamdy S Ahmed

(52) U.S. Cl. (74) Attorney, Agent, or Firm — Joanna G. Chiu; David G.
USPC 711/144; 711/E12.069; 711/142: Dolezal

711/135 57 ABSTRACT
(58) Field of Classification Search (57)

USPC .. 711/141 A data processing system includes a first master having a
See application file for complete search history. cache, a second master, a memory operably coupled to the

first master and the second master via a system interconnect.
(56) References Cited The cache includes a cache controller which implements a set

U.S. PATENT DOCUMENTS

5,506,971 A 4, 1996 Gullette et al.
5,522,057 A 5/1996 Lichy
5,699,548 A 12/1997 Choudhury et al.
5,761,725 A 6, 1998 Zeller et al.
5,860,114 A 1, 1999 Sell
5,920,892 A 7/1999 Nguyen
6,021,468 A 2/2000 Arimilli et al.
6,292,906 B1 9, 2001 Fu et al.
6,601,144 B1 7/2003 Arimilli et al.
6,845,432 B2 1/2005 Maiyuran et al.

SNOOP CONTROL
INTERFACE

of cache coherency states for data units of the cache. The
cache coherency States include an invalid State; an unmodified
non-coherent state indicating that data in a data unit of the
cache has not been modified and is not guaranteed to be
coherent with data in at least one other storage device of the
data processing system, and an unmodified coherent state
indicating that the data of the data unit has not been modified
and is coherent with data in the at least one other storage
device of the data processing system.

17 Claims, 8 Drawing Sheets

PROCESSOR PROCESSOR
16

30
14

28

CACHE
COHERENCY
MANAGER
COHERENT

MASTER CONTROL
REGISTER

18 SYSTEM
TRANSACTION

ARBITER
32.

SYSTEM INTERCONNECT

OTHER
MASTER(S) MEMORY

20
OTHER

SLAVES) OUTPUT (I/O) DMA 40

US 8,762.652 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Final Office Action mailed Jul. 7, 2011 in U.S. Appl. No. 12/112,508.
Office Action mailed Nov. 16, 2011 in U.S. Appl. No. 12/112,796.
Office Action mailed Apr. 27, 2012 in U.S. Appl. No. 12/112,796.
Office Action mailed Jun. 8, 2012 in U.S. Appl. No. 12/112,508.

Pre-Appeal Brief Conference Decision mailed Feb. 10, 2012 in U.S.
Appl. No. 12/112,796.
U.S. Appl. No. 12/112,508, Inventor William C. Moyer, “Cache
Coherency Protocol in a Data Processing System'. Filed Apr. 20.
2008, Office Action Notice of Allowance, mailed Dec. 7, 2012.
Office Action mailed Dec. 10, 2013 in U.S. Appl. No. 12/112,796.
Office Action mailed Nov. 5, 2012 in U.S. Appl. No. 12/112,796.

* cited by examiner

US 8,762,652 B2 Sheet 1 of 8 Jun. 24, 2014 U.S. Patent

US 8,762,652 B2 Sheet 2 of 8 Jun. 24, 2014 U.S. Patent

saesi?sael | LI)T , !

US 8,762,652 B2

0 0 0

&
S

U.S. Patent

N

SIH| d00NS

US 8,762,652 B2 U.S. Patent

009

US 8,762,652 B2 U.S. Patent

SP '? DZ. AZ

US 8,762,652 B2 U.S. Patent

6 TÃOZ, AZ

US 8,762,652 B2 U.S. Patent

US 8,762,652 B2
1.

CACHE COHERENCY PROTOCOL.IN ADATA
PROCESSING SYSTEM

CROSS-REFERENCE TO RELATED

APPLICATION(S)

This application is related to U.S. patent application Ser.
No. 12/112,508, filed on even date, entitled “Cache Coher
ency Protocol in a Data Processing System.” naming William
C. Moyer as inventor, and assigned to the current assignee
hereof.

BACKGROUND

1. Field
This disclosure relates generally to data processing sys

tems, and more specifically, to a cache coherency protocol in
a data processing system.

2. Related Art
Cache coherency protocols are typically used in multi

processor systems. One such protocol is the MESI protocol.
However, in order to implement a MESI protocol, the bus
protocol of the multi-processor system needs to Support par
ticular bus transaction types. Furthermore, the MESI protocol
may be too complex or costly for lower-end systems.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
is not limited by the accompanying figures, in which like
references indicate similar elements. Elements in the figures
are illustrated for simplicity and clarity and have not neces
sarily been drawn to scale.

FIG. 1 illustrates a data processing system in accordance
with one embodiment of the present invention.

FIG. 2 illustrates a portion of a processor of the data pro
cessing system of FIG. 1, in accordance with one embodi
ment of the present invention.

FIG. 3 illustrates a state diagram of a cache coherency
protocol implemented by the processor of FIG. 2, in accor
dance with one embodiment of the present invention.

FIG. 4 illustrates a table which provides encodings of an
HBURST bus signal, in accordance with one bus protocol.

FIG. 5 illustrates a table which provides encodings of an
HPROT bus signal, in accordance with one bus protocol.

FIGS. 6-9 illustrate, in flow diagram form, various embodi
ments for determining whether cache coherency operations
(e.g. Snooping) are to be performed.

DETAILED DESCRIPTION

In one embodiment, a cache coherency protocol may use
separate transitions and states for coherent and non-coherent
writes. In one embodiment, this cache coherency protocol
uses the write-through page attribute provided by a memory
management unit (MMU) as a control value to define one or
more transitions between coherency states. In one embodi
ment, the cache coherency protocol relies on a write-through
operation for coherent traffic, and Supports copyback trans
actions for non-coherent data. Furthermore, this cache coher
ency protocol may be used with standard bus protocols which
do not currently support cache coherency. Also, in one
embodiment, a subset of bus transactions may be selected for
which cache coherency is required. That is, based on one or
more factors, a particular bus transactions may or may not
result in a cache coherency operation (e.g. may or may not
result in generation of a Snoop request). Furthermore, in one

10

15

25

30

35

40

45

50

55

60

65

2
embodiment, the one or more factors used to perform selec
tive Snooping are present in existing industry standard bus
protocols such that no additional signaling mechanisms or
other modifications to standard bus protocols are required.
As used herein, the term “bus' is used to refer to a plurality

of signals or conductors which may be used to transfer one or
more various types of information, Such as data, addresses,
control, or status. The conductors as discussed herein may be
illustrated or described in reference to being a single conduc
tor, a plurality of conductors, unidirectional conductors, or
bidirectional conductors. However, different embodiments
may vary the implementation of the conductors. For example,
separate unidirectional conductors may be used rather than
bidirectional conductors and vice versa. Also, plurality of
conductors may be replaced with a single conductor that
transfers multiple signals serially or in a time multiplexed
manner. Likewise, single conductors carrying multiple sig
nals may be separated out into various different conductors
carrying Subsets of these signals. Therefore, many options
exist for transferring signals.
The terms “assert” or “set and “negate' (or “deassert” or

“clear) are used herein when referring to the rendering of a
signal, status bit, or similar apparatus into its logically true or
logically false state, respectively. If the logically true state is
a logic level one, the logically false state is a logic level Zero.
And if the logically true state is a logic level Zero, the logically
false state is a logic level one.

Each signal described herein may be designed as positive
or negative logic, where negative logic can be indicated by a
bar over the signal name oran asterix (*) following the name.
In the case of a negative logic signal, the signal is active low
where the logically true state corresponds to a logic level Zero.
In the case of a positive logic signal, the signal is active high
where the logically true state corresponds to a logic level one.
Note that any of the signals described herein can be designed
as either negative or positive logic signals. Therefore, in alter
nate embodiments, those signals described as positive logic
signals may be implemented as negative logic signals, and
those signals described as negative logic signals may be
implemented as positive logic signals.

Brackets are used hereinto indicate the conductors of abus
or the bit locations of a value. For example, “bus 607:0” or
“conductors 7:O of bus 60' indicates the eight lower order
conductors of bus 60, and “address bits 7:0' or “ADDRESS
7:0' indicates the eight lower order bits of an address value.
The symbol “S” preceding a number indicates that the num
ber is represented in its hexadecimal or base sixteen form. The
symbol “96' preceding a number indicates that the number is
represented in its binary or base two form.

FIG. 1 illustrates a block diagram of a data processing
system 10 in accordance with one embodiment of the present
invention. System 10 may be a system-on-chip. System 10
may be implemented on a single integrated circuit or on a
plurality of integrated circuits. System 10 includes a system
interconnect 12 which may be, for example, a system bus. In
one embodiment, the system interconnect 12 is a system bus
which operates according to the AMBAAHB or AXI protocol
(AMBA, AXI, and AHB are trademarks of ARM Ltd.). Sys
tem 10 includes any number of processors, such as processors
14 and 16, a system transaction arbiter 32, a cache coherency
manager 18, a memory 20, a level 2 cache 41, other master(s)
22, other slave(s) 24, an input/output (I/O) module 26, and a
direct memory access (DMA) module 40, each bidirection
ally coupled to system interconnect 12. Processor 14 includes
a cache 28, and processor 16 includes a cache 30. Cache
coherency manager 18 includes a coherent master control
register 19. Cache coherency manager 18 is also bidirection

US 8,762,652 B2
3

ally coupled to each of L2 cache 41, processor 14, and pro
cessor 16 via a Snoop control interface which may be separate
to system interconnect 12. Additionally, cache coherency
manager 18 may be bidirectionally coupled to other masters
within system 10. Alternate embodiments of system 10 may
include additional circuitry which is not illustrated in FIG. 1,
or may include less circuitry than illustrated. In some embodi
ments, cache coherency manager 18 may be distributed
within processors 14 and 16, or may not be present.

FIG. 2 is a block diagram of processor 14 associated with
data processing system 10 of FIG. 1. Processor 14 may be
implemented to perform operations in a pipelined fashion,
and may include an instruction pipe 23, execution units 25.
instruction fetch unit 27, control circuitry 17, general purpose
registers 31, load/store unit 33, bus interface unit (BIU) 48, a
memory management unit (MMU) 42, and cache 28. In one
embodiment, control circuitry 17 is bidirectionally coupled to
each of BIU 48, cache 28, MMU 42, instruction fetch unit 27,
instruction pipe 23, execution units 25, and load/store unit 33.
Instruction pipe 23 is bidirectionally coupled to instruction
fetch unit 27, execution units 25, and load/store unit 33.
Execution units 25 is bidirectionally coupled to each of MMU
42, cache 28, and general purpose registers 31. Load/store
unit is bidirectionally coupled to general purpose registers 31,
MMU 42, and cache 28. Processor 14 may communicate with
other components of data processing system 10 via system
interconnect 12 coupled to BIU 48. Cache 28 includes control
circuitry 29 which, in one embodiment, implements a cache
coherency protocol for cache 28 based, at least in part, on a
memory page attribute provided by MMU 42. Cache 28
includes a plurality of cache entries (also referred to as cache
lines) where each cache entry includes an address tag, corre
sponding data, and status information, including information
related to its current cache coherency protocol state. Note that
processor 14, with the exception of control circuitry 29 and
any circuitry for implementing the cache coherency protocol,
operates as known to one skilled in the art and therefore, will
not be discussed in further detail herein.
MMU 42, as known in the art, translates virtual addresses

(which may be received from, for example, execution units
25, load/store unit 33, and instruction fetch unit 27) to physi
cal addresses. MMU 42 provides the translated addresses to
cache 28. That is, MMU 42 provides the physical address
along with the page attributes for the page of memory corre
sponding to the physical address. For example, entries within
cache 28 may correspond to storage locations of memory 20,
where memory 20 includes units of storage referred to as
pages. Therefore, the page attributes provided by MMU 42
along with the physical address translation information may
be programmed into storage circuitry of MMU 42 (or else
where within processor 14) and correspond to the particular
page which includes the provided physical address. In one
embodiment, these page attributes includes a write-through
required attribute (W) and any one of the following attributes:
caching inhibited (I), memory coherence required (M)
(which may also be referred to as globally shared (SG)),
guarded (G), Endianness (E), and User-Definable (e.g. U0.
U1, U2, U3). For example, in one embodiment, MMU 42
includes a translation look-aside buffer (TLB) whose entries
store address translations along with these attributes, and thus
controls the manner in which processor 14 performs storage
accesses in the page associated with each TLB entry. In one
embodiment, the page attributes for each page includes both
W and M, where each of the W and Mattributes can be set
independently of each other.

Typically, cache coherency is Supported to allow for
memory coherency in multi-master systems. Coherency may

10

15

25

30

35

40

45

50

55

60

65

4
be maintained though the use of cache coherency operations.
In one embodiment, these cache coherency operations
includes Snoop requests (i.e. Snoop invalidation requests) pro
vided to a processor, such as processor 14. In one embodi
ment, these Snoop requests are provided by cache coherency
manager 18 to each of processors 14 and 16. These Snoop
invalidation requests are received by the processor so that the
processor can determine if the addresses corresponding to the
Snoop invalidation requests are stored within the cache.
Therefore, a cache coherency operation may refer to a Snoop
look-up where a look-up in the cache is performed to deter
mine whether the cache contains data associated with the
Snooped transaction. That is, a cache coherency operation
may include searching at least one cache of the data process
ing system (Such as data processing system 10) to determine
whether at least one cache contains data associated with the
memory address of the Snooped bus transaction. Then, if the
cache does contain data associated with the Snooped transac
tion (includes an entry matching the memory address corre
sponding to the Snoop request), then the processor can per
form the appropriate coherency operation for that entry or
over-write that entry. In one embodiment, a Snoop invalida
tion coherency operation is utilized in the cache coherency
protocol, and this matching entry is invalidated because it is
likely that the snooped transaction, which is performed by
another bus master, is modifying the data stored at that
address. Alternatively, note that a cache coherency operation
can refer to the changing of the state of a cache entry.

FIG. 3 illustrates a cache coherency protocol 100 having
four states: a modified, non-coherent state (M), an invalid
state (I), an unmodified, non-coherent state (N), and an
unmodified coherent state (C). In this four state protocol,
separate transitions and states are used for coherent and non
coherent writes. In one embodiment, cache coherency proto
col 100 uses the W page attribute provided by MMU 42 as a
control value to define one or more transitions between coher
ency states. In one embodiment, the cache coherency protocol
relies on a write-through operation for coherent traffic, and
Supports copyback transactions for non-coherent data. For
example, as will be described further below, coherent writes
utilize the I and C states, and are performed as write-through
writes. Non-coherent writes utilize the I, N, and M states and
are performed as copyback writes.
The state diagram of FIG. 3 will be described be described

in reference to processor 14. That is, in one embodiment,
control circuitry 29 within cache 28 implements the state
diagram of FIG. 3. Each cache entry in cache 28 includes one
or more status indicators to indicate the state (M., I, N, or C) of
the cache entry. (Note that a cache entry may also be referred
to as a cache line.) As illustrated in FIG. 3, state 102 corre
sponds to the I state, state 104 corresponds to the N state, state
108 corresponds to the M state, and state 106 corresponds to
the C state. As used with respect to cache coherency protocol
100, when a cache entry is “unmodified, the data of the cache
entry in cache 28 of processor 14 has not been modified with
respect to the copy in memory 20 since it was allocated. When
a cache entry is “modified, the data of the cache entry in
cache 28 of processor 14 has been modified with respect to the
copy in memory 20 since it was allocated. When a cache entry
is “coherent the data of the cache entry in cache 28 is the
same as in memory 20 and as in any valid entry in any cache
in system 10 (such as cache 30) corresponding to the same
address location. “Non-coherent refers to being non-coher
ent with other caches. That is, when a cache entry is “non
coherent, the data of the cache entry in cache 28 may have a
different value than a valid entry of another cache, such as
cache 30, corresponding to the same address location of

US 8,762,652 B2
5

memory 20. Note that since “non-coherent refers to being
non-coherent with other caches, when a cache entry is “non
coherent’, the data of the cache entry may be the same as in
memory 20. Non-coherency may occur when cache coher
ency operations have not been performed for a particular
address location in memory.

Coherent cache entries may be in either the C state or the I
state. Cache entries which do not require coherency may
assume the I, N, or M states. Note that no Modified or Shared
state (as is used in the MESI protocol) is supported for coher
ent cache entries, thus no Snoop copyback or intervention
operations are required. Non-coherent cache entries may still
assume a modified State. In one embodiment, memory
regions (such as in memory 20) requiring coherency opera
tions are marked as “memory coherence required’ (with its M
bit set to one) and as “write through required” (with its W bit
set to one). Note that protocol 100 may be used with a bus
protocol which does not comprehend or Support cache coher
ency operations, such as, for example, the AMBA AHB or
AXI protocol. With a bus protocol which does not support
cache coherency, the MESI protocol cannot be implemented.
For example, there may be no way to signal a transition from
the S state to the M state of the MESI protocol, which utilizes
an “address only transaction', which does not exist in the
AMBA AHB protocol. Furthermore, such a bus protocol
which does not support MESI cache coherency transactions
does not support “read with intent to modify” transactions
which are utilized for implementing transitions from the I
state to the E state in the MESI protocol. Other transaction
types required for Such a protocol also are not defined by the
AMBAAHB or AXIbus protocols. Therefore, in one embodi
ment, note that cache coherency protocol 100 may be overlaid
on existing bus protocols which currently do not support
cache coherency.

Referring to FIG. 3, when a cache entry is in the invalid
state, and a cache miss occurs which results in an allocation to
the invalid cache entry, the W page attribute is used to deter
mine whether to transition to state N (a non-coherent state) or
state C (a coherent state). When the cache miss occurs and
W=0, indicating that write-through is not performed for this
address, then the State of the cache entry transitions from state
I to state N via transition 110. Since a write-through is not
performed for this address, the data of the cache entry cannot
be guaranteed to be coherent. Since a write-through is not
performed, write transactions to this cache entry are not
placed on system interconnect 12 and thus the transactions
cannot be Snooped by cache coherency manger 19 (or by
other caches). Therefore, since no coherency operation will
be performed, it is considered non-coherent. Since the cache
entry is newly allocated, its data is considered unmodified.

However, when a cache miss occurs and W=1, indicating
that a write-through is performed for writes to this address,
then the state of the cache entry transitions from state I to state
C via transition 128. Since a write-through is performed for
writes to this address, coherency is maintained. For example,
for a write-through on a write miss, the data stored in the
cache entry newly allocated upon transition 128 is also pro
vided via system interconnect 12 to memory 20. For a write
through on a read miss, data for storage into the newly allo
cated cache entry is provided by memory 20 to processor 14
via system interconnect 12. Therefore, in performing a write
through, the data stored in the newly allocated cache entry is
provided via system interconnect 12 which is monitored by
cache coherency manager 18. Therefore, cache coherency
manger 18 can perform a cache coherency operation by
Snooping the address on system interconnect 12 correspond
ing to the write-through transaction and perform a cache

10

15

25

30

35

40

45

50

55

60

65

6
coherency operation. For example, cache coherency manager
18 can provide a Snoop invalidate request to processor 16 Such
that processor 16 can determine if the Snooped address hits in
cache 30, and if so, invalidate it.
Once in state C, any read or write hit to the cache entry

causes the cache entry to remain in state C. In the case of a
write hit, a write-through is performed (since the W page
attribute for the address was set), which allows coherency to
be maintained. That is, upon a write-through, a cache coher
ency operation can be performed. For example, as described
above, cache coherency manager 18 can generate Snoop
invalidate requests to processor 16 so that coherency can be
maintained. A cache invalidate operation on the cache entry
returns the cache entry to state I via transition 130. Note also
that in state C, processor 14 may receive cache coherency
operations, such as a Snoop invalidate request, from cache
coherency manager 18 when the data associated with the
address of the cache entry is modified by another processor,
Such as by processor 16. In this case, a Snoop invalidate
request would hit the cache entry in processor 14 and cause
the state of the cache entry to transition back to state I via
transition 129.
Cache flush operations (which may also be referred to as

flush cache operation commands) may also be performed by
processor 14 or 16 to locations in memory 20 to cause
memory 20 to be updated with any modified data present in
cache 28 or cache 30, respectively. In one embodiment, these
cache flush operations may be specified to flush any modified
data to memory 20 and then leave the cache entry in a valid
state (i.e. a cache flush operation without an invalidate), or
alternatively, to flush any modified data to memory 20, and
after performing the flush, to place the cache entry in an
invalid state (i.e. a cache flush operation with invalidate).
Cache flush operations provide an address for lookup in the
cache, without apriori knowledge of the existence of data
corresponding to the address being present in the cache, or the
state of the cache entry containing the data. Therefore, in one
embodiment, a flush operation is an operation in which a
matching cache entry is written back to memory if the cache
entry has any modified data. That is, if the cache line or entry
is dirty, then it is written back to memory (e.g. memory 20). If
there is no modified data, then no write back to memory is
needed. Note also that a flush can be performed with or
without invalidate.

Still referring to state C, upon performing a cache flush
operation without an invalidate, the W page attribute is again
checked to determine how to transition among states. If, upon
a cache flush operation without an invalidate, the W page
attribute is now cleared to zero (for example, as a result of
software modifying the W page attribute for the correspond
ing page in memory 20), then the state of the cache entry
transitions to state N via transition 134. That is, the cache
entry is not invalid (since the flush is performed without an
invalidation), but now, write-throughs will no longer be per
formed. Thus, again, coherency cannot be guaranteed. Also,
since a flush is requested, the data is known to be unmodified
at the completion of the flush operation. If a flush is per
formed with an invalidate, then, after the flush operation is
performed, the cache entry is invalidated, thus transition back
to state I (via transition 130). If a flush is performed without
an invalidate, the cache entry remains valid after the flush
operation, and the state (whether remaining in state C or
transition to state N) is determined based on the W page
attribute.
Once in state N, any read hit to the cache entry causes the

cache entry to remain in State N. A cache invalidate operation
on the cache entry returns the cache entry to state I via tran

US 8,762,652 B2
7

sition 112. A cache flush operation without invalidate may
cause a transition to state C depending on the value of the W
page attribute. For example, ifa cache flush operation without
invalidate is performed and the W page attribute is still zero,
then the state of the cache entry remains in state N. If a cache
flush operation without invalidate is performed and the W
page attribute is now one (changed, for example, by Soft
ware), then the state of the cache entry transitions from State
N to state C, in which, due to the flush, the data remains
unmodified, and, due to write-throughs now being performed,
coherency is maintained. If a flush with invalidate is per
formed, then after the flush operation, the state of the cache
entry transitions back to I (via transition 112). Upon a write
hit to the cache entry in state N, the state of the cache entry
transitions from state N to state M via transition 114. There
fore, the cache entry is still non-coherent since a write
through is not performed; however, now it is considered
modified since it was modified since it was allocated upon
transition 110 from state I to state N.
Once in state M, any hit to the cache entry causes the cache

entry to remain in state M. If a cache flush operation without
invalidate is performed, then, as described above, a copy back
to memory (e.g. memory 20) is performed and the cache entry
is not invalidated. Then, based on the W page attribute, the
cache entry transitions from state M to state Nor C. In the case
of W=0, the state of the cache entry transitions back to state N
via transition 116 where the data is now unmodified again
(due to the flush operation) and write-throughs are not per
formed (thus not guaranteeing coherency). In the case of
W=1, the state of the cache entry transitions back to state C
via transition 126 where the data is now unmodified again
(due to the flush operation) and write-throughs are performed
(thus maintaining coherency). In state M, if a flush with
invalidate is performed, then a copyback to memory is per
formed, as described above, and the cache entry is invali
dated, returning the State of the cache entry to state I via
transition 124. If a replace operation is performed on a cache
entry in state M, the modified data is first copied back to
memory 20. Then the data in the cache entry is first invali
dated (transitioning to state I via transition 124) and then
overwritten (resulting in a transition to state N or C, depend
ing on the value of the W page attribute, since an allocate in
effect occurs). Also, if an invalidate operation is performed,
the state of the cache entry transitions from state M to state I
via transition 122 without performing a copyback operation.

Therefore, it can be appreciated how a cache coherency
protocol may use separate transitions and states for coherent
and non-coherent writes. In one embodiment, cache coher
ency protocol 100 uses the W page attribute provided by
MMU 42 as a control value to define one or more transitions
between coherency states. In one embodiment, the cache
coherency protocol relies on a write-through operation for
coherent traffic, and Supports copyback transactions for non
coherent data. Therefore, a cache coherency protocol 100
may be used with standard bus protocols which do not pro
vide for cache coherency operations.

In one embodiment, cache coherency manager 18 may
select a Subset of bus transactions for which cache coherency
is required. That is, based on one or more factors, as will be
discussed below in reference to FIGS. 4-9, particular types of
transactions will or will not be snooped and thus will or will
not resultina cache coherency operation. Furthermore, in one
embodiment, the one or more factors used to perform selec
tive Snooping are present in existing industry standard bus
protocols such as the AMBAAHB or AXI. In this manner, no
additional signaling mechanisms or other modifications to
standard bus protocols are required.

10

15

25

30

35

40

45

50

55

60

65

8
In one embodiment, cache coherency manager 18 Snoops

and performs cache coherency operations based on whether a
bus transaction is a single beat transaction or a burst transac
tion. For example, in one embodiment, Snooping and cache
coherency operations are performed if the bus transaction is a
single beat transaction but not if it is a burst transaction. This
may be because bursts initiated by a processor are typically
doing a copyback transaction, thus cache coherency opera
tions are not needed for these burst transactions. However, in
one embodiment, if the transaction is a burst transaction, but
is initiated by DMA 4.0 rather than by a processor (such as
processor 14 or 16), Snooping is still performed because
typically burst transactions initiated by a DMA are not per
forming a copyback, meaning cache coherency operations
may still be needed. Therefore, in one embodiment, the deci
sion whether or not to Snoop may be based on both the type of
bus transaction and which master or type of master initiated
the bus transaction. As will be described below other factors
or combination of factors may be used within system 10, such
as by cache coherency manager 18 or other cache coherency
control circuitry, to determine whether or not Snooping is to
be performed. Note that, in one embodiment, a master iden
tifier (master ID) is provided with each bus transaction iden
tifying which master initiated the transaction. The determi
nation of mastership may be indicated as part of the bus
transaction by the initiating master as an attribute of the
transfer address, or may be indicated or signaled in other
ways. In one embodiment, the determination of which mas
ters to perform a coherency operation if a burst write access is
initiated may be programmatically selected by a user of sys
tem 10. In one embodiment, a control register may be pro
vided within system 10 to indicate one or more masters for
which coherency operations should be performed, based on
the type of transfer (burst or non-burst, or selective within a
set of particular burst types).
Using the AMBAAHB protocolas an example, burst infor

mation is provided using a 3-bit bus signal, HBURST2:0.
which encodes eight possible types of transactions. These
encodings are provided in FIG. 4. For example, a value of
“000 for HBURST indicates a single transfer (i.e. a single
beat transaction), whereas the other 7 values indicate differ
ent types of burst transactions. In one embodiment, when
cache coherency manager 18 determines that the value of
HBURST is 000 (indicating a single transfer), Snooping will
be performed; however, if it is determined that the value of
HBURST is 010 (indicating a 4-beat wrapping burst), 011
(indicating a 4-beat incrementing burst), 100 (indicating an
8-beat wrapping burst), 101 (indicating an 8-beat increment
ing burst), 110 (indicating a 16-beat wrapping burst), or 111
(indicating a 16-beat incrementing burst), Snooping is not
performed. Depending on the embodiment, when the value of
HBURST is 001 (indicating an incrementing burst of
unspecified length), Snooping may or may not be performed.
As discussed above, the decision whether to Snoop or not may
further be based on which master or type of master initiated
the bus transaction or transfer.

In one embodiment, the decision whether or not to Snoop
may further be qualified by whether or not the current access
(the current bus transaction) is cacheable or not. Still using the
AMBA AHB protocol as an example, an HPROT3:0 signal
is provided with the access address of a bus transaction an
indicates, for example, whether the transfer is an opcode fetch
or data access, a privileged mode access or user mode access,
and, for master with an MMU, indicate whether the current
access is cacheable or not. The encodings for the HPROT3:0
signal are provided in FIG. 5. For example, when HPROT3
has a value of 0, Snooping is not performed because the access

US 8,762,652 B2

of the bus transaction is not cacheable, whereas when HPROT
3 has a value of 1, Snooping is performed because the access
of the bus transaction is cacheable. Therefore, in addition to
or instead of using the factors described above, the HPROT
signal may also be used to determine whether or not Snooping
is to be performed. In another example embodiment, when
HPROT2 has a value of 0, snooping is not performed
because the access of the bus transaction is not bufferable,
whereas when HPROT2 has a value of 1, Snooping is per
formed because the access of the bus transaction is bufferable.
In some embodiments, depending on the particular master
which initiates the bus access, the values of the HPROT bits
may be programmatically used to control whether a coher
ency operation is performed. Therefore, in addition to or
instead of using the factors described above, the HPROT
signals may also be used to determine whether or not Snoop
ing is to be performed, optionally in conjunction with a deter
mination of the identity of the master initiating a transaction.
For example, it may be possible that a user of system 10
programs one or more control registers or register fields in
Such a manner as to effect coherency operations being per
formed for master X when HPROT3=1, for master Y when
HPROT2=1, and for master Z when HPROT3=1 and
HPROT2=0. Alternatively, other realizable control combi
nations may be used.

FIGS. 6-9 illustrates various examples offlow diagrams for
determining whether cache coherency operations (e.g. Snoop
ing) are to be performed. As discussed above, a cache coher
ency operation may include generating a Snoop request to
other caches, ifany, within system 10 where those caches then
process that Snoop request. In one embodiment, the cache
coherency operation may include changing of the state of a
cache entry. In one embodiment, each of the flows may be
implemented by cache coherency manager 18. Alternatively,
other cache coherency control circuitry may perform any of
these functions and be present anywhere in system 10. In one
embodiment, each individual cache or cache control circuitry
may perform the functions illustrated in FIGS. 6-9. FIG. 6
illustrates a flow 500 which begins with block 502 in which a
bus transaction is initiated by a bus master, Such as, for
example, processor 14, processor 16, DMA 4.0, or other mas
ter 22. Flow proceeds to decision diamond 504 where it is
determined whether or not a write transaction is being per
formed. If not, flow proceeds to block 514 where a cache
coherency operation is not performed. That is, in the illus
trated embodiment of FIG. 6, read transactions are not
Snooped. If, at decision diamond 504, it is determined that the
bus transaction is a write transaction, flow proceeds to deci
sion diamond 506 where it determined whether the bus trans
action is a single beat (i.e. single transfer) transaction. If not,
flow proceeds to block 514. If the bus transaction is a single
beat transaction, flow proceeds to block 512 where a cache
coherency operation on the data of the write transaction is
performed. Therefore, in flow 500, a cache coherency opera
tion is only performed if the bus transaction is a single beat
write transaction.

FIG. 7 illustrates a flow 600 which begins with block 602 in
which a bus transaction is initiated by a bus master, Such as,
for example, processor 14, processor 16, DMA 4.0, or other
master 22. Flow proceeds to decision diamond 604 where it is
determined whether or not a write transaction is being per
formed. If not, flow proceeds to block 614 where a cache
coherency operation is not performed. That is, in the illus
trated embodiment of FIG. 7, read transactions are not
Snooped. If, at decision diamond 604, it is determined that the
bus transaction is a write transaction, flow proceeds to deci
sion diamond 606 where it determined whether the bus trans

10

15

25

30

35

40

45

50

55

60

65

10
action is a single beat (i.e. single transfer) transaction. If so,
flow proceeds to block 612 where a cache coherency opera
tion on the data of the write transaction is performed. If not,
flow proceeds to block 608 where the master ID of the trans
action is determined. That is, as described above, in one
embodiment, a master ID is provided with each bus transac
tion to identify the initiating master. Flow then proceeds to
decision diamond 610 where it is determined if the master ID
indicates a DMA, such as DMA 4.0. If so, then flow proceeds
to block 612 where a cache coherency operation on the data of
the write transaction is performed. In not, then flow proceeds
to block 614. That is, even if the write transaction is a burst
write (i.e. the “no branch from decision diamond 606), a
cache coherency operation is still performed if the imitating
master is a DMA. However, if the write transaction is a burst
write and the initiating master is not a DMA, then no cache
coherency operation is performed, since it is likely, in this
case, that the burst transaction is a copyback transaction.

FIG.8 illustrates a flow 700 which begins with block 702 in
which a bus transaction is initiated by a bus master, such as,
for example, processor 14, processor 16, DMA 4.0, or other
master 22. Flow proceeds to decision diamond 704 where it is
determined whether or not a write transaction is being per
formed. If not, flow proceeds to block 714 where a cache
coherency operation is not performed. That is, in the illus
trated embodiment of FIG. 8, read transactions are not
Snooped. If, at decision diamond 704, it is determined that the
bus transaction is a write transaction, flow proceeds to deci
sion diamond 706 where it determined whether the bus trans
action is a single beat (i.e. single transfer) transaction. If so,
flow proceeds to block 712 where a cache coherency opera
tion on the data of the write transaction is performed. If not,
flow proceeds to block 708 where the master ID of the trans
action is determined. That is, as described above, in one
embodiment, a master ID is provided with each bus transac
tion to identify the initiating master. Flow then proceeds to
decision diamond 710 where it is determined if the master ID
indicates a selected master. If so, then flow proceeds to block
712 where a cache coherency operation on the data of the
write transaction is performed. In not, then flow proceeds to
block 714. In one embodiment, cache coherency manager 18
includes a coherent master control register 19 which indicates
which masters require coherency. For example, control reg
ister 19 may be programmable with the IDs of those masters
in system 10 for which cache coherency is desired or required.
Therefore, in decision diamond 710 of FIG. 8, the master ID
of the master which initiates the bus transaction in block 702
can be compared to control register 19 to determine if the
master ID of the initiating master corresponds to a selected
master indicated by control register 19. Alternatively, other
circuitry or methods may be used to identify for which imi
tating masters a cache coherency operation should be per
formed. Therefore, even if the write transaction is a burst
write (i.e. the “no branch from decision diamond 606), a
cache coherency operation may still be performed if the imi
tating master is a master selected by coherent master control
register 19. In alternate embodiments, the determination step
710 may be performed utilizing other predetermined selec
tion criteria within system 10. In one embodiment, this selec
tion criteria may be programmed by a user of system 10.

FIG.9 illustrates a flow 800 which begins with block 802 in
which a bus transaction is initiated by a bus master, such as,
for example, processor 14, processor 16, DMA 4.0, or other
master 22. Flow proceeds to decision diamond 804 where it is
determined whether or not a write transaction is being per
formed. If not, flow proceeds to block 814 where a cache
coherency operation is not performed. That is, in the illus

US 8,762,652 B2
11

trated embodiment of FIG. 9, read transactions are not
Snooped. If, at decision diamond 804, it is determined that the
bus transaction is a write transaction, flow proceeds to deci
sion diamond 806 where a cacheability field or signal of the
bus transaction is read. For example, this can refer to HPROT 5
3 or HPROT2 described above. Flow then proceeds to
decision diamond 808 where it is determined If the cache
ability field or signal indicates a cacheable transaction or not.
If not, flow proceeds to block 814. If so, flow proceeds to
decision diamond 810 where it is determined if the write 10
transaction is a single beat write. If not, flow proceeds to
block 814. If so, flow proceeds to block 812 in which a cache
coherency operation is performed for the write transaction.
That is, in the example of FIG.9, cache coherency operations
are only performed on cacheable single write transactions. 15
That is, burst transactions would result in no cache coherency
operation, as would any transaction which is indicated as a
non-cacheable transaction by, for example, a signal provided
according to a bus protocol of system interconnect 12. In
alternate embodiments, the determination step 808 may be 20
followed by a determination step which identifies the master
initiating the transaction in a similar manner to the determi
nation performed by steps 708 and 710 of FIG. 8. In one
embodiment, the result of this determination may serve as a
further factor in deciding whether a cache coherency opera- 25
tion is to be performed for the bus transaction.

Therefore, it can be appreciated how a variety of different
factors may be used, alone or in various combinations with
each other, to determine whether or not cache coherency
operations (e.g. Snooping) is performed. This selective per- 30
formance of cache coherency operations may, for example, be
implemented using existing standard bus protocols.

Because the apparatus implementing the present invention
is, for the most part, composed of electronic components and
circuits known to those skilled in the art, circuit details will 35
not be explained in any greater extent than that considered
necessary as illustrated above, for the understanding and
appreciation of the underlying concepts of the present inven
tion and in order not to obfuscate or distract from the teach
ings of the present invention. 40

Although the invention has been described with respect to
specific conductivity types or polarity of potentials, skilled
artisans appreciated that conductivity types and polarities of
potentials may be reversed.

Moreover, the terms “front,” “back,” “top,” “bottom.” 45
“over,” “under and the like in the description and in the
claims, if any, are used for descriptive purposes and not nec
essarily for describing permanent relative positions. It is
understood that the terms so used are interchangeable under
appropriate circumstances such that the embodiments of the 50
invention described hereinare, for example, capable of opera
tion in other orientations than those illustrated or otherwise
described herein.
The term “program, as used herein, is defined as a

sequence of instructions designed for execution on a com- 55
puter system. A program, or computer program, may include
a Subroutine, a function, a procedure, an object method, an
object implementation, an executable application, an applet, a
servlet, a source code, an object code, a shared library/dy
namic load library and/or other sequence of instructions 60
designed for execution on a computer system.
Some of the above embodiments, as applicable, may be

implemented using a variety of different information process
ing systems. For example, although FIG. 1 and the discussion
thereof describe an exemplary information processing archi- 65
tecture, this exemplary architecture is presented merely to
provide a useful reference in discussing various aspects of the

12
invention. Of course, the description of the architecture has
been simplified for purposes of discussion, and it is just one of
many different types of appropriate architectures that may be
used inaccordance with the invention. Those skilled in the art
will recognize that the boundaries between logic blocks are
merely illustrative and that alternative embodiments may
merge logic blocks or circuit elements or impose an alternate
decomposition of functionality upon various logic blocks or
circuit elements.

Thus, it is to be understood that the architectures depicted
herein are merely exemplary, and that in fact many other
architectures can be implemented which achieve the same
functionality. In an abstract, but still definite sense, any
arrangement of components to achieve the same functionality
is effectively “associated such that the desired functionality
is achieved. Hence, any two components herein combined to
achieve a particular functionality can be seen as “associated
with each other such that the desired functionality is
achieved, irrespective of architectures or intermedial compo
nents. Likewise, any two components so associated can also
be viewed as being “operably connected,” or “operably
coupled to each other to achieve the desired functionality.

Also for example, in one embodiment, the illustrated ele
ments of system 10 are circuitry located on a single integrated
circuit or within a same device. Alternatively, system 10 may
include any number of separate integrated circuits or separate
devices interconnected with each other. For example,
memory 20 may be located on a same integrated circuit as
processors 14 and 16 or on a separate integrated circuit or
located within another peripheral or slave discretely separate
from other elements of system 10. Other slave(s) 24 and I/O
circuitry 26 may also be located on separate integrated cir
cuits or devices. Also for example, system 10 or portions
thereof may be soft or code representations of physical cir
cuitry or of logical representations convertible into physical
circuitry. As such, system 10 may be embodied in a hardware
description language of any appropriate type.

Furthermore, those skilled in the art will recognize that
boundaries between the functionality of the above described
operations merely illustrative. The functionality of multiple
operations may be combined into a single operation, and/or
the functionality of a single operation may be distributed in
additional operations. Moreover, alternative embodiments
may include multiple instances of a particular operation, and
the order of operations may be altered in various other
embodiments.

All or some of the software described herein may be
received elements of system 10, for example, from computer
readable media such as memory 35 or other media on other
computer systems. Such computer readable media may be
permanently, removably or remotely coupled to an informa
tion processing system Such as system 10. The computer
readable media may include, for example and without limi
tation, any number of the following: magnetic storage media
including disk and tape storage media; optical storage media
such as compact disk media (e.g., CD-ROM, CD-R, etc.) and
digital video disk storage media; nonvolatile memory storage
media including semiconductor-based memory units such as
FLASH memory, EEPROM, EPROM, ROM: ferromagnetic
digital memories; MRAM; Volatile storage media including
registers, buffers or caches, main memory, RAM, etc.; and
data transmission media including computer networks, point
to-point telecommunication equipment, and carrier wave
transmission media, just to name a few.

In one embodiment, system 10 is a computer system such
as a personal computer system. Other embodiments may
include different types of computer systems. Computer sys

US 8,762,652 B2
13

tems are information handling systems which can be
designed to give independent computing power to one or
more users. Computer systems may be found in many forms
including but not limited to mainframes, minicomputers,
servers, workstations, personal computers, notepads, per
Sonal digital assistants, electronic games, automotive and
other embedded systems, cellphones and various other wire
less devices. A typical computer system includes at least one
processing unit, associated memory and a number of input/
output (I/O) devices.
A computer system processes information according to a

program and produces resultant output information via I/O
devices. A program is a list of instructions such as a particular
application program and/or an operating system. A computer
program is typically stored internally on computer readable
storage medium or transmitted to the computer system via a
computer readable transmission medium. A computer pro
cess typically includes an executing (running) program or
portion of a program, current program values and State infor
mation, and the resources used by the operating system to
manage the execution of the process. A parent process may
spawn other, child processes to help perform the overall func
tionality of the parent process. Because the parent process
specifically spawns the child processes to perform a portion
of the overall functionality of the parent process, the func
tions performed by child processes (and grandchild pro
cesses, etc.) may sometimes be described as being performed
by the parent process.

Although the invention is described herein with reference
to specific embodiments, various modifications and changes
can be made without departing from the scope of the present
invention as set forth in the claims below. Accordingly, the
specification and figures are to be regarded in an illustrative
rather than a restrictive sense, and all such modifications are
intended to be included within the scope of the present inven
tion. Any benefits, advantages, or Solutions to problems that
are described herein with regard to specific embodiments are
not intended to be construed as a critical, required, or essential
feature or element of any or all the claims.
The term “coupled as used herein, is not intended to be

limited to a direct coupling or a mechanical coupling.
Furthermore, the terms 'a' or “an as used herein, are

defined as one or more than one. Also, the use of introductory
phrases such as “at least one' and “one or more' in the claims
should not be construed to imply that the introduction of
another claim element by the indefinite articles “a” or “an
limits any particular claim containing Such introduced claim
element to inventions containing only one such element, even
when the same claim includes the introductory phrases "one
or more' or 'at least one' and indefinite articles such as “a” or
“an.” The same holds true for the use of definite articles.

Unless stated otherwise, terms such as “first and “second
are used to arbitrarily distinguish between the elements such
terms describe. Thus, these terms are not necessarily intended
to indicate temporal or other prioritization of such elements.
Additional Text:
1. A data processing system (for example, 10), comprising:

a first master (for example, 14), the first master including a
cache (for example, 28);

a second master (for example, 16);
a memory (for example, 20), the memory operably coupled

to the first master and the second master via a system
interconnect (for example, 12);

wherein the cache includes a cache controller (for example,
29), the cache controller implementing a set of cache
coherency states (for example, I, N, C.M) for data units

10

15

25

30

35

40

45

50

55

60

65

14
(for example, cache entries or cache lines) of the cache,
the cache coherency states including:
an invalid State (for example, I);
an unmodified non-coherent state (for example, N), the

unmodified coherent state indicating that data in a
data unit of the cache has not been modified and is not
guaranteed to be coherent with data in at least one
other storage device of the data processing system;
and

an unmodified coherent state (for example, C), the
unmodified coherent state indicating that the data of
the data unit has not been modified and is coherent
with data in the at least one other storage device of the
data processing system.

2. The data processing system of item 1 wherein a transition
from the invalid state to the unmodified non-coherent state
of a data unit of the cache is made in response to a read miss
to the cache wherein the data of the read miss is written to
the data unit, wherein no cache coherency operation is
performed on any other cache in the data processing system
in response to the read miss.

3. The data processing system of item 1 wherein:
in response to a write cache miss, a transition from the

invalid state to the unmodified non-coherent state of a
data unit of the cache where the data of the write miss is
written, does not generate a cache coherency operation
in the other caches in the data processing system.

4. The data processing system of item 1 wherein a transition
from the invalid state to the unmodified non-coherent state
of a data unit of the cache does not cause a look up opera
tion into other caches of the data processing system to
determine whether those caches contain a memory address
corresponding to the data being written to the data unit.

5. The data processing system of item 1 wherein when a data
unit of the cache is in the unmodified non-coherent state,
Snoop transactions directed towards that data unit do not
result in a change of coherency state for that data unit.

6. The data processing system of item 1, wherein in response
to a cache miss in which the data of the cache miss is
written to a data unit of the cache:
a transition (for example, transition 110) to the unmodified

non-coherent state from the invalid state of the data unit
of the cache is made in response to a write through
required attribute indicating that a write through is not
required for the data written to the data unit;

a transition (for example, transition 128) to the unmodified
coherent state from the invalid state of the data unit of the
cache is made in response to the write through required
attribute indicating that a write through is required for
the data written to the data unit of the cache.

7. The data processing system of item 6 wherein:
the cache miss is a write miss;
the data of the write miss is not written in a Subsequent

copyback bus transaction to the memory if the write
through required attribute indicates that a write through
is required for the data of the write miss.

8. The data processing system of item 1 wherein the cache
coherency states further include:
a modified non-coherent state (for example, M), the modi

fied non-coherent state indicating that data in a data unit
of the cache has been modified and is not guaranteed to
be coherent with the data in the at least one other storage
device of the data processing system.

9. The data processing system of item 8 wherein a transition
(for example, transition 114) from the unmodified non

US 8,762,652 B2
15

coherent state to the modified non-coherent state of a data
unit of the cache is made in response to a write hit to the
data of the data unit.

10. The data processing system of item 9 wherein:
when in the unmodified coherent state, a write hit to data of

a data unit of the cache generates a write through of the
data to the memory (for example, transition 132);

when in the unmodified non-coherent state, a write hit to
the data of a data unit of the cache does not generate a
write through operation of the data.

11. The data processing system of item 8 wherein a transition
(for example, transition 116) from the modified non-coher
ent state to the unmodified non-coherent state of a data unit
of the cache is made in response to a flush cache operation
command for the data unit without an invalidate cache
operation command for the data unit and a write through
required attribute indicates that a write through is not
required for the data of the data unit.

12. The data processing system of item 8 wherein a transition
(for example, transition 126) from the modified non-coher
ent state to the unmodified coherent state of a data unit of
the cache is made in response to a flush cache operation
command for the data unit and a write through required
attribute of the data indicates that a write through is
required for the data.

13. The data processing system of item 8 wherein when a
write through required attribute for data in a data unit
indicates that a write through is not required for the data, a
transition from the modified non-coherent state to the
invalid state of the data unit of the cache is made in
response to:
a flush cache operation command for the data unit without

an invalidate cache operation command for the data unit,
wherein the data is written to the memory with a copy
back bus transaction in response to the flush cache
operation command (for example, transition 124); or

an invalidate cache operation command for the data unit
(for example, transition 122).

14. The data processing system of item 1 wherein when a
write through required attribute indicates that a write
through is required for data of a data unit of the cache, a
transition (for example, transition 120) to the unmodified
coherent state from the unmodified non-coherent state of
the data unit of the cache is made in response to a flush
cache operation command for the data unit without an
invalidate cache operation command for the data unit.

15. The data processing system of item 1 wherein when a
write through required attribute indicates that a write
through is not required for the data, a transition (for
example, transition 134) to the unmodified non-coherent
state from the unmodified coherent state of a data unit of
the cache is made in response to a flush cache operation
command for the data unit without a invalidate cache
operation command for the data unit.

16. The data processing system of item 1 wherein a transition
from each of the unmodified non-coherent state and the
unmodified coherent state (for example, transitions 112
and 130) to the invalid state of a data unit of the cache is
made in response to an invalidate cache operation com
mand for the data unit.

17. A method of operating a data processing system (for
example, 10), the method comprising:
performing a write transaction of data by a first master (for

example, 16) that generates a write miss to a cache (for
example, 30) of the data processing system, the first
master is operably coupled to a system interconnect (for
example, 12), the data processing system including a

5

10

15

25

30

35

40

45

50

55

60

65

16
second master (for example, 14) and a memory (for
example, 20) operably coupled to the system intercon
nect,

in response to the write miss, writing the data to the cache;
performing a write through of the data to the memory if a

write though required attribute (for example, W) for the
data of the write transaction indicates that a write
through of the data is required, wherein no write through
of the data is performed if the write though required
attribute indicates that no write through of the data is
required;

searching into at least one other cache (for example, 28) of
the data processing system to determine whether the at
least one other cache contains a memory address corre
sponding to the write transaction if the write through
required attribute indicates that a write through of the
data is required, wherein no searching of the at least one
other cache is performed if the write through required
attribute indicates that no write through of the data is
required.

18. A data processing system (for example, 10), comprising:
a processor (for example, 14), the processor including a

cache (for example, 28);
a second master (for example, 16);
a memory (for example, 20), the memory operably coupled

to the processor and the second master via a system
interconnect (for example, 12);

memory attribute logic (for example, within MMU 42 or
elsewhere within processor 14 or system 10) for provid
ing a plurality of attributes associated with locations of
the memory, wherein one of the plurality of attributes is
a write through required attribute (for example, W);

wherein the cache includes a cache controller (for example,
29), the cache controller including circuitry implement
ing a set of cache coherency states for data units of the
cache, wherein the cache controller utilizes the write
through required attribute for determining whether
memory coherency is required for one or more locations
within the memory.

19. The data system of item 18 further comprising:
a cache coherency manager (for example, 18) operably

coupled to the system interconnect, wherein when the
write through required attribute indicates that memory
coherency is required for a write transaction, the cache
coherency manager indicates to other caches (for
example, 30, 41) of the data system to perform a cache
coherency lookup operation for a memory address of the
write transaction.

20. The data system of item 19 wherein when the write
through required attribute indicates that memory coher
ency is not required for the write transaction, no memory
coherency transaction in the data system is perform for the
write transaction.
What is claimed is:
1. A data processing system, comprising:
a first master, the first master including a cache;
a second master,
a memory, the memory operably coupled to the first master

and the second master via a system interconnect;
wherein the cache includes a cache controller, the cache

controller implementing a set of cache coherency states
for data units of the cache, the cache coherency states
including:
an invalid State;
an unmodified non-coherent state, the unmodified non

coherent state indicating that data in a data unit of the
cache has not been modified and is not guaranteed to

US 8,762,652 B2
17

be coherent with data in at least one other storage
device of the data processing system; and

an unmodified coherent state, the unmodified coherent
state indicating that the data of the data unit has not
been modified and is coherent with data in the at least
one other storage device of the data processing sys
tem.

2. The data processing system of claim 1 wherein a transi
tion from the invalid state to the unmodified non-coherent
state of a data unit of the cache is made in response to a read
miss to the cache wherein the data of the read miss is written
to the data unit, wherein no cache coherency operation is
performed on any other cache in the data processing system in
response to the read miss.

3. The data processing system of claim 1 wherein:
in response to a write cache miss, a transition from the

invalid state to the unmodified non-coherent state of a
data unit of the cache where the data of the write miss is
written, does not generate a cache coherency operation
in other caches in the data processing system.

4. The data processing system of claim 1 wherein a transi
tion from the invalid state to the unmodified non-coherent
state of a data unit of the cache does not cause a look up
operation into other caches of the data processing system to
determine whether those caches contain a memory address
corresponding to the data being written to the data unit.

5. The data processing system of claim 1 wherein when a
data unit of the cache is in the unmodified non-coherent state,
Snoop transactions directed towards that data unit do not
result in a change of coherency state for that data unit.

6. The data processing system of claim 1, wherein in
response to a cache miss in which the data of the cache miss
is written to a data unit of the cache:

a transition to the unmodified non-coherent state from the
invalid state of the data unit of the cache is made in
response to a write through required attribute indicating
that a write through is not required for the data written to
the data unit;

a transition to the unmodified coherent state from the
invalid state of the data unit of the cache is made in
response to the write through required attribute indicat
ing that a write through is required for the data written to
the data unit of the cache.

7. The data processing system of claim 6 wherein:
the cache miss is a write miss;
the data of the write miss is not written in a Subsequent

copyback bus transaction to the memory if the write
through required attribute indicates that a write through
is required for the data of the write miss.

8. The data processing system of claim 1 wherein the cache
coherency states further include:

a modified non-coherent state, the modified non-coherent
state indicating that data in a data unit of the cache has
been modified and is not guaranteed to be coherent with
the data in the at least one other storage device of the data
processing System.

9. The data processing system of claim 8 wherein a transi
tion from the unmodified non coherent state to the modified
non-coherent state of a data unit of the cache is made in
response to a write hit to the data of the data unit.

10. The data processing system of claim 9 wherein:
when in the unmodified coherent state, a write hit to data of

a data unit of the cache generates a write through of the
data to the memory;

when in the unmodified non-coherent state, a write hit to
the data of a data unit of the cache does not generate a
write through operation of the data.

10

15

25

30

35

40

45

50

55

60

65

18
11. The data processing system of claim 8 wherein a tran

sition from the modified non-coherent state to the unmodified
non-coherent state of a data unit of the cache is made in
response to a flush cache operation command for the data unit
without an invalidate cache operation command for the data
unit and a write through required attribute indicates that a
write through is not required for the data of the data unit.

12. The data processing system of claim 8 wherein a tran
sition from the modified non-coherent state to the unmodified
coherent state of a data unit of the cache is made in response
to a flush cache operation command for the data unit and a
write through required attribute of the data indicates that a
write through is required for the data.

13. The data processing system of claim 8 wherein when a
write through required attribute for data in a data unit indi
cates that a write through is not required for the data, a
transition from the modified non-coherent state to the invalid
state of the data unit of the cache is made in response to:

a flush cache operation command for the data unit without
an invalidate cache operation command for the data unit,
wherein the data is written to the memory with a copy
back bus transaction in response to the flush cache
operation command; or

an invalidate cache operation command for the data unit.
14. The data processing system of claim 1 wherein when a

write through required attribute indicates that a write through
is required for data of a data unit of the cache, a transition to
the unmodified coherent state from the unmodified non-co
herent state of the data unit of the cache is made in response
to a flush cache operation command for the data unit without
an invalidate cache operation command for the data unit.

15. The data processing system of claim 1 wherein when a
write through required attribute indicates that a write through
is not required for the data, a transition to the unmodified
non-coherent state from the unmodified coherent state of a
data unit of the cache is made in response to a flush cache
operation command for the data unit without a invalidate
cache operation command for the data unit.

16. The data processing system of claim 1 wherein a tran
sition from each of the unmodified non-coherent state and the
unmodified coherent state to the invalid state of a data unit of
the cache is made in response to an invalidate cache operation
command for the data unit.

17. A method of operating a data processing system, the
method comprising:

performing a write transaction of data by a first master that
generates a write miss to a cache of the data processing
system, the first master is operably coupled to a system
interconnect, the data processing system including a
second master and a memory operably coupled to the
system interconnect;

in response to the write miss, writing the data to the cache;
performing a write through of the data to the memory if a

write though required attribute for the data of the write
transaction indicates that a write through of the data is
required, wherein no write through of the data is per
formed if the write though required attribute indicates
that no write through of the data is required;

searching into at least one other cache of the data process
ing system to determine whether the at least one other
cache contains a memory address corresponding to the
write transaction if the write through required attribute
indicates that a write through of the data is required,
wherein no searching of the at least one other cache is

US 8,762,652 B2
19

performed if the write through required attribute indi
cates that no write through of the data is required.

k k k k k

20

