
(12) STANDARD PATENT (11) Application No. AU 2016328639 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Supplemental enhancement information (SE) messages for high dynamic range and
wide color gamut video coding

(51) International Patent Classification(s)
HO4N 19/36 (2014.01) HO4N 19/46 (2014.01)
HO4N 19/117 (2014.01) HO4N 19/70 (2014.01)
HO4N 19/154 (2014.01) HO4N 19/80 (2014.01)
HO4N 19/174 (2014.01) HO4N 19/85 (2014.01)
HO4N 19/186 (2014.01)

(21) Application No: 2016328639 (22) Date of Filing: 2016.09.20

(87) WIPO No: W017/053280

(30) Priority Data

(31) Number (32) Date (33) Country
15/269,497 2016.09.19 US
62/221,586 2015.09.21 US
62/236,804 2015.10.02 US

(43) Publication Date: 2017.03.30
(44) Accepted Journal Date: 2020.06.25

(71) Applicant(s)
QualcommIncorporated

(72) Inventor(s)
Ramasubramonian, Adarsh Krishnan;Rusanovskyy, Dmytro;Sole Rojals, Joel;Lee,
Sungwon;Bugdayci Sansli, Done;Karczewicz, Marta

(74) Agent / Attorney
Madderns Pty Ltd, GPO Box 2752, Adelaide, SA, 5001, AU

(56) Related Art
US 8811470 B2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2017/053280 A1
30 March 2017 (30.03.2017) W IPOIPCT

(51) International Patent Classification: Diego, California 92121-1714 (US). KARCZEWICZ,
H04N19/36(2014.01) H04N19/117(2014.01) Marta; 5775 Morehouse Drive, San Diego, California
H04N19/46 (2014.01) H04N19/154 (2014.01) 92121-1714 (US).
H04N19/70 (2014.01) H04N19/174 (2014.01) (74) Agent: WOLFE, Mark A.; Shumaker & Sieffert, P.A., H04N19/80 (2014.01) H04N191186(2014.01) 1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125 H04N 19185(2014.01)

(US).
(21) International Application Number: PCT/US2016/052640 (81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,
(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

20 September 2016 (20.09.2016) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,

(25) FiingLanguage: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,

MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

62/221,586 21 September 2015 (21.09.2015) US SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
62/236,804 2 October 2015 (02.10.2015) US TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
15/269,497 19 September 2016 (19.09.2016) US ZW.

(71) Applicant: QUALCOMM INCORPORATED [US/US]; (84) Designated States (unless otherwise indicated, for every
ATTN: International IP Administration, 5775 Morehouse kind of regional protection available): ARIPO (BW, GH,
Drive, San Diego, California 92121-1714 (US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

(72) Inventors: RAMASUBRAMONIAN, Adarsh Krishnan; TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

5775 Morehouse Drive, San Diego, California 92121-1714 TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

(US). RUSANOVSKYY, Dmytro; 5775 Morehouse DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

Drive, San Diego, California 92121-1714 (US). SOLE LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

ROJALS, Joel; 5775 Morehouse Drive, San Diego, Cali- SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

fornia 92121-1714 (US). LEE, Sungwon; 5775 More- GW, KM, ML, MR, NE, SN, TD, TG).

house Drive, San Diego, California 92121-1714 (US).
BUGDAYCI SANSLI, Done; 5775 Morehouse Drive, San

[Continued on nextpage]

(54) Title: SUPPLEMENTAL ENHANCEMENT INFORMATION (SEI) MESSAGES FOR HIGH DYNAMIC RANGE AND
WIDE COLOR GAMUT VIDEO CODING

1230a 12311232 1233 1234 1235

1230

0 6F32168 ' 703 767 852' 1023

1244
-1242

- 0 134 511121168 2047
1240

1240a

FIG. 9B

(57) Abstract: This disclosure relates to processing video data, including processing video data that is represented by an HDRWCG
color representation. In accordance with one or more aspects of the present disclosure, one or more Supplemental Enhancement In
formation (SEI) Messages may be used to signal syntax elements and or other information that allow a video decoder or video post

f4 processing device to reverse the dynamic range adjustment (DRA) techniques of this disclosure to reconstruct the original or native
color representation of the video data. Dynamic range adjustment (DRA) parameters may be applied to video data in accordance
with one or more aspects of this disclosure in order to make better use of an HDRWCG color representation, and may include the
use of global offset values, as well as local scale and offset values for partitions of color component values.

W O 2017/053280 A280AlI|III|IIIIlt|II|I||I||||II|||||||||||I||I|||I||||||||I|
Published:

- with international search report (Art. 21(3))

WO 2017/053280 PCT/US2016/052640
1

SUPPLEMENTAL ENHANCEMENT INFORMATION (SEI) MESSAGES FOR
HIGH DYNAMIC RANGE AND WIDE COLOR GAMUT VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Application No.

62/221,586, filed September 21, 2015, and U.S. Provisional Application No.

62/236,804, filed October 2, 2015, the entire content of both of which are hereby

incorporated by reference.

TECHNICAL FIELD

[0002] This disclosure relates to video processing.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,

including digital televisions, digital direct broadcast systems, wireless broadcast

systems, personal digital assistants (PDAs), laptop or desktop computers, tablet

computers, e-book readers, digital cameras, digital recording devices, digital media

players, video gaming devices, video game consoles, cellular or satellite radio

telephones, so-called "smart phones," video teleconferencing devices, video streaming

devices, and the like. Digital video devices implement video coding techniques, such as

those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T

H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), ITU-T H.265, High

Efficiency Video Coding (HEVC), and extensions of such standards. The video devices

may transmit, receive, encode, decode, and/or store digital video information more

efficiently by implementing such video coding techniques.

[0004] Video coding techniques include spatial (intra-picture) prediction and/or

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video

sequences. For block-based video coding, a video slice (e.g., a video frame or a portion

of a video frame) may be partitioned into video blocks, which may also be referred to as

treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I)

slice of a picture are encoded using spatial prediction with respect to reference samples

in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice

of a picture may use spatial prediction with respect to reference samples in neighboring

blocks in the same picture or temporal prediction with respect to reference samples in

WO 2017/053280 PCT/US2016/052640
2

other reference pictures. Pictures may be referred to as frames, and reference pictures

may be referred to as reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be

coded. Residual data represents pixel differences between the original block to be

coded and the predictive block. An inter-coded block is encoded according to a motion

vector that points to a block of reference samples forming the predictive block, and the

residual data indicating the difference between the coded block and the predictive block.

An intra-coded block is encoded according to an intra-coding mode and the residual

data. For further compression, the residual data may be transformed from the pixel

domain to a transform domain, resulting in residual transform coefficients, which then

may be quantized. The quantized transform coefficients, initially arranged in a two

dimensional array, may be scanned in order to produce a one-dimensional vector of

transform coefficients, and entropy coding may be applied to achieve even more

compression.

[0006] The total number of color values that may be captured, coded, and displayed

may be defined by a color gamut. A color gamut refers to the range of colors that a

device can capture (e.g., a camera) or reproduce (e.g., a display). Often, color gamuts

differ from device to device. For video coding, a predefined color gamut for video data

may be used such that each device in the video coding process may be configured to

process pixel values in the same color gamut. Some color gamuts are defined with a

larger range of colors than color gamuts that have been traditionally used for video

coding. Such color gamuts with a larger range of colors may be referred to as a wide

color gamut (WCG).

[0007] Another aspect of video data is dynamic range. Dynamic range is typically

defined as the ratio between the maximum and minimum brightness (e.g., luminance) of

a video signal. The dynamic range of common video data used in the past is considered

to have a standard dynamic range (SDR). Other example specifications for video data

define color data that has a larger ratio between the maximum and minimum brightness.

Such video data may be described as having a high dynamic range (HDR).

SUMMARY

[0008] This disclosure relates to processing video data, including processing video data

that is represented by an HDR/WCG color representation. In accordance with one or

more aspects of the present disclosure, one or more Supplemental Enhancement

WO 2017/053280 PCT/US2016/052640
3

Information (SEI) Messages may be used to signal syntax elements and or other

information that allow a video decoder or video postprocessing device to reverse the

dynamic range adjustment (DRA) techniques of this disclosure to reconstruct the

original or native color representation of the video data. Dynamic range adjustment

(DRA) parameters may be applied to video data in accordance with one or more aspects

of this disclosure in order to make better use of an HDR/WCG color representation, and

may include the use of global offset values, as well as local scale and offset values for

partitions of color component values.

[0009] In one example of the disclosure, a method of decoding video data that has been

adjusted by performing a dynamic range adjustment, comprises receiving at least one

supplemental enhancement information (SEI) message in an encoded video bitstream,

the at least one SEI message indicating adjustment information specifying how the

dynamic range adjustment has been applied to the video data, and wherein the

adjustment information includes a global offset value that applies to each of a plurality

of partitions into which the video data was partitioned during the dynamic range

adjustment, and performing an inverse dynamic range adjustment on the video data in

accordance with the adjustment information to generate unadjusted component values

from the video data.

[0010] In another example of the disclosure, a method of encoding video data

comprises performing a dynamic range adjustment on the video data to generate

adjusted component values from the video data, and generating at least one

supplemental enhancement information (SEI) message in an encoded video bitstream,

the at least one SEI message indicating adjustment information specifying how the

dynamic range adjustment has been applied to the video data, and wherein the

adjustment information includes a global offset value that applies to each of a plurality

of partitions into which the video data was partitioned during the dynamic range

adjustment.

[0011] In another example of the disclosure, an apparatus configured to decode video

data that has been adjusted by performing a dynamic range adjustment comprises a

memory configured to store the video data, and one or more processors configured to:

receive at least one supplemental enhancement information (SEI) message in an

encoded video bitstream, the at least one SEI message indicating adjustment

information specifying how the dynamic range adjustment has been applied to the video

data, and wherein the adjustment information includes a global offset value that applies

WO 2017/053280 PCT/US2016/052640
4

to each of a plurality of partitions into which the video data was partitioned during the

dynamic range adjustment, and perform an inverse dynamic range adjustment on the

video data in accordance with the adjustment information to generate unadjusted

component values from the video data.

[0012] In another example of the disclosure, an apparatus configured to decode video

data that has been adjusted by performing a dynamic range adjustment comprises means

for receiving at least one supplemental enhancement information (SEI) message in an

encoded video bitstream, the at least one SEI message indicating adjustment

information specifying how the dynamic range adjustment has been applied to the video

data, and wherein the adjustment information includes a global offset value that applies

to each of a plurality of partitions into which the video data was partitioned during the

dynamic range adjustment, and means for performing an inverse dynamic range

adjustment on the video data in accordance with the adjustment information to generate

unadjusted component values from the video data.

[0013] In another example of the disclosure, a computer program product for decoding

video data that has been adjusted by performing a dynamic range adjustment comprises

a computer-readable medium having stored thereon. When executed the instructions

cause a processor to receive at least one supplemental enhancement information (SEI)

message in an encoded video bitstream, the at least one SEI message indicating

adjustment information specifying how the dynamic range adjustment has been applied

to the video data, and wherein the adjustment information includes a global offset value

that applies to each of a plurality of partitions into which the video data was partitioned

during the dynamic range adjustment, and perform an inverse dynamic range adjustment

on the video data in accordance with the adjustment information to generate unadjusted

component values from the video data.

[0014] The details of one or more examples are set forth in the accompanying drawings

and the description below. Other features, objects, and advantages will be apparent

from the description, drawings, and claims.

BRIEF DESCRIPTION OF DRAWINGS

[0015] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system configured to implement the techniques of the disclosure.

[0016] FIG. 2 is a conceptual drawing illustrating the concepts of HDR data.

[0017] FIG. 3 is a conceptual diagram illustrating example color gamuts.

WO 2017/053280 PCT/US2016/052640
5

[0018] FIG. 4 is a conceptual diagram illustrating an example of HDR/WCG

representation conversion.

[0019] FIG. 5 is a conceptual diagram illustrating an example of HDR/WCG

representation inverse conversion.

[0020] FIG. 6 is conceptual diagram illustrating example of Electro-optical transfer

functions (EOTF) utilized for video data conversion (including SDR and HDR) from

perceptually uniform code levels to linear luminance.

[0021] FIG. 7 is a conceptual diagram illustrating aspects of a color gamut conversion

process as applied to a single color component.

[0022] FIG. 8 is a block diagram illustrating an example HDR/WCG conversion

apparatus operating according to the techniques of this disclosure.

[0023] FIGS. 9A through 9C are conceptual diagrams illustrating aspects of a dynamic

range adjustment process in accordance with one or more aspects of the present

disclosure.

[0024] FIG. 10 is a block diagram illustrating an example HDR/WCG inverse

conversion apparatus according to the techniques of this disclosure.

[0025] FIG. 11 is a conceptual drawing showing a typical structure of a color remapping

information (CRI) process.

[0026] FIG. 12 is a block diagram illustrating an example of a video encoder that may

implement techniques of this disclosure or may be used in accordance with one or more

aspects of the present disclosure.

[0027] FIG. 13 is a block diagram illustrating an example of a video decoder that may

implement techniques of this disclosure or may be used in accordance with one or more

aspects of the present disclosure.

[0028] FIG. 14 is a flowchart illustrating an example HDR/WCG conversion process

according to the techniques of this disclosure.

[0029] FIG. 15 is a flowchart illustrating an example HDR/WCG inverse conversion

process according to the techniques of this disclosure.

DETAILED DESCRIPTION

[0030] This disclosure is related to the processing and/or coding of video data with high

dynamic range (HDR) and wide color gamut (WCG) representations. More specifically,

the techniques of this disclosure include signaling and related operations that are applied

to video data in certain color spaces to enable more efficient compression of HDR and

WO 2017/053280 PCT/US2016/052640
6

WCG video data. In accordance with one or more aspects of the present disclosure,

parameters relating to such operations may be signaled through one or more SEI

messages. The techniques and devices described herein may improve compression

efficiency of hybrid-based video coding systems (e.g., H.265/HEVC, H.264/AVC, etc.)

utilized for coding video data, including HDR and WCG video data.

[0031] Video coding standards, including hybrid-based video coding standards include

ITU-T H.261, ISO/IEC MPEG-i Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual,

ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC

MPEG-4 AVC), including its Scalable Video Coding (SVC) and Multi-view Video

Coding (MVC) extensions. The design of a new video coding standard, namely High

Efficiency Video coding (HEVC, also called H.265), has been finalized by the Joint

Collaboration Team on Video Coding (JCT-VC) of ITU-T Video Coding Experts Group

(VCEG) and ISO/IEC Motion Picture Experts Group (MPEG). An HEVC draft

specification referred to as HEVC Working Draft 10 (WD10), Bross et al., "High

efficiency video coding (HEVC) text specification draft 10 (for FDIS & Last Call),"

Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and

ISO/IEC JTC1/SC29/WG11, 12th Meeting: Geneva, CH, 14-23 January 2013, JCTVC

L1003v34, is available from http://phenix.int

evrv.fr/jct/doc end user/documents/12 Geneva/wg11/JCTVC-L1003-v34.zip. The

finalized HEVC standard is referred to as HEVC version 1.

[0032] A defect report, Wang et al., "High efficiency video coding (HEVC) Defect

Report," Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and

ISO/IEC JTC1/SC29/WG11, 14th Meeting: Vienna, AT, 25 July-2 August 2013,

JCTVC-N1003v1, is available from http://phenix.int

evrv.fr/jct/doc end user/documents/14 Vienna/wg11/JCTVC-N1003-v1.zip. The

finalized HEVC standard document is published as ITU-T H.265, Series H: Audiovisual

and Multimedia Systems, Infrastructure of audiovisual services - Coding of moving

video, High efficiency video coding, Telecommunication Standardization Sector of

International Telecommunication Union (ITU), April 2013, and another version of the

finalized HEVC standard was published in October 2014. A copy of the H.265/HEVC

specification text may be downloaded from http://www.itu.int/rec/T-REC-H.265

201504-I/en.

[0033] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system 10 that may utilize techniques of this disclosure. As shown in FIG. 1, system 10

WO 2017/053280 PCT/US2016/052640
7

includes a source device 12 that provides encoded video data to be decoded at a later

time by a destination device 14. In particular, source device 12 provides the video data

to destination device 14 via a computer-readable medium 16. Source device 12 and

destination device 14 may comprise any of a wide range of devices, including desktop

computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone

handsets such as so-called "smart" phones, so-called "smart" pads, televisions, cameras,

display devices, digital media players, video gaming consoles, video streaming devices,

or the like. In some cases, source device 12 and destination device 14 may be equipped

for wireless communication.

[0034] Destination device 14 may receive the encoded video data to be decoded via

computer-readable medium 16. Computer-readable medium 16 may comprise any type

of medium or device capable of moving the encoded video data from source device 12

to destination device 14. In one example, computer-readable medium 16 may comprise

a communication medium to enable source device 12 to transmit encoded video data

directly to destination device 14 in real-time. The encoded video data may be

modulated according to a communication standard, such as a wired or wireless

communication protocol, and transmitted to destination device 14. The communication

medium may comprise any wireless or wired communication medium, such as a radio

frequency (RF) spectrum or one or more physical transmission lines. The

communication medium may form part of a packet-based network, such as a local area

network, a wide-area network, or a global network such as the Internet. The

communication medium may include routers, switches, base stations, or any other

equipment that may be useful to facilitate communication from source device 12 to

destination device 14.

[0035] In other examples, computer-readable medium 16 may include non-transitory

storage media, such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray

disc, or other computer-readable media. In some examples, a network server (not

shown) may receive encoded video data from source device 12 and provide the encoded

video data to destination device 14, e.g., via network transmission. Similarly, a

computing device of a medium production facility, such as a disc stamping facility, may

receive encoded video data from source device 12 and produce a disc containing the

encoded video data. Therefore, computer-readable medium 16 may be understood to

include one or more computer-readable media of various forms, in various examples.

WO 2017/053280 PCT/US2016/052640
8

[0036] In some examples, encoded data may be output from output interface 22 to a

storage device. Similarly, encoded data may be accessed from the storage device by

input interface. The storage device may include any of a variety of distributed or locally

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,

flash memory, volatile or non-volatile memory, or any other suitable digital storage

media for storing encoded video data. In a further example, the storage device may

correspond to a file server or another intermediate storage device that may store the

encoded video generated by source device 12. Destination device 14 may access stored

video data from the storage device via streaming or download. The file server may be

any type of server capable of storing encoded video data and transmitting encoded video

data to the destination device 14. Example file servers include a web server (e.g., for a

website), an FTP server, network attached storage (NAS) devices, or a local disk drive.

Destination device 14 may access the encoded video data through any standard data

connection, including an Internet connection. This may include a wireless channel (e.g.,

a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a

combination of both that is suitable for accessing encoded video data stored on a file

server. The transmission of encoded video data from the storage device may be a

streaming transmission, a download transmission, or a combination thereof.

[0037] The techniques of this disclosure are not necessarily limited to wireless

applications or settings. The techniques may be applied to video coding in support of

any of a variety of multimedia applications, such as over-the-air television broadcasts,

cable television transmissions, satellite television transmissions, Internet streaming

video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital

video that is encoded onto a data storage medium, decoding of digital video stored on a

data storage medium, or other applications. In some examples, system 10 may be

configured to support one-way or two-way video transmission to support applications

such as video streaming, video playback, video broadcasting, and/or video telephony.

[0038] In the example of FIG. 1, source device 12 includes video source 18, video

preprocessor 19, video encoder 20, and output interface 22. Destination device 14

includes input interface 28, video postprocessor 31, video decoder 30, and display

device 32. In accordance with this disclosure, video preprocessor 19 of source device

12 may be configured to implement the techniques of this disclosure, including

signaling and related operations applied to video data in certain color spaces to enable

more efficient compression of HDR and WCG video data. In some examples, video

WO 2017/053280 PCT/US2016/052640
9

preprocessor 19 may be separate from video encoder 20. In other examples, video

preprocessor 19 may be part of video encoder 20. In other examples, a source device

and a destination device may include other components or arrangements. For example,

source device 12 may receive video data from an external video source 18, such as an

external camera. Likewise, destination device 14 may interface with an external display

device, rather than including an integrated display device.

[0039] The illustrated system 10 of FIG. 1 is merely one example. Techniques for

processing HDR and WCG video data may be performed by any digital video encoding

and/or video decoding device. Moreover, the techniques of this disclosure may also be

performed by a video preprocessor and/or video postprocessor. A video preprocessor

may be any device configured to process video data before encoding (e.g., before

HEVC encoding). A video postprocessor may be any device configured to process

video data after decoding (e.g., after HEVC decoding). Source device 12 and

destination device 14 are merely examples of such coding devices in which source

device 12 generates coded video data for transmission to destination device 14. In some

examples, devices 12, 14 may operate in a substantially symmetrical manner such that

each of devices 12, 14 include video encoding and decoding components, as well as a

video preprocessor and a video postprocessor (e.g., video preprocessor 19 and video

postprocessor 31, respectively). Hence, system 10 may support one-way or two-way

video transmission between video devices 12, 14, e.g., for video streaming, video

playback, video broadcasting, or video telephony.

[0040] Video source 18 of source device 12 may include a video capture device, such as

a video camera, a video archive containing previously captured video, and/or a video

feed interface to receive video from a video content provider. As a further alternative,

video source 18 may generate computer graphics-based data as the source video, or a

combination of live video, archived video, and computer-generated video. In some

cases, if video source 18 is a video camera, source device 12 and destination device 14

may form so-called camera phones or video phones. As mentioned above, however, the

techniques described in this disclosure may be applicable to video coding and video

processing, in general, and may be applied to wireless and/or wired applications. In

each case, the captured, pre-captured, or computer-generated video may be encoded by

video encoder 20. The encoded video information may then be output by output

interface 22 onto a computer-readable medium 16.

WO 2017/053280 PCT/US2016/052640
10

[0041] Input interface 28 of destination device 14 receives information from computer

readable medium 16. The information of computer-readable medium 16 may include

syntax information defined by video encoder 20, which is also used by video decoder

30, that includes syntax elements that describe characteristics and/or processing of

blocks and other coded units, e.g., groups of pictures (GOPs). Display device 32

displays the decoded video data to a user, and may comprise any of a variety of display

devices such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma

display, an organic light emitting diode (OLED) display, or another type of display

device.

[0042] Video encoder 20 and video decoder 30 each may be implemented as any of a

variety of suitable encoder circuitry, such as one or more microprocessors, digital signal

processors (DSPs), application specific integrated circuits (ASICs), field programmable

gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations

thereof. When the techniques are implemented partially in software, a device may store

instructions for the software in a suitable, non-transitory computer-readable medium and

execute the instructions in hardware using one or more processors to perform the

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be

included in one or more encoders or decoders, either of which may be integrated as part

of a combined encoder/decoder (CODEC) in a respective device.

[0043] Video preprocessor 19 and video postprocessor 31 each may be implemented as

any of a variety of suitable encoder circuitry, such as one or more microprocessors,

DSPs, ASICs, FPGAs, discrete logic, software, hardware, firmware or any combinations

thereof. When the techniques are implemented partially in software, a device may store

instructions for the software in a suitable, non-transitory computer-readable medium and

execute the instructions in hardware using one or more processors to perform the

techniques of this disclosure.

[0044] In some examples, video encoder 20 and video decoder 30 operate according to

a video compression standard, such as ISO/IEC MPEG-4 Visual and ITU-T H.264 (also

known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC)

extension, Multi-view Video Coding (MVC) extension, and MVC-based three

dimensional video (3DV) extension. In some instances, any bitstream conforming to

MVC-based 3DV always contains a sub-bitstream that is compliant to a MVC profile,

e.g., stereo high profile. Furthermore, there is an ongoing effort to generate a 3DV

coding extension to H.264/AVC, namely AVC-based 3DV Other examples of video

WO 2017/053280 PCT/US2016/052640
11

coding standards include ITU-T H.261, ISO/IEC MPEG-i Visual, ITU-T H.262 or

ISO/JEC MPEG-2 Visual, ITU-T H.263, ISO/JEC MPEG-4 Visual, and ITU-T H.264,

ISO/JEC Visual. In other examples, video encoder 20 and video decoder 30 may be

configured to operate according to the HEVC standard.

[0045] In accordance with one or more aspects of the present disclosure, one or more

SEI messages may signal one or more parameters generated by video preprocessor 19.

As will be explained in more detail below, video preprocessor 19 and video

postprocessor 31 may be, in some examples, configured to receive video data related to

a first color representation comprising a first color container, the first color container

being defined by a first color gamut or a first set or color primaries, and a first color

space, derive one or more dynamic range adjustment parameters, the dynamic range

adjustment parameters being based on characteristics of the video data, and perform a

dynamic range adjustment on the video data in accordance with the one or more

dynamic range adjustment parameters. Video encoder 20 may signal the one or more

SEI messages based on one or more parameters received from the video preprocessor

19. Video decoder 30 may receive and decode the one or more SEI messages and pass

the parameters to the video postprocessor 31.

[0046] Video preprocessor 19 and video postprocessor 31 each may be implemented as

any of a variety of suitable encoder circuitry, such as one or more microprocessors,

digital signal processors (DSPs), application specific integrated circuits (ASICs), field

programmable gate arrays (FPGAs), discrete logic, software, hardware, firmware or any

combinations thereof. When the techniques are implemented partially in software, a

device may store instructions for the software in a suitable, non-transitory computer

readable medium and execute the instructions in hardware using one or more processors

to perform the techniques of this disclosure. As discussed above video preprocessor 19

and video postprocessor 31 may be separate devices from video encoder 20 and video

decoder 30, respectively. In other examples, video preprocessor 19 may be integrated

with video encoder 20 in a single device and video postprocessor 31 may be integrated

with video decoder 30 in a single device.

[0047] In HEVC and other video coding standards, a video sequence typically includes

a series of pictures. Pictures may also be referred to as "frames." A picture may

include three sample arrays, denoted SL, Scb, and SCr. SL is a two-dimensional array

(i.e., a block) of luma samples. Scb is a two-dimensional array of Cb chrominance

samples. SCr is a two-dimensional array of Cr chrominance samples. Chrominance

WO 2017/053280 PCT/US2016/052640
12

samples may also be referred to herein as "chroma" samples. In other instances, a

picture may be monochrome and may only include an array of luma samples.

[0048] Video encoder 20 may generate a set of coding tree units (CTUs). Each of the

CTUs may comprise a coding tree block of luma samples, two corresponding coding

tree blocks of chroma samples, and syntax structures used to code the samples of the

coding tree blocks. In a monochrome picture or a picture that has three separate color

planes, a CTU may comprise a single coding tree block and syntax structures used to

code the samples of the coding tree block. A coding tree block may be an NxN block of

samples. A CTU may also be referred to as a "tree block" or a "largest coding unit"

(LCU). The CTUs of HEVC may be broadly analogous to the macroblocks of other

video coding standards, such as H.264/AVC. However, a CTU is not necessarily limited

to a particular size and may include one or more coding units (CUs). A slice may

include an integer number of CTUs ordered consecutively in the raster scan.

[0049] This disclosure may use the term "video unit" or "video block" to refer to one or

more blocks of samples and syntax structures used to code samples of the one or more

blocks of samples. Example types of video units may include CTUs, CUs, PUs,

transform units (TUs) in HEVC, or macroblocks, macroblock partitions, and so on in

other video coding standards.

[0050] To generate a coded CTU, video encoder 20 may recursively perform quad-tree

partitioning on the coding tree blocks of a CTU to divide the coding tree blocks into

coding blocks, hence the name "coding tree units." A coding block is an NxN block of

samples. A CU may comprise a coding block of luma samples and two corresponding

coding blocks of chroma samples of a picture that has a luma sample array, a Cb sample

array and a Cr sample array, and syntax structures used to code the samples of the

coding blocks. In a monochrome picture or a picture that has three separate color

planes, a CU may comprise a single coding block and syntax structures used to code the

samples of the coding block.

[0051] Video encoder 20 may partition a coding block of a CU into one or more

prediction blocks. A prediction block may be a rectangular (i.e., square or non-square)

block of samples on which the same prediction is applied. A prediction unit (PU) of a

CU may comprise a prediction block of luma samples, two corresponding prediction

blocks of chroma samples of a picture, and syntax structures used to predict the

prediction block samples. In a monochrome picture or a picture that have three separate

color planes, a PU may comprise a single prediction block and syntax structures used to

WO 2017/053280 PCT/US2016/052640
13

predict the prediction block samples. Video encoder 20 may generate predictive luma,

Cb and Cr blocks for luma, Cb and Cr prediction blocks of each PU of the CU.

[0052] Video encoder 20 may use intra prediction or inter prediction to generate the

predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the

predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the

PU based on decoded samples of the picture associated with the PU.

[0053] If video encoder 20 uses inter prediction to generate the predictive blocks of a

PU, video encoder 20 may generate the predictive blocks of the PU based on decoded

samples of one or more pictures other than the picture associated with the PU. Inter

prediction may be uni-directional inter prediction (i.e., uni-prediction) or bi-directional

inter prediction (i.e., bi-prediction). To perform uni-prediction or bi-prediction, video

encoder 20 may generate a first reference picture list (RefPicList0) and a second

reference picture list (RefPicListl) for a current slice.

[0054] Each of the reference picture lists may include one or more reference pictures.

When using uni-prediction, video encoder 20 may search the reference pictures in either

or both RefPicList0 and RefPicListl to determine a reference location within a

reference picture. Furthermore, when using uni-prediction, video encoder 20 may

generate, based at least in part on samples corresponding to the reference location, the

predictive sample blocks for the PU. Moreover, when using uni-prediction, video

encoder 20 may generate a single motion vector that indicates a spatial displacement

between a prediction block of the PU and the reference location. To indicate the spatial

displacement between a prediction block of the PU and the reference location, a motion

vector may include a horizontal component specifying a horizontal displacement

between the prediction block of the PU and the reference location and may include a

vertical component specifying a vertical displacement between the prediction block of

the PU and the reference location.

[0055] When using bi-prediction to encode a PU, video encoder 20 may determine a

first reference location in a reference picture in RefPicList0 and a second reference

location in a reference picture in RefPicListl. Video encoder 20 may then generate,

based at least in part on samples corresponding to the first and second reference

locations, the predictive blocks for the PU. Moreover, when using bi-prediction to

encode the PU, video encoder 20 may generate a first motion indicating a spatial

displacement between a sample block of the PU and the first reference location and a

WO 2017/053280 PCT/US2016/052640
14

second motion indicating a spatial displacement between the prediction block of the PU

and the second reference location.

[0056] After video encoder 20 generates predictive luma, Cb, and Cr blocks for one or

more PUs of a CU, video encoder 20 may generate a luma residual block for the CU.

Each sample in the CU's luma residual block indicates a difference between a luma

sample in one of the CU's predictive luma blocks and a corresponding sample in the

CU's original luma coding block. In addition, video encoder 20 may generate a Cb

residual block for the CU. Each sample in the CU's Cb residual block may indicate a

difference between a Cb sample in one of the CU's predictive Cb blocks and a

corresponding sample in the CU's original Cb coding block. Video encoder 20 may

also generate a Cr residual block for the CU. Each sample in the CU's Cr residual block

may indicate a difference between a Cr sample in one of the CU's predictive Cr blocks

and a corresponding sample in the CU's original Cr coding block.

[0057] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the

luma, Cb and, Cr residual blocks of a CU into one or more luma, Cb, and Cr transform

blocks. A transform block may be a rectangular block of samples on which the same

transform is applied. Atransform unit (TU) of a CU may comprise a transform block of

luma samples, two corresponding transform blocks of chroma samples, and syntax

structures used to transform the transform block samples. In a monochrome picture or a

picture that has three separate color planes, a TU may comprise a single transform block

and syntax structures used to transform the transform block samples. Thus, each TU of

a CU may be associated with a luma transform block, a Cb transform block, and a Cr

transform block. The luma transform block associated with the TU may be a sub-block

of the CU's luma residual block. The Cb transform block may be a sub-block of the

CU's Cb residual block. The Cr transform block may be a sub-block of the CU's Cr

residual block.

[0058] Video encoder 20 may apply one or more transforms to a luma transform block

of a TU to generate a luma coefficient block for the TU. A coefficient block may be a

two-dimensional array of transform coefficients. A transform coefficient may be a

scalar quantity. Video encoder 20 may apply one or more transforms to a Cb transform

block of a TU to generate a Cb coefficient block for the TU. Video encoder 20 may

apply one or more transforms to a Cr transform block of a TU to generate a Cr

coefficient block for the TU.

WO 2017/053280 PCT/US2016/052640
15

[0059] After generating a coefficient block (e.g., a luma coefficient block, a Cb

coefficient block or a Cr coefficient block), video encoder 20 may quantize the

coefficient block. Quantization generally refers to a process in which transform

coefficients are quantized to possibly reduce the amount of data used to represent the

transform coefficients, providing further compression. Furthermore, video encoder 20

may inverse quantize transform coefficients and apply an inverse transform to the

transform coefficients in order to reconstruct transform blocks of TUs of CUs of a

picture. Video encoder 20 may use the reconstructed transform blocks of TUs of a CU

and the predictive blocks of PUs of the CU to reconstruct coding blocks of the CU. By

reconstructing the coding blocks of each CU of a picture, video encoder 20 may

reconstruct the picture. Video encoder 20 may store reconstructed pictures in a decoded

picture buffer (DPB). Video encoder 20 may use reconstructed pictures in the DPB for

inter prediction and intra prediction.

[0060] After video encoder 20 quantizes a coefficient block, video encoder 20 may

entropy encode syntax elements that indicate the quantized transform coefficients. For

example, video encoder 20 may perform Context-Adaptive Binary Arithmetic Coding

(CABAC) on the syntax elements indicating the quantized transform coefficients.

Video encoder 20 may output the entropy-encoded syntax elements in a bitstream.

[0061] Video encoder 20 may output a bitstream that includes a sequence of bits that

forms a representation of coded pictures and associated data. The bitstream may

comprise a sequence of network abstraction layer (NAL) units. Each of the NAL units

includes a NAL unit header and encapsulates a raw byte sequence payload (RBSP). The

NAL unit header may include a syntax element that indicates a NAL unit type code.

The NAL unit type code specified by the NAL unit header of a NAL unit indicates the

type of the NAL unit. A RBSP may be a syntax structure containing an integer number

of bytes that is encapsulated within a NAL unit. In some instances, an RBSP includes

zero bits.

[0062] Different types of NAL units may encapsulate different types of RBSPs. For

example, a first type of NAL unit may encapsulate a RBSP for a picture parameter set

(PPS), a second type of NAL unit may encapsulate a RBSP for a coded slice, a third

type of NAL unit may encapsulate a RBSP for Supplemental Enhancement Information

(SEI), and so on. A PPS is a syntax structure that may contain syntax elements that

apply to zero or more entire coded pictures. NAL units that encapsulate RBSPs for

video coding data (as opposed to RBSPs for parameter sets and SEI messages) may be

WO 2017/053280 PCT/US2016/052640
16

referred to as video coding layer (VCL) NAL units. A NAL unit that encapsulates a

coded slice may be referred to herein as a coded slice NAL unit. A RBSP for a coded

slice may include a slice header and slice data.

[0063] Video decoder 30 may receive a bitstream. In addition, video decoder 30 may

parse the bitstream to decode syntax elements from the bitstream. Video decoder 30

may reconstruct the pictures of the video data based at least in part on the syntax

elements decoded from the bitstream. The process to reconstruct the video data may be

generally reciprocal to the process performed by video encoder 20. For instance, video

decoder 30 may use motion vectors of PUs to determine predictive blocks for the PUs

of a current CU. Video decoder 30 may use a motion vector or motion vectors of PUs to

generate predictive blocks for the PUs.

[0064] In addition, video decoder 30 may inverse quantize coefficient blocks associated

with TUs of the current CU. Video decoder 30 may perform inverse transforms on the

coefficient blocks to reconstruct transform blocks associated with the TUs of the current

CU. Video decoder 30 may reconstruct the coding blocks of the current CU by adding

the samples of the predictive sample blocks for PUs of the current CU to corresponding

samples of the transform blocks of the TUs of the current CU. By reconstructing the

coding blocks for each CU of a picture, video decoder 30 may reconstruct the picture.

Video decoder 30 may store decoded pictures in a decoded picture buffer for output

and/or for use in decoding other pictures.

[0065] Next generation video applications are anticipated to operate with video data

representing captured scenery with HDR and a WCG. Parameters of the utilized

dynamic range and color gamut are two independent attributes of video content, and

their specification for purposes of digital television and multimedia services are defined

by several international standards. For example, ITU-R Rec. BT.709, "Parameter values

for the HDTV standards for production and international programme exchange," and/or

ITU-R Rec. BT.2020, "Parameter values for ultra-high definition television systems for

production and international programme exchange," defines parameters for HDTV

(high definition television) and UHDTV (ultra-high definition television), respectively,

such as standard dynamic range (SDR) and color primaries that extend beyond the

standard color gamut. Rec. BT.2100: Image parameter values for high dynamic range

television for use in production and international programme exchange" defines transfer

functions and representations for HDR television use, including primaries that support

wide color gamut representation. There are also other standards developing organization

WO 2017/053280 PCT/US2016/052640
17

(SDOs) documents that specify dynamic range and color gamut attributes in other

systems, e.g., DCI-P3 color gamut is defined in SMPTE-231-2 (Society of Motion

Picture and Television Engineers) and some parameters of HDR are defined in SMPTE

2084. A brief description of dynamic range and color gamut for video data is provided

below.

[0066] Dynamic range is typically defined as the ratio between the maximum and

minimum brightness (e.g., luminance) of the video signal. Dynamic range may also be

measured in terms of 'f-stop,' where one f-stop corresponds to a doubling of a signal's

dynamic range. In MPEG's definition, content that features brightness variation with

more than 16 f-stops is referred as HDR content. In some terms, levels between 10 and

16 f-stops are considered as intermediate dynamic range, but it is considered HDR in

other definitions. In some examples of this disclosure, HDR video content may be any

video content that has a higher dynamic range than traditionally used video content with

a standard dynamic range (e.g., video content as specified by ITU-R Rec. BT.709).

[0067] The human visual system (HVS) is capable for perceiving much larger dynamic

ranges than SDR content and HDR content. However, the HVS includes an adaptation

mechanism to narrow the dynamic range of the HVS to a so-called simultaneous range.

The width of the simultaneous range may be dependent on current lighting conditions

(e.g., current brightness). Visualization of dynamic range provided by SDR of HDTV,

expected HDR of UHDTV and HVS dynamic range is shown in FIG. 2, although the

exact range may vary based on each individual and display.

[0068] Current video application and services are regulated by ITU Rec.709 and

provide SDR, typically supporting a range of brightness (e.g., luminance) of around 0.1

to 100 candelas (cd) per m2 (often referred to as "nits"), leading to less than 10 f-stops.

Some example next generation video services are expected to provide dynamic range of

up to 16 f-stops. Although detailed specifications for such content are currently under

development, some initial parameters have been specified in SMPTE-2084 and ITU-R

Rec.2020.

[0069] Another aspect for a more realistic video experience, besides HDR, is the color

dimension. Color dimension is typically defined by the color gamut. FIG. 3 is a

conceptual diagram showing an SDR color gamut (triangle 100 based on the BT.709

color primaries), and the wider color gamut that for UHDTV (triangle 102 based on the

BT.2020 color primaries). FIG. 3 also depicts the so-called spectrum locus (delimited

by the tongue-shaped area 104), representing the limits of the natural colors. As

WO 2017/053280 PCT/US2016/052640
18

illustrated by FIG. 3, moving from BT.709 (triangle 100) to BT.2020 (triangle 102)

color primaries aims to provide UHDTV services with about 70% more colors. D65

specifies an example white color for the BT.709 and/or BT.2020 specifications.

[0070] Examples of color gamut specifications for the DCI-P3, BT.709, and BT.2020

color spaces are shown in Table 1.

Table 1 - Color gamut parameters

RGB color space parameters

White point Primary colors
Color space

Xw yw XR yR XG yG XB yB

DCI-P3 0.314 0.351 0.680 0.320 0.265 0.690 0.150 0.060

ITU-RBT.709 0.3127 0.3290 0.64 0.33 0.30 0.60 0.15 0.06

ITU-R
0.3127 0.3290 0.708 0.292 0.170 0.797 0.131 0.046

BT.2020

[0071] As can be seen in Table 1, a color gamut may be defined by the X and Y values

of a white point, and by the x and y values of the primary colors (e.g., red (R), green

(G), and blue (B). The x and y values represent normalized values that are derived from

the chromaticity (X and Z) and the brightness (Y) of the colors, as is defined by the CIE

1931 color space. The CIE 1931 color space defines the links between pure colors (e.g.,

in terms of wavelengths) and how the human eye perceives such colors.

[0072] HDR/WCG video data is typically acquired and stored at a very high precision

per component (even floating point), with the 4:4:4 chroma format and a very wide

color space (e.g., CIE XYZ). This representation targets high precision and is almost

mathematically lossless. However, such a format for storing HDR/WCG video data

may include a lot of redundancies and may not be optimal for compression purposes. A

lower precision format with HVS-based assumptions is typically utilized for state-of

the-art video applications.

[0073] Typical video data format conversion for purposes of compression consists of

three major elements, as shown in FIG. 4. The techniques of FIG. 4 may be performed,

for example, by a video preprocessor 17. The three elements include a non-linear

transfer function (TF) for dynamic range compacting such that errors due to

quantization are perceptually uniform (approximately) across the range of luminance

WO 2017/053280 PCT/US2016/052640
19

values, color conversion to a more compact or robust color space, and floating-to

integer representation conversion (quantization). Hence, linear RGB data is compacted

using a non-linear transfer function (TF) for dynamic range compacting. For instance,

video preprocessor 17 may include a transfer function unit (TF) unit configured to use a

non-linear transfer function for dynamic range compacting such that errors due to

quantization are perceptually uniform (approximately) across the range of luminance

values. The compacted data is than run through a color conversion process into a more

compact or robust color space (e.g., via a color conversion unit). Data is then quantized

using a floating-to-integer representation conversion (e.g., via a quantization unit) to

produce the video data (e.g., HDR' data), which may be transmitted to video encoder

20.

[0074] The inverse conversion at the decoder side is depicted in FIG. 5. The techniques

of FIG. 5 may be performed by video postprocessor 33. For example, video

postprocessor 33 may receive video data from video decoder 30, inverse quantize the

data (e.g., via inverse quantization unit), perform inverse color conversion (e.g., via

inverse color conversion unit), and perform inverse non-linear transfer function (e.g.,

via inverse TF unit). The order of these elements, e.g., in FIG. 4 and FIG. 5, is given as

an example, and may vary in real-world applications. (e.g., in FIG. 4, color conversion

may precede the TF module (e.g., TF unit), as well as additional processing, e.g., spatial

subsampling, may be applied to color components.

[0075] The techniques depicted in FIG. 4 will now be discussed in more detail. In

general, a transfer function is applied to data (e.g., HDR/WCG video data) to compact

the dynamic range of the data such that errors due to quantization are perceptually

uniform (approximately) across the range of luminance values. Such compaction allows

the data to be represented with fewer bits. In one example, the transfer function may be

a one-dimensional (ID) non-linear function and may reflect the inverse of an electro

optical transfer function (EOTF) of the end-user display, e.g., as specified for SDR in

Rec. 709. In another example, the transfer function may approximate the HVS

perception to brightness changes, e.g., the PQ transfer function specified in SMPTE

2084 for HDR. The inverse process of the OETF is the EOTF (electro-optical transfer

function), which maps the code levels back to luminance. FIG. 6 shows several

examples of non-linear transfer function used as EOTFs. The transfer functions may

also be applied to each R, G and B component separately.

WO 2017/053280 PCT/US2016/052640
20

[0076] In the context of this disclosure, the terms "signal value" or "color value" may

be used to describe a luminance level corresponding to the value of a specific color

component (such as R, G, B, or Y) for an image element. The signal value is typically

representative of a linear light level (luminance value). The terms "code level" or

"digital code value" may refer to a digital representation of an image signal value.

Typically, such a digital representation is representative of a nonlinear signal value. An

EOTF represents the relationship between the nonlinear signal values provided to a

display device (e.g., display device 32) and the linear color values produced by the

display device.

[0077] RGB data is typically utilized as the input color space, since RGB is the type of

data that is typically produced by image-capturing sensors. However, the RGB color

space has high redundancy among its components and is not optimal for compact

representation. To achieve more compact and a more robust representation, RGB

components are typically converted (e.g., a color transform is performed) to a more

uncorrelated color space that is more suitable for compression, e.g., YCbCr. A YCbCr

color space separates the brightness in the form of luminance (Y) and color information

(CrCb) in different less correlated components. In this context, a robust representation

may refer to a color space featuring higher levels of error resilience when compressed at

a constrained bitrate.

[0078] Following the color transform, input data in a target color space may be still

represented at high bit-depth (e.g. floating point accuracy). The high bit-depth data may

be converted to a target bit-depth, for example, using a quantization process. Certain

studies show that 10-12 bits accuracy in combination with the PQ transfer is sufficient

to provide HDR data of 16 f-stops with distortion below the Just-Noticeable Difference

(JND). In general, a JND is the amount that something (e.g., video data) must be

change in order for a difference to be noticeable (e.g., by the HVS). Data represented

with 10-bit accuracy can be further coded with most of the state-of-the-art video coding

solutions. This quantization is an element of lossy coding and is a source of inaccuracy

introduced to converted data.

[0079] It is anticipated that next generation HDR/WCG video applications will operate

with video data captured at different parameters of HDR and CG. Examples of different

configurations can be the capture of HDR video content with peak brightness up-to

1000 nits, or up-to 10,000 nits. Examples of different color gamut may include BT.709,

BT.2020 as well SMPTE specified-P3, or others.

WO 2017/053280 PCT/US2016/052640
21

[0080] It is also anticipated that a single color space, e.g., a target color representation,

that incorporates (or nearly incorporates) all other currently used color gamut to be

utilized in future. One example of such a target color representation is BT.2020.

Support of a single target color representation would significantly simplify

standardization, implementation and deployment of HDR/WCG systems, since a

reduced number of operational points (e.g., number of color containers, color spaces,

color conversion algorithms, etc.) and/or a reduced number of required algorithms

should be supported by a decoder (e.g., video decoder 30).

[0081] In one example of such a system, content captured with a native color gamut

(e.g. P3 or BT.709) different from the target color representation (e.g. BT.2020) may be

converted to the target container prior to processing (e.g., prior to video encoding).

Below are several examples of such conversion:

[0082] RGB conversion from BT.709 to BT.2020 color representation:

o R2020 = 0.627404078626* R7o + 0.329282097415 *G709 + 0.043313797587* B709

o G2020 = 0.069097233123* R7o + 0.919541035593 *G7o9 + 0.011361189924* B709

o B2020 = 0.016391587664* R7o + 0.088013255546 *G7o9 + 0.895595009604* B709

(eq. 1)

[0083] RGB conversion from P3 to BT.2020 color representation:

o R2020 = 0.753832826496 *RP3 + 0.198597635641* G3 + 0.047569409186* B3

o G2020 = 0.045744636411 *RP3 + 0.941777687331* G3 + 0.012478735611* B3

o B2020 = -0.001210377285 *RP3 + 0.017601107390* G3 + 0.983608137835* B3

(eq. 2)

[0084] During this conversion, the value range occupied by each component (R,G,B) of

a signal captured in P3 or BT.709 color gamut may be reduced in a BT.2020

representation. Since the data is represented in floating point accuracy, there is no loss;

however, when combined with color conversion (e.g., a conversion from RGB to

YCrCB shown in equation 3 below) and quantization (example in equation 4 below),

the shrinking of the value range leads to increased quantization error for input data.

Y' = 0.2627 * R' + 0.6780 * G' + 0.0593 * B'; Cb = B'-Y' R'-Y'

1.8814 1.4746

(eq.3)

WO 2017/053280 PCT/US2016/052640
22

Dy = (Round ((1 « (BitDepthy - 8)) * (219 * Y'+ 16)

Dcb = (Round ((1 « (BitDepthcr - 8)) * (224 * Cb + 128)))

Dcr = (Round ((1 « (BitDepthCb - 8)) * (224 * Cr + 128)

(eq. 4)

[0085] In equation (4) Dy' is the quantized Y' component, Dcb is the quantized Cb and

DCr is the quantized Cr component. The term << represents a bit-wise right shift.

BitDepthy, BitDepthcr, and BitDepthcb are the desired bit depths of the quantized

components, respectively.

[0086] In addition, in a real-world coding system, coding a signal with reduced dynamic

range may lead to significant loss of accuracy for coded chroma components and would

be observed by a viewer as coding artifacts, e.g., color mismatch and/or color bleeding.

[0087] FIG. 7 is a simplified conceptual illustration of how video preprocessor 17 may

generate unique bit sequences that represent a range of values for a color component in

a color representation, which may not be occupying the full value range of the

components in the color representation, might be translated into a range of values for a

target color. One-dimensional ranges of component values are shown, including a one

dimensional native range of codewords 910, and a one-dimensional a target range of

codewords 920. For simplicity, and for purposes of illustration, the native range of

codewords (corresponding to range of codewords 910) in the example of FIG. 7 is

assumed to have 1024 codewords (ranging, for example, from 0 to 1023), and the target

range of codewords (corresponding to range of codewords 920) is assumed to have a

larger number of codewords, such as 2048 (ranging, for example, from 0 to 2047).

[0088] Illustrated in FIG. 7 are a number of represented values 910a in the native range

of codewords 910, where each may correspond to a component value represented in a

sample of video data in the native range of codewords 910. For simplicity in the

illustration of FIG. 7, only a few represented values 910a are shown along the range of

codewords 910, but many more values 910a in the range may be present in a typical

sample of video data. Similarly, only the corresponding component values 920a after

conversion to the target range of codewords are shown in the range of codewords 920;

in a different example, many more values 920a may be represented in the range of

codewords 920.

WO 2017/053280 PCT/US2016/052640
23

[0089] In some examples, a video preprocessor may convert the unadjusted component

values 910a in the native range of codewords 910 to the adjusted values 920a of target

range of codewords 920. For purposes of illustration, such a process might be

illustrated in the manner shown in the simplified example of FIG. 7. For example, if

luma values in a native range of codewords are represented by the one-dimensional

representation 910 of values corresponding to the native range of codewords in FIG. 7,

luma values could have 1024 possible values (from 0 to 1023) in the native range of

codewords, with the actual sample of video data including luma values 910a. Similarly,

if those same luma values after conversion to a target range of codewords are

represented by the one-dimensional representation of codewords 920 of values

corresponding to the target range of codewords, luma values could have 2048 possible

values (0 to 2047) in the target range of codewords, with the sample of video data

including luma values 920a after conversion. Accordingly, the represented values 910a

in the range of codewords 910 may be translated, through the conversion process, to the

represented values 920a in the range of codewords 920 as shown in FIG. 7. In each

case, the values 91Oa in the range of codewords 910 and values 920a in the range of

codewords 920 would each be represented by a binary codeword corresponding to one

such value in the range.

[0090] In general, in the simplified example of FIG. 7, after color gamut conversion

(and dynamic range compaction by a transfer function), the converted component values

may not use all of the available codewords in the target color representation. In the

example of FIG. 7, the target range of codewords has twice as many luma codewords as

the native range of codewords. A conversion and quantization process performed on the

component values in the range of codewords 910 may in some cases result in

significantly less than all of the 2048 codewords in the range of codewords 920 being

used by the luma values after conversion, depending on the distribution of component

values in the range of codewords 910. In other words, a conversion process such as that

illustrated in FIG. 7 may inefficiently distribute the color values relative to the number

of target codewords otherwise available in the range of codewords 920, and as a result,

might not make efficient use of all possible codewords. Accordingly, the conversion

and quantization process may result in a significant loss of accuracy. This loss of

accuracy may have undesirable effects on the resulting video, including coding artifacts,

color mismatch, and/or color bleeding.

WO 2017/053280 PCT/US2016/052640
24

[0091] To address the problems described above, other techniques may be considered.

One example technique includes a color gamut aware video codec. In such a technique,

a hypothetical video encoder is configured to estimate the native color gamut of the

input signal and adjust coding parameters (e.g., quantization parameters for coded

chroma components) to reduce any distortion resulting from the reduced dynamic range.

However, such a technique would not be able to recover loss of accuracy, which may

happen due to the quantization conducted in equation (4) above, since all input data is

provided to a typical codec in integer point accuracy.

[0092] This disclosure describes techniques, methods, and apparatuses to perform a

dynamic range adjustment (DRA) to compensate dynamic range changes introduced to

HDR signal representations. The dynamic range adjustment may help to prevent and/or

lessen any distortion caused, including color mismatch, color bleeding, etc. In one or

more examples of the disclosure, DRA is conducted on the values of each color

component of the target color space, e.g., YCbCr, prior to quantization at the encoder

side (e.g., by source device 12) and after the inverse quantization at the decoder side

(e.g., by destination device 14). In view of the foregoing, this disclosure proposes

signaling, through one or more SEI messages, parameters relating to performing such a

dynamic range adjustment, such parameters including information relating to scale and

offsets, partitions, global offsets, and local scale and offsets.

[0093] FIG. 8 is a block diagram illustrating an example HDR/WCG conversion

apparatus operating according to the techniques of this disclosure. In FIG. 8, solid lines

specify the data flow and dashed lines specify control signals. One or more techniques

described in this disclosure may be performed by video preprocessor 19 of source

device 12. As discussed above, video preprocessor 19 may be a separate device from

video encoder 20. In other examples, video preprocessor 19 may be incorporated into

the same device as video encoder 20.

[0094] As shown in FIG. 8, RGB native CG video data 200 is input to video

preprocessor 19. In the context of video preprocessing by video preprocessor 19, RGB

native CG video data 200 is defined by an input color representation. The input color

container specifies a set of color primaries used to represent video data 200 (e.g., BT.

709, BT. 2020, P3, etc.). In one example of the disclosure, video preprocessor 19 may

be configured to convert both the color container and the color space of RGB native CG

video data 200 to a target color container and target color space for HDR' data 216.

Like the input color container, the target color container may specify a set or color

WO 2017/053280 PCT/US2016/052640
25

primaries used to represent the HDR' data 216. In one example of the disclosure, RGB

native CG video data 200 may be HDR/WCG video, and may have a BT.2020 or P3

color container (or any WCG), and be in an RGB color space. In another example,

RGB native CG video data 200 may be SDR video, and may have a BT.709 color

container. In one example, the target color container for HDR' data 216 may have been

configured for HDR/WCG video (e.g., BT.2020 color container) and may use a color

space more optimal for video encoding (e.g., YCrCb).

[0095] In one example of the disclosure, CG converter 202 may be configured to

convert the color container of RGB native CG video data 200 from the input color

container (e.g., first color container) to the target color container (e.g., second color

container). As one example, CG converter 202 may convert RGB native CG video data

200 from a BT.709 color representation to a BT.2020 color representation, example of

which is shown below.

[0096] The process to convert RGB BT.709 samples (R7os, G709, B 70 9) to RGB BT.2020

samples (R2o2o, G2020, B2 0 2 0) can be implemented with a two-step conversion that

involves converting first to the XYZ representation, followed by a conversion from

XYZ to RGB BT.2020 using the appropriate conversion matrices.

X = 0.412391* Ro + 0.357584 *G79 + 0.180481 *B709

Y = 0.212639* R7o + 0.715169 *G79 + 0.072192 *B709 (eq. 5)

Z = 0.019331* R709 + 0.119195 *G709 + 0.950532* B709

[0097] Conversion from XYZ to R202G202B2020 (BT.2020)

R2020 = clipRGB(1.716651 * X - 0.355671 * Y - 0.253366 * Z)

G2020 = clipRGB(-0.666684 * X + 1.616481 * Y + 0.015768 * Z) (eq. 6)

B2020 = clipRGB(0.017640 * X - 0.042771 * Y + 0.942103 * Z)

Similarly, the single step and recommended method is as follows:

R2020 = clipRGB(0.627404078626 * Ros + 0.329282097415 * Gos +

0.043313797587 * B 70 9)

G2020 = clipRGB(0.069097233123 * R709 + 0.919541035593 * G709 +

0.011361189924 * B709)

B2020 = clipRGB(0.016391587664 * Ros + 0.088013255546 * Gos +

0.895595009604 * B 70 9)

WO 2017/053280 PCT/US2016/052640
26

(eq. 7)

[0098] The resulting video data after CG conversion is shown as RGB target CG video

data 204 in FIG. 8. In other examples of the disclosure, the color container for the input

data and the output HDR' data may be the same. In such an example, CG converter 202

need not perform any conversion on RGB native CG video data 200.

[0099] Next, transfer function unit 206 compacts the dynamic range of RGB target CG

video data 204. Transfer function unit 206 may be configured to apply a transfer

function to compact the dynamic range in the same manner as discussed above with

reference to FIG. 4. The color conversion unit 208 converts RGB target CG color data

204 from the color space of the input color container (e.g., RGB) to the color space of

the target color container (e.g., YCrCb). As explained above with reference to FIG. 4,

color conversion unit 208 converts the compacted data into a more compact or robust

color space (e.g., a YUV or YCrCb color space) that is more suitable for compression by

a hybrid video encoder (e.g., video encoder 20).

[0100] Adjustment unit 210 is configured to perform a dynamic range adjustment

(DRA) of the color converted video data in accordance with DRA parameters derived

by DRA parameters estimation unit 212. In general, after CG conversion by CG

converter 202 and dynamic range compaction by transfer function unit 206, the actual

color values of the resulting video data may not use all available codewords (e.g.,

unique bit sequences that represent each color) allocated of a particular target color

representation. That is, in some circumstances, the conversion of RGB native CG video

data 200 from an input color representation to an output color representation may overly

compact the color values (e.g., Cr and Cb) of the video data such that the resultant

compacted video data does not make efficient use of all possible color values. As

explained above, coding a signal with a reduced range of values for the colors may lead

to a significant loss of accuracy for coded chroma components and would be observed

by a viewer as coding artifacts, e.g., color mismatch and/or color bleeding.

[0101] Adjustment unit 210 may be configured to apply DRA parameters to the color

components (e.g., YCrCb) of the video data, e.g., RGB target CG video data 204 after

dynamic range compaction and color conversion to make full use of the codewords

available for a particular target color representation. Adjustment unit 210 may apply the

DRA parameter to the video data at a pixel level. In general, the DRA parameters

define a function that expands the codewords used to represent the actual video data to

WO 2017/053280 PCT/US2016/052640
27

as many of the codewords available for the target color representation as possible. As is

further described below, the process for expanding the codewords used to represent the

actual video may include partitioning the codeword range, and applying a scale and

offset to each such partition.

[0102] In one example of the disclosure, the DRA parameters include a scale and offset

value that are applied to the components of the video data. In general, the lower the

value range of the color components of the video data, the larger a scaling factor may be

used. The offset parameter may be used to center the values of the color components to

the center of the available codewords for a target color representation. For example, if a

target color representation includes 1024 codewords per color component, an offset

value may be chosen such that the center codeword is moved to codeword 512 (e.g., the

middle most codeword). In other examples, the offset parameter may be used to provide

better mapping of input codewords to output codewords such that overall representation

in the target color representation is more efficient in combating coding artifacts.

[0103] In one example, adjustment unit 210 applies DRA parameters to video data in

the target color space (e.g., YCrCb) as follows:

- Y" = scale *Y' + offset

- Cb" = scale2 *Cb' + offset2 (eq. 8)

- Cr" = scale3 *Cr' + offset3

where signal components Y', Cb' and Cr' is a signal produced from RGB to YCbCr

conversion (example in equation 3). Note that Y', Cr' and Cr' may also be a video

signal decoded by video decoder 30. Y", Cb", and Cr" are the color components of the

video signal after the DRA parameters have been applied to each color component. As

can be seen in the example above, each color component is related to different scale and

offset parameters. For example, scale and offset are used for the Y' component,

scale2 and offset2 are used for the Cb' component, and scale3 and offset3 are used for

the Cr' component. It should be understood that this is just an example. In other

examples, the same scale and offset values may be used for every color component.

[0104] As can be seen in the above example, adjustment unit 210 may apply dynamic

range adjustment parameters, such the scale and offset DRA parameters, as a linear

function. As such, it is not necessary for adjustment unit 210 to apply the DRA

parameters in the target color space after color conversion by color conversion unit 208.

This is because color conversion is itself a linear process. As such, in other examples,

adjustment unit 210 may apply the DRA parameters to the video data in the native color

WO 2017/053280 PCT/US2016/052640
28

space (e.g., RGB) before any color conversion process. In this example, color

conversion unit 208 would apply color conversion after adjustment unit 210 applies the

DRA parameters.

[0105] In other examples, and as further described below in connection with FIG. 9A

through FIG. 9C, each color component may be associated with multiple scale and

offset parameters, and the range of codewords may be divided into multiple partitions.

For example, the actual distribution of chroma values for the Cr or Cb color components

may differ for different portions of codewords, and may not be uniform over the range

of codewords. In such a situation (or in other situations), it may be beneficial to divide

the range of codewords into multiple partitions, and apply a scale and offset to each

partition. One or more global offsets may be applied to some or all of the partitions.

[0106] In some examples, adjustment unit 210 may apply the DRA parameters in either

the target color space or the native color space as follows:

- Y" = (scalel *(Y' - offsetY) + offset) + offsetY;

- Cb" = scale2 *Cb' + offset2 (eq. 9)

- Cr" = scale3 *Cr' + offset3

In this example, the parameter scale, scale2, scale3, offset, offset2, and offset3 have

the same meaning as described above. The parameter offsetY is a parameter reflecting

brightness of the signal, and can be equal to the mean value of Y'. In other examples,

an offset parameter similar to offset Y may be applied for the Cb' and Cr' components

to better preserve the mapping of the center value in the input and the output

representations.

[0107] In another example of the disclosure, adjustment unit 210 may be configured to

apply the DRA parameters in a color space other than the native color space or the target

color space. In general, adjustment unit 210 may be configured to apply the DRA

parameters as follows:

- X' = scale *(X - offset) + offset2 + offset3;

- Y' = scale2 *(Y -offset4) + offset5 + offset6 (eq. 10)

- Z' = scale3 *(Z - offset7) + offset8 + offset9

where signal components X, Y and Z are signal components in a color space which is

different from target color space, e.g., RGB or an intermediate color space. The values

X, Y, and Z may simply be variables or references to signal components, and should not

be confused with the XYZ color space.

WO 2017/053280 PCT/US2016/052640
29

[0108] FIG. 9A is a simplified conceptual illustration of how unique bit sequences that

represent a range of values for a color component in a native range of codewords might

be converted by video preprocessor 19 of FIG. 8 into a range of values for a target range

of codewords in accordance with one or more aspects of the present disclosure. One

dimensional ranges of component values are shown in FIG. 9A, including a one

dimensional native range of codewords 1210 corresponding to a native range of

codewords, and a one-dimensional target range of codewords 1220 that corresponds to a

target range of codewords. In a manner similar to that described in connection with

FIG. 7, for simplicity and for purposes of illustration, the range of component values for

the native range of codewords (corresponding to range 1210) in the example of FIG. 9A

is assumed to have 1024 codewords, and the range of component values for the target

range of codewords (corresponding to range of codewords 1220) is assumed to have

2048 codewords. For example, if the one-dimensional native range of codewords 1210

represents luma values, there could be 1024 possible luma values in the range of

codewords 1210 corresponding to the native range of codewords. If the one

dimensional target range of codewords 1220 represents the luma values in the target

range of codewords, there could be 2048 possible luma values in the range of

codewords 1220 corresponding to the target range of codewords.

[0109] Illustrated in FIG. 9A are a number of represented values 1210a in the native

range of codewords 1210, which each correspond to a component value represented in a

sample of video data in the native range of codewords 1210. For simplicity in the

illustration of FIG. 9A, only a few represented values 1210a are shown in the range of

codewords 1210, but many more component values 121Oa in the range of codewords

1210 may be present in a typical sample of video data.

[0110] In some cases, the values 1210a for a sample of video data might not be

uniformly spread over the range of codewords 1210, and may be concentrated in a

relatively small number of regions within the range of codewords 1210. Although the

illustration in FIG. 9A is a simplified example, such a non-uniform representation is

nevertheless apparent in FIG. 9A, because range of codewords 1210 shows a number of

component values 1210a near the ends of the range of codewords 1210, but no values

generally in the middle of the range (i.e., in the range codewords between 169 and 702).

[0111] In some examples, video preprocessor 19 may apply a global offset value to the

range of codeword values 1210 in FIG. 9A when performing dynamic range adjustment

to efficiently map unadjusted component values 1210a in the range of codeword values

WO 2017/053280 PCT/US2016/052640
30

1210 to adjusted component values 1220a in the range of component values 1220. For

instance, in FIG. 9A, video preprocessor 19 may choose a first global offset value 119 in

the unadjusted range of codewords 1210, which is one of the component values 1210a

in the range of codewords 1210. Video preprocessor 19 may choose a second global

offset value to be 0, which in the example of FIG. 9A is the adjusted value in the range

of codewords 1220 that the first global offset (119) maps to when performing dynamic

range adjustment.

[0112] In some examples, there may be unadjusted component values in the range of

codewords 1210 that are less than the global offset value. In the range of codewords

1210 in FIG. 9A, there is one such component value 1210a (having a value of 60). In

some examples, video preprocessor 19 may ignore this value, particularly where the

unadjusted component value that is less than the first global offset will not have a

significant effect on the decoded video data. In other examples, any component value

1210a less than the first global offset value (119) in range of codewords 1210 may be

clipped to the first global offset value (119), or in other words, video preprocessor 19

may assume it to be equal to the first global offset value (119). In such an example,

video preprocessor 19 may modify the unadjusted value 60 prior to performing dynamic

range adjustment so that it has an unadjusted component value of 119 within range of

codewords 1210, rather than an unadjusted component value of 60.

[0113] Video preprocessor 19 may choose an appropriate scale value to be used in

conjunction with the global offset values. Accordingly, in the example of FIG. 9A,

video preprocessor 19 may use such dynamic range parameters to translate unadjusted

component values 1210a in range of codewords 1210 to values 1220a in range of

codewords 1220. In some examples, such dynamic range adjustment parameters may

be chosen so that when converting values 1210a to the range of codewords 1220,

available codewords in the range of codewords 1220 are used in an efficient manner.

For example, video preprocessor 19 may calculate a linear scale value based on

assumptions that the dynamic range adjustment will translate the first global offset

(unadjusted value 119) into the second global offset (adjusted value 0), and that the

dynamic range adjustment will translate the last unadjusted value 1210a (having an

unadjusted value of 852) in the range of code words 1210 is translated into an adjusted

value of 2047 in the range of codewords 1210. Based on such assumptions in the

simplified example of FIG. 9A, video preprocessor 19 may determine that the following

WO 2017/053280 PCT/US2016/052640
31

formula can be used to translate unadjusted component values 1210a from range of

codewords 1210 into adjusted component values 1220a in the range of codewords 1220:

A1220 = 2.793 * (U1210-119) + 0 (eq. 11)

[0114] In the equation above, A122o is an adjusted component value in the range of

codewords 1220, and U1210 is an unadjusted component value in the range of codewords

1210. In this formula the scale value is calculated to be 2.793, and the first global offset

value is 119, and the second global offset value is 0.

[0115] The effect of the dynamic range adjustment performed by video preprocessor 19

and illustrated in FIG. 9A is that values in the range of codewords 1210 are translated

into values in the range of codewords 1220 in a way such that that the adjusted

component values are spread within the range of codewords 1220 to effectively use

more codewords in the range of codewords 1220. In some examples, video

preprocessor 19 chooses scale and global offset values so that component values

represented in the video data (values 1210a in the range of codewords 1210), are spread

out among as many a codewords along the range of codewords 1220 as is beneficial. In

further examples, even when the bit depth and/or the codewords corresponding to

ranges 1210 and 1220 are the same, it may be possible for video preprocessor 19 to

translate values into values in the range of codewords 1220 so that the adjusted

component values are spread within the range of codewords 1220 to effectively use

more codewords in the range of codewords 1220. In some examples, one way in which

this may be possible is to map unadjusted values at or below a global offset value to the

first value in the range of codewords 1220 (e.g., map value 1210a to adjusted value 0).

[0116] FIG. 9B is another simplified conceptual illustration of how video preprocessor

19 may translate unique bit sequences that represent a range of values for a color

component in a native range of codewords into a range of values for a target range of

codewords. As in FIG. 9A, one-dimensional ranges of component values are shown in

FIG. 9B, including a one-dimensional native range of codewords 1230 corresponding to

a native range of codewords, and a one-dimensional target range of codewords 1240

that corresponds to a target range of codewords. For simplicity, and for purposes of

illustration, the range of component values for the native color representation

(corresponding to the range of codewords 1230) in the example of FIG. 9B is assumed

to have 1024 codewords, and the range of component values for the target range of

codewords (corresponding to the range of codewords 1240) is assumed to have 2048

codewords. For example, in a manner similar to FIG. 9A, if the one-dimensional native

WO 2017/053280 PCT/US2016/052640
32

range of codewords 1230 represents luma values, there could be 1024 possible luma

values in the range of codewords 1230 corresponding to the native range of codewords.

If the one-dimensional target range of codewords 1240 represents the luma values in the

target range of codewords, there could be 2048 possible luma values in the range of

codewords 1240 corresponding to the target range of codewords.

[0117] Illustrated in FIG. 9B are a number of represented values 1230a in the native

range of codewords 1230, which each correspond to a component value represented in a

sample of video data in the native range of codewords 1230. For simplicity in the

illustration of FIG. 9B, only a few represented values 1230a are shown in the range of

codewords 1230, but many more component values 1230a in the range of codewords

1230 may be present in a typical sample of video data.

[0118] As illustrated in FIG. 9B, and in some examples, video preprocessor 19 may

determine that further efficiencies in performing dynamic range adjustment may be

gained by dividing the range of codewords 1230 into multiple partitions. Video

preprocessor 19 may determine scale and offset values for each partition, which video

preprocessor 19 uses to map unadjusted component values 1230a in each partition to

adjusted component values 1240a in the range of component values 1240. If video

preprocessor 19 chooses the scale and offset parameters to efficiently use the codewords

of the target range of codewords 1240, it may be possible to efficiently represent the

video data in the target range of codewords 1240, and may also result in higher quality

decoded video data.

[0119] For instance, in FIG. 9B, video preprocessor 19 divides the range of codewords

1230 into five partitions (1231, 1232, 1233, 1234, and 1235). Partition 1231

corresponds to codewords 0 to 118 (inclusive) in the range of codewords 1230, and

includes only one represented component value (component value 60). Partition 1232

corresponds to codewords 119 to 168, and in the simplified example of FIG. 9B, the

video sample represented by the range of codewords 1210 includes three component

values 1230a in partition 1232 (component values 119, 132, and 168). Partition 1233

corresponds to codewords 169 to 702, and the video sample represented by range of

codewords 1230 includes no component values in this range. Partition 1234

corresponds to codewords 703 to 852, and the video sample represented by range of

codewords 1230 includes three component values 1230a in this partition (component

values 703, 767, and 852). Finally, the fifth partition, partition 1235, ranges from

WO 2017/053280 PCT/US2016/052640
33

codeword 853 to codeword 1023, and the video sample represented by range of

codewords 1230 includes no component values in this range.

[0120] Video preprocessor 19 chooses partitions and appropriate scale and offset values

so that performing dynamic range adjustment on the component values shown in the

range of codewords 1230 will result in using the available codewords in the range of

codewords 1240 in an efficient manner. In the example of FIG. 9B, video preprocessor

19 allocates to partitions that include values (e.g., partitions 1232 and 1234) a portion of

the range of codewords 1240, whereas video preprocessor 19 allocates to partitions

including no values (partitions 1231, 1233, 1225) no portion of the range of codewords

1240. Similarly, the size of the portion of range 1240 that video preprocessor 19

allocates to partitions depends on the size of the corresponding partition 1231, 1232,

1233, 1234, and 1235. For a larger or wider partitions on range 1230, a larger portion of

range 1240 is allocated.

[0121] Further, in some cases, as previously described in connection with FIG. 9A,

video preprocessor 19 may determine that it may be beneficial to omit or ignore certain

values in the range of codewords 1230, such as, for example, values at the extreme ends

of the range of codewords 1230. To the extent that such values may be few in number,

and/or where such values do not affect the decoded video data in a significant way,

some efficiencies may be gained by omitting such values. For instance, with respect to

partition 1211 in the example of FIG. 9B, some efficiencies may be gained if the video

preprocessor 19 ignores the single codeword having a component value of 60

represented by the video data in partition 1231, so in the example of FIG. 9B, video

preprocessor 19 does not allocate that partition 1231 any portion of the range of

codewords 1240.

[0122] Accordingly, in the example of FIG. 9B, video preprocessor 19 translates

partition 1232, which spans 50 values or codewords (119 through 168) in the range of

codewords 1230, into a partition 1242 spanning codewords 0 through 511 of range of

codewords 1240. Video preprocessor 19 translates partition 1234, which spans 150

codewords in the range of codewords 1230, into a partition 1244 in the range of

codewords 1240 spanning codewords 512 through 2047. As a result, the partition 1242

in the range of codewords 1240 spans 512 codewords along range of codewords 1240,

and the partition 1244 in the range of codewords 1240 spans 1536 codewords along

range of codewords 1240. The partition 1244 is therefore three times the size of

partition 1242. In the example of FIG. 9B, video preprocessor 19 may have chosen the

WO 2017/053280 PCT/US2016/052640
34

partition sizes in this way because the partitions 1232 and 1234 were similarly

proportioned (i.e., partition 1234 is three times the size of partition 1232), thereby

maintaining the relative size of the partitions 1232 and 1234 when dynamic range

adjustment translates those partitions into adjusted component values within partitions

1242 and 1244 in the range of codewords 1240. In other examples, video preprocessor

19 might not maintain the proportions of partitions along range of codewords 1230 in

this manner when dynamic range adjustment is applied to values in the range of

codewords 1230 to translate those partitions to values in the range of codewords 1240.

In other examples, video preprocessor 19 may maintain the proportions of partitions

along range of codewords 1230 in a different way.

[0123] Still referring to the example of FIG. 9B, video preprocessor 19 may apply a

scale and offset value (e.g., a local scale and local offset) in a manner local to each of

the partitions in the range of codeword values 1230, to translate unadjusted component

values 1230a in those partitions to adjusted component values 1240a in partitions 1242

and 1244 along range of codewords 1240. For example, for partition 1232, video

preprocessor 19 may calculate linear scale and offset values based on assumptions that

the first unadjusted value of 119 in partition 1232 maps to an adjusted value of 0 in

partition 1242, and the last unadjusted value of 168 in partition 1232 maps to an

adjusted value of 511 in partition 1242. Based on such assumptions in the simplified

example of FIG. 9B, video preprocessor 19 may determine that the following formula

can be used to translate unadjusted component values from partition 1232 into adjusted

component values from partition 1242:

A1242 = 10.429 * U1232 + -1241.1 (eq. 12)

[0124] In the equation above, A1242 is an adjusted component value in partition 1242

within the range of codewords 1240, and U1232 is an unadjusted component value in

partition 1232 within the range of codewords 1230. In this formula, the local scale

value for the partition 1232 is 10.429, and the local offset value for the partition 1232 is

-1241.1.

[0125] Similarly, video preprocessor 19 may calculate linear scale and offset values for

converting unadjusted component values in partition 1234 into adjusted component

values in partition 1244 based on assumptions that the first unadjusted value of 703 in

partition 1234 corresponds to an adjusted value of 512 in partition 1244, and the last

unadjusted value of 852 in partition 1234 corresponds to an adjusted value of 2047 in

partition 1244. Based on such assumptions, video preprocessor 19 may determine that

WO 2017/053280 PCT/US2016/052640
35

the following formula may be used to translate unadjusted component values from

partition 1234 into adjusted component values in partition 1244:

A1244 = 10.302 * U1234 + -6730.3 (eq. 13)

[0126] In the equation above, A1244 is an adjusted component value in partition 1244

within the range of codewords 1240, and U1234 is an unadjusted component value in

partition 1234 within the range of codewords 1230. In this formula, the local scale

value for the partition 1234 is 10.302, and the local offset value for the partition 1234 is

-6730.3.

[0127] In the example of FIG. 9B, video preprocessor 19 does not allocate to partitions

1231, 1233, and 1235 any of the range of codewords 1240, which may enable a more

efficient use of range of codewords 1240, and may allow more of the range of

codewords 1240 to be used for partitions where the video data includes more values

(e.g., partitions 1232 and 1234). In such an example, partitions 1231, 1233, and 1235

may not have any corresponding partition in the range of codewords 1240. In some

examples, video preprocessor 19 may ignore or drop any unadjusted component values

that might be included in a video data sample corresponding to partitions 1231, 1233,

and 1235. In other examples, video preprocessor 19 may map any unadjusted

component values that might be included in partitions 1231, 1233, and 1235 to an

appropriate value in one of the other partitions, or video preprocessor 19 may map such

values to a value on or near a border between partitions allocated in the range of

codewords 1240, or video preprocessor 19 may map such values to one of the two ends

of the range of codewords 1240. Alternatively, video preprocessor 19 may allocate (or

logically allocate) a small partition, or one having size of zero, and video preprocessor

19 may apply appropriate local scale and offset values for such a partition to map

unadjusted component values for such partitions into adjusted component values in the

range of codewords 1240.

[0128] The effect of the dynamic range adjustment illustrated in FIG. 9B is that video

preprocessor 19 translates values in the range of codewords 1230 into values in the

range of codewords 1240 in a way such that that the values in partitions 1232 and 1234

are spread within the range of codewords 1240 to effectively use more codewords in the

range of codewords 1240. In some examples, video preprocessor 19 chooses the local

scale and local offset values, for each partition, so that component values represented in

the video data, as represented by values 1230a in the range of codewords 1230, are

spread out among as many codewords along the range of codewords 1240 as possible.

WO 2017/053280 PCT/US2016/052640
36

In some cases, such as where there are large number of values 1230a within certain

ranges, such an adjustment may be beneficial. Video preprocessor 19 performing

dynamic range adjustment in a manner similar to that described in connection with FIG.

9B in such a case may result in preventing or reducing any loss of accuracy for coded

component values, and therefore, may prevent coding artifacts (e.g., color mismatch

and/or color bleeding) from being observed by a viewer of the decoded video data.

[0129] In some examples, video preprocessor 19 may gain further efficiencies by

choosing a global offset value that may be applied to the range of codewords 1230 and

1240 in FIG. 9B, in a manner similar to that described in connection with FIG. 9A. For

instance, in FIG. 9B, video preprocessor 19 may choose a global offset value of 119, so

that any values less than 119 in the range of codewords 1210 may be assumed to be the

unadjusted value 119. In such an example, video preprocessor 19 would assume that the

unadjusted component value 60 in partition 1231 has a value of 119, rather than 60, and

would therefore be included in partition 1232. In some examples, video preprocessor

19 modifying a value before performing a dynamic range adjustment may be preferable

to ignoring the value or not performing a dynamic range adjustment on the value.

[0130] In the example of FIG. 9B, video preprocessor 19 translates the global offset

value for the unadjusted component value 119 into an adjusted component value of 0

along range of codewords 1240. The adjusted value 0 that corresponds to the global

offset value for the unadjusted value 119 may itself be used as a second global offset

value in a manner similar to that described in connection with FIG. 9A. This second

global offset value may be considered the adjusted value corresponding to unadjusted

value 119, or put another way, the first global offset value (unadjusted component value

in the range of codewords 1230) may map to the second global offset value (adjusted

component value in the range of codewords 1240).

[0131] The equations {12} and {13} described previously for performing a dynamic

range adjustment for values in partitions 1212 and 1214, can be rewritten in terms of

these above-described global offset values. Specifically, video preprocessor 19 may

determine a different relationship may apply to partition 1232 when one or more global

offset values are used. Accordingly, equation {12} can be rewritten as follows:

A1242 = 10.429 * (U1232 + -119) + 0 + 0 (eq. 14)

[0132] In the equation above, A1242 is an adjusted component value in partition 1242

within the range of codewords 1240, and U1232 is an unadjusted component value in

partition 1232 within the range of codewords 1230. In this formula, the (first) global

WO 2017/053280 PCT/US2016/052640
37

offset value for the unadjusted component values in the range of codewords 1230 is

119, and the (second) global offset value for the adjusted component values in the range

of codewords 1240 is 0. The scale value for the partition 1232 is 10.429, and the offset

value for the partition 1232 is 0.

[0133] Similarly, video preprocessor 19 may determine that a different relationship may

apply to partition 1234 when one or more global offset values are used. Accordingly,

equation {13} can be rewritten as follows:

A1244 = 10.302 * (U1234 + -119) + 0 + -5504.4 (eq. 15)

[0134] In the equation above, A1244 is an adjusted component value in partition 1244

within the range of codewords 1240, and U1234 is an unadjusted component value in

partition 1234 within the range of codewords 1230. In this formula, the (first) global

offset value for the unadjusted component values in the range of codewords 1230 is

119, and the (second) global offset value for the adjusted component values in the range

of codewords 1240 is 0. The scale value for the partition 1234 is 10.302, and the offset

value for the partition -5504.4.

[0135] FIG. 9C is another simplified conceptual illustration of how video preprocessor

19 may translate unique bit sequences that represent a range of values for a color

component in a native range of codewords into a range of values for a target range of

codewords. As in FIG. 9A and FIG. 9B, one-dimensional ranges of component values

are shown in FIG. 9C, including a one-dimensional native range of codewords 1250

corresponding to a native range of codewords, and a one-dimensional a target range of

codewords 1260 that corresponds to a target range of codewords. In this example, the

range of component values for the native range of codewords (corresponding to the

range of codewords 1250) is assumed to correspond to 2048 codewords, and the range

of component values for the target range of codewords (corresponding to the range of

codewords 1260) is assumed to correspond to 2048 codewords. For example, if the

one-dimensional native range of codewords 1250 represents luma values, there could be

2048 possible luma values in the range of codewords 1250 corresponding to the native

range of codewords. If the one-dimensional target range of codewords 1260 represents

the luma values in the target range of codewords, there could be 2048 possible luma

values in the range of codewords 1260 corresponding to the target range of codewords.

[0136] The example of FIG. 9C illustrates that a dynamic range adjustment performed

by video preprocessor 19 in accordance with one or more aspects of the present

disclosure may be beneficial even when the native range of codewords (corresponding

WO 2017/053280 PCT/US2016/052640
38

to the range of codewords 1250 in FIG. 9C) is the same size or substantially the same

size as the target range of codewords (corresponding to the range of codewords 1260 in

FIG. 9C). Illustrated in FIG. 9C are a number of represented values 1250a in the native

range of codewords 1250. For simplicity, only a few represented values 1250a are

shown.

[0137] As illustrated in FIG. 9C, video preprocessor 19 may divide the range of

codewords 1250 into multiple partitions. Video preprocessor 19 may calculate and use

scale and offset values for each partition to map unadjusted component values 1250a in

each partition to adjusted component values 1260a in the range of component values

1260. Video preprocessor 19 may choose dynamic range adjustment parameters to

efficiently use the codewords of the target range of codewords 1260. For instance, in

FIG. 9C, video preprocessor 19 may divide the range of codewords 1250 into five

partitions (1251, 1252, 1253, 1254, and 1255). As with other examples, in the example

of FIG. 9C, video preprocessor 19 allocates a portion of the range of codewords 1260 to

those partitions that include values, whereas video preprocessor 19 might not allocate

any portion of the range of codewords 1260 to those partitions that include no values.

Similarly, video preprocessor 19 may allocate a larger portion of the range of codewords

1260 to those partitions in the range of codewords 1250 that are wider or span more

values than another partition in 1250. Further, with respect to partition 1251 in the

example of FIG. 9C, video preprocessor 19 does not allocate any portion of the range of

codewords 1260 to partition 1251, even though that partition includes a component

value of 120.

[0138] Accordingly, video preprocessor 19 in the example of FIG. 9C translates

partition 1252, which spans 100 values or codewords (238 through 337) in the range of

codewords 1250, into a partition 1262 spanning codewords 0 through 511 of the range

of codewords 1260. Video preprocessor 19 translates partition 1254, which spans 300

codewords in the range of codewords 1250, into a partition 1264 in the range of

codewords 1260 spanning codewords 512 through 2047.

[0139] Still referring to the example of FIG. 9C, video preprocessor 19 may calculate

and apply a scale and offset value, in a manner local to each of the partitions in the

range of codeword values 1250, to translate unadjusted component values in those

partitions to adjusted component values in partitions 1262 and 1264 along range of

codewords 1260. For example, for partition 1252, video preprocessor 19 may calculate

linear scale and offset values based on assumptions that the first unadjusted value of 238

WO 2017/053280 PCT/US2016/052640
39

in partition 1252 maps to an adjusted value of 0 in partition 1262, and the last

unadjusted value of 337 in partition 1252 maps to an adjusted value of 511 in partition

1262. Based on such assumptions in the simplified example of FIG. 9C, video

preprocessor 19 may determine that following relationship may be used to translate

unadjusted component values from partition 1212 into adjusted component values from

partition 1222:

A1262 = 5.162 * (U1252 + -238) + 0 + 0 (eq. 16)

[0140] In the equation above, A1262 is an adjusted component value in partition 1262

within the range of codewords 1260, and U1252 is an unadjusted component value in

partition 1252 within the range of codewords 1250. In this formula, the (first) global

offset value is -238, and the (second) global offset value is 0. The local scale value for

the partition 1252 is 5.162, and the local offset value for the partition 1252 is 0.

[0141] Similarly, video preprocessor 19 may calculate linear scale and offset values for

converting unadjusted component values in partition 1254 into adjusted component

values in partition 1264 based on assumptions that the first unadjusted value of 1406 in

partition 1254 corresponds to an adjusted value of 512 in partition 1264, and the last

unadjusted value of 1705 in partition 1254 corresponds to an adjusted value of 2047 in

partition 1264. Based on such assumptions, video preprocessor 19 may determine that

the following relationship may be used to translate unadjusted component values from

partition 1254 into adjusted component values in partition 1264:

A1264 = 5.134 * (U1254 + -238) + 0 +-5484.5 (eq. 17)

[0142] In the equation above, A1264 is an adjusted component value in partition 1264

within the range of codewords 1260, and U1254 is an unadjusted component value in

partition 1254 within the range of codewords 1250. In this formula, the (first) global

offset value is -238, and the (second) global offset value is 0. The local scale value for

the partition 1254 is 5.134, and the local offset value for the partition 1254 is -5484.5.

[0143] Again, the effect of the dynamic range adjustment illustrated in FIG. 9C is that

video preprocessor 19 translates values in the range of codewords 1250 into values in

the range of codewords 1260 in a way such that that the values in partitions 1252 and

1254 are spread within the range of codewords 1260 to effectively use more codewords

of the range of codewords 1260. In some examples, video preprocessor 19 performing

dynamic range adjustment in a manner similar to that described in connection with FIG.

9C may result in preventing or reducing any loss of accuracy for coded component

WO 2017/053280 PCT/US2016/052640
40

values, and therefore, may prevent coding artifacts (e.g., color mismatch and/or color

bleeding) from being observed by a viewer of the decoded video data.

[0144] As further described below, and in accordance with one or more aspects of the

present disclosure, one or more new SEI messages may include parameters and/or

information relating to performing the dynamic range adjustment described above. The

dynamic range adjustment parameters or information may be generated by the video

preprocessor 19, and encoded by the video decoder 30 as an SEI message. Such SEI

messages may include information sufficient to enable video decoder 30 and/or video

postprocessor 31 to perform the inverse of the dynamic range adjustment to reconstruct

the video data.

[0145] In other examples of the disclosure, adjustment unit 210 may be configured to

apply a linear transfer function to the video to perform DRA. Such a transfer function

may be different from the transfer function used by transfer function unit 206 to

compact the dynamic range. Similar to the scale and offset terms defined above, the

transfer function applied by adjustment unit 210 may be used to expand and center the

color values to the available codewords in a target color representation. An example of

applying a transfer function to perform DRA is shown below:

- Y" = TF2 (Y')

- Cb" = TF2 (Cb')

- Cr" = TF2 (Cr')

Term TF2 specifies the transfer function applied by adjustment unit 210. In some

embodiments the adjustment unit may apply different transfer functions to each of the

components.

[0146] In another example of the disclosure, adjustment unit 210 may be configured to

apply the DRA parameters jointly with the color conversion of color conversion unit

208 in a single process. That is, the linear functions of adjustment unit 210 and color

conversion unit 208 may be combined. An example of a combined application, where

fl and f2 are a combination of the RGB to YCbCr matrix and the DRA scaling factors,

is shown below:

B'1 - Y' R' - Y'
Cb ; Cr f2

fi f

[0147] In another example of the disclosure, after applying the DRA parameters,

adjustment unit 210 may be configured to perform a clipping process to prevent the

video data from having values outside the range of codewords specified for a certain

WO 2017/053280 PCT/US2016/052640
41

target color representation. In some circumstances, the scale and offset parameters

applied by adjustment unit 210 may cause some color component values to exceed the

range of allowable codewords. In this case, adjustment unit 210 may be configured to

clip the values of the components that exceed the range to the maximum value in the

range.

[0148] The DRA parameters applied by adjustment unit 210 may be determined by

DRA parameters estimation unit 212. The frequency and the time instances at which the

DRA parameters estimation unit 212 updates the DRA parameters is flexible. For

example, DRA parameters estimation unit 212 may update the DRA parameters on a

temporal level. That is, new DRA parameters may be determined for a group of pictures

(GOP), or a single picture (frame). In this example, the RGB native CG video data 200

may be a GOP or a single picture. In other examples, DRA parameters estimation unit

212 may update the DRA parameters on a spatial level, e.g., at the slice tile, or block

level. In this context, a block of video data may be a macroblock, coding tree unit

(CTU), coding unit, or any other size and shape of block. A block may be square,

rectangular, or any other shape. Accordingly, the DRA parameters may be used for

more efficient temporal and spatial prediction and coding.

[0149] In other examples of the disclosure, DRA parameters estimation unit 212 may be

configured to derive values for DRA parameters so as to minimize certain cost functions

associated with preprocessing and/or encoding video data. As one example, DRA

parameters estimation unit 212 may be configured to estimate DRA parameters that

minimized quantization errors introduced by quantization unit 214 (e.g., see equation

(4)) above. DRA parameters estimation unit 212 may minimize such an error by

performing quantization error tests on video data that has had different sets of DRA

parameters applied. In another example, DRA parameters estimation unit 212 may be

configured to estimate DRA parameters that minimize the quantization errors introduced

by quantization unit 214 in a perceptual manner. DRA parameters estimation unit 212

may minimize such an error based on perceptual error tests on video data that has had

different sets of DRA parameters applied. DRA parameters estimation unit 212 may

then select the DRA parameters that produced the lowest quantization error.

[0150] In another example, DRA parameters estimation unit 212 may select DRA

parameters that minimize a cost function associated with both the DRA performed by

adjustment unit 210 and the video encoding performed by video encoder 20. For

example, DRA parameters estimation unit 212 may perform DRA and encode the video

WO 2017/053280 PCT/US2016/052640
42

data with multiple different sets of DRA parameters. DRA parameters estimation unit

212 may then calculate a cost function for each set of DRA parameters by forming a

weighted sum of the bitrate resulting from DRA and video encoding, as well as the

distortion introduced by these two lossy process. DRA parameters estimation unit 212

may then select the set of DRA parameters that minimizes the cost function.

[0151] In each of the above techniques for DRA parameter estimation, DRA parameters

estimation unit 212 may determine the DRA parameters separately for each component

using information regarding that component. In other examples, DRA parameters

estimation unit 212 may determine the DRA parameters using cross-component

information. For example, the DRA parameters derived for a Cr component may be

used to derive DRA parameters for a Cb component.

[0152] In video coding schemes utilizing weighted prediction, a sample of currently

coded picture Sc are predicted from a sample (for single directional prediction) of the

reference picture Sr taken with a weight (Wwp) and an offset (Owp) which results in

predicted sample Sp:

Sp= Sr * Wwp + Owp.

[0153] In some examples utilizing DRA, samples of the reference and currently coded

picture can be processed with DRA employing different parameters, namely { scalelcur,

offsetlcur } for a current picture and { scalere, offset ref } for a reference picture. In

such embodiments, parameters of weighted prediction can be derived from DRA, e.g.:

Wwp= scalelcur / scaleIref

Owp= offsetlcur - offset1ref

[0154] After adjustment unit 210 applies the DRA parameters, video preprocessor 19

may then quantize the video data using quantization unit 214. Quantization unit 214

may operate in the same manner as described above with reference to FIG. 4. After

quantization, the video data is now adjusted in the target color space and target

primaries of the target color container of HDR' data 216. HDR' data 216 may then be

sent to video encoder 20 for compression.

[0155] FIG. 10 is a block diagram illustrating an example HDR/WCG inverse

conversion apparatus according to the techniques of this disclosure. As shown in FIG.

10, video postprocessor 31 may be configured to apply the inverse of the techniques

performed by video preprocessor 19 of FIG. 8. In other examples, the techniques of

video postprocessor 31 may be incorporated in, and performed by, video decoder 30.

WO 2017/053280 PCT/US2016/052640
43

[0156] In one example, video decoder 30 may be configured to decode the video data

encoded by video encoder 20. The decoded video data (HDR' data 316 in the target

color container) is then forwarded to video postprocessor 31. Inverse quantization unit

314 performs an inverse quantization process on HDR' data 316 to reverse the

quantization process performed by quantization unit 214 of FIG. 8.

[0157] Video decoder 30 may also be configured to decode and send any of the one or

more syntax elements produced by DRA parameters estimation unit 212 of FIG. 10 to

DRA parameters derivation unit 312 of video postprocessor 31. DRA parameters

derivation unit 312 may be configured to determine the DRA parameters based on one

or more syntax elements or SEI messages, in accordance with one or more aspects of

the present disclosure. In some examples, the one or more syntax elements or SEI

messages may indicate the DRA parameters explicitly. In other examples, DRA

parameters derivation unit 312 is configured to derive some (or all) of the DRA

parameters using information from syntax elements or SEI messages, and/or using the

same techniques used by DRA parameters estimation unit 212 of FIG. 10.

[0158] The parameters derived by DRA parameters derivation unit 312 may be sent to

inverse adjustment unit 310. Inverse adjustment unit 310 uses the DRA parameters to

perform the inverse of the linear DRA adjustment performed by adjustment unit 210.

Inverse adjustment unit 310 may apply the inverse of any of the adjustment techniques

described above for adjustment unit 210. In addition, as with adjustment unit 210,

inverse adjustment unit 310 may apply the inverse DRAbefore or after any inverse

color conversion. As such, inverse adjustment unit 310 may apply the DRA parameter

on the video data in the target color representation or the native color representation. In

some examples, the inverse adjustment unit may also be applied before the inverse

quantization unit.

[0159] Inverse color conversion unit 308 converts the video data from the target color

space (e.g., YCbCr) to the native color space (e.g., RGB). Inverse transfer function 306

then applies an inverse of the transfer function applied by transfer function 206 to

uncompact the dynamic range of the video data. The resulting video data (RGB target

CG 304) is still represented using the target primaries, but is now in the native dynamic

range and native color space. Next, inverse CG converter 302 converts RGB target CG

304 to the native color gamut to reconstruct RGB native CG 300.

[0160] In some examples, additional postprocessing techniques may be employed by

video postprocessor 31. Applying the DRA may put the video outside its actual native

WO 2017/053280 PCT/US2016/052640
44

color gamut. The quantization steps performed by quantization unit 214 and inverse

quantization unit 314, as well as the up and down-sampling techniques performed by

adjustment unit 210 and inverse adjustment unit 310, may contribute to the resultant

color values in the native color representation being outside the native color gamut.

When the native color gamut is known (or the actual smallest content primaries, if

signaled, as described above), then additional process can be applied to RGB native CG

video data 304 to transform color values (e.g., RGB or Cb and Cr) back into the

intended gamut as postprocessing for DRA. In other examples, such postprocessing

may be applied after the quantization or after DRA application.

[0161] According to one or more aspects of the present disclosure, and as further

described below, video decoder 30 may receive one or more SEI messages that indicate

parameters and/or information that relate to the dynamic range adjustment performed by

video preprocessor 19. Video decoder 30 may parse and/or decode the information, and

act upon it and/or pass that information to video postprocessor 31. Such SEI messages

may include information sufficient to enable video decoder 30 and/or video

postprocessor 31 to perform the inverse of the dynamic range adjustment to reconstruct

the video data.

[0162] In addition to deriving DRA parameters or DRA adjustment information, video

preprocessor 19 (e.g., DRA parameters estimation unit 212) or video encoder 20 of FIG.

8 may be configured to signal the DRA parameters in an encoded bitstream or by other

means such as a different channel. DRA parameters derivation unit 312 or video

decoder 30 of FIG. 10 may be configured to receive such signaling in the encoded

bitstream or from other means such as a different channel. DRA parameters estimation

unit 212 may signal one or more syntax elements that indicate the DRA parameters

directly, or may be configured to provide the one or more syntax elements to video

encoder 20 for signaling. Such syntax elements of the parameters may be signaled in

the bitstream such that video decoder 30 and/or video postprocessor 31 may perform the

inverse of the process of video preprocessor 19 to reconstruct the video data in its native

color representation.

[0163] One way in which video encoder 20 or video preprocessor 19 may signal the

DRA adjustment parameters or DRA adjustment information is through an SEI message.

Supplemental Enhancement Information (SEI) messages have been used for a number

of purposes and may be included in video bitstreams, typically to carry information that

are not essential in order to decode the bitstream by the decoder. This information may

WO 2017/053280 PCT/US2016/052640
45

be useful in improving the display or processing of the decoded output; e.g., such

information could be used by decoder-side entities to improve the viewability of the

content. It is also possible that certain application standards could mandate the presence

of such SEI messages in the bitstream so that the improvement in quality can be brought

to all devices that conform to the application standard (the carriage of the frame-packing

SEI message for frame-compatible plano-stereoscopic 3DTV video format, where the

SEI message is carried for every frame of the video, e.g., as described in ETSI - TS 101

547-2, Digital Video Broadcasting (DVB) Plano-stereoscopic 3DTV; Part 2: Frame

compatible plano-stereoscopic 3DTV, handling of recovery point SEI message, e.g., as

described in 3GPP TS 26.114 v13.0.0, 3rd Generation Partnership Project; Technical

Specification Group Services and System Aspects; IP Multimedia Subsystem (IMS);

Multimedia Telephony; Media handling and interaction (Release 13), or use of pan-scan

scan rectangle SEI message in DVB, e.g., as described in ETSI - TS 101 154, Digital

Video Broadcasting (DVB); Specification for the use of Video and Audio Coding in

Broadcasting Applications based on the MPEG-2 Transport Stream.

[0164] A number of SEI messages that have been used may be deficient in one or more

ways for signaling dynamic range adjustment parameters in accordance with one or

more aspects of the present disclosure.

[0165] For example, one SEI message is a tone-mapping information SEI message,

which is used to map luma samples, or each of RGB component samples. Different

values of tone mapid are used to define different purposes, and the syntax of the tone

map SEI message is also modified accordingly. For example, a value of 1 for the

tone-mapid allows a processor acting on the SEI message to clip the RGB samples to a

minimum and a maximum value. A value of 3 for the tonemap-id allows or indicates

that a look-up table will be signaled in the form of pivot points. However, when

applied, the same values are applied to all RGB components, or only applied to the luma

component.

[0166] Another example is the knee function SEI message, which is used to indicate the

mapping of the RGB components of the decoded pictures in the normalized linear

domain. The input and output maximum luminance values are also indicated, and a

look-up table maps the input luminance values to the output luminance values. The

same look-up table may be applied to all the three color components.

[0167] The color remapping information (CRI) SEI message, which is defined in the

HEVC standard, is used to convey information that is used to map pictures in one color

WO 2017/053280 PCT/US2016/052640
46

space to another. FIG. 11 shows a typical structure of the color remapping information

process used by the CRI SEI message. In one example, the syntax of the CRI SEI

message includes three parts: a first look-up table (Pre-LUT) 1302, followed by a 3x3

matrix indicating color remapping coefficients 1304, and followed by a second look-up

table (Post-LUT) 1306. For each color component, e.g., R,G,B or Y,Cb,Cr, an

independent Pre-LUT is defined, and also an independent Post-LUT is defined. The

CRI SEI message also includes a syntax element called colourremapid, different

values of which may be used to indicate different purposes of the SEI message.

[0168] In another example, the dynamic range adjustment (DRA) SEI message, has

been described in D. Bugdayci Sansli, A. K. Ramasubramonian, D. Rusanovskyy, S.

Lee, J. Sole, M. Karczewicz, Dynamic range adjustment SEI message, m36330, MPEG

meeting, Warsaw, Poland, 22 - 26 June, 2015. An example DRA SEI message includes

signaling of one set of scale and offset numbers to map the input samples. The SEI

message also allows the signaling of different look-up tables for different components,

and also allows for signaling optimization when the same scale and offset are to be used

for more than one component. The scale and offset numbers may be signaled in fixed

length accuracy.

[0169] This section lists several problems that are associated with the color remapping

information SEI message and other SEI messages related to scaling or mapping video

content. The SEI messages described in the previous paragraphs have one or more of

the following deficiencies:

[0170] There are several problems associated with the tone-mapping SEI message, the

knee function SEI message, and the CRI SEI message. For example, the tone-mapping

information SEI syntax does not allow indication, or provide any indication, of scaling

for chroma components Cb and Cr. Further the number of bits needed to indicate the

look-up table pivot points and other syntax elements (e.g., in the CRI SEI message) is

more than what may be necessary, and may be inefficient. When the SEI message is to

be signaled more frequently, e.g. every frame, it may be beneficial that the SEI message

be simple and consume fewer bits. Further, many SEI messages (e.g., tone-mapping

information, knee function SEI message) have same look up table applied for all three

color components when applicable. Still further, the dynamic range adjustment SEI

message only signals one scale and one offset for each component.

[0171] In view of the foregoing, and as further described below, this disclosure

proposes signaling, through one or more new SEI messages, parameters and/or

WO 2017/053280 PCT/US2016/052640
47

information relating to performing dynamic range adjustment described above. The

dynamic range adjustment parameters or information may be used by the video decoder

30 and/or video postprocessor 31 to perform the inverse of the dynamic range

adjustment to reconstruct the video data. In some examples, the DRA parameters or

DRA information may be signaled explicitly. For example, the one or more SEI

messages may include the various global offset, local offset, partition, and scale

information.

[0172] Accordingly, in some examples, video encoder 20 may receive dynamic range

adjustment parameters or information from video preprocessor 19, and may signal one

or more SEI messages that include various dynamic range adjustment parameters or

dynamic range adjustment information. Such information may include global offset,

local offset, partition, and scale parameters, or information that is sufficient to derive

such parameters or information, or is otherwise sufficient to describe how the dynamic

range adjustment was applied to the video data. Decoder 30 may receive one or more of

such SEI messages, parse and/or decode the information in the SEI messages, and act

upon such information and/or pass the information to the video postprocessor 31.

[0173] In some examples, video encoder 20 may signal one or more SEI messages that

include global offset values, including, for each component, a first offset value that

determines a first unadjusted component value below which all component values are

clipped to the first component value before applying dynamic range adjustment as

described in this disclosure. Decoder 30 may receive one or more of such SEI

messages, parse and/or decode the information in the SEI messages, and pass the

information to the video postprocessor 31.

[0174] In some examples, for each component, video encoder 20 may signal one or

more SEI messages that include a second offset value that specifies the adjusted value to

which the first offset value maps to after dynamic range adjustment. Video decoder 30

may receive such SEI messages, parse and/or decode the information, and pass that

information to video postprocessor 31.

[0175] In another example, neither the first global offset value nor the second global

offset value is signaled in a SEI message. Instead, decoder 30 assumes that the values

of the first global offset and the second global offset is a constant, predetermined, or

signaled value that the decoder 30 either determines per sequence or receives by

external means. In another example, video encoder 20 signals the first global offset

value in an SEI message, but the second global offset value is not signaled in a SEI

WO 2017/053280 PCT/US2016/052640
48

message. Instead, video decoder 30 infers that its value is a constant, predetermined, or

signaled value that decoder 30 either determines per sequence or received by external

means. In a still further example, video encoder 20 signals the second global offset

value in an SEI message, but the first global offset value is not signaled in a SEI

message. Instead, video decoder 30 infers that the first global offset value is a constant,

predetermined, or signaled value that decoder 30 either determines per sequence or

received by external means.

[0176] In some examples, video encoder 20 may signal offset values that are received

by decoder 30, and are used by decoder 30 to derive other global or local parameters,

including both global and local scale and offset values, as well as partitions of a range of

unadjusted values, and partitions of a range of adjusted values.

[0177] In some examples, video encoder 20 may signal one or more SEI messages that

include the number of partitions that the range of input representation values (i.e.,

component values) were divided into during dynamic range adjustment. In one

example, the number of partitions may be constrained to be a power of 2 (i.e. 1, 2, 4, 8,

16, etc.) and the number of partitions is signaled as logarithm (e.g. 8 partitions is

signaled as 3 = log2 8). Video decoder 30 may receive such SEI messages, parse and/or

decode the information, and pass that information to video postprocessor 31.

[0178] In some examples, the number of partitions for the chroma components may be

different from the number of partitions for the luma component. The number of

partitions may be constrained to be a power of 2 + 1 and signaled as logarithm and

rounding towards minus 0. In this way, pixels with neutral chroma can have their own

values and the size of that partition can be smaller than the other partitions. In such an

example, neutral chroma may refer to values of chroma around the mid-value (e.g., 0

when the chroma values range between -0.5 and 0.5, or between -512 and 511 in a 10

bit representation). Constraining the number of partitions as a power of 2 may enable

the encoder 20 to save bits, because encoder 20 may be able to represent the log of a

value with fewer bits than the actual value for integer values. Constraining the number

of partitions to a power of 2 + 1 may ensure that at least one partition may be dedicated

to the neutral chroma values, and in some examples, the width of the partition

corresponding to the neutral chroma values may be smaller than the rest. In other

examples, such a partition may be larger than one or more of the other partitions.

[0179] In some examples, decoder 30 may use the signaled number of partitions to

derive other global or local parameters, including both global and local scale and offset

WO 2017/053280 PCT/US2016/052640
49

values, as well as the actual size of the partitions of a range of unadjusted component

values and/or the size of the partitions of a range of adjusted component values.

[0180] In some examples, encoder 20 may signal one or more SEI messages that may

include, for each partition, a local scale and local offset value specifying a range of the

input component values and the corresponding mapped output component values. In

some examples, encoder 20 may signal an SEI message that includes the number of bits

used by the syntax elements to signal the scale and offsets. In other examples, encoder

20 may signal an SEI message that indicates the number of bits that are used to

represent the fractional part of the scale and offsets in the syntax elements. In other

examples, encoder 20 may signal one or more SEI messages or syntax elements that

indicate that the integer part of the scale parameters is signaled in a signed

representation. In some examples, the signed representation is two's complement. In

other examples, the signed representation is signed magnitude representation. Video

decoder 30 may receive such SEI messages and/or syntax elements, parse and/or decode

the information, and pass that information to video postprocessor 31.

[0181] In other examples, encoder 20 may use each offset value successively to first

compute the range of adjusted component or representation values, and then using the

scale value, compute the corresponding range in the unadjusted representation. For

example, one offset value may be used to compute the range of a first partition in the

adjusted component using the value of a global offset value derived or signaled for the

adjusted component, followed by using the scale value and the range of a first partition

of the adjusted representation to derive the range in the corresponding partition of the

unadjusted representation and with the respective ranges of the first partition of the

adjusted and the corresponding partition of the unadjusted representations, derive a

respective value derived for the first partition of the adjusted range and the

corresponding partition of unadjusted representations that indicate a boundary of the

partitions. Following this, another offset value may be used to compute the range of a

second partition in the adjusted component using the boundary value of the first

partition in the adjusted component derived in the previous step, followed by using the

scale value and the range of a second partition of the adjusted representation to derive

the range of the unadjusted representation, and with the respective ranges of the second

partitions of the adjusted representation and corresponding partition of the unadjusted

representations, a respective value is derived for the partitions in the adjusted and

unadjusted representations that indicate a boundary of the respective representations.

WO 2017/053280 PCT/US2016/052640
50

This method may be repeated until all the ranges and boundaries are derived for all the

partitions in the adjusted and unadjusted representations. In another example, encoder

20 may use each offset value successively to first compute the range of unadjusted

component or representation values, and then using the scale value, compute the

corresponding range in the adjusted representation. In other words, the component or

representation to which the scale and offset values are applied could be swapped

between unadjusted and adjusted representations.

[0182] In some examples, the number of bits used by the syntax elements to signal scale

and offset values may depend on the component. In other examples, a default number

of bits is defined and used when these numbers are not explicitly signaled.

[0183] In some examples, encoder 20 may signal a syntax element indicating whether

the length of the partitions of the output representations (i.e., output components) are

equal. In such an example, encoder 20 might not signal the offset value for one or more

partitions. Decoder 30 may infer the offset values to be equal in some examples. In

another example, decoder 30 may assume the partitions are of equal length and may not

receive a syntax element so indicating. In some examples, decoder 30 may derive the

size of each partition from signaled syntax elements and predefined total dynamical

range of the representation.

[0184] In other examples, rather than signaling pivot points for each partition as well as

scale and offset values for each partition, video encoder 20 may signal one or more SEI

messages that indicate derivative or scale value for each partition along with the size of

one or more or all partitions. This approach may allow encoder 20 to avoid signaling

local offset values for each partition. Instead, in some examples, encoder 20 may be

able to signal, in one or more SEI messages, the partition size and scale value (or

derivative) for one or more partitions. The local offset value for each partition or

partitioning (which may require higher accuracy) may be determined or derived by

decoder 30.

[0185] In some examples, encoder 20 may signal one or more SEI messages that

indicate a mode value that specifies several default values for offset and scale values for

certain partitions. Video decoder 30 may receive such SEI messages, parse and/or

decode the information, and pass that information to video postprocessor 31.

[0186] In some examples, encoder 20 may signal one or more SEI messages that

indicate a value defining the persistence of the SEI message such that the persistence of

a subset of the components may be defined and component scale values of a subset of

WO 2017/053280 PCT/US2016/052640
51

the components may be updated. The persistence of an SEI message indicates the

pictures to which the values signaled in the instance of the SEI may apply. In some

examples, the persistence of the SEI message is defined such that the values signaled in

one instance of SEI messages may apply correspondingly to the all components of the

pictures to which the SEI message applies. In other examples, the persistence of the SEI

message is defined such that the values signaled in one instance of the SEI may be

indicated to apply correspondingly to a subset of the components wherein the

components to which the values in the instance of the SEI does not apply may either

have no values applicable or may have values applicable that are signaled in another

instance of the SEI message. Video decoder 30 may receive such SEI messages, parse

and/or decode the information, and pass that information to video postprocessor 31.

[0187] In some examples, encoder 20 may signal one or more SEI messages that

include syntax elements indicating the postprocessing steps to be performed to the

decoded output. Each syntax element may be associated with a particular process (e.g.

scaling components, color transforms, up-sampling/down-sampling filters, etc.) and

each value of the syntax element may specify that a particular set of parameters

associated with the process be used. In some examples, the parameters associated with

the process are signaled by video encoder 20 using SEI messages that are part of the

bitstream or as metadata that may be transmitted through other means. Video decoder

30 may receive such SEI messages, parse and/or decode the information, and pass that

information to video postprocessor 31.

[0188] In some examples, encoder 20 may signal syntax elements or one or more SEI

messages that may be used for describing and/or constructing a piece-wise linear model

function for mapping input representations (i.e., input component values) to output

representations (i.e., output component values). Video decoder 30 may receive such

SEI messages, parse and/or decode the information, and pass that information to video

postprocessor 31. In other examples, predefined assumptions may be used for

describing and/or constructing a piece-wise linear model function for mapping input

representations to the output representation.

[0189] In some examples, encoder 20 may signal one or more SEI messages that may

include one or more syntax elements indicating that the scale and offset parameters

signaled in the SEI message represent the variation of the scale to be applied to a first

component as a function of different values of a second component.

WO 2017/053280 PCT/US2016/052640
52

[0190] In some examples, encoder 20 may signal one or more SEI messages indicating

offset parameters that are to be or may be applied along with the scale on a first

component as a function of different values of a second component. In some examples,

encoder 20 may signal one or more SEI messages that may include one or more

additional syntax elements that indicating offset parameters that are to be or may be

applied along with the scale on a first component as a function of different values of a

second component. Video decoder 30 may receive such SEI messages, parse and/or

decode the information, and pass that information to video postprocessor 31.

[0191] In some examples, encoder 20 may signal one or more SEI messages including a

first syntax element that indicates a first set of electro-optical transfer function

characteristics such that the signaled scale, offset and other dynamic range adjustment

parameters the SEI message are applied when the electro-optical transfer function

characteristics used on the decoder-side are similar to that first set of electro-optical

transfer function characteristics.

[0192] In another example, encoder 20 may signal one or more SEI messages indicating

that the signaled offset, scale and other dynamic range parameters in the SEI message(s)

are to be applied for best reconstruction of the HDR output when the first set of electro

optical transfer function characteristics, or those with similar characteristics, are used by

the decoder 30. Video decoder 30 may receive such SEI messages, parse and/or decode

the information, and pass that information to video postprocessor 31.

[0193] In another example, encoder 20 may signal one or more SEI messages indicating

that a first set of opto-electronic transfer function characteristics, and the signaled scale,

offset and other dynamic range adjustment parameters are applied on by decoder 30

when the corresponding inverse electro-optical transfer function characteristics are

applied at the decoder side. Video decoder 30 may receive such SEI messages, parse

and/or decode the information, and pass that information to video postprocessor 31.

[0194] In other examples, encoder 20 may signal a condition such that when more than

one SEI message is present indicating different set of electro-optical/opto-electronic

characteristics and applicable the current picture, only one SEI message is applied. The

encoder may signal different set of electro-optical/opto-electronic characteristics to

satisfy different types of decoders, or decoders with different capabilities. For example,

some displays at the decoder side may apply the PT EOTF to convert the coded

component values in an appropriate domain to linear light, whereas other displays, e.g.

legacy displays, may apply the gamma EOTF to convert to linear light. Each SEI with a

WO 2017/053280 PCT/US2016/052640
53

particular characteristic that the encoder sends may be appropriate or beneficial for

certain types of displays and not for other types of displays, e.g. an SEI message with

PQ EOTF characteristics may be suitable for displays that apply PQ EOTF to convert

the coded video to linear light. The decoder 30 determines which SEI message is to be

applied, and makes such a choice based on the application standard, based on the end

user device, based on a signal received, or based on another indication received through

external means. For example, decoder 30 may determine that the first syntax element in

a first SEI message that applies to a current picture indicates that the SEI message is to

be applied with the inverse of PQ OETF and the first syntax element in a second SEI

message that applies to a current picture indicates that the SEI message is to be applied

with another transfer function (such as BBC, or PH), the decoder 30 or end-user device

may choose to apply the parameters in the first SEI message because the device uses PQ

EOTF. In some examples, an application standard to which the decoder conforms to

may specify that an SEI message with a particular set of characteristics is to be used.

[0195] In other examples, encoder 20 may signal an SEI message that carries the

parameters corresponding to multiple sets of transfer characteristics. In other examples,

encoder 20 may signal different SEI messages for that purpose. Video decoder 30 may

receive such SEI messages, parse and/or decode the information, and pass that

information to video postprocessor 31

[0196] In some examples, encoder 20 may signal one or more SEI messages that

include a syntax element indicating the applicability of the SEI message. The

applicability of the SEI message may include, but is not limited to (1) the components to

which the scales and offsets apply, (2) the position at which the component scaling is

applied, and/or (3) whether additional scaling parameters are signaled.

[0197] As described, encoder 20 may signal one or more SEI messages that include a

syntax element indicating the components to which the scales and offsets apply. The

following lists several examples of such an application. For example, one value of the

syntax element could indicate that signaled parameters for the first component index are

to be applied to the RGB components. Another value may indicate that the signaled

parameters for the first component index is to be applied to luma component, and those

for the second and third indices are to be applied to the Cb and Cr components. Another

value may indicate that the signaled parameters for the first component index is to be

applied to R, G and B components, and those for the second and third indices are to be

applied to the Cb and Cr components. Another value may indicate that signaled

WO 2017/053280 PCT/US2016/052640
54

parameters for first three indices are applied to luma, Cb and Cr components, and that

corresponding to the remaining indices are applied for color correction. Video decoder

30 may receive such SEI messages, parse and/or decode the information, and pass that

information to video postprocessor 31.

[0198] Also as described, encoder 20 may signal one or more SEI messages including a

syntax element indicating the position at which the component scaling is applied.

Several processes occur on the decoder-side, after decoding of the video, and in the

video postprocessor 31. Signaling of syntax element indicating the position at which the

process associated with the SEI is to be applied, in other words indication of any subset

of the preceding or succeeding operations of the process associated with using the

information in the SEI, would be helpful to the video decoder 30 or the video

postprocessor 31 to process the video. For example, such a syntax element could

indicate the position at which the component scaling is applied, for example to YCbCr

components before or after upsampling. In another example, the syntax element could

indicate that the component scaling is applied before the quantization to the decoder

side. Video decoder 30 may receive such SEI messages, parse and/or decode the

information, and pass that information to video postprocessor 31.

[0199] Also as described, encoder 20 may signal one or more SEI messages that include

a syntax element indicating whether an additional set of scaling and parameters, e.g. for

color correction, are signaled. The additional set of parameters could be used for color

correction to map the color components to fit a particular color gamut, or for correction

of component values when a different transfer function is applied than that indicated by

the transfercharacteristics syntax element in the VU.

[0200] In other examples, encoder 20 may signal different syntax elements to indicate

the above aspects; e.g. one syntax element to indicate which component(s) the SEI

applies to, one syntax element to indicate whether it applies to HDR-compatible of

SDR-compatible content, and one syntax element to indicate the position(s) where the

component scaling SEI message is to be applied.

[0201] When the number of components to which the component scaling SEI message

parameters are applied is more than one, encoder 20 may signal one or more SEI

messages that include a syntax element indicating that application of scale and offset

parameters may be done sequentially based on the index of the component. For

example, the mapping based on the scale and offset parameters of the first component

may be applied, and then the mapping of the second component, which for example

WO 2017/053280 PCT/US2016/052640
55

uses scale and offset signaled for the second component, may depend on the values of

the first component. In some examples, this is indicated by, for example, by syntax

element specifying that the mapped values of the first component should be used. Video

decoder 30 may receive such SEI messages, parse and/or decode the information, and

pass that information to video postprocessor 31.

[0202] In another example, video encoder 20 may constrain the values signaled in one

or more SEI messages, or in the bitstream, in such a way that an HDR10 receiver can

decode and show a viewable HDR video even if the SEI postprocessing is not applied.

The SEI message(s) may include a syntax element to indicate that this is the case (e.g.,

that the bitstream is an HDR1O backward compatible bitstream).

[0203] This section includes several examples that use techniques disclosed in

accordance with one or more aspects of the present disclosure.

Example 1

[0204] In this example 1, the component scaling function is signaled as a look-up table

and the number of bits used to signal the points defining the look up table are also

signaled. For sample values that do not have explicit points signaled, the value is

interpolated based on the neighboring pivot points.

Syntax of the component scaling SEI message

componentscale info(payloadSize){ Descriptor

compscale-id ue(v)

compscalecancelflag u(1)

if(!comp-scale-cancelflag){

compscale-persistenceflag u(1)

comp_scalenum-compsminusl ue(v)

comp_scaleinput-bit-depth ue(v)

comp_scaleoutput-bit-depth ue(v)

for(c = 0; c <= compscalenumcomps minus; c++){

compscalenumpointsminusl[c] ue(v)

for(i = 0; i <= compscalenumpoints-minus[c]; i++){

compscale-input-point[c][i] u(v)

compscale-output-point[c][i] u(v)

WO 2017/053280 PCT/US2016/052640
56

}

}

}

Semantics of the component scaling SEI message

The component scaling SEI message provides information to perform scaling operations

on the various components of the decoded pictures. The colour space and the components

on which the scaling operations should be performed are determined by the value of the

syntax elements signalled in the SEI message.

compscale_id contains an identifying number that may be used to identify the purpose

of the component scaling SEI message. The value of comp_scaleid shall be in the range

of 0 to 232 - 2, inclusive. The value of compscale id may be used to specify the colour

space at which the component scaling SEI message, or whether the component scaling

SEI message is applied in the linear or the non-linear domain.

Values of compscaleid from 0 to 255, inclusive, and from 512 to 231 - 1, inclusive,

may be used as determined by the application. Values of compscale id from 256 to 511,

inclusive, and from 231 to 232 - 2, inclusive, are reserved for future use by ITU-T |

ISO/IEC. Decoders shall ignore all component scale information SEI messages

containing a value of compscaleid in the range of 256 to 511, inclusive, or in the range

of 231 to 232 _ 2, inclusive, and bitstreams shall not contain such values.

NOTE 1 - The compscaleid can be used to support component scaling processes

that are suitable for different display scenarios. For example, different values of

compscaleid may correspond to different display bit depths or different colour

spaces in which the scaling is applied.

Alternatively, the compscale id may also be used to identify whether the scaling is

performed for compatibility to certain types of displays or decoder, e.g. HDR, SDR.

compscalecancelflag equal to 1 indicates that the component scaling information SEI

message cancels the persistence of any previous component information SEI messages in

output order that applies to the current layer. compscale-cancel-flag equal to 0 indicates

that component scaling information follows.

compscale-persistence_flag specifies the persistence of the component scaling

information SEI message for the current layer.

WO 2017/053280 PCT/US2016/052640
57

compscalepersistence flag equal to 0 specifies that the component scaling information

applies to the current decoded picture only.

Let picA be the current picture. compscalepersistenceflag equal to 1 specifies that the

component scaling information persists for the current layer in output order until any of

the following conditions are true:

- A new CLVS of the current layer begins.

- The bitstream ends.

- A picture picB in the current layer in an access unit containing a component scaling

information SEI message with the same value of compscaleid and applicable to the

current layer is output for which PicOrderCnt(picB) is greater than

PicOrderCnt(picA), where PicOrderCnt(picB) and PicOrderCnt(picA) are the

PicOrderCntVal values of picB and picA, respectively, immediately after the

invocation of the decoding process for picture order count for picB.

compscale_num_compsminus1 plus 1 specifies the number of components for which

the component scaling function is specified. comp_scalenum-compsminus1 shall be in

the range of 0 to 2, inclusive.

When compscalenumcomps minus is less than 2 and the component scaling

parameters of the c-th component is not signalled, are inferred to be equal to those of the

(c - 1)-th component.

Alternatively, when compscalenumcomps minus is less than 2, and the component

scaling parameters of the c-th component is not signalled, the component scaling

parameters of the c-th component are inferred to be equal to default values such that

effectively there is no scaling of that component.

Alternatively, the inference of the component scaling parameters may be specified based

on the colour space on which the SEI message is applied.

- When the colour space is YCbCr, and compscale-num-comps minus is equal

to 1, the component scaling parameters apply to both Cb and Cr components.

- When the colour space is YCbCr, and compscale-numcomps minus is equal

to 2, the first and second component scaling parameters apply to Cb and Cr

components.

In one alternative, the different inference is specified based on the value of compscale id

or on the basis of an explicit syntax element.

Alternatively, a constraint is added as follows:

WO 2017/053280 PCT/US2016/052640
58

It is constraint for bitstream conformance that the value of

compscale-num-comps minus shall be the same for all the component scaling

SEI message with a given value of compscaleid within a CLVS.

compscale-input-bit-depth_minus8 plus 8 specifies the number of bits used to signal

the syntax element compscale input_point[c][i]. The value of

compscale input bit depth-minus8 shall be in the range of 0 to 8, inclusive.

When component scaling SEI message is applied to an input that is in a normalized

floating point representation in the range 0.0 to 1.0, the SEI message refers to the

hypothetical result of a quantization operation performed to convert the input video to a

converted video representation with bit depth equal to

colourremap input bit depthminus8 + 8.

When component scaling SEI message is applied to a input that has a bit depth not equal

to the compscale input bit depth minus8 + 8, the SEI message refers to the

hypothetical result of a transcoding operation performed to convert the input video

representation to a converted video representation with bit depth equal to

colourremap input bit depthminus8 + 8.

compscale-output-bit-depth_minus8 plus 8 specifies the number of bits used to

signal the syntax element comp_scale_output_point[c][i]. The value of

compscaleoutput bit depthminus8 shall be in the range of 0 to 8, inclusive.

When component scaling SEI message is applied to an input that is in floating point

representation, the SEI message refers to the hypothetical result of an inverse quantization

operation performed to convert the video representation with a bit depth equal to

colourremap_output_bitdepth minus8 + 8 that is obtained after processing of the

component scaling SEI message to a floating point representation in the range 0.0 to 1.0.

Alternatively, the number of bits used to signal compscale input-point[c][i] and

compscaleoutput_point[c][i] are signalled as compscale input bitdepth and

compscaleoutput bit depth, respectively, or in other words without subtracting 8.

compscale_num_pointsminus1[c] plus 1 specifies the number of pivot points used

to define the component scaling function. compscalenum_points minus[c] shall be

in the range of 0 to (1 « Min(compscale input bit depth minus8 + 8,

compscaleoutput bit depthminus8 + 8)) - 1, inclusive.

compscale-input-point[c][i] specifies the i-th pivot point of the c-th component of

the input picture. The value of compscale input_point[c][i] shall be in the range of 0

to (1 « compscale input bit depth minus8[c] + 8) - 1, inclusive. The value of

WO 2017/053280 PCT/US2016/052640
59

compscale input_point[c][i] shall be greater than or equal to the value of

compscale input_point[c][i - 1], for i in the range of 1 to

compscale_points minus[c], inclusive.

compscale-output-point[c][i] specifies the i-th pivot point of the c-th component of

the output picture. The value of comp_scale_output_point[c][i] shall be in the range

of I to (1 << compscaleoutput bit depth minus8[c] +8)- 1, inclusive. The value

of comp_scale_output_point[c][i]shall be greater than or equal to the value of

compscaleoutput_point[c][i - 1], for i in the range of 1 to

compscale_points minus[c], inclusive.

The process of mapping an input signal representation x and an output signal

representation y, where the sample values for both input and output are in the range of 0

to (1 « compscale input bit depthminus8[c] + 8) - 1, inclusive, and 0 to

(1 « compscaleoutput bit depth minus8[c]+ 8)- 1, inclusive, respectively, is

specified as follows:

if(x <= compscale input_point[c][0])

y = compscaleoutput_point[c][0]

else if(x > comp_scaleinput_point[c][compscale inputpoint minus[c]])

y = compscaleoutput_point[c][compscale_output_point minus[c]]

else

for(i = 1; i <= comp_scale_output_point minus[c]; i++)

if(compscale input_point[i - 1] < x && x <=

compscale input_point[i])

y= ((comp_scale_output_point[c][i- compscaleoutput_point[c][i - 1]

(compscale input_point[c][i- compscale input_point[c][i- 1])) *

(x - compscale input_point[c][i - 1]) +

(compscaleoutput_point[c][i - 1])

[0205] In one alternative, input and output pivot points compscale input-point[c][i]

and comp_scale_output_point[c][i] are coded as difference of adjacent values; e.g.,

deltacompscale input_point[][] and deltacompscaleoutput-point[][], and the

syntax elements are coded using exponential Golomb codes.

WO 2017/053280 PCT/US2016/052640
60

In another alternative, the process of mapping an input and output representation value

is specified by other interpolation methods including, but not limited to, splines and

cubic interpolation.

Example 2

[0206] This Example 2 shows a different syntax structure compared to the SEI syntax

structure described in Example 1. In this syntax structure, the mapping function is

described in terms of scales and offsets instead of pivot points.

Syntax of the component scaling SEI message

componentscale info(payloadSize){ Descriptor

compscale-id ue(v)

compscalecancelflag u(1)

if(!compscalecancelflag){

compscale-persistenceflag u(1)

comp_scalenum-comps ue(v)

comp_scaleinput-bit-depth ue(v)

comp_scaleoutput-bit-depth ue(v)

compscale-bit-depth_scaleval ue(v)

comp_scale_log2_denomscaleval ue(v)

for(c = 0; c < compscalenumcomps; c++){

compscalenumpoints_minusl[c] ue(v)

compscale-globaloffset-input-val[c] u(v)

compscale-globaloffset-output-val[c] u(v)

for(i = 0; i < compscalenumpoints minus[c]; i++){

compscale-offset-val[c][i] u(v)

compscale-val[c][i] u(v)

}

}

}

}

WO 2017/053280 PCT/US2016/052640
61

compscalebitdepthscale-val specifies the number of bits used to signal the syntax

element compscale val[c][i]. The value of compscale bit depthscaleval shall be

in the range of 0 to 24, inclusive.

compscale-log2_denom_scale_va specifies the base 2 denominator of the scale value.

The value of compscale log2_denom_scaleval shall be in the range of 0 to 16,

inclusive.

compscale-global_offsetinput-val[c] plus 1 specifies the input sample value below

which all the input representation values are clipped to

CompScaleOffsetOutputVal[c][0]. used to define the component scaling function.

compscale numpointsminusI[c] shall be in the range of 0 to

(1 « compscale input bit depth) - 1, inclusive. The number of bits used to

represent compscaleglobal_offsetinput val[c] is comp_scale inputbitdepth.

compscale-global_offsetoutput-val[c] plus 1 specifies the output sample value to

which all the input representation values below compscaleglobaloffset input val[c]

are to be clipped. compscale numpointsminusI[c] shall be in the range of 0 to

(1 « compscaleoutput bit depth) - 1, inclusive. The number of bits used to

represent compscaleglobal_offsetoutput val[c] is compscaleoutput bit depth.

compscale_num_pointsminus1[c] plus 1 specifies the number of pivot points used

to define the component scaling function. compscalenumpoints minus[c] shall be

in the range of 0 to (1 « Min(compscale input bit depth,

compscaleoutput bit depth) - 1, inclusive.

The process of mapping an input signal representation x and an output signal

representation y, where the sample values for both input representation is in the range of

0 to (1 « compscale input bit depth) - 1, inclusive, and output representation is in

the range of and 0 to (1 « compscaleoutput bit depth) - 1, inclusive, is specified as

follows:

if(x <= CompScaleOffsetInputVal[c][0)

y = CompScaleOffsetOutputVal[c][0]

else if(x > CompScaleOffsetInputVal[c][compscaleoutput-pointminus1])

y = CompScaleOffsetOutputVal[c][compscaleoutputpoint minus]

else

for(i = 1; i <= comp_scale_outputpointminusI; i++)

if(CompScaleOffsetInputVal[i - 1] < x && x <=

CompScaleOffsetInputVal[i])

WO 2017/053280 PCT/US2016/052640
62

y=(x

CompScaleOffsetInputVal[i - 1]+ (compscale val[c][i]+

CompScaleOffsetOutputVal[c][i]

compscale_offset-val[c][i] specifies the offset value of the i-th sample value region

of the c-th component. The number of bits used to represent compscale_offset val[c]

is equal to compscale input bit depth.

compscale-val[c][i] specifies the scale value of the i-th sample value region point of

the c-th component. The number of bits used to represent compscale val[c] is equal to

compscalebitdepthscaleval.

The variables CompScaleOffsetOutputVal[c][i] and

CompScaleOffsetInputVal[c][i] for i in the range of 0 to

compscale numpointsminus1[c], inclusive, is derived as follows:

roundingOffset = (compscale log2_denom_scaleval = = 0) ? 0 :(1 <<

compscale log2denomscaleval - 1)

for(i = 0; i <= compscalenumpoints-minusI[c]; i++)

if(i == 0)

CompScaleOffsetOutputVal[c][i]=

compscaleglobaloffset output val[c]

CompScaleOffsetInputVal[c][i] =

compscaleglobaloffset input val[c]

else

CompScaleOffsetOutputVal[c][i]= CompScaleOffsetOutputVal[c][i

1I +

(comp_scaleoffsetval[c][i - 1]* compscale val[c][i - 1]

+ roundingOffset) >>

compscale log2denomscaleval

CompScaleOffsetInputVal[c][i]= CompScaleOffsetInputVal[c][i - 1]

comp-scaleoffsetval[c][i - 1]

In one alternative, compscaleoffsetval[c][i] is used to directly calculate

CompScaleOffsetOutputVal[][i] and indirectly calculate

CompScaleOffsetInputVal[][i] for i in the range of 0 to

compscalenum_points minus[c]as follows:

WO 2017/053280 PCT/US2016/052640
63

for(i = 0; i < compscalenumpoints minusI[c]; i++)

if(i == 0)

CompScaleOffsetOutputVal[c][i]=

compscale_globaloffset output val[c]

CompScaleOffsetInputVal[c][i] =

compscale_globaloffset input val[c]

else

CompScaleOffsetInputVal[c][i]= CompScaleOffsetInputVal[c][i - 1]

(compscaleoffset val[c][i - 1]*

compscale val[c][i - 1]

+ roundingOffset) >>

compscale log2denomscale-val)

CompScaleOffsetOutputVal[c][i]= CompScaleOffsetOutputVal[c][i

1I +

comp-scaleoffsetval[c][i - 1]

In one alternative, compscaleoffsetval[c][i] for i in the range of 0 to

compscale numpointsminus1[c], inclusive, are not signaled, and the values of

compscale_offset val[c][i] are derived based on

compscale numpointsminus1[c] equally spaced intervals for which the scale is

specified. The value of comp_scale_offset val[c][i] for i in the range of 0 to

compscalenum_points minus[c]- 1, inclusive, is derived as follows:

compscale_offset val[c][i]= ((1 compscaleoutput bit depth)

compscaleglobaloffset-output val[c])+

compscale numpointsminus1[c]

In another alternative, comp-scaleoffset val[c][i] for i in the range of 0 to

compscale numpointsminus1[c] is calculated as follows:

compscale_offset val[c][i]= (1 << compscaleoutput bit depth)+

compscalenum_points minus[c]+

In one alternative, instead of signaling compscale numpointsminus1[c], the

number of pivot points is signaled using log2_compscale num-points[c], where

(1 << log2_comp_scalenumpoints[c])specifies the number of pivot points for the

c-th component.

WO 2017/053280 PCT/US2016/052640
64

Alternatively, each of compscaleoffset val[c][]and compscale val[c][]is

signaled as floating point numbers, or as two syntax elements with exponent and

mantissa.

In another alternative, signaling of compscale val[c][i] is replaced by

compscaleoutputpoint[c][i].

The semantics of rest of the syntax elements are similar to those described in Example

1.

Example 3

[0207] This method described in Example 3 is similar to one of the alternatives

described in Example 2, with the exception that the component scaling functions are

allowed to be updated independently.

Syntax of the component scaling SEI message

component scaleinfo(payloadSize){ Descriptor

compscale-id ue(v)

compscalecancelflag u(1)

if(!compscalecancelflag){

compscale-persistence-flag u(1)

compscale-num-comps ue(v)

compscaleinput-bit-depth ue(v)

compscale-output-bit-depth ue(v)

for(c = 0; c < compscalenumcomps; c++){

compscale-persist-component-flag[c] u(1)

if(!comp_scalepersist component flag[c])

compscalenumscale-regions[c] ue(v)

compscaleglobal_offsetinput-val[c] u(v)

compscaleglobal_offsetoutput-val[c] u(v)

for(i = 0; i < compscalenumscale regions[c]; i++){

comp-scaleoffset-val[c][i] u(v)

compscale-val[c][i] u(v)

}
}

}
}

WO 2017/053280 PCT/US2016/052640
65

}
Semantics of the component scaling SEI message

The semantics is similar to Example 2, except for the following syntax elements.

compscalenumscale-regions[c] specifies the number of regions for which the

syntax element compscale val[c][i] is signalled for the c-the component.

compscalenum_scale regions[c] shall be in the range of 0 to (1 <<

compscale input bit depth) - 1, inclusive.

compscalepersist-component-flag[c] equal to 0 specifies that component scaling

parameters for the c-th component are explicitly signalled in the SEI message.

compscalepersist component flag[c] equal to 1 specifies that component scaling

parameters for the c-th component are not explicitly signalled in the SEI message, and it

persists from the component scaling parameters of the c-th component of the component

scaling SEI message that applies to previous picture, in output order.

It is a requirement of bitstream conformance that when the component scaling SEI

message is present in an IRAP access unit, the value of

compscalepersist component flag[c], when present, shall be equal to 0.

Alternatively, the following condition is added:

It is a requirement of bitstream conformance that when the component scaling SEI

message is present in an access unit that is not an IRAP access unit and

compscalepersist component flag[c] is equal to 1, then there is at least one picture

that precedes the current picture in output order and succeeds, in output order, the

previous IRAP picture in decoding order, inclusive, such that the one picture is associated

with a component scaling SEI message with compscalepersistence flag equal to 1.

compscale-persistence_flag specifies the persistence of the component scaling

information SEI message for the current layer.

compscalepersistence flag equal to 0 specifies that the component scaling information

applies to the current decoded picture only.

Let picA be the current picture compscalepersistenceflag equal to 1 specifies that the

component scaling information of the c-th component persists for the current layer in

output order until any of the following conditions are true:

- A new CLVS of the current layer begins.

- The bitstream ends.

- A picture picB in the current layer in an access unit containing a component scaling

information SEI message with the same value of compscale-id and

WO 2017/053280 PCT/US2016/052640
66

compscalepersistcomponent flag[c] equal to 0, and applicable to the current

layer is output for which PicOrderCnt(picB) is greater than PicOrderCnt(picA),

where PicOrderCnt(picB) and PicOrderCnt(picA) are the PicOrderCntVal values

of picB and picA, respectively, immediately after the invocation of the decoding

process for picture order count for picB.

Example 4

[0208] In this Example 4, a different method to signal the scale regions is disclosed.

Changes to component scaling SEI message syntax

component-scaleinfo(payloadSize){ Descriptor

compscale-id ue(v)

compscale-cancelflag u(1)

if(!compscalecancel flag){

compscale-persistence-flag u(1)

comp_scale-numcomps ue(v)

compscale-input-bit-depth ue(v)

comp_scale-output-bit-depth ue(v)

for(c = 0; c < compscalenumcomps; c++){

compscale-persist-component-flag[c] u(1)

if(!compscalepersist component flag[c])

compscale-globaloffset-input-val[c] u(v)

compscale-globaloffsetoutput-val[c] u(v)

compscale-numscale-regions[c] ue(v)

for(i = 0; i < compscalenumscale regions[c]; i++){

compscaleoffset-begin-val[c][i] u(v)

compscale-offsetendval[c][i] u(v)

compscale-val[c][i] u(v)

}
}

}
}

}

WO 2017/053280 PCT/US2016/052640
67

Changes to component scaling SEI message semantics

The semantics of the syntax elements are similar to those described in previous

examples, except for the following:

compscaleoffset-begin-val[c][i] specifies the beginning of the sample value range

for which the scale value compscale val[c][i] is applicable. The number of bits used

to represent compscale_offset begin val[c]is equal to compscale input bit depth.

compscaleoffsetend_val[c][i] specifies the end of the sample value range for

which the scale value compscale val[c][i] is applicable. The number of bits used to

represent compscaleoffsetend val[c] is equal to compscale inputbitdepth.

For regions that are not explicitly specified by comp_scale_offset beginval and

compscale_offsetendval, the comp_scalevalue[c][i] for those regions is inferred

to be equal to 0.

[0209] Alternatively, compscaleoffsetendval[c][i] is not signaled and instead the

difference between compscaleoffsetend val[c][i] and

compscale_offset begin val[c][i] is signaled, and the value of

compscale_offset end val[c][i] derived at the decoder-side.

[0210] In another alternative, the total number of regions in to which the output sample

range is split is specified, and the number of regions is signaled for which the scale

regions are explicitly signaled.

... u(v)

compscaleglobal_offsetoutput-val[c] u(v)

compscale-tot-scale-regions[c] ue(v)

compscale-num-scale-regions[c] ue(v)

for(i = 0; i < compscalenumscaleregions[c]; i++){

compscale-regionidx[c][i] u(v)

compscale-val[c][i] u(v)

}

compscale_totscaleregions[c] specifies the total number of equal length sample

value ranges in to which the sample values are split. The number of bits used to represent

compscaletotscale regions[c] is equal to compscale input bit depth.

In one alternative, the compscaletotscale regions[c] sample value ranges may not be

WO 2017/053280 PCT/US2016/052640
68

exactly equal in length but very nearly equal to account for the integer accuracy of the

region lengths.

compscaleregionidx[c][i] specifies the index of the sample value range for which

the scale value compscale val[c][i] is applied. The length of the syntax element

compscale region idx[c] is Ceil(Log2(comp_scaletot-scale-regions[c]))bits.

Alternatives

Alternatively, region around the chroma neutral (511 for 10-bit data) have smaller size,

p.e., half the size of the other regions.

Example 5

Syntax of the component scale SEI message

component scaleinfo(payloadSize){ Descriptor

compscale-id ue(v)

compscale-cancelflag u(1)

if(!compscalecancelflag){

compscale-persistenceflag u(1)

comp_scale-scale-bitdepth u(4)

comp_scale-offset-bit-depth u(4)

comp_scale-scale-fracbit-depth u(4)

comp_scale-offset-frac-bit-depth u(4)

comp_scale-num-comps_minus1 ue(v)

for(c = 0; c <= compscalenumcomps minus; c++){

compscale-num_ranges[c] ue(v)

compscaleequalrangesflag[c] u(1)

compscaleglobaloffset-val[c] u(v)

for(i = 0; i <= compscalenum-ranges[c]; i++)

compscale-scaleval[c][i] u(v)

if(!comp_scaleequal ranges[c]) u(v)

for(i = 0; i <= comp-scale-num-ranges[c]; i++)

comp-scale-offset-val[c][i] u(v)

}
}

WO 2017/053280 PCT/US2016/052640
69

Semantics of the component scale SEI message

The component scaling SEI message provides information to perform scaling operations

on the various components of the decoded pictures. The colour space and the

components on which the scaling operations should be performed are determined by the

value of the syntax elements signalled in the SEI message.

compscaleid contains an identifying number that may be used to identify the purpose

of the component scaling SEI message. The value of comp_scaleid shall be in the

range of 0 to 232 - 2, inclusive. The value of compscale id may be used to specify the

colour space at which the component scaling SEI message, or whether the component

scaling SEI message is applied in the linear or the non-linear domain.

In some examples, compscaleid can specify the configuration of the HDR

reconstruction process. In some examples, particular value of compscaleid may be

associated with signaling of scaling parameters for 3 components. The scaling of the

first components to be applied to samples of R',G',B' color space, and parameters of

following 2 components are applied for scaling of Cr and Cb.

For yet another compscale id value, hdr reconstruction process can utilize parameters

for 3 components, and scaling is applied to samples of Luma, Cr and Cb color

components.

In yet another compscale id value, hdr reconstruction process can utilize signaling for

4 components, 3 of which to be applied to Luma, Cr and Cb scaling, and 4th component

to bring parameters of color correction.

In some examples, certain range of comp-scale-id values may be associated with HDR

reconstruction conducted in SDR-backward compatible configuration, whereas another

range of compscaleid values may be associated with HDR reconstruction conducted

to non-backward compatible configuration.

Values of compscaleid from 0 to 255, inclusive, and from 512 to 231 - 1, inclusive,

may be used as determined by the application. Values of compscaleid from 256 to

511, inclusive, and from 231 to 232 - 2, inclusive, are reserved for future use by ITU-T

ISO/JEC. Decoders shall ignore all component scale information SEI messages

containing a value of compscale id in the range of 256 to 511, inclusive, or in the

range of 231 to 232 - 2, inclusive, and bitstreams shall not contain such values.

NOTE 1 - The compscaleid can be used to support component scaling processes

that are suitable for different display scenarios. For example, different values of

WO 2017/053280 PCT/US2016/052640
70

compscaleid may correspond to different display bit depths or different colour

spaces in which the scaling is applied.

Alternatively, the compscale id may also be used to identify whether the scaling is

performed for compatibility to certain types of displays or decoder, e.g. HDR, SDR.

compscalecancelflag equal to 1 indicates that the component scaling information

SEI message cancels the persistence of any previous component information SEI

messages in output order that applies to the current layer. compscalecancelflag equal

to 0 indicates that component scaling information follows.

compscale-persistence_flag specifies the persistence of the component scaling

information SEI message for the current layer.

compscalepersistence flag equal to 0 specifies that the component scaling

information applies to the current decoded picture only.

Let picA be the current picture. compscalepersistenceflag equal to 1 specifies that

the component scaling information persists for the current layer in output order until any

of the following conditions are true:

- A new CLVS of the current layer begins.

- The bitstream ends.

- A picture picB in the current layer in an access unit containing a component scaling

information SEI message with the same value of compscaleid and applicable to the

current layer is output for which PicOrderCnt(picB) is greater than

PicOrderCnt(picA), where PicOrderCnt(picB) and PicOrderCnt(picA) are the

PicOrderCntVal values of picB and picA, respectively, immediately after the

invocation of the decoding process for picture order count for picB.

compscale_scalebit-depth specifies the number of bits used to signal the syntax

element compscalescaleval[c][i]. The value of comp_scalescalebitdepth shall

be in the range of 0 to 15, inclusive.

compscaleoffset-bit-depth specifies the number of bits used to signal the syntax

elements compscaleglobal_offsetval[c] and comp-scaleoffsetval[c][i]. The

value of compscaleoffsetbit depth shall be in the range of 0 to 15, inclusive.

compscalescalefrac-bit-depth specifies the number of LSBs used to indicate the

fractional part of the scale parameter of the i-th partition of the c-th component. The

value of compscalescalefracbitdepth shall be in the range of 0 to 15, inclusive.

The value of comp_scale_scalefracbit-depth shall be less than or equal to the value of

compscale_scalebit depth.

WO 2017/053280 PCT/US2016/052640
71

compscaleoffsetfracbit-depth specifies the number of LSBs used to indicate the

fractional part of the offset parameter of the i-th partition of the c-th component and

global offset of the c-th component. The value of compscale_offsetfracbitdepth

shall be in the range of 0 to 15, inclusive. The value of

compscale_offsetfracbitdepth shall be less than or equal to the value of

compscale_offset bit depth.

compscale_num_compsminus1 plus 1 specifies the number of components for

which the component scaling function is specified. compscalenumcomps-minusl

shall be in the range of 0 to 2, inclusive.

compscale_num_ranges[c] specifies the number of ranges in to which the output

sample range is partitioned in to. The value of comp-scalenumranges[c] shall be in

the range of 0 to 63, inclusive..

compscaleequalrangesflag[c] equal to 1 indicates that that output sample range

is partitioned into compscale num ranges[c] nearly equal partitions, and the partition

widths are not explicitly signalled. comp_scaleequal ranges flag[c] equal to 0

indicates that that output sample range may be partitioned into

compscalenumranges[c] partitions not all of which are of the same size, and the

partitions widths are explicitly signalled.

compscaleglobal_offset_val[c] is used to derive the offset value that is used to map

the smallest value of the valid input data range for the c-th component. The length of

compscaleglobaloffsetval[c] is compscale_offsetbit depth bits.

compscalescaleval[c][i] is used to derive the offset value that is used to derive

the width of the of the i-th partition of the c-th component. The length of

compscaleglobaloffsetval[c] is compscale_offsetbit depth bits.

The variable CompScaleScaleVal[c][i] is derived as follows .

CompScaleScaleVal[c][i]= (compscale_scaleval[c][i] >>

compscalescalefrac bit depth) +

(compscale_scaleval[c][i] &

((1 << compscalescalefrac bit depth)- 1)

(1 « compscale-scalefracbit depth)

compscale_offset-val[c][i] is used to derive the offset value that is used to derive

the width of the of the i-th partition of the c-th component. The length of

compscaleglobaloffsetval[c] is compscale_offsetbit depth bits.

WO 2017/053280 PCT/US2016/052640
72

When compscaleoffsetval[c][i] is signalled, the value of

CompScaleOffsetVal[c][i] is derived as follows:

CompScaleOffsetVal[c][i]= (compscale_offset val[c][i] >>

compscaleoffsetfracbitdepth) +

(compscaleoffsetval[c][i] &

((1 << compscaleoffsetfrac bit depth)- 1)

(1 « compscale offsetfrac bit depth)

Alternatively, the variable CompScaleScaleVal[c][i] and CompScaleOffsetVal[c][i]

are derived as follows :

CompScaleScaleVal[c][i]= compscale scale-valc][i] +

(1 « compscale scalefracbit depth)

CompScaleOffsetVal[c][i]= compscale_offsetval[c][i] +

(1 « compscale offsetfrac bit depth)

When compscaleequal ranges flag[c] is equal to 1, compscale offset val[c][i] is

not signalled, and the value of CompScaleOffsetVal[c][i] is derived as follows:

CompScaleOffsetVal[c][i] = 1+ compscalenum ranges[c]

The variable CompScaleOutputRanges[c][i] and CompScaleOutputRanges[c][i]for

i in the range of 0 to compscalenumranges[c] is derived as follows:

for(i = 0; i <= compscalenum-ranges[c]; i++)

if(i == 0)

CompScaleOutputRanges[c][i= compscaleglobal offsetval[c]+

(1 « compscaleoffsetfracbit depth)

CompScaleInputRanges[c][i] = 0

else

CompScaleInputRanges[c][i] = CompScaleOffsetInputRanges[c][i

(CompScaleOffsetVal[c][i - 1]*

CompScaleScaleVal[c][i - 1]

CompScaleOutputRanges[c][i= CompScaleOutputRanges[c][i - 1] +

CompScaleOffsetVal[c][i - 1]

In one alternative, the values of CompScaleOutputRanges[][] and

CompScaleOutputRanges[][] are derived as follows:

WO 2017/053280 PCT/US2016/052640
73

for(i = 0; i <= compscalenum-ranges[c]; i++)

if(i == 0)

CompScalelnputRanges[c][i= compscaleglobal-offset-val[c]+

(1 « compscale_offsetfracbit depth)

CompScaleOutputRanges[c][i= 0

else

CompScalelnputRanges[c][i= CompScaleOffsetInputRanges[c][i

1I +

(CompScaleOffsetVal[c][i - 1]*

CompScaleScaleVal[c][i - 1]

CompScaleOutputRanges[c][i= CompScaleOutputRanges[c][i - 1] +

CompScaleOffsetVal[c][i - 1]

The process of mapping an input signal representation (which may be used to cover both

integer as well as floating point) x and an output signal representation y, where the sample

values for both input representation is normalized in the range of 0 to 1, and output

representation is in the range of and 0 to 1, is specified as follows:

if(x <= CompScalenputRanges[c][0)

y = CompScaleOutputRanges[c][0]

else if(x > CompScaleInputRanges[c][comp_scalenum ranges[c]])

y = CompScaleOutputRanges[c][compscalenum ranges[c];]

else

for(i = 1; i <= compscalenum-ranges[c]; i++)

if(CompScalelnputRanges[i - 1] < x && x <=

CompScalelnputRanges[i])

y=(x

CompScalelnputRanges[i - 1]) +compscale val[c][i]+

CompScaleOutputRanges[c][i - 1]

In one alternative, the value of CompScaleOutputRanges[c][0]is set based on the

permitted sample value range.

Alternatively, the process of mapping an input value valln to output value valOut is

defined as follows:

m_pAtfRangeIn[0]= 0;

m_pAtfRangeOut[0]= -moffset2 *m_pAtfScale2[c][0];

for (int j = 1; j < matfNumberRanges + 1; j++)

WO 2017/053280 PCT/US2016/052640
74

{

m_pAtfRangeln[j]= mpAtfRangeInj - 1] + m_pAtfDeltaU

1];

m_pAtfRangeOut[j]= mpAtfRangeOutj - 1] +

m_pAtfScale2[c][j - 1] *

m_pAtfDelta[j- 1];

}
for (int j = 0; j < numRanges && skip= = 0;j++)

{
if (valln <= pAtfRangen[j + 1])

{
valOut = (valIn - pOffset[om on][j] *

p S cale[componn][j]

skip = 1;

}
]

In one alternative, m_offset2 is equal to compscaleglobal_offsetval[c]EDE

(1 « compscaleoffsetfracbitdepth), m_pAtfScale[c][i] is equal to

CompScaleScaleVal[c][i]and m_pAtfDelta[i] is equal to

CompScaleOffsetVal[c][i]for the c-th component, and pScale and pOffset are scale

and offset parameter derived from m_AtfScale and m_pAtfDelta.

An inverse operation would be defined accordingly.

Example 6

In some examples, some of signaling methods described above, e.g., in example

5, can be utilized as shown in following pseudo code.

m_atfNumberRanges is a term for for syntax elements

compscalenumranges[c] for a given c, that specifies number of dynamic range

partitioning for mapped data.

m_pAtfRangeIn is a term for CompScaleInputRanges, is an arrays size of

m_atfNumberRanges+1 that includes input sample value specifying the border between

two concatenated partitions, e.g. i and i+1.

WO 2017/053280 PCT/US2016/052640
75

m_pAtfRangeOut is a term for CompScaleOutputRanges, is an arrays size of

m_atfNumberRanges+1 that includes output sample value specifying the border between

two concatenated partitions, e.g. i and i+1.

m_pAtfScale2 is a term for variable CompScaleScaleVal [c] is an arrays size of

m_atfNumberRanges that includes scale values for each partitions.

m_pAtfOffset2 is an array arrays size of m_atfNumberRanges that includes offset

values for each partition.

m_offset2 is a term for compscaleglobal_offsetval.

In this example, parameters of piece-wise linear model can be determined form

syntax elements as in Algorithm 1:

Algorithm 1:

m_pAtfRangeIn[0]= 0;

m_pAtfRangeOut[O]= -moffset2 *m_pAtfScale2[c][0];

for (int j = 1; j < matfNumberRanges + 1; j++)

{
m_pAtfRangeInj]= mpAtfRangeInj - 1] + m_pAtfDeltaj - 1];

m_pAtfRangeOutj]= mpAtfRangeOutj - 1] +

m_pAtfScale2[c][- 1]* m_pAtfDeltaj - 1];

}

for (int j= 0; j < matfNumberRanges; j++)

{
temp = mpAtfRangeInj + 1] - mpAtfRangeOutj + 1]/

m_pAtfScale2[c][];

m_pAtfOffset2[c][]= temp;

}

Once determined, piece-wise linear model can be applied to input samples value

inValue to determine output sample value outValue as in Algorithm 2:

Algorithm 2:

for (int j = 0; j < m_atfNumberRanges && skip == 0; j++)

{

if (inValueK<= mpAtfRange~n~j+ 1])

WO 2017/053280 PCT/US2016/052640
76

{
outValue = (inValue - mpAtfOffset2[])*

m_pAtfScale2 [j];

skip = 1;

}
}

Inverse process to be conducted as in Algorithm 3:

Algorithm 3:

for (int j = 0; j < m_atfNumberRanges && skip == 0; j++)

{
if (inValue <= m_pAtfRangeOut[j + 1])

{
outValue = inValue / m_pAtfScale2] +

m_pAtfOffset2 [j];

skip = 1;

}
}

[0211] In some examples, border sample value (an entry of m_pAtfRangeIn or

m_pAtfRangeOut) between two concatenated partitions i and i+1 can be interpreted

differently, as belonging to i+1, instead of belonging to i partition as it is shown in

Algorithm 2 and 3.

[0212] In some examples, inverse process shown in Algorithm 3, can be implemented

with a multiplication by m_pAtflnverseScale2 value, instead of division by

m_pAtfScale2[j]. In such examples, a value of m_pAtfScale2[j] is determined from

m_pAtfScale2 [j] in advance.

[0213] In some examples, m_pAtfinverseScale2 [j] is determined at the decoder side as

1/m pAtfScale2[].

[0214] In some examples, m_pAtfinverseScale2 [j] can be computed at the encoder

side, and signalled through bitstream. In such examples, operation given in Algorithms

1, 2 and 3 will be adjusted accordingly.

[0215] Various examples

[0216] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be utilized to enable dynamical range adjustment for samples of

input signal, e.g. to improve compression efficiency of video coding systems.

WO 2017/053280 PCT/US2016/052640
77

[0217] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to codewords (non-linear representation of R,G,B

samples) produced by an OETF, e.g. by PQ TF of ST.2084, or others.

[0218] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to samples of YCbCr colors.

[0219] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be utilized to HDR/WCG solutions with SDR compatibility.

[0220] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to samples in floating point representation. In yet

another example, proposed signaling mechanism and resulting function can be applied

to samples in integer representation, e.g. 10 bits.

[0221] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to samples in a form of Look Up Tables. In yet

another examples, proposed signaling can be used to model function that can be applied

to a sample in a form of multiplier.

Combinations and Extensions

[0222] In the examples above, a linear model is assumed for each region (i.e., scale plus

offset); the techniques of this disclosure also may be applicable for higher-order

polynomial models, for example, with a polynomial of 2nd degree requiring three

parameters instead of two. The signaling and syntax would be properly extended for

this scenario.

[0223] Combinations of aspects described above are possible and part of the techniques

of this disclosure.

[0224] Toolbox combination: there are several HDR methods that can target somewhat

similar goals to those of the SEIs described in this disclosure. In order to accommodate

more than one of them but, at the same time, limiting the number of applicable SEI

processing per frame, it is proposed to combine (one or more of) these methods in a

single SEI. A proposed syntax element would indicate the specific method to apply in

each instance. For example, if there are two possible methods in the SEI, the syntax

element would be a flag indicating the one to be used.

Example 7

[0225] In this example, the signaling of scale parameters is modified such that negative

scales can be transmitted, and the signaled scale parameters indicate the variation of

WO 2017/053280 PCT/US2016/052640
78

scale to be applied for different ranges of the various components. The changes with

respect to example 5 are below.

Changes to syntax of the SEI message

componentscale info(payloadSize){ Descriptor

compscale-id ue(v)

compscalecancelflag u(1)

if(!compscalecancelflag){

compscale-persistenceflag u(1)

comp_scalescale-bit-depth u(4)

comp_scaleoffset-bit-depth u(4)

comp_scalescale-frac-bit-depth u(4)

comp_scaleoffset-frac-bit-depth u(4)

comp_scalenegative-scalespresent-flag u(1)

comp_scaledepcomponentid ue(v)

comp_scalenum-comps_minus1 ue(v)

for(c = 0; c <= compscalenumcomps minus; c++){

compscale-numranges[c] ue(v)

compscaleequalrangesflag[c] u(1)

compscaleglobaloffsetvalI[c] u(v)

for(i = 0; i <= compscalenum-ranges[c]; i++)

compscale-scale-val[c][i] u(v)

if(!compscaleequal ranges[c]) u(v)

for(i = 0; i <= comp-scale-num-ranges[c]; i++)

comp-scale-offset-val[c][i] u(v)

}

}

Changes to semantics of the SEI message

compscale-negative-scalespresentflag equal to 1 specifies that the integer

part of the scale parameters derived from compscale_scale val[c][i] is represented as

WO 2017/053280 PCT/US2016/052640
79

a signed integer. compscale negativescalespresent flag equal to 0 specifies that the

integer part scale parameters derived from comp_scale_scale val[c][i] is represented

as an unsigned integer.

[0226] In one alternative, another set of offset parameters are signaled along with

compscale_scaleval that are used to define the offset that is applied along with the

scale on a first component as a function of the value of a second component.

[0227] The signed-integer representation includes, but is not limited to, twos

complement notation and signed magnitude representation (one bit for sign and the

remaining bits in the integer-part). The derivation below is given for the signed

magnitude representation. The derivation can be similarly defined for other forms of

signed representations.

The variable CompScaleScaleVal[c][i] is derived as follows

compScaleScaleFracPart = (comp_scale_scale val[c][i] &

((1 << compscalescalefrac bit depth)- 1)

(1 « compscale-scalefracbit depth)

if(compscale negativescalespresent flag) {

compScaleSignPart = comp_scale_scaleval[c][i] >>

(compscalescalebit depth - 1)

compScaleIntegerPart =compscale-scale-val[c][i]- (compScaleSignPart

« (comp-scalescalebit depth - 1))

compScaleIntegerVal =((compScaleSignPart== 1):-1 : 1)*

compScaleIntegerPart

}else

compScaleIntegerVal =compscale_scale valc][i] >>

compscalescalefrac bit depth

CompScaleScaleVal[c][i]= compScaleIntegerVal + compScaleScaleFracPart

It is a requirement of bitstream conformance that when

compscale negativescalepresentflag is equal to 1, the value of

compscale_scalebit depth shall be greater than or equal to

compscale_scalefracbitdepth

compscale-dependent-componentid specifies the application of scale and

offset parameters to the various components of the video. When

compscaledependentcomponent id is equal to 0, the syntax elements

WO 2017/053280 PCT/US2016/052640
80

compscaleglobaloffsetval[c], compscale-scale-val[c][i] and

compscale_offset val[c][i] are used to identify mapping of input and output values of

the c-th component. When compscaledependentcomponent id is greater than 0,

compscaledependentcomponent id - 1 specifies the index of the component such that

the syntax elements compscaleglobal_offsetval[c], compscalescaleval[c][i]

and comp_scale_offset val[c][i] specify the mapping of a scale parameter to be applied

to the c-th component of a sample as a function of the value of

(compscaledependentcomponent id - 1)-th component of the sample.

The rest of the semantics is similar to those described in example 5.

Example 8

[0228] In this example, the bit depth of the ATF parameters depend on the component.

For each component, the bit depth of the syntax elements is explicitly signal. In

addition, there are default bit-depth for those syntax elements. The default value is

assigned when the bit depth is not explicitly signaled. A flag might indicate whether the

default values are applied or they are explicitly signaled.

[0229] The table below shows an example of these concepts. Syntax elements of the

ATF parameters are the scale hdrreconscaleval[][] and range

hdrrecon range val[][]. The syntax elements indicating the corresponding bit depth

(integer and fractional part) are the following ones:

• hdrreconscalebitdepth[c],

* hdrreconoffsetbitdepth[c],

* hdrreconscalefrac-bit depth[c],

* hdrreconoffsetfrac bit depth[c],

where c is the component index. The default bit-depths for scale and offset (range)

can be set to:

• hdrreconscalebitdepth[c]= 8,

* hdrreconoffsetbitdepth[c]= 8,

* hdrreconscalefrac-bit depth[c]= 6,

* hdrreconoffsetfrac bit depth[c]= 8.

[0230] The accuracy of the parameters might also be different for the ATF parameters

and the color adjustment parameters. Also, the default might be different per

WO 2017/053280 PCT/US2016/052640
81

component and for the color adjustment parameters. In this example, the defaults are

assumed to be the same.

hdrreconstruction info(payloadSize){ Descriptor

hdrrecon-id ue(v)

hdrreconcancel-flag u(1)

if(!hdrrecon-cancel-flag){

hdrrecon-persistence-flag u(1)

if (hdr_reconid = = 1) {

hdr output-fullrange-flag

hdr-output-colour-primaries

hdr-output-transfer-characteristics

hdr output-matrix-coeffs

}

hdr_recon_numcomps_minusi ue(v)

for(c= 0; c<= hdr_recon_num_compsminus1; c++)

{
hdr_recondefaultbitdepth [c] u(1)

if (hdrrecon_defaultbitdepth [c]== 0) {

hdr_reconscalebitdepth[c] u(4)

hdr_reconoffsetbitdepth[c] u(4)

hdr_reconscalefrac_bit_depth[c] u(4)

hdr_reconoffsetfrac_bit_depth[c] u(4)

}
hdrreconnumranges[c] ue(v)

hdr_recon_equalrangesflag[c] u(1)

hdrreconglobaloffsetval[c] u(v)

for(i= 0;i <= hdrrecon_num_ranges[c]; i++)

hdrreconscaleval[c][i] u(v)

WO 2017/053280 PCT/US2016/052640
82

if(!hdr reconequal ranges[c]) u(v)

for(i = 0; i <= hdrreconnum-ranges[c]; i++)

hdrreconrange-val [c]i u(v)

} u(v)

if (hdr_recon_id = = 1){ Params related to Colour

correction

hdr_ colorcorrection_type 0: on U,V -1: onR,G,B

hdr_color_accuracyflag Syntax for coding the

colour

if(!hdrrecon_color_accuracyflag){ correction LUT

hdr_color _scalebitdepth u(4)

hdr_color _offsetbit~depth u(4)

hdr_color _scalefracbitdepth u(4)

hdr_color _offsetfracbitdepth u(4)

}
colorcorrection_num_ranges

color_correctionequallenrangesflag

color_correctionzerooffset_val

for(i= 0; i <color_correction_numranges; i++)

color_correction_scaleval[i]

if(!colorcorrection_equallenrangesflag)

for(i= 0; i <color_correction_numranges; i++)

colorcorrection_rangeval[i]

}

}

}

}

WO 2017/053280 PCT/US2016/052640
83

Example 9

[0231] A desirable property of a new HDR solution is that it is backward compatible to

previous HDR solutions, like HDR10. A syntax element may indicate that this is the

case. This indicates a characteristic of the bitstream, and an HDR decoder might decide

not to spend computational resources on the inverse ATF processing under some

circumstances if the non ATF version is already viewable.

[0232] In one example, some values of the hdrrecon-id syntax element are reserved to

indicate HDR10 backward compatibility, or to what degree there is backward

compatibility.

[0233] In another example, a flag (hdr reconhdrl0_bc) indicates this situation.

[0234] In one example, the signaled HDR1O backward compatibility indicates that the

bitstream is viewable. Alternatively, it might indicate some specific properties of the

signaled values: for example, that they are a range of values that guarantees this

property. For instance, a constraint could be that the scale is between 0.9 and 1.1.

[0235] FIG. 12 is a block diagram illustrating an example of video encoder 20 that may

implement the techniques of this disclosure. Video encoder 20 may perform intra- and

inter-coding of video blocks within video slices in a target color representation that have

been processed by video preprocessor 19. Intra-coding relies on spatial prediction to

reduce or remove spatial redundancy in video within a given video frame or picture.

Inter-coding relies on temporal prediction to reduce or remove temporal redundancy in

video within adjacent frames or pictures of a video sequence. Intra-mode (I mode) may

refer to any of several spatial based coding modes. Inter-modes, such as uni-directional

prediction (P mode) or bi-prediction (B mode), may refer to any of several temporal

based coding modes.

[0236] As shown in FIG. 12, video encoder 20 receives a current video block within a

video frame to be encoded. In the example of FIG. 12, video encoder 20 includes mode

select unit 40, a video data memory 41, decoded picture buffer 64, summer 50,

transform processing unit 52, quantization unit 54, and entropy encoding unit 56. Mode

select unit 40, in turn, includes motion compensation unit 44, motion estimation unit 42,

intra prediction processing unit 46, and partition unit 48. For video block

reconstruction, video encoder 20 also includes inverse quantization unit 58, inverse

transform processing unit 60, and summer 62. A deblocking filter (not shown in FIG.

12) may also be included to filter block boundaries to remove blockiness artifacts from

reconstructed video. If desired, the deblocking filter would typically filter the output of

WO 2017/053280 PCT/US2016/052640
84

summer 62. Additional filters (in loop or post loop) may also be used in addition to the

deblocking filter. Such filters are not shown for brevity, but if desired, may filter the

output of summer 50 (as an in-loop filter).

[0237] Video data memory 41 may store video data to be encoded by the components of

video encoder 20. The video data stored in video data memory 41 may be obtained, for

example, from video source 18. Decoded picture buffer 64 may be a reference picture

memory that stores reference video data for use in encoding video data by video

encoder 20, e.g., in intra- or inter-coding modes. Video data memory 41 and decoded

picture buffer 64 may be formed by any of a variety of memory devices, such as

dynamic random access memory (DRAM), including synchronous DRAM (SDRAM),

magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory

devices. Video data memory 41 and decoded picture buffer 64 may be provided by the

same memory device or separate memory devices. In various examples, video data

memory 41 may be on-chip with other components of video encoder 20, or off-chip

relative to those components.

[0238] During the encoding process, video encoder 20 receives a video frame or slice to

be coded. The frame or slice may be divided into multiple video blocks. Motion

estimation unit 42 and motion compensation unit 44 perform inter-predictive coding of

the received video block relative to one or more blocks in one or more reference frames

to provide temporal prediction. Intra prediction processing unit 46 may alternatively

perform intra-predictive coding of the received video block relative to one or more

neighboring blocks in the same frame or slice as the block to be coded to provide spatial

prediction. Video encoder 20 may perform multiple coding passes, e.g., to select an

appropriate coding mode for each block of video data.

[0239] Moreover, partition unit 48 may partition blocks of video data into sub-blocks,

based on evaluation of previous partitioning schemes in previous coding passes. For

example, partition unit 48 may initially partition a frame or slice into LCUs, and

partition each of the LCUs into sub-CUs based on rate-distortion analysis (e.g., rate

distortion optimization). Mode select unit 40 may further produce a quadtree data

structure indicative of partitioning of an LCU into sub-CUs. Leaf-node CUs of the

quadtree may include one or more PUs and one or more TUs.

[0240] Mode select unit 40 may select one of the coding modes, intra or inter, e.g.,

based on error results, and provides the resulting intra- or inter-coded block to summer

50 to generate residual block data and to summer 62 to reconstruct the encoded block

WO 2017/053280 PCT/US2016/052640
85

for use as a reference frame. Mode select unit 40 also provides syntax elements, such as

motion vectors, intra-mode indicators, partition information, and other such syntax

information, to entropy encoding unit 56.

[0241] Motion estimation unit 42 and motion compensation unit 44 may be highly

integrated, but are illustrated separately for conceptual purposes. Motion estimation,

performed by motion estimation unit 42, is the process of generating motion vectors,

which estimate motion for video blocks. A motion vector, for example, may indicate the

displacement of a PU of a video block within a current video frame or picture relative to

a predictive block within a reference picture (or other coded unit) relative to the current

block being coded within the current picture (or other coded unit). A predictive block is

a block that is found to closely match the block to be coded, in terms of pixel difference,

which may be determined by sum of absolute difference (SAD), sum of square

difference (SSD), or other difference metrics. In some examples, video encoder 20 may

calculate values for sub-integer pixel positions of reference pictures stored in decoded

picture buffer 64. For example, video encoder 20 may interpolate values of one-quarter

pixel positions, one-eighth pixel positions, or other fractional pixel positions of the

reference picture. Therefore, motion estimation unit 42 may perform a motion search

relative to the full pixel positions and fractional pixel positions and output a motion

vector with fractional pixel precision.

[0242] Motion estimation unit 42 calculates a motion vector for a PU of a video block

in an inter-coded slice by comparing the position of the PU to the position of a

predictive block of a reference picture. The reference picture may be selected from a

first reference picture list (List 0) or a second reference picture list (List 1), each of

which identify one or more reference pictures stored in decoded picture buffer 64.

Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit

56 and motion compensation unit 44.

[0243] Motion compensation, performed by motion compensation unit 44, may involve

fetching or generating the predictive block based on the motion vector determined by

motion estimation unit 42. Again, motion estimation unit 42 and motion compensation

unit 44 may be functionally integrated, in some examples. Upon receiving the motion

vector for the PU of the current video block, motion compensation unit 44 may locate

the predictive block to which the motion vector points in one of the reference picture

lists. Summer 50 forms a residual video block by subtracting pixel values of the

predictive block from the pixel values of the current video block being coded, forming

WO 2017/053280 PCT/US2016/052640
86

pixel difference values, as discussed below. In general, motion estimation unit 42

performs motion estimation relative to luma components, and motion compensation unit

44 uses motion vectors calculated based on the luma components for both chroma

components and luma components. Mode select unit 40 may also generate syntax

elements associated with the video blocks and the video slice for use by video decoder

30 in decoding the video blocks of the video slice.

[0244] Intra prediction processing unit 46 may intra-predict a current block, as an

alternative to the inter-prediction performed by motion estimation unit 42 and motion

compensation unit 44, as described above. In particular, intra prediction processing unit

46 may determine an intra-prediction mode to use to encode a current block. In some

examples, intra prediction processing unit 46 may encode a current block using various

intra-prediction modes, e.g., during separate encoding passes, and intra prediction

processing unit 46 (or mode select unit 40, in some examples) may select an appropriate

intra-prediction mode to use from the tested modes.

[0245] For example, intra prediction processing unit 46 may calculate rate-distortion

values using a rate-distortion analysis for the various tested intra-prediction modes, and

select the intra-prediction mode having the best rate-distortion characteristics among the

tested modes. Rate-distortion analysis generally determines an amount of distortion (or

error) between an encoded block and an original, unencoded block that was encoded to

produce the encoded block, as well as a bit rate (that is, a number of bits) used to

produce the encoded block. Intra prediction processing unit 46 may calculate ratios

from the distortions and rates for the various encoded blocks to determine which intra

prediction mode exhibits the best rate-distortion value for the block.

[0246] After selecting an intra-prediction mode for a block, intra prediction processing

unit 46 may provide information indicative of the selected intra-prediction mode for the

block to entropy encoding unit 56. Entropy encoding unit 56 may encode the

information indicating the selected intra-prediction mode. Video encoder 20 may

include in the transmitted bitstream configuration data, which may include a plurality of

intra-prediction mode index tables and a plurality of modified intra-prediction mode

index tables (also referred to as codeword mapping tables), definitions of encoding

contexts for various blocks, and indications of a most probable intra-prediction mode,

an intra-prediction mode index table, and a modified intra-prediction mode index table

to use for each of the contexts.

WO 2017/053280 PCT/US2016/052640
87

[0247] Video encoder 20 forms a residual video block by subtracting the prediction data

from mode select unit 40 from the original video block being coded. Summer 50

represents the component or components that perform this subtraction operation.

Transform processing unit 52 applies a transform, such as a discrete cosine transform

(DCT) or a conceptually similar transform, to the residual block, producing a video

block comprising residual transform coefficient values. Transform processing unit 52

may perform other transforms which are conceptually similar to DCT. Wavelet

transforms, integer transforms, sub-band transforms or other types of transforms could

also be used. In any case, transform processing unit 52 applies the transform to the

residual block, producing a block of residual transform coefficients. The transform may

convert the residual information from a pixel value domain to a transform domain, such

as a frequency domain. Transform processing unit 52 may send the resulting transform

coefficients to quantization unit 54.

[0248] Quantization unit 54 quantizes the transform coefficients to further reduce bit

rate. The quantization process may reduce the bit depth associated with some or all of

the coefficients. The degree of quantization may be modified by adjusting a

quantization parameter. In some examples, quantization unit 54 may then perform a

scan of the matrix including the quantized transform coefficients. Alternatively, entropy

encoding unit 56 may perform the scan.

[0249] Following quantization, entropy encoding unit 56 entropy codes the quantized

transform coefficients. For example, entropy encoding unit 56 may perform context

adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding

(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability

interval partitioning entropy (PIPE) coding or another entropy coding technique. In the

case of context-based entropy coding, context may be based on neighboring blocks.

Following the entropy coding by entropy encoding unit 56, the encoded bitstream may

be transmitted to another device (e.g., video decoder 30) or archived for later

transmission or retrieval.

[0250] Inverse quantization unit 58 and inverse transform processing unit 60 apply

inverse quantization and inverse transformation, respectively, to reconstruct the residual

block in the pixel domain, e.g., for later use as a reference block. Motion compensation

unit 44 may calculate a reference block by adding the residual block to a predictive

block of one of the frames of decoded picture buffer 64. Motion compensation unit 44

may also apply one or more interpolation filters to the reconstructed residual block to

WO 2017/053280 PCT/US2016/052640
88

calculate sub-integer pixel values for use in motion estimation. Summer 62 adds the

reconstructed residual block to the motion compensated prediction block produced by

motion compensation unit 44 to produce a reconstructed video block for storage in

decoded picture buffer 64. The reconstructed video block may be used by motion

estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a

block in a subsequent video frame.

[0251] FIG. 13 is a block diagram illustrating an example of video decoder 30 that may

implement the techniques of this disclosure. In particular, video decoder 30 may decode

video data into a target color representation that may then be processed by video

postprocessor 31, as described above. In the example of FIG. 13, video decoder 30

includes an entropy decoding unit 70, a video data memory 71, motion compensation

unit 72, intra prediction processing unit 74, inverse quantization unit 76, inverse

transform processing unit 78, decoded picture buffer 82 and summer 80. Video decoder

30 may, in some examples, perform a decoding pass generally reciprocal to the

encoding pass described with respect to video encoder 20 (FIG. 12). Motion

compensation unit 72 may generate prediction data based on motion vectors received

from entropy decoding unit 70, while intra prediction processing unit 74 may generate

prediction data based on intra-prediction mode indicators received from entropy

decoding unit 70.

[0252] Video data memory 71 may store video data, such as an encoded video

bitstream, to be decoded by the components of video decoder 30. The video data stored

in video data memory 71 may be obtained, for example, from computer-readable

medium 16, e.g., from a local video source, such as a camera, via wired or wireless

network communication of video data, or by accessing physical data storage

media. Video data memory 71 may form a coded picture buffer (CPB) that stores

encoded video data from an encoded video bitstream. Decoded picture buffer 82 may

be a reference picture memory that stores reference video data for use in decoding video

data by video decoder 30, e.g., in intra- or inter-coding modes. Video data memory 71

and decoded picture buffer 82 may be formed by any of a variety of memory devices,

such as dynamic random access memory (DRAM), including synchronous DRAM

(SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of

memory devices. Video data memory 71 and decoded picture buffer 82 may be

provided by the same memory device or separate memory devices. In various

WO 2017/053280 PCT/US2016/052640
89

examples, video data memory 71 may be on-chip with other components of video

decoder 30, or off-chip relative to those components.

[0253] During the decoding process, video decoder 30 receives an encoded video

bitstream that represents video blocks of an encoded video slice and associated syntax

elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy

decodes the bitstream to generate quantized coefficients, motion vectors or intra

prediction mode indicators, and other syntax elements. Entropy decoding unit 70

forwards the motion vectors to and other syntax elements to motion compensation unit

72. Video decoder 30 may receive the syntax elements at the video slice level and/or

the video block level.

[0254] When the video slice is coded as an intra-coded (I) slice, intra prediction

processing unit 74 may generate prediction data for a video block of the current video

slice based on a signaled intra prediction mode and data from previously decoded

blocks of the current frame or picture. When the video frame is coded as an inter-coded

(i.e., B or P) slice, motion compensation unit 72 produces predictive blocks for a video

block of the current video slice based on the motion vectors and other syntax elements

received from entropy decoding unit 70. The predictive blocks may be produced from

one of the reference pictures within one of the reference picture lists. Video decoder 30

may construct the reference picture lists, List 0 and List 1, using default construction

techniques based on reference pictures stored in decoded picture buffer 82. Motion

compensation unit 72 determines prediction information for a video block of the current

video slice by parsing the motion vectors and other syntax elements, and uses the

prediction information to produce the predictive blocks for the current video block

being decoded. For example, motion compensation unit 72 uses some of the received

syntax elements to determine a prediction mode (e.g., intra- or inter-prediction) used to

code the video blocks of the video slice, an inter-prediction slice type (e.g., B slice or P

slice), construction information for one or more of the reference picture lists for the

slice, motion vectors for each inter-encoded video block of the slice, inter-prediction

status for each inter-coded video block of the slice, and other information to decode the

video blocks in the current video slice.

[0255] Motion compensation unit 72 may also perform interpolation based on

interpolation filters. Motion compensation unit 72 may use interpolation filters as used

by video encoder 20 during encoding of the video blocks to calculate interpolated

values for sub-integer pixels of reference blocks. In this case, motion compensation

WO 2017/053280 PCT/US2016/052640
90

unit 72 may determine the interpolation filters used by video encoder 20 from the

received syntax elements and use the interpolation filters to produce predictive blocks.

[0256] Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized

transform coefficients provided in the bitstream and decoded by entropy decoding unit

70. The inverse quantization process may include use of a quantization parameter QPy

calculated by video decoder 30 for each video block in the video slice to determine a

degree of quantization and, likewise, a degree of inverse quantization that should be

applied. Inverse transform processing unit 78 applies an inverse transform, e.g., an

inverse DCT, an inverse integer transform, or a conceptually similar inverse transform

process, to the transform coefficients in order to produce residual blocks in the pixel

domain.

[0257] After motion compensation unit 72 generates the predictive block for the current

video block based on the motion vectors and other syntax elements, video decoder 30

forms a decoded video block by summing the residual blocks from inverse transform

processing unit 78 with the corresponding predictive blocks generated by motion

compensation unit 72. Summer 80 represents the component or components that

perform this summation operation. If desired, a deblocking filter may also be applied to

filter the decoded blocks in order to remove blockiness artifacts. Other loop filters

(either in the coding loop or after the coding loop) may also be used to smooth pixel

transitions, or otherwise improve the video quality. The decoded video blocks in a

given frame or picture are then stored in decoded picture buffer 82, which stores

reference pictures used for subsequent motion compensation. Decoded picture buffer

82 also stores decoded video for later presentation on a display device, such as display

device 32 of FIG. 1.

[0258] FIG. 14 is a flowchart illustrating an example HDR/WCG conversion process

according to the techniques of this disclosure. The techniques of FIG. 14 may be

executed by source device 12 of FIG. 1, including one or more of video preprocessor 19

and/orvideo encoder 20.

[0259] In one example of the disclosure, source device 12 may be configured to encode

video data. Such a device may perform a dynamic range adjustment on the video data

to generate adjusted component values from the video data (1502), and signal at least

one supplemental enhancement information (SEI) message in an encoded video

bitstream, the at least one SEI message indicating adjustment information specifying

how the dynamic range adjustment has been applied to the video data, and wherein the

WO 2017/053280 PCT/US2016/052640
91

adjustment information includes a global offset value that applies to each of a plurality

of partitions into which the video data was partitioned during the dynamic range

adjustment (1504). In the example of FIG. 14, the video data is input video data prior to

video encoding. In some other examples, the source device may signal at least one SEI

message in an encoded video bitstream, the at least one SEI message indicating

adjustment information specifying how the inverse dynamic range adjustment is to

applied on the video data by a decoder, and wherein the adjustment information includes

a global offset value that applies to each of a plurality of partitions into which the video

data is to be partitioned during the dynamic range adjustment (1504).

[0260] In some examples, the global offset value is a first global offset value, the first

global offset value being substituted, prior to performing the dynamic range adjustment

on the video data, for unadjusted component values less than the first global offset

value, wherein the adjustment information further includes a second global offset value,

and wherein performing the dynamic range adjustment on the video data includes:

mapping component values matching the first global offset value to the second global

offset value.

[0261] In other examples, the adjustment information further includes a number of

partitions into which the video data was partitioned during the dynamic range

adjustment, a scale and a local offset value for one or more partitions, and wherein

performing the dynamic range adjustment includes: generating the adjusted component

values according to the number of partitions, and scale and local offsets for one or more

partitions (1506).

[0262] FIG. 15 is a flowchart illustrating an example HDR/WCG inverse conversion

process according to the techniques of this disclosure. The techniques of FIG. 15 may

be executed by destination device 14 of FIG. 1, including one or more of video

postprocessor 31 and/or video decoder 30.

[0263] In one example of the disclosure, destination device 14 may be configured to

decode video data that has been adjusted by performing a dynamic range adjustment.

Such a device may receive at least one supplemental enhancement information (SEI)

message in an encoded video bitstream, the at least one SEI message indicating

adjustment information specifying how the dynamic range adjustment has been applied

to the video data, and wherein the adjustment information includes a global offset value

that applies to each of a plurality of partitions into which the video data was partitioned

during the dynamic range adjustment (1602), and perform an inverse dynamic range

WO 2017/053280 PCT/US2016/052640
92

adjustment on the video data in accordance with the adjustment information to generate

unadjusted component values from the video data (1604). In the example of FIG. 15,

the video data is decoded video data. In other examples, device may receive at least one

supplemental enhancement information (SEI) message in an encoded video bitstream,

the at least one SEI message indicating adjustment information specifying how the

dynamic range adjustment is to be applied to the video data, and wherein the adjustment

information includes a global offset value that applies to each of a plurality of partitions

into which the video data is to be partitioned during the inverse dynamic range

adjustment (1604), and perform an inverse dynamic range adjustment on the video data

in accordance with the adjustment information to generate unadjusted component values

from the video data (1604).

[0264] In some examples, the global offset value is a first global offset value, the first

global offset value being substituted, prior to performing the dynamic range adjustment

on the video data, for unadjusted component values less than the first global offset

value, wherein the adjustment information further includes a second global offset value,

and wherein performing the inverse dynamic range adjustment on the video data

includes: mapping component values matching the second global offset value to the first

global offset value.

[0265] In other examples, the adjustment information further includes a number of

partitions into which the video data was partitioned during the dynamic range

adjustment, and a scale and local offset for one or more partitions and wherein

performing the inverse dynamic range adjustment includes: generating the unadjusted

component values according to the number of partitions and the scale and offset for one

or more partitions (1606).

[0266] Certain aspects of this disclosure have been described with respect to extensions

of the HEVC standard for purposes of illustration. However, the techniques described

in this disclosure may be useful for other video coding processes, including other

standard or proprietary video coding processes not yet developed.

[0267] A video coder, as described in this disclosure, may refer to a video encoder or a

video decoder. Similarly, a video coding unit may refer to a video encoder or a video

decoder. Likewise, video coding may refer to video encoding or video decoding, as

applicable.

[0268] It is to be recognized that depending on the example, certain acts or events of

any of the techniques described herein can be performed in a different sequence, may be

WO 2017/053280 PCT/US2016/052640
93

added, merged, or left out altogether (e.g., not all described acts or events are necessary

for the practice of the techniques). Moreover, in certain examples, acts or events may

be performed concurrently, e.g., through multi-threaded processing, interrupt

processing, or multiple processors, rather than sequentially.

[0269] In one or more examples, the functions described may be implemented in

hardware, software, firmware, or any combination thereof. If implemented in software,

the functions may be stored on or transmitted over as one or more instructions or code

on a computer-readable medium and executed by a hardware-based processing unit.

Computer-readable media may include computer-readable storage media, which

corresponds to a tangible medium such as data storage media, or communication media

including any medium that facilitates transfer of a computer program from one place to

another, e.g., according to a communication protocol. In this manner, computer

readable media generally may correspond to (1) tangible computer-readable storage

media which is non-transitory or (2) a communication medium such as a signal or

carrier wave. Data storage media may be any available media that can be accessed by

one or more computers or one or more processors to retrieve instructions, code and/or

data structures for implementation of the techniques described in this disclosure. A

computer program product may include a computer-readable medium.

[0270] By way of example, and not limitation, such computer-readable storage media

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic

disk storage, or other magnetic storage devices, flash memory, or any other medium that

can be used to store desired program code in the form of instructions or data structures

and that can be accessed by a computer. Also, any connection is properly termed a

computer-readable medium. For example, if instructions are transmitted from a

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless

technologies such as infrared, radio, and microwave are included in the definition of

medium. It should be understood, however, that computer-readable storage media and

data storage media do not include connections, carrier waves, signals, or other transitory

media, but are instead directed to non-transitory, tangible storage media. Disk and disc,

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,

94

while discs reproduce data optically with lasers. Combinations of the above should also

be included within the scope of computer-readable media.

[0271] Instructions may be executed by one or more processors, such as one or more

digital signal processors (DSPs), general purpose microprocessors, application specific

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other

equivalent integrated or discrete logic circuitry. Accordingly, the term "processor," as

used herein may refer to any of the foregoing structure or any other structure suitable

for implementation of the techniques described herein. In addition, in some aspects, the

functionality described herein may be provided within dedicated hardware and/or

software modules configured for encoding and decoding, or incorporated in a combined

codec. Also, the techniques could be fully implemented in one or more circuits or logic

elements.

[0272] The techniques of this disclosure may be implemented in a wide variety of

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of

ICs (e.g., a chip set). Various components, modules, or units are described in this

disclosure to emphasize functional aspects of devices configured to perform the

disclosed techniques, but do not necessarily require realization by different hardware

units. Rather, as described above, various units may be combined in a codec hardware

unit or provided by a collection of interoperative hardware units, including one or more

processors as described above, in conjunction with suitable software and/or firmware.

[0273] Various examples have been described. These and other examples may be

within the scope of the following claims.

[0274] It will be understood that the term "comprise" and any of its derivatives

(eg comprises, comprising) as used in this specification is to be taken to be inclusive of

features to which it refers, and is not meant to exclude the presence of any additional

features unless otherwise stated or implied.

[0275] The reference to any prior art in this specification is not, and should not be taken

as, an acknowledgement or any form of suggestion that such prior art forms part of the

common general knowledge.

95

CLAIMS

1. A method of decoding video data that has been adjusted by performing a dynamic

range adjustment, the method comprising:

receiving at least one syntax structure from an encoded video bitstream, the at least

one syntax structure indicating adjustment information specifying how the dynamic range

adjustment has been applied to the video data, and wherein the adjustment information

includes:

a tone mapping adjustment value that indicates color values can be trimmed to

a maximum or a minimum value, and

a number of partitions into which the video data was partitioned during the

dynamic range adjustment; and

performing an inverse dynamic range adjustment on the video data in accordance with

the adjustment information to generate unadjusted component values from the video data,

wherein performing the inverse dynamic range adjustment includes generating the

unadjusted component values according to the number of partitions.

2. The method of claim 1, wherein the adjustment information further includes a global

offset value that applies to each of the partitions into which the video data was partitioned

during the dynamic range adjustment.

3. The method of claim 2,

wherein the global offset value is a first global offset value, the first global offset value

being substituted, prior to performing the dynamic range adjustment on the video data, for

unadjusted component values less than the first global offset value;

wherein the adjustment information further includes a second global offset value; and

wherein performing the inverse dynamic range adjustment on the video data includes:

mapping component values matching the second global offset value to the first global

offset value.

4. The method of claim 1, wherein the video data includes luma components and chroma

components, wherein the adjustment information includes a first number of partitions into

which the luma components were partitioned during the dynamic range adjustment, a second

number of partitions into which a first set of the chroma components were partitioned during

the dynamic range adjustment, and a third number of partitions into which a second set of the

96

chroma components were partitioned during the dynamic range adjustment, and wherein

performing the inverse dynamic range adjustment includes:

generating unadjusted luma component values according to the first number of

partitions;

generating unadjusted chroma component values corresponding to the first set of

chroma components according to the second number of partitions; and

generating unadjusted chroma component values corresponding to the second set of

chroma components according to the third number of partitions.

5. The method of claim 1, further comprising:

deriving additional adjustment information from the at least one syntax structure, the

additional adjustment information further specifying how the dynamic range adjustment has

been applied to the video data.

6. The method of claim 1, wherein performing the inverse dynamic range adjustment on

the video data includes:

determining for each input sample for each component of the video data, a partition to

which the input sample belongs, and

generating, for each of the partitions, the unadjusted component values.

7. The method of claim 1, wherein the adjustment information further includes a local

offset value and a local scale value for each of the partitions, and wherein generating the

unadjusted component values includes:

generating the unadjusted component values according to the local offset value and the

local scale value.

8. The method of claim 7, wherein the local offset value for each of the partitions is

represented by a first number of bits and a second number of bits, wherein the first number of

bits is used to represent an integer part of the local offset value and the second number of bits

is used to represent a fractional part of the local offset value, wherein the adjustment

information further includes the first number of bits and the second number of bits, and

wherein performing the inverse dynamic range adjustment on the video data includes:

generating the unadjusted component values according to the local offset value for

each of the partitions as represented by the first number of bits and the second number of bits.

97

9. The method of claim 7, wherein the local scale value for each of the partitions is

represented by a first number of bits and a second number of bits, wherein the first number of

bits is used to represent an integer part of the local scale value and the second number of bits

is used to represent a fractional part of the local scale value, wherein the adjustment

information further includes the first number of bits and the second number of bits, and

wherein performing the inverse dynamic range adjustment on the video data includes:

generating the unadjusted component values according to the local scale value for

each of the partitions as represented by the first number of bits and the second number of bits.

10. A method of encoding video data comprising:

performing a dynamic range adjustment on the video data to generate adjusted

component values from the video data; and

generating at least one syntax structure in an encoded video bitstream, the at least one

syntax structure indicating adjustment information specifying how the dynamic range

adjustment has been applied to the video data, wherein the adjustment information includes:

a tone mapping adjustment value that indicates color values can be trimmed to

a maximum or a minimum value, and

a number of partitions into which the video data was partitioned during the

dynamic range adjustment, and

wherein performing the dynamic range adjustment includes generating the adjusted

component values according to the number of partitions.

11. The method of claim 10, wherein the adjustment information further includes a local

offset value and a local scale value for each of the partitions, and wherein performing the

dynamic range adjustment on the video data includes:

generating the adjusted component values according to the local offset value and the

local scale value.

12. The method of claim 11, wherein the local offset value for each of the partitions is

represented by a first number of bits and a second number of bits, wherein the first number of

bits is used to represent an integer part of the local offset value and the second number of bits

is used to represent a fractional part of the local offset value, wherein the adjustment

information further includes the first number of bits and the second number of bits, and

wherein performing the dynamic range adjustment on the video data includes:

98

generating the adjusted component values according to the local offset value for each

of the partitions as represented by the first number of bits and the second number of bits.

13. An apparatus configured to decode video data that has been adjusted by performing a

dynamic range adjustment, the apparatus comprising:

a memory configured to store the video data; and

one or more processors configured to:

receive at least one syntax structure in an encoded video bitstream, the at least one

syntax structure indicating adjustment information specifying how the dynamic range

adjustment has been applied to the video data, and wherein the adjustment information

includes:

a tone mapping adjustment value that indicates color values can be trimmed to

a maximum or a minimum value, and

a number of partitions into which the video data was partitioned during the

dynamic range adjustment; and

perform an inverse dynamic range adjustment on the video data in accordance with the

adjustment information to generate unadjusted component values from the video data,

wherein performing the inverse dynamic range adjustment includes generating the

unadjusted component values according to the number of partitions.

14. The apparatus of claim 13, wherein the adjustment information further includes a

global offset value that applies to each of the partitions into which the video data was

partitioned during the dynamic range adjustment.

15. The apparatus of claim 14,

wherein the global offset value is a first global offset value, the first global offset value

being substituted, prior to performing the dynamic range adjustment on the video data, for

unadjusted component values less than the first global offset value;

wherein the adjustment information further includes a second global offset value; and

wherein performing the inverse dynamic range adjustment on the video data includes:

mapping component values matching the second global offset value to the first global

offset value.

16. The apparatus of claim 13, wherein the video data includes luma components and

chroma components, wherein the adjustment information includes a first number of partitions

99

into which the luma components were partitioned during the dynamic range adjustment, a

second number of partitions into which a first set of the chroma components were partitioned

during the dynamic range adjustment, and a third number of partitions into which a second set

of the chroma components were partitioned during the dynamic range adjustment, and

wherein performing the inverse dynamic range adjustment includes:

generating unadjusted luma component values according to the first number of

partitions;

generating unadjusted chroma component values corresponding to the first set of

chroma components according to the second number of partitions; and

generating unadjusted chroma component values corresponding to the second set of

chroma components according to the third number of partitions.

17. An apparatus configured to encode video, the apparatus comprising:

a memory configured to store the video data; and

one or more processors configured to:

perform a dynamic range adjustment on the video data to generate adjusted component

values from the video data, and

generate at least one syntax structure in an encoded video bitstream, the at least one

syntax structure indicating adjustment information specifying how the dynamic range

adjustment has been applied to the video data, wherein the adjustment information includes:

a tone mapping adjustment value that indicates color values can be trimmed to

a maximum or a minimum value, and

a number of partitions into which the video data was partitioned during the

dynamic range adjustment, and

wherein performing the dynamic range adjustment includes generating the adjusted

component values according to the number of partitions.

18. The apparatus of claim 17, wherein the adjustment information further includes a local

offset value and a local scale value for each of the partitions, and wherein performing the

dynamic range adjustment on the video data includes:

generating the adjusted component values according to the local offset value and the

local scale value.

100

19. The apparatus of claim 18, wherein the local offset value for each of the partitions is

represented by a first number of bits and a second number of bits, wherein the first number of

bits is used to represent an integer part of the local offset value and the second number of bits

is used to represent a fractional part of the local offset value, wherein the adjustment

information further includes the first number of bits and the second number of bits, and

wherein performing the dynamic range adjustment on the video data includes:

generating the adjusted component values according to the local offset value for each

of the partitions as represented by the first number of bits and the second number of bits.

20. An apparatus configured to perform the method of any one of claims 1 to 12.

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

