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(57) Abstract: This disclosure relates to processing video data, including processing video data that is represented by an HDR/WCG
color representation. In accordance with one or more aspects of the present disclosure, one or more Supplemental Enhancement In -
formation (SEI) Messages may be used to signal syntax elements and or other information that allow a video decoder or video post-
processing device to reverse the dynamic range adjustment (DRA) techniques of this disclosure to reconstruct the original or native
color representation of the video data. Dynamic range adjustment (DRA) parameters may be applied to video data in accordance
with one or more aspects of this disclosure in order to make better use of an HDR/WCG color representation, and may include the
use of global offset values, as well as local scale and offset values for partitions of color component values.
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SUPPLEMENTAL ENHANCEMENT INFORMATION (SEI) MESSAGES FOR
HIGH DYNAMIC RANGE AND WIDE COLOR GAMUT VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Application No.
62/221,586, filed September 21, 2015, and U.S. Provisional Application No.
62/236,804, filed October 2, 2015, the entire content of both of which are hereby

incorporated by reference.
TECHNICAL FIELD
[0002] This disclosure relates to video processing.
BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video coding techniques, such as
those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T
H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), ITU-T H.265, High
Efficiency Video Coding (HEVC), and extensions of such standards. The video devices
may transmit, receive, encode, decode, and/or store digital video information more
efficiently by implementing such video coding techniques.

[0004] Video coding techniques include spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (e.g., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I)
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring

blocks in the same picture or temporal prediction with respect to reference samples in
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other reference pictures. Pictures may be referred to as frames, and reference pictures
may be referred to as reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more
compression.

[0006] The total number of color values that may be captured, coded, and displayed
may be defined by a color gamut. A color gamut refers to the range of colors that a
device can capture (e.g., a camera) or reproduce (e.g., a display). Often, color gamuts
differ from device to device. For video coding, a predefined color gamut for video data
may be used such that each device in the video coding process may be configured to
process pixel values in the same color gamut. Some color gamuts are defined with a
larger range of colors than color gamuts that have been traditionally used for video
coding. Such color gamuts with a larger range of colors may be referred to as a wide
color gamut (WCG).

[0007] Another aspect of video data is dynamic range. Dynamic range is typically
defined as the ratio between the maximum and minimum brightness (e.g., luminance) of
a video signal. The dynamic range of common video data used in the past is considered
to have a standard dynamic range (SDR). Other example specifications for video data
define color data that has a larger ratio between the maximum and minimum brightness.

Such video data may be described as having a high dynamic range (HDR).

SUMMARY
[0008] This disclosure relates to processing video data, including processing video data
that is represented by an HDR/WCG color representation. In accordance with one or

more aspects of the present disclosure, one or more Supplemental Enhancement
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Information (SEI) Messages may be used to signal syntax elements and or other
information that allow a video decoder or video postprocessing device to reverse the
dynamic range adjustment (DRA) techniques of this disclosure to reconstruct the
original or native color representation of the video data. Dynamic range adjustment
(DRA) parameters may be applied to video data in accordance with one or more aspects
of this disclosure in order to make better use of an HDR/WCG color representation, and
may include the use of global offset values, as well as local scale and offset values for
partitions of color component values.

[0009] In one example of the disclosure, a method of decoding video data that has been
adjusted by performing a dynamic range adjustment, comprises receiving at least one
supplemental enhancement information (SEI) message in an encoded video bitstream,
the at least one SEI message indicating adjustment information specifying how the
dynamic range adjustment has been applied to the video data, and wherein the
adjustment information includes a global offset value that applies to each of a plurality
of partitions into which the video data was partitioned during the dynamic range
adjustment, and performing an inverse dynamic range adjustment on the video data in
accordance with the adjustment information to generate unadjusted component values
from the video data.

[0010] In another example of the disclosure, a method of encoding video data
comprises performing a dynamic range adjustment on the video data to generate
adjusted component values from the video data, and generating at least one
supplemental enhancement information (SEI) message in an encoded video bitstream,
the at least one SEI message indicating adjustment information specifying how the
dynamic range adjustment has been applied to the video data, and wherein the
adjustment information includes a global offset value that applies to each of a plurality
of partitions into which the video data was partitioned during the dynamic range
adjustment.

[0011] In another example of the disclosure, an apparatus configured to decode video
data that has been adjusted by performing a dynamic range adjustment comprises a
memory configured to store the video data, and one or more processors configured to:
receive at least one supplemental enhancement information (SEI) message in an
encoded video bitstream, the at least one SEI message indicating adjustment
information specifying how the dynamic range adjustment has been applied to the video

data, and wherein the adjustment information includes a global offset value that applies
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to each of a plurality of partitions into which the video data was partitioned during the
dynamic range adjustment, and perform an inverse dynamic range adjustment on the
video data in accordance with the adjustment information to generate unadjusted
component values from the video data.

[0012] In another example of the disclosure, an apparatus configured to decode video
data that has been adjusted by performing a dynamic range adjustment comprises means
for receiving at least one supplemental enhancement information (SEI) message in an
encoded video bitstream, the at least one SEI message indicating adjustment
information specifying how the dynamic range adjustment has been applied to the video
data, and wherein the adjustment information includes a global offset value that applies
to each of a plurality of partitions into which the video data was partitioned during the
dynamic range adjustment, and means for performing an inverse dynamic range
adjustment on the video data in accordance with the adjustment information to generate
unadjusted component values from the video data.

[0013] In another example of the disclosure, a computer program product for decoding
video data that has been adjusted by performing a dynamic range adjustment comprises
a computer-readable medium having stored thereon. When executed the instructions
cause a processor to receive at least one supplemental enhancement information (SEI)
message in an encoded video bitstream, the at least one SEI message indicating
adjustment information specifying how the dynamic range adjustment has been applied
to the video data, and wherein the adjustment information includes a global offset value
that applies to each of a plurality of partitions into which the video data was partitioned
during the dynamic range adjustment, and perform an inverse dynamic range adjustment
on the video data in accordance with the adjustment information to generate unadjusted
component values from the video data.

[0014] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description, drawings, and claims.
BRIEF DESCRIPTION OF DRAWINGS

[0015] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system configured to implement the techniques of the disclosure.
[0016] FIG. 2 is a conceptual drawing illustrating the concepts of HDR data.

[0017] FIG. 3 is a conceptual diagram illustrating example color gamuts.
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[0018] FIG. 4 is a conceptual diagram illustrating an example of HDR/WCG
representation conversion.

[0019] FIG. 5 is a conceptual diagram illustrating an example of HDR/WCG
representation inverse conversion.

[0020] FIG. 6 is conceptual diagram illustrating example of Electro-optical transfer
functions (EOTF) utilized for video data conversion (including SDR and HDR) from
perceptually uniform code levels to linear luminance.

[0021] FIG. 7 is a conceptual diagram illustrating aspects of a color gamut conversion
process as applied to a single color component.

[0022] FIG. 8 is a block diagram illustrating an example HDR/WCG conversion
apparatus operating according to the techniques of this disclosure.

[0023] FIGS. 9A through 9C are conceptual diagrams illustrating aspects of a dynamic
range adjustment process in accordance with one or more aspects of the present
disclosure.

[0024] FIG. 10 is a block diagram illustrating an example HDR/WCG inverse
conversion apparatus according to the techniques of this disclosure.

[0025] FIG. 11 is a conceptual drawing showing a typical structure of a color remapping
information (CRI) process.

[0026] FIG. 12 is a block diagram illustrating an example of a video encoder that may
implement techniques of this disclosure or may be used in accordance with one or more
aspects of the present disclosure.

[0027] FIG. 13 is a block diagram illustrating an example of a video decoder that may
implement techniques of this disclosure or may be used in accordance with one or more
aspects of the present disclosure.

[0028] FIG. 14 is a flowchart illustrating an example HDR/WCG conversion process
according to the techniques of this disclosure.

[0029] FIG. 15 is a flowchart illustrating an example HDR/WCG inverse conversion

process according to the techniques of this disclosure.
DETAILED DESCRIPTION

[0030] This disclosure is related to the processing and/or coding of video data with high
dynamic range (HDR) and wide color gamut (WCGQG) representations. More specifically,
the techniques of this disclosure include signaling and related operations that are applied

to video data in certain color spaces to enable more efficient compression of HDR and
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WCG video data. In accordance with one or more aspects of the present disclosure,
parameters relating to such operations may be signaled through one or more SEI
messages. The techniques and devices described herein may improve compression
efficiency of hybrid-based video coding systems (e.g., H265/HEVC, H.264/AVC, etc.)
utilized for coding video data, including HDR and WCG video data.

[0031] Video coding standards, including hybrid-based video coding standards include
ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual,
ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC
MPEG-4 AVC), including its Scalable Video Coding (SVC) and Multi-view Video
Coding (MVC) extensions. The design of a new video coding standard, namely High
Efficiency Video coding (HEVC, also called H.265), has been finalized by the Joint
Collaboration Team on Video Coding (JCT-VC) of ITU-T Video Coding Experts Group
(VCEG) and ISO/IEC Motion Picture Experts Group (MPEG). An HEVC draft
specification referred to as HEVC Working Draft 10 (WD10), Bross et al., “High
efficiency video coding (HEVC) text specification draft 10 (for FDIS & Last Call),”
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WGT11, 12th Meeting: Geneva, CH, 14-23 January 2013, JCTVC-
L1003v34, is available from http://phenix.int-

evry.fr/jct/doc_end user/documents/12 Geneva/wgl1/JCTVC-L1003-v34.zip. The
finalized HEVC standard is referred to as HEVC version 1.

[0032] A defect report, Wang et al., “High efficiency video coding (HEVC) Defect
Report,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and
ISO/TEC JTC1/SC29/WGT11, 14th Meeting: Vienna, AT, 25 July—2 August 2013,
JCTVC-N1003v1, is available from http://phenix.int-

evry.fr/jct/doc_end user/documents/14 Vienna/wgl1/JCTVC-N1003-v1.zip. The
finalized HEVC standard document is published as ITU-T H.265, Series H: Audiovisual

and Multimedia Systems, Infrastructure of audiovisual services — Coding of moving
video, High efficiency video coding, Telecommunication Standardization Sector of
International Telecommunication Union (ITU), April 2013, and another version of the

finalized HEVC standard was published in October 2014. A copy of the H.265/HEVC

specification text may be downloaded from http://www.itu.int/rec/T-REC-H.265-
201504-1/en.
[0033] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system 10 that may utilize techniques of this disclosure. As shown in FIG. 1, system 10
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includes a source device 12 that provides encoded video data to be decoded at a later
time by a destination device 14. In particular, source device 12 provides the video data
to destination device 14 via a computer-readable medium 16. Source device 12 and
destination device 14 may comprise any of a wide range of devices, including desktop
computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone
handsets such as so-called “smart” phones, so-called “smart” pads, televisions, cameras,
display devices, digital media players, video gaming consoles, video streaming devices,
or the like. In some cases, source device 12 and destination device 14 may be equipped
for wireless communication.

[0034] Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any type
of medium or device capable of moving the encoded video data from source device 12
to destination device 14. In one example, computer-readable medium 16 may comprise
a communication medium to enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded video data may be
modulated according to a communication standard, such as a wired or wireless
communication protocol, and transmitted to destination device 14. The communication
medium may comprise any wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmission lines. The
communication medium may form part of a packet-based network, such as a local area
network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from source device 12 to
destination device 14.

[0035] In other examples, computer-readable medium 16 may include non-transitory
storage media, such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray
disc, or other computer-readable media. In some examples, a network server (not
shown) may receive encoded video data from source device 12 and provide the encoded
video data to destination device 14, e.g., via network transmission. Similarly, a
computing device of a medium production facility, such as a disc stamping facility, may
receive encoded video data from source device 12 and produce a disc containing the
encoded video data. Therefore, computer-readable medium 16 may be understood to

include one or more computer-readable media of various forms, in various examples.
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[0036] In some examples, encoded data may be output from output interface 22 to a
storage device. Similarly, encoded data may be accessed from the storage device by
input interface. The storage device may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, the storage device may
correspond to a file server or another intermediate storage device that may store the
encoded video generated by source device 12. Destination device 14 may access stored
video data from the storage device via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting encoded video
data to the destination device 14. Example file servers include a web server (e.g., for a
website), an FTP server, network attached storage (NAS) devices, or a local disk drive.
Destination device 14 may access the encoded video data through any standard data
connection, including an Internet connection. This may include a wireless channel (e.g.,
a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from the storage device may be a
streaming transmission, a download transmission, or a combination thereof.

[0037] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, Internet streaming
video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital
video that is encoded onto a data storage medium, decoding of digital video stored on a
data storage medium, or other applications. In some examples, system 10 may be
configured to support one-way or two-way video transmission to support applications
such as video streaming, video playback, video broadcasting, and/or video telephony.
[0038] In the example of FIG. 1, source device 12 includes video source 18, video
preprocessor 19, video encoder 20, and output interface 22. Destination device 14
includes input interface 28, video postprocessor 31, video decoder 30, and display
device 32. In accordance with this disclosure, video preprocessor 19 of source device
12 may be configured to implement the techniques of this disclosure, including
signaling and related operations applied to video data in certain color spaces to enable

more efficient compression of HDR and WCG video data. In some examples, video
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preprocessor 19 may be separate from video encoder 20. In other examples, video
preprocessor 19 may be part of video encoder 20. In other examples, a source device
and a destination device may include other components or arrangements. For example,
source device 12 may receive video data from an external video source 18, such as an
external camera. Likewise, destination device 14 may interface with an external display
device, rather than including an integrated display device.

[0039] The illustrated system 10 of FIG. 1 is merely one example. Techniques for
processing HDR and WCG video data may be performed by any digital video encoding
and/or video decoding device. Moreover, the techniques of this disclosure may also be
performed by a video preprocessor and/or video postprocessor. A video preprocessor
may be any device configured to process video data before encoding (e.g., before
HEVC encoding). A video postprocessor may be any device configured to process
video data after decoding (e.g., after HEVC decoding). Source device 12 and
destination device 14 are merely examples of such coding devices in which source
device 12 generates coded video data for transmission to destination device 14. In some
examples, devices 12, 14 may operate in a substantially symmetrical manner such that
each of devices 12, 14 include video encoding and decoding components, as well as a
video preprocessor and a video postprocessor (e.g., video preprocessor 19 and video
postprocessor 31, respectively). Hence, system 10 may support one-way or two-way
video transmission between video devices 12, 14, e.g., for video streaming, video
playback, video broadcasting, or video telephony.

[0040] Video source 18 of source device 12 may include a video capture device, such as
a video camera, a video archive containing previously captured video, and/or a video
feed interface to receive video from a video content provider. As a further alternative,
video source 18 may generate computer graphics-based data as the source video, or a
combination of live video, archived video, and computer-generated video. In some
cases, if video source 18 is a video camera, source device 12 and destination device 14
may form so-called camera phones or video phones. As mentioned above, however, the
techniques described in this disclosure may be applicable to video coding and video
processing, in general, and may be applied to wireless and/or wired applications. In
each case, the captured, pre-captured, or computer-generated video may be encoded by
video encoder 20. The encoded video information may then be output by output

interface 22 onto a computer-readable medium 16.
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[0041] Input interface 28 of destination device 14 receives information from computer-
readable medium 16. The information of computer-readable medium 16 may include
syntax information defined by video encoder 20, which is also used by video decoder
30, that includes syntax elements that describe characteristics and/or processing of
blocks and other coded units, e.g., groups of pictures (GOPs). Display device 32
displays the decoded video data to a user, and may comprise any of a variety of display
devices such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma
display, an organic light emitting diode (OLED) display, or another type of display
device.

[0042] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0043] Video preprocessor 19 and video postprocessor 31 each may be implemented as
any of a variety of suitable encoder circuitry, such as one or more microprocessors,
DSPs, ASICs, FPGAs, discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure.

[0044] In some examples, video encoder 20 and video decoder 30 operate according to
a video compression standard, such as ISO/IEC MPEG-4 Visual and ITU-T H.264 (also
known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC)
extension, Multi-view Video Coding (MVC) extension, and MVC-based three-
dimensional video (3DV) extension. In some instances, any bitstream conforming to
MVC-based 3DV always contains a sub-bitstream that is compliant to a MVC profile,
e.g., stereo high profile. Furthermore, there is an ongoing effort to generate a 3DV

coding extension to H.264/AVC, namely AVC-based 3DV. Other examples of video
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coding standards include ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or
ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual, and ITU-T H.264,
ISO/IEC Visual. In other examples, video encoder 20 and video decoder 30 may be
configured to operate according to the HEVC standard.

[0045] In accordance with one or more aspects of the present disclosure, one or more
SEI messages may signal one or more parameters generated by video preprocessor 19.
As will be explained in more detail below, video preprocessor 19 and video
postprocessor 31 may be, in some examples, configured to receive video data related to
a first color representation comprising a first color container, the first color container
being defined by a first color gamut or a first set or color primaries, and a first color
space, derive one or more dynamic range adjustment parameters, the dynamic range
adjustment parameters being based on characteristics of the video data, and perform a
dynamic range adjustment on the video data in accordance with the one or more
dynamic range adjustment parameters. Video encoder 20 may signal the one or more
SEI messages based on one or more parameters received from the video preprocessor
19. Video decoder 30 may receive and decode the one or more SEI messages and pass
the parameters to the video postprocessor 31.

[0046] Video preprocessor 19 and video postprocessor 31 each may be implemented as
any of a variety of suitable encoder circuitry, such as one or more microprocessors,
digital signal processors (DSPs), application specific integrated circuits (ASICs), field
programmable gate arrays (FPGAs), discrete logic, software, hardware, firmware or any
combinations thereof. When the techniques are implemented partially in software, a
device may store instructions for the software in a suitable, non-transitory computer-
readable medium and execute the instructions in hardware using one or more processors
to perform the techniques of this disclosure. As discussed above video preprocessor 19
and video postprocessor 31 may be separate devices from video encoder 20 and video
decoder 30, respectively. In other examples, video preprocessor 19 may be integrated
with video encoder 20 in a single device and video postprocessor 31 may be integrated
with video decoder 30 in a single device.

[0047] In HEVC and other video coding standards, a video sequence typically includes
a series of pictures. Pictures may also be referred to as “frames.” A picture may
include three sample arrays, denoted Si, Scb, and Scr. Si is a two-dimensional array
(1.e., a block) of luma samples. Scv is a two-dimensional array of Cb chrominance

samples. Scris a two-dimensional array of Cr chrominance samples. Chrominance
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samples may also be referred to herein as “chroma” samples. In other instances, a
picture may be monochrome and may only include an array of luma samples.

[0048] Video encoder 20 may generate a set of coding tree units (CTUs). Each of the
CTUs may comprise a coding tree block of luma samples, two corresponding coding
tree blocks of chroma samples, and syntax structures used to code the samples of the
coding tree blocks. In a monochrome picture or a picture that has three separate color
planes, a CTU may comprise a single coding tree block and syntax structures used to
code the samples of the coding tree block. A coding tree block may be an NxN block of
samples. A CTU may also be referred to as a “tree block™ or a “largest coding unit”
(LCU). The CTUs of HEVC may be broadly analogous to the macroblocks of other
video coding standards, such as H.264/AVC. However, a CTU is not necessarily limited
to a particular size and may include one or more coding units (CUs). A slice may
include an integer number of CTUs ordered consecutively in the raster scan.

[0049] This disclosure may use the term “video unit” or “video block™ to refer to one or
more blocks of samples and syntax structures used to code samples of the one or more
blocks of samples. Example types of video units may include CTUs, CUs, PUs,
transform units (TUs) in HEVC, or macroblocks, macroblock partitions, and so on in
other video coding standards.

[0050] To generate a coded CTU, video encoder 20 may recursively perform quad-tree
partitioning on the coding tree blocks of a CTU to divide the coding tree blocks into
coding blocks, hence the name “coding tree units.” A coding block is an NxN block of
samples. A CU may comprise a coding block of luma samples and two corresponding
coding blocks of chroma samples of a picture that has a luma sample array, a Cb sample
array and a Cr sample array, and syntax structures used to code the samples of the
coding blocks. In a monochrome picture or a picture that has three separate color
planes, a CU may comprise a single coding block and syntax structures used to code the
samples of the coding block.

[0051] Video encoder 20 may partition a coding block of a CU into one or more
prediction blocks. A prediction block may be a rectangular (i.e., square or non-square)
block of samples on which the same prediction is applied. A prediction unit (PU) of a
CU may comprise a prediction block of luma samples, two corresponding prediction
blocks of chroma samples of a picture, and syntax structures used to predict the
prediction block samples. In a monochrome picture or a picture that have three separate

color planes, a PU may comprise a single prediction block and syntax structures used to
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predict the prediction block samples. Video encoder 20 may generate predictive luma,
Cb and Cr blocks for luma, Cb and Cr prediction blocks of each PU of the CU.

[0052] Video encoder 20 may use intra prediction or inter prediction to generate the
predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the
predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the
PU based on decoded samples of the picture associated with the PU.

[0053] If video encoder 20 uses inter prediction to generate the predictive blocks of a
PU, video encoder 20 may generate the predictive blocks of the PU based on decoded
samples of one or more pictures other than the picture associated with the PU. Inter
prediction may be uni-directional inter prediction (i.e., uni-prediction) or bi-directional
inter prediction (i.e., bi-prediction). To perform uni-prediction or bi-prediction, video
encoder 20 may generate a first reference picture list (RefPicList0) and a second
reference picture list (RefPicList1) for a current slice.

[0054] Each of the reference picture lists may include one or more reference pictures.
When using uni-prediction, video encoder 20 may search the reference pictures in either
or both RefPicList0 and RefPicList1 to determine a reference location within a
reference picture. Furthermore, when using uni-prediction, video encoder 20 may
generate, based at least in part on samples corresponding to the reference location, the
predictive sample blocks for the PU. Moreover, when using uni-prediction, video
encoder 20 may generate a single motion vector that indicates a spatial displacement
between a prediction block of the PU and the reference location. To indicate the spatial
displacement between a prediction block of the PU and the reference location, a motion
vector may include a horizontal component specifying a horizontal displacement
between the prediction block of the PU and the reference location and may include a
vertical component specifying a vertical displacement between the prediction block of
the PU and the reference location.

[0055] When using bi-prediction to encode a PU, video encoder 20 may determine a
first reference location in a reference picture in RefPicListO and a second reference
location in a reference picture in RefPicListl. Video encoder 20 may then generate,
based at least in part on samples corresponding to the first and second reference
locations, the predictive blocks for the PU. Moreover, when using bi-prediction to
encode the PU, video encoder 20 may generate a first motion indicating a spatial

displacement between a sample block of the PU and the first reference location and a
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second motion indicating a spatial displacement between the prediction block of the PU
and the second reference location.

[0056] After video encoder 20 generates predictive luma, Cb, and Cr blocks for one or
more PUs of a CU, video encoder 20 may generate a luma residual block for the CU.
Each sample in the CU’s luma residual block indicates a difference between a luma
sample in one of the CU’s predictive luma blocks and a corresponding sample in the
CU’s original luma coding block. In addition, video encoder 20 may generate a Cb
residual block for the CU. Each sample in the CU’s Cb residual block may indicate a
difference between a Cb sample in one of the CU’s predictive Cb blocks and a
corresponding sample in the CU’s original Cb coding block. Video encoder 20 may
also generate a Cr residual block for the CU. Each sample in the CU’s Cr residual block
may indicate a difference between a Cr sample in one of the CU’s predictive Cr blocks
and a corresponding sample in the CU’s original Cr coding block.

[0057] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the
luma, Cb and, Cr residual blocks of a CU into one or more luma, Cb, and Cr transform
blocks. A transform block may be a rectangular block of samples on which the same
transform is applied. A transform unit (TU) of a CU may comprise a transform block of
luma samples, two corresponding transform blocks of chroma samples, and syntax
structures used to transform the transform block samples. In a monochrome picture or a
picture that has three separate color planes, a TU may comprise a single transform block
and syntax structures used to transform the transform block samples. Thus, each TU of
a CU may be associated with a luma transform block, a Cb transform block, and a Cr
transform block. The luma transform block associated with the TU may be a sub-block
of the CU’s luma residual block. The Cb transform block may be a sub-block of the
CU’s Cb residual block. The Cr transform block may be a sub-block of the CU’s Cr
residual block.

[0058] Video encoder 20 may apply one or more transforms to a luma transform block
of a TU to generate a luma coefticient block for the TU. A coefficient block may be a
two-dimensional array of transform coefficients. A transform coefficient may be a
scalar quantity. Video encoder 20 may apply one or more transforms to a Cb transform
block of a TU to generate a Cb coefficient block for the TU. Video encoder 20 may
apply one or more transforms to a Cr transform block of a TU to generate a Cr

coefficient block for the TU.
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[0059] After generating a coefficient block (e.g., a luma coefficient block, a Cb
coefficient block or a Cr coefficient block), video encoder 20 may quantize the
coefficient block. Quantization generally refers to a process in which transform
coefticients are quantized to possibly reduce the amount of data used to represent the
transform coefficients, providing further compression. Furthermore, video encoder 20
may inverse quantize transform coefficients and apply an inverse transform to the
transform coefticients in order to reconstruct transform blocks of TUs of CUs of a
picture. Video encoder 20 may use the reconstructed transform blocks of TUs of a CU
and the predictive blocks of PUs of the CU to reconstruct coding blocks of the CU. By
reconstructing the coding blocks of each CU of a picture, video encoder 20 may
reconstruct the picture. Video encoder 20 may store reconstructed pictures in a decoded
picture buffer (DPB). Video encoder 20 may use reconstructed pictures in the DPB for
inter prediction and intra prediction.

[0060] After video encoder 20 quantizes a coefficient block, video encoder 20 may
entropy encode syntax elements that indicate the quantized transform coefficients. For
example, video encoder 20 may perform Context-Adaptive Binary Arithmetic Coding
(CABAC) on the syntax elements indicating the quantized transform coefficients.
Video encoder 20 may output the entropy-encoded syntax elements in a bitstream.
[0061] Video encoder 20 may output a bitstream that includes a sequence of bits that
forms a representation of coded pictures and associated data. The bitstream may
comprise a sequence of network abstraction layer (NAL) units. Each of the NAL units
includes a NAL unit header and encapsulates a raw byte sequence payload (RBSP). The
NAL unit header may include a syntax element that indicates a NAL unit type code.
The NAL unit type code specified by the NAL unit header of a NAL unit indicates the
type of the NAL unit. A RBSP may be a syntax structure containing an integer number
of bytes that is encapsulated within a NAL unit. In some instances, an RBSP includes
zero bits.

[0062] Different types of NAL units may encapsulate different types of RBSPs. For
example, a first type of NAL unit may encapsulate a RBSP for a picture parameter set
(PPS), a second type of NAL unit may encapsulate a RBSP for a coded slice, a third
type of NAL unit may encapsulate a RBSP for Supplemental Enhancement Information
(SEI), and so on. A PPS is a syntax structure that may contain syntax elements that
apply to zero or more entire coded pictures. NAL units that encapsulate RBSPs for

video coding data (as opposed to RBSPs for parameter sets and SEI messages) may be
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referred to as video coding layer (VCL) NAL units. A NAL unit that encapsulates a
coded slice may be referred to herein as a coded slice NAL unit. A RBSP for a coded
slice may include a slice header and slice data.

[0063] Video decoder 30 may receive a bitstream. In addition, video decoder 30 may
parse the bitstream to decode syntax elements from the bitstream. Video decoder 30
may reconstruct the pictures of the video data based at least in part on the syntax
elements decoded from the bitstream. The process to reconstruct the video data may be
generally reciprocal to the process performed by video encoder 20. For instance, video
decoder 30 may use motion vectors of PUs to determine predictive blocks for the PUs
of a current CU. Video decoder 30 may use a motion vector or motion vectors of PUs to
generate predictive blocks for the PUs.

[0064] In addition, video decoder 30 may inverse quantize coefficient blocks associated
with TUs of the current CU. Video decoder 30 may perform inverse transforms on the
coefficient blocks to reconstruct transform blocks associated with the TUs of the current
CU. Video decoder 30 may reconstruct the coding blocks of the current CU by adding
the samples of the predictive sample blocks for PUs of the current CU to corresponding
samples of the transform blocks of the TUs of the current CU. By reconstructing the
coding blocks for each CU of a picture, video decoder 30 may reconstruct the picture.
Video decoder 30 may store decoded pictures in a decoded picture buffer for output
and/or for use in decoding other pictures.

[0065] Next generation video applications are anticipated to operate with video data
representing captured scenery with HDR and a WCG. Parameters of the utilized
dynamic range and color gamut are two independent attributes of video content, and
their specification for purposes of digital television and multimedia services are defined
by several international standards. For example, ITU-R Rec. BT.709, “Parameter values
for the HDTV standards for production and international programme exchange,” and/or
ITU-R Rec. BT.2020, “Parameter values for ultra-high definition television systems for
production and international programme exchange,” defines parameters for HDTV
(high definition television) and UHDTYV (ultra-high definition television), respectively,
such as standard dynamic range (SDR) and color primaries that extend beyond the
standard color gamut. Rec. BT.2100: Image parameter values for high dynamic range
television for use in production and international programme exchange” defines transfer
functions and representations for HDR television use, including primaries that support

wide color gamut representation. There are also other standards developing organization
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(SDOs) documents that specify dynamic range and color gamut attributes in other
systems, e.g., DCI-P3 color gamut is defined in SMPTE-231-2 (Society of Motion
Picture and Television Engineers) and some parameters of HDR are defined in SMPTE-
2084. A brief description of dynamic range and color gamut for video data is provided
below.

[0066] Dynamic range is typically defined as the ratio between the maximum and
minimum brightness (e.g., luminance) of the video signal. Dynamic range may also be
measured in terms of ‘f-stop,” where one f-stop corresponds to a doubling of a signal’s
dynamic range. In MPEG’s definition, content that features brightness variation with
more than 16 f-stops is referred as HDR content. In some terms, levels between 10 and
16 f-stops are considered as intermediate dynamic range, but it is considered HDR in
other definitions. In some examples of this disclosure, HDR video content may be any
video content that has a higher dynamic range than traditionally used video content with
a standard dynamic range (e.g., video content as specified by ITU-R Rec. BT.709).
[0067] The human visual system (HVS) is capable for perceiving much larger dynamic
ranges than SDR content and HDR content. However, the HVS includes an adaptation
mechanism to narrow the dynamic range of the HVS to a so-called simultaneous range.
The width of the simultaneous range may be dependent on current lighting conditions
(e.g., current brightness). Visualization of dynamic range provided by SDR of HDTYV,
expected HDR of UHDTYV and HVS dynamic range is shown in FIG. 2, although the
exact range may vary based on each individual and display.

[0068] Current video application and services are regulated by ITU Rec.709 and
provide SDR, typically supporting a range of brightness (e.g., luminance) of around 0.1
to 100 candelas (cd) per m2 (often referred to as “nits”), leading to less than 10 f-stops.
Some example next generation video services are expected to provide dynamic range of
up to 16 f-stops. Although detailed specifications for such content are currently under
development, some initial parameters have been specified in SMPTE-2084 and ITU-R
Rec. 2020.

[0069] Another aspect for a more realistic video experience, besides HDR, is the color
dimension. Color dimension is typically defined by the color gamut. FIG. 3 is a
conceptual diagram showing an SDR color gamut (triangle 100 based on the BT.709
color primaries), and the wider color gamut that for UHDTYV (triangle 102 based on the
BT.2020 color primaries). FIG. 3 also depicts the so-called spectrum locus (delimited

by the tongue-shaped area 104), representing the limits of the natural colors. As



WO 2017/053280 PCT/US2016/052640
18

illustrated by FIG. 3, moving from BT.709 (triangle 100) to BT.2020 (triangle 102)
color primaries aims to provide UHDTYV services with about 70% more colors. D65
specifies an example white color for the BT.709 and/or BT.2020 specifications.
[0070] Examples of color gamut specifications for the DCI-P3, BT.709, and BT.2020
color spaces are shown in Table 1.

Table 1 - Color gamut parameters

RGB color space parameters

White point Primary colors
Color space

Xw Yw XRr ¥r X6 Yo XB ¥s

DCI-P3 0.314 10351 [0.680]0.32010.265]0.6900.150]0.060

ITU-R BT.70910.3127(0.3290 10.64 [0.33 [0.30 [0.60 ]0.15 [0.06

ITU-R
BT.2020

0.312710.3290 [0.708 10.29210.170 |0.7970.131 |0.046

[0071] As can be seen in Table 1, a color gamut may be defined by the X and Y values
of a white point, and by the x and y values of the primary colors (e.g., red (R), green
(G), and blue (B). The x and y values represent normalized values that are derived from
the chromaticity (X and Z) and the brightness (Y) of the colors, as is defined by the CIE
1931 color space. The CIE 1931 color space defines the links between pure colors (e.g.,
in terms of wavelengths) and how the human eye perceives such colors.

[0072] HDR/WCG video data is typically acquired and stored at a very high precision
per component (even floating point), with the 4:4:4 chroma format and a very wide
color space (e.g., CIE XYZ). This representation targets high precision and is almost
mathematically lossless. However, such a format for storing HDR/WCG video data
may include a lot of redundancies and may not be optimal for compression purposes. A
lower precision format with HVS-based assumptions is typically utilized for state-of-
the-art video applications.

[0073] Typical video data format conversion for purposes of compression consists of
three major elements, as shown in FIG. 4. The techniques of FIG. 4 may be performed,
for example, by a video preprocessor 17. The three elements include a non-linear
transfer function (TF) for dynamic range compacting such that errors due to

quantization are perceptually uniform (approximately) across the range of luminance
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values, color conversion to a more compact or robust color space, and floating-to-
integer representation conversion (quantization). Hence, linear RGB data is compacted
using a non-linear transfer function (TF) for dynamic range compacting. For instance,
video preprocessor 17 may include a transfer function unit (TF) unit configured to use a
non-linear transfer function for dynamic range compacting such that errors due to
quantization are perceptually uniform (approximately) across the range of luminance
values. The compacted data is than run through a color conversion process into a more
compact or robust color space (e.g., via a color conversion unit). Data is then quantized
using a floating-to-integer representation conversion (e.g., via a quantization unit) to
produce the video data (e.g., HDR’ data), which may be transmitted to video encoder
20.

[0074] The inverse conversion at the decoder side is depicted in FIG. 5. The techniques
of FIG. 5 may be performed by video postprocessor 33. For example, video
postprocessor 33 may receive video data from video decoder 30, inverse quantize the
data (e.g., via inverse quantization unit), perform inverse color conversion (e.g., via
inverse color conversion unit), and perform inverse non-linear transfer function (e.g.,
via inverse TF unit). The order of these elements, e.g., in FIG. 4 and FIG. 5, is given as
an example, and may vary in real-world applications. (e.g., in FIG. 4, color conversion
may precede the TF module (e.g., TF unit), as well as additional processing, e.g., spatial
subsampling, may be applied to color components.

[0075] The techniques depicted in FIG. 4 will now be discussed in more detail. In
general, a transfer function is applied to data (e.g., HDR/WCG video data) to compact
the dynamic range of the data such that errors due to quantization are perceptually
uniform (approximately) across the range of luminance values. Such compaction allows
the data to be represented with fewer bits. In one example, the transfer function may be
a one-dimensional (1D) non-linear function and may reflect the inverse of an electro-
optical transfer function (EOTF) of the end-user display, e.g., as specified for SDR in
Rec. 709. In another example, the transfer function may approximate the HVS
perception to brightness changes, e.g., the PQ transfer function specified in SMPTE-
2084 for HDR. The inverse process of the OETF is the EOTF (electro-optical transfer
function), which maps the code levels back to luminance. FIG. 6 shows several
examples of non-linear transfer function used as EOTFs. The transfer functions may

also be applied to each R, G and B component separately.
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[0076] In the context of this disclosure, the terms “signal value” or “color value” may
be used to describe a luminance level corresponding to the value of a specific color
component (such as R, G, B, or Y) for an image element. The signal value is typically
representative of a linear light level (luminance value). The terms “code level” or
“digital code value” may refer to a digital representation of an image signal value.
Typically, such a digital representation is representative of a nonlinear signal value. An
EOTF represents the relationship between the nonlinear signal values provided to a
display device (e.g., display device 32) and the linear color values produced by the
display device.

[0077] RGB data is typically utilized as the input color space, since RGB is the type of
data that is typically produced by image-capturing sensors. However, the RGB color
space has high redundancy among its components and is not optimal for compact
representation. To achieve more compact and a more robust representation, RGB
components are typically converted (e.g., a color transform is performed) to a more
uncorrelated color space that is more suitable for compression, e.g., YCbCr. A YCbCr
color space separates the brightness in the form of luminance (Y) and color information
(CrCb) in different less correlated components. In this context, a robust representation
may refer to a color space featuring higher levels of error resilience when compressed at
a constrained bitrate.

[0078] Following the color transform, input data in a target color space may be still
represented at high bit-depth (e.g. floating point accuracy). The high bit-depth data may
be converted to a target bit-depth, for example, using a quantization process. Certain
studies show that 10-12 bits accuracy in combination with the PQ transfer is sufficient
to provide HDR data of 16 f-stops with distortion below the Just-Noticeable Difference
(JND). In general, a JND is the amount that something (e.g., video data) must be
change in order for a difference to be noticeable (e.g., by the HVS). Data represented
with 10-bit accuracy can be further coded with most of the state-of-the-art video coding
solutions. This quantization is an element of lossy coding and is a source of inaccuracy
introduced to converted data.

[0079] 1t is anticipated that next generation HDR/WCG video applications will operate
with video data captured at different parameters of HDR and CG. Examples of different
configurations can be the capture of HDR video content with peak brightness up-to
1000 nits, or up-to 10,000 nits. Examples of different color gamut may include BT.709,
BT.2020 as well SMPTE specified-P3, or others.
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[0080] It is also anticipated that a single color space, e.g., a target color representation,
that incorporates (or nearly incorporates) all other currently used color gamut to be
utilized in future. One example of such a target color representation is BT.2020.
Support of a single target color representation would significantly simplify
standardization, implementation and deployment of HDR/WCG systems, since a
reduced number of operational points (e.g., number of color containers, color spaces,
color conversion algorithms, etc.) and/or a reduced number of required algorithms
should be supported by a decoder (e.g., video decoder 30).

[0081] In one example of such a system, content captured with a native color gamut
(e.g. P3 or BT.709) different from the target color representation (e.g. BT.2020) may be
converted to the target container prior to processing (e.g., prior to video encoding).
Below are several examples of such conversion:

[0082] RGB conversion from BT.709 to BT.2020 color representation:

0 R2020 = 0.627404078626 * R709 + 0.329282097415 * Groo + 0.043313797587 * B7o9

o G2020 = 0.069097233123 * R709 + 0.919541035593 * G709 + 0.011361189924 * Broo

0 B2020 = 0.016391587664 * R709 + 0.088013255546 * G709 + 0.895595009604 * B7o9

(eq. 1)
[0083] RGB conversion from P3 to BT.2020 color representation:
0 R2020 = 0.753832826496 * Rps + 0.198597635641 * Gps + 0.047569409186 * Bps

0 G2020 = 0.045744636411 * Res +0.941777687331 * Gps + 0.012478735611 * Bps

o B2020 =-0.001210377285 * Rp3s + 0.017601107390 * Gp3s + 0.983608137835 * Bps

(eq.2)
[0084] During this conversion, the value range occupied by each component (R,G,B) of
a signal captured in P3 or BT.709 color gamut may be reduced in a BT.2020
representation. Since the data is represented in floating point accuracy, there is no loss;
however, when combined with color conversion (e.g., a conversion from RGB to
YCrCB shown in equation 3 below) and quantization (example in equation 4 below),
the shrinking of the value range leads to increased quantization error for input data.

Y’ =0.2627 * R’ + 0.6780 * G’ +0.0593 * B’; Cb = = Cr= 54;21(6

1.8814
(eq.3)
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Dy = (Round ((1 « (BitDepthy —8)) * (219 Y’ + 16)))
Dep = <Round ((1 « (BitDepthe, — 8)) * (224 Cb + 128)))

De = <Round ((1 « (BitDepthgy, — 8)) * (224 * Cr + 128)))

(eq. 4)
[0085] In equation (4) Dy’ is the quantized Y’ component, Dcy is the quantized Cb and
Dcr is the quantized Cr component. The term << represents a bit-wise right shift.
BitDepthy, BitDepthcr, and BitDepthcy are the desired bit depths of the quantized
components, respectively.
[0086] In addition, in a real-world coding system, coding a signal with reduced dynamic
range may lead to significant loss of accuracy for coded chroma components and would
be observed by a viewer as coding artifacts, e.g., color mismatch and/or color bleeding.
[0087] FIG. 7 is a simplified conceptual illustration of how video preprocessor 17 may
generate unique bit sequences that represent a range of values for a color component in
a color representation, which may not be occupying the full value range of the
components in the color representation, might be translated into a range of values for a
target color. One-dimensional ranges of component values are shown, including a one-
dimensional native range of codewords 910, and a one-dimensional a target range of
codewords 920. For simplicity, and for purposes of illustration, the native range of
codewords (corresponding to range of codewords 910) in the example of FIG. 7 is
assumed to have 1024 codewords (ranging, for example, from 0 to 1023), and the target
range of codewords (corresponding to range of codewords 920) is assumed to have a
larger number of codewords, such as 2048 (ranging, for example, from 0 to 2047).
[0088] Illustrated in FIG. 7 are a number of represented values 910a in the native range
of codewords 910, where each may correspond to a component value represented in a
sample of video data in the native range of codewords 910. For simplicity in the
illustration of FIG. 7, only a few represented values 910a are shown along the range of
codewords 910, but many more values 910a in the range may be present in a typical
sample of video data. Similarly, only the corresponding component values 920a after
conversion to the target range of codewords are shown in the range of codewords 920;
in a different example, many more values 920a may be represented in the range of

codewords 920.
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[0089] In some examples, a video preprocessor may convert the unadjusted component
values 910a in the native range of codewords 910 to the adjusted values 920a of target
range of codewords 920. For purposes of illustration, such a process might be
illustrated in the manner shown in the simplified example of FIG. 7. For example, if
luma values in a native range of codewords are represented by the one-dimensional
representation 910 of values corresponding to the native range of codewords in FIG. 7,
luma values could have 1024 possible values (from O to 1023) in the native range of
codewords, with the actual sample of video data including luma values 910a. Similarly,
if those same luma values after conversion to a target range of codewords are
represented by the one-dimensional representation of codewords 920 of values
corresponding to the target range of codewords, luma values could have 2048 possible
values (0 to 2047) in the target range of codewords, with the sample of video data
including luma values 920a after conversion. Accordingly, the represented values 910a
in the range of codewords 910 may be translated, through the conversion process, to the
represented values 920a in the range of codewords 920 as shown in FIG. 7. In each
case, the values 910a in the range of codewords 910 and values 920a in the range of
codewords 920 would each be represented by a binary codeword corresponding to one
such value in the range.

[0090] In general, in the simplified example of FIG. 7, after color gamut conversion
(and dynamic range compaction by a transfer function), the converted component values
may not use all of the available codewords in the target color representation. In the
example of FIG. 7, the target range of codewords has twice as many luma codewords as
the native range of codewords. A conversion and quantization process performed on the
component values in the range of codewords 910 may in some cases result in
significantly less than all of the 2048 codewords in the range of codewords 920 being
used by the luma values after conversion, depending on the distribution of component
values in the range of codewords 910. In other words, a conversion process such as that
illustrated in FIG. 7 may inefficiently distribute the color values relative to the number
of target codewords otherwise available in the range of codewords 920, and as a result,
might not make efficient use of all possible codewords. Accordingly, the conversion
and quantization process may result in a significant loss of accuracy. This loss of
accuracy may have undesirable effects on the resulting video, including coding artifacts,

color mismatch, and/or color bleeding.
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[0091] To address the problems described above, other techniques may be considered.
One example technique includes a color gamut aware video codec. In such a technique,
a hypothetical video encoder is configured to estimate the native color gamut of the
input signal and adjust coding parameters (e.g., quantization parameters for coded
chroma components) to reduce any distortion resulting from the reduced dynamic range.
However, such a technique would not be able to recover loss of accuracy, which may
happen due to the quantization conducted in equation (4) above, since all input data is
provided to a typical codec in integer point accuracy.

[0092] This disclosure describes techniques, methods, and apparatuses to perform a
dynamic range adjustment (DRA) to compensate dynamic range changes introduced to
HDR signal representations. The dynamic range adjustment may help to prevent and/or
lessen any distortion caused, including color mismatch, color bleeding, etc. In one or
more examples of the disclosure, DRA is conducted on the values of each color
component of the target color space, e.g., YCbCr, prior to quantization at the encoder
side (e.g., by source device 12) and after the inverse quantization at the decoder side
(e.g., by destination device 14). In view of the foregoing, this disclosure proposes
signaling, through one or more SEI messages, parameters relating to performing such a
dynamic range adjustment, such parameters including information relating to scale and
offsets, partitions, global offsets, and local scale and offsets.

[0093] FIG. 8 is a block diagram illustrating an example HDR/WCG conversion
apparatus operating according to the techniques of this disclosure. In FIG. 8, solid lines
specify the data flow and dashed lines specify control signals. One or more techniques
described in this disclosure may be performed by video preprocessor 19 of source
device 12. As discussed above, video preprocessor 19 may be a separate device from
video encoder 20. In other examples, video preprocessor 19 may be incorporated into
the same device as video encoder 20.

[0094] As shown in FIG. 8, RGB native CG video data 200 is input to video
preprocessor 19. In the context of video preprocessing by video preprocessor 19, RGB
native CG video data 200 is defined by an input color representation. The input color
container specifies a set of color primaries used to represent video data 200 (e.g., BT.
709, BT. 2020, P3, etc.). In one example of the disclosure, video preprocessor 19 may
be configured to convert both the color container and the color space of RGB native CG
video data 200 to a target color container and target color space for HDR’ data 216.

Like the input color container, the target color container may specify a set or color
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primaries used to represent the HDR’ data 216. In one example of the disclosure, RGB
native CG video data 200 may be HDR/WCG video, and may have a BT.2020 or P3
color container (or any WCGQG), and be in an RGB color space. In another example,
RGB native CG video data 200 may be SDR video, and may have a BT.709 color
container. In one example, the target color container for HDR’ data 216 may have been
configured for HDR/WCG video (e.g., BT.2020 color container) and may use a color
space more optimal for video encoding (e.g., YCrCb).
[0095] In one example of the disclosure, CG converter 202 may be configured to
convert the color container of RGB native CG video data 200 from the input color
container (e.g., first color container) to the target color container (e.g., second color
container). As one example, CG converter 202 may convert RGB native CG video data
200 from a BT.709 color representation to a BT.2020 color representation, example of
which is shown below.
[0096] The process to convert RGB BT.709 samples (R709, G709, B709) to RGB BT.2020
samples (R2020, G2020, B2020) can be implemented with a two-step conversion that
involves converting first to the XYZ representation, followed by a conversion from
XYZ to RGB BT.2020 using the appropriate conversion matrices.

X =0.412391 * R709 + 0.357584 * G709 + 0.180481 * B709

Y =0.212639 * Ry09 + 0.715169 * G709 + 0.072192 * Brog (eq. 5)
Z =0.019331 * R7o9 + 0.119195 * G709 + 0.950532 * B9

[0097] Conversion from XYZ to R2020G2020B2020 (BT.2020)
R2020 = clipRGB( 1.716651 * X — 0.355671 * Y - 0.253366 * Z)

G2020 = clipRGB( -0.666684 * X + 1.616481 * Y +0.015768 * Z ) (eq. 6)
B2020 = clipRGB( 0.017640 * X - 0.042771 * Y +0.942103 * Z )

Similarly, the single step and recommended method is as follows:

R2020 = clipRGB( 0.627404078626 * R709 + 0.329282097415 * Gro9 +

0.043313797587 * B7o9)

G2020 = clipRGB( 0.069097233123 * R709 + 0.919541035593 * G709 +
0.011361189924 * B709 )

B2o2o = clipRGB( 0.016391587664 * Rz + 0.088013255546 * Groo +
0.895595009604 * B7o9 )
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(eq. 7)
[0098] The resulting video data after CG conversion is shown as RGB target CG video
data 204 in FIG. 8. In other examples of the disclosure, the color container for the input
data and the output HDR’ data may be the same. In such an example, CG converter 202
need not perform any conversion on RGB native CG video data 200.
[0099] Next, transfer function unit 206 compacts the dynamic range of RGB target CG
video data 204. Transfer function unit 206 may be configured to apply a transfer
function to compact the dynamic range in the same manner as discussed above with
reference to FIG. 4. The color conversion unit 208 converts RGB target CG color data
204 from the color space of the input color container (e.g., RGB) to the color space of
the target color container (e.g., YCrCb). As explained above with reference to FIG. 4,
color conversion unit 208 converts the compacted data into a more compact or robust
color space (e.g., a YUV or YCrCb color space) that is more suitable for compression by
a hybrid video encoder (e.g., video encoder 20).
[0100] Adjustment unit 210 is configured to perform a dynamic range adjustment
(DRA) of the color converted video data in accordance with DRA parameters derived
by DRA parameters estimation unit 212. In general, after CG conversion by CG
converter 202 and dynamic range compaction by transfer function unit 206, the actual
color values of the resulting video data may not use all available codewords (e.g.,
unique bit sequences that represent each color) allocated of a particular target color
representation. That is, in some circumstances, the conversion of RGB native CG video
data 200 from an input color representation to an output color representation may overly
compact the color values (e.g., Cr and Cb) of the video data such that the resultant
compacted video data does not make efficient use of all possible color values. As
explained above, coding a signal with a reduced range of values for the colors may lead
to a significant loss of accuracy for coded chroma components and would be observed
by a viewer as coding artifacts, e.g., color mismatch and/or color bleeding.
[0101] Adjustment unit 210 may be configured to apply DRA parameters to the color
components (e.g., YCrCb) of the video data, e.g., RGB target CG video data 204 after
dynamic range compaction and color conversion to make full use of the codewords
available for a particular target color representation. Adjustment unit 210 may apply the
DRA parameter to the video data at a pixel level. In general, the DRA parameters

define a function that expands the codewords used to represent the actual video data to
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as many of the codewords available for the target color representation as possible. Asis
further described below, the process for expanding the codewords used to represent the
actual video may include partitioning the codeword range, and applying a scale and
offset to each such partition.
[0102] In one example of the disclosure, the DRA parameters include a scale and offset
value that are applied to the components of the video data. In general, the lower the
value range of the color components of the video data, the larger a scaling factor may be
used. The offset parameter may be used to center the values of the color components to
the center of the available codewords for a target color representation. For example, if a
target color representation includes 1024 codewords per color component, an offset
value may be chosen such that the center codeword is moved to codeword 512 (e.g., the
middle most codeword). In other examples, the offset parameter may be used to provide
better mapping of input codewords to output codewords such that overall representation
in the target color representation is more efficient in combating coding artifacts.
[0103] In one example, adjustment unit 210 applies DRA parameters to video data in
the target color space (e.g., YCrCb) as follows:

- Y’ =scalel *Y’ + offsetl

- Cb’’ = scale2 *Cb’ + offset2 (eq. 8)

- Cr”’ =scale3 *Cr’ + offset3
where signal components Y’, Cb” and Cr’ is a signal produced from RGB to YCbCr
conversion (example in equation 3). Note that Y’, Cr’ and Cr’ may also be a video
signal decoded by video decoder 30. Y’’, Cb”, and Cr’’ are the color components of the
video signal after the DRA parameters have been applied to each color component. As
can be seen in the example above, each color component is related to different scale and
offset parameters. For example, scalel and offsetl are used for the Y’ component,
scale2 and offset2 are used for the Cb’ component, and scale3 and offset3 are used for
the Cr’ component. It should be understood that this is just an example. In other
examples, the same scale and offset values may be used for every color component.
[0104] As can be seen in the above example, adjustment unit 210 may apply dynamic
range adjustment parameters, such the scale and offset DRA parameters, as a linear
function. As such, it is not necessary for adjustment unit 210 to apply the DRA
parameters in the target color space after color conversion by color conversion unit 208.
This is because color conversion is itself a linear process. As such, in other examples,

adjustment unit 210 may apply the DRA parameters to the video data in the native color
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space (e.g., RGB) before any color conversion process. In this example, color
conversion unit 208 would apply color conversion after adjustment unit 210 applies the
DRA parameters.
[0105] In other examples, and as further described below in connection with FIG. 9A
through FIG. 9C, each color component may be associated with multiple scale and
offset parameters, and the range of codewords may be divided into multiple partitions.
For example, the actual distribution of chroma values for the Cr or Cb color components
may differ for different portions of codewords, and may not be uniform over the range
of codewords. In such a situation (or in other situations), it may be beneficial to divide
the range of codewords into multiple partitions, and apply a scale and offset to each
partition. One or more global offsets may be applied to some or all of the partitions.
[0106] In some examples, adjustment unit 210 may apply the DRA parameters in either
the target color space or the native color space as follows:

- Y’ =(scalel *(Y’ — offsetY) + offsetl) + offsetY;

- Cb’’ = scale2 *Cb’ + offset2 (eq. 9)

- Cr”’ =scale3 *Cr’ + offset3
In this example, the parameter scalel, scale2, scale3, offsetl, offset2, and offset3 have
the same meaning as described above. The parameter offsetY is a parameter reflecting
brightness of the signal, and can be equal to the mean value of Y’. In other examples,
an offset parameter similar to offset Y may be applied for the Cb’ and Cr’ components
to better preserve the mapping of the center value in the input and the output
representations.
[0107] In another example of the disclosure, adjustment unit 210 may be configured to
apply the DRA parameters in a color space other than the native color space or the target
color space. In general, adjustment unit 210 may be configured to apply the DRA
parameters as follows:

- X’ =scalel *(X - offsetl) + offset2 + offset3;

- Y’ = scale2 *(Y -offset4) + offsetS + offset6d (eq. 10)

- 7’ =scale3 *(Z — offset7) + offset8 + offset9
where signal components X, Y and Z are signal components in a color space which is
different from target color space, e.g., RGB or an intermediate color space. The values
X, Y, and Z may simply be variables or references to signal components, and should not

be confused with the XYZ color space.
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[0108] FIG. 9Ais a simplified conceptual illustration of how unique bit sequences that
represent a range of values for a color component in a native range of codewords might
be converted by video preprocessor 19 of FIG. 8 into a range of values for a target range
of codewords in accordance with one or more aspects of the present disclosure. One-
dimensional ranges of component values are shown in FIG. 9A, including a one-
dimensional native range of codewords 1210 corresponding to a native range of
codewords, and a one-dimensional target range of codewords 1220 that corresponds to a
target range of codewords. In a manner similar to that described in connection with
FIG. 7, for simplicity and for purposes of illustration, the range of component values for
the native range of codewords (corresponding to range 1210) in the example of FIG. 9A
is assumed to have 1024 codewords, and the range of component values for the target
range of codewords (corresponding to range of codewords 1220) is assumed to have
2048 codewords. For example, if the one-dimensional native range of codewords 1210
represents luma values, there could be 1024 possible luma values in the range of
codewords 1210 corresponding to the native range of codewords. If the one-
dimensional target range of codewords 1220 represents the luma values in the target
range of codewords, there could be 2048 possible luma values in the range of
codewords 1220 corresponding to the target range of codewords.

[0109] Illustrated in FIG. 9A are a number of represented values 1210a in the native
range of codewords 1210, which each correspond to a component value represented in a
sample of video data in the native range of codewords 1210. For simplicity in the
illustration of FIG. 9A, only a few represented values 1210a are shown in the range of
codewords 1210, but many more component values 1210a in the range of codewords
1210 may be present in a typical sample of video data.

[0110] In some cases, the values 1210a for a sample of video data might not be
uniformly spread over the range of codewords 1210, and may be concentrated in a
relatively small number of regions within the range of codewords 1210. Although the
illustration in FIG. 9A is a simplified example, such a non-uniform representation is
nevertheless apparent in FIG. 9A, because range of codewords 1210 shows a number of
component values 1210a near the ends of the range of codewords 1210, but no values
generally in the middle of the range (i.e., in the range codewords between 169 and 702).
[0111] In some examples, video preprocessor 19 may apply a global offset value to the
range of codeword values 1210 in FIG. 9A when performing dynamic range adjustment

to efficiently map unadjusted component values 1210a in the range of codeword values
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1210 to adjusted component values 1220a in the range of component values 1220. For
instance, in FIG. 9A, video preprocessor 19 may choose a first global offset value 119 in
the unadjusted range of codewords 1210, which is one of the component values 1210a
in the range of codewords 1210. Video preprocessor 19 may choose a second global
offset value to be 0, which in the example of FIG. 9A is the adjusted value in the range
of codewords 1220 that the first global offset (119) maps to when performing dynamic
range adjustment.

[0112] In some examples, there may be unadjusted component values in the range of
codewords 1210 that are less than the global offset value. In the range of codewords
1210 in FIG. 9A, there is one such component value 1210a (having a value of 60). In
some examples, video preprocessor 19 may ignore this value, particularly where the
unadjusted component value that is less than the first global offset will not have a
significant effect on the decoded video data. In other examples, any component value
1210a less than the first global offset value (119) in range of codewords 1210 may be
clipped to the first global offset value (119), or in other words, video preprocessor 19
may assume it to be equal to the first global offset value (119). In such an example,
video preprocessor 19 may modify the unadjusted value 60 prior to performing dynamic
range adjustment so that it has an unadjusted component value of 119 within range of
codewords 1210, rather than an unadjusted component value of 60.

[0113] Video preprocessor 19 may choose an appropriate scale value to be used in
conjunction with the global offset values. Accordingly, in the example of FIG. 9A,
video preprocessor 19 may use such dynamic range parameters to translate unadjusted
component values 1210a in range of codewords 1210 to values 1220a in range of
codewords 1220. In some examples, such dynamic range adjustment parameters may
be chosen so that when converting values 1210a to the range of codewords 1220,
available codewords in the range of codewords 1220 are used in an efficient manner.
For example, video preprocessor 19 may calculate a linear scale value based on
assumptions that the dynamic range adjustment will translate the first global offset
(unadjusted value 119) into the second global offset (adjusted value 0), and that the
dynamic range adjustment will translate the last unadjusted value 1210a (having an
unadjusted value of 852) in the range of code words 1210 is translated into an adjusted
value of 2047 in the range of codewords 1210. Based on such assumptions in the

simplified example of FIG. 9A, video preprocessor 19 may determine that the following
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formula can be used to translate unadjusted component values 1210a from range of
codewords 1210 into adjusted component values 1220a in the range of codewords 1220:
A1220=2.793 * (U1210-119) + 0 (eq. 11)
[0114] In the equation above, Ai220 is an adjusted component value in the range of
codewords 1220, and U210 is an unadjusted component value in the range of codewords
1210. In this formula the scale value is calculated to be 2.793, and the first global offset
value is 119, and the second global offset value is 0.
[0115] The effect of the dynamic range adjustment performed by video preprocessor 19
and illustrated in FIG. 9A is that values in the range of codewords 1210 are translated
into values in the range of codewords 1220 in a way such that that the adjusted
component values are spread within the range of codewords 1220 to effectively use
more codewords in the range of codewords 1220. In some examples, video
preprocessor 19 chooses scale and global offset values so that component values
represented in the video data (values 1210a in the range of codewords 1210), are spread
out among as many a codewords along the range of codewords 1220 as is beneficial. In
further examples, even when the bit depth and/or the codewords corresponding to
ranges 1210 and 1220 are the same, it may be possible for video preprocessor 19 to
translate values into values in the range of codewords 1220 so that the adjusted
component values are spread within the range of codewords 1220 to effectively use
more codewords in the range of codewords 1220. In some examples, one way in which
this may be possible is to map unadjusted values at or below a global offset value to the
first value in the range of codewords 1220 (e.g., map value 1210a to adjusted value 0).
[0116] FIG. 9B is another simplified conceptual illustration of how video preprocessor
19 may translate unique bit sequences that represent a range of values for a color
component in a native range of codewords into a range of values for a target range of
codewords. As in FIG. 9A, one-dimensional ranges of component values are shown in
FIG. 9B, including a one-dimensional native range of codewords 1230 corresponding to
a native range of codewords, and a one-dimensional target range of codewords 1240
that corresponds to a target range of codewords. For simplicity, and for purposes of
illustration, the range of component values for the native color representation
(corresponding to the range of codewords 1230) in the example of FIG. 9B is assumed
to have 1024 codewords, and the range of component values for the target range of
codewords (corresponding to the range of codewords 1240) is assumed to have 2048

codewords. For example, in a manner similar to FIG. 9A, if the one-dimensional native
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range of codewords 1230 represents luma values, there could be 1024 possible luma
values in the range of codewords 1230 corresponding to the native range of codewords.
If the one-dimensional target range of codewords 1240 represents the luma values in the
target range of codewords, there could be 2048 possible luma values in the range of
codewords 1240 corresponding to the target range of codewords.

[0117] Illustrated in FIG. 9B are a number of represented values 1230a in the native
range of codewords 1230, which each correspond to a component value represented in a
sample of video data in the native range of codewords 1230. For simplicity in the
illustration of FIG. 9B, only a few represented values 1230a are shown in the range of
codewords 1230, but many more component values 1230a in the range of codewords
1230 may be present in a typical sample of video data.

[0118] As illustrated in FIG. 9B, and in some examples, video preprocessor 19 may
determine that further efficiencies in performing dynamic range adjustment may be
gained by dividing the range of codewords 1230 into multiple partitions. Video
preprocessor 19 may determine scale and offset values for each partition, which video
preprocessor 19 uses to map unadjusted component values 1230a in each partition to
adjusted component values 1240a in the range of component values 1240. If video
preprocessor 19 chooses the scale and offset parameters to efficiently use the codewords
of the target range of codewords 1240, it may be possible to efficiently represent the
video data in the target range of codewords 1240, and may also result in higher quality
decoded video data.

[0119] For instance, in FIG. 9B, video preprocessor 19 divides the range of codewords
1230 into five partitions (1231, 1232, 1233, 1234, and 1235). Partition 1231
corresponds to codewords O to 118 (inclusive) in the range of codewords 1230, and
includes only one represented component value (component value 60). Partition 1232
corresponds to codewords 119 to 168, and in the simplified example of FIG. 9B, the
video sample represented by the range of codewords 1210 includes three component
values 1230a in partition 1232 (component values 119, 132, and 168). Partition 1233
corresponds to codewords 169 to 702, and the video sample represented by range of
codewords 1230 includes no component values in this range. Partition 1234
corresponds to codewords 703 to 852, and the video sample represented by range of
codewords 1230 includes three component values 1230a in this partition (component

values 703, 767, and 852). Finally, the fifth partition, partition 1235, ranges from
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codeword 853 to codeword 1023, and the video sample represented by range of
codewords 1230 includes no component values in this range.

[0120] Video preprocessor 19 chooses partitions and appropriate scale and offset values
so that performing dynamic range adjustment on the component values shown in the
range of codewords 1230 will result in using the available codewords in the range of
codewords 1240 in an efficient manner. In the example of FIG. 9B, video preprocessor
19 allocates to partitions that include values (e.g., partitions 1232 and 1234) a portion of
the range of codewords 1240, whereas video preprocessor 19 allocates to partitions
including no values (partitions 1231, 1233, 1225) no portion of the range of codewords
1240. Similarly, the size of the portion of range 1240 that video preprocessor 19
allocates to partitions depends on the size of the corresponding partition 1231, 1232,
1233, 1234, and 1235. For a larger or wider partitions on range 1230, a larger portion of
range 1240 is allocated.

[0121] Further, in some cases, as previously described in connection with FIG. 9A,
video preprocessor 19 may determine that it may be beneficial to omit or ignore certain
values in the range of codewords 1230, such as, for example, values at the extreme ends
of the range of codewords 1230. To the extent that such values may be few in number,
and/or where such values do not affect the decoded video data in a significant way,
some efficiencies may be gained by omitting such values. For instance, with respect to
partition 1211 in the example of FIG. 9B, some efficiencies may be gained if the video
preprocessor 19 ignores the single codeword having a component value of 60
represented by the video data in partition 1231, so in the example of FIG. 9B, video
preprocessor 19 does not allocate that partition 1231 any portion of the range of
codewords 1240.

[0122] Accordingly, in the example of FIG. 9B, video preprocessor 19 translates
partition 1232, which spans 50 values or codewords (119 through 168) in the range of
codewords 1230, into a partition 1242 spanning codewords O through 511 of range of
codewords 1240. Video preprocessor 19 translates partition 1234, which spans 150
codewords in the range of codewords 1230, into a partition 1244 in the range of
codewords 1240 spanning codewords 512 through 2047. As a result, the partition 1242
in the range of codewords 1240 spans 512 codewords along range of codewords 1240,
and the partition 1244 in the range of codewords 1240 spans 1536 codewords along
range of codewords 1240. The partition 1244 is therefore three times the size of
partition 1242. In the example of FIG. 9B, video preprocessor 19 may have chosen the
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partition sizes in this way because the partitions 1232 and 1234 were similarly
proportioned (i.e., partition 1234 is three times the size of partition 1232), thereby
maintaining the relative size of the partitions 1232 and 1234 when dynamic range
adjustment translates those partitions into adjusted component values within partitions
1242 and 1244 in the range of codewords 1240. In other examples, video preprocessor
19 might not maintain the proportions of partitions along range of codewords 1230 in
this manner when dynamic range adjustment is applied to values in the range of
codewords 1230 to translate those partitions to values in the range of codewords 1240.
In other examples, video preprocessor 19 may maintain the proportions of partitions
along range of codewords 1230 in a different way.
[0123] Still referring to the example of FIG. 9B, video preprocessor 19 may apply a
scale and offset value (e.g., a local scale and local offset) in a manner local to each of
the partitions in the range of codeword values 1230, to translate unadjusted component
values 1230a in those partitions to adjusted component values 1240a in partitions 1242
and 1244 along range of codewords 1240. For example, for partition 1232, video
preprocessor 19 may calculate linear scale and offset values based on assumptions that
the first unadjusted value of 119 in partition 1232 maps to an adjusted value of 0 in
partition 1242, and the last unadjusted value of 168 in partition 1232 maps to an
adjusted value of 511 in partition 1242. Based on such assumptions in the simplified
example of FIG. 9B, video preprocessor 19 may determine that the following formula
can be used to translate unadjusted component values from partition 1232 into adjusted
component values from partition 1242:

A1242=10.429 * Uiz + -1241.1 (eq. 12)
[0124] In the equation above, A1242 is an adjusted component value in partition 1242
within the range of codewords 1240, and U232 is an unadjusted component value in
partition 1232 within the range of codewords 1230. In this formula, the local scale
value for the partition 1232 is 10.429, and the local offset value for the partition 1232 is
-1241.1.
[0125] Similarly, video preprocessor 19 may calculate linear scale and offset values for
converting unadjusted component values in partition 1234 into adjusted component
values in partition 1244 based on assumptions that the first unadjusted value of 703 in
partition 1234 corresponds to an adjusted value of 512 in partition 1244, and the last
unadjusted value of 852 in partition 1234 corresponds to an adjusted value of 2047 in

partition 1244. Based on such assumptions, video preprocessor 19 may determine that
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the following formula may be used to translate unadjusted component values from
partition 1234 into adjusted component values in partition 1244:

A1244=10.302 * U234 + -6730.3 (eq. 13)
[0126] In the equation above, A1244 is an adjusted component value in partition 1244
within the range of codewords 1240, and U234 is an unadjusted component value in
partition 1234 within the range of codewords 1230. In this formula, the local scale
value for the partition 1234 1s 10.302, and the local offset value for the partition 1234 is
-6730.3.
[0127] In the example of FIG. 9B, video preprocessor 19 does not allocate to partitions
1231, 1233, and 1235 any of the range of codewords 1240, which may enable a more
efficient use of range of codewords 1240, and may allow more of the range of
codewords 1240 to be used for partitions where the video data includes more values
(e.g., partitions 1232 and 1234). In such an example, partitions 1231, 1233, and 1235
may not have any corresponding partition in the range of codewords 1240. In some
examples, video preprocessor 19 may ignore or drop any unadjusted component values
that might be included in a video data sample corresponding to partitions 1231, 1233,
and 1235. In other examples, video preprocessor 19 may map any unadjusted
component values that might be included in partitions 1231, 1233, and 1235 to an
appropriate value in one of the other partitions, or video preprocessor 19 may map such
values to a value on or near a border between partitions allocated in the range of
codewords 1240, or video preprocessor 19 may map such values to one of the two ends
of the range of codewords 1240. Alternatively, video preprocessor 19 may allocate (or
logically allocate) a small partition, or one having size of zero, and video preprocessor
19 may apply appropriate local scale and offset values for such a partition to map
unadjusted component values for such partitions into adjusted component values in the
range of codewords 1240.
[0128] The effect of the dynamic range adjustment illustrated in FIG. 9B is that video
preprocessor 19 translates values in the range of codewords 1230 into values in the
range of codewords 1240 in a way such that that the values in partitions 1232 and 1234
are spread within the range of codewords 1240 to effectively use more codewords in the
range of codewords 1240. In some examples, video preprocessor 19 chooses the local
scale and local offset values, for each partition, so that component values represented in
the video data, as represented by values 1230a in the range of codewords 1230, are

spread out among as many codewords along the range of codewords 1240 as possible.
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In some cases, such as where there are large number of values 1230a within certain
ranges, such an adjustment may be beneficial. Video preprocessor 19 performing
dynamic range adjustment in a manner similar to that described in connection with FIG.
9B in such a case may result in preventing or reducing any loss of accuracy for coded
component values, and therefore, may prevent coding artifacts (e.g., color mismatch
and/or color bleeding) from being observed by a viewer of the decoded video data.
[0129] In some examples, video preprocessor 19 may gain further efficiencies by
choosing a global offset value that may be applied to the range of codewords 1230 and
1240 in FIG. 9B, in a manner similar to that described in connection with FIG. 9A. For
instance, in FIG. 9B, video preprocessor 19 may choose a global offset value of 119, so
that any values less than 119 in the range of codewords 1210 may be assumed to be the
unadjusted value 119. In such an example, video preprocessor 19 would assume that the
unadjusted component value 60 in partition 1231 has a value of 119, rather than 60, and
would therefore be included in partition 1232. In some examples, video preprocessor
19 modifying a value before performing a dynamic range adjustment may be preferable
to ignoring the value or not performing a dynamic range adjustment on the value.
[0130] In the example of FIG. 9B, video preprocessor 19 translates the global offset
value for the unadjusted component value 119 into an adjusted component value of 0
along range of codewords 1240. The adjusted value O that corresponds to the global
offset value for the unadjusted value 119 may itself be used as a second global offset
value in a manner similar to that described in connection with FIG. 9A. This second
global offset value may be considered the adjusted value corresponding to unadjusted
value 119, or put another way, the first global offset value (unadjusted component value
in the range of codewords 1230) may map to the second global offset value (adjusted
component value in the range of codewords 1240).
[0131] The equations {12} and {13} described previously for performing a dynamic
range adjustment for values in partitions 1212 and 1214, can be rewritten in terms of
these above-described global offset values. Specifically, video preprocessor 19 may
determine a different relationship may apply to partition 1232 when one or more global
offset values are used. Accordingly, equation {12} can be rewritten as follows:
A1242=10.429 * (U232 +-119) + 0+ 0 (eq. 14)
[0132] In the equation above, A1242 is an adjusted component value in partition 1242
within the range of codewords 1240, and U232 is an unadjusted component value in

partition 1232 within the range of codewords 1230. In this formula, the (first) global
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offset value for the unadjusted component values in the range of codewords 1230 is -
119, and the (second) global offset value for the adjusted component values in the range
of codewords 1240 is 0. The scale value for the partition 1232 is 10.429, and the offset
value for the partition 1232 is 0.
[0133] Similarly, video preprocessor 19 may determine that a different relationship may
apply to partition 1234 when one or more global offset values are used. Accordingly,
equation {13} can be rewritten as follows:

A244=10.302 * (U234 + -119) + 0 + -5504.4 (eq. 15)
[0134] In the equation above, A1244 is an adjusted component value in partition 1244
within the range of codewords 1240, and U234 is an unadjusted component value in
partition 1234 within the range of codewords 1230. In this formula, the (first) global
offset value for the unadjusted component values in the range of codewords 1230 is -
119, and the (second) global offset value for the adjusted component values in the range
of codewords 1240 is 0. The scale value for the partition 1234 is 10.302, and the offset
value for the partition -5504 4.
[0135] FIG. 9C is another simplified conceptual illustration of how video preprocessor
19 may translate unique bit sequences that represent a range of values for a color
component in a native range of codewords into a range of values for a target range of
codewords. As in FIG. 9A and FIG. 9B, one-dimensional ranges of component values
are shown in FIG. 9C, including a one-dimensional native range of codewords 1250
corresponding to a native range of codewords, and a one-dimensional a target range of
codewords 1260 that corresponds to a target range of codewords. In this example, the
range of component values for the native range of codewords (corresponding to the
range of codewords 1250) is assumed to correspond to 2048 codewords, and the range
of component values for the target range of codewords (corresponding to the range of
codewords 1260) is assumed to correspond to 2048 codewords. For example, if the
one-dimensional native range of codewords 1250 represents luma values, there could be
2048 possible luma values in the range of codewords 1250 corresponding to the native
range of codewords. If the one-dimensional target range of codewords 1260 represents
the luma values in the target range of codewords, there could be 2048 possible luma
values in the range of codewords 1260 corresponding to the target range of codewords.
[0136] The example of FIG. 9C illustrates that a dynamic range adjustment performed
by video preprocessor 19 in accordance with one or more aspects of the present

disclosure may be beneficial even when the native range of codewords (corresponding
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to the range of codewords 1250 in FIG. 9C) is the same size or substantially the same
size as the target range of codewords (corresponding to the range of codewords 1260 in
FIG. 9C). Illustrated in FIG. 9C are a number of represented values 1250a in the native
range of codewords 1250. For simplicity, only a few represented values 1250a are
shown.

[0137] As illustrated in FIG. 9C, video preprocessor 19 may divide the range of
codewords 1250 into multiple partitions. Video preprocessor 19 may calculate and use
scale and offset values for each partition to map unadjusted component values 1250a in
each partition to adjusted component values 1260a in the range of component values
1260. Video preprocessor 19 may choose dynamic range adjustment parameters to
efficiently use the codewords of the target range of codewords 1260. For instance, in
FIG. 9C, video preprocessor 19 may divide the range of codewords 1250 into five
partitions (1251, 1252, 1253, 1254, and 1255). As with other examples, in the example
of FIG. 9C, video preprocessor 19 allocates a portion of the range of codewords 1260 to
those partitions that include values, whereas video preprocessor 19 might not allocate
any portion of the range of codewords 1260 to those partitions that include no values.
Similarly, video preprocessor 19 may allocate a larger portion of the range of codewords
1260 to those partitions in the range of codewords 1250 that are wider or span more
values than another partition in 1250. Further, with respect to partition 1251 in the
example of FIG. 9C, video preprocessor 19 does not allocate any portion of the range of
codewords 1260 to partition 1251, even though that partition includes a component
value of 120.

[0138] Accordingly, video preprocessor 19 in the example of FIG. 9C translates
partition 1252, which spans 100 values or codewords (238 through 337) in the range of
codewords 1250, into a partition 1262 spanning codewords O through 511 of the range
of codewords 1260. Video preprocessor 19 translates partition 1254, which spans 300
codewords in the range of codewords 1250, into a partition 1264 in the range of
codewords 1260 spanning codewords 512 through 2047.

[0139] Still referring to the example of FIG. 9C, video preprocessor 19 may calculate
and apply a scale and offset value, in a manner local to each of the partitions in the
range of codeword values 1250, to translate unadjusted component values in those
partitions to adjusted component values in partitions 1262 and 1264 along range of
codewords 1260. For example, for partition 1252, video preprocessor 19 may calculate

linear scale and offset values based on assumptions that the first unadjusted value of 238
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in partition 1252 maps to an adjusted value of 0 in partition 1262, and the last
unadjusted value of 337 in partition 1252 maps to an adjusted value of 511 in partition
1262. Based on such assumptions in the simplified example of FIG. 9C, video
preprocessor 19 may determine that following relationship may be used to translate
unadjusted component values from partition 1212 into adjusted component values from
partition 1222:
A6 =5.162 * (Unasa +-238) + 0 + 0 (eq. 16)

[0140] In the equation above, A1262 1s an adjusted component value in partition 1262
within the range of codewords 1260, and U122 is an unadjusted component value in
partition 1252 within the range of codewords 1250. In this formula, the (first) global
offset value is -238, and the (second) global offset value is 0. The local scale value for
the partition 1252 1s 5.162, and the local offset value for the partition 1252 is 0.
[0141] Similarly, video preprocessor 19 may calculate linear scale and offset values for
converting unadjusted component values in partition 1254 into adjusted component
values in partition 1264 based on assumptions that the first unadjusted value of 1406 in
partition 1254 corresponds to an adjusted value of 512 in partition 1264, and the last
unadjusted value of 1705 in partition 1254 corresponds to an adjusted value of 2047 in
partition 1264. Based on such assumptions, video preprocessor 19 may determine that
the following relationship may be used to translate unadjusted component values from
partition 1254 into adjusted component values in partition 1264:

Al264 = 5.134 * (Unass + -238) + 0 +-5484.5 (eq. 17)
[0142] In the equation above, A1264 1s an adjusted component value in partition 1264
within the range of codewords 1260, and Ui2s4 is an unadjusted component value in
partition 1254 within the range of codewords 1250. In this formula, the (first) global
offset value is -238, and the (second) global offset value is 0. The local scale value for
the partition 1254 1s 5.134, and the local offset value for the partition 1254 is -5484.5.
[0143] Again, the effect of the dynamic range adjustment illustrated in FIG. 9C is that
video preprocessor 19 translates values in the range of codewords 1250 into values in
the range of codewords 1260 in a way such that that the values in partitions 1252 and
1254 are spread within the range of codewords 1260 to effectively use more codewords
of the range of codewords 1260. In some examples, video preprocessor 19 performing
dynamic range adjustment in a manner similar to that described in connection with FIG.

9C may result in preventing or reducing any loss of accuracy for coded component
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values, and therefore, may prevent coding artifacts (e.g., color mismatch and/or color
bleeding) from being observed by a viewer of the decoded video data.

[0144] As further described below, and in accordance with one or more aspects of the
present disclosure, one or more new SEI messages may include parameters and/or
information relating to performing the dynamic range adjustment described above. The
dynamic range adjustment parameters or information may be generated by the video
preprocessor 19, and encoded by the video decoder 30 as an SEI message. Such SEI
messages may include information sufficient to enable video decoder 30 and/or video
postprocessor 31 to perform the inverse of the dynamic range adjustment to reconstruct
the video data.

[0145] In other examples of the disclosure, adjustment unit 210 may be configured to
apply a linear transfer function to the video to perform DRA. Such a transfer function
may be different from the transfer function used by transfer function unit 206 to
compact the dynamic range. Similar to the scale and offset terms defined above, the
transfer function applied by adjustment unit 210 may be used to expand and center the
color values to the available codewords in a target color representation. An example of

applying a transfer function to perform DRA is shown below:

- Y’ =TF2(Y’)
- Cb” =TF2 (Cb’)
- Cr’ =TF2 (Cr’)

Term TF2 specifies the transfer function applied by adjustment unit 210. In some
embodiments the adjustment unit may apply different transfer functions to each of the
components.
[0146] In another example of the disclosure, adjustment unit 210 may be configured to
apply the DRA parameters jointly with the color conversion of color conversion unit
208 in a single process. That is, the linear functions of adjustment unit 210 and color
conversion unit 208 may be combined. An example of a combined application, where
f1 and {2 are a combination of the RGB to YCbCr matrix and the DRA scaling factors,
is shown below:
B -Y" Cr = R —Y'

1 2
[0147] In another example of the disclosure, after applying the DRA parameters,

Cb =

adjustment unit 210 may be configured to perform a clipping process to prevent the

video data from having values outside the range of codewords specified for a certain
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target color representation. In some circumstances, the scale and offset parameters
applied by adjustment unit 210 may cause some color component values to exceed the
range of allowable codewords. In this case, adjustment unit 210 may be configured to
clip the values of the components that exceed the range to the maximum value in the
range.

[0148] The DRA parameters applied by adjustment unit 210 may be determined by
DRA parameters estimation unit 212. The frequency and the time instances at which the
DRA parameters estimation unit 212 updates the DRA parameters is flexible. For
example, DRA parameters estimation unit 212 may update the DRA parameters on a
temporal level. That is, new DRA parameters may be determined for a group of pictures
(GOP), or a single picture (frame). In this example, the RGB native CG video data 200
may be a GOP or a single picture. In other examples, DRA parameters estimation unit
212 may update the DRA parameters on a spatial level, e.g., at the slice tile, or block
level. In this context, a block of video data may be a macroblock, coding tree unit
(CTU), coding unit, or any other size and shape of block. A block may be square,
rectangular, or any other shape. Accordingly, the DRA parameters may be used for
more efficient temporal and spatial prediction and coding.

[0149] In other examples of the disclosure, DRA parameters estimation unit 212 may be
configured to derive values for DRA parameters so as to minimize certain cost functions
associated with preprocessing and/or encoding video data. As one example, DRA
parameters estimation unit 212 may be configured to estimate DRA parameters that
minimized quantization errors introduced by quantization unit 214 (e.g., see equation
(4)) above. DRA parameters estimation unit 212 may minimize such an error by
performing quantization error tests on video data that has had different sets of DRA
parameters applied. In another example, DRA parameters estimation unit 212 may be
configured to estimate DRA parameters that minimize the quantization errors introduced
by quantization unit 214 in a perceptual manner. DRA parameters estimation unit 212
may minimize such an error based on perceptual error tests on video data that has had
different sets of DRA parameters applied. DRA parameters estimation unit 212 may
then select the DRA parameters that produced the lowest quantization error.

[0150] In another example, DRA parameters estimation unit 212 may select DRA
parameters that minimize a cost function associated with both the DRA performed by
adjustment unit 210 and the video encoding performed by video encoder 20. For

example, DRA parameters estimation unit 212 may perform DRA and encode the video
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data with multiple different sets of DRA parameters. DRA parameters estimation unit
212 may then calculate a cost function for each set of DRA parameters by forming a
weighted sum of the bitrate resulting from DRA and video encoding, as well as the
distortion introduced by these two lossy process. DRA parameters estimation unit 212
may then select the set of DRA parameters that minimizes the cost function.
[0151] In each of the above techniques for DRA parameter estimation, DRA parameters
estimation unit 212 may determine the DRA parameters separately for each component
using information regarding that component. In other examples, DRA parameters
estimation unit 212 may determine the DRA parameters using cross-component
information. For example, the DRA parameters derived for a Cr component may be
used to derive DRA parameters for a Cb component.
[0152] In video coding schemes utilizing weighted prediction, a sample of currently
coded picture Sc are predicted from a sample (for single directional prediction) of the
reference picture Sr taken with a weight (Wwp) and an offset (Owp) which results in
predicted sample Sp:
Sp=Sr-* Wyp + Owp.

[0153] In some examples utilizing DRA, samples of the reference and currently coded
picture can be processed with DRA employing different parameters, namely { scalelcur,
offsetlcur } for a current picture and { scalelrr, offsetl rr } for a reference picture. In
such embodiments, parameters of weighted prediction can be derived from DRA, e.g

Wup = scalelcur / scalelrer

Owp = offsetlcur - offset]rer
[0154] After adjustment unit 210 applies the DRA parameters, video preprocessor 19
may then quantize the video data using quantization unit 214. Quantization unit 214
may operate in the same manner as described above with reference to FIG. 4. After
quantization, the video data is now adjusted in the target color space and target
primaries of the target color container of HDR’ data 216. HDR’ data 216 may then be
sent to video encoder 20 for compression.
[0155] FIG. 10 is a block diagram illustrating an example HDR/WCG inverse
conversion apparatus according to the techniques of this disclosure. As shown in FIG.
10, video postprocessor 31 may be configured to apply the inverse of the techniques
performed by video preprocessor 19 of FIG. 8. In other examples, the techniques of

video postprocessor 31 may be incorporated in, and performed by, video decoder 30.
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[0156] In one example, video decoder 30 may be configured to decode the video data
encoded by video encoder 20. The decoded video data (HDR’ data 316 in the target
color container) is then forwarded to video postprocessor 31. Inverse quantization unit
314 performs an inverse quantization process on HDR’ data 316 to reverse the
quantization process performed by quantization unit 214 of FIG. 8.

[0157] Video decoder 30 may also be configured to decode and send any of the one or
more syntax elements produced by DRA parameters estimation unit 212 of FIG. 10 to
DRA parameters derivation unit 312 of video postprocessor 31. DRA parameters
derivation unit 312 may be configured to determine the DRA parameters based on one
or more syntax elements or SEI messages, in accordance with one or more aspects of
the present disclosure. In some examples, the one or more syntax elements or SEI
messages may indicate the DRA parameters explicitly. In other examples, DRA
parameters derivation unit 312 is configured to derive some (or all) of the DRA
parameters using information from syntax elements or SEI messages, and/or using the
same techniques used by DRA parameters estimation unit 212 of FIG. 10.

[0158] The parameters derived by DRA parameters derivation unit 312 may be sent to
inverse adjustment unit 310. Inverse adjustment unit 310 uses the DRA parameters to
perform the inverse of the linear DRA adjustment performed by adjustment unit 210.
Inverse adjustment unit 310 may apply the inverse of any of the adjustment techniques
described above for adjustment unit 210. In addition, as with adjustment unit 210,
inverse adjustment unit 310 may apply the inverse DRA before or after any inverse
color conversion. As such, inverse adjustment unit 310 may apply the DRA parameter
on the video data in the target color representation or the native color representation. In
some examples, the inverse adjustment unit may also be applied before the inverse
quantization unit.

[0159] Inverse color conversion unit 308 converts the video data from the target color
space (e.g., YCbCr) to the native color space (e.g., RGB). Inverse transfer function 306
then applies an inverse of the transfer function applied by transfer function 206 to
uncompact the dynamic range of the video data. The resulting video data (RGB target
CG 304) is still represented using the target primaries, but is now in the native dynamic
range and native color space. Next, inverse CG converter 302 converts RGB target CG
304 to the native color gamut to reconstruct RGB native CG 300.

[0160] In some examples, additional postprocessing techniques may be employed by

video postprocessor 31. Applying the DRA may put the video outside its actual native
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color gamut. The quantization steps performed by quantization unit 214 and inverse
quantization unit 314, as well as the up and down-sampling techniques performed by
adjustment unit 210 and inverse adjustment unit 310, may contribute to the resultant
color values in the native color representation being outside the native color gamut.
When the native color gamut is known (or the actual smallest content primaries, if
signaled, as described above), then additional process can be applied to RGB native CG
video data 304 to transform color values (e.g., RGB or Cb and Cr) back into the
intended gamut as postprocessing for DRA. In other examples, such postprocessing
may be applied after the quantization or after DRA application.

[0161] According to one or more aspects of the present disclosure, and as further
described below, video decoder 30 may receive one or more SEI messages that indicate
parameters and/or information that relate to the dynamic range adjustment performed by
video preprocessor 19. Video decoder 30 may parse and/or decode the information, and
act upon it and/or pass that information to video postprocessor 31. Such SEI messages
may include information sufficient to enable video decoder 30 and/or video
postprocessor 31 to perform the inverse of the dynamic range adjustment to reconstruct
the video data.

[0162] In addition to deriving DRA parameters or DRA adjustment information, video
preprocessor 19 (e.g., DRA parameters estimation unit 212) or video encoder 20 of FIG.
8 may be configured to signal the DRA parameters in an encoded bitstream or by other
means such as a different channel. DRA parameters derivation unit 312 or video
decoder 30 of FIG. 10 may be configured to receive such signaling in the encoded
bitstream or from other means such as a different channel. DRA parameters estimation
unit 212 may signal one or more syntax elements that indicate the DRA parameters
directly, or may be configured to provide the one or more syntax elements to video
encoder 20 for signaling. Such syntax elements of the parameters may be signaled in
the bitstream such that video decoder 30 and/or video postprocessor 31 may perform the
inverse of the process of video preprocessor 19 to reconstruct the video data in its native
color representation.

[0163] One way in which video encoder 20 or video preprocessor 19 may signal the
DRA adjustment parameters or DRA adjustment information is through an SEI message.
Supplemental Enhancement Information (SEI) messages have been used for a number
of purposes and may be included in video bitstreams, typically to carry information that

are not essential in order to decode the bitstream by the decoder. This information may



WO 2017/053280 PCT/US2016/052640
45

be useful in improving the display or processing of the decoded output; e.g., such
information could be used by decoder-side entities to improve the viewability of the
content. It is also possible that certain application standards could mandate the presence
of such SEI messages in the bitstream so that the improvement in quality can be brought
to all devices that conform to the application standard (the carriage of the frame-packing
SEI message for frame-compatible plano-stereoscopic 3DTV video format, where the
SEI message is carried for every frame of the video, e.g., as described in ETSI - TS 101
547-2, Digital Video Broadcasting (DVB) Plano-stereoscopic 3DTV; Part 2: Frame
compatible plano-stereoscopic 3DTYV, handling of recovery point SEI message, e.g., as
described in 3GPP TS 26.114 v13.0.0, 3rd Generation Partnership Project; Technical
Specification Group Services and System Aspects; [P Multimedia Subsystem (IMS);
Multimedia Telephony; Media handling and interaction (Release 13), or use of pan-scan
scan rectangle SEI message in DVB, e.g., as described in ETSI — TS 101 154, Digital
Video Broadcasting (DVB), Specification for the use of Video and Audio Coding in
Broadcasting Applications based on the MPEG-2 Transport Stream.

[0164] A number of SEI messages that have been used may be deficient in one or more
ways for signaling dynamic range adjustment parameters in accordance with one or
more aspects of the present disclosure.

[0165] For example, one SEI message is a tone-mapping information SEI message,
which is used to map luma samples, or each of RGB component samples. Different
values of tone_map id are used to define different purposes, and the syntax of the tone-
map SEI message is also modified accordingly. For example, a value of 1 for the

tone map_id allows a processor acting on the SEI message to clip the RGB samples to a
minimum and a maximum value. A value of 3 for the tone map id allows or indicates
that a look-up table will be signaled in the form of pivot points. However, when
applied, the same values are applied to all RGB components, or only applied to the luma
component.

[0166] Another example is the knee function SEI message, which is used to indicate the
mapping of the RGB components of the decoded pictures in the normalized linear
domain. The input and output maximum luminance values are also indicated, and a
look-up table maps the input luminance values to the output luminance values. The
same look-up table may be applied to all the three color components.

[0167] The color remapping information (CRI) SEI message, which is defined in the

HEVC standard, is used to convey information that is used to map pictures in one color
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space to another. FIG. 11 shows a typical structure of the color remapping information
process used by the CRI SEI message. In one example, the syntax of the CRI SEI
message includes three parts: a first look-up table (Pre-LUT) 1302, followed by a 3x3
matrix indicating color remapping coefficients 1304, and followed by a second look-up
table (Post-LUT) 1306. For each color component, e.g., R,G,B or Y,Cb,Cr, an
independent Pre-LUT is defined, and also an independent Post-LUT is defined. The
CRI SEI message also includes a syntax element called colour remap _id, different
values of which may be used to indicate different purposes of the SEI message.

[0168] In another example, the dynamic range adjustment (DRA) SEI message, has
been described in D. Bugdayci Sansli, A. K. Ramasubramonian, D. Rusanovskyy, S.
Lee, J. Sole, M. Karczewicz, Dynamic range adjustment SEI message, m36330, MPEG
meeting, Warsaw, Poland, 22 — 26 June, 2015. An example DRA SEI message includes
signaling of one set of scale and offset numbers to map the input samples. The SEI
message also allows the signaling of different look-up tables for different components,
and also allows for signaling optimization when the same scale and offset are to be used
for more than one component. The scale and offset numbers may be signaled in fixed
length accuracy.

[0169] This section lists several problems that are associated with the color remapping
information SEI message and other SEI messages related to scaling or mapping video
content. The SEI messages described in the previous paragraphs have one or more of
the following deficiencies:

[0170] There are several problems associated with the tone-mapping SEI message, the
knee function SEI message, and the CRI SEI message. For example, the tone-mapping
information SEI syntax does not allow indication, or provide any indication, of scaling
for chroma components Cb and Cr. Further the number of bits needed to indicate the
look-up table pivot points and other syntax elements (e.g., in the CRI SEI message) is
more than what may be necessary, and may be inefficient. When the SEI message is to
be signaled more frequently, e.g. every frame, it may be beneficial that the SEI message
be simple and consume fewer bits. Further, many SEI messages (e.g., tone-mapping
information, knee function SEI message) have same look up table applied for all three
color components when applicable. Still further, the dynamic range adjustment SEI
message only signals one scale and one offset for each component.

[0171] In view of the foregoing, and as further described below, this disclosure

proposes signaling, through one or more new SEI messages, parameters and/or
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information relating to performing dynamic range adjustment described above. The
dynamic range adjustment parameters or information may be used by the video decoder
30 and/or video postprocessor 31 to perform the inverse of the dynamic range
adjustment to reconstruct the video data. In some examples, the DRA parameters or
DRA information may be signaled explicitly. For example, the one or more SEI
messages may include the various global offset, local offset, partition, and scale
information.

[0172] Accordingly, in some examples, video encoder 20 may receive dynamic range
adjustment parameters or information from video preprocessor 19, and may signal one
or more SEI messages that include various dynamic range adjustment parameters or
dynamic range adjustment information. Such information may include global offset,
local offset, partition, and scale parameters, or information that is sufficient to derive
such parameters or information, or is otherwise sufficient to describe how the dynamic
range adjustment was applied to the video data. Decoder 30 may receive one or more of
such SEI messages, parse and/or decode the information in the SEI messages, and act
upon such information and/or pass the information to the video postprocessor 31.
[0173] In some examples, video encoder 20 may signal one or more SEI messages that
include global offset values, including, for each component, a first offset value that
determines a first unadjusted component value below which all component values are
clipped to the first component value before applying dynamic range adjustment as
described in this disclosure. Decoder 30 may receive one or more of such SEI
messages, parse and/or decode the information in the SEI messages, and pass the
information to the video postprocessor 31.

[0174] In some examples, for each component, video encoder 20 may signal one or
more SEI messages that include a second offset value that specifies the adjusted value to
which the first offset value maps to after dynamic range adjustment. Video decoder 30
may receive such SEI messages, parse and/or decode the information, and pass that
information to video postprocessor 31.

[0175] In another example, neither the first global offset value nor the second global
offset value is signaled in a SEI message. Instead, decoder 30 assumes that the values
of the first global offset and the second global offset is a constant, predetermined, or
signaled value that the decoder 30 either determines per sequence or receives by
external means. In another example, video encoder 20 signals the first global offset

value in an SEI message, but the second global offset value is not signaled in a SEI
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message. Instead, video decoder 30 infers that its value is a constant, predetermined, or
signaled value that decoder 30 either determines per sequence or received by external
means. In a still further example, video encoder 20 signals the second global offset
value in an SEI message, but the first global offset value is not signaled in a SEI
message. Instead, video decoder 30 infers that the first global offset value is a constant,
predetermined, or signaled value that decoder 30 either determines per sequence or
received by external means.

[0176] In some examples, video encoder 20 may signal offset values that are received
by decoder 30, and are used by decoder 30 to derive other global or local parameters,
including both global and local scale and offset values, as well as partitions of a range of
unadjusted values, and partitions of a range of adjusted values.

[0177] In some examples, video encoder 20 may signal one or more SEI messages that
include the number of partitions that the range of input representation values (i.e.,
component values) were divided into during dynamic range adjustment. In one
example, the number of partitions may be constrained to be a power of 2 (i.e. 1, 2, 4, 8,
16, etc.) and the number of partitions is signaled as logarithm (e.g. 8 partitions is
signaled as 3 =logz 8). Video decoder 30 may receive such SEI messages, parse and/or
decode the information, and pass that information to video postprocessor 31.

[0178] In some examples, the number of partitions for the chroma components may be
different from the number of partitions for the luma component. The number of
partitions may be constrained to be a power of 2 + 1 and signaled as logarithm and
rounding towards minus 0. In this way, pixels with neutral chroma can have their own
values and the size of that partition can be smaller than the other partitions. In such an
example, neutral chroma may refer to values of chroma around the mid-value (e.g., O
when the chroma values range between -0.5 and 0.5, or between -512 and 511 in a 10-
bit representation). Constraining the number of partitions as a power of 2 may enable
the encoder 20 to save bits, because encoder 20 may be able to represent the log of a
value with fewer bits than the actual value for integer values. Constraining the number
of partitions to a power of 2 + 1 may ensure that at least one partition may be dedicated
to the neutral chroma values, and in some examples, the width of the partition
corresponding to the neutral chroma values may be smaller than the rest. In other
examples, such a partition may be larger than one or more of the other partitions.

[0179] In some examples, decoder 30 may use the signaled number of partitions to

derive other global or local parameters, including both global and local scale and offset
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values, as well as the actual size of the partitions of a range of unadjusted component
values and/or the size of the partitions of a range of adjusted component values.

[0180] In some examples, encoder 20 may signal one or more SEI messages that may
include, for each partition, a local scale and local offset value specifying a range of the
input component values and the corresponding mapped output component values. In
some examples, encoder 20 may signal an SEI message that includes the number of bits
used by the syntax elements to signal the scale and offsets. In other examples, encoder
20 may signal an SEI message that indicates the number of bits that are used to
represent the fractional part of the scale and offsets in the syntax elements. In other
examples, encoder 20 may signal one or more SEI messages or syntax elements that
indicate that the integer part of the scale parameters is signaled in a signed
representation. In some examples, the signed representation is two’s complement. In
other examples, the signed representation is signed magnitude representation. Video
decoder 30 may receive such SEI messages and/or syntax elements, parse and/or decode
the information, and pass that information to video postprocessor 31.

[0181] In other examples, encoder 20 may use each offset value successively to first
compute the range of adjusted component or representation values, and then using the
scale value, compute the corresponding range in the unadjusted representation. For
example, one offset value may be used to compute the range of a first partition in the
adjusted component using the value of a global offset value derived or signaled for the
adjusted component, followed by using the scale value and the range of a first partition
of the adjusted representation to derive the range in the corresponding partition of the
unadjusted representation and with the respective ranges of the first partition of the
adjusted and the corresponding partition of the unadjusted representations, derive a
respective value derived for the first partition of the adjusted range and the
corresponding partition of unadjusted representations that indicate a boundary of the
partitions. Following this, another offset value may be used to compute the range of a
second partition in the adjusted component using the boundary value of the first
partition in the adjusted component derived in the previous step, followed by using the
scale value and the range of a second partition of the adjusted representation to derive
the range of the unadjusted representation, and with the respective ranges of the second
partitions of the adjusted representation and corresponding partition of the unadjusted
representations, a respective value is derived for the partitions in the adjusted and

unadjusted representations that indicate a boundary of the respective representations.
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This method may be repeated until all the ranges and boundaries are derived for all the
partitions in the adjusted and unadjusted representations. In another example, encoder
20 may use each offset value successively to first compute the range of unadjusted
component or representation values, and then using the scale value, compute the
corresponding range in the adjusted representation. In other words, the component or
representation to which the scale and offset values are applied could be swapped
between unadjusted and adjusted representations.

[0182] In some examples, the number of bits used by the syntax elements to signal scale
and offset values may depend on the component. In other examples, a default number
of bits is defined and used when these numbers are not explicitly signaled.

[0183] In some examples, encoder 20 may signal a syntax element indicating whether
the length of the partitions of the output representations (i.e., output components) are
equal. In such an example, encoder 20 might not signal the offset value for one or more
partitions. Decoder 30 may infer the offset values to be equal in some examples. In
another example, decoder 30 may assume the partitions are of equal length and may not
receive a syntax element so indicating. In some examples, decoder 30 may derive the
size of each partition from signaled syntax elements and predefined total dynamical
range of the representation.

[0184] In other examples, rather than signaling pivot points for each partition as well as
scale and offset values for each partition, video encoder 20 may signal one or more SEI
messages that indicate derivative or scale value for each partition along with the size of
one or more or all partitions. This approach may allow encoder 20 to avoid signaling
local offset values for each partition. Instead, in some examples, encoder 20 may be
able to signal, in one or more SEI messages, the partition size and scale value (or
derivative) for one or more partitions. The local offset value for each partition or
partitioning (which may require higher accuracy) may be determined or derived by
decoder 30.

[0185] In some examples, encoder 20 may signal one or more SEI messages that
indicate a mode value that specifies several default values for offset and scale values for
certain partitions. Video decoder 30 may receive such SEI messages, parse and/or
decode the information, and pass that information to video postprocessor 31.

[0186] In some examples, encoder 20 may signal one or more SEI messages that
indicate a value defining the persistence of the SEI message such that the persistence of

a subset of the components may be defined and component scale values of a subset of
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the components may be updated. The persistence of an SEI message indicates the
pictures to which the values signaled in the instance of the SEI may apply. In some
examples, the persistence of the SEI message is defined such that the values signaled in
one instance of SEI messages may apply correspondingly to the all components of the
pictures to which the SEI message applies. In other examples, the persistence of the SEI
message is defined such that the values signaled in one instance of the SEI may be
indicated to apply correspondingly to a subset of the components wherein the
components to which the values in the instance of the SEI does not apply may either
have no values applicable or may have values applicable that are signaled in another
instance of the SEI message. Video decoder 30 may receive such SEI messages, parse
and/or decode the information, and pass that information to video postprocessor 31.
[0187] In some examples, encoder 20 may signal one or more SEI messages that
include syntax elements indicating the postprocessing steps to be performed to the
decoded output. Each syntax element may be associated with a particular process (e.g.
scaling components, color transforms, up-sampling/down-sampling filters, etc.) and
each value of the syntax element may specify that a particular set of parameters
associated with the process be used. In some examples, the parameters associated with
the process are signaled by video encoder 20 using SEI messages that are part of the
bitstream or as metadata that may be transmitted through other means. Video decoder
30 may receive such SEI messages, parse and/or decode the information, and pass that
information to video postprocessor 31.

[0188] In some examples, encoder 20 may signal syntax elements or one or more SEI
messages that may be used for describing and/or constructing a piece-wise linear model
function for mapping input representations (i.e., input component values) to output
representations (i.e., output component values). Video decoder 30 may receive such
SEI messages, parse and/or decode the information, and pass that information to video
postprocessor 31. In other examples, predefined assumptions may be used for
describing and/or constructing a piece-wise linear model function for mapping input
representations to the output representation.

[0189] In some examples, encoder 20 may signal one or more SEI messages that may
include one or more syntax elements indicating that the scale and offset parameters
signaled in the SEI message represent the variation of the scale to be applied to a first

component as a function of different values of a second component.
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[0190] In some examples, encoder 20 may signal one or more SEI messages indicating
offset parameters that are to be or may be applied along with the scale on a first
component as a function of different values of a second component. In some examples,
encoder 20 may signal one or more SEI messages that may include one or more
additional syntax elements that indicating offset parameters that are to be or may be
applied along with the scale on a first component as a function of different values of a
second component. Video decoder 30 may receive such SEI messages, parse and/or
decode the information, and pass that information to video postprocessor 31.

[0191] In some examples, encoder 20 may signal one or more SEI messages including a
first syntax element that indicates a first set of electro-optical transfer function
characteristics such that the signaled scale, offset and other dynamic range adjustment
parameters the SEI message are applied when the electro-optical transfer function
characteristics used on the decoder-side are similar to that first set of electro-optical
transfer function characteristics.

[0192] In another example, encoder 20 may signal one or more SEI messages indicating
that the signaled offset, scale and other dynamic range parameters in the SEI message(s)
are to be applied for best reconstruction of the HDR output when the first set of electro-
optical transfer function characteristics, or those with similar characteristics, are used by
the decoder 30. Video decoder 30 may receive such SEI messages, parse and/or decode
the information, and pass that information to video postprocessor 31.

[0193] In another example, encoder 20 may signal one or more SEI messages indicating
that a first set of opto-electronic transfer function characteristics, and the signaled scale,
offset and other dynamic range adjustment parameters are applied on by decoder 30
when the corresponding inverse electro-optical transfer function characteristics are
applied at the decoder side. Video decoder 30 may receive such SEI messages, parse
and/or decode the information, and pass that information to video postprocessor 31.
[0194] In other examples, encoder 20 may signal a condition such that when more than
one SEI message is present indicating different set of electro-optical/opto-electronic
characteristics and applicable the current picture, only one SEI message is applied. The
encoder may signal different set of electro-optical/opto-electronic characteristics to
satisfy different types of decoders, or decoders with different capabilities. For example,
some displays at the decoder side may apply the PT EOTF to convert the coded
component values in an appropriate domain to linear light, whereas other displays, e.g.

legacy displays, may apply the gamma EOTF to convert to linear light. Each SEI with a
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particular characteristic that the encoder sends may be appropriate or beneficial for
certain types of displays and not for other types of displays, e.g. an SEI message with
PQ EOTF characteristics may be suitable for displays that apply PQ EOTF to convert
the coded video to linear light. The decoder 30 determines which SEI message is to be
applied, and makes such a choice based on the application standard, based on the end-
user device, based on a signal received, or based on another indication received through
external means. For example, decoder 30 may determine that the first syntax element in
a first SEI message that applies to a current picture indicates that the SEI message is to
be applied with the inverse of PQ OETF and the first syntax element in a second SEI
message that applies to a current picture indicates that the SEI message is to be applied
with another transfer function (such as BBC, or PH), the decoder 30 or end-user device
may choose to apply the parameters in the first SEI message because the device uses PQ
EOTF. In some examples, an application standard to which the decoder conforms to
may specify that an SEI message with a particular set of characteristics is to be used.
[0195] In other examples, encoder 20 may signal an SEI message that carries the
parameters corresponding to multiple sets of transfer characteristics. In other examples,
encoder 20 may signal different SEI messages for that purpose. Video decoder 30 may
receive such SEI messages, parse and/or decode the information, and pass that
information to video postprocessor 31

[0196] In some examples, encoder 20 may signal one or more SEI messages that
include a syntax element indicating the applicability of the SEI message. The
applicability of the SEI message may include, but is not limited to (1) the components to
which the scales and offsets apply, (2) the position at which the component scaling is
applied, and/or (3) whether additional scaling parameters are signaled.

[0197] As described, encoder 20 may signal one or more SEI messages that include a
syntax element indicating the components to which the scales and offsets apply. The
following lists several examples of such an application. For example, one value of the
syntax element could indicate that signaled parameters for the first component index are
to be applied to the RGB components. Another value may indicate that the signaled
parameters for the first component index is to be applied to luma component, and those
for the second and third indices are to be applied to the Cb and Cr components. Another
value may indicate that the signaled parameters for the first component index is to be
applied to R, G and B components, and those for the second and third indices are to be

applied to the Cb and Cr components. Another value may indicate that signaled
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parameters for first three indices are applied to luma, Cb and Cr components, and that
corresponding to the remaining indices are applied for color correction. Video decoder
30 may receive such SEI messages, parse and/or decode the information, and pass that
information to video postprocessor 31.

[0198] Also as described, encoder 20 may signal one or more SEI messages including a
syntax element indicating the position at which the component scaling is applied.
Several processes occur on the decoder-side, after decoding of the video, and in the
video postprocessor 31. Signaling of syntax element indicating the position at which the
process associated with the SEI is to be applied, in other words indication of any subset
of the preceding or succeeding operations of the process associated with using the
information in the SEI, would be helpful to the video decoder 30 or the video
postprocessor 31 to process the video. For example, such a syntax element could
indicate the position at which the component scaling is applied, for example to YCbCr
components before or after upsampling. In another example, the syntax element could
indicate that the component scaling is applied before the quantization to the decoder
side. Video decoder 30 may receive such SEI messages, parse and/or decode the
information, and pass that information to video postprocessor 31.

[0199] Also as described, encoder 20 may signal one or more SEI messages that include
a syntax element indicating whether an additional set of scaling and parameters, e.g. for
color correction, are signaled. The additional set of parameters could be used for color
correction to map the color components to fit a particular color gamut, or for correction
of component values when a different transfer function is applied than that indicated by
the transfer characteristics syntax element in the VUL

[0200] In other examples, encoder 20 may signal different syntax elements to indicate
the above aspects; e.g. one syntax element to indicate which component(s) the SEI
applies to, one syntax element to indicate whether it applies to HDR-compatible of
SDR-compatible content, and one syntax element to indicate the position(s) where the
component scaling SEI message is to be applied.

[0201] When the number of components to which the component scaling SEI message
parameters are applied is more than one, encoder 20 may signal one or more SEI
messages that include a syntax element indicating that application of scale and offset
parameters may be done sequentially based on the index of the component. For
example, the mapping based on the scale and offset parameters of the first component

may be applied, and then the mapping of the second component, which for example
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uses scale and offset signaled for the second component, may depend on the values of
the first component. In some examples, this is indicated by, for example, by syntax
element specifying that the mapped values of the first component should be used. Video
decoder 30 may receive such SEI messages, parse and/or decode the information, and
pass that information to video postprocessor 31.

[0202] In another example, video encoder 20 may constrain the values signaled in one
or more SEI messages, or in the bitstream, in such a way that an HDR 10 receiver can
decode and show a viewable HDR video even if the SEI postprocessing is not applied.
The SEI message(s) may include a syntax element to indicate that this is the case (e.g.,
that the bitstream is an HDR 10 backward compatible bitstream).

[0203] This section includes several examples that use techniques disclosed in
accordance with one or more aspects of the present disclosure.

Example 1

[0204] In this example 1, the component scaling function is signaled as a look-up table
and the number of bits used to signal the points defining the look up table are also
signaled. For sample values that do not have explicit points signaled, the value is
interpolated based on the neighboring pivot points.

Syntax of the component scaling SEI message

component_scale info( payloadSize ) { Descriptor
comp_scale id ue(v)
comp_scale cancel flag u(1)

if( 'comp_scale cancel flag) {

comp_scale persistence flag u(1)
comp scale num_comps_minusl ue(v)
comp_scale input_bit_depth ue(v)
comp_scale output bit _depth ue(v)

for( ¢ =0; c <=comp_scale num_comps minusl; c++) {

comp _scale num_points minusl| ¢ ] ue(v)

for(1=0;1 <= comp_scale num_points minusl| c ]; i++) {

comp _scale input point[ c ][ 1] u(v)

comp_scale output point[ ¢ ][ 1] u(v)
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}

Semantics of the component scaling SEI message
The component scaling SEI message provides information to perform scaling operations
on the various components of the decoded pictures. The colour space and the components
on which the scaling operations should be performed are determined by the value of the
syntax elements signalled in the SEI message.
comp_scale id contains an identifying number that may be used to identify the purpose
of the component scaling SEI message. The value of comp_scale_id shall be in the range
of 0 to 2% — 2, inclusive. The value of comp scale id may be used to specify the colour
space at which the component scaling SEI message, or whether the component scaling
SEI message is applied in the linear or the non-linear domain.
Values of comp_scale id from 0 to 255, inclusive, and from 512 to 2°! — 1, inclusive,
may be used as determined by the application. Values of comp_scale id from 256 to 511,
inclusive, and from 2°! to 232 — 2, inclusive, are reserved for future use by ITU-T |
ISO/IEC. Decoders shall ignore all component scale information SEI messages
containing a value of comp_scale id in the range of 256 to 511, inclusive, or in the range
of 231 to 2°2 — 2, inclusive, and bitstreams shall not contain such values.
NOTE 1 — The comp_scale id can be used to support component scaling processes
that are suitable for different display scenarios. For example, different values of
comp_scale id may correspond to different display bit depths or different colour
spaces in which the scaling is applied.
Alternatively, the comp_scale id may also be used to identify whether the scaling is
performed for compatibility to certain types of displays or decoder, e.g. HDR, SDR.
comp_scale cancel flag equal to 1 indicates that the component scaling information SEI
message cancels the persistence of any previous component information SEI messages in
output order that applies to the current layer. comp scale cancel flag equal to 0 indicates
that component scaling information follows.
comp_scale persistence flag specifies the persistence of the component scaling

information SEI message for the current layer.
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comp_scale persistence flag equal to O specifies that the component scaling information

applies to the current decoded picture only.

Let picA be the current picture. comp_scale persistence flag equal to 1 specifies that the

component scaling information persists for the current layer in output order until any of

the following conditions are true:

— A new CLVS of the current layer begins.

—  The bitstream ends.

— A picture picB in the current layer in an access unit containing a component scaling
information SEI message with the same value of comp_scale id and applicable to the
current layer 1s output for which PicOrderCnt( picB) is greater than
PicOrderCnt( picA ), where PicOrderCnt( picB ) and PicOrderCnt( picA ) are the
PicOrderCntVal values of picB and picA, respectively, immediately after the
invocation of the decoding process for picture order count for picB.

comp _scale num_comps_minusl plus 1 specifies the number of components for which

the component scaling function is specified. comp_scale num comps minusl shall be in

the range of 0 to 2, inclusive.

When comp scale num comps minusl is less than 2 and the component scaling

parameters of the c-th component is not signalled, are inferred to be equal to those of the

(c — 1)-th component.

Alternatively, when comp_scale num_comps minusl is less than 2, and the component

scaling parameters of the c-th component is not signalled, the component scaling

parameters of the c—th component are inferred to be equal to default values such that
effectively there is no scaling of that component.

Alternatively, the inference of the component scaling parameters may be specified based

on the colour space on which the SEI message is applied.

- When the colour space is YCbCr, and comp scale num comps minusl is equal
to 1, the component scaling parameters apply to both Cb and Cr components.

- When the colour space is YCbCr, and comp scale num comps minusl is equal
to 2, the first and second component scaling parameters apply to Cb and Cr
components.

In one alternative, the different inference is specified based on the value of comp scale id

or on the basis of an explicit syntax element.

Alternatively, a constraint is added as follows:
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It 1is constraint for bitstream conformance that the value of
comp_scale num_comps minusl shall be the same for all the component scaling
SEI message with a given value of comp_scale id within a CLVS.
comp_scale input_bit_depth _minus8 plus 8 specifies the number of bits used to signal
the syntax element comp scale input point[ ¢ ][ 1]. The value of
comp_scale input_bit depth minus8 shall be in the range of 0 to 8, inclusive.
When component scaling SEI message is applied to an input that is in a normalized
floating point representation in the range 0.0 to 1.0, the SEI message refers to the
hypothetical result of a quantization operation performed to convert the input video to a
converted video representation with bit depth equal to
colour_remap input bit depth minus8 + 8.
When component scaling SEI message is applied to a input that has a bit depth not equal
to the comp scale input bit depth minus8 + 8, the SEI message refers to the
hypothetical result of a transcoding operation performed to convert the input video
representation to a converted video representation with bit depth equal to
colour_remap input bit depth minus8 + 8.
comp_scale output_bit_depth_minus8 plus 8 specifies the number of bits used to
signal the syntax element comp scale output point[ ¢ ][1]. The wvalue of
comp_scale output bit depth minus8 shall be in the range of 0 to 8, inclusive.
When component scaling SEI message is applied to an input that is in floating point
representation, the SEI message refers to the hypothetical result of an inverse quantization
operation performed to convert the video representation with a bit depth equal to
colour remap output bit depth minus8 + 8 that is obtained after processing of the
component scaling SEI message to a floating point representation in the range 0.0 to 1.0.
Alternatively, the number of bits used to signal comp scale input point[ c][1] and
comp_scale output point[ ¢ J[1] are signalled as comp scale input bit depth and
comp_scale output bit depth, respectively, or in other words without subtracting 8.
comp_scale num_points_minusl1[ c ] plus 1 specifies the number of pivot points used
to define the component scaling function. comp _scale num_points minusl|[ ¢ ] shall be
in the range of 0 to (1 << Min(comp scale input bit depth minus8 + 8,
comp_scale output bit depth minus8 + 8) ) — 1, inclusive.
comp_scale input_point[ c ][ i ] specifies the i-th pivot point of the c-th component of
the input picture. The value of comp scale input point[ ¢ ][ 1 ] shall be in the range of 0

to (1 << comp_scale input bit depth minus8[ c] + 8 ) — 1, inclusive. The value of
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comp_scale input point[ ¢ ][1] shall be greater than or equal to the value of
comp_scale input pointfc][t — 1], for 1 in the range of 1 to
comp_scale points_minusl[ ¢ ], inclusive.
comp_scale output point[ ¢ ][ 1 ] specifies the i-th pivot point of the c-th component of
the output picture. The value of comp scale output point[ ¢ ][ 1 ] shall be in the range
of 1to( 1 << comp scale output bit depth minus8[ ¢ ] +8)—1, inclusive. The value
of comp scale output point[ ¢ ][ 1] shall be greater than or equal to the value of
comp_scale output pointfc][1 — 1], for 1 in the range of 1 to
comp_scale points_minusl[ ¢ ], inclusive.
The process of mapping an input signal representation x and an output signal
representation y, where the sample values for both input and output are in the range of 0
to (1 << comp_scale input bit depth minus8[c] + 8) — 1, inclusive, and O to
(1 << comp_scale output bit depth minus8[ ¢ ] + 8 ) — 1, inclusive, respectively, is
specified as follows:
if( x <= comp_ scale input point[c][0])
y =comp_scale output point[ ¢ ][ 0]
else if( x > comp_scale input point[ ¢ ][ comp scale input point minusl[c]])
y =comp_scale output point[ ¢ ][ comp_scale output point minusl|c] ]
else
for(1=1;1 <= comp_scale output point minusl[c ];i++)
if( comp scale input point[i—1]<x && x <=

comp_scale input point[i])

y =(( comp_scale output point[ ¢ ][1]— comp scale output point[ c][1— 1]

)+

( comp_scale input point[ ¢ ][1] — comp scale input point[c][1—1])) *
(x —comp_scale input point[c][1—1])+
( comp_scale output point[c][1—1])
[0205] In one alternative, input and output pivot points comp scale input point[ ¢ ][ 1 ]
and comp_scale output point[ ¢ ][ 1 ] are coded as difference of adjacent values; e.g.,
delta_comp scale input point[ ][ ] and delta comp scale output point[ ][ ], and the

syntax elements are coded using exponential Golomb codes.



WO 2017/053280 PCT/US2016/052640
60

In another alternative, the process of mapping an input and output representation value
is specified by other interpolation methods including, but not limited to, splines and
cubic interpolation.

Example 2

[0206] This Example 2 shows a different syntax structure compared to the SEI syntax
structure described in Example 1. In this syntax structure, the mapping function is
described in terms of scales and offsets instead of pivot points.

Syntax of the component scaling SEI message

component_scale info( payloadSize ) { Descriptor
comp_scale id ue(v)
comp_scale cancel flag u(l)

if( 'comp_scale cancel flag) {

comp_scale persistence flag u(l)
comp_scale num_comps ue(v)
comp_scale input_bit_depth ue(v)
comp_scale output bit _depth ue(v)
comp_scale bit_depth_scale val ue(v)
comp _scale log2 denom_scale val ue(v)

for( ¢ =0; c <comp scale num comps; ct+ ) {

comp _scale num_points minusl| ¢ ] ue(v)
comp_scale global offset input val[ c | u(v)
comp_scale global offset output val[ c | u(v)

for(1=0;1 < comp_scale num_points minusl| c ]; i++) {

comp scale offset val[c][1] u(v)

comp scale val[c][1] u(v)
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comp_scale bit_depth_scale val specifies the number of bits used to signal the syntax
element comp_scale val[ ¢ ][1]. The value of comp scale bit depth scale val shall be
in the range of 0 to 24, inclusive.
comp_scale log2 denom_scale val specifies the base 2 denominator of the scale value.
The value of comp scale log2 denom scale val shall be in the range of 0 to 16,
inclusive.
comp_scale global offset_input_val[ c ] plus 1 specifies the input sample value below
which all the input representation values are clipped to
CompScaleOffsetOutputVal[ ¢ ][ 0 ]. used to define the component scaling function.
comp_scale num_points minusl[¢] shall be in the range of O to
(1 << comp_scale input bit depth) — 1, inclusive. The number of bits used to
represent comp_scale global offset input val[ ¢ ]is comp_scale input bit depth.
comp_scale global offset output val[ c ] plus 1 specifies the output sample value to
which all the input representation values below comp scale global offset input val[ ¢ ]
are to be clipped. comp scale num_points minusl[ ¢ ] shall be in the range of O to
(1 << comp_scale output bit_depth) — 1, inclusive. The number of bits used to
represent comp_scale global offset output val[ ¢ ]is comp scale output bit depth.
comp_scale num_points_minusl1[ c ] plus 1 specifies the number of pivot points used
to define the component scaling function. comp _scale num_points minusl|[ ¢ ] shall be
in the range of 0 to (1 << Min(comp_scale input bit_depth,
comp_scale output bit depth) — 1, inclusive.
The process of mapping an input signal representation x and an output signal
representation y, where the sample values for both input representation is in the range of
0to (1 << comp scale input bit depth) — 1, inclusive, and output representation is in
the range of and 0 to (1 << comp scale output bit depth) — 1, inclusive, is specified as
follows:
if( x <= CompScaleOffsetlnputVal[ c][ 0 ])
y = CompScaleOffsetOutputVal[ ¢ ][ 0 ]
else if( x > CompScaleOffsetlnputVal[ ¢ ][ comp scale output point minusl ])
y = CompScaleOffsetOutputVal[ ¢ ][ comp_scale output point minusl ]
else
for(1=1;1 <= comp_scale output point minusl; i++)
if( CompScaleOffsetlnputVal[1— 1 ] <x && x <=
CompScaleOffsetlnputVal[ i ])
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y=(x-
CompScaleOffsetInputVal[i —1 ]+ (comp_scale val[c][1] +
CompScaleOffsetOutputVal[ ¢ ][ 1]
comp_scale offset val[ c ][ 1] specifies the offset value of the i-th sample value region
of the c-th component. The number of bits used to represent comp scale offset val[ ¢ ]
is equal to comp_scale input bit depth.
comp_scale val[ c ][ 1 ] specifies the scale value of the i-th sample value region point of
the c-th component. The number of bits used to represent comp scale val[ ¢ ] is equal to
comp_scale bit depth scale val.
The variables CompScaleOffsetOutputVal[ ¢ ][ 1 ] and
CompScaleOffsetInputVal[ ¢ ][ i ] for i in the range of 0 to
comp_scale num_points_minusl[ ¢ ], inclusive, is derived as follows:
roundingOffset = (comp scale log2 denom scale val == 0)?0: (1 <<
comp_scale log2 denom_ scale val — 1)
for(1=0;1<=comp_scale num_points minusl[ ¢ ]; i++)
if(i ==0)
CompScaleOffsetOutputVal[ ¢ J[1] =
comp_scale global offset output val[ ¢ ]
CompScaleOffsetlnputVal[ c ][1] =
comp_scale global offset input val[ ¢ ]
else
CompScaleOffsetOutputVal[ ¢ ][ 1 ] = CompScaleOffsetOutputVal[ ¢ ][ 1 —
1]+
(comp _scale offset val[c][1—1]* comp scale val[c][1i—1]
+ roundingOffset ) >>
comp_scale log2 denom_ scale val

CompScaleOffsetInputVal[ ¢ ][ i ] = CompScaleOffsetlnputVal[ ¢ J[1— 1 ]

comp_scale offset val[c][i—1]
In one alternative, comp scale offset val[ ¢ ][ 1] is used to directly calculate
CompScaleOffsetOutputVal[ ][ 1 ] and indirectly calculate
CompScaleOffsetInputVal[ ][ 1 ] for 1 in the range of O to

comp_scale num_points minusl1[ ¢ ] as follows:
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for(1=0;1<comp scale num_points minusl[ c [, i++)
if(i ==0)
CompScaleOffsetOutputVal[ ¢ J[1] =
comp_scale global offset output val[ ¢ ]
CompScaleOffsetlnputVal[ c ][1] =
comp_scale global offset input val[ ¢ ]
else

CompScaleOffsetInputVal[ ¢ ][ i ] = CompScaleOffsetlnputVal[ ¢ J[1— 1 ]

(comp scale offset val[c][1—1]*
comp_scale val[c][1—1]
+ roundingOffset ) >>
comp_scale log2 denom_scale val )
CompScaleOffsetOutputVal[ ¢ ][ 1 ] = CompScaleOffsetOutputVal[ ¢ ][ 1 —
1]+
comp_scale offset val[c][i—1]
In one alternative, comp scale offset val[ ¢ ][ 1] for1 in the range of O to
comp_scale num_points minusl[ ¢ ], inclusive, are not signaled, and the values of
comp_scale offset val[ c ][ 1] are derived based on
comp_scale num_points minusl[ ¢ ] equally spaced intervals for which the scale is
specified. The value of comp scale offset val[ ¢ ][ 1] for i in the range of O to
comp_scale num_points minusl| ¢ ] — 1, inclusive, is derived as follows:
comp_scale offset val[c][1]=((1 <<comp scale output bit depth)—
comp_scale global offset output val[c])~+

comp_scale num_points minusl[ ¢ ]
In another alternative, comp_scale offset val[ ¢ ][ 1 ] for i in the range of O to
comp_scale num_points minusl1[ ¢ ] is calculated as follows:
comp_scale offset val[c][1]=(1 <<comp scale output bit depth )+
comp_scale num_points minusl[c ]+
In one alternative, instead of signaling comp scale num_points minusl[ ¢ ], the
number of pivot points is signaled using log2 comp_scale num_points[ ¢ |, where
(1 << log2 comp scale num_points| ¢ | ) specifies the number of pivot points for the

c-th component.
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Alternatively, each of comp scale offset val[ ¢ ][ ] and comp scale val[ c ][ ]is
signaled as floating point numbers, or as two syntax elements with exponent and
mantissa.

In another alternative, signaling of comp scale val[ ¢ ][ 1] is replaced by
comp_scale output point[ ¢ ][ 1 ].

The semantics of rest of the syntax elements are similar to those described in Example
1.

Example 3

[0207] This method described in Example 3 is similar to one of the alternatives
described in Example 2, with the exception that the component scaling functions are
allowed to be updated independently.

Syntax of the component scaling SEI message

component_scale info( payloadSize ) { Descriptor
comp_scale id ue(v)
comp_scale cancel flag u(l)

if( 'comp scale cancel flag) {

comp_scale persistence flag u(l)
comp scale num_comps ue(v)
comp_scale input_bit_depth ue(v)
comp_scale output bit_depth ue(v)

for( c=0; c <comp scale num comps; ct++) {

comp_scale persist component flag[ c | u(1)

if( 'comp_scale persist component flag[ ¢ ])

comp scale num_scale regions]| c | ue(v)
comp_scale global offset input val[ c | u(v)
comp_scale global offset output val[ c | u(v)

for(i=0;1 < comp scale num scale regions[ ¢ |; i++ ) {

comp scale offset val[ c][1] u(v)

comp scale val[c][1] u(v)
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}

Semantics of the component scaling SEI message

The semantics is similar to Example 2, except for the following syntax elements.

comp _scale num_scale regions| ¢ | specifies the number of regions for which the
syntax element comp scale val[c][1] is signalled for the c-the component.
comp_scale num_scale regions[ ¢] shall be in the range of 0 to (I <<
comp_scale input bit depth) — 1, inclusive.

comp_scale persist component flag[ ¢ ] equal to O specifies that component scaling
parameters for the c-th component are explicitly signalled in the SEI message.
comp_scale persist component flag[ ¢ ] equal to 1 specifies that component scaling
parameters for the c-th component are not explicitly signalled in the SEI message, and it
persists from the component scaling parameters of the c-th component of the component
scaling SEI message that applies to previous picture, in output order.

It is a requirement of bitstream conformance that when the component scaling SEI
message 1s present in an IRAP  access unit, the value of
comp_scale persist component flag[ ¢ ], when present, shall be equal to 0.
Alternatively, the following condition is added:

It is a requirement of bitstream conformance that when the component scaling SEI
message is present in an access unit that is not an IRAP access unit and
comp_scale persist component flag[ ¢ ] is equal to 1, then there is at least one picture
that precedes the current picture in output order and succeeds, in output order, the
previous IRAP picture in decoding order, inclusive, such that the one picture is associated
with a component scaling SEI message with comp scale persistence flag equal to 1.
comp_scale persistence flag specifies the persistence of the component scaling
information SEI message for the current layer.

comp_scale persistence flag equal to O specifies that the component scaling information
applies to the current decoded picture only.

Let picA be the current picture comp_scale persistence flag equal to 1 specifies that the
component scaling information of the c-th component persists for the current layer in
output order until any of the following conditions are true:

— A new CLVS of the current layer begins.

—  The bitstream ends.

— A picture picB in the current layer in an access unit containing a component scaling

information SEI message with the same value of comp scale id and
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comp_scale persist component flag[ ¢ ] equal to 0, and applicable to the current

layer is output for which PicOrderCnt( picB ) is greater than PicOrderCnt( picA ),
where PicOrderCnt( picB ) and PicOrderCnt( picA ) are the PicOrderCntVal values

of picB and picA, respectively, immediately after the invocation of the decoding

process for picture order count for picB.

Example 4

[0208] In this Example 4, a different method to signal the scale regions is disclosed.

Changes to component scaling SEI message syntax

component scale info( payloadSize ) { Descriptor
comp_scale id ue(v)
comp_scale cancel flag u(1)
if( 'comp_scale cancel flag) {
comp_scale persistence flag u(1)
comp_scale num_comps ue(v)
comp_scale input_bit_depth ue(v)
comp_scale output bit_depth ue(v)
for(c=0; c <comp scale num comps; ct++ ) {
comp_scale persist component_flag| c | u(1)
if( 'comp scale persist component flag[ ¢ ])
comp_scale global offset input val[ ¢ ] u(v)
comp_scale global offset output val[ c | u(v)
comp_scale num_scale regions| ¢ | ue(v)
for(i=0;1 < comp scale num scale regions[ ¢ |;i++ ) {
comp_scale offset _begin val[ c ][ 1] u(v)
comp_scale offset end val[ c][1] u(v)
comp scale val[c][1] u(v)
}
}
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Changes to component scaling SEI message semantics

The semantics of the syntax elements are similar to those described in previous
examples, except for the following:

comp_scale offset_begin val[ ¢ ][ 1 ] specifies the beginning of the sample value range
for which the scale value comp_scale val[ ¢ ][ i ] is applicable. The number of bits used
to represent comp scale offset begin val[ ¢ ] is equal to comp_scale input bit depth.
comp scale offset_end val[ c ][ 1] specifies the end of the sample value range for
which the scale value comp_scale val[ c ][ 1] is applicable. The number of bits used to
represent comp_scale offset end wval[ ¢ ] is equal to comp_scale input_bit depth.

For regions that are not explicitly specified by comp scale offset begin val and
comp_scale offset end val, the comp scale value[ ¢ ][ 1] for those regions is inferred
to be equal to 0.

[0209] Alternatively, comp scale offset end wval[ ¢ ][ 1] 1is not signaled and instead the
difference between comp scale offset end val[ ¢ ][ 1] and
comp_scale offset begin val[ ¢ ][ i]is signaled, and the value of
comp_scale offset end val[ ¢ ][ 1] derived at the decoder-side.

[0210] In another alternative, the total number of regions in to which the output sample
range is split is specified, and the number of regions is signaled for which the scale

regions are explicitly signaled.

u(v)

comp_scale global offset output val[ c | u(v)
comp_scale tot scale regions| c | ue(v)
comp scale num_scale regions]| c | ue(v)
for(i=0;1 < comp scale num scale regions[ ¢ |; i++ ) {

comp_scale region idx[c][1] u(v)

comp scale val[c][1] u(v)
}

comp_scale tot scale regions| c | specifies the total number of equal length sample
value ranges in to which the sample values are split. The number of bits used to represent
comp_scale tot scale regions| ¢ ]is equal to comp_scale input bit depth.

In one alternative, the comp_scale tot scale regions| ¢ ] sample value ranges may not be



WO 2017/053280 PCT/US2016/052640
68

exactly equal in length but very nearly equal to account for the integer accuracy of the
region lengths.

comp_scale region_idx[ c ][ i ] specifies the index of the sample value range for which
the scale value comp scale val[ c ][ 1] is applied. The length of the syntax element
comp_scale region idx[ ¢ ] is Ceil( Log2( comp scale tot scale regions| ¢ ] ) ) bits.
Alternatives

Alternatively, region around the chroma neutral (511 for 10-bit data) have smaller size,

p.e., half the size of the other regions.

Example §

Syntax of the component scale SEI message

component_scale info( payloadSize ) { Descriptor
comp_scale id ue(v)
comp_scale cancel flag u(l)

if( 'comp_scale cancel flag) {

comp_scale persistence flag u(l)
comp_scale scale bit depth u(4)
comp_scale offset bit depth u(4)
comp_scale scale frac bit depth u(4)
comp_scale offset frac bit depth u(4)
comp scale num_comps_minusl ue(v)

for( ¢ =0; c <=comp_scale num_comps minusl; c++) {

comp scale num_ranges| c | ue(v)
comp_scale equal ranges flag[ c | u(l)
comp_scale global offset val[ c | u(v)

for(1=0;1 <= comp_scale num_ranges| c |; i++)

comp _scale scale val[c][1] u(v)

if( !comp_scale equal ranges[c ]) u(v)

for(1=0;1 <= comp_scale num_ranges| c |; i++)

comp scale offset val[c][1] u(v)
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Semantics of the component scale SEI message
The component scaling SEI message provides information to perform scaling operations
on the various components of the decoded pictures. The colour space and the
components on which the scaling operations should be performed are determined by the
value of the syntax elements signalled in the SEI message.
comp_scale id contains an identifying number that may be used to identify the purpose
of the component scaling SEI message. The value of comp scale id shall be in the
range of 0 to 2% — 2, inclusive. The value of comp scale id may be used to specify the
colour space at which the component scaling SEI message, or whether the component
scaling SEI message is applied in the linear or the non-linear domain.
In some examples, comp_scale id can specify the configuration of the HDR
reconstruction process. In some examples, particular value of comp scale id may be
associated with signaling of scaling parameters for 3 components. The scaling of the
first components to be applied to samples of R’,G’,B’ color space, and parameters of
following 2 components are applied for scaling of Cr and Cb.
For yet another comp_scale_id value, hdr reconstruction process can utilize parameters
for 3 components, and scaling is applied to samples of Luma, Cr and Cb color
components.
In yet another comp_scale id value, hdr reconstruction process can utilize signaling for
4 components, 3 of which to be applied to Luma, Cr and Cb scaling, and 4th component
to bring parameters of color correction.
In some examples, certain range of comp scale id values may be associated with HDR
reconstruction conducted in SDR-backward compatible configuration, whereas another
range of comp_scale id values may be associated with HDR reconstruction conducted
to non-backward compatible configuration.
Values of comp_scale_id from 0 to 255, inclusive, and from 512 to 2°! — 1, inclusive,
may be used as determined by the application. Values of comp_scale id from 256 to
511, inclusive, and from 23! to 2°2 — 2, inclusive, are reserved for future use by ITU-T |
ISO/IEC. Decoders shall ignore all component scale information SEI messages
containing a value of comp_scale id in the range of 256 to 511, inclusive, or in the
range of 2°! to 2°2 — 2, inclusive, and bitstreams shall not contain such values.

NOTE 1 — The comp_scale id can be used to support component scaling processes

that are suitable for different display scenarios. For example, different values of
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comp_scale id may correspond to different display bit depths or different colour
spaces in which the scaling is applied.

Alternatively, the comp_scale id may also be used to identify whether the scaling is

performed for compatibility to certain types of displays or decoder, e.g. HDR, SDR.

comp _scale cancel flag equal to 1 indicates that the component scaling information

SEI message cancels the persistence of any previous component information SEI

messages in output order that applies to the current layer. comp scale cancel flag equal

to 0 indicates that component scaling information follows.

comp_scale persistence flag specifies the persistence of the component scaling

information SEI message for the current layer.

comp_scale persistence flag equal to O specifies that the component scaling

information applies to the current decoded picture only.

Let picA be the current picture. comp_scale persistence flag equal to 1 specifies that

the component scaling information persists for the current layer in output order until any

of the following conditions are true:

— A new CLVS of the current layer begins.

—  The bitstream ends.

— A picture picB in the current layer in an access unit containing a component scaling
information SEI message with the same value of comp_scale id and applicable to the
current layer 1s output for which PicOrderCnt( picB) is greater than
PicOrderCnt( picA ), where PicOrderCnt( picB ) and PicOrderCnt( picA ) are the
PicOrderCntVal values of picB and picA, respectively, immediately after the
invocation of the decoding process for picture order count for picB.

comp_scale scale bit depth specifies the number of bits used to signal the syntax

element comp_scale scale val[ ¢ ][1]. The value of comp scale scale bit depth shall
be in the range of 0 to 15, inclusive.

comp_scale offset_bit depth specifies the number of bits used to signal the syntax

elements comp scale global offset val[ ¢ ] and comp scale offset val[ ¢ ][1]. The

value of comp scale offset bit depth shall be in the range of O to 15, inclusive.
comp_scale scale frac_bit_depth specifies the number of LSBs used to indicate the
fractional part of the scale parameter of the i-th partition of the c-th component. The
value of comp scale scale frac bit depth shall be in the range of O to 15, inclusive.

The value of comp_scale scale frac bit depth shall be less than or equal to the value of

comp_scale scale bit depth.
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comp_scale offset frac bit_depth specifies the number of LSBs used to indicate the
fractional part of the offset parameter of the i-th partition of the c-th component and
global offset of the c-th component. The value of comp_scale offset frac bit depth
shall be in the range of 0 to 15, inclusive. The value of
comp_scale offset frac bit depth shall be less than or equal to the value of
comp_scale offset bit depth.
comp scale num_comps_minusl plus 1 specifies the number of components for
which the component scaling function is specified. comp scale num_comps_minusl
shall be in the range of 0 to 2, inclusive.
comp_scale num_ranges| c | specifies the number of ranges in to which the output
sample range is partitioned in to. The value of comp scale num_ranges[ ¢ | shall be in
the range of 0 to 63, inclusive..
comp scale equal _ranges flag[ c | equal to 1 indicates that that output sample range
is partitioned into comp scale num_ranges| ¢ ] nearly equal partitions, and the partition
widths are not explicitly signalled. comp_scale equal ranges flag[ ¢ ] equal to O
indicates that that output sample range may be partitioned into
comp_scale num_ranges| ¢ | partitions not all of which are of the same size, and the
partitions widths are explicitly signalled.
comp_scale_global offset val[ c | is used to derive the offset value that is used to map
the smallest value of the valid input data range for the c-th component. The length of
comp_scale global offset val[ ¢ ]is comp scale offset bit depth bits.
comp_scale scale val[ c ][ 1 ] is used to derive the offset value that is used to derive
the width of the of the i-th partition of the c-th component. The length of
comp_scale global offset val[ ¢ ]is comp scale offset bit depth bits.
The variable CompScaleScaleVal[ ¢ ][ 1 ] is derived as follows :
CompScaleScaleVal[ c ][ 1 ]=( comp scale scale val[c][1] >>
comp_scale scale frac bit depth )+
(comp scale scale val[c][1]&
((1 << comp scale scale frac bit depth)—1)
) =
(1 << comp_scale scale frac bit depth)
comp_scale offset val[ c ][ 1] is used to derive the offset value that is used to derive
the width of the of the i-th partition of the c-th component. The length of

comp_scale global offset val[ ¢ ]is comp scale offset bit depth bits.
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When comp_scale offset val[ ¢ ][ 1 ] is signalled, the value of
CompScaleOffsetVal[ ¢ ][ 1 ] is derived as follows:
CompScaleOffsetVal[ ¢ ][ 1] =( comp scale offset val[c][1] >>
comp_scale offset frac bit depth )+
(comp scale offset val[c][1]&
((1 << comp scale offset frac bit depth )—1)
) =
(1 << comp_scale offset frac bit depth )
Alternatively, the variable CompScaleScaleVal[ ¢ ][ 1 ] and CompScaleOffsetVal[ ¢ ][ 1 ]
are derived as follows :
CompScaleScaleVal[ c ][ 1 ] = comp scale scale val[c][1]+
(1 << comp_scale scale frac bit depth)
CompScaleOffsetVal[ ¢ ][ 1] =comp scale offset val[c][1]+
(1 << comp_scale offset frac bit depth )
When comp scale equal ranges flag[ ¢ ]is equal to 1, comp_scale offset val[ c ][ 1]1is
not signalled, and the value of CompScaleOffsetVal[ ¢ ][ 1 ] is derived as follows:
CompScaleOffsetVal[ ¢ ][1] =1+ comp_scale num_ranges| ¢ ]
The variable CompScaleOutputRanges| ¢ ][ 1 ] and CompScaleOutputRanges[ ¢ ][ 1 ] for
11in the range of 0 to comp_scale num_ranges| c ] is derived as follows:
for(1=0;1<=comp_scale num_ranges[ ¢ |; i++)
if(i ==0)
CompScaleOutputRanges[ ¢ ][ 1 ] = comp _scale global offset val[c ]+
(1 << comp_scale offset frac bit depth )
CompScalelnputRanges[ ¢ J[1] =0
else
CompScalelnputRanges| ¢ ][ i | = CompScaleOffsetlnputRanges[ c ][ 1 —
1]+
(CompScaleOffsetVal[ c J[1-1]*
CompScaleScaleVal[ c J[1—-1]
CompScaleOutputRanges[ ¢ ][ 1 ] = CompScaleOutputRanges[ c J[[1— 1]+
CompScaleOffsetVal[ c][1—-1]
In one alternative, the wvalues of CompScaleOutputRanges[ ][] and

CompScaleOutputRanges| ][ ] are derived as follows:
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for(1=0;1<=comp_scale num_ranges[ ¢ |; i++)
if(i ==0)
CompScalelnputRanges| ¢ ][ i ] = comp_scale global offset val[ ¢ ]+
(1 << comp_scale offset frac bit depth )
CompScaleOutputRanges[ ¢ J[1]=0
else
CompScalelnputRanges| ¢ ][ i | = CompScaleOffsetlnputRanges[ c ][ 1 —
1]+
(CompScaleOffsetVal[ c J[1-1]*
CompScaleScaleVal[ c J[1—-1]
CompScaleOutputRanges[ ¢ ][ 1 ] = CompScaleOutputRanges[ c J[[1— 1]+
CompScaleOffsetVal[ c][1—-1]
The process of mapping an input signal representation (which may be used to cover both
integer as well as floating point) x and an output signal representation y, where the sample
values for both input representation is normalized in the range of 0 to 1, and output
representation is in the range of and O to 1, is specified as follows:
if( x <= CompScalelnputRanges[ c][ 0 ])
y = CompScaleOutputRanges[ ¢ ][ 0 ]
else if( x > CompScalelnputRanges[ ¢ ][ comp scale num ranges[ ¢ ]])
y = CompScaleOutputRanges| ¢ ][ comp_scale num_ranges[ ¢ |; ]
else
for(1=1;1 <= comp_scale num_ranges| ¢ |; i++)
if( CompScalelnputRanges[1— 1 ] <x && x <=
CompScalelnputRanges[ i ] )
y=(x-
CompScalelnputRanges[ 1 —1]) ~ comp _scale val[c][1] +
CompScaleOutputRanges[ ¢ J[1—1 ]
In one alternative, the value of CompScaleOutputRanges[ ¢ ][ 0] is set based on the
permitted sample value range.
Alternatively, the process of mapping an input value valln to output value valOut is
defined as follows:
m_pAtfRangeln[ 0 ] =0;
m_pAtfRangeOut[ 0 ]| = —m_offset2 *m_pAtfScale2[c][0];

for (int j = 1; j <m_atfNumberRanges + 1; j++)



WO 2017/053280 PCT/US2016/052640
74

m_pAtfRangeln[ j ] = m_pAtfRangeln[j — 1] + m_pAtfDelta[j —
1];
m_pAtfRangeOut[ j ] = m_pAtfRangeOut[j — 1] +
m_pAtfScale2[c][j-1]*
m_pAtfDelta[ j— 1 ];
}
for (int j = 0; ) < numRanges && skip == 0; j++)
{
if (valln <=pAtfRangeln[j+11])
{
valOut = (valln — pOffset[companant][j]) *
pScale[ componant ][] ];
skip = 1;

]

In one alternative, m_offset2 is equal to comp_scale global offset val[ ¢ |00
(1 << comp_scale offset frac bit depth ), m pAtfScale[ ¢][ 1] is equal to
CompScaleScaleVal[ c ][ 1 ] and m_pAtfDelta[ i ] is equal to
CompScaleOffsetVal[ ¢ ][ 1 ] for the c-th component, and pScale and pOffset are scale
and offset parameter derived from m_AtfScale and m_pAtfDelta.
An inverse operation would be defined accordingly.
Example 6

In some examples, some of signaling methods described above, e.g., in example
5, can be utilized as shown in following pseudo code.

m_atfNumberRanges is a term  for for  syntax  elements
comp_scale num_ranges| ¢ | for a given c, that specifies number of dynamic range
partitioning for mapped data.

m_pAtfRangeln is a term for CompScalelnputRanges, is an arrays size of
m_atfNumberRanges+1 that includes input sample value specifying the border between

two concatenated partitions, e.g. 1 and i+1.
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m_pAtfRangeOut is a term for CompScaleOutputRanges, is an arrays size of
m_atfNumberRanges+1 that includes output sample value specifying the border between
two concatenated partitions, e.g. 1 and i+1.

m_pAtfScale2 is a term for variable CompScaleScaleVal [ ¢ | is an arrays size of
m_atfNumberRanges that includes scale values for each partitions.

m_pAtfOffset2 is an array arrays size of m_atfNumberRanges that includes offset
values for each partition.

m_offset2 is a term for comp_scale global offset val.

In this example, parameters of piece-wise linear model can be determined form

syntax elements as in Algorithm 1:

Algorithm 1:

m_pAtfRangeln[0] = 0;

m_pAtfRangeOut[0] = -m_offset2 *m_pAtfScale2[c][0];

for (int ) = 1; ) <m_atfNumberRanges + 1; j++)

{
m_pAtfRangeln[j] = m_pAtfRangeln[j - 1] + m_pAtfDelta[j - 1];
m_pAtfRangeOut[j] = m_pAtfRangeOut[j - 1] +

m_pAtfScale2[c][j - 1] * m_pAtfDelta[j - 1];
}

for (int j = 0; j < m_atfNumberRanges; j++)
{
temp = m_pAtfRangeln[j + 1] - m_pAtfRangeOut[j + 1]/
m_pAtfScale2[c][j];
m_pAtfOffset2[c][j] = temp;

Once determined, piece-wise linear model can be applied to input samples value
inValue to determine output sample value outValue as in Algorithm 2:
Algorithm 2:
for (intj = 0; ] <m_atfNumberRanges && skip ==0; j++)
{
if (inValue <= m_pAtfRangeln[j + 1])
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{
outValue = (inValue — m_pAtfOftset2 [j]) *
m_pAtfScale2 [j];
skip = 1;
}
}
Inverse process to be conducted as in Algorithm 3:
Algorithm 3:
for (int j = 0; ) < m_atfNumberRanges && skip == 0; j++)
{
if (inValue <= m_pAtfRangeOut[j + 1])
{
outValue = inValue / m_pAtfScale2 [j] +
m_pAtfOffset2 [j];
skip = 1;
}
}

[0211] In some examples, border sample value (an entry of m_pAtfRangeln or
m_pAtfRangeOut ) between two concatenated partitions i and i+1 can be interpreted
differently, as belonging to i+1, instead of belonging to 1 partition as it is shown in
Algorithm 2 and 3.

[0212] In some examples, inverse process shown in Algorithm 3, can be implemented
with a multiplication by m_pAtfInverseScale2 value, instead of division by
m_pAtfScale2[j]. In such examples, a value of m_pAtfScale2[j] is determined from
m_pAtfScale2 [j] in advance.

[0213] In some examples, m_pAtflnverseScale2 [j] is determined at the decoder side as
1/m_pAtfScale2[j].

[0214] In some examples, m_pAtflnverseScale2 [j] can be computed at the encoder
side, and signalled through bitstream. In such examples, operation given in Algorithms
1, 2 and 3 will be adjusted accordingly.

[0215] Various examples

[0216] In some examples, proposed signaling mechanism can be used to model a piece-
wise function that can be utilized to enable dynamical range adjustment for samples of

input signal, e.g. to improve compression efficiency of video coding systems.
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[0217] In some examples, proposed signaling mechanism can be used to model a piece-
wise function that can be applied to codewords (non-linear representation of R,G,B
samples) produced by an OETF, e.g. by PQ TF of ST.2084, or others.

[0218] In some examples, proposed signaling mechanism can be used to model a piece-
wise function that can be applied to samples of YCbCr colors.

[0219] In some examples, proposed signaling mechanism can be used to model a piece-
wise function that can be utilized to HDR/WCG solutions with SDR compatibility.
[0220] In some examples, proposed signaling mechanism can be used to model a piece-
wise function that can be applied to samples in floating point representation. In yet
another example, proposed signaling mechanism and resulting function can be applied
to samples in integer representation, e.g. 10 bits.

[0221] In some examples, proposed signaling mechanism can be used to model a piece-
wise function that can be applied to samples in a form of Look Up Tables. In yet
another examples, proposed signaling can be used to model function that can be applied
to a sample in a form of multiplier.

Combinations and Extensions

[0222] In the examples above, a linear model is assumed for each region (i.e., scale plus
offset); the techniques of this disclosure also may be applicable for higher-order
polynomial models, for example, with a polynomial of 2nd degree requiring three
parameters instead of two. The signaling and syntax would be properly extended for
this scenario.

[0223] Combinations of aspects described above are possible and part of the techniques
of this disclosure.

[0224] Toolbox combination: there are several HDR methods that can target somewhat
similar goals to those of the SEIs described in this disclosure. In order to accommodate
more than one of them but, at the same time, limiting the number of applicable SEI
processing per frame, it is proposed to combine (one or more of) these methods in a
single SEI. A proposed syntax element would indicate the specific method to apply in
each instance. For example, if there are two possible methods in the SEI, the syntax
element would be a flag indicating the one to be used.

Example 7

[0225] In this example, the signaling of scale parameters is modified such that negative

scales can be transmitted, and the signaled scale parameters indicate the variation of
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scale to be applied for different ranges of the various components. The changes with

respect to example 5 are below.

Changes to syntax of the SEI message

component_scale info( payloadSize ) { Descriptor
comp_scale id ue(v)
comp_scale cancel flag u(l)
if( 'comp_scale cancel flag) {
comp_scale persistence flag u(l)
comp_scale scale bit depth u(4)
comp_scale offset_bit depth u(4)
comp_scale scale frac_bit_depth u(4)
comp_scale offset frac bit depth u(4)
comp_scale negative scales present flag u(l)
comp_scale dep component id ue(v)
comp scale num_comps_minusl ue(v)
for( ¢ =0; c <=comp_scale num_comps minusl; c++) {
comp scale num_ranges| c | ue(v)
comp_scale equal ranges flag[ c | u(l)
comp_scale global offset val[ c | u(v)
for(1=0;1 <= comp_scale num_ranges| c |; i++)
comp _scale scale val[c][1] u(v)
if( !comp_scale equal ranges[c ]) u(v)
for(1=0;1 <= comp scale num ranges[ ¢ |; i++)
comp scale offset val[c][1] u(v)
}
}

Changes to semantics of the SEI message

comp_scale negative scales present flag equal to 1 specifies that the integer

part of the scale parameters derived from comp_scale scale val[ c ][ 1 ] is represented as
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a signed integer. comp_scale negative scales present flag equal to O specifies that the
integer part scale parameters derived from comp scale scale val[ ¢ ][ 1] is represented
as an unsigned integer.
[0226] In one alternative, another set of offset parameters are signaled along with
comp_scale scale val that are used to define the offset that is applied along with the
scale on a first component as a function of the value of a second component.
[0227] The signed-integer representation includes, but is not limited to, twos-
complement notation and signed magnitude representation (one bit for sign and the
remaining bits in the integer-part). The derivation below is given for the signed
magnitude representation. The derivation can be similarly defined for other forms of
signed representations.
The variable CompScaleScaleVal[ ¢ ][ 1 ] is derived as follows :
compScaleScaleFracPart = ( comp scale scale val[c][1] &
((1 << comp scale scale frac bit depth)—1)
)+
(1 << comp_scale scale frac bit depth)
if( comp scale negative scales present flag) {
compScaleSignPart = comp _scale scale val[c][1] >>
(comp_scale scale bit depth — 1)
compScalelntegerPart = comp_scale scale val[ ¢ ][ 1] — ( compScaleSignPart
<<{(comp_scale scale bit depth — 1))
compScalelntegerVal = ( ( compScaleSignPart == 1):—-1:1)*
compScalelntegerPart
} else
compScalelntegerVal = comp_scale scale val[c][1] >>
comp_scale scale frac bit depth
CompScaleScaleVal[ ¢ ][ i | = compScalelntegerVal + compScaleScaleFracPart
It is a requirement of bitstream conformance that when
comp_scale negative scale present flag is equal to 1, the wvalue of
comp_scale scale bit depth shall be greater  than or equal to
comp_scale scale frac bit depth
comp_scale dependent component id specifies the application of scale and
offset parameters to the various components of the video. When

comp_scale dependent component id is equal to O, the syntax elements
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comp_scale global offset val[ ¢ ], comp_scale scale val[ c][1] and
comp_scale offset val[ ¢ ][ 1 ] are used to identify mapping of input and output values of
the c-th component. When comp scale dependent component id is greater than O,
comp_scale dependent component id — 1 specifies the index of the component such that
the syntax elements comp scale global offset val[ ¢ ], comp scale scale val[c][1]
and comp_scale offset val[ ¢ ][ 1 ] specify the mapping of a scale parameter to be applied
to the c-th component of a sample as a function of the value of

( comp_scale dependent component id — 1 )-th component of the sample.

The rest of the semantics is similar to those described in example 5.

Example 8
[0228] In this example, the bit depth of the ATF parameters depend on the component.
For each component, the bit depth of the syntax elements is explicitly signal. In
addition, there are default bit-depth for those syntax elements. The default value is
assigned when the bit depth is not explicitly signaled. A flag might indicate whether the
default values are applied or they are explicitly signaled.
[0229] The table below shows an example of these concepts. Syntax elements of the
ATF parameters are the scale hdr_recon_scale val[ ][ ] and range
hdr recon range wval[ ][ ]. The syntax elements indicating the corresponding bit depth
(integer and fractional part) are the following ones:

e hdr recon_scale bit depth[c],

e hdr recon offset bit depth|c],

e hdr recon scale frac bit depth[c],

e hdr recon offset frac bit depth[ ¢ ],

where cis the component index. The default bit-depths for scale and offset (range)

can be set to:

e hdr recon_scale bit depth[c] =8,

e hdr recon offset bit depth[c] =8,

e hdr recon scale frac bit depth[c] =6,

e hdr recon offset frac bit depth[ ¢ ]=38.
[0230] The accuracy of the parameters might also be different for the ATF parameters

and the color adjustment parameters. Also, the default might be different per
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component and for the color adjustment parameters. In this example, the defaults are

assumed to be the same.

hdr_reconstruction_info( payloadSize ) { Descriptor
hdr_recon_id ue(v)
hdr_recon_cancel flag u(l)
if( 'hdr_recon_cancel flag) {
hdr_recon_persistence flag u(l)

if (hdr_recon_id==1) {

hdr_output full range flag

hdr_output_colour_primaries

hdr_output_transfer_characteristics

hdr_output_matrix_coeffs

}
hdr_recon_num_comps_minusl ue(v)
for( ¢ =0; ¢ <=hdr_recon num comps minusl; ct++)
{
hdr_recon_default bit depth [ c ] u(l)
if (hdr _recon_default bit depth[c¢]==0) {
hdr_recon_scale bit depth|[ ¢ ] u(4)
hdr_recon_offset bit depth|[ c ] u(4)
hdr_recon_scale frac bit depth[ c ] u(4)
hdr_recon_offset frac bit depth[ c ] u(4)
}
hdr_recon_num_ranges[ c | ue(v)
hdr_recon_equal_ranges flag[ c | u(l)
hdr_recon_global offset val[ ¢ ] u(v)
for(1=0;1 <= hdr recon num_ranges| c ]; i++)
hdr_recon_scale val[ c ][ 1] u(v)
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if( thdr recon_equal ranges[c]) u(v)
for(1=0;1 <= hdr_recon_num_ranges[ c ]; i++)
hdr_recon_range val [c][i] u(v)
} u(v)

if (hdr_recon_id==1) {

Params related to Colour

correction

hdr_color correction_type

0O:onUV-1:0nR,G,B

hdr_color_accuracy flag

Syntax for coding the

colour

if( ! hdr recon color accuracy flag) {

correction LUT

hdr_color scale bit depth u(4)
hdr_color _offset_bit depth u(4)
hdr_color scale frac bit depth u(4)
hdr_color offset frac bit depth u(4)

}

color correction num_ranges

color_correction_equal len ranges flag

color_correction_zero_offset val

for( 1=0;1 <color_correction_num_ranges; i++ )

color correction_scale val[ 1 ]

if( ! color_correction_equal len ranges flag )

for( 1=0;1<color_correction_num_ranges; i++ )

color_correction_range val[ i ]
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Example 9

[0231] A desirable property of a new HDR solution is that it is backward compatible to
previous HDR solutions, like HDR10. A syntax element may indicate that this is the
case. This indicates a characteristic of the bitstream, and an HDR decoder might decide
not to spend computational resources on the inverse ATF processing under some
circumstances if the non ATF version is already viewable.

[0232] In one example, some values of the hdr recon_id syntax element are reserved to
indicate HDR 10 backward compatibility, or to what degree there is backward
compatibility.

[0233] In another example, a flag (hdr recon_hdr10 bc) indicates this situation.

[0234] In one example, the signaled HDR 10 backward compatibility indicates that the
bitstream is viewable. Alternatively, it might indicate some specific properties of the
signaled values: for example, that they are a range of values that guarantees this
property. For instance, a constraint could be that the scale is between 0.9 and 1.1.
[0235] FIG. 12 is a block diagram illustrating an example of video encoder 20 that may
implement the techniques of this disclosure. Video encoder 20 may perform intra- and
inter-coding of video blocks within video slices in a target color representation that have
been processed by video preprocessor 19. Intra-coding relies on spatial prediction to
reduce or remove spatial redundancy in video within a given video frame or picture.
Inter-coding relies on temporal prediction to reduce or remove temporal redundancy in
video within adjacent frames or pictures of a video sequence. Intra-mode (I mode) may
refer to any of several spatial based coding modes. Inter-modes, such as uni-directional
prediction (P mode) or bi-prediction (B mode), may refer to any of several temporal-
based coding modes.

[0236] As shown in FIG. 12, video encoder 20 receives a current video block within a
video frame to be encoded. In the example of FIG. 12, video encoder 20 includes mode
select unit 40, a video data memory 41, decoded picture buffer 64, summer 50,
transform processing unit 52, quantization unit 54, and entropy encoding unit 56. Mode
select unit 40, in turn, includes motion compensation unit 44, motion estimation unit 42,
intra prediction processing unit 46, and partition unit 48. For video block
reconstruction, video encoder 20 also includes inverse quantization unit 58, inverse
transform processing unit 60, and summer 62. A deblocking filter (not shown in FIG.
12) may also be included to filter block boundaries to remove blockiness artifacts from

reconstructed video. If desired, the deblocking filter would typically filter the output of
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summer 62. Additional filters (in loop or post loop) may also be used in addition to the
deblocking filter. Such filters are not shown for brevity, but if desired, may filter the
output of summer 50 (as an in-loop filter).

[0237] Video data memory 41 may store video data to be encoded by the components of
video encoder 20. The video data stored in video data memory 41 may be obtained, for
example, from video source 18. Decoded picture buffer 64 may be a reference picture
memory that stores reference video data for use in encoding video data by video
encoder 20, e.g., in intra- or inter-coding modes. Video data memory 41 and decoded
picture buffer 64 may be formed by any of a variety of memory devices, such as
dynamic random access memory (DRAM), including synchronous DRAM (SDRAM),
magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory
devices. Video data memory 41 and decoded picture buffer 64 may be provided by the
same memory device or separate memory devices. In various examples, video data
memory 41 may be on-chip with other components of video encoder 20, or off-chip
relative to those components.

[0238] During the encoding process, video encoder 20 receives a video frame or slice to
be coded. The frame or slice may be divided into multiple video blocks. Motion
estimation unit 42 and motion compensation unit 44 perform inter-predictive coding of
the received video block relative to one or more blocks in one or more reference frames
to provide temporal prediction. Intra prediction processing unit 46 may alternatively
perform intra-predictive coding of the received video block relative to one or more
neighboring blocks in the same frame or slice as the block to be coded to provide spatial
prediction. Video encoder 20 may perform multiple coding passes, e.g., to select an
appropriate coding mode for each block of video data.

[0239] Moreover, partition unit 48 may partition blocks of video data into sub-blocks,
based on evaluation of previous partitioning schemes in previous coding passes. For
example, partition unit 48 may initially partition a frame or slice into LCUSs, and
partition each of the LCUs into sub-CUs based on rate-distortion analysis (e.g., rate-
distortion optimization). Mode select unit 40 may further produce a quadtree data
structure indicative of partitioning of an LCU into sub-CUs. Leaf-node CUs of the
quadtree may include one or more PUs and one or more TUs.

[0240] Mode select unit 40 may select one of the coding modes, intra or inter, e.g.,
based on error results, and provides the resulting intra- or inter-coded block to summer

50 to generate residual block data and to summer 62 to reconstruct the encoded block
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for use as a reference frame. Mode select unit 40 also provides syntax elements, such as
motion vectors, intra-mode indicators, partition information, and other such syntax
information, to entropy encoding unit 56.

[0241] Motion estimation unit 42 and motion compensation unit 44 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 42, is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for example, may indicate the
displacement of a PU of a video block within a current video frame or picture relative to
a predictive block within a reference picture (or other coded unit) relative to the current
block being coded within the current picture (or other coded unit). A predictive block is
a block that is found to closely match the block to be coded, in terms of pixel difference,
which may be determined by sum of absolute difference (SAD), sum of square
difference (SSD), or other difference metrics. In some examples, video encoder 20 may
calculate values for sub-integer pixel positions of reference pictures stored in decoded
picture buffer 64. For example, video encoder 20 may interpolate values of one-quarter
pixel positions, one-eighth pixel positions, or other fractional pixel positions of the
reference picture. Therefore, motion estimation unit 42 may perform a motion search
relative to the full pixel positions and fractional pixel positions and output a motion
vector with fractional pixel precision.

[0242] Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in decoded picture buffer 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

[0243] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation unit 42. Again, motion estimation unit 42 and motion compensation
unit 44 may be functionally integrated, in some examples. Upon receiving the motion
vector for the PU of the current video block, motion compensation unit 44 may locate
the predictive block to which the motion vector points in one of the reference picture
lists. Summer 50 forms a residual video block by subtracting pixel values of the

predictive block from the pixel values of the current video block being coded, forming
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pixel difference values, as discussed below. In general, motion estimation unit 42
performs motion estimation relative to luma components, and motion compensation unit
44 uses motion vectors calculated based on the luma components for both chroma
components and luma components. Mode select unit 40 may also generate syntax
elements associated with the video blocks and the video slice for use by video decoder
30 in decoding the video blocks of the video slice.

[0244] Intra prediction processing unit 46 may intra-predict a current block, as an
alternative to the inter-prediction performed by motion estimation unit 42 and motion
compensation unit 44, as described above. In particular, intra prediction processing unit
46 may determine an intra-prediction mode to use to encode a current block. In some
examples, intra prediction processing unit 46 may encode a current block using various
intra-prediction modes, e.g., during separate encoding passes, and intra prediction
processing unit 46 (or mode select unit 40, in some examples) may select an appropriate
intra-prediction mode to use from the tested modes.

[0245] For example, intra prediction processing unit 46 may calculate rate-distortion
values using a rate-distortion analysis for the various tested intra-prediction modes, and
select the intra-prediction mode having the best rate-distortion characteristics among the
tested modes. Rate-distortion analysis generally determines an amount of distortion (or
error) between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bit rate (that is, a number of bits) used to
produce the encoded block. Intra prediction processing unit 46 may calculate ratios
from the distortions and rates for the various encoded blocks to determine which intra-
prediction mode exhibits the best rate-distortion value for the block.

[0246] After selecting an intra-prediction mode for a block, intra prediction processing
unit 46 may provide information indicative of the selected intra-prediction mode for the
block to entropy encoding unit 56. Entropy encoding unit 56 may encode the
information indicating the selected intra-prediction mode. Video encoder 20 may
include in the transmitted bitstream configuration data, which may include a plurality of
intra-prediction mode index tables and a plurality of modified intra-prediction mode
index tables (also referred to as codeword mapping tables), definitions of encoding
contexts for various blocks, and indications of a most probable intra-prediction mode,
an intra-prediction mode index table, and a modified intra-prediction mode index table

to use for each of the contexts.
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[0247] Video encoder 20 forms a residual video block by subtracting the prediction data
from mode select unit 40 from the original video block being coded. Summer 50
represents the component or components that perform this subtraction operation.
Transform processing unit 52 applies a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform, to the residual block, producing a video
block comprising residual transform coefficient values. Transform processing unit 52
may perform other transforms which are conceptually similar to DCT. Wavelet
transforms, integer transforms, sub-band transforms or other types of transforms could
also be used. In any case, transform processing unit 52 applies the transform to the
residual block, producing a block of residual transform coefficients. The transform may
convert the residual information from a pixel value domain to a transform domain, such
as a frequency domain. Transform processing unit 52 may send the resulting transform
coefficients to quantization unit 54.

[0248] Quantization unit 54 quantizes the transform coefficients to further reduce bit
rate. The quantization process may reduce the bit depth associated with some or all of
the coefficients. The degree of quantization may be modified by adjusting a
quantization parameter. In some examples, quantization unit 54 may then perform a
scan of the matrix including the quantized transform coefficients. Alternatively, entropy
encoding unit 56 may perform the scan.

[0249] Following quantization, entropy encoding unit 56 entropy codes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy coding technique. In the
case of context-based entropy coding, context may be based on neighboring blocks.
Following the entropy coding by entropy encoding unit 56, the encoded bitstream may
be transmitted to another device (e.g., video decoder 30) or archived for later
transmission or retrieval.

[0250] Inverse quantization unit 58 and inverse transform processing unit 60 apply
inverse quantization and inverse transformation, respectively, to reconstruct the residual
block in the pixel domain, e.g., for later use as a reference block. Motion compensation
unit 44 may calculate a reference block by adding the residual block to a predictive
block of one of the frames of decoded picture buffer 64. Motion compensation unit 44

may also apply one or more interpolation filters to the reconstructed residual block to
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calculate sub-integer pixel values for use in motion estimation. Summer 62 adds the
reconstructed residual block to the motion compensated prediction block produced by
motion compensation unit 44 to produce a reconstructed video block for storage in
decoded picture buffer 64. The reconstructed video block may be used by motion
estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a
block in a subsequent video frame.

[0251] FIG. 13 is a block diagram illustrating an example of video decoder 30 that may
implement the techniques of this disclosure. In particular, video decoder 30 may decode
video data into a target color representation that may then be processed by video
postprocessor 31, as described above. In the example of FIG. 13, video decoder 30
includes an entropy decoding unit 70, a video data memory 71, motion compensation
unit 72, intra prediction processing unit 74, inverse quantization unit 76, inverse
transform processing unit 78, decoded picture buffer 82 and summer 80. Video decoder
30 may, in some examples, perform a decoding pass generally reciprocal to the
encoding pass described with respect to video encoder 20 (FIG. 12). Motion
compensation unit 72 may generate prediction data based on motion vectors received
from entropy decoding unit 70, while intra prediction processing unit 74 may generate
prediction data based on intra-prediction mode indicators received from entropy
decoding unit 70.

[0252] Video data memory 71 may store video data, such as an encoded video
bitstream, to be decoded by the components of video decoder 30. The video data stored
in video data memory 71 may be obtained, for example, from computer-readable
medium 16, e.g., from a local video source, such as a camera, via wired or wireless
network communication of video data, or by accessing physical data storage

media. Video data memory 71 may form a coded picture buffer (CPB) that stores
encoded video data from an encoded video bitstream. Decoded picture buffer 82 may
be a reference picture memory that stores reference video data for use in decoding video
data by video decoder 30, e.g., in intra- or inter-coding modes. Video data memory 71
and decoded picture buffer 82 may be formed by any of a variety of memory devices,
such as dynamic random access memory (DRAM), including synchronous DRAM
(SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of
memory devices. Video data memory 71 and decoded picture buffer 82 may be

provided by the same memory device or separate memory devices. In various
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examples, video data memory 71 may be on-chip with other components of video
decoder 30, or off-chip relative to those components.

[0253] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy
decodes the bitstream to generate quantized coefticients, motion vectors or intra-
prediction mode indicators, and other syntax elements. Entropy decoding unit 70
forwards the motion vectors to and other syntax elements to motion compensation unit
72. Video decoder 30 may receive the syntax elements at the video slice level and/or
the video block level.

[0254] When the video slice is coded as an intra-coded (I) slice, intra prediction
processing unit 74 may generate prediction data for a video block of the current video
slice based on a signaled intra prediction mode and data from previously decoded
blocks of the current frame or picture. When the video frame is coded as an inter-coded
(i.e., B or P) slice, motion compensation unit 72 produces predictive blocks for a video
block of the current video slice based on the motion vectors and other syntax elements
received from entropy decoding unit 70. The predictive blocks may be produced from
one of the reference pictures within one of the reference picture lists. Video decoder 30
may construct the reference picture lists, List O and List 1, using default construction
techniques based on reference pictures stored in decoded picture buffer 82. Motion
compensation unit 72 determines prediction information for a video block of the current
video slice by parsing the motion vectors and other syntax elements, and uses the
prediction information to produce the predictive blocks for the current video block
being decoded. For example, motion compensation unit 72 uses some of the received
syntax elements to determine a prediction mode (e.g., intra- or inter-prediction) used to
code the video blocks of the video slice, an inter-prediction slice type (e.g., B slice or P
slice), construction information for one or more of the reference picture lists for the
slice, motion vectors for each inter-encoded video block of the slice, inter-prediction
status for each inter-coded video block of the slice, and other information to decode the
video blocks in the current video slice.

[0255] Motion compensation unit 72 may also perform interpolation based on
interpolation filters. Motion compensation unit 72 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated

values for sub-integer pixels of reference blocks. In this case, motion compensation
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unit 72 may determine the interpolation filters used by video encoder 20 from the
received syntax elements and use the interpolation filters to produce predictive blocks.
[0256] Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
70. The inverse quantization process may include use of a quantization parameter QPy
calculated by video decoder 30 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied. Inverse transform processing unit 78 applies an inverse transform, e.g., an
inverse DCT, an inverse integer transform, or a conceptually similar inverse transform
process, to the transform coefficients in order to produce residual blocks in the pixel
domain.

[0257] After motion compensation unit 72 generates the predictive block for the current
video block based on the motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks from inverse transform
processing unit 78 with the corresponding predictive blocks generated by motion
compensation unit 72. Summer 80 represents the component or components that
perform this summation operation. If desired, a deblocking filter may also be applied to
filter the decoded blocks in order to remove blockiness artifacts. Other loop filters
(either in the coding loop or after the coding loop) may also be used to smooth pixel
transitions, or otherwise improve the video quality. The decoded video blocks in a
given frame or picture are then stored in decoded picture buffer 82, which stores
reference pictures used for subsequent motion compensation. Decoded picture buffer
82 also stores decoded video for later presentation on a display device, such as display
device 32 of FIG. 1.

[0258] FIG. 14 is a flowchart illustrating an example HDR/WCG conversion process
according to the techniques of this disclosure. The techniques of FIG. 14 may be
executed by source device 12 of FIG. 1, including one or more of video preprocessor 19
and/or video encoder 20.

[0259] In one example of the disclosure, source device 12 may be configured to encode
video data. Such a device may perform a dynamic range adjustment on the video data
to generate adjusted component values from the video data (1502), and signal at least
one supplemental enhancement information (SEI) message in an encoded video
bitstream, the at least one SEI message indicating adjustment information specifying

how the dynamic range adjustment has been applied to the video data, and wherein the
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adjustment information includes a global offset value that applies to each of a plurality
of partitions into which the video data was partitioned during the dynamic range
adjustment (1504). In the example of FIG. 14, the video data is input video data prior to
video encoding. In some other examples, the source device may signal at least one SEI
message in an encoded video bitstream, the at least one SEI message indicating
adjustment information specifying how the inverse dynamic range adjustment is to
applied on the video data by a decoder, and wherein the adjustment information includes
a global offset value that applies to each of a plurality of partitions into which the video
data is to be partitioned during the dynamic range adjustment (1504).

[0260] In some examples, the global offset value is a first global offset value, the first
global offset value being substituted, prior to performing the dynamic range adjustment
on the video data, for unadjusted component values less than the first global offset
value, wherein the adjustment information further includes a second global offset value,
and wherein performing the dynamic range adjustment on the video data includes:
mapping component values matching the first global offset value to the second global
offset value.

[0261] In other examples, the adjustment information further includes a number of
partitions into which the video data was partitioned during the dynamic range
adjustment, a scale and a local offset value for one or more partitions, and wherein
performing the dynamic range adjustment includes: generating the adjusted component
values according to the number of partitions, and scale and local offsets for one or more
partitions (1506).

[0262] FIG. 15 is a flowchart illustrating an example HDR/WCG inverse conversion
process according to the techniques of this disclosure. The techniques of FIG. 15 may
be executed by destination device 14 of FIG. 1, including one or more of video
postprocessor 31 and/or video decoder 30.

[0263] In one example of the disclosure, destination device 14 may be configured to
decode video data that has been adjusted by performing a dynamic range adjustment.
Such a device may receive at least one supplemental enhancement information (SEI)
message in an encoded video bitstream, the at least one SEI message indicating
adjustment information specifying how the dynamic range adjustment has been applied
to the video data, and wherein the adjustment information includes a global offset value
that applies to each of a plurality of partitions into which the video data was partitioned

during the dynamic range adjustment (1602), and perform an inverse dynamic range
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adjustment on the video data in accordance with the adjustment information to generate
unadjusted component values from the video data (1604). In the example of FIG. 15,
the video data is decoded video data. In other examples, device may receive at least one
supplemental enhancement information (SEI) message in an encoded video bitstream,
the at least one SEI message indicating adjustment information specifying how the
dynamic range adjustment is to be applied to the video data, and wherein the adjustment
information includes a global offset value that applies to each of a plurality of partitions
into which the video data is to be partitioned during the inverse dynamic range
adjustment (1604), and perform an inverse dynamic range adjustment on the video data
in accordance with the adjustment information to generate unadjusted component values
from the video data (1604).

[0264] In some examples, the global offset value is a first global offset value, the first
global offset value being substituted, prior to performing the dynamic range adjustment
on the video data, for unadjusted component values less than the first global offset
value, wherein the adjustment information further includes a second global offset value,
and wherein performing the inverse dynamic range adjustment on the video data
includes: mapping component values matching the second global offset value to the first
global offset value.

[0265] In other examples, the adjustment information further includes a number of
partitions into which the video data was partitioned during the dynamic range
adjustment, and a scale and local offset for one or more partitions and wherein
performing the inverse dynamic range adjustment includes: generating the unadjusted
component values according to the number of partitions and the scale and offset for one
or more partitions (1606).

[0266] Certain aspects of this disclosure have been described with respect to extensions
of the HEVC standard for purposes of illustration. However, the techniques described
in this disclosure may be useful for other video coding processes, including other
standard or proprietary video coding processes not yet developed.

[0267] A video coder, as described in this disclosure, may refer to a video encoder or a
video decoder. Similarly, a video coding unit may refer to a video encoder or a video
decoder. Likewise, video coding may refer to video encoding or video decoding, as
applicable.

[0268] It is to be recognized that depending on the example, certain acts or events of

any of the techniques described herein can be performed in a different sequence, may be
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added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially.

[0269] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over as one or more instructions or code
on a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0270] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transitory
media, but are instead directed to non-transitory, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
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while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0271] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable
for implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0272] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0273] Various examples have been described. These and other examples may be
within the scope of the following claims.

[0274] It will be understood that the term “comprise” and any of its derivatives

(eg comprises, comprising) as used in this specification is to be taken to be inclusive of
features to which it refers, and is not meant to exclude the presence of any additional
features unless otherwise stated or implied.

[0275] The reference to any prior art in this specification is not, and should not be taken
as, an acknowledgement or any form of suggestion that such prior art forms part of the

common general knowledge.
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CLAIMS

1. A method of decoding video data that has been adjusted by performing a dynamic
range adjustment, the method comprising:
receiving at least one syntax structure from an encoded video bitstream, the at least
one syntax structure indicating adjustment information specifying how the dynamic range
adjustment has been applied to the video data, and wherein the adjustment information
includes:
a tone mapping adjustment value that indicates color values can be trimmed to
a maximum or a minimum value, and
a number of partitions into which the video data was partitioned during the
dynamic range adjustment; and
performing an inverse dynamic range adjustment on the video data in accordance with
the adjustment information to generate unadjusted component values from the video data,
wherein performing the inverse dynamic range adjustment includes generating the

unadjusted component values according to the number of partitions.

2. The method of claim 1, wherein the adjustment information further includes a global
offset value that applies to each of the partitions into which the video data was partitioned

during the dynamic range adjustment.

3. The method of claim 2,
wherein the global offset value is a first global offset value, the first global offset value
being substituted, prior to performing the dynamic range adjustment on the video data, for
unadjusted component values less than the first global offset value;
wherein the adjustment information further includes a second global offset value; and
wherein performing the inverse dynamic range adjustment on the video data includes:
mapping component values matching the second global offset value to the first global

offset value.

4. The method of claim 1, wherein the video data includes luma components and chroma
components, wherein the adjustment information includes a first number of partitions into
which the luma components were partitioned during the dynamic range adjustment, a second
number of partitions into which a first set of the chroma components were partitioned during

the dynamic range adjustment, and a third number of partitions into which a second set of the
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chroma components were partitioned during the dynamic range adjustment, and wherein
performing the inverse dynamic range adjustment includes:

generating unadjusted luma component values according to the first number of
partitions;

generating unadjusted chroma component values corresponding to the first set of
chroma components according to the second number of partitions; and

generating unadjusted chroma component values corresponding to the second set of

chroma components according to the third number of partitions.

5. The method of claim 1, further comprising;:
deriving additional adjustment information from the at least one syntax structure, the
additional adjustment information further specifying how the dynamic range adjustment has

been applied to the video data.

6. The method of claim 1, wherein performing the inverse dynamic range adjustment on
the video data includes:

determining for each input sample for each component of the video data, a partition to
which the input sample belongs, and

generating, for each of the partitions, the unadjusted component values.

7. The method of claim 1, wherein the adjustment information further includes a local
offset value and a local scale value for each of the partitions, and wherein generating the
unadjusted component values includes:

generating the unadjusted component values according to the local offset value and the

local scale value.

8. The method of claim 7, wherein the local offset value for each of the partitions is
represented by a first number of bits and a second number of bits, wherein the first number of
bits is used to represent an integer part of the local offset value and the second number of bits
is used to represent a fractional part of the local offset value, wherein the adjustment
information further includes the first number of bits and the second number of bits, and
wherein performing the inverse dynamic range adjustment on the video data includes:
generating the unadjusted component values according to the local offset value for

each of the partitions as represented by the first number of bits and the second number of bits.
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9. The method of claim 7, wherein the local scale value for each of the partitions is
represented by a first number of bits and a second number of bits, wherein the first number of
bits is used to represent an integer part of the local scale value and the second number of bits
is used to represent a fractional part of the local scale value, wherein the adjustment
information further includes the first number of bits and the second number of bits, and
wherein performing the inverse dynamic range adjustment on the video data includes:
generating the unadjusted component values according to the local scale value for

each of the partitions as represented by the first number of bits and the second number of bits.

10. A method of encoding video data comprising:
performing a dynamic range adjustment on the video data to generate adjusted
component values from the video data; and
generating at least one syntax structure in an encoded video bitstream, the at least one
syntax structure indicating adjustment information specifying how the dynamic range
adjustment has been applied to the video data, wherein the adjustment information includes:
a tone mapping adjustment value that indicates color values can be trimmed to
a maximum or a minimum value, and
a number of partitions into which the video data was partitioned during the
dynamic range adjustment, and
wherein performing the dynamic range adjustment includes generating the adjusted

component values according to the number of partitions.

I1. The method of claim 10, wherein the adjustment information further includes a local
offset value and a local scale value for each of the partitions, and wherein performing the
dynamic range adjustment on the video data includes:

generating the adjusted component values according to the local offset value and the

local scale value.

12. The method of claim 11, wherein the local offset value for each of the partitions is
represented by a first number of bits and a second number of bits, wherein the first number of
bits is used to represent an integer part of the local offset value and the second number of bits
is used to represent a fractional part of the local offset value, wherein the adjustment
information further includes the first number of bits and the second number of bits, and

wherein performing the dynamic range adjustment on the video data includes:
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generating the adjusted component values according to the local offset value for each

of the partitions as represented by the first number of bits and the second number of bits.

13.  An apparatus configured to decode video data that has been adjusted by performing a
dynamic range adjustment, the apparatus comprising:
a memory configured to store the video data; and
one or more processors configured to:
receive at least one syntax structure in an encoded video bitstream, the at least one
syntax structure indicating adjustment information specifying how the dynamic range
adjustment has been applied to the video data, and wherein the adjustment information
includes:
a tone mapping adjustment value that indicates color values can be trimmed to
a maximum or a minimum value, and
a number of partitions into which the video data was partitioned during the
dynamic range adjustment; and
perform an inverse dynamic range adjustment on the video data in accordance with the
adjustment information to generate unadjusted component values from the video data,
wherein performing the inverse dynamic range adjustment includes generating the

unadjusted component values according to the number of partitions.

14. The apparatus of claim 13, wherein the adjustment information further includes a
global offset value that applies to each of the partitions into which the video data was

partitioned during the dynamic range adjustment.

15. The apparatus of claim 14,
wherein the global offset value is a first global offset value, the first global offset value
being substituted, prior to performing the dynamic range adjustment on the video data, for
unadjusted component values less than the first global offset value;
wherein the adjustment information further includes a second global offset value; and
wherein performing the inverse dynamic range adjustment on the video data includes:
mapping component values matching the second global offset value to the first global

offset value.

16. The apparatus of claim 13, wherein the video data includes luma components and

chroma components, wherein the adjustment information includes a first number of partitions
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into which the luma components were partitioned during the dynamic range adjustment, a
second number of partitions into which a first set of the chroma components were partitioned
during the dynamic range adjustment, and a third number of partitions into which a second set
of the chroma components were partitioned during the dynamic range adjustment, and
wherein performing the inverse dynamic range adjustment includes:

generating unadjusted luma component values according to the first number of
partitions;

generating unadjusted chroma component values corresponding to the first set of
chroma components according to the second number of partitions; and

generating unadjusted chroma component values corresponding to the second set of

chroma components according to the third number of partitions.

17.  An apparatus configured to encode video, the apparatus comprising:
a memory configured to store the video data; and
one or more processors configured to:
perform a dynamic range adjustment on the video data to generate adjusted component
values from the video data, and
generate at least one syntax structure in an encoded video bitstream, the at least one
syntax structure indicating adjustment information specifying how the dynamic range
adjustment has been applied to the video data, wherein the adjustment information includes:
a tone mapping adjustment value that indicates color values can be trimmed to
a maximum or a minimum value, and
a number of partitions into which the video data was partitioned during the
dynamic range adjustment, and
wherein performing the dynamic range adjustment includes generating the adjusted

component values according to the number of partitions.

18. The apparatus of claim 17, wherein the adjustment information further includes a local
offset value and a local scale value for each of the partitions, and wherein performing the
dynamic range adjustment on the video data includes:

generating the adjusted component values according to the local offset value and the

local scale value.
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19. The apparatus of claim 18, wherein the local offset value for each of the partitions is
represented by a first number of bits and a second number of bits, wherein the first number of
bits is used to represent an integer part of the local offset value and the second number of bits
is used to represent a fractional part of the local offset value, wherein the adjustment
information further includes the first number of bits and the second number of bits, and
wherein performing the dynamic range adjustment on the video data includes:
generating the adjusted component values according to the local offset value for each

of the partitions as represented by the first number of bits and the second number of bits.

20. An apparatus configured to perform the method of any one of claims 1 to 12.
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