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SUPPLEMENTAL ENHANCEMENT INFORMATION (SEI) MESSAGES FOR 
HIGH DYNAMIC RANGE AND WIDE COLOR GAMUT VIDEO CODING 

[0001] This application claims the benefit of U.S. Provisional Application No.  

62/221,586, filed September 21, 2015, and U.S. Provisional Application No.  

62/236,804, filed October 2, 2015, the entire content of both of which are hereby 

incorporated by reference.  

TECHNICAL FIELD 

[0002] This disclosure relates to video processing.  

BACKGROUND 

[0003] Digital video capabilities can be incorporated into a wide range of devices, 

including digital televisions, digital direct broadcast systems, wireless broadcast 

systems, personal digital assistants (PDAs), laptop or desktop computers, tablet 

computers, e-book readers, digital cameras, digital recording devices, digital media 

players, video gaming devices, video game consoles, cellular or satellite radio 

telephones, so-called "smart phones," video teleconferencing devices, video streaming 

devices, and the like. Digital video devices implement video coding techniques, such as 

those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T 

H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), ITU-T H.265, High 

Efficiency Video Coding (HEVC), and extensions of such standards. The video devices 

may transmit, receive, encode, decode, and/or store digital video information more 

efficiently by implementing such video coding techniques.  

[0004] Video coding techniques include spatial (intra-picture) prediction and/or 

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video 

sequences. For block-based video coding, a video slice (e.g., a video frame or a portion 

of a video frame) may be partitioned into video blocks, which may also be referred to as 

treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I) 

slice of a picture are encoded using spatial prediction with respect to reference samples 

in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice 

of a picture may use spatial prediction with respect to reference samples in neighboring 

blocks in the same picture or temporal prediction with respect to reference samples in
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other reference pictures. Pictures may be referred to as frames, and reference pictures 

may be referred to as reference frames.  

[0005] Spatial or temporal prediction results in a predictive block for a block to be 

coded. Residual data represents pixel differences between the original block to be 

coded and the predictive block. An inter-coded block is encoded according to a motion 

vector that points to a block of reference samples forming the predictive block, and the 

residual data indicating the difference between the coded block and the predictive block.  

An intra-coded block is encoded according to an intra-coding mode and the residual 

data. For further compression, the residual data may be transformed from the pixel 

domain to a transform domain, resulting in residual transform coefficients, which then 

may be quantized. The quantized transform coefficients, initially arranged in a two

dimensional array, may be scanned in order to produce a one-dimensional vector of 

transform coefficients, and entropy coding may be applied to achieve even more 

compression.  

[0006] The total number of color values that may be captured, coded, and displayed 

may be defined by a color gamut. A color gamut refers to the range of colors that a 

device can capture (e.g., a camera) or reproduce (e.g., a display). Often, color gamuts 

differ from device to device. For video coding, a predefined color gamut for video data 

may be used such that each device in the video coding process may be configured to 

process pixel values in the same color gamut. Some color gamuts are defined with a 

larger range of colors than color gamuts that have been traditionally used for video 

coding. Such color gamuts with a larger range of colors may be referred to as a wide 

color gamut (WCG).  

[0007] Another aspect of video data is dynamic range. Dynamic range is typically 

defined as the ratio between the maximum and minimum brightness (e.g., luminance) of 

a video signal. The dynamic range of common video data used in the past is considered 

to have a standard dynamic range (SDR). Other example specifications for video data 

define color data that has a larger ratio between the maximum and minimum brightness.  

Such video data may be described as having a high dynamic range (HDR).  

SUMMARY 

[0008] This disclosure relates to processing video data, including processing video data 

that is represented by an HDR/WCG color representation. In accordance with one or 

more aspects of the present disclosure, one or more Supplemental Enhancement
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Information (SEI) Messages may be used to signal syntax elements and or other 

information that allow a video decoder or video postprocessing device to reverse the 

dynamic range adjustment (DRA) techniques of this disclosure to reconstruct the 

original or native color representation of the video data. Dynamic range adjustment 

(DRA) parameters may be applied to video data in accordance with one or more aspects 

of this disclosure in order to make better use of an HDR/WCG color representation, and 

may include the use of global offset values, as well as local scale and offset values for 

partitions of color component values.  

[0009] In one example of the disclosure, a method of decoding video data that has been 

adjusted by performing a dynamic range adjustment, comprises receiving at least one 

supplemental enhancement information (SEI) message in an encoded video bitstream, 

the at least one SEI message indicating adjustment information specifying how the 

dynamic range adjustment has been applied to the video data, and wherein the 

adjustment information includes a global offset value that applies to each of a plurality 

of partitions into which the video data was partitioned during the dynamic range 

adjustment, and performing an inverse dynamic range adjustment on the video data in 

accordance with the adjustment information to generate unadjusted component values 

from the video data.  

[0010] In another example of the disclosure, a method of encoding video data 

comprises performing a dynamic range adjustment on the video data to generate 

adjusted component values from the video data, and generating at least one 

supplemental enhancement information (SEI) message in an encoded video bitstream, 

the at least one SEI message indicating adjustment information specifying how the 

dynamic range adjustment has been applied to the video data, and wherein the 

adjustment information includes a global offset value that applies to each of a plurality 

of partitions into which the video data was partitioned during the dynamic range 

adjustment.  

[0011] In another example of the disclosure, an apparatus configured to decode video 

data that has been adjusted by performing a dynamic range adjustment comprises a 

memory configured to store the video data, and one or more processors configured to: 

receive at least one supplemental enhancement information (SEI) message in an 

encoded video bitstream, the at least one SEI message indicating adjustment 

information specifying how the dynamic range adjustment has been applied to the video 

data, and wherein the adjustment information includes a global offset value that applies
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to each of a plurality of partitions into which the video data was partitioned during the 

dynamic range adjustment, and perform an inverse dynamic range adjustment on the 

video data in accordance with the adjustment information to generate unadjusted 

component values from the video data.  

[0012] In another example of the disclosure, an apparatus configured to decode video 

data that has been adjusted by performing a dynamic range adjustment comprises means 

for receiving at least one supplemental enhancement information (SEI) message in an 

encoded video bitstream, the at least one SEI message indicating adjustment 

information specifying how the dynamic range adjustment has been applied to the video 

data, and wherein the adjustment information includes a global offset value that applies 

to each of a plurality of partitions into which the video data was partitioned during the 

dynamic range adjustment, and means for performing an inverse dynamic range 

adjustment on the video data in accordance with the adjustment information to generate 

unadjusted component values from the video data.  

[0013] In another example of the disclosure, a computer program product for decoding 

video data that has been adjusted by performing a dynamic range adjustment comprises 

a computer-readable medium having stored thereon. When executed the instructions 

cause a processor to receive at least one supplemental enhancement information (SEI) 

message in an encoded video bitstream, the at least one SEI message indicating 

adjustment information specifying how the dynamic range adjustment has been applied 

to the video data, and wherein the adjustment information includes a global offset value 

that applies to each of a plurality of partitions into which the video data was partitioned 

during the dynamic range adjustment, and perform an inverse dynamic range adjustment 

on the video data in accordance with the adjustment information to generate unadjusted 

component values from the video data.  

[0014] The details of one or more examples are set forth in the accompanying drawings 

and the description below. Other features, objects, and advantages will be apparent 

from the description, drawings, and claims.  

BRIEF DESCRIPTION OF DRAWINGS 

[0015] FIG. 1 is a block diagram illustrating an example video encoding and decoding 

system configured to implement the techniques of the disclosure.  

[0016] FIG. 2 is a conceptual drawing illustrating the concepts of HDR data.  

[0017] FIG. 3 is a conceptual diagram illustrating example color gamuts.
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[0018] FIG. 4 is a conceptual diagram illustrating an example of HDR/WCG 

representation conversion.  

[0019] FIG. 5 is a conceptual diagram illustrating an example of HDR/WCG 

representation inverse conversion.  

[0020] FIG. 6 is conceptual diagram illustrating example of Electro-optical transfer 

functions (EOTF) utilized for video data conversion (including SDR and HDR) from 

perceptually uniform code levels to linear luminance.  

[0021] FIG. 7 is a conceptual diagram illustrating aspects of a color gamut conversion 

process as applied to a single color component.  

[0022] FIG. 8 is a block diagram illustrating an example HDR/WCG conversion 

apparatus operating according to the techniques of this disclosure.  

[0023] FIGS. 9A through 9C are conceptual diagrams illustrating aspects of a dynamic 

range adjustment process in accordance with one or more aspects of the present 

disclosure.  

[0024] FIG. 10 is a block diagram illustrating an example HDR/WCG inverse 

conversion apparatus according to the techniques of this disclosure.  

[0025] FIG. 11 is a conceptual drawing showing a typical structure of a color remapping 

information (CRI) process.  

[0026] FIG. 12 is a block diagram illustrating an example of a video encoder that may 

implement techniques of this disclosure or may be used in accordance with one or more 

aspects of the present disclosure.  

[0027] FIG. 13 is a block diagram illustrating an example of a video decoder that may 

implement techniques of this disclosure or may be used in accordance with one or more 

aspects of the present disclosure.  

[0028] FIG. 14 is a flowchart illustrating an example HDR/WCG conversion process 

according to the techniques of this disclosure.  

[0029] FIG. 15 is a flowchart illustrating an example HDR/WCG inverse conversion 

process according to the techniques of this disclosure.  

DETAILED DESCRIPTION 

[0030] This disclosure is related to the processing and/or coding of video data with high 

dynamic range (HDR) and wide color gamut (WCG) representations. More specifically, 

the techniques of this disclosure include signaling and related operations that are applied 

to video data in certain color spaces to enable more efficient compression of HDR and
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WCG video data. In accordance with one or more aspects of the present disclosure, 

parameters relating to such operations may be signaled through one or more SEI 

messages. The techniques and devices described herein may improve compression 

efficiency of hybrid-based video coding systems (e.g., H.265/HEVC, H.264/AVC, etc.) 

utilized for coding video data, including HDR and WCG video data.  

[0031] Video coding standards, including hybrid-based video coding standards include 

ITU-T H.261, ISO/IEC MPEG-i Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual, 

ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC 

MPEG-4 AVC), including its Scalable Video Coding (SVC) and Multi-view Video 

Coding (MVC) extensions. The design of a new video coding standard, namely High 

Efficiency Video coding (HEVC, also called H.265), has been finalized by the Joint 

Collaboration Team on Video Coding (JCT-VC) of ITU-T Video Coding Experts Group 

(VCEG) and ISO/IEC Motion Picture Experts Group (MPEG). An HEVC draft 

specification referred to as HEVC Working Draft 10 (WD10), Bross et al., "High 

efficiency video coding (HEVC) text specification draft 10 (for FDIS & Last Call)," 

Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and 

ISO/IEC JTC1/SC29/WG11, 12th Meeting: Geneva, CH, 14-23 January 2013, JCTVC

L1003v34, is available from http://phenix.int

evrv.fr/jct/doc end user/documents/12 Geneva/wg11/JCTVC-L1003-v34.zip. The 

finalized HEVC standard is referred to as HEVC version 1.  

[0032] A defect report, Wang et al., "High efficiency video coding (HEVC) Defect 

Report," Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and 

ISO/IEC JTC1/SC29/WG11, 14th Meeting: Vienna, AT, 25 July-2 August 2013, 

JCTVC-N1003v1, is available from http://phenix.int

evrv.fr/jct/doc end user/documents/14 Vienna/wg11/JCTVC-N1003-v1.zip. The 

finalized HEVC standard document is published as ITU-T H.265, Series H: Audiovisual 

and Multimedia Systems, Infrastructure of audiovisual services - Coding of moving 

video, High efficiency video coding, Telecommunication Standardization Sector of 

International Telecommunication Union (ITU), April 2013, and another version of the 

finalized HEVC standard was published in October 2014. A copy of the H.265/HEVC 

specification text may be downloaded from http://www.itu.int/rec/T-REC-H.265

201504-I/en.  

[0033] FIG. 1 is a block diagram illustrating an example video encoding and decoding 

system 10 that may utilize techniques of this disclosure. As shown in FIG. 1, system 10
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includes a source device 12 that provides encoded video data to be decoded at a later 

time by a destination device 14. In particular, source device 12 provides the video data 

to destination device 14 via a computer-readable medium 16. Source device 12 and 

destination device 14 may comprise any of a wide range of devices, including desktop 

computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone 

handsets such as so-called "smart" phones, so-called "smart" pads, televisions, cameras, 

display devices, digital media players, video gaming consoles, video streaming devices, 

or the like. In some cases, source device 12 and destination device 14 may be equipped 

for wireless communication.  

[0034] Destination device 14 may receive the encoded video data to be decoded via 

computer-readable medium 16. Computer-readable medium 16 may comprise any type 

of medium or device capable of moving the encoded video data from source device 12 

to destination device 14. In one example, computer-readable medium 16 may comprise 

a communication medium to enable source device 12 to transmit encoded video data 

directly to destination device 14 in real-time. The encoded video data may be 

modulated according to a communication standard, such as a wired or wireless 

communication protocol, and transmitted to destination device 14. The communication 

medium may comprise any wireless or wired communication medium, such as a radio 

frequency (RF) spectrum or one or more physical transmission lines. The 

communication medium may form part of a packet-based network, such as a local area 

network, a wide-area network, or a global network such as the Internet. The 

communication medium may include routers, switches, base stations, or any other 

equipment that may be useful to facilitate communication from source device 12 to 

destination device 14.  

[0035] In other examples, computer-readable medium 16 may include non-transitory 

storage media, such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray 

disc, or other computer-readable media. In some examples, a network server (not 

shown) may receive encoded video data from source device 12 and provide the encoded 

video data to destination device 14, e.g., via network transmission. Similarly, a 

computing device of a medium production facility, such as a disc stamping facility, may 

receive encoded video data from source device 12 and produce a disc containing the 

encoded video data. Therefore, computer-readable medium 16 may be understood to 

include one or more computer-readable media of various forms, in various examples.
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[0036] In some examples, encoded data may be output from output interface 22 to a 

storage device. Similarly, encoded data may be accessed from the storage device by 

input interface. The storage device may include any of a variety of distributed or locally 

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs, 

flash memory, volatile or non-volatile memory, or any other suitable digital storage 

media for storing encoded video data. In a further example, the storage device may 

correspond to a file server or another intermediate storage device that may store the 

encoded video generated by source device 12. Destination device 14 may access stored 

video data from the storage device via streaming or download. The file server may be 

any type of server capable of storing encoded video data and transmitting encoded video 

data to the destination device 14. Example file servers include a web server (e.g., for a 

website), an FTP server, network attached storage (NAS) devices, or a local disk drive.  

Destination device 14 may access the encoded video data through any standard data 

connection, including an Internet connection. This may include a wireless channel (e.g., 

a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a 

combination of both that is suitable for accessing encoded video data stored on a file 

server. The transmission of encoded video data from the storage device may be a 

streaming transmission, a download transmission, or a combination thereof.  

[0037] The techniques of this disclosure are not necessarily limited to wireless 

applications or settings. The techniques may be applied to video coding in support of 

any of a variety of multimedia applications, such as over-the-air television broadcasts, 

cable television transmissions, satellite television transmissions, Internet streaming 

video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital 

video that is encoded onto a data storage medium, decoding of digital video stored on a 

data storage medium, or other applications. In some examples, system 10 may be 

configured to support one-way or two-way video transmission to support applications 

such as video streaming, video playback, video broadcasting, and/or video telephony.  

[0038] In the example of FIG. 1, source device 12 includes video source 18, video 

preprocessor 19, video encoder 20, and output interface 22. Destination device 14 

includes input interface 28, video postprocessor 31, video decoder 30, and display 

device 32. In accordance with this disclosure, video preprocessor 19 of source device 

12 may be configured to implement the techniques of this disclosure, including 

signaling and related operations applied to video data in certain color spaces to enable 

more efficient compression of HDR and WCG video data. In some examples, video
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preprocessor 19 may be separate from video encoder 20. In other examples, video 

preprocessor 19 may be part of video encoder 20. In other examples, a source device 

and a destination device may include other components or arrangements. For example, 

source device 12 may receive video data from an external video source 18, such as an 

external camera. Likewise, destination device 14 may interface with an external display 

device, rather than including an integrated display device.  

[0039] The illustrated system 10 of FIG. 1 is merely one example. Techniques for 

processing HDR and WCG video data may be performed by any digital video encoding 

and/or video decoding device. Moreover, the techniques of this disclosure may also be 

performed by a video preprocessor and/or video postprocessor. A video preprocessor 

may be any device configured to process video data before encoding (e.g., before 

HEVC encoding). A video postprocessor may be any device configured to process 

video data after decoding (e.g., after HEVC decoding). Source device 12 and 

destination device 14 are merely examples of such coding devices in which source 

device 12 generates coded video data for transmission to destination device 14. In some 

examples, devices 12, 14 may operate in a substantially symmetrical manner such that 

each of devices 12, 14 include video encoding and decoding components, as well as a 

video preprocessor and a video postprocessor (e.g., video preprocessor 19 and video 

postprocessor 31, respectively). Hence, system 10 may support one-way or two-way 

video transmission between video devices 12, 14, e.g., for video streaming, video 

playback, video broadcasting, or video telephony.  

[0040] Video source 18 of source device 12 may include a video capture device, such as 

a video camera, a video archive containing previously captured video, and/or a video 

feed interface to receive video from a video content provider. As a further alternative, 

video source 18 may generate computer graphics-based data as the source video, or a 

combination of live video, archived video, and computer-generated video. In some 

cases, if video source 18 is a video camera, source device 12 and destination device 14 

may form so-called camera phones or video phones. As mentioned above, however, the 

techniques described in this disclosure may be applicable to video coding and video 

processing, in general, and may be applied to wireless and/or wired applications. In 

each case, the captured, pre-captured, or computer-generated video may be encoded by 

video encoder 20. The encoded video information may then be output by output 

interface 22 onto a computer-readable medium 16.
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[0041] Input interface 28 of destination device 14 receives information from computer

readable medium 16. The information of computer-readable medium 16 may include 

syntax information defined by video encoder 20, which is also used by video decoder 

30, that includes syntax elements that describe characteristics and/or processing of 

blocks and other coded units, e.g., groups of pictures (GOPs). Display device 32 

displays the decoded video data to a user, and may comprise any of a variety of display 

devices such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma 

display, an organic light emitting diode (OLED) display, or another type of display 

device.  

[0042] Video encoder 20 and video decoder 30 each may be implemented as any of a 

variety of suitable encoder circuitry, such as one or more microprocessors, digital signal 

processors (DSPs), application specific integrated circuits (ASICs), field programmable 

gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations 

thereof. When the techniques are implemented partially in software, a device may store 

instructions for the software in a suitable, non-transitory computer-readable medium and 

execute the instructions in hardware using one or more processors to perform the 

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be 

included in one or more encoders or decoders, either of which may be integrated as part 

of a combined encoder/decoder (CODEC) in a respective device.  

[0043] Video preprocessor 19 and video postprocessor 31 each may be implemented as 

any of a variety of suitable encoder circuitry, such as one or more microprocessors, 

DSPs, ASICs, FPGAs, discrete logic, software, hardware, firmware or any combinations 

thereof. When the techniques are implemented partially in software, a device may store 

instructions for the software in a suitable, non-transitory computer-readable medium and 

execute the instructions in hardware using one or more processors to perform the 

techniques of this disclosure.  

[0044] In some examples, video encoder 20 and video decoder 30 operate according to 

a video compression standard, such as ISO/IEC MPEG-4 Visual and ITU-T H.264 (also 

known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC) 

extension, Multi-view Video Coding (MVC) extension, and MVC-based three

dimensional video (3DV) extension. In some instances, any bitstream conforming to 

MVC-based 3DV always contains a sub-bitstream that is compliant to a MVC profile, 

e.g., stereo high profile. Furthermore, there is an ongoing effort to generate a 3DV 

coding extension to H.264/AVC, namely AVC-based 3DV Other examples of video
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coding standards include ITU-T H.261, ISO/IEC MPEG-i Visual, ITU-T H.262 or 

ISO/JEC MPEG-2 Visual, ITU-T H.263, ISO/JEC MPEG-4 Visual, and ITU-T H.264, 

ISO/JEC Visual. In other examples, video encoder 20 and video decoder 30 may be 

configured to operate according to the HEVC standard.  

[0045] In accordance with one or more aspects of the present disclosure, one or more 

SEI messages may signal one or more parameters generated by video preprocessor 19.  

As will be explained in more detail below, video preprocessor 19 and video 

postprocessor 31 may be, in some examples, configured to receive video data related to 

a first color representation comprising a first color container, the first color container 

being defined by a first color gamut or a first set or color primaries, and a first color 

space, derive one or more dynamic range adjustment parameters, the dynamic range 

adjustment parameters being based on characteristics of the video data, and perform a 

dynamic range adjustment on the video data in accordance with the one or more 

dynamic range adjustment parameters. Video encoder 20 may signal the one or more 

SEI messages based on one or more parameters received from the video preprocessor 

19. Video decoder 30 may receive and decode the one or more SEI messages and pass 

the parameters to the video postprocessor 31.  

[0046] Video preprocessor 19 and video postprocessor 31 each may be implemented as 

any of a variety of suitable encoder circuitry, such as one or more microprocessors, 

digital signal processors (DSPs), application specific integrated circuits (ASICs), field 

programmable gate arrays (FPGAs), discrete logic, software, hardware, firmware or any 

combinations thereof. When the techniques are implemented partially in software, a 

device may store instructions for the software in a suitable, non-transitory computer

readable medium and execute the instructions in hardware using one or more processors 

to perform the techniques of this disclosure. As discussed above video preprocessor 19 

and video postprocessor 31 may be separate devices from video encoder 20 and video 

decoder 30, respectively. In other examples, video preprocessor 19 may be integrated 

with video encoder 20 in a single device and video postprocessor 31 may be integrated 

with video decoder 30 in a single device.  

[0047] In HEVC and other video coding standards, a video sequence typically includes 

a series of pictures. Pictures may also be referred to as "frames." A picture may 

include three sample arrays, denoted SL, Scb, and SCr. SL is a two-dimensional array 

(i.e., a block) of luma samples. Scb is a two-dimensional array of Cb chrominance 

samples. SCr is a two-dimensional array of Cr chrominance samples. Chrominance
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samples may also be referred to herein as "chroma" samples. In other instances, a 

picture may be monochrome and may only include an array of luma samples.  

[0048] Video encoder 20 may generate a set of coding tree units (CTUs). Each of the 

CTUs may comprise a coding tree block of luma samples, two corresponding coding 

tree blocks of chroma samples, and syntax structures used to code the samples of the 

coding tree blocks. In a monochrome picture or a picture that has three separate color 

planes, a CTU may comprise a single coding tree block and syntax structures used to 

code the samples of the coding tree block. A coding tree block may be an NxN block of 

samples. A CTU may also be referred to as a "tree block" or a "largest coding unit" 

(LCU). The CTUs of HEVC may be broadly analogous to the macroblocks of other 

video coding standards, such as H.264/AVC. However, a CTU is not necessarily limited 

to a particular size and may include one or more coding units (CUs). A slice may 

include an integer number of CTUs ordered consecutively in the raster scan.  

[0049] This disclosure may use the term "video unit" or "video block" to refer to one or 

more blocks of samples and syntax structures used to code samples of the one or more 

blocks of samples. Example types of video units may include CTUs, CUs, PUs, 

transform units (TUs) in HEVC, or macroblocks, macroblock partitions, and so on in 

other video coding standards.  

[0050] To generate a coded CTU, video encoder 20 may recursively perform quad-tree 

partitioning on the coding tree blocks of a CTU to divide the coding tree blocks into 

coding blocks, hence the name "coding tree units." A coding block is an NxN block of 

samples. A CU may comprise a coding block of luma samples and two corresponding 

coding blocks of chroma samples of a picture that has a luma sample array, a Cb sample 

array and a Cr sample array, and syntax structures used to code the samples of the 

coding blocks. In a monochrome picture or a picture that has three separate color 

planes, a CU may comprise a single coding block and syntax structures used to code the 

samples of the coding block.  

[0051] Video encoder 20 may partition a coding block of a CU into one or more 

prediction blocks. A prediction block may be a rectangular (i.e., square or non-square) 

block of samples on which the same prediction is applied. A prediction unit (PU) of a 

CU may comprise a prediction block of luma samples, two corresponding prediction 

blocks of chroma samples of a picture, and syntax structures used to predict the 

prediction block samples. In a monochrome picture or a picture that have three separate 

color planes, a PU may comprise a single prediction block and syntax structures used to
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predict the prediction block samples. Video encoder 20 may generate predictive luma, 

Cb and Cr blocks for luma, Cb and Cr prediction blocks of each PU of the CU.  

[0052] Video encoder 20 may use intra prediction or inter prediction to generate the 

predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the 

predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the 

PU based on decoded samples of the picture associated with the PU.  

[0053] If video encoder 20 uses inter prediction to generate the predictive blocks of a 

PU, video encoder 20 may generate the predictive blocks of the PU based on decoded 

samples of one or more pictures other than the picture associated with the PU. Inter 

prediction may be uni-directional inter prediction (i.e., uni-prediction) or bi-directional 

inter prediction (i.e., bi-prediction). To perform uni-prediction or bi-prediction, video 

encoder 20 may generate a first reference picture list (RefPicList0) and a second 

reference picture list (RefPicListl) for a current slice.  

[0054] Each of the reference picture lists may include one or more reference pictures.  

When using uni-prediction, video encoder 20 may search the reference pictures in either 

or both RefPicList0 and RefPicListl to determine a reference location within a 

reference picture. Furthermore, when using uni-prediction, video encoder 20 may 

generate, based at least in part on samples corresponding to the reference location, the 

predictive sample blocks for the PU. Moreover, when using uni-prediction, video 

encoder 20 may generate a single motion vector that indicates a spatial displacement 

between a prediction block of the PU and the reference location. To indicate the spatial 

displacement between a prediction block of the PU and the reference location, a motion 

vector may include a horizontal component specifying a horizontal displacement 

between the prediction block of the PU and the reference location and may include a 

vertical component specifying a vertical displacement between the prediction block of 

the PU and the reference location.  

[0055] When using bi-prediction to encode a PU, video encoder 20 may determine a 

first reference location in a reference picture in RefPicList0 and a second reference 

location in a reference picture in RefPicListl. Video encoder 20 may then generate, 

based at least in part on samples corresponding to the first and second reference 

locations, the predictive blocks for the PU. Moreover, when using bi-prediction to 

encode the PU, video encoder 20 may generate a first motion indicating a spatial 

displacement between a sample block of the PU and the first reference location and a
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second motion indicating a spatial displacement between the prediction block of the PU 

and the second reference location.  

[0056] After video encoder 20 generates predictive luma, Cb, and Cr blocks for one or 

more PUs of a CU, video encoder 20 may generate a luma residual block for the CU.  

Each sample in the CU's luma residual block indicates a difference between a luma 

sample in one of the CU's predictive luma blocks and a corresponding sample in the 

CU's original luma coding block. In addition, video encoder 20 may generate a Cb 

residual block for the CU. Each sample in the CU's Cb residual block may indicate a 

difference between a Cb sample in one of the CU's predictive Cb blocks and a 

corresponding sample in the CU's original Cb coding block. Video encoder 20 may 

also generate a Cr residual block for the CU. Each sample in the CU's Cr residual block 

may indicate a difference between a Cr sample in one of the CU's predictive Cr blocks 

and a corresponding sample in the CU's original Cr coding block.  

[0057] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the 

luma, Cb and, Cr residual blocks of a CU into one or more luma, Cb, and Cr transform 

blocks. A transform block may be a rectangular block of samples on which the same 

transform is applied. Atransform unit (TU) of a CU may comprise a transform block of 

luma samples, two corresponding transform blocks of chroma samples, and syntax 

structures used to transform the transform block samples. In a monochrome picture or a 

picture that has three separate color planes, a TU may comprise a single transform block 

and syntax structures used to transform the transform block samples. Thus, each TU of 

a CU may be associated with a luma transform block, a Cb transform block, and a Cr 

transform block. The luma transform block associated with the TU may be a sub-block 

of the CU's luma residual block. The Cb transform block may be a sub-block of the 

CU's Cb residual block. The Cr transform block may be a sub-block of the CU's Cr 

residual block.  

[0058] Video encoder 20 may apply one or more transforms to a luma transform block 

of a TU to generate a luma coefficient block for the TU. A coefficient block may be a 

two-dimensional array of transform coefficients. A transform coefficient may be a 

scalar quantity. Video encoder 20 may apply one or more transforms to a Cb transform 

block of a TU to generate a Cb coefficient block for the TU. Video encoder 20 may 

apply one or more transforms to a Cr transform block of a TU to generate a Cr 

coefficient block for the TU.
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[0059] After generating a coefficient block (e.g., a luma coefficient block, a Cb 

coefficient block or a Cr coefficient block), video encoder 20 may quantize the 

coefficient block. Quantization generally refers to a process in which transform 

coefficients are quantized to possibly reduce the amount of data used to represent the 

transform coefficients, providing further compression. Furthermore, video encoder 20 

may inverse quantize transform coefficients and apply an inverse transform to the 

transform coefficients in order to reconstruct transform blocks of TUs of CUs of a 

picture. Video encoder 20 may use the reconstructed transform blocks of TUs of a CU 

and the predictive blocks of PUs of the CU to reconstruct coding blocks of the CU. By 

reconstructing the coding blocks of each CU of a picture, video encoder 20 may 

reconstruct the picture. Video encoder 20 may store reconstructed pictures in a decoded 

picture buffer (DPB). Video encoder 20 may use reconstructed pictures in the DPB for 

inter prediction and intra prediction.  

[0060] After video encoder 20 quantizes a coefficient block, video encoder 20 may 

entropy encode syntax elements that indicate the quantized transform coefficients. For 

example, video encoder 20 may perform Context-Adaptive Binary Arithmetic Coding 

(CABAC) on the syntax elements indicating the quantized transform coefficients.  

Video encoder 20 may output the entropy-encoded syntax elements in a bitstream.  

[0061] Video encoder 20 may output a bitstream that includes a sequence of bits that 

forms a representation of coded pictures and associated data. The bitstream may 

comprise a sequence of network abstraction layer (NAL) units. Each of the NAL units 

includes a NAL unit header and encapsulates a raw byte sequence payload (RBSP). The 

NAL unit header may include a syntax element that indicates a NAL unit type code.  

The NAL unit type code specified by the NAL unit header of a NAL unit indicates the 

type of the NAL unit. A RBSP may be a syntax structure containing an integer number 

of bytes that is encapsulated within a NAL unit. In some instances, an RBSP includes 

zero bits.  

[0062] Different types of NAL units may encapsulate different types of RBSPs. For 

example, a first type of NAL unit may encapsulate a RBSP for a picture parameter set 

(PPS), a second type of NAL unit may encapsulate a RBSP for a coded slice, a third 

type of NAL unit may encapsulate a RBSP for Supplemental Enhancement Information 

(SEI), and so on. A PPS is a syntax structure that may contain syntax elements that 

apply to zero or more entire coded pictures. NAL units that encapsulate RBSPs for 

video coding data (as opposed to RBSPs for parameter sets and SEI messages) may be
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referred to as video coding layer (VCL) NAL units. A NAL unit that encapsulates a 

coded slice may be referred to herein as a coded slice NAL unit. A RBSP for a coded 

slice may include a slice header and slice data.  

[0063] Video decoder 30 may receive a bitstream. In addition, video decoder 30 may 

parse the bitstream to decode syntax elements from the bitstream. Video decoder 30 

may reconstruct the pictures of the video data based at least in part on the syntax 

elements decoded from the bitstream. The process to reconstruct the video data may be 

generally reciprocal to the process performed by video encoder 20. For instance, video 

decoder 30 may use motion vectors of PUs to determine predictive blocks for the PUs 

of a current CU. Video decoder 30 may use a motion vector or motion vectors of PUs to 

generate predictive blocks for the PUs.  

[0064] In addition, video decoder 30 may inverse quantize coefficient blocks associated 

with TUs of the current CU. Video decoder 30 may perform inverse transforms on the 

coefficient blocks to reconstruct transform blocks associated with the TUs of the current 

CU. Video decoder 30 may reconstruct the coding blocks of the current CU by adding 

the samples of the predictive sample blocks for PUs of the current CU to corresponding 

samples of the transform blocks of the TUs of the current CU. By reconstructing the 

coding blocks for each CU of a picture, video decoder 30 may reconstruct the picture.  

Video decoder 30 may store decoded pictures in a decoded picture buffer for output 

and/or for use in decoding other pictures.  

[0065] Next generation video applications are anticipated to operate with video data 

representing captured scenery with HDR and a WCG. Parameters of the utilized 

dynamic range and color gamut are two independent attributes of video content, and 

their specification for purposes of digital television and multimedia services are defined 

by several international standards. For example, ITU-R Rec. BT.709, "Parameter values 

for the HDTV standards for production and international programme exchange," and/or 

ITU-R Rec. BT.2020, "Parameter values for ultra-high definition television systems for 

production and international programme exchange," defines parameters for HDTV 

(high definition television) and UHDTV (ultra-high definition television), respectively, 

such as standard dynamic range (SDR) and color primaries that extend beyond the 

standard color gamut. Rec. BT.2100: Image parameter values for high dynamic range 

television for use in production and international programme exchange" defines transfer 

functions and representations for HDR television use, including primaries that support 

wide color gamut representation. There are also other standards developing organization
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(SDOs) documents that specify dynamic range and color gamut attributes in other 

systems, e.g., DCI-P3 color gamut is defined in SMPTE-231-2 (Society of Motion 

Picture and Television Engineers) and some parameters of HDR are defined in SMPTE

2084. A brief description of dynamic range and color gamut for video data is provided 

below.  

[0066] Dynamic range is typically defined as the ratio between the maximum and 

minimum brightness (e.g., luminance) of the video signal. Dynamic range may also be 

measured in terms of 'f-stop,' where one f-stop corresponds to a doubling of a signal's 

dynamic range. In MPEG's definition, content that features brightness variation with 

more than 16 f-stops is referred as HDR content. In some terms, levels between 10 and 

16 f-stops are considered as intermediate dynamic range, but it is considered HDR in 

other definitions. In some examples of this disclosure, HDR video content may be any 

video content that has a higher dynamic range than traditionally used video content with 

a standard dynamic range (e.g., video content as specified by ITU-R Rec. BT.709).  

[0067] The human visual system (HVS) is capable for perceiving much larger dynamic 

ranges than SDR content and HDR content. However, the HVS includes an adaptation 

mechanism to narrow the dynamic range of the HVS to a so-called simultaneous range.  

The width of the simultaneous range may be dependent on current lighting conditions 

(e.g., current brightness). Visualization of dynamic range provided by SDR of HDTV, 

expected HDR of UHDTV and HVS dynamic range is shown in FIG. 2, although the 

exact range may vary based on each individual and display.  

[0068] Current video application and services are regulated by ITU Rec.709 and 

provide SDR, typically supporting a range of brightness (e.g., luminance) of around 0.1 

to 100 candelas (cd) per m2 (often referred to as "nits"), leading to less than 10 f-stops.  

Some example next generation video services are expected to provide dynamic range of 

up to 16 f-stops. Although detailed specifications for such content are currently under 

development, some initial parameters have been specified in SMPTE-2084 and ITU-R 

Rec.2020.  

[0069] Another aspect for a more realistic video experience, besides HDR, is the color 

dimension. Color dimension is typically defined by the color gamut. FIG. 3 is a 

conceptual diagram showing an SDR color gamut (triangle 100 based on the BT.709 

color primaries), and the wider color gamut that for UHDTV (triangle 102 based on the 

BT.2020 color primaries). FIG. 3 also depicts the so-called spectrum locus (delimited 

by the tongue-shaped area 104), representing the limits of the natural colors. As
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illustrated by FIG. 3, moving from BT.709 (triangle 100) to BT.2020 (triangle 102) 

color primaries aims to provide UHDTV services with about 70% more colors. D65 

specifies an example white color for the BT.709 and/or BT.2020 specifications.  

[0070] Examples of color gamut specifications for the DCI-P3, BT.709, and BT.2020 

color spaces are shown in Table 1.  

Table 1 - Color gamut parameters 

RGB color space parameters 

White point Primary colors 
Color space 

Xw yw XR yR XG yG XB yB 

DCI-P3 0.314 0.351 0.680 0.320 0.265 0.690 0.150 0.060 

ITU-RBT.709 0.3127 0.3290 0.64 0.33 0.30 0.60 0.15 0.06 

ITU-R 
0.3127 0.3290 0.708 0.292 0.170 0.797 0.131 0.046 

BT.2020 

[0071] As can be seen in Table 1, a color gamut may be defined by the X and Y values 

of a white point, and by the x and y values of the primary colors (e.g., red (R), green 

(G), and blue (B). The x and y values represent normalized values that are derived from 

the chromaticity (X and Z) and the brightness (Y) of the colors, as is defined by the CIE 

1931 color space. The CIE 1931 color space defines the links between pure colors (e.g., 

in terms of wavelengths) and how the human eye perceives such colors.  

[0072] HDR/WCG video data is typically acquired and stored at a very high precision 

per component (even floating point), with the 4:4:4 chroma format and a very wide 

color space (e.g., CIE XYZ). This representation targets high precision and is almost 

mathematically lossless. However, such a format for storing HDR/WCG video data 

may include a lot of redundancies and may not be optimal for compression purposes. A 

lower precision format with HVS-based assumptions is typically utilized for state-of

the-art video applications.  

[0073] Typical video data format conversion for purposes of compression consists of 

three major elements, as shown in FIG. 4. The techniques of FIG. 4 may be performed, 

for example, by a video preprocessor 17. The three elements include a non-linear 

transfer function (TF) for dynamic range compacting such that errors due to 

quantization are perceptually uniform (approximately) across the range of luminance
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values, color conversion to a more compact or robust color space, and floating-to

integer representation conversion (quantization). Hence, linear RGB data is compacted 

using a non-linear transfer function (TF) for dynamic range compacting. For instance, 

video preprocessor 17 may include a transfer function unit (TF) unit configured to use a 

non-linear transfer function for dynamic range compacting such that errors due to 

quantization are perceptually uniform (approximately) across the range of luminance 

values. The compacted data is than run through a color conversion process into a more 

compact or robust color space (e.g., via a color conversion unit). Data is then quantized 

using a floating-to-integer representation conversion (e.g., via a quantization unit) to 

produce the video data (e.g., HDR' data), which may be transmitted to video encoder 

20.  

[0074] The inverse conversion at the decoder side is depicted in FIG. 5. The techniques 

of FIG. 5 may be performed by video postprocessor 33. For example, video 

postprocessor 33 may receive video data from video decoder 30, inverse quantize the 

data (e.g., via inverse quantization unit), perform inverse color conversion (e.g., via 

inverse color conversion unit), and perform inverse non-linear transfer function (e.g., 

via inverse TF unit). The order of these elements, e.g., in FIG. 4 and FIG. 5, is given as 

an example, and may vary in real-world applications. (e.g., in FIG. 4, color conversion 

may precede the TF module (e.g., TF unit), as well as additional processing, e.g., spatial 

subsampling, may be applied to color components.  

[0075] The techniques depicted in FIG. 4 will now be discussed in more detail. In 

general, a transfer function is applied to data (e.g., HDR/WCG video data) to compact 

the dynamic range of the data such that errors due to quantization are perceptually 

uniform (approximately) across the range of luminance values. Such compaction allows 

the data to be represented with fewer bits. In one example, the transfer function may be 

a one-dimensional (ID) non-linear function and may reflect the inverse of an electro

optical transfer function (EOTF) of the end-user display, e.g., as specified for SDR in 

Rec. 709. In another example, the transfer function may approximate the HVS 

perception to brightness changes, e.g., the PQ transfer function specified in SMPTE

2084 for HDR. The inverse process of the OETF is the EOTF (electro-optical transfer 

function), which maps the code levels back to luminance. FIG. 6 shows several 

examples of non-linear transfer function used as EOTFs. The transfer functions may 

also be applied to each R, G and B component separately.
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[0076] In the context of this disclosure, the terms "signal value" or "color value" may 

be used to describe a luminance level corresponding to the value of a specific color 

component (such as R, G, B, or Y) for an image element. The signal value is typically 

representative of a linear light level (luminance value). The terms "code level" or 

"digital code value" may refer to a digital representation of an image signal value.  

Typically, such a digital representation is representative of a nonlinear signal value. An 

EOTF represents the relationship between the nonlinear signal values provided to a 

display device (e.g., display device 32) and the linear color values produced by the 

display device.  

[0077] RGB data is typically utilized as the input color space, since RGB is the type of 

data that is typically produced by image-capturing sensors. However, the RGB color 

space has high redundancy among its components and is not optimal for compact 

representation. To achieve more compact and a more robust representation, RGB 

components are typically converted (e.g., a color transform is performed) to a more 

uncorrelated color space that is more suitable for compression, e.g., YCbCr. A YCbCr 

color space separates the brightness in the form of luminance (Y) and color information 

(CrCb) in different less correlated components. In this context, a robust representation 

may refer to a color space featuring higher levels of error resilience when compressed at 

a constrained bitrate.  

[0078] Following the color transform, input data in a target color space may be still 

represented at high bit-depth (e.g. floating point accuracy). The high bit-depth data may 

be converted to a target bit-depth, for example, using a quantization process. Certain 

studies show that 10-12 bits accuracy in combination with the PQ transfer is sufficient 

to provide HDR data of 16 f-stops with distortion below the Just-Noticeable Difference 

(JND). In general, a JND is the amount that something (e.g., video data) must be 

change in order for a difference to be noticeable (e.g., by the HVS). Data represented 

with 10-bit accuracy can be further coded with most of the state-of-the-art video coding 

solutions. This quantization is an element of lossy coding and is a source of inaccuracy 

introduced to converted data.  

[0079] It is anticipated that next generation HDR/WCG video applications will operate 

with video data captured at different parameters of HDR and CG. Examples of different 

configurations can be the capture of HDR video content with peak brightness up-to 

1000 nits, or up-to 10,000 nits. Examples of different color gamut may include BT.709, 

BT.2020 as well SMPTE specified-P3, or others.
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[0080] It is also anticipated that a single color space, e.g., a target color representation, 

that incorporates (or nearly incorporates) all other currently used color gamut to be 

utilized in future. One example of such a target color representation is BT.2020.  

Support of a single target color representation would significantly simplify 

standardization, implementation and deployment of HDR/WCG systems, since a 

reduced number of operational points (e.g., number of color containers, color spaces, 

color conversion algorithms, etc.) and/or a reduced number of required algorithms 

should be supported by a decoder (e.g., video decoder 30).  

[0081] In one example of such a system, content captured with a native color gamut 

(e.g. P3 or BT.709) different from the target color representation (e.g. BT.2020) may be 

converted to the target container prior to processing (e.g., prior to video encoding).  

Below are several examples of such conversion: 

[0082] RGB conversion from BT.709 to BT.2020 color representation: 

o R2020 = 0.627404078626* R7o + 0.329282097415 *G709 + 0.043313797587* B709 

o G2020 = 0.069097233123* R7o + 0.919541035593 *G7o9 + 0.011361189924* B709 

o B2020 = 0.016391587664* R7o + 0.088013255546 *G7o9 + 0.895595009604* B709 

(eq. 1) 

[0083] RGB conversion from P3 to BT.2020 color representation: 

o R2020 = 0.753832826496 *RP3 + 0.198597635641* G3 + 0.047569409186* B3 

o G2020 = 0.045744636411 *RP3 + 0.941777687331* G3 + 0.012478735611* B3 

o B2020 = -0.001210377285 *RP3 + 0.017601107390* G3 + 0.983608137835* B3 

(eq. 2) 

[0084] During this conversion, the value range occupied by each component (R,G,B) of 

a signal captured in P3 or BT.709 color gamut may be reduced in a BT.2020 

representation. Since the data is represented in floating point accuracy, there is no loss; 

however, when combined with color conversion (e.g., a conversion from RGB to 

YCrCB shown in equation 3 below) and quantization (example in equation 4 below), 

the shrinking of the value range leads to increased quantization error for input data.  

Y' = 0.2627 * R' + 0.6780 * G' + 0.0593 * B'; Cb = B'-Y' R'-Y' 

1.8814 1.4746 

(eq.3)
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Dy = (Round ((1 « (BitDepthy - 8)) * (219 * Y'+ 16) 

Dcb = (Round ((1 « (BitDepthcr - 8)) * (224 * Cb + 128))) 

Dcr = (Round ((1 « (BitDepthCb - 8)) * (224 * Cr + 128) 

(eq. 4) 

[0085] In equation (4) Dy' is the quantized Y' component, Dcb is the quantized Cb and 

DCr is the quantized Cr component. The term << represents a bit-wise right shift.  

BitDepthy, BitDepthcr, and BitDepthcb are the desired bit depths of the quantized 

components, respectively.  

[0086] In addition, in a real-world coding system, coding a signal with reduced dynamic 

range may lead to significant loss of accuracy for coded chroma components and would 

be observed by a viewer as coding artifacts, e.g., color mismatch and/or color bleeding.  

[0087] FIG. 7 is a simplified conceptual illustration of how video preprocessor 17 may 

generate unique bit sequences that represent a range of values for a color component in 

a color representation, which may not be occupying the full value range of the 

components in the color representation, might be translated into a range of values for a 

target color. One-dimensional ranges of component values are shown, including a one

dimensional native range of codewords 910, and a one-dimensional a target range of 

codewords 920. For simplicity, and for purposes of illustration, the native range of 

codewords (corresponding to range of codewords 910) in the example of FIG. 7 is 

assumed to have 1024 codewords (ranging, for example, from 0 to 1023), and the target 

range of codewords (corresponding to range of codewords 920) is assumed to have a 

larger number of codewords, such as 2048 (ranging, for example, from 0 to 2047).  

[0088] Illustrated in FIG. 7 are a number of represented values 910a in the native range 

of codewords 910, where each may correspond to a component value represented in a 

sample of video data in the native range of codewords 910. For simplicity in the 

illustration of FIG. 7, only a few represented values 910a are shown along the range of 

codewords 910, but many more values 910a in the range may be present in a typical 

sample of video data. Similarly, only the corresponding component values 920a after 

conversion to the target range of codewords are shown in the range of codewords 920; 

in a different example, many more values 920a may be represented in the range of 

codewords 920.
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[0089] In some examples, a video preprocessor may convert the unadjusted component 

values 910a in the native range of codewords 910 to the adjusted values 920a of target 

range of codewords 920. For purposes of illustration, such a process might be 

illustrated in the manner shown in the simplified example of FIG. 7. For example, if 

luma values in a native range of codewords are represented by the one-dimensional 

representation 910 of values corresponding to the native range of codewords in FIG. 7, 

luma values could have 1024 possible values (from 0 to 1023) in the native range of 

codewords, with the actual sample of video data including luma values 910a. Similarly, 

if those same luma values after conversion to a target range of codewords are 

represented by the one-dimensional representation of codewords 920 of values 

corresponding to the target range of codewords, luma values could have 2048 possible 

values (0 to 2047) in the target range of codewords, with the sample of video data 

including luma values 920a after conversion. Accordingly, the represented values 910a 

in the range of codewords 910 may be translated, through the conversion process, to the 

represented values 920a in the range of codewords 920 as shown in FIG. 7. In each 

case, the values 91Oa in the range of codewords 910 and values 920a in the range of 

codewords 920 would each be represented by a binary codeword corresponding to one 

such value in the range.  

[0090] In general, in the simplified example of FIG. 7, after color gamut conversion 

(and dynamic range compaction by a transfer function), the converted component values 

may not use all of the available codewords in the target color representation. In the 

example of FIG. 7, the target range of codewords has twice as many luma codewords as 

the native range of codewords. A conversion and quantization process performed on the 

component values in the range of codewords 910 may in some cases result in 

significantly less than all of the 2048 codewords in the range of codewords 920 being 

used by the luma values after conversion, depending on the distribution of component 

values in the range of codewords 910. In other words, a conversion process such as that 

illustrated in FIG. 7 may inefficiently distribute the color values relative to the number 

of target codewords otherwise available in the range of codewords 920, and as a result, 

might not make efficient use of all possible codewords. Accordingly, the conversion 

and quantization process may result in a significant loss of accuracy. This loss of 

accuracy may have undesirable effects on the resulting video, including coding artifacts, 

color mismatch, and/or color bleeding.
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[0091] To address the problems described above, other techniques may be considered.  

One example technique includes a color gamut aware video codec. In such a technique, 

a hypothetical video encoder is configured to estimate the native color gamut of the 

input signal and adjust coding parameters (e.g., quantization parameters for coded 

chroma components) to reduce any distortion resulting from the reduced dynamic range.  

However, such a technique would not be able to recover loss of accuracy, which may 

happen due to the quantization conducted in equation (4) above, since all input data is 

provided to a typical codec in integer point accuracy.  

[0092] This disclosure describes techniques, methods, and apparatuses to perform a 

dynamic range adjustment (DRA) to compensate dynamic range changes introduced to 

HDR signal representations. The dynamic range adjustment may help to prevent and/or 

lessen any distortion caused, including color mismatch, color bleeding, etc. In one or 

more examples of the disclosure, DRA is conducted on the values of each color 

component of the target color space, e.g., YCbCr, prior to quantization at the encoder 

side (e.g., by source device 12) and after the inverse quantization at the decoder side 

(e.g., by destination device 14). In view of the foregoing, this disclosure proposes 

signaling, through one or more SEI messages, parameters relating to performing such a 

dynamic range adjustment, such parameters including information relating to scale and 

offsets, partitions, global offsets, and local scale and offsets.  

[0093] FIG. 8 is a block diagram illustrating an example HDR/WCG conversion 

apparatus operating according to the techniques of this disclosure. In FIG. 8, solid lines 

specify the data flow and dashed lines specify control signals. One or more techniques 

described in this disclosure may be performed by video preprocessor 19 of source 

device 12. As discussed above, video preprocessor 19 may be a separate device from 

video encoder 20. In other examples, video preprocessor 19 may be incorporated into 

the same device as video encoder 20.  

[0094] As shown in FIG. 8, RGB native CG video data 200 is input to video 

preprocessor 19. In the context of video preprocessing by video preprocessor 19, RGB 

native CG video data 200 is defined by an input color representation. The input color 

container specifies a set of color primaries used to represent video data 200 (e.g., BT.  

709, BT. 2020, P3, etc.). In one example of the disclosure, video preprocessor 19 may 

be configured to convert both the color container and the color space of RGB native CG 

video data 200 to a target color container and target color space for HDR' data 216.  

Like the input color container, the target color container may specify a set or color
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primaries used to represent the HDR' data 216. In one example of the disclosure, RGB 

native CG video data 200 may be HDR/WCG video, and may have a BT.2020 or P3 

color container (or any WCG), and be in an RGB color space. In another example, 

RGB native CG video data 200 may be SDR video, and may have a BT.709 color 

container. In one example, the target color container for HDR' data 216 may have been 

configured for HDR/WCG video (e.g., BT.2020 color container) and may use a color 

space more optimal for video encoding (e.g., YCrCb).  

[0095] In one example of the disclosure, CG converter 202 may be configured to 

convert the color container of RGB native CG video data 200 from the input color 

container (e.g., first color container) to the target color container (e.g., second color 

container). As one example, CG converter 202 may convert RGB native CG video data 

200 from a BT.709 color representation to a BT.2020 color representation, example of 

which is shown below.  

[0096] The process to convert RGB BT.709 samples (R7os, G709, B 70 9 ) to RGB BT.2020 

samples (R2o2o, G2020, B2 0 2 0 ) can be implemented with a two-step conversion that 

involves converting first to the XYZ representation, followed by a conversion from 

XYZ to RGB BT.2020 using the appropriate conversion matrices.  

X = 0.412391* Ro + 0.357584 *G79 + 0.180481 *B709 

Y = 0.212639* R7o + 0.715169 *G79 + 0.072192 *B709 (eq. 5) 

Z = 0.019331* R709 + 0.119195 *G709 + 0.950532* B709 

[0097] Conversion from XYZ to R202G202B2020 (BT.2020) 

R2020 = clipRGB( 1.716651 * X - 0.355671 * Y - 0.253366 * Z) 

G2020 = clipRGB( -0.666684 * X + 1.616481 * Y + 0.015768 * Z ) (eq. 6) 

B2020 = clipRGB( 0.017640 * X - 0.042771 * Y + 0.942103 * Z ) 

Similarly, the single step and recommended method is as follows: 

R2020 = clipRGB( 0.627404078626 * Ros + 0.329282097415 * Gos + 

0.043313797587 * B 70 9 ) 

G2020 = clipRGB( 0.069097233123 * R709 + 0.919541035593 * G709 + 

0.011361189924 * B709 ) 

B2020 = clipRGB( 0.016391587664 * Ros + 0.088013255546 * Gos + 

0.895595009604 * B 70 9 )
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(eq. 7) 

[0098] The resulting video data after CG conversion is shown as RGB target CG video 

data 204 in FIG. 8. In other examples of the disclosure, the color container for the input 

data and the output HDR' data may be the same. In such an example, CG converter 202 

need not perform any conversion on RGB native CG video data 200.  

[0099] Next, transfer function unit 206 compacts the dynamic range of RGB target CG 

video data 204. Transfer function unit 206 may be configured to apply a transfer 

function to compact the dynamic range in the same manner as discussed above with 

reference to FIG. 4. The color conversion unit 208 converts RGB target CG color data 

204 from the color space of the input color container (e.g., RGB) to the color space of 

the target color container (e.g., YCrCb). As explained above with reference to FIG. 4, 

color conversion unit 208 converts the compacted data into a more compact or robust 

color space (e.g., a YUV or YCrCb color space) that is more suitable for compression by 

a hybrid video encoder (e.g., video encoder 20).  

[0100] Adjustment unit 210 is configured to perform a dynamic range adjustment 

(DRA) of the color converted video data in accordance with DRA parameters derived 

by DRA parameters estimation unit 212. In general, after CG conversion by CG 

converter 202 and dynamic range compaction by transfer function unit 206, the actual 

color values of the resulting video data may not use all available codewords (e.g., 

unique bit sequences that represent each color) allocated of a particular target color 

representation. That is, in some circumstances, the conversion of RGB native CG video 

data 200 from an input color representation to an output color representation may overly 

compact the color values (e.g., Cr and Cb) of the video data such that the resultant 

compacted video data does not make efficient use of all possible color values. As 

explained above, coding a signal with a reduced range of values for the colors may lead 

to a significant loss of accuracy for coded chroma components and would be observed 

by a viewer as coding artifacts, e.g., color mismatch and/or color bleeding.  

[0101] Adjustment unit 210 may be configured to apply DRA parameters to the color 

components (e.g., YCrCb) of the video data, e.g., RGB target CG video data 204 after 

dynamic range compaction and color conversion to make full use of the codewords 

available for a particular target color representation. Adjustment unit 210 may apply the 

DRA parameter to the video data at a pixel level. In general, the DRA parameters 

define a function that expands the codewords used to represent the actual video data to
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as many of the codewords available for the target color representation as possible. As is 

further described below, the process for expanding the codewords used to represent the 

actual video may include partitioning the codeword range, and applying a scale and 

offset to each such partition.  

[0102] In one example of the disclosure, the DRA parameters include a scale and offset 

value that are applied to the components of the video data. In general, the lower the 

value range of the color components of the video data, the larger a scaling factor may be 

used. The offset parameter may be used to center the values of the color components to 

the center of the available codewords for a target color representation. For example, if a 

target color representation includes 1024 codewords per color component, an offset 

value may be chosen such that the center codeword is moved to codeword 512 (e.g., the 

middle most codeword). In other examples, the offset parameter may be used to provide 

better mapping of input codewords to output codewords such that overall representation 

in the target color representation is more efficient in combating coding artifacts.  

[0103] In one example, adjustment unit 210 applies DRA parameters to video data in 

the target color space (e.g., YCrCb) as follows: 

- Y" = scale *Y' + offset 

- Cb" = scale2 *Cb' + offset2 (eq. 8) 

- Cr" = scale3 *Cr' + offset3 

where signal components Y', Cb' and Cr' is a signal produced from RGB to YCbCr 

conversion (example in equation 3). Note that Y', Cr' and Cr' may also be a video 

signal decoded by video decoder 30. Y", Cb", and Cr" are the color components of the 

video signal after the DRA parameters have been applied to each color component. As 

can be seen in the example above, each color component is related to different scale and 

offset parameters. For example, scale and offset are used for the Y' component, 

scale2 and offset2 are used for the Cb' component, and scale3 and offset3 are used for 

the Cr' component. It should be understood that this is just an example. In other 

examples, the same scale and offset values may be used for every color component.  

[0104] As can be seen in the above example, adjustment unit 210 may apply dynamic 

range adjustment parameters, such the scale and offset DRA parameters, as a linear 

function. As such, it is not necessary for adjustment unit 210 to apply the DRA 

parameters in the target color space after color conversion by color conversion unit 208.  

This is because color conversion is itself a linear process. As such, in other examples, 

adjustment unit 210 may apply the DRA parameters to the video data in the native color



WO 2017/053280 PCT/US2016/052640 
28 

space (e.g., RGB) before any color conversion process. In this example, color 

conversion unit 208 would apply color conversion after adjustment unit 210 applies the 

DRA parameters.  

[0105] In other examples, and as further described below in connection with FIG. 9A 

through FIG. 9C, each color component may be associated with multiple scale and 

offset parameters, and the range of codewords may be divided into multiple partitions.  

For example, the actual distribution of chroma values for the Cr or Cb color components 

may differ for different portions of codewords, and may not be uniform over the range 

of codewords. In such a situation (or in other situations), it may be beneficial to divide 

the range of codewords into multiple partitions, and apply a scale and offset to each 

partition. One or more global offsets may be applied to some or all of the partitions.  

[0106] In some examples, adjustment unit 210 may apply the DRA parameters in either 

the target color space or the native color space as follows: 

- Y" = (scalel *(Y' - offsetY) + offset) + offsetY; 

- Cb" = scale2 *Cb' + offset2 (eq. 9) 

- Cr" = scale3 *Cr' + offset3 

In this example, the parameter scale, scale2, scale3, offset, offset2, and offset3 have 

the same meaning as described above. The parameter offsetY is a parameter reflecting 

brightness of the signal, and can be equal to the mean value of Y'. In other examples, 

an offset parameter similar to offset Y may be applied for the Cb' and Cr' components 

to better preserve the mapping of the center value in the input and the output 

representations.  

[0107] In another example of the disclosure, adjustment unit 210 may be configured to 

apply the DRA parameters in a color space other than the native color space or the target 

color space. In general, adjustment unit 210 may be configured to apply the DRA 

parameters as follows: 

- X' = scale *(X - offset) + offset2 + offset3; 

- Y' = scale2 *(Y -offset4) + offset5 + offset6 (eq. 10) 

- Z' = scale3 *(Z - offset7) + offset8 + offset9 

where signal components X, Y and Z are signal components in a color space which is 

different from target color space, e.g., RGB or an intermediate color space. The values 

X, Y, and Z may simply be variables or references to signal components, and should not 

be confused with the XYZ color space.
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[0108] FIG. 9A is a simplified conceptual illustration of how unique bit sequences that 

represent a range of values for a color component in a native range of codewords might 

be converted by video preprocessor 19 of FIG. 8 into a range of values for a target range 

of codewords in accordance with one or more aspects of the present disclosure. One

dimensional ranges of component values are shown in FIG. 9A, including a one

dimensional native range of codewords 1210 corresponding to a native range of 

codewords, and a one-dimensional target range of codewords 1220 that corresponds to a 

target range of codewords. In a manner similar to that described in connection with 

FIG. 7, for simplicity and for purposes of illustration, the range of component values for 

the native range of codewords (corresponding to range 1210) in the example of FIG. 9A 

is assumed to have 1024 codewords, and the range of component values for the target 

range of codewords (corresponding to range of codewords 1220) is assumed to have 

2048 codewords. For example, if the one-dimensional native range of codewords 1210 

represents luma values, there could be 1024 possible luma values in the range of 

codewords 1210 corresponding to the native range of codewords. If the one

dimensional target range of codewords 1220 represents the luma values in the target 

range of codewords, there could be 2048 possible luma values in the range of 

codewords 1220 corresponding to the target range of codewords.  

[0109] Illustrated in FIG. 9A are a number of represented values 1210a in the native 

range of codewords 1210, which each correspond to a component value represented in a 

sample of video data in the native range of codewords 1210. For simplicity in the 

illustration of FIG. 9A, only a few represented values 1210a are shown in the range of 

codewords 1210, but many more component values 121Oa in the range of codewords 

1210 may be present in a typical sample of video data.  

[0110] In some cases, the values 1210a for a sample of video data might not be 

uniformly spread over the range of codewords 1210, and may be concentrated in a 

relatively small number of regions within the range of codewords 1210. Although the 

illustration in FIG. 9A is a simplified example, such a non-uniform representation is 

nevertheless apparent in FIG. 9A, because range of codewords 1210 shows a number of 

component values 1210a near the ends of the range of codewords 1210, but no values 

generally in the middle of the range (i.e., in the range codewords between 169 and 702).  

[0111] In some examples, video preprocessor 19 may apply a global offset value to the 

range of codeword values 1210 in FIG. 9A when performing dynamic range adjustment 

to efficiently map unadjusted component values 1210a in the range of codeword values
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1210 to adjusted component values 1220a in the range of component values 1220. For 

instance, in FIG. 9A, video preprocessor 19 may choose a first global offset value 119 in 

the unadjusted range of codewords 1210, which is one of the component values 1210a 

in the range of codewords 1210. Video preprocessor 19 may choose a second global 

offset value to be 0, which in the example of FIG. 9A is the adjusted value in the range 

of codewords 1220 that the first global offset (119) maps to when performing dynamic 

range adjustment.  

[0112] In some examples, there may be unadjusted component values in the range of 

codewords 1210 that are less than the global offset value. In the range of codewords 

1210 in FIG. 9A, there is one such component value 1210a (having a value of 60). In 

some examples, video preprocessor 19 may ignore this value, particularly where the 

unadjusted component value that is less than the first global offset will not have a 

significant effect on the decoded video data. In other examples, any component value 

1210a less than the first global offset value (119) in range of codewords 1210 may be 

clipped to the first global offset value (119), or in other words, video preprocessor 19 

may assume it to be equal to the first global offset value (119). In such an example, 

video preprocessor 19 may modify the unadjusted value 60 prior to performing dynamic 

range adjustment so that it has an unadjusted component value of 119 within range of 

codewords 1210, rather than an unadjusted component value of 60.  

[0113] Video preprocessor 19 may choose an appropriate scale value to be used in 

conjunction with the global offset values. Accordingly, in the example of FIG. 9A, 

video preprocessor 19 may use such dynamic range parameters to translate unadjusted 

component values 1210a in range of codewords 1210 to values 1220a in range of 

codewords 1220. In some examples, such dynamic range adjustment parameters may 

be chosen so that when converting values 1210a to the range of codewords 1220, 

available codewords in the range of codewords 1220 are used in an efficient manner.  

For example, video preprocessor 19 may calculate a linear scale value based on 

assumptions that the dynamic range adjustment will translate the first global offset 

(unadjusted value 119) into the second global offset (adjusted value 0), and that the 

dynamic range adjustment will translate the last unadjusted value 1210a (having an 

unadjusted value of 852) in the range of code words 1210 is translated into an adjusted 

value of 2047 in the range of codewords 1210. Based on such assumptions in the 

simplified example of FIG. 9A, video preprocessor 19 may determine that the following
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formula can be used to translate unadjusted component values 1210a from range of 

codewords 1210 into adjusted component values 1220a in the range of codewords 1220: 

A1220 = 2.793 * (U1210-119) + 0 (eq. 11) 

[0114] In the equation above, A122o is an adjusted component value in the range of 

codewords 1220, and U1210 is an unadjusted component value in the range of codewords 

1210. In this formula the scale value is calculated to be 2.793, and the first global offset 

value is 119, and the second global offset value is 0.  

[0115] The effect of the dynamic range adjustment performed by video preprocessor 19 

and illustrated in FIG. 9A is that values in the range of codewords 1210 are translated 

into values in the range of codewords 1220 in a way such that that the adjusted 

component values are spread within the range of codewords 1220 to effectively use 

more codewords in the range of codewords 1220. In some examples, video 

preprocessor 19 chooses scale and global offset values so that component values 

represented in the video data (values 1210a in the range of codewords 1210), are spread 

out among as many a codewords along the range of codewords 1220 as is beneficial. In 

further examples, even when the bit depth and/or the codewords corresponding to 

ranges 1210 and 1220 are the same, it may be possible for video preprocessor 19 to 

translate values into values in the range of codewords 1220 so that the adjusted 

component values are spread within the range of codewords 1220 to effectively use 

more codewords in the range of codewords 1220. In some examples, one way in which 

this may be possible is to map unadjusted values at or below a global offset value to the 

first value in the range of codewords 1220 (e.g., map value 1210a to adjusted value 0).  

[0116] FIG. 9B is another simplified conceptual illustration of how video preprocessor 

19 may translate unique bit sequences that represent a range of values for a color 

component in a native range of codewords into a range of values for a target range of 

codewords. As in FIG. 9A, one-dimensional ranges of component values are shown in 

FIG. 9B, including a one-dimensional native range of codewords 1230 corresponding to 

a native range of codewords, and a one-dimensional target range of codewords 1240 

that corresponds to a target range of codewords. For simplicity, and for purposes of 

illustration, the range of component values for the native color representation 

(corresponding to the range of codewords 1230) in the example of FIG. 9B is assumed 

to have 1024 codewords, and the range of component values for the target range of 

codewords (corresponding to the range of codewords 1240) is assumed to have 2048 

codewords. For example, in a manner similar to FIG. 9A, if the one-dimensional native
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range of codewords 1230 represents luma values, there could be 1024 possible luma 

values in the range of codewords 1230 corresponding to the native range of codewords.  

If the one-dimensional target range of codewords 1240 represents the luma values in the 

target range of codewords, there could be 2048 possible luma values in the range of 

codewords 1240 corresponding to the target range of codewords.  

[0117] Illustrated in FIG. 9B are a number of represented values 1230a in the native 

range of codewords 1230, which each correspond to a component value represented in a 

sample of video data in the native range of codewords 1230. For simplicity in the 

illustration of FIG. 9B, only a few represented values 1230a are shown in the range of 

codewords 1230, but many more component values 1230a in the range of codewords 

1230 may be present in a typical sample of video data.  

[0118] As illustrated in FIG. 9B, and in some examples, video preprocessor 19 may 

determine that further efficiencies in performing dynamic range adjustment may be 

gained by dividing the range of codewords 1230 into multiple partitions. Video 

preprocessor 19 may determine scale and offset values for each partition, which video 

preprocessor 19 uses to map unadjusted component values 1230a in each partition to 

adjusted component values 1240a in the range of component values 1240. If video 

preprocessor 19 chooses the scale and offset parameters to efficiently use the codewords 

of the target range of codewords 1240, it may be possible to efficiently represent the 

video data in the target range of codewords 1240, and may also result in higher quality 

decoded video data.  

[0119] For instance, in FIG. 9B, video preprocessor 19 divides the range of codewords 

1230 into five partitions (1231, 1232, 1233, 1234, and 1235). Partition 1231 

corresponds to codewords 0 to 118 (inclusive) in the range of codewords 1230, and 

includes only one represented component value (component value 60). Partition 1232 

corresponds to codewords 119 to 168, and in the simplified example of FIG. 9B, the 

video sample represented by the range of codewords 1210 includes three component 

values 1230a in partition 1232 (component values 119, 132, and 168). Partition 1233 

corresponds to codewords 169 to 702, and the video sample represented by range of 

codewords 1230 includes no component values in this range. Partition 1234 

corresponds to codewords 703 to 852, and the video sample represented by range of 

codewords 1230 includes three component values 1230a in this partition (component 

values 703, 767, and 852). Finally, the fifth partition, partition 1235, ranges from
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codeword 853 to codeword 1023, and the video sample represented by range of 

codewords 1230 includes no component values in this range.  

[0120] Video preprocessor 19 chooses partitions and appropriate scale and offset values 

so that performing dynamic range adjustment on the component values shown in the 

range of codewords 1230 will result in using the available codewords in the range of 

codewords 1240 in an efficient manner. In the example of FIG. 9B, video preprocessor 

19 allocates to partitions that include values (e.g., partitions 1232 and 1234) a portion of 

the range of codewords 1240, whereas video preprocessor 19 allocates to partitions 

including no values (partitions 1231, 1233, 1225) no portion of the range of codewords 

1240. Similarly, the size of the portion of range 1240 that video preprocessor 19 

allocates to partitions depends on the size of the corresponding partition 1231, 1232, 

1233, 1234, and 1235. For a larger or wider partitions on range 1230, a larger portion of 

range 1240 is allocated.  

[0121] Further, in some cases, as previously described in connection with FIG. 9A, 

video preprocessor 19 may determine that it may be beneficial to omit or ignore certain 

values in the range of codewords 1230, such as, for example, values at the extreme ends 

of the range of codewords 1230. To the extent that such values may be few in number, 

and/or where such values do not affect the decoded video data in a significant way, 

some efficiencies may be gained by omitting such values. For instance, with respect to 

partition 1211 in the example of FIG. 9B, some efficiencies may be gained if the video 

preprocessor 19 ignores the single codeword having a component value of 60 

represented by the video data in partition 1231, so in the example of FIG. 9B, video 

preprocessor 19 does not allocate that partition 1231 any portion of the range of 

codewords 1240.  

[0122] Accordingly, in the example of FIG. 9B, video preprocessor 19 translates 

partition 1232, which spans 50 values or codewords (119 through 168) in the range of 

codewords 1230, into a partition 1242 spanning codewords 0 through 511 of range of 

codewords 1240. Video preprocessor 19 translates partition 1234, which spans 150 

codewords in the range of codewords 1230, into a partition 1244 in the range of 

codewords 1240 spanning codewords 512 through 2047. As a result, the partition 1242 

in the range of codewords 1240 spans 512 codewords along range of codewords 1240, 

and the partition 1244 in the range of codewords 1240 spans 1536 codewords along 

range of codewords 1240. The partition 1244 is therefore three times the size of 

partition 1242. In the example of FIG. 9B, video preprocessor 19 may have chosen the
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partition sizes in this way because the partitions 1232 and 1234 were similarly 

proportioned (i.e., partition 1234 is three times the size of partition 1232), thereby 

maintaining the relative size of the partitions 1232 and 1234 when dynamic range 

adjustment translates those partitions into adjusted component values within partitions 

1242 and 1244 in the range of codewords 1240. In other examples, video preprocessor 

19 might not maintain the proportions of partitions along range of codewords 1230 in 

this manner when dynamic range adjustment is applied to values in the range of 

codewords 1230 to translate those partitions to values in the range of codewords 1240.  

In other examples, video preprocessor 19 may maintain the proportions of partitions 

along range of codewords 1230 in a different way.  

[0123] Still referring to the example of FIG. 9B, video preprocessor 19 may apply a 

scale and offset value (e.g., a local scale and local offset) in a manner local to each of 

the partitions in the range of codeword values 1230, to translate unadjusted component 

values 1230a in those partitions to adjusted component values 1240a in partitions 1242 

and 1244 along range of codewords 1240. For example, for partition 1232, video 

preprocessor 19 may calculate linear scale and offset values based on assumptions that 

the first unadjusted value of 119 in partition 1232 maps to an adjusted value of 0 in 

partition 1242, and the last unadjusted value of 168 in partition 1232 maps to an 

adjusted value of 511 in partition 1242. Based on such assumptions in the simplified 

example of FIG. 9B, video preprocessor 19 may determine that the following formula 

can be used to translate unadjusted component values from partition 1232 into adjusted 

component values from partition 1242: 

A1242 = 10.429 * U1232 + -1241.1 (eq. 12) 

[0124] In the equation above, A1242 is an adjusted component value in partition 1242 

within the range of codewords 1240, and U1232 is an unadjusted component value in 

partition 1232 within the range of codewords 1230. In this formula, the local scale 

value for the partition 1232 is 10.429, and the local offset value for the partition 1232 is 

-1241.1.  

[0125] Similarly, video preprocessor 19 may calculate linear scale and offset values for 

converting unadjusted component values in partition 1234 into adjusted component 

values in partition 1244 based on assumptions that the first unadjusted value of 703 in 

partition 1234 corresponds to an adjusted value of 512 in partition 1244, and the last 

unadjusted value of 852 in partition 1234 corresponds to an adjusted value of 2047 in 

partition 1244. Based on such assumptions, video preprocessor 19 may determine that
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the following formula may be used to translate unadjusted component values from 

partition 1234 into adjusted component values in partition 1244: 

A1244 = 10.302 * U1234 + -6730.3 (eq. 13) 

[0126] In the equation above, A1244 is an adjusted component value in partition 1244 

within the range of codewords 1240, and U1234 is an unadjusted component value in 

partition 1234 within the range of codewords 1230. In this formula, the local scale 

value for the partition 1234 is 10.302, and the local offset value for the partition 1234 is 

-6730.3.  

[0127] In the example of FIG. 9B, video preprocessor 19 does not allocate to partitions 

1231, 1233, and 1235 any of the range of codewords 1240, which may enable a more 

efficient use of range of codewords 1240, and may allow more of the range of 

codewords 1240 to be used for partitions where the video data includes more values 

(e.g., partitions 1232 and 1234). In such an example, partitions 1231, 1233, and 1235 

may not have any corresponding partition in the range of codewords 1240. In some 

examples, video preprocessor 19 may ignore or drop any unadjusted component values 

that might be included in a video data sample corresponding to partitions 1231, 1233, 

and 1235. In other examples, video preprocessor 19 may map any unadjusted 

component values that might be included in partitions 1231, 1233, and 1235 to an 

appropriate value in one of the other partitions, or video preprocessor 19 may map such 

values to a value on or near a border between partitions allocated in the range of 

codewords 1240, or video preprocessor 19 may map such values to one of the two ends 

of the range of codewords 1240. Alternatively, video preprocessor 19 may allocate (or 

logically allocate) a small partition, or one having size of zero, and video preprocessor 

19 may apply appropriate local scale and offset values for such a partition to map 

unadjusted component values for such partitions into adjusted component values in the 

range of codewords 1240.  

[0128] The effect of the dynamic range adjustment illustrated in FIG. 9B is that video 

preprocessor 19 translates values in the range of codewords 1230 into values in the 

range of codewords 1240 in a way such that that the values in partitions 1232 and 1234 

are spread within the range of codewords 1240 to effectively use more codewords in the 

range of codewords 1240. In some examples, video preprocessor 19 chooses the local 

scale and local offset values, for each partition, so that component values represented in 

the video data, as represented by values 1230a in the range of codewords 1230, are 

spread out among as many codewords along the range of codewords 1240 as possible.
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In some cases, such as where there are large number of values 1230a within certain 

ranges, such an adjustment may be beneficial. Video preprocessor 19 performing 

dynamic range adjustment in a manner similar to that described in connection with FIG.  

9B in such a case may result in preventing or reducing any loss of accuracy for coded 

component values, and therefore, may prevent coding artifacts (e.g., color mismatch 

and/or color bleeding) from being observed by a viewer of the decoded video data.  

[0129] In some examples, video preprocessor 19 may gain further efficiencies by 

choosing a global offset value that may be applied to the range of codewords 1230 and 

1240 in FIG. 9B, in a manner similar to that described in connection with FIG. 9A. For 

instance, in FIG. 9B, video preprocessor 19 may choose a global offset value of 119, so 

that any values less than 119 in the range of codewords 1210 may be assumed to be the 

unadjusted value 119. In such an example, video preprocessor 19 would assume that the 

unadjusted component value 60 in partition 1231 has a value of 119, rather than 60, and 

would therefore be included in partition 1232. In some examples, video preprocessor 

19 modifying a value before performing a dynamic range adjustment may be preferable 

to ignoring the value or not performing a dynamic range adjustment on the value.  

[0130] In the example of FIG. 9B, video preprocessor 19 translates the global offset 

value for the unadjusted component value 119 into an adjusted component value of 0 

along range of codewords 1240. The adjusted value 0 that corresponds to the global 

offset value for the unadjusted value 119 may itself be used as a second global offset 

value in a manner similar to that described in connection with FIG. 9A. This second 

global offset value may be considered the adjusted value corresponding to unadjusted 

value 119, or put another way, the first global offset value (unadjusted component value 

in the range of codewords 1230) may map to the second global offset value (adjusted 

component value in the range of codewords 1240).  

[0131] The equations {12} and {13} described previously for performing a dynamic 

range adjustment for values in partitions 1212 and 1214, can be rewritten in terms of 

these above-described global offset values. Specifically, video preprocessor 19 may 

determine a different relationship may apply to partition 1232 when one or more global 

offset values are used. Accordingly, equation {12} can be rewritten as follows: 

A1242 = 10.429 * (U1232 + -119) + 0 + 0 (eq. 14) 

[0132] In the equation above, A1242 is an adjusted component value in partition 1242 

within the range of codewords 1240, and U1232 is an unadjusted component value in 

partition 1232 within the range of codewords 1230. In this formula, the (first) global
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offset value for the unadjusted component values in the range of codewords 1230 is 

119, and the (second) global offset value for the adjusted component values in the range 

of codewords 1240 is 0. The scale value for the partition 1232 is 10.429, and the offset 

value for the partition 1232 is 0.  

[0133] Similarly, video preprocessor 19 may determine that a different relationship may 

apply to partition 1234 when one or more global offset values are used. Accordingly, 

equation {13} can be rewritten as follows: 

A1244 = 10.302 * (U1234 + -119) + 0 + -5504.4 (eq. 15) 

[0134] In the equation above, A1244 is an adjusted component value in partition 1244 

within the range of codewords 1240, and U1234 is an unadjusted component value in 

partition 1234 within the range of codewords 1230. In this formula, the (first) global 

offset value for the unadjusted component values in the range of codewords 1230 is 

119, and the (second) global offset value for the adjusted component values in the range 

of codewords 1240 is 0. The scale value for the partition 1234 is 10.302, and the offset 

value for the partition -5504.4.  

[0135] FIG. 9C is another simplified conceptual illustration of how video preprocessor 

19 may translate unique bit sequences that represent a range of values for a color 

component in a native range of codewords into a range of values for a target range of 

codewords. As in FIG. 9A and FIG. 9B, one-dimensional ranges of component values 

are shown in FIG. 9C, including a one-dimensional native range of codewords 1250 

corresponding to a native range of codewords, and a one-dimensional a target range of 

codewords 1260 that corresponds to a target range of codewords. In this example, the 

range of component values for the native range of codewords (corresponding to the 

range of codewords 1250) is assumed to correspond to 2048 codewords, and the range 

of component values for the target range of codewords (corresponding to the range of 

codewords 1260) is assumed to correspond to 2048 codewords. For example, if the 

one-dimensional native range of codewords 1250 represents luma values, there could be 

2048 possible luma values in the range of codewords 1250 corresponding to the native 

range of codewords. If the one-dimensional target range of codewords 1260 represents 

the luma values in the target range of codewords, there could be 2048 possible luma 

values in the range of codewords 1260 corresponding to the target range of codewords.  

[0136] The example of FIG. 9C illustrates that a dynamic range adjustment performed 

by video preprocessor 19 in accordance with one or more aspects of the present 

disclosure may be beneficial even when the native range of codewords (corresponding
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to the range of codewords 1250 in FIG. 9C) is the same size or substantially the same 

size as the target range of codewords (corresponding to the range of codewords 1260 in 

FIG. 9C). Illustrated in FIG. 9C are a number of represented values 1250a in the native 

range of codewords 1250. For simplicity, only a few represented values 1250a are 

shown.  

[0137] As illustrated in FIG. 9C, video preprocessor 19 may divide the range of 

codewords 1250 into multiple partitions. Video preprocessor 19 may calculate and use 

scale and offset values for each partition to map unadjusted component values 1250a in 

each partition to adjusted component values 1260a in the range of component values 

1260. Video preprocessor 19 may choose dynamic range adjustment parameters to 

efficiently use the codewords of the target range of codewords 1260. For instance, in 

FIG. 9C, video preprocessor 19 may divide the range of codewords 1250 into five 

partitions (1251, 1252, 1253, 1254, and 1255). As with other examples, in the example 

of FIG. 9C, video preprocessor 19 allocates a portion of the range of codewords 1260 to 

those partitions that include values, whereas video preprocessor 19 might not allocate 

any portion of the range of codewords 1260 to those partitions that include no values.  

Similarly, video preprocessor 19 may allocate a larger portion of the range of codewords 

1260 to those partitions in the range of codewords 1250 that are wider or span more 

values than another partition in 1250. Further, with respect to partition 1251 in the 

example of FIG. 9C, video preprocessor 19 does not allocate any portion of the range of 

codewords 1260 to partition 1251, even though that partition includes a component 

value of 120.  

[0138] Accordingly, video preprocessor 19 in the example of FIG. 9C translates 

partition 1252, which spans 100 values or codewords (238 through 337) in the range of 

codewords 1250, into a partition 1262 spanning codewords 0 through 511 of the range 

of codewords 1260. Video preprocessor 19 translates partition 1254, which spans 300 

codewords in the range of codewords 1250, into a partition 1264 in the range of 

codewords 1260 spanning codewords 512 through 2047.  

[0139] Still referring to the example of FIG. 9C, video preprocessor 19 may calculate 

and apply a scale and offset value, in a manner local to each of the partitions in the 

range of codeword values 1250, to translate unadjusted component values in those 

partitions to adjusted component values in partitions 1262 and 1264 along range of 

codewords 1260. For example, for partition 1252, video preprocessor 19 may calculate 

linear scale and offset values based on assumptions that the first unadjusted value of 238
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in partition 1252 maps to an adjusted value of 0 in partition 1262, and the last 

unadjusted value of 337 in partition 1252 maps to an adjusted value of 511 in partition 

1262. Based on such assumptions in the simplified example of FIG. 9C, video 

preprocessor 19 may determine that following relationship may be used to translate 

unadjusted component values from partition 1212 into adjusted component values from 

partition 1222: 

A1262 = 5.162 * (U1252 + -238) + 0 + 0 (eq. 16) 

[0140] In the equation above, A1262 is an adjusted component value in partition 1262 

within the range of codewords 1260, and U1252 is an unadjusted component value in 

partition 1252 within the range of codewords 1250. In this formula, the (first) global 

offset value is -238, and the (second) global offset value is 0. The local scale value for 

the partition 1252 is 5.162, and the local offset value for the partition 1252 is 0.  

[0141] Similarly, video preprocessor 19 may calculate linear scale and offset values for 

converting unadjusted component values in partition 1254 into adjusted component 

values in partition 1264 based on assumptions that the first unadjusted value of 1406 in 

partition 1254 corresponds to an adjusted value of 512 in partition 1264, and the last 

unadjusted value of 1705 in partition 1254 corresponds to an adjusted value of 2047 in 

partition 1264. Based on such assumptions, video preprocessor 19 may determine that 

the following relationship may be used to translate unadjusted component values from 

partition 1254 into adjusted component values in partition 1264: 

A1264 = 5.134 * (U1254 + -238) + 0 +-5484.5 (eq. 17) 

[0142] In the equation above, A1264 is an adjusted component value in partition 1264 

within the range of codewords 1260, and U1254 is an unadjusted component value in 

partition 1254 within the range of codewords 1250. In this formula, the (first) global 

offset value is -238, and the (second) global offset value is 0. The local scale value for 

the partition 1254 is 5.134, and the local offset value for the partition 1254 is -5484.5.  

[0143] Again, the effect of the dynamic range adjustment illustrated in FIG. 9C is that 

video preprocessor 19 translates values in the range of codewords 1250 into values in 

the range of codewords 1260 in a way such that that the values in partitions 1252 and 

1254 are spread within the range of codewords 1260 to effectively use more codewords 

of the range of codewords 1260. In some examples, video preprocessor 19 performing 

dynamic range adjustment in a manner similar to that described in connection with FIG.  

9C may result in preventing or reducing any loss of accuracy for coded component
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values, and therefore, may prevent coding artifacts (e.g., color mismatch and/or color 

bleeding) from being observed by a viewer of the decoded video data.  

[0144] As further described below, and in accordance with one or more aspects of the 

present disclosure, one or more new SEI messages may include parameters and/or 

information relating to performing the dynamic range adjustment described above. The 

dynamic range adjustment parameters or information may be generated by the video 

preprocessor 19, and encoded by the video decoder 30 as an SEI message. Such SEI 

messages may include information sufficient to enable video decoder 30 and/or video 

postprocessor 31 to perform the inverse of the dynamic range adjustment to reconstruct 

the video data.  

[0145] In other examples of the disclosure, adjustment unit 210 may be configured to 

apply a linear transfer function to the video to perform DRA. Such a transfer function 

may be different from the transfer function used by transfer function unit 206 to 

compact the dynamic range. Similar to the scale and offset terms defined above, the 

transfer function applied by adjustment unit 210 may be used to expand and center the 

color values to the available codewords in a target color representation. An example of 

applying a transfer function to perform DRA is shown below: 

- Y" = TF2 (Y') 

- Cb" = TF2 (Cb') 

- Cr" = TF2 (Cr') 

Term TF2 specifies the transfer function applied by adjustment unit 210. In some 

embodiments the adjustment unit may apply different transfer functions to each of the 

components.  

[0146] In another example of the disclosure, adjustment unit 210 may be configured to 

apply the DRA parameters jointly with the color conversion of color conversion unit 

208 in a single process. That is, the linear functions of adjustment unit 210 and color 

conversion unit 208 may be combined. An example of a combined application, where 

fl and f2 are a combination of the RGB to YCbCr matrix and the DRA scaling factors, 

is shown below: 

B'1 - Y' R' - Y' 
Cb ; Cr f2 

fi f 

[0147] In another example of the disclosure, after applying the DRA parameters, 

adjustment unit 210 may be configured to perform a clipping process to prevent the 

video data from having values outside the range of codewords specified for a certain
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target color representation. In some circumstances, the scale and offset parameters 

applied by adjustment unit 210 may cause some color component values to exceed the 

range of allowable codewords. In this case, adjustment unit 210 may be configured to 

clip the values of the components that exceed the range to the maximum value in the 

range.  

[0148] The DRA parameters applied by adjustment unit 210 may be determined by 

DRA parameters estimation unit 212. The frequency and the time instances at which the 

DRA parameters estimation unit 212 updates the DRA parameters is flexible. For 

example, DRA parameters estimation unit 212 may update the DRA parameters on a 

temporal level. That is, new DRA parameters may be determined for a group of pictures 

(GOP), or a single picture (frame). In this example, the RGB native CG video data 200 

may be a GOP or a single picture. In other examples, DRA parameters estimation unit 

212 may update the DRA parameters on a spatial level, e.g., at the slice tile, or block 

level. In this context, a block of video data may be a macroblock, coding tree unit 

(CTU), coding unit, or any other size and shape of block. A block may be square, 

rectangular, or any other shape. Accordingly, the DRA parameters may be used for 

more efficient temporal and spatial prediction and coding.  

[0149] In other examples of the disclosure, DRA parameters estimation unit 212 may be 

configured to derive values for DRA parameters so as to minimize certain cost functions 

associated with preprocessing and/or encoding video data. As one example, DRA 

parameters estimation unit 212 may be configured to estimate DRA parameters that 

minimized quantization errors introduced by quantization unit 214 (e.g., see equation 

(4)) above. DRA parameters estimation unit 212 may minimize such an error by 

performing quantization error tests on video data that has had different sets of DRA 

parameters applied. In another example, DRA parameters estimation unit 212 may be 

configured to estimate DRA parameters that minimize the quantization errors introduced 

by quantization unit 214 in a perceptual manner. DRA parameters estimation unit 212 

may minimize such an error based on perceptual error tests on video data that has had 

different sets of DRA parameters applied. DRA parameters estimation unit 212 may 

then select the DRA parameters that produced the lowest quantization error.  

[0150] In another example, DRA parameters estimation unit 212 may select DRA 

parameters that minimize a cost function associated with both the DRA performed by 

adjustment unit 210 and the video encoding performed by video encoder 20. For 

example, DRA parameters estimation unit 212 may perform DRA and encode the video
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data with multiple different sets of DRA parameters. DRA parameters estimation unit 

212 may then calculate a cost function for each set of DRA parameters by forming a 

weighted sum of the bitrate resulting from DRA and video encoding, as well as the 

distortion introduced by these two lossy process. DRA parameters estimation unit 212 

may then select the set of DRA parameters that minimizes the cost function.  

[0151] In each of the above techniques for DRA parameter estimation, DRA parameters 

estimation unit 212 may determine the DRA parameters separately for each component 

using information regarding that component. In other examples, DRA parameters 

estimation unit 212 may determine the DRA parameters using cross-component 

information. For example, the DRA parameters derived for a Cr component may be 

used to derive DRA parameters for a Cb component.  

[0152] In video coding schemes utilizing weighted prediction, a sample of currently 

coded picture Sc are predicted from a sample (for single directional prediction) of the 

reference picture Sr taken with a weight (Wwp) and an offset (Owp) which results in 

predicted sample Sp: 

Sp= Sr * Wwp + Owp.  

[0153] In some examples utilizing DRA, samples of the reference and currently coded 

picture can be processed with DRA employing different parameters, namely { scalelcur, 

offsetlcur } for a current picture and { scalere, offset ref } for a reference picture. In 

such embodiments, parameters of weighted prediction can be derived from DRA, e.g.: 

Wwp= scalelcur / scaleIref 

Owp= offsetlcur - offset1ref 

[0154] After adjustment unit 210 applies the DRA parameters, video preprocessor 19 

may then quantize the video data using quantization unit 214. Quantization unit 214 

may operate in the same manner as described above with reference to FIG. 4. After 

quantization, the video data is now adjusted in the target color space and target 

primaries of the target color container of HDR' data 216. HDR' data 216 may then be 

sent to video encoder 20 for compression.  

[0155] FIG. 10 is a block diagram illustrating an example HDR/WCG inverse 

conversion apparatus according to the techniques of this disclosure. As shown in FIG.  

10, video postprocessor 31 may be configured to apply the inverse of the techniques 

performed by video preprocessor 19 of FIG. 8. In other examples, the techniques of 

video postprocessor 31 may be incorporated in, and performed by, video decoder 30.
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[0156] In one example, video decoder 30 may be configured to decode the video data 

encoded by video encoder 20. The decoded video data (HDR' data 316 in the target 

color container) is then forwarded to video postprocessor 31. Inverse quantization unit 

314 performs an inverse quantization process on HDR' data 316 to reverse the 

quantization process performed by quantization unit 214 of FIG. 8.  

[0157] Video decoder 30 may also be configured to decode and send any of the one or 

more syntax elements produced by DRA parameters estimation unit 212 of FIG. 10 to 

DRA parameters derivation unit 312 of video postprocessor 31. DRA parameters 

derivation unit 312 may be configured to determine the DRA parameters based on one 

or more syntax elements or SEI messages, in accordance with one or more aspects of 

the present disclosure. In some examples, the one or more syntax elements or SEI 

messages may indicate the DRA parameters explicitly. In other examples, DRA 

parameters derivation unit 312 is configured to derive some (or all) of the DRA 

parameters using information from syntax elements or SEI messages, and/or using the 

same techniques used by DRA parameters estimation unit 212 of FIG. 10.  

[0158] The parameters derived by DRA parameters derivation unit 312 may be sent to 

inverse adjustment unit 310. Inverse adjustment unit 310 uses the DRA parameters to 

perform the inverse of the linear DRA adjustment performed by adjustment unit 210.  

Inverse adjustment unit 310 may apply the inverse of any of the adjustment techniques 

described above for adjustment unit 210. In addition, as with adjustment unit 210, 

inverse adjustment unit 310 may apply the inverse DRAbefore or after any inverse 

color conversion. As such, inverse adjustment unit 310 may apply the DRA parameter 

on the video data in the target color representation or the native color representation. In 

some examples, the inverse adjustment unit may also be applied before the inverse 

quantization unit.  

[0159] Inverse color conversion unit 308 converts the video data from the target color 

space (e.g., YCbCr) to the native color space (e.g., RGB). Inverse transfer function 306 

then applies an inverse of the transfer function applied by transfer function 206 to 

uncompact the dynamic range of the video data. The resulting video data (RGB target 

CG 304) is still represented using the target primaries, but is now in the native dynamic 

range and native color space. Next, inverse CG converter 302 converts RGB target CG 

304 to the native color gamut to reconstruct RGB native CG 300.  

[0160] In some examples, additional postprocessing techniques may be employed by 

video postprocessor 31. Applying the DRA may put the video outside its actual native



WO 2017/053280 PCT/US2016/052640 
44 

color gamut. The quantization steps performed by quantization unit 214 and inverse 

quantization unit 314, as well as the up and down-sampling techniques performed by 

adjustment unit 210 and inverse adjustment unit 310, may contribute to the resultant 

color values in the native color representation being outside the native color gamut.  

When the native color gamut is known (or the actual smallest content primaries, if 

signaled, as described above), then additional process can be applied to RGB native CG 

video data 304 to transform color values (e.g., RGB or Cb and Cr) back into the 

intended gamut as postprocessing for DRA. In other examples, such postprocessing 

may be applied after the quantization or after DRA application.  

[0161] According to one or more aspects of the present disclosure, and as further 

described below, video decoder 30 may receive one or more SEI messages that indicate 

parameters and/or information that relate to the dynamic range adjustment performed by 

video preprocessor 19. Video decoder 30 may parse and/or decode the information, and 

act upon it and/or pass that information to video postprocessor 31. Such SEI messages 

may include information sufficient to enable video decoder 30 and/or video 

postprocessor 31 to perform the inverse of the dynamic range adjustment to reconstruct 

the video data.  

[0162] In addition to deriving DRA parameters or DRA adjustment information, video 

preprocessor 19 (e.g., DRA parameters estimation unit 212) or video encoder 20 of FIG.  

8 may be configured to signal the DRA parameters in an encoded bitstream or by other 

means such as a different channel. DRA parameters derivation unit 312 or video 

decoder 30 of FIG. 10 may be configured to receive such signaling in the encoded 

bitstream or from other means such as a different channel. DRA parameters estimation 

unit 212 may signal one or more syntax elements that indicate the DRA parameters 

directly, or may be configured to provide the one or more syntax elements to video 

encoder 20 for signaling. Such syntax elements of the parameters may be signaled in 

the bitstream such that video decoder 30 and/or video postprocessor 31 may perform the 

inverse of the process of video preprocessor 19 to reconstruct the video data in its native 

color representation.  

[0163] One way in which video encoder 20 or video preprocessor 19 may signal the 

DRA adjustment parameters or DRA adjustment information is through an SEI message.  

Supplemental Enhancement Information (SEI) messages have been used for a number 

of purposes and may be included in video bitstreams, typically to carry information that 

are not essential in order to decode the bitstream by the decoder. This information may
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be useful in improving the display or processing of the decoded output; e.g., such 

information could be used by decoder-side entities to improve the viewability of the 

content. It is also possible that certain application standards could mandate the presence 

of such SEI messages in the bitstream so that the improvement in quality can be brought 

to all devices that conform to the application standard (the carriage of the frame-packing 

SEI message for frame-compatible plano-stereoscopic 3DTV video format, where the 

SEI message is carried for every frame of the video, e.g., as described in ETSI - TS 101 

547-2, Digital Video Broadcasting (DVB) Plano-stereoscopic 3DTV; Part 2: Frame 

compatible plano-stereoscopic 3DTV, handling of recovery point SEI message, e.g., as 

described in 3GPP TS 26.114 v13.0.0, 3rd Generation Partnership Project; Technical 

Specification Group Services and System Aspects; IP Multimedia Subsystem (IMS); 

Multimedia Telephony; Media handling and interaction (Release 13), or use of pan-scan 

scan rectangle SEI message in DVB, e.g., as described in ETSI - TS 101 154, Digital 

Video Broadcasting (DVB); Specification for the use of Video and Audio Coding in 

Broadcasting Applications based on the MPEG-2 Transport Stream.  

[0164] A number of SEI messages that have been used may be deficient in one or more 

ways for signaling dynamic range adjustment parameters in accordance with one or 

more aspects of the present disclosure.  

[0165] For example, one SEI message is a tone-mapping information SEI message, 

which is used to map luma samples, or each of RGB component samples. Different 

values of tone mapid are used to define different purposes, and the syntax of the tone

map SEI message is also modified accordingly. For example, a value of 1 for the 

tone-mapid allows a processor acting on the SEI message to clip the RGB samples to a 

minimum and a maximum value. A value of 3 for the tonemap-id allows or indicates 

that a look-up table will be signaled in the form of pivot points. However, when 

applied, the same values are applied to all RGB components, or only applied to the luma 

component.  

[0166] Another example is the knee function SEI message, which is used to indicate the 

mapping of the RGB components of the decoded pictures in the normalized linear 

domain. The input and output maximum luminance values are also indicated, and a 

look-up table maps the input luminance values to the output luminance values. The 

same look-up table may be applied to all the three color components.  

[0167] The color remapping information (CRI) SEI message, which is defined in the 

HEVC standard, is used to convey information that is used to map pictures in one color
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space to another. FIG. 11 shows a typical structure of the color remapping information 

process used by the CRI SEI message. In one example, the syntax of the CRI SEI 

message includes three parts: a first look-up table (Pre-LUT) 1302, followed by a 3x3 

matrix indicating color remapping coefficients 1304, and followed by a second look-up 

table (Post-LUT) 1306. For each color component, e.g., R,G,B or Y,Cb,Cr, an 

independent Pre-LUT is defined, and also an independent Post-LUT is defined. The 

CRI SEI message also includes a syntax element called colourremapid, different 

values of which may be used to indicate different purposes of the SEI message.  

[0168] In another example, the dynamic range adjustment (DRA) SEI message, has 

been described in D. Bugdayci Sansli, A. K. Ramasubramonian, D. Rusanovskyy, S.  

Lee, J. Sole, M. Karczewicz, Dynamic range adjustment SEI message, m36330, MPEG 

meeting, Warsaw, Poland, 22 - 26 June, 2015. An example DRA SEI message includes 

signaling of one set of scale and offset numbers to map the input samples. The SEI 

message also allows the signaling of different look-up tables for different components, 

and also allows for signaling optimization when the same scale and offset are to be used 

for more than one component. The scale and offset numbers may be signaled in fixed 

length accuracy.  

[0169] This section lists several problems that are associated with the color remapping 

information SEI message and other SEI messages related to scaling or mapping video 

content. The SEI messages described in the previous paragraphs have one or more of 

the following deficiencies: 

[0170] There are several problems associated with the tone-mapping SEI message, the 

knee function SEI message, and the CRI SEI message. For example, the tone-mapping 

information SEI syntax does not allow indication, or provide any indication, of scaling 

for chroma components Cb and Cr. Further the number of bits needed to indicate the 

look-up table pivot points and other syntax elements (e.g., in the CRI SEI message) is 

more than what may be necessary, and may be inefficient. When the SEI message is to 

be signaled more frequently, e.g. every frame, it may be beneficial that the SEI message 

be simple and consume fewer bits. Further, many SEI messages (e.g., tone-mapping 

information, knee function SEI message) have same look up table applied for all three 

color components when applicable. Still further, the dynamic range adjustment SEI 

message only signals one scale and one offset for each component.  

[0171] In view of the foregoing, and as further described below, this disclosure 

proposes signaling, through one or more new SEI messages, parameters and/or
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information relating to performing dynamic range adjustment described above. The 

dynamic range adjustment parameters or information may be used by the video decoder 

30 and/or video postprocessor 31 to perform the inverse of the dynamic range 

adjustment to reconstruct the video data. In some examples, the DRA parameters or 

DRA information may be signaled explicitly. For example, the one or more SEI 

messages may include the various global offset, local offset, partition, and scale 

information.  

[0172] Accordingly, in some examples, video encoder 20 may receive dynamic range 

adjustment parameters or information from video preprocessor 19, and may signal one 

or more SEI messages that include various dynamic range adjustment parameters or 

dynamic range adjustment information. Such information may include global offset, 

local offset, partition, and scale parameters, or information that is sufficient to derive 

such parameters or information, or is otherwise sufficient to describe how the dynamic 

range adjustment was applied to the video data. Decoder 30 may receive one or more of 

such SEI messages, parse and/or decode the information in the SEI messages, and act 

upon such information and/or pass the information to the video postprocessor 31.  

[0173] In some examples, video encoder 20 may signal one or more SEI messages that 

include global offset values, including, for each component, a first offset value that 

determines a first unadjusted component value below which all component values are 

clipped to the first component value before applying dynamic range adjustment as 

described in this disclosure. Decoder 30 may receive one or more of such SEI 

messages, parse and/or decode the information in the SEI messages, and pass the 

information to the video postprocessor 31.  

[0174] In some examples, for each component, video encoder 20 may signal one or 

more SEI messages that include a second offset value that specifies the adjusted value to 

which the first offset value maps to after dynamic range adjustment. Video decoder 30 

may receive such SEI messages, parse and/or decode the information, and pass that 

information to video postprocessor 31.  

[0175] In another example, neither the first global offset value nor the second global 

offset value is signaled in a SEI message. Instead, decoder 30 assumes that the values 

of the first global offset and the second global offset is a constant, predetermined, or 

signaled value that the decoder 30 either determines per sequence or receives by 

external means. In another example, video encoder 20 signals the first global offset 

value in an SEI message, but the second global offset value is not signaled in a SEI



WO 2017/053280 PCT/US2016/052640 
48 

message. Instead, video decoder 30 infers that its value is a constant, predetermined, or 

signaled value that decoder 30 either determines per sequence or received by external 

means. In a still further example, video encoder 20 signals the second global offset 

value in an SEI message, but the first global offset value is not signaled in a SEI 

message. Instead, video decoder 30 infers that the first global offset value is a constant, 

predetermined, or signaled value that decoder 30 either determines per sequence or 

received by external means.  

[0176] In some examples, video encoder 20 may signal offset values that are received 

by decoder 30, and are used by decoder 30 to derive other global or local parameters, 

including both global and local scale and offset values, as well as partitions of a range of 

unadjusted values, and partitions of a range of adjusted values.  

[0177] In some examples, video encoder 20 may signal one or more SEI messages that 

include the number of partitions that the range of input representation values (i.e., 

component values) were divided into during dynamic range adjustment. In one 

example, the number of partitions may be constrained to be a power of 2 (i.e. 1, 2, 4, 8, 

16, etc.) and the number of partitions is signaled as logarithm (e.g. 8 partitions is 

signaled as 3 = log2 8). Video decoder 30 may receive such SEI messages, parse and/or 

decode the information, and pass that information to video postprocessor 31.  

[0178] In some examples, the number of partitions for the chroma components may be 

different from the number of partitions for the luma component. The number of 

partitions may be constrained to be a power of 2 + 1 and signaled as logarithm and 

rounding towards minus 0. In this way, pixels with neutral chroma can have their own 

values and the size of that partition can be smaller than the other partitions. In such an 

example, neutral chroma may refer to values of chroma around the mid-value (e.g., 0 

when the chroma values range between -0.5 and 0.5, or between -512 and 511 in a 10

bit representation). Constraining the number of partitions as a power of 2 may enable 

the encoder 20 to save bits, because encoder 20 may be able to represent the log of a 

value with fewer bits than the actual value for integer values. Constraining the number 

of partitions to a power of 2 + 1 may ensure that at least one partition may be dedicated 

to the neutral chroma values, and in some examples, the width of the partition 

corresponding to the neutral chroma values may be smaller than the rest. In other 

examples, such a partition may be larger than one or more of the other partitions.  

[0179] In some examples, decoder 30 may use the signaled number of partitions to 

derive other global or local parameters, including both global and local scale and offset
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values, as well as the actual size of the partitions of a range of unadjusted component 

values and/or the size of the partitions of a range of adjusted component values.  

[0180] In some examples, encoder 20 may signal one or more SEI messages that may 

include, for each partition, a local scale and local offset value specifying a range of the 

input component values and the corresponding mapped output component values. In 

some examples, encoder 20 may signal an SEI message that includes the number of bits 

used by the syntax elements to signal the scale and offsets. In other examples, encoder 

20 may signal an SEI message that indicates the number of bits that are used to 

represent the fractional part of the scale and offsets in the syntax elements. In other 

examples, encoder 20 may signal one or more SEI messages or syntax elements that 

indicate that the integer part of the scale parameters is signaled in a signed 

representation. In some examples, the signed representation is two's complement. In 

other examples, the signed representation is signed magnitude representation. Video 

decoder 30 may receive such SEI messages and/or syntax elements, parse and/or decode 

the information, and pass that information to video postprocessor 31.  

[0181] In other examples, encoder 20 may use each offset value successively to first 

compute the range of adjusted component or representation values, and then using the 

scale value, compute the corresponding range in the unadjusted representation. For 

example, one offset value may be used to compute the range of a first partition in the 

adjusted component using the value of a global offset value derived or signaled for the 

adjusted component, followed by using the scale value and the range of a first partition 

of the adjusted representation to derive the range in the corresponding partition of the 

unadjusted representation and with the respective ranges of the first partition of the 

adjusted and the corresponding partition of the unadjusted representations, derive a 

respective value derived for the first partition of the adjusted range and the 

corresponding partition of unadjusted representations that indicate a boundary of the 

partitions. Following this, another offset value may be used to compute the range of a 

second partition in the adjusted component using the boundary value of the first 

partition in the adjusted component derived in the previous step, followed by using the 

scale value and the range of a second partition of the adjusted representation to derive 

the range of the unadjusted representation, and with the respective ranges of the second 

partitions of the adjusted representation and corresponding partition of the unadjusted 

representations, a respective value is derived for the partitions in the adjusted and 

unadjusted representations that indicate a boundary of the respective representations.
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This method may be repeated until all the ranges and boundaries are derived for all the 

partitions in the adjusted and unadjusted representations. In another example, encoder 

20 may use each offset value successively to first compute the range of unadjusted 

component or representation values, and then using the scale value, compute the 

corresponding range in the adjusted representation. In other words, the component or 

representation to which the scale and offset values are applied could be swapped 

between unadjusted and adjusted representations.  

[0182] In some examples, the number of bits used by the syntax elements to signal scale 

and offset values may depend on the component. In other examples, a default number 

of bits is defined and used when these numbers are not explicitly signaled.  

[0183] In some examples, encoder 20 may signal a syntax element indicating whether 

the length of the partitions of the output representations (i.e., output components) are 

equal. In such an example, encoder 20 might not signal the offset value for one or more 

partitions. Decoder 30 may infer the offset values to be equal in some examples. In 

another example, decoder 30 may assume the partitions are of equal length and may not 

receive a syntax element so indicating. In some examples, decoder 30 may derive the 

size of each partition from signaled syntax elements and predefined total dynamical 

range of the representation.  

[0184] In other examples, rather than signaling pivot points for each partition as well as 

scale and offset values for each partition, video encoder 20 may signal one or more SEI 

messages that indicate derivative or scale value for each partition along with the size of 

one or more or all partitions. This approach may allow encoder 20 to avoid signaling 

local offset values for each partition. Instead, in some examples, encoder 20 may be 

able to signal, in one or more SEI messages, the partition size and scale value (or 

derivative) for one or more partitions. The local offset value for each partition or 

partitioning (which may require higher accuracy) may be determined or derived by 

decoder 30.  

[0185] In some examples, encoder 20 may signal one or more SEI messages that 

indicate a mode value that specifies several default values for offset and scale values for 

certain partitions. Video decoder 30 may receive such SEI messages, parse and/or 

decode the information, and pass that information to video postprocessor 31.  

[0186] In some examples, encoder 20 may signal one or more SEI messages that 

indicate a value defining the persistence of the SEI message such that the persistence of 

a subset of the components may be defined and component scale values of a subset of
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the components may be updated. The persistence of an SEI message indicates the 

pictures to which the values signaled in the instance of the SEI may apply. In some 

examples, the persistence of the SEI message is defined such that the values signaled in 

one instance of SEI messages may apply correspondingly to the all components of the 

pictures to which the SEI message applies. In other examples, the persistence of the SEI 

message is defined such that the values signaled in one instance of the SEI may be 

indicated to apply correspondingly to a subset of the components wherein the 

components to which the values in the instance of the SEI does not apply may either 

have no values applicable or may have values applicable that are signaled in another 

instance of the SEI message. Video decoder 30 may receive such SEI messages, parse 

and/or decode the information, and pass that information to video postprocessor 31.  

[0187] In some examples, encoder 20 may signal one or more SEI messages that 

include syntax elements indicating the postprocessing steps to be performed to the 

decoded output. Each syntax element may be associated with a particular process (e.g.  

scaling components, color transforms, up-sampling/down-sampling filters, etc.) and 

each value of the syntax element may specify that a particular set of parameters 

associated with the process be used. In some examples, the parameters associated with 

the process are signaled by video encoder 20 using SEI messages that are part of the 

bitstream or as metadata that may be transmitted through other means. Video decoder 

30 may receive such SEI messages, parse and/or decode the information, and pass that 

information to video postprocessor 31.  

[0188] In some examples, encoder 20 may signal syntax elements or one or more SEI 

messages that may be used for describing and/or constructing a piece-wise linear model 

function for mapping input representations (i.e., input component values) to output 

representations (i.e., output component values). Video decoder 30 may receive such 

SEI messages, parse and/or decode the information, and pass that information to video 

postprocessor 31. In other examples, predefined assumptions may be used for 

describing and/or constructing a piece-wise linear model function for mapping input 

representations to the output representation.  

[0189] In some examples, encoder 20 may signal one or more SEI messages that may 

include one or more syntax elements indicating that the scale and offset parameters 

signaled in the SEI message represent the variation of the scale to be applied to a first 

component as a function of different values of a second component.
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[0190] In some examples, encoder 20 may signal one or more SEI messages indicating 

offset parameters that are to be or may be applied along with the scale on a first 

component as a function of different values of a second component. In some examples, 

encoder 20 may signal one or more SEI messages that may include one or more 

additional syntax elements that indicating offset parameters that are to be or may be 

applied along with the scale on a first component as a function of different values of a 

second component. Video decoder 30 may receive such SEI messages, parse and/or 

decode the information, and pass that information to video postprocessor 31.  

[0191] In some examples, encoder 20 may signal one or more SEI messages including a 

first syntax element that indicates a first set of electro-optical transfer function 

characteristics such that the signaled scale, offset and other dynamic range adjustment 

parameters the SEI message are applied when the electro-optical transfer function 

characteristics used on the decoder-side are similar to that first set of electro-optical 

transfer function characteristics.  

[0192] In another example, encoder 20 may signal one or more SEI messages indicating 

that the signaled offset, scale and other dynamic range parameters in the SEI message(s) 

are to be applied for best reconstruction of the HDR output when the first set of electro

optical transfer function characteristics, or those with similar characteristics, are used by 

the decoder 30. Video decoder 30 may receive such SEI messages, parse and/or decode 

the information, and pass that information to video postprocessor 31.  

[0193] In another example, encoder 20 may signal one or more SEI messages indicating 

that a first set of opto-electronic transfer function characteristics, and the signaled scale, 

offset and other dynamic range adjustment parameters are applied on by decoder 30 

when the corresponding inverse electro-optical transfer function characteristics are 

applied at the decoder side. Video decoder 30 may receive such SEI messages, parse 

and/or decode the information, and pass that information to video postprocessor 31.  

[0194] In other examples, encoder 20 may signal a condition such that when more than 

one SEI message is present indicating different set of electro-optical/opto-electronic 

characteristics and applicable the current picture, only one SEI message is applied. The 

encoder may signal different set of electro-optical/opto-electronic characteristics to 

satisfy different types of decoders, or decoders with different capabilities. For example, 

some displays at the decoder side may apply the PT EOTF to convert the coded 

component values in an appropriate domain to linear light, whereas other displays, e.g.  

legacy displays, may apply the gamma EOTF to convert to linear light. Each SEI with a



WO 2017/053280 PCT/US2016/052640 
53 

particular characteristic that the encoder sends may be appropriate or beneficial for 

certain types of displays and not for other types of displays, e.g. an SEI message with 

PQ EOTF characteristics may be suitable for displays that apply PQ EOTF to convert 

the coded video to linear light. The decoder 30 determines which SEI message is to be 

applied, and makes such a choice based on the application standard, based on the end

user device, based on a signal received, or based on another indication received through 

external means. For example, decoder 30 may determine that the first syntax element in 

a first SEI message that applies to a current picture indicates that the SEI message is to 

be applied with the inverse of PQ OETF and the first syntax element in a second SEI 

message that applies to a current picture indicates that the SEI message is to be applied 

with another transfer function (such as BBC, or PH), the decoder 30 or end-user device 

may choose to apply the parameters in the first SEI message because the device uses PQ 

EOTF. In some examples, an application standard to which the decoder conforms to 

may specify that an SEI message with a particular set of characteristics is to be used.  

[0195] In other examples, encoder 20 may signal an SEI message that carries the 

parameters corresponding to multiple sets of transfer characteristics. In other examples, 

encoder 20 may signal different SEI messages for that purpose. Video decoder 30 may 

receive such SEI messages, parse and/or decode the information, and pass that 

information to video postprocessor 31 

[0196] In some examples, encoder 20 may signal one or more SEI messages that 

include a syntax element indicating the applicability of the SEI message. The 

applicability of the SEI message may include, but is not limited to (1) the components to 

which the scales and offsets apply, (2) the position at which the component scaling is 

applied, and/or (3) whether additional scaling parameters are signaled.  

[0197] As described, encoder 20 may signal one or more SEI messages that include a 

syntax element indicating the components to which the scales and offsets apply. The 

following lists several examples of such an application. For example, one value of the 

syntax element could indicate that signaled parameters for the first component index are 

to be applied to the RGB components. Another value may indicate that the signaled 

parameters for the first component index is to be applied to luma component, and those 

for the second and third indices are to be applied to the Cb and Cr components. Another 

value may indicate that the signaled parameters for the first component index is to be 

applied to R, G and B components, and those for the second and third indices are to be 

applied to the Cb and Cr components. Another value may indicate that signaled
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parameters for first three indices are applied to luma, Cb and Cr components, and that 

corresponding to the remaining indices are applied for color correction. Video decoder 

30 may receive such SEI messages, parse and/or decode the information, and pass that 

information to video postprocessor 31.  

[0198] Also as described, encoder 20 may signal one or more SEI messages including a 

syntax element indicating the position at which the component scaling is applied.  

Several processes occur on the decoder-side, after decoding of the video, and in the 

video postprocessor 31. Signaling of syntax element indicating the position at which the 

process associated with the SEI is to be applied, in other words indication of any subset 

of the preceding or succeeding operations of the process associated with using the 

information in the SEI, would be helpful to the video decoder 30 or the video 

postprocessor 31 to process the video. For example, such a syntax element could 

indicate the position at which the component scaling is applied, for example to YCbCr 

components before or after upsampling. In another example, the syntax element could 

indicate that the component scaling is applied before the quantization to the decoder 

side. Video decoder 30 may receive such SEI messages, parse and/or decode the 

information, and pass that information to video postprocessor 31.  

[0199] Also as described, encoder 20 may signal one or more SEI messages that include 

a syntax element indicating whether an additional set of scaling and parameters, e.g. for 

color correction, are signaled. The additional set of parameters could be used for color 

correction to map the color components to fit a particular color gamut, or for correction 

of component values when a different transfer function is applied than that indicated by 

the transfercharacteristics syntax element in the VU.  

[0200] In other examples, encoder 20 may signal different syntax elements to indicate 

the above aspects; e.g. one syntax element to indicate which component(s) the SEI 

applies to, one syntax element to indicate whether it applies to HDR-compatible of 

SDR-compatible content, and one syntax element to indicate the position(s) where the 

component scaling SEI message is to be applied.  

[0201] When the number of components to which the component scaling SEI message 

parameters are applied is more than one, encoder 20 may signal one or more SEI 

messages that include a syntax element indicating that application of scale and offset 

parameters may be done sequentially based on the index of the component. For 

example, the mapping based on the scale and offset parameters of the first component 

may be applied, and then the mapping of the second component, which for example
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uses scale and offset signaled for the second component, may depend on the values of 

the first component. In some examples, this is indicated by, for example, by syntax 

element specifying that the mapped values of the first component should be used. Video 

decoder 30 may receive such SEI messages, parse and/or decode the information, and 

pass that information to video postprocessor 31.  

[0202] In another example, video encoder 20 may constrain the values signaled in one 

or more SEI messages, or in the bitstream, in such a way that an HDR10 receiver can 

decode and show a viewable HDR video even if the SEI postprocessing is not applied.  

The SEI message(s) may include a syntax element to indicate that this is the case (e.g., 

that the bitstream is an HDR1O backward compatible bitstream).  

[0203] This section includes several examples that use techniques disclosed in 

accordance with one or more aspects of the present disclosure.  

Example 1 

[0204] In this example 1, the component scaling function is signaled as a look-up table 

and the number of bits used to signal the points defining the look up table are also 

signaled. For sample values that do not have explicit points signaled, the value is 

interpolated based on the neighboring pivot points.  

Syntax of the component scaling SEI message 

componentscale info( payloadSize){ Descriptor 

compscale-id ue(v) 

compscalecancelflag u(1) 

if( !comp-scale-cancelflag){ 

compscale-persistenceflag u(1) 

comp_scalenum-compsminusl ue(v) 

comp_scaleinput-bit-depth ue(v) 

comp_scaleoutput-bit-depth ue(v) 

for( c = 0; c <= compscalenumcomps minus; c++){ 

compscalenumpointsminusl[ c ] ue(v) 

for( i = 0; i <= compscalenumpoints-minus[ c]; i++){ 

compscale-input-point[ c ][ i ] u(v) 

compscale-output-point[ c ][ i] u(v)
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} 

} 

} 

Semantics of the component scaling SEI message 

The component scaling SEI message provides information to perform scaling operations 

on the various components of the decoded pictures. The colour space and the components 

on which the scaling operations should be performed are determined by the value of the 

syntax elements signalled in the SEI message.  

compscale_id contains an identifying number that may be used to identify the purpose 

of the component scaling SEI message. The value of comp_scaleid shall be in the range 

of 0 to 232 - 2, inclusive. The value of compscale id may be used to specify the colour 

space at which the component scaling SEI message, or whether the component scaling 

SEI message is applied in the linear or the non-linear domain.  

Values of compscaleid from 0 to 255, inclusive, and from 512 to 231 - 1, inclusive, 

may be used as determined by the application. Values of compscale id from 256 to 511, 

inclusive, and from 231 to 232 - 2, inclusive, are reserved for future use by ITU-T | 

ISO/IEC. Decoders shall ignore all component scale information SEI messages 

containing a value of compscaleid in the range of 256 to 511, inclusive, or in the range 

of 231 to 232 _ 2, inclusive, and bitstreams shall not contain such values.  

NOTE 1 - The compscaleid can be used to support component scaling processes 

that are suitable for different display scenarios. For example, different values of 

compscaleid may correspond to different display bit depths or different colour 

spaces in which the scaling is applied.  

Alternatively, the compscale id may also be used to identify whether the scaling is 

performed for compatibility to certain types of displays or decoder, e.g. HDR, SDR.  

compscalecancelflag equal to 1 indicates that the component scaling information SEI 

message cancels the persistence of any previous component information SEI messages in 

output order that applies to the current layer. compscale-cancel-flag equal to 0 indicates 

that component scaling information follows.  

compscale-persistence_flag specifies the persistence of the component scaling 

information SEI message for the current layer.
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compscalepersistence flag equal to 0 specifies that the component scaling information 

applies to the current decoded picture only.  

Let picA be the current picture. compscalepersistenceflag equal to 1 specifies that the 

component scaling information persists for the current layer in output order until any of 

the following conditions are true: 

- A new CLVS of the current layer begins.  

- The bitstream ends.  

- A picture picB in the current layer in an access unit containing a component scaling 

information SEI message with the same value of compscaleid and applicable to the 

current layer is output for which PicOrderCnt( picB ) is greater than 

PicOrderCnt( picA ), where PicOrderCnt( picB ) and PicOrderCnt( picA ) are the 

PicOrderCntVal values of picB and picA, respectively, immediately after the 

invocation of the decoding process for picture order count for picB.  

compscale_num_compsminus1 plus 1 specifies the number of components for which 

the component scaling function is specified. comp_scalenum-compsminus1 shall be in 

the range of 0 to 2, inclusive.  

When compscalenumcomps minus is less than 2 and the component scaling 

parameters of the c-th component is not signalled, are inferred to be equal to those of the 

(c - 1)-th component.  

Alternatively, when compscalenumcomps minus is less than 2, and the component 

scaling parameters of the c-th component is not signalled, the component scaling 

parameters of the c-th component are inferred to be equal to default values such that 

effectively there is no scaling of that component.  

Alternatively, the inference of the component scaling parameters may be specified based 

on the colour space on which the SEI message is applied.  

- When the colour space is YCbCr, and compscale-num-comps minus is equal 

to 1, the component scaling parameters apply to both Cb and Cr components.  

- When the colour space is YCbCr, and compscale-numcomps minus is equal 

to 2, the first and second component scaling parameters apply to Cb and Cr 

components.  

In one alternative, the different inference is specified based on the value of compscale id 

or on the basis of an explicit syntax element.  

Alternatively, a constraint is added as follows:
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It is constraint for bitstream conformance that the value of 

compscale-num-comps minus shall be the same for all the component scaling 

SEI message with a given value of compscaleid within a CLVS.  

compscale-input-bit-depth_minus8 plus 8 specifies the number of bits used to signal 

the syntax element compscale input_point[ c ][ i ]. The value of 

compscale input bit depth-minus8 shall be in the range of 0 to 8, inclusive.  

When component scaling SEI message is applied to an input that is in a normalized 

floating point representation in the range 0.0 to 1.0, the SEI message refers to the 

hypothetical result of a quantization operation performed to convert the input video to a 

converted video representation with bit depth equal to 

colourremap input bit depthminus8 + 8.  

When component scaling SEI message is applied to a input that has a bit depth not equal 

to the compscale input bit depth minus8 + 8, the SEI message refers to the 

hypothetical result of a transcoding operation performed to convert the input video 

representation to a converted video representation with bit depth equal to 

colourremap input bit depthminus8 + 8.  

compscale-output-bit-depth_minus8 plus 8 specifies the number of bits used to 

signal the syntax element comp_scale_output_point[ c ][ i ]. The value of 

compscaleoutput bit depthminus8 shall be in the range of 0 to 8, inclusive.  

When component scaling SEI message is applied to an input that is in floating point 

representation, the SEI message refers to the hypothetical result of an inverse quantization 

operation performed to convert the video representation with a bit depth equal to 

colourremap_output_bitdepth minus8 + 8 that is obtained after processing of the 

component scaling SEI message to a floating point representation in the range 0.0 to 1.0.  

Alternatively, the number of bits used to signal compscale input-point[ c ][ i ] and 

compscaleoutput_point[ c ][ i ] are signalled as compscale input bitdepth and 

compscaleoutput bit depth, respectively, or in other words without subtracting 8.  

compscale_num_pointsminus1[ c ] plus 1 specifies the number of pivot points used 

to define the component scaling function. compscalenum_points minus[ c ] shall be 

in the range of 0 to (1 « Min(compscale input bit depth minus8 + 8, 

compscaleoutput bit depthminus8 + 8) ) - 1, inclusive.  

compscale-input-point[ c ][ i ] specifies the i-th pivot point of the c-th component of 

the input picture. The value of compscale input_point[ c ][ i ] shall be in the range of 0 

to ( 1 « compscale input bit depth minus8[ c ] + 8 ) - 1, inclusive. The value of
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compscale input_point[ c ][i ] shall be greater than or equal to the value of 

compscale input_point[ c ][ i - 1 ], for i in the range of 1 to 

compscale_points minus[ c ], inclusive.  

compscale-output-point[ c ][ i ] specifies the i-th pivot point of the c-th component of 

the output picture. The value of comp_scale_output_point[ c ][ i ] shall be in the range 

of I to ( 1 << compscaleoutput bit depth minus8[ c ] +8 )- 1, inclusive. The value 

of comp_scale_output_point[ c ][ i ]shall be greater than or equal to the value of 

compscaleoutput_point[ c ][ i - 1], for i in the range of 1 to 

compscale_points minus[ c ], inclusive.  

The process of mapping an input signal representation x and an output signal 

representation y, where the sample values for both input and output are in the range of 0 

to ( 1 « compscale input bit depthminus8[ c ] + 8 ) - 1, inclusive, and 0 to 

( 1 « compscaleoutput bit depth minus8[ c ]+ 8)- 1, inclusive, respectively, is 

specified as follows: 

if( x <= compscale input_point[ c ][0]) 

y = compscaleoutput_point[ c ][ 0 ] 

else if(x > comp_scaleinput_point[ c ][ compscale inputpoint minus[ c]]) 

y = compscaleoutput_point[ c ][compscale_output_point minus[ c]] 

else 

for( i = 1; i <= comp_scale_output_point minus[ c ]; i++) 

if( compscale input_point[ i - 1] < x && x <= 

compscale input_point[ i ] ) 

y= ((comp_scale_output_point[ c ][ i- compscaleoutput_point[ c ][ i - 1] 

(compscale input_point[ c ][ i- compscale input_point[ c ][i- 1] )) * 

(x - compscale input_point[ c ][ i - 1]) + 

(compscaleoutput_point[ c ][ i - 1 ]) 

[0205] In one alternative, input and output pivot points compscale input-point[ c ][ i] 

and comp_scale_output_point[ c ][ i ] are coded as difference of adjacent values; e.g., 

deltacompscale input_point[ ][ ] and deltacompscaleoutput-point[ ][ ], and the 

syntax elements are coded using exponential Golomb codes.
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In another alternative, the process of mapping an input and output representation value 

is specified by other interpolation methods including, but not limited to, splines and 

cubic interpolation.  

Example 2 

[0206] This Example 2 shows a different syntax structure compared to the SEI syntax 

structure described in Example 1. In this syntax structure, the mapping function is 

described in terms of scales and offsets instead of pivot points.  

Syntax of the component scaling SEI message 

componentscale info( payloadSize){ Descriptor 

compscale-id ue(v) 

compscalecancelflag u(1) 

if( !compscalecancelflag){ 

compscale-persistenceflag u(1) 

comp_scalenum-comps ue(v) 

comp_scaleinput-bit-depth ue(v) 

comp_scaleoutput-bit-depth ue(v) 

compscale-bit-depth_scaleval ue(v) 

comp_scale_log2_denomscaleval ue(v) 

for( c = 0; c < compscalenumcomps; c++){ 

compscalenumpoints_minusl[ c ] ue(v) 

compscale-globaloffset-input-val[ c] u(v) 

compscale-globaloffset-output-val[ c] u(v) 

for( i = 0; i < compscalenumpoints minus[ c]; i++){ 

compscale-offset-val[ c ][ i] u(v) 

compscale-val[ c ][ i] u(v) 

} 

} 

} 

}



WO 2017/053280 PCT/US2016/052640 
61 

compscalebitdepthscale-val specifies the number of bits used to signal the syntax 

element compscale val[ c ][ i ]. The value of compscale bit depthscaleval shall be 

in the range of 0 to 24, inclusive.  

compscale-log2_denom_scale_va specifies the base 2 denominator of the scale value.  

The value of compscale log2_denom_scaleval shall be in the range of 0 to 16, 

inclusive.  

compscale-global_offsetinput-val[ c ] plus 1 specifies the input sample value below 

which all the input representation values are clipped to 

CompScaleOffsetOutputVal[ c ][ 0 ]. used to define the component scaling function.  

compscale numpointsminusI[ c ] shall be in the range of 0 to 

( 1 « compscale input bit depth) - 1, inclusive. The number of bits used to 

represent compscaleglobal_offsetinput val[ c ] is comp_scale inputbitdepth.  

compscale-global_offsetoutput-val[ c ] plus 1 specifies the output sample value to 

which all the input representation values below compscaleglobaloffset input val[ c ] 

are to be clipped. compscale numpointsminusI[ c ] shall be in the range of 0 to 

( 1 « compscaleoutput bit depth) - 1, inclusive. The number of bits used to 

represent compscaleglobal_offsetoutput val[ c ] is compscaleoutput bit depth.  

compscale_num_pointsminus1[ c ] plus 1 specifies the number of pivot points used 

to define the component scaling function. compscalenumpoints minus[ c ] shall be 

in the range of 0 to (1 « Min(compscale input bit depth, 

compscaleoutput bit depth) - 1, inclusive.  

The process of mapping an input signal representation x and an output signal 

representation y, where the sample values for both input representation is in the range of 

0 to (1 « compscale input bit depth) - 1, inclusive, and output representation is in 

the range of and 0 to (1 « compscaleoutput bit depth) - 1, inclusive, is specified as 

follows: 

if(x <= CompScaleOffsetInputVal[ c ][ 0) 

y = CompScaleOffsetOutputVal[ c ][ 0] 

else if(x > CompScaleOffsetInputVal[ c ][ compscaleoutput-pointminus1]) 

y = CompScaleOffsetOutputVal[ c ][ compscaleoutputpoint minus] 

else 

for( i = 1; i <= comp_scale_outputpointminusI; i++) 

if( CompScaleOffsetInputVal[ i - 1] < x && x <= 

CompScaleOffsetInputVal[ i ] )
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y=(x 

CompScaleOffsetInputVal[ i - 1]+ (compscale val[ c ][ i ]+ 

CompScaleOffsetOutputVal[ c ][ i ] 

compscale_offset-val[ c ][ i ] specifies the offset value of the i-th sample value region 

of the c-th component. The number of bits used to represent compscale_offset val[ c] 

is equal to compscale input bit depth.  

compscale-val[ c ][ i ] specifies the scale value of the i-th sample value region point of 

the c-th component. The number of bits used to represent compscale val[ c ] is equal to 

compscalebitdepthscaleval.  

The variables CompScaleOffsetOutputVal[ c ][ i ] and 

CompScaleOffsetInputVal[ c ][ i ] for i in the range of 0 to 

compscale numpointsminus1[ c ], inclusive, is derived as follows: 

roundingOffset = (compscale log2_denom_scaleval = = 0 ) ? 0 :(1 << 

compscale log2denomscaleval - 1) 

for( i = 0; i <= compscalenumpoints-minusI[ c ]; i++) 

if(i == 0) 

CompScaleOffsetOutputVal[ c ][i ]= 

compscaleglobaloffset output val[ c] 

CompScaleOffsetInputVal[ c ][ i ] = 

compscaleglobaloffset input val[ c ] 

else 

CompScaleOffsetOutputVal[ c ][ i ]= CompScaleOffsetOutputVal[ c ][ i 

1I + 

(comp_scaleoffsetval[ c ][ i - 1]* compscale val[ c ][ i - 1 ] 

+ roundingOffset ) >> 

compscale log2denomscaleval 

CompScaleOffsetInputVal[ c ][i ]= CompScaleOffsetInputVal[ c ][ i - 1 ] 

comp-scaleoffsetval[ c ][ i - 1] 

In one alternative, compscaleoffsetval[ c ][ i ] is used to directly calculate 

CompScaleOffsetOutputVal[ ][ i ] and indirectly calculate 

CompScaleOffsetInputVal[ ][ i ] for i in the range of 0 to 

compscalenum_points minus[ c ]as follows:
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for( i = 0; i < compscalenumpoints minusI[ c ]; i++) 

if(i == 0) 

CompScaleOffsetOutputVal[ c ][i ]= 

compscale_globaloffset output val[ c] 

CompScaleOffsetInputVal[ c ][ i ] = 

compscale_globaloffset input val[ c] 

else 

CompScaleOffsetInputVal[ c ][i ]= CompScaleOffsetInputVal[ c ][ i - 1] 

(compscaleoffset val[ c ][ i - 1]* 

compscale val[ c ][ i - 1 ] 

+ roundingOffset) >> 

compscale log2denomscale-val ) 

CompScaleOffsetOutputVal[ c ][i ]= CompScaleOffsetOutputVal[ c ][ i 

1I + 

comp-scaleoffsetval[ c ][ i - 1] 

In one alternative, compscaleoffsetval[ c ][ i ] for i in the range of 0 to 

compscale numpointsminus1[ c ], inclusive, are not signaled, and the values of 

compscale_offset val[ c ][ i ] are derived based on 

compscale numpointsminus1[ c ] equally spaced intervals for which the scale is 

specified. The value of comp_scale_offset val[ c ][ i ] for i in the range of 0 to 

compscalenum_points minus[ c ]- 1, inclusive, is derived as follows: 

compscale_offset val[ c ][i ]= ( (1 compscaleoutput bit depth)

compscaleglobaloffset-output val[ c])+ 

compscale numpointsminus1[ c ] 

In another alternative, comp-scaleoffset val[ c ][ i ] for i in the range of 0 to 

compscale numpointsminus1[ c ] is calculated as follows: 

compscale_offset val[ c ][i ]= (1 << compscaleoutput bit depth)+ 

compscalenum_points minus[ c]+ 

In one alternative, instead of signaling compscale numpointsminus1[ c ], the 

number of pivot points is signaled using log2_compscale num-points[ c ], where 

( 1 << log2_comp_scalenumpoints[ c ])specifies the number of pivot points for the 

c-th component.
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Alternatively, each of compscaleoffset val[ c ][ ]and compscale val[ c ][ ]is 

signaled as floating point numbers, or as two syntax elements with exponent and 

mantissa.  

In another alternative, signaling of compscale val[ c ][ i ] is replaced by 

compscaleoutputpoint[ c ][ i ].  

The semantics of rest of the syntax elements are similar to those described in Example 

1.  

Example 3 

[0207] This method described in Example 3 is similar to one of the alternatives 

described in Example 2, with the exception that the component scaling functions are 

allowed to be updated independently.  

Syntax of the component scaling SEI message 

component scaleinfo( payloadSize){ Descriptor 

compscale-id ue(v) 

compscalecancelflag u(1) 

if( !compscalecancelflag){ 

compscale-persistence-flag u(1) 

compscale-num-comps ue(v) 

compscaleinput-bit-depth ue(v) 

compscale-output-bit-depth ue(v) 

for( c = 0; c < compscalenumcomps; c++){ 

compscale-persist-component-flag[ c ] u(1) 

if( !comp_scalepersist component flag[ c]) 

compscalenumscale-regions[ c ] ue(v) 

compscaleglobal_offsetinput-val[ c] u(v) 

compscaleglobal_offsetoutput-val[ c] u(v) 

for( i = 0; i < compscalenumscale regions[ c]; i++){ 

comp-scaleoffset-val[ c ][ i] u(v) 

compscale-val[ c ][ i] u(v) 

} 
} 

} 
}



WO 2017/053280 PCT/US2016/052640 
65 

} 
Semantics of the component scaling SEI message 

The semantics is similar to Example 2, except for the following syntax elements.  

compscalenumscale-regions[ c ] specifies the number of regions for which the 

syntax element compscale val[ c ][ i ] is signalled for the c-the component.  

compscalenum_scale regions[ c ] shall be in the range of 0 to (1 << 

compscale input bit depth) - 1, inclusive.  

compscalepersist-component-flag[ c ] equal to 0 specifies that component scaling 

parameters for the c-th component are explicitly signalled in the SEI message.  

compscalepersist component flag[ c ] equal to 1 specifies that component scaling 

parameters for the c-th component are not explicitly signalled in the SEI message, and it 

persists from the component scaling parameters of the c-th component of the component 

scaling SEI message that applies to previous picture, in output order.  

It is a requirement of bitstream conformance that when the component scaling SEI 

message is present in an IRAP access unit, the value of 

compscalepersist component flag[ c ], when present, shall be equal to 0.  

Alternatively, the following condition is added: 

It is a requirement of bitstream conformance that when the component scaling SEI 

message is present in an access unit that is not an IRAP access unit and 

compscalepersist component flag[ c ] is equal to 1, then there is at least one picture 

that precedes the current picture in output order and succeeds, in output order, the 

previous IRAP picture in decoding order, inclusive, such that the one picture is associated 

with a component scaling SEI message with compscalepersistence flag equal to 1.  

compscale-persistence_flag specifies the persistence of the component scaling 

information SEI message for the current layer.  

compscalepersistence flag equal to 0 specifies that the component scaling information 

applies to the current decoded picture only.  

Let picA be the current picture compscalepersistenceflag equal to 1 specifies that the 

component scaling information of the c-th component persists for the current layer in 

output order until any of the following conditions are true: 

- A new CLVS of the current layer begins.  

- The bitstream ends.  

- A picture picB in the current layer in an access unit containing a component scaling 

information SEI message with the same value of compscale-id and
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compscalepersistcomponent flag[ c ] equal to 0, and applicable to the current 

layer is output for which PicOrderCnt( picB ) is greater than PicOrderCnt( picA ), 

where PicOrderCnt( picB ) and PicOrderCnt( picA ) are the PicOrderCntVal values 

of picB and picA, respectively, immediately after the invocation of the decoding 

process for picture order count for picB.  

Example 4 

[0208] In this Example 4, a different method to signal the scale regions is disclosed.  

Changes to component scaling SEI message syntax 

component-scaleinfo( payloadSize){ Descriptor 

compscale-id ue(v) 

compscale-cancelflag u(1) 

if( !compscalecancel flag){ 

compscale-persistence-flag u(1) 

comp_scale-numcomps ue(v) 

compscale-input-bit-depth ue(v) 

comp_scale-output-bit-depth ue(v) 

for( c = 0; c < compscalenumcomps; c++){ 

compscale-persist-component-flag[ c ] u(1) 

if( !compscalepersist component flag[ c]) 

compscale-globaloffset-input-val[ c] u(v) 

compscale-globaloffsetoutput-val[ c] u(v) 

compscale-numscale-regions[ c ] ue(v) 

for( i = 0; i < compscalenumscale regions[ c]; i++){ 

compscaleoffset-begin-val[ c ][ i] u(v) 

compscale-offsetendval[ c ][ i] u(v) 

compscale-val[ c ][ i] u(v) 

} 
} 

} 
} 

}
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Changes to component scaling SEI message semantics 

The semantics of the syntax elements are similar to those described in previous 

examples, except for the following: 

compscaleoffset-begin-val[ c ][ i ] specifies the beginning of the sample value range 

for which the scale value compscale val[ c ][i ] is applicable. The number of bits used 

to represent compscale_offset begin val[ c ]is equal to compscale input bit depth.  

compscaleoffsetend_val[ c ][ i ] specifies the end of the sample value range for 

which the scale value compscale val[ c ][ i ] is applicable. The number of bits used to 

represent compscaleoffsetend val[ c ] is equal to compscale inputbitdepth.  

For regions that are not explicitly specified by comp_scale_offset beginval and 

compscale_offsetendval, the comp_scalevalue[ c ][ i ] for those regions is inferred 

to be equal to 0.  

[0209] Alternatively, compscaleoffsetendval[ c ][ i ] is not signaled and instead the 

difference between compscaleoffsetend val[ c ][ i ] and 

compscale_offset begin val[ c ][ i ] is signaled, and the value of 

compscale_offset end val[ c ][ i ] derived at the decoder-side.  

[0210] In another alternative, the total number of regions in to which the output sample 

range is split is specified, and the number of regions is signaled for which the scale 

regions are explicitly signaled.  

... u(v) 

compscaleglobal_offsetoutput-val[ c] u(v) 

compscale-tot-scale-regions[ c ] ue(v) 

compscale-num-scale-regions[ c] ue(v) 

for( i = 0; i < compscalenumscaleregions[ c ]; i++){ 

compscale-regionidx[ c ][ i] u(v) 

compscale-val[ c ][ i ] u(v) 

} 

compscale_totscaleregions[ c ] specifies the total number of equal length sample 

value ranges in to which the sample values are split. The number of bits used to represent 

compscaletotscale regions[ c ] is equal to compscale input bit depth.  

In one alternative, the compscaletotscale regions[ c ] sample value ranges may not be
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exactly equal in length but very nearly equal to account for the integer accuracy of the 

region lengths.  

compscaleregionidx[ c ][ i ] specifies the index of the sample value range for which 

the scale value compscale val[ c ][ i ] is applied. The length of the syntax element 

compscale region idx[ c ] is Ceil( Log2( comp_scaletot-scale-regions[ c ]))bits.  

Alternatives 

Alternatively, region around the chroma neutral (511 for 10-bit data) have smaller size, 

p.e., half the size of the other regions.  

Example 5 

Syntax of the component scale SEI message 

component scaleinfo( payloadSize){ Descriptor 

compscale-id ue(v) 

compscale-cancelflag u(1) 

if( !compscalecancelflag){ 

compscale-persistenceflag u(1) 

comp_scale-scale-bitdepth u(4) 

comp_scale-offset-bit-depth u(4) 

comp_scale-scale-fracbit-depth u(4) 

comp_scale-offset-frac-bit-depth u(4) 

comp_scale-num-comps_minus1 ue(v) 

for( c = 0; c <= compscalenumcomps minus; c++){ 

compscale-num_ranges[ c ] ue(v) 

compscaleequalrangesflag[ c] u(1) 

compscaleglobaloffset-val[ c ] u(v) 

for( i = 0; i <= compscalenum-ranges[ c ]; i++) 

compscale-scaleval[ c ][ i ] u(v) 

if( !comp_scaleequal ranges[ c]) u(v) 

for( i = 0; i <= comp-scale-num-ranges[ c ]; i++) 

comp-scale-offset-val[ c ][ i] u(v) 

} 
}
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Semantics of the component scale SEI message 

The component scaling SEI message provides information to perform scaling operations 

on the various components of the decoded pictures. The colour space and the 

components on which the scaling operations should be performed are determined by the 

value of the syntax elements signalled in the SEI message.  

compscaleid contains an identifying number that may be used to identify the purpose 

of the component scaling SEI message. The value of comp_scaleid shall be in the 

range of 0 to 232 - 2, inclusive. The value of compscale id may be used to specify the 

colour space at which the component scaling SEI message, or whether the component 

scaling SEI message is applied in the linear or the non-linear domain.  

In some examples, compscaleid can specify the configuration of the HDR 

reconstruction process. In some examples, particular value of compscaleid may be 

associated with signaling of scaling parameters for 3 components. The scaling of the 

first components to be applied to samples of R',G',B' color space, and parameters of 

following 2 components are applied for scaling of Cr and Cb.  

For yet another compscale id value, hdr reconstruction process can utilize parameters 

for 3 components, and scaling is applied to samples of Luma, Cr and Cb color 

components.  

In yet another compscale id value, hdr reconstruction process can utilize signaling for 

4 components, 3 of which to be applied to Luma, Cr and Cb scaling, and 4th component 

to bring parameters of color correction.  

In some examples, certain range of comp-scale-id values may be associated with HDR 

reconstruction conducted in SDR-backward compatible configuration, whereas another 

range of compscaleid values may be associated with HDR reconstruction conducted 

to non-backward compatible configuration.  

Values of compscaleid from 0 to 255, inclusive, and from 512 to 231 - 1, inclusive, 

may be used as determined by the application. Values of compscaleid from 256 to 

511, inclusive, and from 231 to 232 - 2, inclusive, are reserved for future use by ITU-T 

ISO/JEC. Decoders shall ignore all component scale information SEI messages 

containing a value of compscale id in the range of 256 to 511, inclusive, or in the 

range of 231 to 232 - 2, inclusive, and bitstreams shall not contain such values.  

NOTE 1 - The compscaleid can be used to support component scaling processes 

that are suitable for different display scenarios. For example, different values of
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compscaleid may correspond to different display bit depths or different colour 

spaces in which the scaling is applied.  

Alternatively, the compscale id may also be used to identify whether the scaling is 

performed for compatibility to certain types of displays or decoder, e.g. HDR, SDR.  

compscalecancelflag equal to 1 indicates that the component scaling information 

SEI message cancels the persistence of any previous component information SEI 

messages in output order that applies to the current layer. compscalecancelflag equal 

to 0 indicates that component scaling information follows.  

compscale-persistence_flag specifies the persistence of the component scaling 

information SEI message for the current layer.  

compscalepersistence flag equal to 0 specifies that the component scaling 

information applies to the current decoded picture only.  

Let picA be the current picture. compscalepersistenceflag equal to 1 specifies that 

the component scaling information persists for the current layer in output order until any 

of the following conditions are true: 

- A new CLVS of the current layer begins.  

- The bitstream ends.  

- A picture picB in the current layer in an access unit containing a component scaling 

information SEI message with the same value of compscaleid and applicable to the 

current layer is output for which PicOrderCnt( picB ) is greater than 

PicOrderCnt( picA ), where PicOrderCnt( picB ) and PicOrderCnt( picA ) are the 

PicOrderCntVal values of picB and picA, respectively, immediately after the 

invocation of the decoding process for picture order count for picB.  

compscale_scalebit-depth specifies the number of bits used to signal the syntax 

element compscalescaleval[ c ][ i ]. The value of comp_scalescalebitdepth shall 

be in the range of 0 to 15, inclusive.  

compscaleoffset-bit-depth specifies the number of bits used to signal the syntax 

elements compscaleglobal_offsetval[ c ] and comp-scaleoffsetval[ c ][ i ]. The 

value of compscaleoffsetbit depth shall be in the range of 0 to 15, inclusive.  

compscalescalefrac-bit-depth specifies the number of LSBs used to indicate the 

fractional part of the scale parameter of the i-th partition of the c-th component. The 

value of compscalescalefracbitdepth shall be in the range of 0 to 15, inclusive.  

The value of comp_scale_scalefracbit-depth shall be less than or equal to the value of 

compscale_scalebit depth.
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compscaleoffsetfracbit-depth specifies the number of LSBs used to indicate the 

fractional part of the offset parameter of the i-th partition of the c-th component and 

global offset of the c-th component. The value of compscale_offsetfracbitdepth 

shall be in the range of 0 to 15, inclusive. The value of 

compscale_offsetfracbitdepth shall be less than or equal to the value of 

compscale_offset bit depth.  

compscale_num_compsminus1 plus 1 specifies the number of components for 

which the component scaling function is specified. compscalenumcomps-minusl 

shall be in the range of 0 to 2, inclusive.  

compscale_num_ranges[ c ] specifies the number of ranges in to which the output 

sample range is partitioned in to. The value of comp-scalenumranges[ c ] shall be in 

the range of 0 to 63, inclusive..  

compscaleequalrangesflag[ c ] equal to 1 indicates that that output sample range 

is partitioned into compscale num ranges[ c ] nearly equal partitions, and the partition 

widths are not explicitly signalled. comp_scaleequal ranges flag[ c ] equal to 0 

indicates that that output sample range may be partitioned into 

compscalenumranges[ c ] partitions not all of which are of the same size, and the 

partitions widths are explicitly signalled.  

compscaleglobal_offset_val[ c ] is used to derive the offset value that is used to map 

the smallest value of the valid input data range for the c-th component. The length of 

compscaleglobaloffsetval[ c ] is compscale_offsetbit depth bits.  

compscalescaleval[ c ][ i ] is used to derive the offset value that is used to derive 

the width of the of the i-th partition of the c-th component. The length of 

compscaleglobaloffsetval[ c ] is compscale_offsetbit depth bits.  

The variable CompScaleScaleVal[ c ][ i ] is derived as follows .  

CompScaleScaleVal[ c ][ i ]= ( compscale_scaleval[ c ][ i ] >> 

compscalescalefrac bit depth ) + 

(compscale_scaleval[ c ][ i ] & 

((1 << compscalescalefrac bit depth)- 1) 

(1 « compscale-scalefracbit depth) 

compscale_offset-val[ c ][ i ] is used to derive the offset value that is used to derive 

the width of the of the i-th partition of the c-th component. The length of 

compscaleglobaloffsetval[ c ] is compscale_offsetbit depth bits.
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When compscaleoffsetval[ c ][ i ] is signalled, the value of 

CompScaleOffsetVal[ c ][ i ] is derived as follows: 

CompScaleOffsetVal[ c ][ i ]= ( compscale_offset val[ c ][ i ] >> 

compscaleoffsetfracbitdepth ) + 

(compscaleoffsetval[ c ][ i ] & 

((1 << compscaleoffsetfrac bit depth)- 1) 

(1 « compscale offsetfrac bit depth) 

Alternatively, the variable CompScaleScaleVal[ c ][ i ] and CompScaleOffsetVal[ c ][ i] 

are derived as follows : 

CompScaleScaleVal[ c ][i ]= compscale scale-valc][ i ] + 

(1 « compscale scalefracbit depth) 

CompScaleOffsetVal[ c ][ i ]= compscale_offsetval[ c ][ i ] + 

(1 « compscale offsetfrac bit depth) 

When compscaleequal ranges flag[ c ] is equal to 1, compscale offset val[ c ][ i ] is 

not signalled, and the value of CompScaleOffsetVal[ c ][ i ] is derived as follows: 

CompScaleOffsetVal[ c ][ i ] = 1+ compscalenum ranges[ c ] 

The variable CompScaleOutputRanges[ c ][ i ] and CompScaleOutputRanges[ c ][ i ]for 

i in the range of 0 to compscalenumranges[ c ] is derived as follows: 

for( i = 0; i <= compscalenum-ranges[ c ]; i++) 

if(i == 0) 

CompScaleOutputRanges[ c ][ i= compscaleglobal offsetval[ c]+ 

(1 « compscaleoffsetfracbit depth) 

CompScaleInputRanges[ c ][ i ] = 0 

else 

CompScaleInputRanges[ c ][ i ] = CompScaleOffsetInputRanges[ c ][ i 

(CompScaleOffsetVal[ c ][ i - 1]* 

CompScaleScaleVal[ c ][ i - 1 ] 

CompScaleOutputRanges[ c ][ i= CompScaleOutputRanges[ c ][ i - 1] + 

CompScaleOffsetVal[ c ][ i - 1 ] 

In one alternative, the values of CompScaleOutputRanges[ ][ ] and 

CompScaleOutputRanges[ ][ ] are derived as follows:
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for( i = 0; i <= compscalenum-ranges[ c ]; i++) 

if(i == 0) 

CompScalelnputRanges[ c ][ i= compscaleglobal-offset-val[ c]+ 

(1 « compscale_offsetfracbit depth) 

CompScaleOutputRanges[ c ][ i= 0 

else 

CompScalelnputRanges[ c ][ i= CompScaleOffsetInputRanges[ c ][ i 

1I + 

(CompScaleOffsetVal[ c ][ i - 1]* 

CompScaleScaleVal[ c ][ i - 1 ] 

CompScaleOutputRanges[ c ][ i= CompScaleOutputRanges[ c ][ i - 1] + 

CompScaleOffsetVal[ c ][ i - 1 ] 

The process of mapping an input signal representation (which may be used to cover both 

integer as well as floating point) x and an output signal representation y, where the sample 

values for both input representation is normalized in the range of 0 to 1, and output 

representation is in the range of and 0 to 1, is specified as follows: 

if(x <= CompScalenputRanges[ c ][ 0) 

y = CompScaleOutputRanges[ c ][ 0] 

else if(x > CompScaleInputRanges[ c ][ comp_scalenum ranges[ c]]) 

y = CompScaleOutputRanges[ c ][ compscalenum ranges[ c];] 

else 

for( i = 1; i <= compscalenum-ranges[ c ]; i++) 

if( CompScalelnputRanges[ i - 1] < x && x <= 

CompScalelnputRanges[ i ] ) 

y=(x 

CompScalelnputRanges[ i - 1]) +compscale val[ c ][ i ]+ 

CompScaleOutputRanges[ c ][ i - 1] 

In one alternative, the value of CompScaleOutputRanges[ c ][ 0 ]is set based on the 

permitted sample value range.  

Alternatively, the process of mapping an input value valln to output value valOut is 

defined as follows: 

m_pAtfRangeIn[ 0]= 0; 

m_pAtfRangeOut[ 0 ]= -moffset2 *m_pAtfScale2[c][0]; 

for (int j = 1; j < matfNumberRanges + 1; j++)
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{ 

m_pAtfRangeln[ j ]= mpAtfRangeInj - 1] + m_pAtfDeltaU 

1]; 

m_pAtfRangeOut[ j]= mpAtfRangeOutj - 1] + 

m_pAtfScale2[ c ][j - 1 ] * 

m_pAtfDelta[j- 1 ]; 

} 
for (int j = 0; j < numRanges && skip= = 0;j++) 

{ 
if (valln <= pAtfRangen[ j + 1]) 

{ 
valOut = (valIn - pOffset[om on ][j ] * 

p S cale[ componn ][ j ] 

skip = 1; 

} 
] 

In one alternative, m_offset2 is equal to compscaleglobal_offsetval[ c ]EDE 

( 1 « compscaleoffsetfracbitdepth ), m_pAtfScale[ c][ i ] is equal to 

CompScaleScaleVal[ c ][ i ]and m_pAtfDelta[ i ] is equal to 

CompScaleOffsetVal[ c ][ i ]for the c-th component, and pScale and pOffset are scale 

and offset parameter derived from m_AtfScale and m_pAtfDelta.  

An inverse operation would be defined accordingly.  

Example 6 

In some examples, some of signaling methods described above, e.g., in example 

5, can be utilized as shown in following pseudo code.  

m_atfNumberRanges is a term for for syntax elements 

compscalenumranges[ c ] for a given c, that specifies number of dynamic range 

partitioning for mapped data.  

m_pAtfRangeIn is a term for CompScaleInputRanges, is an arrays size of 

m_atfNumberRanges+1 that includes input sample value specifying the border between 

two concatenated partitions, e.g. i and i+1.
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m_pAtfRangeOut is a term for CompScaleOutputRanges, is an arrays size of 

m_atfNumberRanges+1 that includes output sample value specifying the border between 

two concatenated partitions, e.g. i and i+1.  

m_pAtfScale2 is a term for variable CompScaleScaleVal [ c ] is an arrays size of 

m_atfNumberRanges that includes scale values for each partitions.  

m_pAtfOffset2 is an array arrays size of m_atfNumberRanges that includes offset 

values for each partition.  

m_offset2 is a term for compscaleglobal_offsetval.  

In this example, parameters of piece-wise linear model can be determined form 

syntax elements as in Algorithm 1: 

Algorithm 1: 

m_pAtfRangeIn[0]= 0; 

m_pAtfRangeOut[O]= -moffset2 *m_pAtfScale2[c][0]; 

for (int j = 1; j < matfNumberRanges + 1; j++) 

{ 
m_pAtfRangeInj]= mpAtfRangeInj - 1] + m_pAtfDeltaj - 1]; 

m_pAtfRangeOutj]= mpAtfRangeOutj - 1] + 

m_pAtfScale2[c][ - 1]* m_pAtfDeltaj - 1]; 

} 

for (int j= 0; j < matfNumberRanges; j++) 

{ 
temp = mpAtfRangeInj + 1] - mpAtfRangeOutj + 1]/ 

m_pAtfScale2[c][]; 

m_pAtfOffset2[c][]= temp; 

} 

Once determined, piece-wise linear model can be applied to input samples value 

inValue to determine output sample value outValue as in Algorithm 2: 

Algorithm 2: 

for (int j = 0; j < m_atfNumberRanges && skip == 0; j++) 

{ 

if (inValueK<= mpAtfRange~n~j+ 1])
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{ 
outValue = (inValue - mpAtfOffset2[])* 

m_pAtfScale2 [j]; 

skip = 1; 

} 
} 

Inverse process to be conducted as in Algorithm 3: 

Algorithm 3: 

for (int j = 0; j < m_atfNumberRanges && skip == 0; j++) 

{ 
if (inValue <= m_pAtfRangeOut[j + 1]) 

{ 
outValue = inValue / m_pAtfScale2] + 

m_pAtfOffset2 [j]; 

skip = 1; 

} 
} 

[0211] In some examples, border sample value (an entry of m_pAtfRangeIn or 

m_pAtfRangeOut ) between two concatenated partitions i and i+1 can be interpreted 

differently, as belonging to i+1, instead of belonging to i partition as it is shown in 

Algorithm 2 and 3.  

[0212] In some examples, inverse process shown in Algorithm 3, can be implemented 

with a multiplication by m_pAtflnverseScale2 value, instead of division by 

m_pAtfScale2[j]. In such examples, a value of m_pAtfScale2[j] is determined from 

m_pAtfScale2 [j] in advance.  

[0213] In some examples, m_pAtfinverseScale2 [j] is determined at the decoder side as 

1/m pAtfScale2[].  

[0214] In some examples, m_pAtfinverseScale2 [j] can be computed at the encoder 

side, and signalled through bitstream. In such examples, operation given in Algorithms 

1, 2 and 3 will be adjusted accordingly.  

[0215] Various examples 

[0216] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be utilized to enable dynamical range adjustment for samples of 

input signal, e.g. to improve compression efficiency of video coding systems.
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[0217] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to codewords (non-linear representation of R,G,B 

samples) produced by an OETF, e.g. by PQ TF of ST.2084, or others.  

[0218] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to samples of YCbCr colors.  

[0219] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be utilized to HDR/WCG solutions with SDR compatibility.  

[0220] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to samples in floating point representation. In yet 

another example, proposed signaling mechanism and resulting function can be applied 

to samples in integer representation, e.g. 10 bits.  

[0221] In some examples, proposed signaling mechanism can be used to model a piece

wise function that can be applied to samples in a form of Look Up Tables. In yet 

another examples, proposed signaling can be used to model function that can be applied 

to a sample in a form of multiplier.  

Combinations and Extensions 

[0222] In the examples above, a linear model is assumed for each region (i.e., scale plus 

offset); the techniques of this disclosure also may be applicable for higher-order 

polynomial models, for example, with a polynomial of 2nd degree requiring three 

parameters instead of two. The signaling and syntax would be properly extended for 

this scenario.  

[0223] Combinations of aspects described above are possible and part of the techniques 

of this disclosure.  

[0224] Toolbox combination: there are several HDR methods that can target somewhat 

similar goals to those of the SEIs described in this disclosure. In order to accommodate 

more than one of them but, at the same time, limiting the number of applicable SEI 

processing per frame, it is proposed to combine (one or more of) these methods in a 

single SEI. A proposed syntax element would indicate the specific method to apply in 

each instance. For example, if there are two possible methods in the SEI, the syntax 

element would be a flag indicating the one to be used.  

Example 7 

[0225] In this example, the signaling of scale parameters is modified such that negative 

scales can be transmitted, and the signaled scale parameters indicate the variation of
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scale to be applied for different ranges of the various components. The changes with 

respect to example 5 are below.  

Changes to syntax of the SEI message 

componentscale info( payloadSize){ Descriptor 

compscale-id ue(v) 

compscalecancelflag u(1) 

if( !compscalecancelflag){ 

compscale-persistenceflag u(1) 

comp_scalescale-bit-depth u(4) 

comp_scaleoffset-bit-depth u(4) 

comp_scalescale-frac-bit-depth u(4) 

comp_scaleoffset-frac-bit-depth u(4) 

comp_scalenegative-scalespresent-flag u(1) 

comp_scaledepcomponentid ue(v) 

comp_scalenum-comps_minus1 ue(v) 

for( c = 0; c <= compscalenumcomps minus; c++){ 

compscale-numranges[ c ] ue(v) 

compscaleequalrangesflag[ c] u(1) 

compscaleglobaloffsetvalI[ c ] u(v) 

for( i = 0; i <= compscalenum-ranges[ c ]; i++) 

compscale-scale-val[ c ][ i ] u(v) 

if( !compscaleequal ranges[ c]) u(v) 

for( i = 0; i <= comp-scale-num-ranges[ c ]; i++) 

comp-scale-offset-val[ c ][ i] u(v) 

} 

} 

Changes to semantics of the SEI message 

compscale-negative-scalespresentflag equal to 1 specifies that the integer 

part of the scale parameters derived from compscale_scale val[ c ][ i ] is represented as
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a signed integer. compscale negativescalespresent flag equal to 0 specifies that the 

integer part scale parameters derived from comp_scale_scale val[ c ][ i ] is represented 

as an unsigned integer.  

[0226] In one alternative, another set of offset parameters are signaled along with 

compscale_scaleval that are used to define the offset that is applied along with the 

scale on a first component as a function of the value of a second component.  

[0227] The signed-integer representation includes, but is not limited to, twos

complement notation and signed magnitude representation (one bit for sign and the 

remaining bits in the integer-part). The derivation below is given for the signed 

magnitude representation. The derivation can be similarly defined for other forms of 

signed representations.  

The variable CompScaleScaleVal[ c ][ i ] is derived as follows 

compScaleScaleFracPart = ( comp_scale_scale val[ c ][ i ] & 

((1 << compscalescalefrac bit depth)- 1) 

(1 « compscale-scalefracbit depth) 

if( compscale negativescalespresent flag ) { 

compScaleSignPart = comp_scale_scaleval[ c ][ i ] >> 

(compscalescalebit depth - 1) 

compScaleIntegerPart =compscale-scale-val[ c ][i]- ( compScaleSignPart 

« (comp-scalescalebit depth - 1)) 

compScaleIntegerVal =((compScaleSignPart== 1 ):-1 : 1)* 

compScaleIntegerPart 

}else 

compScaleIntegerVal =compscale_scale valc][ i ] >> 

compscalescalefrac bit depth 

CompScaleScaleVal[ c ][ i ]= compScaleIntegerVal + compScaleScaleFracPart 

It is a requirement of bitstream conformance that when 

compscale negativescalepresentflag is equal to 1, the value of 

compscale_scalebit depth shall be greater than or equal to 

compscale_scalefracbitdepth 

compscale-dependent-componentid specifies the application of scale and 

offset parameters to the various components of the video. When 

compscaledependentcomponent id is equal to 0, the syntax elements
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compscaleglobaloffsetval[ c], compscale-scale-val[ c ][ i] and 

compscale_offset val[ c ][ i ] are used to identify mapping of input and output values of 

the c-th component. When compscaledependentcomponent id is greater than 0, 

compscaledependentcomponent id - 1 specifies the index of the component such that 

the syntax elements compscaleglobal_offsetval[ c ], compscalescaleval[ c ][ i ] 

and comp_scale_offset val[ c ][ i ] specify the mapping of a scale parameter to be applied 

to the c-th component of a sample as a function of the value of 

(compscaledependentcomponent id - 1 )-th component of the sample.  

The rest of the semantics is similar to those described in example 5.  

Example 8 

[0228] In this example, the bit depth of the ATF parameters depend on the component.  

For each component, the bit depth of the syntax elements is explicitly signal. In 

addition, there are default bit-depth for those syntax elements. The default value is 

assigned when the bit depth is not explicitly signaled. A flag might indicate whether the 

default values are applied or they are explicitly signaled.  

[0229] The table below shows an example of these concepts. Syntax elements of the 

ATF parameters are the scale hdrreconscaleval[ ][ ] and range 

hdrrecon range val[ ][ ]. The syntax elements indicating the corresponding bit depth 

(integer and fractional part) are the following ones: 

• hdrreconscalebitdepth[c], 

* hdrreconoffsetbitdepth[c], 

* hdrreconscalefrac-bit depth[c], 

* hdrreconoffsetfrac bit depth[ c], 

where c is the component index. The default bit-depths for scale and offset (range) 

can be set to: 

• hdrreconscalebitdepth[c]= 8, 

* hdrreconoffsetbitdepth[c]= 8, 

* hdrreconscalefrac-bit depth[c]= 6, 

* hdrreconoffsetfrac bit depth[ c ]= 8.  

[0230] The accuracy of the parameters might also be different for the ATF parameters 

and the color adjustment parameters. Also, the default might be different per
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component and for the color adjustment parameters. In this example, the defaults are 

assumed to be the same.  

hdrreconstruction info( payloadSize){ Descriptor 

hdrrecon-id ue(v) 

hdrreconcancel-flag u(1) 

if( !hdrrecon-cancel-flag){ 

hdrrecon-persistence-flag u(1) 

if (hdr_reconid = = 1 ) { 

hdr output-fullrange-flag 

hdr-output-colour-primaries 

hdr-output-transfer-characteristics 

hdr output-matrix-coeffs 

} 

hdr_recon_numcomps_minusi ue(v) 

for( c= 0; c<= hdr_recon_num_compsminus1; c++ ) 

{ 
hdr_recondefaultbitdepth [ c] u(1) 

if (hdrrecon_defaultbitdepth [ c]== 0) { 

hdr_reconscalebitdepth[ c] u(4) 

hdr_reconoffsetbitdepth[ c] u(4) 

hdr_reconscalefrac_bit_depth[ c] u(4) 

hdr_reconoffsetfrac_bit_depth[ c] u(4) 

} 
hdrreconnumranges[ c] ue(v) 

hdr_recon_equalrangesflag[ c] u(1) 

hdrreconglobaloffsetval[ c] u(v) 

for( i= 0;i <= hdrrecon_num_ranges[ c]; i++ ) 

hdrreconscaleval[ c][ i] u(v)
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if(!hdr reconequal ranges[ c ] ) u(v) 

for( i = 0; i <= hdrreconnum-ranges[ c ]; i++) 

hdrreconrange-val [ c ]i u(v) 

} u(v) 

if (hdr_recon_id = = 1 ){ Params related to Colour 

correction 

hdr_ colorcorrection_type 0: on U,V -1: onR,G,B 

hdr_color_accuracyflag Syntax for coding the 

colour 

if( !hdrrecon_color_accuracyflag ){ correction LUT 

hdr_color _scalebitdepth u(4) 

hdr_color _offsetbit~depth u(4) 

hdr_color _scalefracbitdepth u(4) 

hdr_color _offsetfracbitdepth u(4) 

} 
colorcorrection_num_ranges 

color_correctionequallenrangesflag 

color_correctionzerooffset_val 

for( i= 0; i <color_correction_numranges; i++ ) 

color_correction_scaleval[ i] 

if( !colorcorrection_equallenrangesflag ) 

for( i= 0; i <color_correction_numranges; i++ ) 

colorcorrection_rangeval[ i] 

} 

} 

} 

}
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Example 9 

[0231] A desirable property of a new HDR solution is that it is backward compatible to 

previous HDR solutions, like HDR10. A syntax element may indicate that this is the 

case. This indicates a characteristic of the bitstream, and an HDR decoder might decide 

not to spend computational resources on the inverse ATF processing under some 

circumstances if the non ATF version is already viewable.  

[0232] In one example, some values of the hdrrecon-id syntax element are reserved to 

indicate HDR10 backward compatibility, or to what degree there is backward 

compatibility.  

[0233] In another example, a flag (hdr reconhdrl0_bc) indicates this situation.  

[0234] In one example, the signaled HDR1O backward compatibility indicates that the 

bitstream is viewable. Alternatively, it might indicate some specific properties of the 

signaled values: for example, that they are a range of values that guarantees this 

property. For instance, a constraint could be that the scale is between 0.9 and 1.1.  

[0235] FIG. 12 is a block diagram illustrating an example of video encoder 20 that may 

implement the techniques of this disclosure. Video encoder 20 may perform intra- and 

inter-coding of video blocks within video slices in a target color representation that have 

been processed by video preprocessor 19. Intra-coding relies on spatial prediction to 

reduce or remove spatial redundancy in video within a given video frame or picture.  

Inter-coding relies on temporal prediction to reduce or remove temporal redundancy in 

video within adjacent frames or pictures of a video sequence. Intra-mode (I mode) may 

refer to any of several spatial based coding modes. Inter-modes, such as uni-directional 

prediction (P mode) or bi-prediction (B mode), may refer to any of several temporal

based coding modes.  

[0236] As shown in FIG. 12, video encoder 20 receives a current video block within a 

video frame to be encoded. In the example of FIG. 12, video encoder 20 includes mode 

select unit 40, a video data memory 41, decoded picture buffer 64, summer 50, 

transform processing unit 52, quantization unit 54, and entropy encoding unit 56. Mode 

select unit 40, in turn, includes motion compensation unit 44, motion estimation unit 42, 

intra prediction processing unit 46, and partition unit 48. For video block 

reconstruction, video encoder 20 also includes inverse quantization unit 58, inverse 

transform processing unit 60, and summer 62. A deblocking filter (not shown in FIG.  

12) may also be included to filter block boundaries to remove blockiness artifacts from 

reconstructed video. If desired, the deblocking filter would typically filter the output of
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summer 62. Additional filters (in loop or post loop) may also be used in addition to the 

deblocking filter. Such filters are not shown for brevity, but if desired, may filter the 

output of summer 50 (as an in-loop filter).  

[0237] Video data memory 41 may store video data to be encoded by the components of 

video encoder 20. The video data stored in video data memory 41 may be obtained, for 

example, from video source 18. Decoded picture buffer 64 may be a reference picture 

memory that stores reference video data for use in encoding video data by video 

encoder 20, e.g., in intra- or inter-coding modes. Video data memory 41 and decoded 

picture buffer 64 may be formed by any of a variety of memory devices, such as 

dynamic random access memory (DRAM), including synchronous DRAM (SDRAM), 

magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory 

devices. Video data memory 41 and decoded picture buffer 64 may be provided by the 

same memory device or separate memory devices. In various examples, video data 

memory 41 may be on-chip with other components of video encoder 20, or off-chip 

relative to those components.  

[0238] During the encoding process, video encoder 20 receives a video frame or slice to 

be coded. The frame or slice may be divided into multiple video blocks. Motion 

estimation unit 42 and motion compensation unit 44 perform inter-predictive coding of 

the received video block relative to one or more blocks in one or more reference frames 

to provide temporal prediction. Intra prediction processing unit 46 may alternatively 

perform intra-predictive coding of the received video block relative to one or more 

neighboring blocks in the same frame or slice as the block to be coded to provide spatial 

prediction. Video encoder 20 may perform multiple coding passes, e.g., to select an 

appropriate coding mode for each block of video data.  

[0239] Moreover, partition unit 48 may partition blocks of video data into sub-blocks, 

based on evaluation of previous partitioning schemes in previous coding passes. For 

example, partition unit 48 may initially partition a frame or slice into LCUs, and 

partition each of the LCUs into sub-CUs based on rate-distortion analysis (e.g., rate

distortion optimization). Mode select unit 40 may further produce a quadtree data 

structure indicative of partitioning of an LCU into sub-CUs. Leaf-node CUs of the 

quadtree may include one or more PUs and one or more TUs.  

[0240] Mode select unit 40 may select one of the coding modes, intra or inter, e.g., 

based on error results, and provides the resulting intra- or inter-coded block to summer 

50 to generate residual block data and to summer 62 to reconstruct the encoded block
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for use as a reference frame. Mode select unit 40 also provides syntax elements, such as 

motion vectors, intra-mode indicators, partition information, and other such syntax 

information, to entropy encoding unit 56.  

[0241] Motion estimation unit 42 and motion compensation unit 44 may be highly 

integrated, but are illustrated separately for conceptual purposes. Motion estimation, 

performed by motion estimation unit 42, is the process of generating motion vectors, 

which estimate motion for video blocks. A motion vector, for example, may indicate the 

displacement of a PU of a video block within a current video frame or picture relative to 

a predictive block within a reference picture (or other coded unit) relative to the current 

block being coded within the current picture (or other coded unit). A predictive block is 

a block that is found to closely match the block to be coded, in terms of pixel difference, 

which may be determined by sum of absolute difference (SAD), sum of square 

difference (SSD), or other difference metrics. In some examples, video encoder 20 may 

calculate values for sub-integer pixel positions of reference pictures stored in decoded 

picture buffer 64. For example, video encoder 20 may interpolate values of one-quarter 

pixel positions, one-eighth pixel positions, or other fractional pixel positions of the 

reference picture. Therefore, motion estimation unit 42 may perform a motion search 

relative to the full pixel positions and fractional pixel positions and output a motion 

vector with fractional pixel precision.  

[0242] Motion estimation unit 42 calculates a motion vector for a PU of a video block 

in an inter-coded slice by comparing the position of the PU to the position of a 

predictive block of a reference picture. The reference picture may be selected from a 

first reference picture list (List 0) or a second reference picture list (List 1), each of 

which identify one or more reference pictures stored in decoded picture buffer 64.  

Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit 

56 and motion compensation unit 44.  

[0243] Motion compensation, performed by motion compensation unit 44, may involve 

fetching or generating the predictive block based on the motion vector determined by 

motion estimation unit 42. Again, motion estimation unit 42 and motion compensation 

unit 44 may be functionally integrated, in some examples. Upon receiving the motion 

vector for the PU of the current video block, motion compensation unit 44 may locate 

the predictive block to which the motion vector points in one of the reference picture 

lists. Summer 50 forms a residual video block by subtracting pixel values of the 

predictive block from the pixel values of the current video block being coded, forming
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pixel difference values, as discussed below. In general, motion estimation unit 42 

performs motion estimation relative to luma components, and motion compensation unit 

44 uses motion vectors calculated based on the luma components for both chroma 

components and luma components. Mode select unit 40 may also generate syntax 

elements associated with the video blocks and the video slice for use by video decoder 

30 in decoding the video blocks of the video slice.  

[0244] Intra prediction processing unit 46 may intra-predict a current block, as an 

alternative to the inter-prediction performed by motion estimation unit 42 and motion 

compensation unit 44, as described above. In particular, intra prediction processing unit 

46 may determine an intra-prediction mode to use to encode a current block. In some 

examples, intra prediction processing unit 46 may encode a current block using various 

intra-prediction modes, e.g., during separate encoding passes, and intra prediction 

processing unit 46 (or mode select unit 40, in some examples) may select an appropriate 

intra-prediction mode to use from the tested modes.  

[0245] For example, intra prediction processing unit 46 may calculate rate-distortion 

values using a rate-distortion analysis for the various tested intra-prediction modes, and 

select the intra-prediction mode having the best rate-distortion characteristics among the 

tested modes. Rate-distortion analysis generally determines an amount of distortion (or 

error) between an encoded block and an original, unencoded block that was encoded to 

produce the encoded block, as well as a bit rate (that is, a number of bits) used to 

produce the encoded block. Intra prediction processing unit 46 may calculate ratios 

from the distortions and rates for the various encoded blocks to determine which intra

prediction mode exhibits the best rate-distortion value for the block.  

[0246] After selecting an intra-prediction mode for a block, intra prediction processing 

unit 46 may provide information indicative of the selected intra-prediction mode for the 

block to entropy encoding unit 56. Entropy encoding unit 56 may encode the 

information indicating the selected intra-prediction mode. Video encoder 20 may 

include in the transmitted bitstream configuration data, which may include a plurality of 

intra-prediction mode index tables and a plurality of modified intra-prediction mode 

index tables (also referred to as codeword mapping tables), definitions of encoding 

contexts for various blocks, and indications of a most probable intra-prediction mode, 

an intra-prediction mode index table, and a modified intra-prediction mode index table 

to use for each of the contexts.
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[0247] Video encoder 20 forms a residual video block by subtracting the prediction data 

from mode select unit 40 from the original video block being coded. Summer 50 

represents the component or components that perform this subtraction operation.  

Transform processing unit 52 applies a transform, such as a discrete cosine transform 

(DCT) or a conceptually similar transform, to the residual block, producing a video 

block comprising residual transform coefficient values. Transform processing unit 52 

may perform other transforms which are conceptually similar to DCT. Wavelet 

transforms, integer transforms, sub-band transforms or other types of transforms could 

also be used. In any case, transform processing unit 52 applies the transform to the 

residual block, producing a block of residual transform coefficients. The transform may 

convert the residual information from a pixel value domain to a transform domain, such 

as a frequency domain. Transform processing unit 52 may send the resulting transform 

coefficients to quantization unit 54.  

[0248] Quantization unit 54 quantizes the transform coefficients to further reduce bit 

rate. The quantization process may reduce the bit depth associated with some or all of 

the coefficients. The degree of quantization may be modified by adjusting a 

quantization parameter. In some examples, quantization unit 54 may then perform a 

scan of the matrix including the quantized transform coefficients. Alternatively, entropy 

encoding unit 56 may perform the scan.  

[0249] Following quantization, entropy encoding unit 56 entropy codes the quantized 

transform coefficients. For example, entropy encoding unit 56 may perform context 

adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding 

(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability 

interval partitioning entropy (PIPE) coding or another entropy coding technique. In the 

case of context-based entropy coding, context may be based on neighboring blocks.  

Following the entropy coding by entropy encoding unit 56, the encoded bitstream may 

be transmitted to another device (e.g., video decoder 30) or archived for later 

transmission or retrieval.  

[0250] Inverse quantization unit 58 and inverse transform processing unit 60 apply 

inverse quantization and inverse transformation, respectively, to reconstruct the residual 

block in the pixel domain, e.g., for later use as a reference block. Motion compensation 

unit 44 may calculate a reference block by adding the residual block to a predictive 

block of one of the frames of decoded picture buffer 64. Motion compensation unit 44 

may also apply one or more interpolation filters to the reconstructed residual block to
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calculate sub-integer pixel values for use in motion estimation. Summer 62 adds the 

reconstructed residual block to the motion compensated prediction block produced by 

motion compensation unit 44 to produce a reconstructed video block for storage in 

decoded picture buffer 64. The reconstructed video block may be used by motion 

estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a 

block in a subsequent video frame.  

[0251] FIG. 13 is a block diagram illustrating an example of video decoder 30 that may 

implement the techniques of this disclosure. In particular, video decoder 30 may decode 

video data into a target color representation that may then be processed by video 

postprocessor 31, as described above. In the example of FIG. 13, video decoder 30 

includes an entropy decoding unit 70, a video data memory 71, motion compensation 

unit 72, intra prediction processing unit 74, inverse quantization unit 76, inverse 

transform processing unit 78, decoded picture buffer 82 and summer 80. Video decoder 

30 may, in some examples, perform a decoding pass generally reciprocal to the 

encoding pass described with respect to video encoder 20 (FIG. 12). Motion 

compensation unit 72 may generate prediction data based on motion vectors received 

from entropy decoding unit 70, while intra prediction processing unit 74 may generate 

prediction data based on intra-prediction mode indicators received from entropy 

decoding unit 70.  

[0252] Video data memory 71 may store video data, such as an encoded video 

bitstream, to be decoded by the components of video decoder 30. The video data stored 

in video data memory 71 may be obtained, for example, from computer-readable 

medium 16, e.g., from a local video source, such as a camera, via wired or wireless 

network communication of video data, or by accessing physical data storage 

media. Video data memory 71 may form a coded picture buffer (CPB) that stores 

encoded video data from an encoded video bitstream. Decoded picture buffer 82 may 

be a reference picture memory that stores reference video data for use in decoding video 

data by video decoder 30, e.g., in intra- or inter-coding modes. Video data memory 71 

and decoded picture buffer 82 may be formed by any of a variety of memory devices, 

such as dynamic random access memory (DRAM), including synchronous DRAM 

(SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of 

memory devices. Video data memory 71 and decoded picture buffer 82 may be 

provided by the same memory device or separate memory devices. In various
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examples, video data memory 71 may be on-chip with other components of video 

decoder 30, or off-chip relative to those components.  

[0253] During the decoding process, video decoder 30 receives an encoded video 

bitstream that represents video blocks of an encoded video slice and associated syntax 

elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy 

decodes the bitstream to generate quantized coefficients, motion vectors or intra

prediction mode indicators, and other syntax elements. Entropy decoding unit 70 

forwards the motion vectors to and other syntax elements to motion compensation unit 

72. Video decoder 30 may receive the syntax elements at the video slice level and/or 

the video block level.  

[0254] When the video slice is coded as an intra-coded (I) slice, intra prediction 

processing unit 74 may generate prediction data for a video block of the current video 

slice based on a signaled intra prediction mode and data from previously decoded 

blocks of the current frame or picture. When the video frame is coded as an inter-coded 

(i.e., B or P) slice, motion compensation unit 72 produces predictive blocks for a video 

block of the current video slice based on the motion vectors and other syntax elements 

received from entropy decoding unit 70. The predictive blocks may be produced from 

one of the reference pictures within one of the reference picture lists. Video decoder 30 

may construct the reference picture lists, List 0 and List 1, using default construction 

techniques based on reference pictures stored in decoded picture buffer 82. Motion 

compensation unit 72 determines prediction information for a video block of the current 

video slice by parsing the motion vectors and other syntax elements, and uses the 

prediction information to produce the predictive blocks for the current video block 

being decoded. For example, motion compensation unit 72 uses some of the received 

syntax elements to determine a prediction mode (e.g., intra- or inter-prediction) used to 

code the video blocks of the video slice, an inter-prediction slice type (e.g., B slice or P 

slice), construction information for one or more of the reference picture lists for the 

slice, motion vectors for each inter-encoded video block of the slice, inter-prediction 

status for each inter-coded video block of the slice, and other information to decode the 

video blocks in the current video slice.  

[0255] Motion compensation unit 72 may also perform interpolation based on 

interpolation filters. Motion compensation unit 72 may use interpolation filters as used 

by video encoder 20 during encoding of the video blocks to calculate interpolated 

values for sub-integer pixels of reference blocks. In this case, motion compensation
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unit 72 may determine the interpolation filters used by video encoder 20 from the 

received syntax elements and use the interpolation filters to produce predictive blocks.  

[0256] Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized 

transform coefficients provided in the bitstream and decoded by entropy decoding unit 

70. The inverse quantization process may include use of a quantization parameter QPy 

calculated by video decoder 30 for each video block in the video slice to determine a 

degree of quantization and, likewise, a degree of inverse quantization that should be 

applied. Inverse transform processing unit 78 applies an inverse transform, e.g., an 

inverse DCT, an inverse integer transform, or a conceptually similar inverse transform 

process, to the transform coefficients in order to produce residual blocks in the pixel 

domain.  

[0257] After motion compensation unit 72 generates the predictive block for the current 

video block based on the motion vectors and other syntax elements, video decoder 30 

forms a decoded video block by summing the residual blocks from inverse transform 

processing unit 78 with the corresponding predictive blocks generated by motion 

compensation unit 72. Summer 80 represents the component or components that 

perform this summation operation. If desired, a deblocking filter may also be applied to 

filter the decoded blocks in order to remove blockiness artifacts. Other loop filters 

(either in the coding loop or after the coding loop) may also be used to smooth pixel 

transitions, or otherwise improve the video quality. The decoded video blocks in a 

given frame or picture are then stored in decoded picture buffer 82, which stores 

reference pictures used for subsequent motion compensation. Decoded picture buffer 

82 also stores decoded video for later presentation on a display device, such as display 

device 32 of FIG. 1.  

[0258] FIG. 14 is a flowchart illustrating an example HDR/WCG conversion process 

according to the techniques of this disclosure. The techniques of FIG. 14 may be 

executed by source device 12 of FIG. 1, including one or more of video preprocessor 19 

and/orvideo encoder 20.  

[0259] In one example of the disclosure, source device 12 may be configured to encode 

video data. Such a device may perform a dynamic range adjustment on the video data 

to generate adjusted component values from the video data (1502), and signal at least 

one supplemental enhancement information (SEI) message in an encoded video 

bitstream, the at least one SEI message indicating adjustment information specifying 

how the dynamic range adjustment has been applied to the video data, and wherein the
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adjustment information includes a global offset value that applies to each of a plurality 

of partitions into which the video data was partitioned during the dynamic range 

adjustment (1504). In the example of FIG. 14, the video data is input video data prior to 

video encoding. In some other examples, the source device may signal at least one SEI 

message in an encoded video bitstream, the at least one SEI message indicating 

adjustment information specifying how the inverse dynamic range adjustment is to 

applied on the video data by a decoder, and wherein the adjustment information includes 

a global offset value that applies to each of a plurality of partitions into which the video 

data is to be partitioned during the dynamic range adjustment (1504).  

[0260] In some examples, the global offset value is a first global offset value, the first 

global offset value being substituted, prior to performing the dynamic range adjustment 

on the video data, for unadjusted component values less than the first global offset 

value, wherein the adjustment information further includes a second global offset value, 

and wherein performing the dynamic range adjustment on the video data includes: 

mapping component values matching the first global offset value to the second global 

offset value.  

[0261] In other examples, the adjustment information further includes a number of 

partitions into which the video data was partitioned during the dynamic range 

adjustment, a scale and a local offset value for one or more partitions, and wherein 

performing the dynamic range adjustment includes: generating the adjusted component 

values according to the number of partitions, and scale and local offsets for one or more 

partitions (1506).  

[0262] FIG. 15 is a flowchart illustrating an example HDR/WCG inverse conversion 

process according to the techniques of this disclosure. The techniques of FIG. 15 may 

be executed by destination device 14 of FIG. 1, including one or more of video 

postprocessor 31 and/or video decoder 30.  

[0263] In one example of the disclosure, destination device 14 may be configured to 

decode video data that has been adjusted by performing a dynamic range adjustment.  

Such a device may receive at least one supplemental enhancement information (SEI) 

message in an encoded video bitstream, the at least one SEI message indicating 

adjustment information specifying how the dynamic range adjustment has been applied 

to the video data, and wherein the adjustment information includes a global offset value 

that applies to each of a plurality of partitions into which the video data was partitioned 

during the dynamic range adjustment (1602), and perform an inverse dynamic range
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adjustment on the video data in accordance with the adjustment information to generate 

unadjusted component values from the video data (1604). In the example of FIG. 15, 

the video data is decoded video data. In other examples, device may receive at least one 

supplemental enhancement information (SEI) message in an encoded video bitstream, 

the at least one SEI message indicating adjustment information specifying how the 

dynamic range adjustment is to be applied to the video data, and wherein the adjustment 

information includes a global offset value that applies to each of a plurality of partitions 

into which the video data is to be partitioned during the inverse dynamic range 

adjustment (1604), and perform an inverse dynamic range adjustment on the video data 

in accordance with the adjustment information to generate unadjusted component values 

from the video data (1604).  

[0264] In some examples, the global offset value is a first global offset value, the first 

global offset value being substituted, prior to performing the dynamic range adjustment 

on the video data, for unadjusted component values less than the first global offset 

value, wherein the adjustment information further includes a second global offset value, 

and wherein performing the inverse dynamic range adjustment on the video data 

includes: mapping component values matching the second global offset value to the first 

global offset value.  

[0265] In other examples, the adjustment information further includes a number of 

partitions into which the video data was partitioned during the dynamic range 

adjustment, and a scale and local offset for one or more partitions and wherein 

performing the inverse dynamic range adjustment includes: generating the unadjusted 

component values according to the number of partitions and the scale and offset for one 

or more partitions (1606).  

[0266] Certain aspects of this disclosure have been described with respect to extensions 

of the HEVC standard for purposes of illustration. However, the techniques described 

in this disclosure may be useful for other video coding processes, including other 

standard or proprietary video coding processes not yet developed.  

[0267] A video coder, as described in this disclosure, may refer to a video encoder or a 

video decoder. Similarly, a video coding unit may refer to a video encoder or a video 

decoder. Likewise, video coding may refer to video encoding or video decoding, as 

applicable.  

[0268] It is to be recognized that depending on the example, certain acts or events of 

any of the techniques described herein can be performed in a different sequence, may be
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added, merged, or left out altogether (e.g., not all described acts or events are necessary 

for the practice of the techniques). Moreover, in certain examples, acts or events may 

be performed concurrently, e.g., through multi-threaded processing, interrupt 

processing, or multiple processors, rather than sequentially.  

[0269] In one or more examples, the functions described may be implemented in 

hardware, software, firmware, or any combination thereof. If implemented in software, 

the functions may be stored on or transmitted over as one or more instructions or code 

on a computer-readable medium and executed by a hardware-based processing unit.  

Computer-readable media may include computer-readable storage media, which 

corresponds to a tangible medium such as data storage media, or communication media 

including any medium that facilitates transfer of a computer program from one place to 

another, e.g., according to a communication protocol. In this manner, computer

readable media generally may correspond to (1) tangible computer-readable storage 

media which is non-transitory or (2) a communication medium such as a signal or 

carrier wave. Data storage media may be any available media that can be accessed by 

one or more computers or one or more processors to retrieve instructions, code and/or 

data structures for implementation of the techniques described in this disclosure. A 

computer program product may include a computer-readable medium.  

[0270] By way of example, and not limitation, such computer-readable storage media 

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic 

disk storage, or other magnetic storage devices, flash memory, or any other medium that 

can be used to store desired program code in the form of instructions or data structures 

and that can be accessed by a computer. Also, any connection is properly termed a 

computer-readable medium. For example, if instructions are transmitted from a 

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted 

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and 

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless 

technologies such as infrared, radio, and microwave are included in the definition of 

medium. It should be understood, however, that computer-readable storage media and 

data storage media do not include connections, carrier waves, signals, or other transitory 

media, but are instead directed to non-transitory, tangible storage media. Disk and disc, 

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc 

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
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while discs reproduce data optically with lasers. Combinations of the above should also 

be included within the scope of computer-readable media.  

[0271] Instructions may be executed by one or more processors, such as one or more 

digital signal processors (DSPs), general purpose microprocessors, application specific 

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other 

equivalent integrated or discrete logic circuitry. Accordingly, the term "processor," as 

used herein may refer to any of the foregoing structure or any other structure suitable 

for implementation of the techniques described herein. In addition, in some aspects, the 

functionality described herein may be provided within dedicated hardware and/or 

software modules configured for encoding and decoding, or incorporated in a combined 

codec. Also, the techniques could be fully implemented in one or more circuits or logic 

elements.  

[0272] The techniques of this disclosure may be implemented in a wide variety of 

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of 

ICs (e.g., a chip set). Various components, modules, or units are described in this 

disclosure to emphasize functional aspects of devices configured to perform the 

disclosed techniques, but do not necessarily require realization by different hardware 

units. Rather, as described above, various units may be combined in a codec hardware 

unit or provided by a collection of interoperative hardware units, including one or more 

processors as described above, in conjunction with suitable software and/or firmware.  

[0273] Various examples have been described. These and other examples may be 

within the scope of the following claims.  

[0274] It will be understood that the term "comprise" and any of its derivatives 

(eg comprises, comprising) as used in this specification is to be taken to be inclusive of 

features to which it refers, and is not meant to exclude the presence of any additional 

features unless otherwise stated or implied.  

[0275] The reference to any prior art in this specification is not, and should not be taken 

as, an acknowledgement or any form of suggestion that such prior art forms part of the 

common general knowledge.
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CLAIMS 

1. A method of decoding video data that has been adjusted by performing a dynamic 

range adjustment, the method comprising: 

receiving at least one syntax structure from an encoded video bitstream, the at least 

one syntax structure indicating adjustment information specifying how the dynamic range 

adjustment has been applied to the video data, and wherein the adjustment information 

includes: 

a tone mapping adjustment value that indicates color values can be trimmed to 

a maximum or a minimum value, and 

a number of partitions into which the video data was partitioned during the 

dynamic range adjustment; and 

performing an inverse dynamic range adjustment on the video data in accordance with 

the adjustment information to generate unadjusted component values from the video data, 

wherein performing the inverse dynamic range adjustment includes generating the 

unadjusted component values according to the number of partitions.  

2. The method of claim 1, wherein the adjustment information further includes a global 

offset value that applies to each of the partitions into which the video data was partitioned 

during the dynamic range adjustment.  

3. The method of claim 2, 

wherein the global offset value is a first global offset value, the first global offset value 

being substituted, prior to performing the dynamic range adjustment on the video data, for 

unadjusted component values less than the first global offset value; 

wherein the adjustment information further includes a second global offset value; and 

wherein performing the inverse dynamic range adjustment on the video data includes: 

mapping component values matching the second global offset value to the first global 

offset value.  

4. The method of claim 1, wherein the video data includes luma components and chroma 

components, wherein the adjustment information includes a first number of partitions into 

which the luma components were partitioned during the dynamic range adjustment, a second 

number of partitions into which a first set of the chroma components were partitioned during 

the dynamic range adjustment, and a third number of partitions into which a second set of the
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chroma components were partitioned during the dynamic range adjustment, and wherein 

performing the inverse dynamic range adjustment includes: 

generating unadjusted luma component values according to the first number of 

partitions; 

generating unadjusted chroma component values corresponding to the first set of 

chroma components according to the second number of partitions; and 

generating unadjusted chroma component values corresponding to the second set of 

chroma components according to the third number of partitions.  

5. The method of claim 1, further comprising: 

deriving additional adjustment information from the at least one syntax structure, the 

additional adjustment information further specifying how the dynamic range adjustment has 

been applied to the video data.  

6. The method of claim 1, wherein performing the inverse dynamic range adjustment on 

the video data includes: 

determining for each input sample for each component of the video data, a partition to 

which the input sample belongs, and 

generating, for each of the partitions, the unadjusted component values.  

7. The method of claim 1, wherein the adjustment information further includes a local 

offset value and a local scale value for each of the partitions, and wherein generating the 

unadjusted component values includes: 

generating the unadjusted component values according to the local offset value and the 

local scale value.  

8. The method of claim 7, wherein the local offset value for each of the partitions is 

represented by a first number of bits and a second number of bits, wherein the first number of 

bits is used to represent an integer part of the local offset value and the second number of bits 

is used to represent a fractional part of the local offset value, wherein the adjustment 

information further includes the first number of bits and the second number of bits, and 

wherein performing the inverse dynamic range adjustment on the video data includes: 

generating the unadjusted component values according to the local offset value for 

each of the partitions as represented by the first number of bits and the second number of bits.
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9. The method of claim 7, wherein the local scale value for each of the partitions is 

represented by a first number of bits and a second number of bits, wherein the first number of 

bits is used to represent an integer part of the local scale value and the second number of bits 

is used to represent a fractional part of the local scale value, wherein the adjustment 

information further includes the first number of bits and the second number of bits, and 

wherein performing the inverse dynamic range adjustment on the video data includes: 

generating the unadjusted component values according to the local scale value for 

each of the partitions as represented by the first number of bits and the second number of bits.  

10. A method of encoding video data comprising: 

performing a dynamic range adjustment on the video data to generate adjusted 

component values from the video data; and 

generating at least one syntax structure in an encoded video bitstream, the at least one 

syntax structure indicating adjustment information specifying how the dynamic range 

adjustment has been applied to the video data, wherein the adjustment information includes: 

a tone mapping adjustment value that indicates color values can be trimmed to 

a maximum or a minimum value, and 

a number of partitions into which the video data was partitioned during the 

dynamic range adjustment, and 

wherein performing the dynamic range adjustment includes generating the adjusted 

component values according to the number of partitions.  

11. The method of claim 10, wherein the adjustment information further includes a local 

offset value and a local scale value for each of the partitions, and wherein performing the 

dynamic range adjustment on the video data includes: 

generating the adjusted component values according to the local offset value and the 

local scale value.  

12. The method of claim 11, wherein the local offset value for each of the partitions is 

represented by a first number of bits and a second number of bits, wherein the first number of 

bits is used to represent an integer part of the local offset value and the second number of bits 

is used to represent a fractional part of the local offset value, wherein the adjustment 

information further includes the first number of bits and the second number of bits, and 

wherein performing the dynamic range adjustment on the video data includes:
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generating the adjusted component values according to the local offset value for each 

of the partitions as represented by the first number of bits and the second number of bits.  

13. An apparatus configured to decode video data that has been adjusted by performing a 

dynamic range adjustment, the apparatus comprising: 

a memory configured to store the video data; and 

one or more processors configured to: 

receive at least one syntax structure in an encoded video bitstream, the at least one 

syntax structure indicating adjustment information specifying how the dynamic range 

adjustment has been applied to the video data, and wherein the adjustment information 

includes: 

a tone mapping adjustment value that indicates color values can be trimmed to 

a maximum or a minimum value, and 

a number of partitions into which the video data was partitioned during the 

dynamic range adjustment; and 

perform an inverse dynamic range adjustment on the video data in accordance with the 

adjustment information to generate unadjusted component values from the video data, 

wherein performing the inverse dynamic range adjustment includes generating the 

unadjusted component values according to the number of partitions.  

14. The apparatus of claim 13, wherein the adjustment information further includes a 

global offset value that applies to each of the partitions into which the video data was 

partitioned during the dynamic range adjustment.  

15. The apparatus of claim 14, 

wherein the global offset value is a first global offset value, the first global offset value 

being substituted, prior to performing the dynamic range adjustment on the video data, for 

unadjusted component values less than the first global offset value; 

wherein the adjustment information further includes a second global offset value; and 

wherein performing the inverse dynamic range adjustment on the video data includes: 

mapping component values matching the second global offset value to the first global 

offset value.  

16. The apparatus of claim 13, wherein the video data includes luma components and 

chroma components, wherein the adjustment information includes a first number of partitions
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into which the luma components were partitioned during the dynamic range adjustment, a 

second number of partitions into which a first set of the chroma components were partitioned 

during the dynamic range adjustment, and a third number of partitions into which a second set 

of the chroma components were partitioned during the dynamic range adjustment, and 

wherein performing the inverse dynamic range adjustment includes: 

generating unadjusted luma component values according to the first number of 

partitions; 

generating unadjusted chroma component values corresponding to the first set of 

chroma components according to the second number of partitions; and 

generating unadjusted chroma component values corresponding to the second set of 

chroma components according to the third number of partitions.  

17. An apparatus configured to encode video, the apparatus comprising: 

a memory configured to store the video data; and 

one or more processors configured to: 

perform a dynamic range adjustment on the video data to generate adjusted component 

values from the video data, and 

generate at least one syntax structure in an encoded video bitstream, the at least one 

syntax structure indicating adjustment information specifying how the dynamic range 

adjustment has been applied to the video data, wherein the adjustment information includes: 

a tone mapping adjustment value that indicates color values can be trimmed to 

a maximum or a minimum value, and 

a number of partitions into which the video data was partitioned during the 

dynamic range adjustment, and 

wherein performing the dynamic range adjustment includes generating the adjusted 

component values according to the number of partitions.  

18. The apparatus of claim 17, wherein the adjustment information further includes a local 

offset value and a local scale value for each of the partitions, and wherein performing the 

dynamic range adjustment on the video data includes: 

generating the adjusted component values according to the local offset value and the 

local scale value.
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19. The apparatus of claim 18, wherein the local offset value for each of the partitions is 

represented by a first number of bits and a second number of bits, wherein the first number of 

bits is used to represent an integer part of the local offset value and the second number of bits 

is used to represent a fractional part of the local offset value, wherein the adjustment 

information further includes the first number of bits and the second number of bits, and 

wherein performing the dynamic range adjustment on the video data includes: 

generating the adjusted component values according to the local offset value for each 

of the partitions as represented by the first number of bits and the second number of bits.  

20. An apparatus configured to perform the method of any one of claims 1 to 12.
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