wo 2015/139992 A1 | ONF T 0O AR AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/139992 A1l

24 September 2015 (24.09.2015) WIPO | PCT
(51) International Patent Classification: (72) Inventor: GSCHWIND, Michael Karl; IBM Corporation,
GO6F 9/44 (2006.01) GO6F 9/30 (2006.01) 2455 South Road, Poughkeepsie, New York 12601-5400
(21) International Application Number: (US).
PCT/EP2015/054850 (72) Inventor: GAINEY, Charles (deceased).
(22) International Filing Date: (74) Agent: GRAHAM, Timothy; IBM United Kingdom Lim-
9 March 2015 (09.03.2015) ited, Intellectual Property Law, Hursley Park, Winchester
H hi 21 2JN (GB).
(25) Filing Language: English ampshire SO21 2JN (GB)
o . . (81) Designated States (uniess otherwise indicated, for every
(26) Publication Language: English kind of national protection available). AE, AG, AL, AM,
(30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
14/217,840 18 March 2014 (18.03.2014) UsS BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
14/554,806 26 November 2014 (26.11.2014) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(71) Apphcant: INTERNATIONAL BUSINESS MA- KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
CHINES CORPORATION [US/US]; New Orchard MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
Road, Armonk, New York 10504 (US). PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(71) Applicant (for MG only): IBM UNITED KINGDOM 8D, SE, 8G, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,
LIMITED [GB/GB]; PO Box 41, North Harbour, Ports- TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
mouth Hampshire PO6 3AU (GB). (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

[Continued on next page]

(54) Title: ARCHITECTURAL MODE CONFIGURATION IN A COMPUTING SYSTEM

{ CURRENT POWER-ON)

SET ESA/390 MODE |,\/400
CCW IPL |fv402

WHEN THE IPL /O OPERATION IS COMPLETED SUCCESSFULLY, THE
SUBSYSTEM-IDENTIFICATION WORD FOR THE IPL DEVICE IS STORED
IN ABSOLUTE STORAGE LOCATIONS 184-187, ZEROS ARE STORED IN
ABSOLUTE STORAGE LOCATIONS 188-191, AND ANEW PSW S
LOADED FROM ABSOLUTE STORAGE LOCATIONS 0-7

THE COMPUTING ENVIRONMENT ENTERS THE OPERATING
STATE, AND THE COMPUTING ENVIRONMENT OPERATION
PROCEEDS UNDER CONTROL OF THE NEW PSW

[~ 406

BOOTED COMPUTING ENVIRONMENT RUNS |'\/408

END

FIG. 4A

~— 404

(57) Abstract: A determination is made that a configuration
architectural mode facility is installed in a computing envir-
onment that is configured for a plurality of architectural
modes and has a defined power-on sequence that is to
power-on the computing environment in one architectural
mode of the plurality of architectural modes. Based on de-
termining that the configuration architectural mode facility
is installed, the computing environment is reconfigured to
restrict use of the one architectural mode. The reconfiguring
includes selecting a ditferent power-on sequence to power-
on the computing environment in another architectural
mode of the plurality of architectural modes, wherein the
another architectural mode is different from the one archi-
tectural mode, and executing the different power-on se-
quence to power-on the computing environment in the an-
other architectural mode in place of the one architectural
mode restricting use of the one architectural mode.

WO 2015/139992 A1 AT 00N VTN NN E AR AR o

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Published:
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

WO 2015/139992 PCT/EP2015/054850

ARCHITECTURAL MODE CONFIGURATION IN A COMPUTING SYSTEM

TECHNICAL FIELD

[0001] One or more aspects relate, in general, to configurations of computing environments,

and in particular, to altering the configurations of such environments.

BACKGROUND ART

[0002] Computing environments offer a range of capabilities and functions depending on the
architectural configurations of the environments. Two architectures that have been offered
by International Business Machines Corporation, Armonk, New York, include ESA/390 and

z/Architecture.

[0003] ESA/390 is a predecessor architecture to z/Architecture. However, when
z/Architecture was introduced, ESA/390 continued to be supported. To support both
architectures in one environment, certain procedures are followed. For instance, in power-
up, ESA/390 is booted, and then, a switch may be made to the z/Architecture, if desired.
This allowed legacy software to continue executing without a change. Other such
procedures are provided in order to support both architectural configurations in one

environment.

[0004] However, virtual memory testing is expensive. As an architecture is sunset, it may
be desirable to provide legacy environments, ¢.g., for systems using minimal architecture
support, such as DOS operating systems (e.g., such as MS DOS or CMS), that function
primarily as command line interpreter environments, or for environments that are used for
executing part of the BIOS (and that can execute without the complexities of virtual

memory)

[0005] Therefore, there is a need in the art to address the aforementioned problem.

WO 2015/139992 PCT/EP2015/054850

SUMMARY

[0006] Shortcomings of the prior art are overcome and advantages are provided through the
provision of a computer program product for reconfiguring a computing environment. The
computer program product includes, for instance, a computer readable storage medium
readable by a processing circuit and storing instructions for execution by the processing
circuit for performing a method. The method includes, for instance, determining, by a
processor, that a configuration architectural mode facility is installed in a computing
environment that is configured for a plurality of architectural modes and has a defined
power-on sequence that is to power-on the computing environment in one architectural mode
of the plurality of architectural modes, the one architectural mode comprising a first
instruction set architecture and having a first set of supported features; based on determining
that the configuration architectural mode facility is installed, reconfiguring, by the processor,
the computing environment to restrict use of the one architectural mode, wherein the
reconfiguring includes: selecting a different power-on sequence to power-on the computing
environment in another architectural mode of the plurality of architectural modes, wherein
the another architectural mode is different from the one architectural mode, and the another
architectural mode comprises a second instruction set architecture and having a second set of
supported features; and executing the different power-on sequence to power-on the
computing environment in the another architectural mode in place of the one architectural

mode restricting use of the one architectural mode.

[0007] Viewed from a first aspect, the present invention provides a method for reconfiguring
a computing environment, said method comprising: determining, by a processor, that a
configuration architectural mode facility is installed in a computing environment that is
configured for a plurality of architectural modes and has a defined power-on sequence that is
to power-on the computing environment in one architectural mode of the plurality of
architectural modes, the one architectural mode comprising a first instruction set architecture
and having a first set of supported features; based on determining that the configuration
architectural mode facility is installed, reconfiguring, by the processor, the computing
environment to restrict use of the one architectural mode, wherein the reconfiguring

comprises: selecting a different power-on sequence to power-on the computing environment

WO 2015/139992 PCT/EP2015/054850

in another architectural mode of the plurality of architectural modes, wherein the another
architectural mode is different from the one architectural mode, and the another architectural
mode comprises a second instruction set architecture and having a second set of supported
features; and executing the different power-on sequence to power-on the computing
environment in the another architectural mode in place of the one architectural mode

restricting use of the one architectural mode.

[0008] Viewed from a further aspect, the present invention provides a method for
configuring a computing environment, said method comprising: configuring, by a processor,
a computing environment to perform operations in a selected architectural mode, the
configuring comprising: commencing initialization of the computing environment using a
stored program status word, the stored program status word having a format of an
architectural mode different from the selected architectural mode; determining that the
stored program status word has the format of the architectural mode different from the
selected architectural mode; based on determining the stored program status word has the
format of the architectural mode different from the selected architectural mode,
automatically modifying the stored program status word to have a format of the selected
architectural mode, the automatically modifying being performed absent an explicit request
to switch to the selected architectural mode; and completing initialization of the computing
environment using the modified program status word to configure the computing

environment in the selected architectural mode.

[0009] Viewed from a further aspect, the present invention provides a computer system for
reconfiguring a computing environment, said computer system comprising: a memory; and a
processor in communications with the memory, wherein the computer system is configured
to perform a method, said method comprising: determining, by the processor, that a
configuration architectural mode facility is installed in a computing environment that is
configured for a plurality of architectural modes and has a defined power-on sequence that
is to power-on the computing environment in one architectural mode of the plurality of
architectural modes, the one architectural mode comprising a first instruction set architecture
and having a first set of supported features; based on determining that the configuration

architectural mode facility is installed, reconfiguring, by the processor, the computing

WO 2015/139992 PCT/EP2015/054850

environment to restrict use of the one architectural mode, wherein the reconfiguring
comprises: selecting a different power-on sequence to power-on the computing environment
in another architectural mode of the plurality of architectural modes, wherein the another
architectural mode is different from the one architectural mode, and the another architectural
mode comprises a second instruction set architecture and having a second set of supported
features; and executing the different power-on sequence to power-on the computing
environment in the another architectural mode in place of the one architectural mode

restricting use of the one architectural mode.

[0010] Viewed from a further aspect, the present invention provides a computer program
product for reconfiguring a computing environment, the computer program product
comprising a computer readable storage medium readable by a processing circuit and
storing instructions for execution by the processing circuit for performing a method for
performing the steps of the invention. Viewed from a further aspect, the present invention
provides a computer program product for configuring a computing environment, the
computer program product comprising a computer readable storage medium readable by a
processing circuit and storing instructions for execution by the processing circuit for

performing a method for performing the steps of the invention.

[0011] Viewed from a further aspect, the present invention provides a computer program
stored on a computer readable medium and loadable into the internal memory of a digital
computer, comprising software code portions, when said program is run on a computer, for

performing the steps of the invention.

[0012] Methods and systems relating to one or more embodiments are also described and
claimed herein. Further, services relating to one or more embodiments are also described

and may be claimed herein.

[0013] Additional features and advantages are realized. Other embodiments and aspects are

described in detail herein and are considered a part of the claimed invention.

WO 2015/139992 PCT/EP2015/054850

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The present invention will now be described, by way of example only, with reference
to preferred embodiments, as illustrated in the following figures:

FIG. 1A depicts one example of a computing environment to incorporate and use
one or more aspects of a configuration architectural mode facility, in accordance with a
preferred embodiment of the present invention;

FIG. 1B depicts one example of a virtual computing environment to incorporate
and use one or more aspects of a configuration architectural mode facility, in accordance
with a preferred embodiment of the present invention;

FIG. 2 depicts another example of a computing environment to incorporate and
use one or more aspects of a configuration architectural mode facility, in accordance with a
preferred embodiment of the present invention;

FIG. 3A depicts yet another example of a computing environment to incorporate
and use one or more aspects of a configuration architectural mode facility, in accordance
with a preferred embodiment of the present invention;

FIG. 3B depicts further details of the memory of FIG. 3A, in accordance with a
preferred embodiment of the present invention;

FIG. 4A depicts one embodiment of the logic to power-on a computing
environment in one architectural mode, in accordance with a preferred embodiment of the
present invention;

FIG. 4B depicts one embodiment of further processing associated with the
power-on process of FIG. 4A, in accordance with a preferred embodiment of the present
invention;

FIG. 5 depicts one embodiment of a format of a program status word, in
accordance with a preferred embodiment of the present invention;

FIG. 6A depicts one embodiment of the logic to power-on a computing
environment in an architectural mode different from the one architectural mode powered-on
in FIG. 4A, in accordance with a preferred embodiment of the present invention;

FIG. 6B depicts one embodiment of further processing associated with the
power-on process of FIG. 6A, in accordance with a preferred embodiment of the present

invention;

WO 2015/139992 PCT/EP2015/054850

FIG. 7 depicts one example of a format of a Load Program Status Word
instruction, in accordance with a preferred embodiment of the present invention;

FIG. 8A depicts one example of a format of a Signal Processor instruction, in
accordance with a preferred embodiment of the present invention;

FIG. 8B depicts one embodiment of processing associated with the Signal
Processor instruction of FIG. 8A, in accordance with a preferred embodiment of the present
invention;

FIG. 9 depicts one embodiment of the logic to power-on a computing
environment in a reconfigured configuration, in accordance with a preferred embodiment of
the present invention;

FIG. 10 depicts further changes to be made in reconfiguring a computing
environment, in accordance with a preferred embodiment of the present invention;

FIG. 11 depicts one embodiment of the logic to reset a computing environment;

FIG. 12 depicts one embodiment of logic to configure a computing environment,
in accordance with a preferred embodiment of the present invention;

FIG. 13 depicts one embodiment of a computer program product, in accordance
with the prior art, and in which a preferred embodiment of the present invention may be
implemented;

FIG. 14 depicts one embodiment of a host computer system, in accordance with
the prior art, and in which a preferred embodiment of the present invention may be
implemented;

FIG. 15 depicts a further example of a computer system, in accordance with the
prior art, and in which a preferred embodiment of the present invention may be
implemented;

FIG. 16 depicts another example of a computer system comprising a computer
network, in accordance with the prior art, and in which a preferred embodiment of the
present invention may be implemented;

FIG. 17 depicts one embodiment of various elements of a computer system, in
accordance with the prior art, and in which a preferred embodiment of the present invention

may be implemented;

WO 2015/139992 PCT/EP2015/054850

FIG. 18A depicts one embodiment of the execution unit of the computer system
of FIG. 17, in accordance with the prior art, and in which a preferred embodiment of the
present invention may be implemented;

FIG. 18B depicts one embodiment of the branch unit of the computer system of
FIG. 17, in accordance with the prior art, and in which a preferred embodiment of the
present invention may be implemented;

FIG. 18C depicts one embodiment of the load/store unit of the computer system
of FIG. 17, in accordance with the prior art, and in which a preferred embodiment of the
present invention may be implemented;

FIG. 19 depicts one embodiment of an emulated host computer system, in
accordance with the prior art, and in which a preferred embodiment of the present invention
may be implemented;

FIG. 20 depicts one embodiment of a cloud computing node, in accordance with
the prior art, and in which a preferred embodiment of the present invention may be
implemented;

FIG. 21 depicts on embodiment of a cloud computing environment, in accordance
with the prior art, and in which a preferred embodiment of the present invention may be
implemented; and

FIG. 22 depicts one example of abstraction model layers, in accordance with the
prior art, and in which a preferred embodiment of the present invention may be

implemented.

DETAILED DESCRIPTION

[0015] In accordance with one aspect, a capability is provided that restricts use of a
configuration by a computing environment configured to support multiple configurations,
such that one or more aspects of the restricted configuration are unavailable for use. As one
example, a processor is configured in a configuration architectural mode (CAM). In CAM, a
computing environment (e.g., a processor, a logical partition, a guest), which is originally
configured for a plurality of architectures, e.g., a legacy architecture and an enhanced

architecture, is re-configured such that one or more aspects of at least one of the

WO 2015/139992 PCT/EP2015/054850

architectures, such as the legacy architecture, is no longer supported. In such a

configuration, the unsupported aspects of the architecture are not available.

[0016] As one particular example, a Configuration z/Architecture Architectural Mode
(CZAM) facility is provided in computing environments that support multiple architectures,
such as ESA/390 and z/Architecture, which removes the ability to use aspects of ESA/390.
Instead, z/Architecture (and/or other architectures, in other embodiments other than
ESA/390) is used. CZAM may apply to a native machine, a logical partition, and/or a virtual

guest, as examples.

[0017] One example of a computing environment to incorporate and use one or more aspects
of the configuration architectural mode facility is described with reference to FIG. 1A.
Referring to FIG. 1A, in one example, a computing environment 100 is based on the
z/Architecture, offered by International Business Machines (IBM®) Corporation, Armonk,
New York. The z/Architecture is described in an IBM Publication entitled “z/Architecture —
Principles of Operation,” Publication No. SA22-7932-09, 10" Edition, September 2012.
Although the computing environment is based on the z/Architecture, in one preferred
embodiment of the present invention, it also supports one or more other architectural

configurations, such as ESA/390.

[0018] As one example, computing environment 100 includes a central processor complex
(CPC) 102 coupled to one or more input/output (I/0) devices 106 via one or more control
units 108. Central processor complex 102 includes, for instance, a processor memory 104
(a.k.a., main memory, main storage, central storage) coupled to one or more central
processors (a.k.a., central processing units (CPUs)) 110, and an input/output subsystem 111,

each of which is described below.

[0019] Processor memory 104 includes, for example, one or more partitions 112 (e.g.,
logical partitions), and processor firmware 113, which includes a logical partition hypervisor
114 and other processor firmware 115. One example of logical partition hypervisor 114 is
the Processor Resource/System Manager (PR/SM), offered by International Business

Machines Corporation, Armonk, New York.

WO 2015/139992 PCT/EP2015/054850

[0020] A logical partition functions as a separate system and has one or more applications
120, and optionally, a resident operating system 122 therein, which may differ for each
logical partition. In one preferred embodiment of the present invention, the operating system
is the z/OS operating system, the z/VM operating system, the z/Linux operating system, or
the TPF operating system, offered by International Business Machines Corporation,
Armonk, New York. Logical partitions 112 are managed by logical partition hypervisor
114, which is implemented by firmware running on processors 110. As used herein,
firmware includes, ¢.g., the microcode and/or millicode of the processor. It includes, for
instance, the hardware-level instructions and/or data structures used in implementation of
higher level machine code. In one preferred embodiment of the present invention, it
includes, for instance, proprietary code that is typically delivered as microcode that includes
trusted software or microcode specific to the underlying hardware and controls operating

system access to the system hardware.

[0021] Central processors 110 are physical processor resources allocated to the logical
partitions. In particular, each logical partition 112 has one or more logical processors, each
of which represents all or a share of a physical processor 110 allocated to the partition. The
logical processors of a particular partition 112 may be either dedicated to the partition, so
that the underlying processor resource 110 is reserved for that partition; or shared with
another partition, so that the underlying processor resource is potentially available to another
partition. In one example, one or more of the CPUs include aspects of a configuration

architectural mode facility 130 described herein.

[0022] Input/output subsystem 111 directs the flow of information between input/output
devices 106 and main storage 104. It is coupled to the central processing complex, in that it
can be a part of the central processing complex or separate therefrom. The I/O subsystem
relieves the central processors of the task of communicating directly with the input/output
devices and permits data processing to proceed concurrently with input/output processing.
To provide communications, the I/0 subsystem employs I/O communications adapters.
There are various types of communications adapters including, for instance, channels, /0
adapters, PCI cards, Ethernet cards, Small Computer Storage Interface (SCSI) cards, etc. In

the particular example described herein, the I/O communications adapters are channels, and

WO 2015/139992 PCT/EP2015/054850
10

therefore, the 1/0 subsystem is referred to herein as a channel subsystem. However, this is

only one example. Other types of I/O subsystems can be used.

[0023] The 1/O subsystem uses one or more input/output paths as communication links in
managing the flow of information to or from input/output devices 106. In this particular
example, these paths are called channel paths, since the communication adapters are

channels.

[0024] Another example of a computing environment to incorporate and use one or more
aspects of the CAM facility is described with reference to FIG. 1B. In this example, a
computing environment 150 includes a central processor complex 152 providing virtual
machine support. CPC 152 is coupled to one or more input/output (I/O) devices 106 via one
or more control units 108. Central processor complex 152 includes, for instance, a processor
memory 154 (a.k.a., main memory, main storage, central storage) coupled to one or more
central processors (a.k.a., central processing units (CPUs)) 110, and an input/output

subsystem 111.

[0025] Processor memory 154 includes, for example, one or more virtual machines 162, and
processor firmware 163, which includes a host hypervisor 164 and other processor firmware
165. One example of host hypervisor 164 is z/VM®, offered by International Business
Machines Corporation, Armonk, New York.

[0026] The virtual machine support of the CPC provides the ability to operate large numbers
of virtual machines 162, each capable of hosting a guest operating system 172, such as
Linux®. Each virtual machine 162 is capable of functioning as a separate system. That is,
each virtual machine can be independently reset, host a guest operating system, and operate
with different programs 120. An operating system or application program running in a
virtual machine appears to have access to a full and complete system, but in reality, only a
portion of it is available. Linux is a registered trademark of Linus Torvalds in the United

States, other countries, or both.

WO 2015/139992 PCT/EP2015/054850
11

[0027] In this particular example, the model of virtual machines is a V=V model, in which
the absolute or real memory of a virtual machine is backed by host virtual memory, instead
of real or absolute memory. Each virtual machine has a virtual linear memory space. The
physical resources are owned by host 164, and the shared physical resources are dispatched
by the host to the guest operating systems, as needed, to meet their processing demands.
This V=V virtual machine (i.c., pageable guest) model assumes that the interactions between
the guest operating systems and the physical shared machine resources are controlled by the
host, since the large number of guests typically precludes the host from simply partitioning
and assigning the hardware resources to the configured guests. One or more aspects of a
V=V model are further described in an IBM® publication entitled “z/VM: Running Guest
Operating Systems,” IBM® Publication No. SC24-5997-02, October 2001.

[0028] Central processors 110 are physical processor resources that are assignable to a
virtual machine. For instance, virtual machine 162 includes one or more logical processors,
cach of which represents all or a share of a physical processor resource 110 that may be
dynamically allocated to the virtual machine. Virtual machines 162 are managed by host

164.

[0029] In one preferred embodiment of the present invention, the host (e.g., zZVM®) and
processor (e.g., System z) hardware/firmware interact with each other in a controlled
cooperative manner in order to process V=V guest operating system operations without
requiring transfer of control from/to the guest operating system and the host. Guest
operations can be executed directly without host intervention via a facility that allows
instructions to be interpretively executed for a pageable storage mode guest. This facility
provides an instruction, Start Interpretive Execution (SIE), which the host can issue,
designating a control block called a state description which holds guest (virtual machine)
state and controls, such as execution controls and mode controls. The instruction places the
machine into an interpretive-execution mode in which guest instructions and interruptions
are processed directly, until a condition requiring host attention arises. When such a
condition occurs, interpretive execution is ended, and either a host interruption is presented,
or the SIE instruction completes storing details of the condition encountered; this latter

action is called interception. One example of interpretive execution is described in System

WO 2015/139992 PCT/EP2015/054850
12

/370 Extended Architecture/Interpretive Execution, IBM Publication No. SA22-7095-01,
September 1985.

[0030] In particular, in one preferred embodiment of the present invention, the interpretative
execution facility provides an instruction for the execution of virtual machines. This
instruction, called Start Interpretative Execution (SIE), is issued by a host which establishes
a guest execution environment. The host is the control program directly managing the real
machine and a guest refers to any virtual or interpreted machine. The machine is placed in
the interpretative execution mode by the host, which issues the SIE instruction. In this
mode, the machine provides the functions of a selected architecture (e.g., z/Architecture,
ESA/390). The functions include, for instance, execution of privileged and problem
program instructions, address translation, interruption handling, and timing among other
things. The machine is said to interpret the functions that it executes in the context of the

virtual machine.

[0031] The SIE instruction has an operand, called the state description, which includes
information relevant to the current state of the guest. When execution of SIE ends,
information representing the state of the guest, including the guest PSW is saved in the state

description before control is returned to the host.

[0032] The interpretative execution architecture provides a storage mode for absolute
storage referred to as a pageable storage mode. In pageable storage mode, dynamic address
translation at the host level is used to map guest main storage. The host has the ability to
scatter the real storage of pageable storage mode guests to usable frames anywhere in host
real storage by using the host DAT, and to page guest data out to auxiliary storage. This
technique provides flexibility when allocating real machine resources while preserving the

expected appearance of a contiguous range of absolute storage for the guest.

[0033] A virtual machine environment may call for application of DAT twice: first at the
guest level, to translate a guest virtual address through guest managed translation tables into
a guest real address, and then, for a pageable guest, at the host level, to translate the

corresponding host virtual address to a host real address.

WO 2015/139992 PCT/EP2015/054850
13

[0034] In certain cases, the host is to intercede in operations normally delegated to the
machine. For this purpose, the state description includes controls settable by the host to
“trap,” or intercept, specific conditions. Interception control bits request that the machine
return control to host simulation when particular guest instructions are encountered.
Intervention controls capture the introduction of an enabled state into the PSW, so that the
host can present an interruption which it holds pending for the guest. Intervention controls
may be set asynchronously by the host on another real processor while interpretation
proceeds. The machine periodically refetches the controls from storage, so that updated
values will be recognized. Guest interruptions can thereby be made pending without

prematurely disturbing interpretation.

[0035] In one preferred embodiment of the present invention, mode controls in the state
description specify whether the guest is executed in the ESA/390 or z/Architecture mode and
selects one of a plurality of ways to represent guest main storage of a guest virtual machine
in host storage. In accordance with one preferred embodiment of the present invention, a
control bit is provided in a state control to select between a guest in a first and a second
architectural mode (e.g., z/Architecture and ESA/390, respectively). In accordance with
Another preferred embodiment of the present invention Another preferred embodiment of
the present invention Another preferred embodiment of the present invention, two distinct
instructions may provide a host with the ability to create a first and a second guest virtual
machine, e.g., distinct instructions SIEz and SIEe may be provided to start guest machines in

a z/Architecture and ESA/390 mode, respectively.

[0036] The SIE instruction runs a virtual server dispatched by the control program until the
server’s time slice has been consumed or until the server wants to perform an operation that
the hardware cannot virtualize or for which the control program is to regain control. At that
point, the SIE instruction ends and control is returned to the control program, which either
simulates the instruction or places the virtual server in an involuntary wait state. When
complete, the control program again schedules the virtual server to run, and the cycle starts
again. In this way, the full capabilities and speed of the CPU are available to the virtual
server. Only those privileged instructions that require assistance from or validation by the

control program are intercepted. These SIE intercepts, as they are known as, are also used

WO 2015/139992 PCT/EP2015/054850
14

by the control program to impose limits on the operations a virtual server may perform on a

real device.

[0037] Further details regarding SIE are described in ESA/390 interpretive-execution
architecture, foundation for VM/ESA, Osisck et al., IBM Systems Journal, Vol. 30, No. 1,
January 1991, pp. 34-51.

[0038] Another example of a computing environment to incorporate and use one or more
aspects of the configuration architectural mode facility is described with reference to FIG. 2.
In this example, a computing environment 200 includes a non-partitioned environment that
is configured for a plurality of architectural modes, including the z/Architecture and
ESA/390. It includes, e.g., a processor (central processing unit — CPU) 202 that includes, for
instance, a configuration architecture mode facility 204, and one or more caches 206.
Processor 202 is communicatively coupled to a memory portion 208 having one or more
caches 210, and to an input/output (I/O) subsystem 212. 1/O subsystem 212 is
communicatively coupled to external I/O devices 214 that may include, for example, data

input devices, sensors and/or output devices, such as displays.

[0039] Another preferred embodiment of the present invention of a computing environment
to incorporate and use one or more aspects of the configuration architectural mode facility is
described with reference to FIG. 3A. In this example, a computing environment 300
includes, for instance, a native central processing unit (CPU) 302, a memory 304, and one or
more input/output devices and/or interfaces 306 coupled to one another via, for example, one
or more buses 308 and/or other connections. As examples, computing environment 300 may
include a PowerPC processor or a Power Systems server offered by International Business
Machines Corporation, Armonk, New York; an HP Superdome with Intel Itanium II
processors offered by Hewlett Packard Co., Palo Alto, California; and/or other machines
based on architectures offered by International Business Machines Corporation, Hewlett
Packard, Intel, Oracle, or others. Intel, and Itanium are trademarks or registered trademarks

of Intel Corporation or its subsidiaries in the United States and other countries.

WO 2015/139992 PCT/EP2015/054850
15

[0040] Native central processing unit 302 includes one or more native registers 310, such as
one or more general purpose registers and/or one or more special purpose registers used
during processing within the environment, as well as a configuration architectural mode
facility 311. These registers include information that represents the state of the environment

at any particular point in time.

[0041] Moreover, native central processing unit 302 executes instructions and code that are
stored in memory 304. In one particular example, the central processing unit executes
emulator code 312 stored in memory 304. This code enables the computing environment
configured in one architecture to emulate one or more other architectures. For instance,
emulator code 312 allows machines based on architectures other than the z/Architecture,
such as PowerPC processors, Power Systems servers, HP Superdome servers or others, to
emulate the z/Architecture (and/or ESA/390) and to execute software and instructions

developed based on the z/Architecture.

[0042] Further details relating to emulator code 312 are described with reference to FIG. 3B.
Guest instructions 350 stored in memory 304 comprise software instructions (e.g.,
correlating to machine instructions) that were developed to be executed in an architecture
other than that of native CPU 302. For example, guest instructions 350 may have been
designed to execute on a z/Architecture processor 202, but instead, are being emulated on
native CPU 302, which may be, for example, an Intel Itanium II processor. In one example,
emulator code 312 includes an instruction fetching routine 352 to obtain one or more guest
instructions 350 from memory 304, and to optionally provide local buffering for the
instructions obtained. It also includes an instruction translation routine 354 to determine the
type of guest instruction that has been obtained and to translate the guest instruction into one
or more corresponding native instructions 356. This translation includes, for instance,
identifying the function to be performed by the guest instruction and choosing the native

instruction(s) to perform that function.

[0043] Further, emulator code 312 includes an emulation control routine 360 to cause the
native instructions to be executed. Emulation control routine 360 may cause native CPU 302

to execute a routine of native instructions that emulate one or more previously obtained

WO 2015/139992 PCT/EP2015/054850
16

guest instructions and, at the conclusion of such execution, return control to the instruction
fetch routine to emulate the obtaining of the next guest instruction or a group of guest
instructions. Execution of the native instructions 356 may include loading data into a
register from memory 304; storing data back to memory from a register; or performing some

type of arithmetic or logic operation, as determined by the translation routine.

[0044] Each routine is, for instance, implemented in software, which is stored in memory
and executed by native central processing unit 302. In other examples, one or more of the
routines or operations are implemented in firmware, hardware, software or some
combination thercof. The registers of the emulated processor may be emulated using
registers 310 of the native CPU or by using locations in memory 304. In embodiments,
guest instructions 350, native instructions 356 and emulator code 312 may reside in the same

memory or may be disbursed among different memory devices.

[0045] The computing environments described above are only examples of computing
environments that can be used. Other environments, including but not limited to, other non-
partitioned environments, other partitioned environments, and/or other emulated

environments, may be used; embodiments are not limited to any one environment.

[0046] In accordance with one or more aspects, a configuration architectural mode (CAM)
facility is installed in one or more processors (¢€.g., central processing units) of a computing
environment to control reconfiguration of the environment. For instance, when CAM is
installed in a computing environment that supports a plurality of architectural modes, the
computing environment is reconfigured such that use of one or more aspects of at least one

of the architectural modes is restricted.

[0047] One particular example of a configuration architectural mode facility is the
Configuration z/Architecture Architectural Mode (CZAM) facility. Installation of CZAM is
indicated by, for instance, a facility installation indicator, ¢.g., bit 138, set to, for instance,
one. In one particular example, when bit 138 is set to one, the CZAM facility is installed,

and when installed, a normal reset and a clear reset places the configuration into the

WO 2015/139992 PCT/EP2015/054850
17

z/Architecture architectural mode. Thus, the facility bit, e.g., bit 2, indicating the

z/Architecture architectural mode is active is also set to one, in one example.

[0048] Based on installation of CZAM, a computing environment (e.g., a single processor, a
logical partition, a virtual guest, etc.) is re-configured such that one or more aspects of a
selected architecture, e.g., ESA/390, is no longer supported. Those aspects that are no

longer supported and/or processes affected by installation of CZAM are described below.

[0049] Although in the embodiments described herein, the plurality of architectural modes
include a legacy architecture (e.g., ESA/390) and an enhanced architecture (e.g.,
z/Architecture) and aspects of the legacy architecture, ESA/390, are no longer supported,
other embodiments may include other architectures. ESA/390 and z/Architecture are only

examples.

[0050] One process that is affected by installation of CZAM is a power-on process. To
describe how this process is affected, initially, a power-on process for an environment that
supports multiple architectural configurations and does not include the CZAM facility is
described with reference to FIGs. 4A-4B, and then a power-on process for an environment
that is configured for multiple architectural configurations and does include the CZAM
facility is described with reference to FIGs. 6A-6B. Power-on for a system includes, for
instance, starting the system and initiating a boot sequence or other means of initiating
operations in the system. It may correspond to a physical power-on, a hardware reset, and/or

a virtual power-on (e.g., in an emulated system, a virtual machine or a guest environment).

[0051] Referring initially to FIG. 4A, based on a processor of the computing environment
being powered on and an operator key, ¢.g., a load-normal or a load-clear key, being
activated, the processor enters a load state and sets the computing environment to a
particular architectural mode, e.g., ESA/390 mode, STEP 400. For instance, an initial
program load (IPL), such as a channel control word (CCW) initial program load (IPL), is
performed, STEP 402. Initial program loading provides a manual means for causing a
program to be read from a designated device and for initiating execution of that program. A

CCW-type IPL is initiated manually by setting the load-unit-address controls to a four digit

WO 2015/139992 PCT/EP2015/054850
18

number to designate an input device and by subsequently activating the load-clear or load-

normal key for a particular CPU.

[0052] Activating the load-clear key causes a clear reset to be performed on the
configuration; and activating the load-normal key causes an initial CPU reset to be
performed on this CPU (the CPU on which the key was activated), a CPU reset to be
propagated to all other CPUs in the configuration, and a subsystem reset to be performed on
the remainder of the configuration. Activating the load-clear key or the load-normal key sets

the architectural mode (e.g., ESA/390).

[0053] In the loading part of the operation, after the resets have been performed, this CPU
then enters the load state. This CPU does not necessarily enter the stopped state during the

execution of the reset operations. The load indicator is on while the CPU is in the load state.

[0054] Subsequently, a channel-program read operation is initiated from the I/O device
designated by the load-unit-address controls. The effect of executing the channel program is
as if a format-0 CCW beginning at absolute storage location 0 specified a read command
with the modifier bits zeros, a data address of zero, a byte count of 24, the chain-command

and SLI flags ones, and all other flags zeros.

[0055] When the IPL input/output operation is completed successfully, a subsystem
identification word for the IPL device is stored in selected absolute storage locations (e.g.,
locations 184-187), zeros are stored in other selected absolute storage locations (e.g.,
locations 188-191), and a new program status word (PSW) is loaded from selected absolute
storage locations (e.g., locations 0-7), STEP 404. The program status word controls

operations of the computing environment.

[0056] If the PSW loading is successful and no machine malfunctions are detected, this CPU
leaves the load state, and the load indicator is turned off. If the rate control is set to the
process position, the CPU enters the operating state, and operation of the computing

environment proceeds under control of the new program status word (PSW), STEP 406. The

WO 2015/139992 PCT/EP2015/054850
19

booted computing environment then runs, STEP 408, as further described with reference to

FIG. 4B.

[0057] Referring to FIG. 4B, the booted computing environment is initiated in ESA/390
mode, STEP 420, and thus, operations are performed in ESA/390 mode, STEP 422. At
some point, a request may be made to change the architectural mode from ESA/390 to
z/Architecture. In particular, a program sends an order code (e.g., a code designating Set
Architecture) to the processor, which issues a Signal Processor (SIGP) instruction with the
order code to switch from ESA/390 mode to z/Architecture mode, STEP 424. For instance,
a CPU signaling and response facility is used that includes the Signal Processor instruction
(described below) and a mechanism to interpret and act on server order codes, including one
for Set Architecture. The facility provides for communications among CPUs, including
transmitting, receiving, and decoding a set of assigned order codes; initiating the specified
operation; and responding to a signaling CPU. By using Set Architecture, the architectural
mode is set to the desired configuration, e.g., z/Architecture. Further details of this

processing are described further below.

[0058] Thereafter, a determination is made as to whether the SIGP operation was accepted,
INQUIRY 426. Based on the return code, a number of error conditions can be diagnosed,
including an “invalid parameter” indication when a determination has been made that the
CPU is already in the architectural mode specified by the code (i.c., that the set architecture
represents a switch to current mode itself, or whether it is a switch from one mode to another
mode). If the SIGP is accepted and the set architecture represents a legal mode switch
operation, then all the processors of the computing environment that received the SIGP
operation transition into z/Architecture mode using, for instance, the Set Architecture
processing described herein, STEP 428. However, if the SIGP operation is not legal, an
error is indicated, STEP 430.

[0059] As described above, the power-on operation loads a program status word. One
preferred embodiment of the present invention of a format of a program status word (PSW)

is described with reference to FIG. 5. Referring to FIG. 5, in this example, the format of the

WO 2015/139992 PCT/EP2015/054850
20

program status word is an ESA/390 format, except that bit 31 is shown as EA, as indicated

below.

[0060] In one preferred embodiment of the present invention, a program status word 500
includes the following fields, as one example:

Per Mask (R) 502: Bit 1 controls whether the CPU is enabled for interruptions
associated with program event recording (PER). When the bit is zero, no PER event can
cause an interruption. When the bit is one, interruptions are permitted, subject to the PER
event mask bits in control register 9;

DAT Mode (T) 504: Bit 5 controls whether implicit dynamic address translation
(DAT) of logical and instruction addresses used to access storage takes place. When the bit
is zero, DAT is off, and logical and instruction addresses are treated as real addresses. When

the bit is one, DAT is on, and the dynamic address translation mechanism is invoked.

[0061] 1/O Mask (10) 506: Bit 6 controls whether the CPU is enabled for I/O interruptions.
When the bit is zero, an I/O interruption cannot occur. When the bit is one, I/O interruptions
are subject to the I/O interruption subclass mask bits in control register 6. When an 1/O
interruption subclass mask bit is zero, an 1/O interruption for that I/O interruption subclass
cannot occur; when the I/O interruption subclass mask bit is one, an I/O interruption for that
I/O interruption subclass can occur;

External Mask (EX) 508: Bit 7 controls whether the CPU is enabled for
interruption by conditions included in the external class. When the bit is zero, an external
interruption cannot occur. When the bit is one, an external interruption is subject to the
corresponding external subclass mask bits in control register 0. When the subclass mask bit
is zero, conditions associated with the subclass cannot cause an interruption. When the

subclass mask bit is one, an interruption in that subclass can occur.

[0062] PSW Key (Key) 510: Bits 9-11 form the access key for storage references by the
CPU. If the reference is subject to key-controlled protection, the PSW key is matched with a
storage key when information is stored or when information is fetched from a location that is
protected against fetching. However, for one of the operands of each of Move to Primary,

Move to Secondary, Move with Key, Move with Source Key, and Move with Destination

WO 2015/139992 PCT/EP2015/054850
21

Key, and for either or both operands of Move with Optional Specifications, an access key

specified as an operand is used instead of the PSW key.

[0063] Bit 12 512: This bit indicates the current architectural mode. It is sct to one for the
ESA/390 PSW format. For the z/Architecture PSW format, this bit is defined to be zero.
When in z/Architecture mode, a load PSW extended (LPSWE) instruction is defined for
loading a true z/Architecture PSW (which has a different format than the format described
herein, including having an instruction address in bits 64-127). However, an ESA/390 load
PSW (LPSW) is still supported and can be used to load an ESA/390 format PSW. When
LPSW is executed and the computing environment is in z/Architecture mode, the processor
expands the ESA/390 format PSW to the z/Architecture format, including inverting bit 12.
This is the reverse of collapsing the z/Architecture PSW format that the operating system
performs to create the ESA/390 format PSW. That is, in computing environments that
support both ESA/390 and z/Architecture, when a copy of a PSW is placed in storage, the
operating system collapses the full z/Architecture PSW to the size and format of an ESA/390
PSW. Thus, other software with PSW format dependencies can be unaware of the

z/Architecture PSW.

[0064] Machine Check Mask (M) 514: Bit 13 controls whether the CPU is enabled for
interruption by machine check conditions. When the bit is zero, a machine check
interruption cannot occur. When the bit is one, machine check interruptions due to system
damage and instruction processing damage are permitted, but interruptions due to other

machine check subclass conditions are subject to the subclass mask bits in control register

14.

[0065] Wait State (W) 516: When bit 14 is one, the CPU is waiting; that is, no instructions
are processed by the CPU, but interruptions may take place. When bit 14 is zero, instruction
fetching and execution occur in the normal manner. The wait indicator is one when the bit is

one.

[0066] Problem State (P) 518: When bit 15 is one, the CPU is in the problem state. When

bit 15 is zero, the CPU is in the supervisor state. In the supervisor state, all instructions are

WO 2015/139992 PCT/EP2015/054850
22

valid. In the problem state, only those instructions are valid that provide meaningful
information to the problem program and that cannot affect system integrity; such instructions
are called unprivileged instructions. The instructions that are not valid in the problem state
are called privileged instructions. When a CPU in the problem state attempts to execute a
privileged instruction, a privileged operation exception is recognized. Another group of
instructions, called semiprivileged instructions, are executed by a CPU in the problem state
only if specific authority tests are met; otherwise, a privileged operation exception or some
other program exception is recognized, depending on the particular requirement which is

violated.

[0067] Address Space Control (AS) 520: Bits 16 and 17, in conjunction with PSW bit 5,

control the translation mode.

[0068] Condition Code (CC) 522: Bits 18 and 19 are the two bits of the condition code.

The condition code is set to 0, 1, 2, or 3 depending on the result obtained in executing certain
instructions. Most arithmetic and logical operations, as well as some other operations, set
the condition code. The instruction BRANCH ON CONDITION can specify any selection

of the condition code values as a criterion for branching.

[0069] Program Mask 524: Bits 20-23 are the four program mask bits. Each bit is

associated with a program exception, as follows:

Program Mask Bit Program Exception
20 Fixed point overflow
21 Decimal overflow
22 HFP exponent underflow
23 HFP significance

[0070] When the mask bit is one, the exception results in an interruption. When the mask
bit is zero, no interruption occurs. The setting of the HFP-exponent-under-flow-mask bit of
the HFP-significance-mask bit also determines the manner in which the operation is

completed when the corresponding exception occurs.

WO 2015/139992 PCT/EP2015/054850
23

[0071] Extended Addressing Mode (EA) 526: Bit 31 controls the size of effective addresses
and effective address generation in conjunction with bit 32, the basic addressing mode bit.
When bit 31 is zero, the addressing mode is controlled by bit 32. When bits 31 and 32 are
both one, 64-bit addressing is specified.

[0072] Basic Addressing Mode (BA) 528: Bits 31 and 32 control the size of effective
addresses and effective address generation. When bits 31 and 32 are both zero, 24-bit
addressing is specified. When bit 31 is zero and bit 32 is one, 31-bit addressing is specified.
When bits 31 and 32 are both one, 64-bit addressing is specified. Bit 31 one and bit 32 zero
is an invalid combination that causes a specification exception to be recognized. The
addressing mode does not control the size of PER addresses or of addresses used to access
DAT, ASN, dispatchable unit control, linkage, entry, and trace tables or access lists or the
linkage stack. The control of the addressing mode by bits 31 and 32 of the PSW is

summarized as follows:

PSW:31 PSW:32 Addressing Mode
0 0 24-bit
0 1 31-bit
1 1 64-bit

[0073] Instruction Address 530: Bits 33-63 of the PSW are the instruction address. The
address designates the location of the leftmost byte of the next instruction to be executed,

unless the CPU is in the wait state (bit 14 of the PSW is one).

[0074] In accordance with an aspect, when a configuration architectural mode facility, such
as the Configuration z/Architecture Architectural Mode (CZAM) facility, is installed and
activated in the computing environment, the power-on process is changed. One preferred
embodiment of the present invention of a CZAM power-on process is described with

reference to FIG. 6A.

[0075] Referring to FIG. 6A, based on a processor of the computing environment being
powered on, the computing environment is set to the particular architectural mode specified

by the configuration architectural mode facility, e.g., the z/Architecture mode (also referred

WO 2015/139992 PCT/EP2015/054850
24

to as ESAME) when CZAM is installed, STEP 600. For instance, an initial program load
(IPL), such as a channel control word (CCW) initial program load (IPL), is performed, as
described above, STEP 602, and when the IPL input/output operation is completed
successfully, a subsystem identification word for the IPL device is stored in selected
absolute storage locations (e.g., locations 184-187), zeros are stored in other selected
absolute storage locations (e.g., locations 188-191), and in this embodiment, a 16-byte new
program status word (PSW) is created from selected absolute storage locations (e.g.,
locations 0-7), STEP 604. The new 16-byte PSW is formed, e.g., from the contents of the
selected storage doubleword (e.g., locations 0-7). Bit 12 of the doubleword is to be one;
otherwise, an error may be indicated. (The error may be a specification exception which is
recognized, a machine check, or yet another error indication.) Bits 0-32 of the newly created
PSW are set to bits 0-32 of the selected doubleword, except with bit 12 inverted. Bits 33-96
of the newly created PSW are set to zeros. Bit positions 97-127 of the newly created PSW

are initialized from bits 33-63 of the selected doubleword.

[0076] In one preferred embodiment of the present invention, the PSW fields which are to be
loaded by the instruction are not checked for validity before they are loaded. In one
preferred embodiment of the present invention, bit 12 of the PSW is checked for validity. In
yet Another preferred embodiment of the present invention, all fields are checked for
validity. In Another preferred embodiment of the present invention, any bits not checked
prior to the loading of the PSW are checked for validity after the PSW has been initialized,
and the processor may indicate an error (e.g., by raising a specification exception which is

recognized, a machine check, or yet another error indication.)

[0077] The computing environment enters the operating state, and operation of the
computing environment proceeds under control of the new program status word (PSW),
STEP 606. The booted computing environment then runs, STEP 608, as further described
with reference to FIG. 6B.

[0078] Referring to FIG. 6B, the booted computing environment is initiated in
z/Architecture mode, STEP 620, and thus, operations are performed in z/Architecture mode,

STEP 622. No mode switch is necessary, and processing continues directly with processing

WO 2015/139992 PCT/EP2015/054850
25

in the z/Architecture mode. Thus, in one preferred embodiment of the present invention, the
following steps are not needed: A Signal Processor (SIGP) operation to switch from
ESA/390 mode to z/Architecture mode; a determination as to whether the SIGP operation is
an accepted operation; the transition to z/Architecture if it is an accepted operation; or the

error indication, if the SIGP operation is not accepted.

[0079] All of the processors of the computing environment (i.¢., the environment being
configured, e.g., single processor, logical partition, VM guest) are in z/Architecture mode,
without performing the above indicated steps. Thus, as described herein, in accordance with
one aspect, the ability to boot or power-on in ESA/390 mode is removed from the computing
environment that is configured for both ESA/390 and z/Architecture. In particular, although
a computing environment is configured to support multiple architectures, a capability is
provided to restrict certain aspects of at least one of the configured architectures, one of the

aspects being the ability to power-on in that architecture.

[0080] In one or more embodiments, the powering-on in z/Architecture mode provides a
mechanism to specify one of (1) a logical partition (guest-1), and (2) a logical partition and
guest-2 are to be booted and reset in z/Architecture mode, without the need to boot in
ESA/390 mode. This feature may be installed unconditionally or under the control of a

configuration switch.

[0081] The boot sequence with respect to PSW initialization is modified. For instance, at
the end of IPL, the IPL PSW at absolute locations 0-7 is loaded. As is currently done when
the reset condition is ESA/390, bit 12 is one, making a valid ESA/390 IPL PSW, and the
program proceeds to execute instructions in the ESA/390 architectural mode. With CZAM
installed, the reset condition is z/Architecture, bit 12 is still one, making a valid ESA/390
IPL PSW, but bit 12 is inverted during the formation of the 16 byte z/Architecture current
PSW, as defined above.

[0082] In addition to the power-on process, other processes, behaviors and/or operations
may also be changed or affected by installation of a configuration architectural mode

facility. These affected processes, behaviors, and/or operations are specific to the ESA/390

WO 2015/139992 PCT/EP2015/054850
26

and z/Architecture modes. However, similar and/or different processes may be affected for
other types of architectures. Example processes, behaviors and/or operations that may be
affected in one or more embodiments include, for instance:

(1) Enabling a switch from mode to self (e.g., from z/Architecture mode to
z/Architecture mode) without generating an error (or ignoring the error). That is, a processor
may issue a SIGP instruction to switch to z/Architecture mode and if it is already in that
mode, no error will be generated. Previously, attempting a switch to the mode
corresponding to the current mode generated an error.

(2) Disabling a switch to ESA/390 mode. Based on installing and activating
CZAM, the switch to ESA/390 is disabled and now generates an error. A switch back to
ESA/390 is prevented by checking bit 12 of the PSW, and taking an exception, if bit 12 is
not set to indicate z/Architecture mode (represented by a bit 12 of “1” in storage which is
inverted to bit “0” to represent z/Architecture in the PSW when an ESA/390 PSW is
converted to a valid z/Architecture PSW).

(3) Modifying the Load PSW operation to restrict handling of bit 12. If the
Configuration z/Architecture Architectural Mode facility is installed, Load PSW recognizes
a specification exception if bit 12 of its second operand is not one. Load PSW loads bits 0-
32 of its second operand, except with bit 12 inverted, and bits 33-63 of the operand as bits 0-
32 and 97-127, respectively of the current PSW, and it sets bits 33-96 of the current PSW to

ZCT108.

[0083] Further details regarding the Load PSW instruction are described with reference to
FIG. 7. In one preferred embodiment of the present invention, a Load PSW instruction 700
includes an operation code field 702 that includes an operation code to indicate a load PSW
operation; a base field (B2) 704; and a displacement field (D2) 706. Contents of the general
register designated by the B; field are added to the contents of the D; field to form an address

of a second operand in storage (referred to as the second operand address).

[0084] In operation of the Load PSW instruction, the current PSW is replaced by a 16-byte
PSW formed from the contents of the doubleword at the location designated by the second

operand address.

WO 2015/139992 PCT/EP2015/054850
27

[0085] Bit 12 of the doubleword is to be one; otherwise, a specification exception may be
recognized, depending on the model. If the Configuration z/Architecture Architectural
Mode facility is installed, then a specification exception is recognized if bit 12 of the

doubleword is not one.

[0086] Bits 0-32 of the doubleword, except with bit 12 inverted, are placed in positions 0-32
of the current PSW. Bits 33-63 of the doubleword are placed in positions 97-127 of the
current PSW. Bits 33-96 of the current PSW are set to zero.

[0087] A serialization and checkpoint synchronization function is performed before or after

the operand is fetched and again after the operation is completed.

[0088] The operand is to be designated on a doubleword boundary; otherwise, a
specification exception is recognized. A specification exception may be recognized if bit 12

of the operand is zero, depending on the model.

[0089] The PSW fields which are to be loaded by the instruction are not checked for validity
before they are loaded, except for the checking of bit 12. However, immediately after
loading, a specification exception is recognized, and a program interruption occurs, when
any of the following is true for the newly loaded PSW:

e Any of bits 0, 2-4, 12, or 24-30 is a one.

e Bits 31 and 32 are both zero, and bits 97-103 are not all zeros.

e Bits 31 and 32 are one and zero, respectively.

[0090] In these cases, the operation is completed, and the resulting instruction length code is

0.

[0091] The operation is suppressed on all addressing and protection exceptions.

[0092] Resulting Condition Code: The code is set as specified in the new PSW Loaded.
Program Exceptions:

e Access (fetch, operand 2)

WO 2015/139992 PCT/EP2015/054850
28

o Privileged operation

e Specification

[0093] Programming Note: The second operand should have the format of an ESA/390
PSW. A specification exception will be recognized during or after the execution of LOAD

PSW if bit 12 of the operand is zero.

[0094] Further details regarding the PSW are described in “Development and Attributes of
z/Architecture,” Plambeck et al., IBM J. Res. & Dev., Vol. 46, No. 4/5, July/September
2002.

[0095] In addition to the above processes, operations and/or behaviors that may be changed
due to installation of a configuration architectural mode facility, the reset mode may also be
changed in one or more embodiments, as explained below.

(4) Changes the reset mode (e.g., for reset, clear reset, and other actions for
reset). When the CZAM facility is installed, the CPU reset sets the architectural mode to the

z/Architecture mode, if it is caused by activation of, for instance, the load-normal key.

[0096] There are a number of reset functions that are included as part of the ESA/390 and
z/Architecture modes, including, for instance, CPU reset, initial CPU reset, Subsystem reset,

Clear reset and Power-on reset, each of which is described below.

[0097] CPU Reset

CPU reset provides a means of clearing equipment check indications and any
resultant unpredictability in the CPU state with the least amount of information destroyed.
In particular, it is used to clear check conditions when the CPU state is to be preserved for
analysis or resumption of the operation. If the Configuration z/Architecture Architectural
Mode (CZAM) facility is not installed, CPU reset sets the architectural mode to the ESA/390
mode if it is caused by activation of the load-normal key (an operator facility). When the
CZAM facility is installed, CPU reset sets the architectural mode to the z/Architecture mode
if it is caused by activation of the load-normal key. When CPU reset sets the ESA/390

WO 2015/139992 PCT/EP2015/054850
29

mode, it saves the current PSW so that PSW can be restored by a Signal Processor Set
Architecture order that changes the architectural mode back to z/Architecture.

CPU reset causes the following actions, in one preferred embodiment of the
present invention:

1. The execution of the current instruction or other processing sequence, such as
an interruption, is terminated, and all program-interruption and supervisor-call-interruption
conditions are cleared.

2. Any pending external-interruption conditions which are local to the CPU are
cleared. Floating external-interruption conditions are not cleared.

3. Any pending machine-check-interruption conditions and error indications
which are local to the CPU and any check-stop states are cleared. Floating machine-check-
interruption conditions are not cleared. Any machine-check condition which is reported to all
CPUs in the configuration and which has been made pending to a CPU is said to be local to
the CPU.

4. All copies of prefetched instructions or operands are cleared. Additionally,
any results to be stored because of the execution of instructions in the current checkpoint
interval are cleared.

5. The ART (Access Register Translation)-lookaside buffer and translation-
lookaside buffer are cleared of entries.

6. If the reset is caused by activation of the load-normal key on any CPU in the
configuration, the following actions occur:

a. When the CZAM facility is not installed, the architectural mode of the
CPU (and of all other CPUs in the configuration because of the initial CPU reset or CPU
resets performed by them) is changed from the z/Architecture mode to the ESA/390 mode.
If the CZAM facility is installed, the architectural mode of the CPU (and of all other CPUs
in the configuration because of the initial CPU reset or CPU resets performed by them) is set
to the z/Architecture mode.

b. When the CZAM facility is not installed, the current PSW is saved for
subsequent use by a Signal Processor Set Architecture order that restores the z/Architecture
mode.

C. When the CZAM facility is not installed, the current PSW is changed
from 16 bytes to cight bytes. The bits of the eight-byte PSW are set as follows: bits 0-11 and

WO 2015/139992 PCT/EP2015/054850
30

13-32 are set equal to the same bits of the 16-byte PSW, bit 12 is set to one, and bits 33-63
are set equal to bits 97-127 of the 16-byte PSW.

A CPU reset caused by activation of the system reset-normal key or by the Signal
Processor CPU-Reset order, and any CPU reset in the ESA/390 mode, do not affect the
captured z/Architecture-PSW register (i.e., a PSW saved when the CPU last went from the
z/Architecture mode to the ESA/390 mode because of a Set Architecture order with code 0
or a CPU reset due to activation of the load-normal key).

7. The CPU is placed in the stopped state after actions 1-6 have been completed.
When the CCW-type IPL sequence follows the reset function on that CPU, the CPU enters
the load state at the completion of the reset function and does not necessarily enter the
stopped state during the execution of the reset operation. When the list-directed IPL
sequence follows the reset function on that CPU, the CPU enters the operating state and does

not necessarily enter the stopped state during the execution of the reset operation.

[0098] Registers, storage contents, and the state of conditions external to the CPU remain
unchanged by CPU reset. However, the subsequent contents of the register, location, or state
are unpredictable if an operation is in progress that changes the contents at the time of the
reset. A lock held by the CPU when executing PERFORM LOCKED OPERATION is not
released by CPU reset.

[0099] When the reset function in the CPU is initiated at the time the CPU is executing an
I/O instruction or is performing an 1/O interruption, the current operation between the CPU
and the channel subsystem may or may not be completed, and the resultant state of the

associated channel-subsystem facility may be unpredictable.

[00100] Programming Notes:

1. Most operations which would change a state, a condition, or the contents of a
field cannot occur when the CPU is in the stopped state. However, some signal-processor
functions and some operator functions may change these fields. To eliminate the possibility
of losing a field when CPU reset is issued, the CPU should be stopped, and no operator

functions should be in progress.

WO 2015/139992 PCT/EP2015/054850
31

2. If the architectural mode is changed to the ESA/390 mode and bit 31 of the
current PSW is one, the PSW is invalid.

[00101] Imitial CPU Reset

Initial CPU reset provides the functions of CPU reset together with initialization
of the current PSW, captured z/Architecture PSW, CPU timer, clock comparator, prefix,
breaking-event-address control, floating point control, and time-of-day (TOD)
programmable registers. If the CZAM facility is not installed, initial CPU reset sets the
architectural mode to the ESA/390 mode if it is caused by activation of the load-normal key.
When the CZAM facility is installed, initial CPU reset sets the architectural mode to the
z/Architecture mode if it is caused by activation of the load-normal key.

Initial CPU reset combines the CPU reset functions with the following clearing
and initializing functions:

1. When the CZAM facility is not installed, if the reset is caused by activation of
the load-normal key, the architectural mode of the CPU (and of all other CPUs in the
configuration) is set to the ESA/390 mode. Otherwise, if the CZAM facility is installed, the
architectural mode of the CPU (and of all other CPUs in the configuration) is set to the
z/Architecture mode.

2. The contents of the current PSW, captured z/Architecture-PSW, prefix, CPU
timer, clock comparator, and TOD programmable register are set to zero. When the IPL
sequence follows the reset function on that CPU, the contents of the PSW are not necessarily
sct to zero.

3. The contents of the control registers are set to their initial z/Architecture
values. All 64 bits of the control registers are set regardless of whether the CPU is in the
ESA/390 or the z/Architecture architectural mode.

4. The contents of the floating point control register are set to zero.

5. The contents of the breaking-event-address register are initialized to

0000000000000001 hex.

[00102] These clearing and initializing functions include validation.

WO 2015/139992 PCT/EP2015/054850
32

[00103] Setting the current PSW to zero when the CPU is in the ESA/390 architectural
mode at the end of the operation causes the PSW to be invalid, since PSW bit 12 is to be one
in that mode. Thus, in this case if the CPU is placed in the operating state after a reset

without first introducing a new PSW, a specification exception is recognized.

[00104] Subsystem Reset
Subsystem reset provides a means for clearing floating interruption conditions as

well as for invoking I/O system reset.

[00105] Clear Reset

Clear reset causes initial CPU reset and subsystem reset to be performed and,
additionally, clears or initializes all storage locations and registers in all CPUs in the
configuration, with the exception of the TOD clock. Such clearing is useful in debugging
programs and in ensuring user privacy. Clear reset also releases all locks used by the
PERFORM LOCKED OPERATION instruction. If the CZAM facility is not installed, clear
reset sets the architectural mode to the ESA/390 mode. When the CZAM facility is
installed, clear reset sets the architectural mode to the z/Architecture mode. Clearing does
not affect external storage, such as direct access storage devices used by the control program
to hold the contents of unaddressable pages.

Clear reset combines the initial CPU reset function with an initializing function
which causes the following actions:

1. When the CZAM facility is not installed, the architectural mode of all CPUs
in the configuration is set to the ESA/390 mode. If the CZAM facility is installed, the
architectural mode of all CPUs in the configuration is set to the z/Architecture mode.

2. The access, general, and floating point registers of all CPUs in the
configuration are set to zero. All 64 bits of the general registers are set to zero regardless of
whether the CPU was in the ESA/390 or z/Architecture architectural mode when the clear-
reset function was initiated.

3. The contents of the main storage in the configuration and the associated
storage keys are set to zero with valid checking-block code.

4. The locks used by any CPU in the configuration when executing the
PERFORM LOCKED OPERATION instruction are released.

WO 2015/139992 PCT/EP2015/054850
33

5. A subsystem reset is performed.

[00106] Validation is included in setting registers and in clearing storage and storage

keys.

[00107] Programming Notes:

1. The architectural mode is not changed by activation of the system-reset-
normal key or by execution of a Signal Processor CPU-Reset or Initial-CPU-reset order. All
CPUs in the configuration are in the same architectural mode.

2. For the CPU-reset operation not to affect the contents of fields that are to be
left unchanged, the CPU is not to be executing instructions and is to be disabled for all
interruptions at the time of the reset. Except for the operation of the CPU timer and for the
possibility of a machine-check interruption occurring, all CPU activity can be stopped by
placing the CPU in the wait state and by disabling it for I/O and external interruptions. To
avoid the possibility of causing a reset at the time that the CPU timer is being updated or a
machine-check interruption occurs, the CPU is to be in the stopped state.

3. CPU reset, initial CPU reset, subsystem reset, and clear reset do not affect the
value and state of the TOD clock.

4. The conditions under which the CPU enters the check-stop state are model-
dependent and include malfunctions that preclude the completion of the current operation.
Hence, if CPU reset or initial CPU reset is executed while the CPU is in the check-stop state,
the contents of the PSW, registers, and storage locations, including the storage keys and the
storage location accessed at the time of the error, may have unpredictable values, and, in
some cases, the contents may still be in error after the check-stop state is cleared by these

resets. In this situation, a clear reset is required to clear the error.

[00108] Power-On Reset

The power-on reset function for a component of the machine is performed as part
of the power-on sequence for that component. The power-on sequences for the TOD clock,
main storage, expanded storage, and channel subsystem may be included as part of the CPU

power-on sequence, or the power-on sequence for these units may be initiated separately.

WO 2015/139992 PCT/EP2015/054850
34

CPU Power-On Reset: The power-on reset causes initial CPU reset to be
performed and may or may not cause 1/O-system reset to be performed in the channel
subsystem. The contents of general registers, access registers, and floating-point registers
are cleared to zeros with valid checking-block code. Locks used by PERFORM LOCKED
OPERATION and associated with the CPU are released unless they are held by a CPU
already powered on. If the CZAM facility is not installed and the reset is associated with
establishing a configuration, the CPU is placed in the ESA/390 mode; otherwise, the CPU is
placed in the architectural mode of the CPUs already in the configuration. If the CZAM
facility is installed, the CPU is placed in the z/Architecture mode.

CPU reset, initial CPU reset, subsystem reset, and clear reset may be initiated
manually by using the operator facilities. Initial CPU reset is part of the initial program

loading function. Power-on reset is performed as part of turning power on.

[00109] When the CZAM facility is not installed, if the reset is initiated by the system-
reset-clear, load-normal, or load-clear key or by a CPU power-on reset that establishes the
configuration, the architectural mode is set to the ESA/390 mode; otherwise, the
architectural mode is unchanged, except that power-on reset sets the mode to that of the
CPUs already in the configuration. If the CZAM facility is installed, the architectural mode

is set to the z/Architecture mode.

[00110] Other processes, operations and/or behaviors that may be changed due to
installation of a configuration architectural mode facility are described below:

(5) Suppresses other reset related actions that are taken to facilitate change
between ESA/390 and z/Architecture mode, when reset is performed. When the CZAM
facility is not installed, the current PSW is saved for subsequent use by a Signal Processor
Set Architecture order that restores the z/Architecture mode. When the CZAM facility is not
installed, the current PSW is changed from 16 bytes to eight bytes. The bits of the eight byte
PSW are set as follows, in one example: bits 0-11 and 13-32 are set equal to the same bits of
the 16-byte PSW, bit 12 is set to one, and bits 33-63 are set equal to bits 97-127 of the 16
byte PSW. When the CZAM facility is installed, the PSW is not saved for subsequent used
by a Signal Processor Set Architecture order that restores the z/Architecture mode, and the

current PSW is not changed from 16 bytes to 8 bytes.

WO 2015/139992 PCT/EP2015/054850
35

(6) Changes the process for configuring a CPU with a configure CPU SCLP
(Service Call Logical Processor) command, and load key operations. Rather than
configuring in ESA/390, configure in the mode defined by reset. The configure CPU SCLP
command places the subject CPU in the architectural mode of the CPUs already in the
configured state. At least the first CPU placed in a configuration is placed there in
conjunction with a CPU power on reset and, as part of that reset, is placed in the architecture
mode defined in CPU power on reset. A model may alternatively set the mode of CPUs that
are in the standby state when it sets the mode of the configured CPUs.

[00111] Activating the load-clear key or the load-normal key sets the architectural mode

as defined in clear reset or initial CPU reset, respectively.

[00112] (7) Changes SIGP so as not to allow a Set Architecture order to change the
architectural mode to ESA/390.

[00113] One preferred embodiment of the present invention of a Signal Processor (SIGP)
instruction is described with reference to FIG. 8A. In one preferred embodiment of the
present invention, a Signal Processor instruction 800 has a plurality of fields, including, for
instance, an operation code field (opcode) 802 having an operation code indicating a signal
processor operation; a first register field (R1) 804; a second register field (R3) 806; a base
field (B2) 808; and a displacement field (D2) 810. R;designates a general register, the
contents of which are the first operand; R3 designates a general register, the contents of
which are the third operand; and the contents of a register designated by R are added to the

displacement in D; to provide an address of a second operand.

[00114] In operation, an eight-bit order code and, if called for, a 32-bit parameter are
transmitted to the CPU designated by the CPU address contained in the third operand. The
result is indicated by the condition code and may be detailed by status assembled in bit

positions 32-63 of the first-operand location.

[00115] The second-operand address is not used to address data; instead, bits 56-63 of the

address contain the eight-bit order code. Bits 0-55 of the second-operand address are

WO 2015/139992 PCT/EP2015/054850
36

ignored. The order code specifies the function to be performed by the addressed CPU. The
assignment and definition of order codes include, for instance, the following, in one

example:

Code
(Dec) (Hex) Order
0 00 Unassigned
1 01 Sense
2 02 External call
3 03 Emergency signal
4 04 Start
5 05 Stop
6 06 Restart
7 07 Unassigned
8 08 Unassigned
9 09 Stop and store status
10 0A Unassigned
11 0B Initial CPU reset
12 0C CPU reset
13 0D Set prefix
14 0E Store status at address
15-17 OF-11 Unassigned
18 12 Set architecture
19 13 Conditional Emergency Signal
14 14 Unassigned
21 15 Sense Running Status
22-255 16-FF Unassigned

[00116] The 16-bit binary number contained in bit positions 48-63 of general register Rz
forms the CPU address. Bits 0-47 of the register are ignored. When the specified order is
the Set Architecture order, the CPU address is ignored; all other CPUSs in the configuration

are considered to be addressed.

WO 2015/139992 PCT/EP2015/054850
37

[00117] The general register containing the 32-bit parameter in bit positions 32-63 is Ry
or Ri+1, whichever is the odd-numbered register. It depends on the order code whether a

parameter is provided and for what purpose it is used.

[00118] The operands just described have the following formats, in one example:
General register designated by Ri: Bits 0-31 unused; bits 32-63 include status;
General register designated by R; or Ri+1, whichever is the odd-numbered
register: Bits 0-31 unused; bits 32-63 include the parameter;
General register designated by Rz: Bits 0-48 unused; bits 49-63 include the CPU
address;

Second-operand address: Bits 0-55 unused; bits 56-63 include the order code.

[00119] A serialization function is performed before the operation begins and again after

the operation is completed.

[00120] When the order code is accepted and no nonzero status is returned, condition
code 0 is set. When status information is generated by this CPU (the CPU performing the
SIGP) or returned by the addressed CPU, the status is placed in bit positions 32-63 of

general register Ry, bits 0-31 of the register remain unchanged, and condition code 1 is set.

[00121] When the access path to the addressed CPU is busy, or the addressed CPU is

operational but in a state where it cannot respond to the order code, condition code 2 is set.

[00122] When the addressed CPU is not operational (that is, it is not provided in the
installation, it is not in the configuration, it is in any of certain customer-engineer test modes,

or its power is off), condition code 3 is set.

[00123] Resulting Condition Code:
0 Order code accepted
1 Status stored
2 Busy
3

Not operational

WO 2015/139992 PCT/EP2015/054850
38

[00124] Program Exceptions:
o Privileged operation

e Transactional constraint

[00125] When the Set Architecture Signal Processor order is specified in bit positions 56-
63 of the second operand address of the Signal Processor instruction, the contents of bit
positions 56-63 of the parameter register are used as a code specifying an architectural mode
to which all CPUs in the configuration are to be set: code 0 specifies the ESA/390 mode, and
codes 1 and 2 specify the z/Architecture mode. Code 1 specifies that, for each of all CPUs
in the configuration, the current ESA/390 PSW is to be transformed to a z/Architecture
PSW. Code 2 specifies that the PSW of the CPU executing Signal Processor is to be
transformed to a z/Architecture PSW and that, for each of all other CPUs in the
configuration, the PSW is to be set with the value of the captured z/Architecture-PSW
register for that CPU. The setting of the PSW with the value of the captured-z/Architecture-
PSW register will restore the PSW that existed when the CPU was last in the z/Architecture
mode, provided that the captured-z/Architecture-PSW register has not been set to all zeros

by a reset.

[00126] Bits 0-55 of the parameter register are ignored. The contents of the CPU-address
register of the Signal Processor instruction are ignored; all other CPUs in the configuration

are considered to be addressed.

[00127] When the CZAM facility is not installed, the order is accepted only if the code is
0, 1, or 2, the CPU is not already in the mode specified by the code, each of all other CPUs is
in either the stopped or the check-stop state, and no other condition precludes accepting the

order.

[00128] When the CZAM facility is installed, code 0 is not accepted because a return to
the ESA/390 mode is not permitted, and since the CPU is already in the z/Architecture
architectural mode, specification of codes 1 and 2 result in a completion indicating invalid-
parameter and condition code 1. The other prerequisite conditions normally verified by the

Set Architecture order may or may not be checked.

WO 2015/139992 PCT/EP2015/054850
39

[00129] If accepted, the order is completed by all CPUs during the execution of Signal
Processor. In no case, in this embodiment, can different CPUs be in different architectural

modes.

[00130] The Set Architecture order is completed, as follows, in one example:

+ Ifthe code in the parameter register is not 0, 1, or 2, or if the CPU is already
in the architectural mode specified by the code, the order is not accepted. Instead, bit 55
(invalid parameter) of the general register designated by the R1 field of the Signal Processor
instruction is set to one, and condition code 1 is set.

« If it is not true that all other CPUs in the configuration are in the stopped or
check-stop state, the order is not accepted. Instead, bit 54 (incorrect state) of the general
register designated by the R1 field of the Signal Processor instruction is set to one, and
condition code 1 is set.

* The architectural mode of all CPUs in the configuration is set as specified by
the code (e.g., bit 12 of the PSW to control operations is set to the specified architectural
mode, and/or another indication in the computing environment is set indicating the specified
architectural mode).

» If'the order changes the architectural mode from ESA/390 to z/Architecture
and the code is 1, then, for each CPU in the configuration, the eight-byte current PSW is
changed to a 16-byte PSW, and the bits of the 16-byte PSW are set as follows: bits 0-11 and
13-32 are set equal to the same bits of the eight-byte PSW, bit 12 and bits 33-96 are set to
zeros, and bits 97-127 are set equal to bits 33-63 of the eight-byte PSW. Also, bit 19 of the
ESA/390 prefix, which becomes bit 51 of the z/Architecture prefix, is set to zero.

[00131] If the code is 2, the PSW of the CPU executing Signal Processor and the
prefix values of all CPUs are set as in the code-1 case. For each of all other CPUs in the
configuration, the PSW is set with the value of the captured-z/Architecture-PSW register.
However, the captured-z/Architecture-PSW register has been set to all zeros if the CPU
performed a reset, other than CPU reset, either at the time of the architectural-mode
transition or subsequently.

» If the order changes the architectural mode from z/Architecture to ESA/390,
then, for each CPU in the configuration, (1) the current PSW, which is the updated PSW in

WO 2015/139992 PCT/EP2015/054850
40

the case of the CPU executing Signal Processor, is saved in the captured-z/Architecture-
PSW register, and (2) the 16-byte current PSW is changed to an eight-byte PSW by setting
the bits of the eight-byte PSW as follows: bits 0-11 and 13-32 are set equal to the same bits
of the 16-byte PSW, bit 12 is set to one, and bits 33-63 are set equal to bits 97-127 of the 16-
byte PSW. Bit 51 of the z/Architecture prefix, which becomes bit 19 of the ESA/390 prefix,
remains unchanged.

» The ALBs and TLBs of all CPUs in the configuration are cleared of their
contents.

» A serialization and checkpoint-synchronization function is performed on all

CPUs in the configuration.

[00132] If the order changes the architectural mode from z/Architecture to ESA/390 and
the Signal Processor instruction causes occurrence of an instruction-fetching PER event,
only the rightmost 31 bits of the address of the instruction are stored in the ESA/390 PER-
address field.

[00133] In one preferred embodiment of the present invention, with CZAM, the following
is a prerequisite: Each of all other CPUs is in either the stopped or the check-stop state, and
no other condition precludes accepting the order. When the CZAM facility is installed, code
0 is not accepted because a return to the ESA/390 mode is not permitted, and since the CPU
is already in the z/Architectural architectural mode, specification of codes 1 and 2 result in a
completion indicating invalid parameter and condition code 1. The other prerequisite
conditions normally verified by the Set Architecture order may or may not be checked. In
yet another preferred embodiment of the present invention, SIGP with code 1 and 2 indicates

successful completion without further indication.

[00134] one preferred embodiment of the present invention of processing associated with
executing a SIGP instruction for a Set Architecture order code is described with reference to
FIG. 8B. Referring to FIG. 8B, a processor of the computing environment executes a SIGP
instruction and obtains an order code that indicates a Set Architecture operation, STEP 850.
In one example, the order code is included in the second-operand address of the SIGP

instruction.

WO 2015/139992 PCT/EP2015/054850
41

[00135] Additionally, the requested architectural mode to be switched to is obtained from,
¢.g., the parameter register specified by the SIGP instruction, STEP 852. Further, a
determination is made as to whether a configuration architectural mode facility, such as
CZAM, is installed, INQUIRY 854. This is determined, in one example, by a facility

indicator.

[00136] If CZAM is not installed, then a further determination is made as to whether the
CPU is already in the requested architectural mode, INQUIRY 856. If so, then status is
provided in, e.g., a register designated by the SIGP instruction, STEP 858, and the status is
treated as an error, STEP 860. However, if the CPU is not in the requested mode, INQUIRY
856, then a determination is made as to whether other conditions specified by the instruction,
such as whether the other CPUs of the computing environment being configured are in a
stopped state, etc., are met, INQUIRY 862. If the conditions are not met, then processing
continues to STEP 858. Otherwise, the order is accepted, STEP 864, and the architectural
mode is to be changed. Thus, the PSW is set, as described above, STEP 866, and processing
for this aspect of the instruction ends, STEP 868.

[00137] Returning to INQUIRY 854, if CZAM is installed, then a determination is made
as to whether the CPU is in the requested mode, INQUIRY 870. If the CPU is already in the
requested mode, then, in one example, status is provided that the CPU is already in the
requested architectural mode (e.g., z/Architecture), STEP 872. In this embodiment,
however, this status is acceptable and not treated as an error, STEP 874. Either, it is ignored,
or in another preferred embodiment of the present invention, a condition code may be
provided that is a non-error code. In yet a further embodiment, the status merely indicates
successful completion. Other possibilities also exist to indicate no error even though the

CPU is already in the requested architectural mode.

[00138] Returning to INQUIRY 870, if however, the CPU is not in the requested mode,
then the order is not accepted, since it is illegal to return to the one architectural mode (e.g.,
ESA/390), STEP 876. Status is provided, STEP 878, which is considered an error, STEP
880.

WO 2015/139992 PCT/EP2015/054850
42

[00139] In one preferred embodiment of the present invention, when CZAM is in a
system as a non-selectable facility, then INQUIRY 854 may be omitted and control may pass
from STEP 852 directly to STEP 870. In such an embodiment, STEPs 854 to 868 may not

be implemented.

[00140] In another preferred embodiment of the present invention, when an order to
switch to the current architecture mode is received, the order may not be accepted and an

error may be indicated in STEP 874.

[00141] Other behaviors, processes and/or operations that may change based on
installation of a CAM include:

(8) Changes to the facility bits: A new bit, e.g., bit 138, is added to the facility
bits to indicate the Configuration z/Architecture Architectural Mode facility, and bit 2,
which indicates whether the z/Architectural architectural mode is active, is to be set to one

(indicating active).

[00142] In at least one preferred embodiment of the present invention, the CZAM facility
is installed for LPARs and guest-1 (first level guests— guests initiated by a hypervisor (e.g.,
by issuing a Start Interpretive Execution (SIE) instruction), but not for guest-2 (second level

guests — a guest started by another guest (e.g., by issuing a SIE instruction).

[00143] In at least one preferred embodiment of the present invention, when CZAM is
installed and a z/Architecture guest-2 is initiated, the guest is initiated in z/Architecture
mode in accordance with the technique of FIG. 6A. However, when CZAM is installed, and
an ESA/390 guest-2 is initiated, it is initiated in ESA/390 mode, in accordance with the
technique of FIG. 4A, since it is not affected by CZAM, in this embodiment. Thus, the host
and first level guests are controlled by CZAM, in which they will be initiated/reset, etc. in
z/Architecture, regardless of preference for architectural mode (e.g., forced to be in
z/Architecture, since ESA/390 not supported), but the second level ESA/390 guests are not
affected by CZAM and will continue to be initiated/reset, etc. in ESA/390.

WO 2015/139992 PCT/EP2015/054850
43

[00144] As described herein, based on installing a configuration architectural mode
facility, such as a Configuration z/Architecture Architectural Mode facility, certain
processes, operations and/or behaviors of a computing environment that is configured for
multiple architectural modes are changed. One such process is the power-on process.
Further aspects of processing associated with a power-on process when a configuration

architectural mode facility is installed are described with reference to FIG. 9.

[00145] Referring to FIG. 9, initially a determination is made as to whether a
configuration architectural mode facility is installed in a computing environment configured
for a plurality of architectural modes and has a defined power-on sequence to power-on the
computing environment in one architectural mode (e.g., a legacy mode, such as ESA/390),
STEP 900. The one architectural mode including a first instruction set architecture and
having a first set of supported features, such as 31-bit addressing, use of 32-bit general
purpose registers, and various features. If it is determined that the configuration
architectural mode facility is not installed, INQUIRY 902, then the current power-on
sequence is performed, STEP 904, as described with reference to FIGs. 4A-4B. Otherwise,
the computing environment is reconfigured to restrict use of the one architectural mode (e.g.,
the legacy ESA/390 mode), STEP 906. The reconfiguration includes, for instance, selecting
a different power-on sequence to power-on the computing environment in another
architectural mode (e.g., a later or enhanced version of the architecture mode—e.g.,
z/Architecture), STEP 908. The another architectural mode including a second instruction
set architecture and having a second set of supported features, such as 64-bit addressing, use
of 64-bit general purpose registers and various facilities, such as dynamic address
translation, and/or other facilities. The power-on sequence is then executed to power-on the
computing environment in the other architectural mode restricting use of the one
architectural mode, STEP 910, as described, for instance, with reference to FIGs. 6A-6B. In
one example, this executing includes loading the PSW and inverting bit 12. Thereafter, the
computing environment is run in the other architectural mode (e.g., z/Architecture), STEP

912.

[00146] In a further embodiment, referring to FIG. 10, the reconfiguring includes

disabling one or more operations that support the one architectural mode, including disabling

WO 2015/139992 PCT/EP2015/054850
44

the switch operation, STEP 1000. For instance, the Signal Processor instruction is altered to

provide an error based on a request to switch back to the one architectural mode, ¢.g.,
ESA/390.

[00147] Further, one or more other processes, operations and/or behaviors are changed to
support power-on in the other architectural mode, instead of the one architectural mode and
use of the one architectural mode is restricted, STEP 1002. These one or more other
processes include, for instance, the configure CPU SCLP command that places the CPU in
the architectural mode of the CPUs already in the configured state 1004; the load-clear key
and load-normal key, which are operator facilities that set the architecture mode as defined
in clear reset or initial CPU reset, respectively 1006; the Signal Processor instruction that is
changed to accept a switch from an architectural mode to the same architectural mode, such
that status is provided and not treated as an error 1008; and facility bits are added to the

facility indicators to indicate the configuration architectural mode facility 1010.

[00148] As described herein, another operation that is affected by installation of the
configuration architectural mode facility is the reset operation. One preferred embodiment
of the present invention of processing associated with reset is described with reference to
FIG. 11. Initially, a processor obtains (e.g., receives, is provided, or otherwise gets) a reset
operation, STEP 1100, and the reset operation is performed to reset the computing
environment to the other architectural mode (e.g., z/Architecture), STEP 1102, as described
herein. This includes, for instance, using a PSW that is in the appropriate format for the

architecture and setting bit 12 in the PSW to zero.

[00149] Described in detail herein is a configuration architectural mode facility that
restricts use of certain architectural aspects of an architecture supported by a computing
environment configured for a plurality of architectures. In one example, a configuration
architectural mode facility is installed, and a computing environment that supports multiple
architectural configurations can be re-configured such that aspects of one of the architectural
modes (e.g., the legacy mode) are no longer supported, but another architectural mode (e.g.,

an enhanced architectural mode) remains supported. When a computing environment is so

WO 2015/139992 PCT/EP2015/054850
45

configured, the computing environment is prevented from being reconfigured back to the

unsupported architectural mode.

[00150] In a further embodiment, a computing environment is dynamically configured in
a selected architectural mode, such as z/Architecture. In this embodiment, a check may not
be made as to whether a CZAM facility is installed, and/or an explicit SIGP Set Architecture
order may not be performed. One preferred embodiment of the present invention of the

logic to perform this configuration is described with reference to FIG. 12.

[00151] Referring to FIG. 12, in one preferred embodiment of the present invention, a
processor configures a computing environment to perform operations in a selected
architectural mode (e.g., z/Architecture), STEP 1200. The configuring includes, for
instance, commencing initialization of the computing environment using a stored program
status word, STEP 1202. In one example, the stored program status word has a format of an
architectural mode different from the selected architectural mode. Thus, a determination is
made that the stored program status word has the format of the architectural mode different
from the selected architectural mode, STEP 1204. Based on that determination, the stored
program status word is automatically modified to have a format of the selected architectural
mode, STEP 1206. The automatically modifying is performed absent an explicit request to
switch to the selected architectural mode. Initialization of the computing environment using
the modified program status word is then completed to configure the computing environment

in the selected architectural mode, STEP 1208.

[00152] In one preferred embodiment of the present invention, the CZAM facility may be
used with one or more other facilities including, for instance, a No-DAT facility and/or a
control utility boot facility, described in the following co-filed, commonly assigned
applications entitled “Managing Processing Associated with Selected Architectural
Facilities,” Gainey, et al., (IBM Docket No.: POU920140020US1); and “Common Boot
Sequence for Control Utility Able to be Initialized in Multiple Architectures,” Michael K.
Gschwind, (IBM Docket No.: POU920140019US1), respectively, each of which is hereby

incorporated by reference herein in its entirety.

WO 2015/139992 PCT/EP2015/054850
46

[00153] Referring to FIG. 13, in one example, a computer program product 1300
includes, for instance, one or more non-transitory computer readable storage media 1302 to
store computer readable program code means, logic and/or instructions 1304 thereon to

provide and facilitate one or more embodiments.

[00154] The present invention may be a system, a method, and/or a computer program
product. The computer program product may include a computer readable storage medium
(or media) having computer readable program instructions thereon for causing a processor to

carry out aspects of the present invention.

[00155] The computer readable storage medium can be a tangible device that can retain
and store instructions for use by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to, an electronic storage device, a
magnetic storage device, an optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination of the foregoing. A non-
exhaustive list of more specific examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a portable compact disc read-only
memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised structures in a groove having
instructions recorded thereon, and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be construed as being transitory signals
per se, such as radio waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or other transmission media (e.g.,
light pulses passing through a fiber-optic cable), or electrical signals transmitted through a

wire.

[00156] Computer readable program instructions described herein can be downloaded to
respective computing/processing devices from a computer readable storage medium or to an
external computer or external storage device via a network, for example, the Internet, a local

areca network, a wide area network and/or a wireless network. The network may comprise

WO 2015/139992 PCT/EP2015/054850
47

copper transmission cables, optical transmission fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers. A network adapter card or
network interface in each computing/processing device receives computer readable program
instructions from the network and forwards the computer readable program instructions for
storage in a computer readable storage medium within the respective computing/processing

device.

[00157] Computer readable program instructions for carrying out operations of the
present invention may be assembler instructions, instruction-set-architecture (ISA)
instructions, machine instructions, machine dependent instructions, microcode, firmware
instructions, state-setting data, or either source code or object code written in any
combination of one or more programming languages, including an object oriented
programming language such as Smalltalk, C++ or the like, and conventional procedural
programming languages, such as the "C" programming language or similar programming
languages. The computer readable program instructions may execute entirely on the user's
computer, partly on the user's computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be connected to the user's computer
through any type of network, including a local area network (LAN) or a wide area network
(WAN), or the connection may be made to an external computer (for example, through the
Internet using an Internet Service Provider). In some embodiments, electronic circuitry
including, for example, programmable logic circuitry, field-programmable gate arrays
(FPGA), or programmable logic arrays (PLA) may execute the computer readable program
instructions by utilizing state information of the computer readable program instructions to

personalize the electronic circuitry, in order to perform aspects of the present invention.

[00158] Aspects of the present invention are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems), and computer program
products according to embodiments of the invention. It will be understood that each block of
the flowchart illustrations and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be implemented by computer readable

program instructions.

WO 2015/139992 PCT/EP2015/054850
48

[00159] These computer readable program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or other programmable data
processing apparatus to produce a machine, such that the instructions, which execute via the
processor of the computer or other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart and/or block diagram block or
blocks. These computer readable program instructions may also be stored in a computer
readable storage medium that can direct a computer, a programmable data processing
apparatus, and/or other devices to function in a particular manner, such that the computer
readable storage medium having instructions stored therein comprises an article of
manufacture including instructions which implement aspects of the function/act specified in

the flowchart and/or block diagram block or blocks.

[00160] The computer readable program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other programmable apparatus or other
device to produce a computer implemented process, such that the instructions which execute
on the computer, other programmable apparatus, or other device implement the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[00161] The flowchart and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to various embodiments of the present invention. In this regard,
cach block in the flowchart or block diagrams may represent a module, segment, or portion
of instructions, which comprises one or more executable instructions for implementing the
specified logical function(s). In some alternative implementations, the functions noted in the
block may occur out of the order noted in the figures. For example, two blocks shown in
succession may, in fact, be executed substantially concurrently, or the blocks may sometimes
be executed in the reverse order, depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart illustration, and combinations
of blocks in the block diagrams and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified functions or acts or carry out

combinations of special purpose hardware and computer instructions.

WO 2015/139992 PCT/EP2015/054850
49

[00162] In addition to the above, one or more aspects may be provided, offered, deployed,
managed, serviced, etc. by a service provider who offers management of customer
environments. For instance, the service provider can create, maintain, support, etc. computer
code and/or a computer infrastructure that performs one or more aspects for one or more
customers. In return, the service provider may receive payment from the customer under a
subscription and/or fee agreement, as examples. Additionally or alternatively, the service
provider may receive payment from the sale of advertising content to one or more third

parties.

[00163] In one aspect, an application may be deployed for performing one or more
embodiments. As one example, the deploying of an application comprises providing

computer infrastructure operable to perform one or more embodiments.

[00164] As a further aspect, a computing infrastructure may be deployed comprising
integrating computer readable code into a computing system, in which the code in

combination with the computing system is capable of performing one or more embodiments.

[00165] As yet a further aspect, a process for integrating computing infrastructure
comprising integrating computer readable code into a computer system may be provided.
The computer system comprises a computer readable medium, in which the computer
medium comprises one or more embodiments. The code in combination with the computer

system is capable of performing one or more embodiments.

[00166] Although various embodiments are described above, these are only examples. For
example, computing environments of other architectures can be used to incorporate and use
one or more embodiments. Further, different instructions, instruction formats, instruction
fields and/or instruction values may be used. Yet further, other types of processes,
operations and/or behaviors may be affected by installation of a CAM. Many variations are

possible.

[00167] Further, other types of computing environments can benefit and be used. As an

example, a data processing system suitable for storing and/or executing program code is

WO 2015/139992 PCT/EP2015/054850
50

usable that includes at least two processors coupled directly or indirectly to memory
clements through a system bus. The memory elements include, for instance, local memory
employed during actual execution of the program code, bulk storage, and cache memory
which provide temporary storage of at least some program code in order to reduce the

number of times code must be retrieved from bulk storage during execution.

[00168] Input/Output or I/O devices (including, but not limited to, keyboards, displays,
pointing devices, DASD, tape, CDs, DVDs, thumb drives and other memory media, etc.)
can be coupled to the system either directly or through intervening I/0 controllers. Network
adapters may also be coupled to the system to enable the data processing system to become
coupled to other data processing systems or remote printers or storage devices through
intervening private or public networks. Modems, cable modems, and Ethernet cards are just

a few of the available types of network adapters.

[00169] Referring to FIG. 14, representative components of a Host Computer system
5000 to implement one or more embodiments are portrayed. The representative host
computer 5000 comprises one or more CPUs 5001 in communication with computer
memory (i.¢., central storage) 5002, as well as 1/O interfaces to storage media devices 5011
and networks 5010 for communicating with other computers or SANs and the like. The
CPU 5001 is compliant with an architecture having an architected instruction set and
architected functionality. The CPU 5001 may have access register translation (ART) 5012,
which includes an ART lookaside buffer (ALB) 5013, for selecting an address space to be
used by dynamic address translation (DAT) 5003 for transforming program addresses
(virtual addresses) into real addresses of memory. A DAT typically includes a translation
lookaside buffer (TLB) 5007 for caching translations so that later accesses to the block of
computer memory 5002 do not require the delay of address translation. Typically, a cache
5009 is employed between computer memory 5002 and the processor 5001. The cache 5009
may be hierarchical having a large cache available to more than one CPU and smaller, faster
(lower level) caches between the large cache and each CPU. In some implementations, the
lower level caches are split to provide separate low level caches for instruction fetching and

data accesses.

WO 2015/139992 PCT/EP2015/054850
51

[00170] In one preferred embodiment of the present invention, an instruction is fetched
from memory 5002 by an instruction fetch unit 5004 via a cache 5009. The instruction is
decoded in an instruction decode unit 5006 and dispatched (with other instructions in some
embodiments) to instruction execution unit or units 5008. Typically several execution units
5008 are employed, for example an arithmetic execution unit, a floating point execution unit
and a branch instruction execution unit. The instruction is executed by the execution unit,
accessing operands from instruction specified registers or memory as needed. If an operand
is to be accessed (loaded or stored) from memory 5002, a load/store unit 5005 typically
handles the access under control of the instruction being executed. Instructions may be
executed in hardware circuits or in internal microcode (firmware) or by a combination of

both.

[00171] As noted, a computer system includes information in local (or main) storage, as
well as addressing, protection, and reference and change recording. Some aspects of
addressing include the format of addresses, the concept of address spaces, the various types
of addresses, and the manner in which one type of address is translated to another type of
address. Some of main storage includes permanently assigned storage locations. Main
storage provides the system with directly addressable fast-access storage of data. Both data
and programs are to be loaded into main storage (from input devices) before they can be

processed.

[00172] Main storage may include one or more smaller, faster-access buffer storages,
sometimes called caches. A cache is typically physically associated with a CPU or an I/O
processor. The effects, except on performance, of the physical construction and use of

distinct storage media are generally not observable by the program.

[00173] Separate caches may be maintained for instructions and for data operands.
Information within a cache is maintained in contiguous bytes on an integral boundary called
a cache block or cache line (or line, for short). A model may provide an EXTRACT
CACHE ATTRIBUTE instruction which returns the size of a cache line in bytes. A model
may also provide PREFETCH DATA and PREFETCH DATA RELATIVE LONG

WO 2015/139992 PCT/EP2015/054850
52

instructions which effects the prefetching of storage into the data or instruction cache or the

releasing of data from the cache.

[00174] Storage is viewed as a long horizontal string of bits. For most operations,
accesses to storage proceed in a left-to-right sequence. The string of bits is subdivided into
units of eight bits. An eight-bit unit is called a byte, which is the basic building block of all
information formats. Each byte location in storage is identified by a unique nonnegative
integer, which is the address of that byte location or, simply, the byte address. Adjacent byte
locations have consecutive addresses, starting with 0 on the left and proceeding in a left-to-

right sequence. Addresses are unsigned binary integers and are 24, 31, or 64 bits.

[00175] Information is transmitted between storage and a CPU or a channel subsystem
one byte, or a group of bytes, at a time. Unless otherwise specified, in, for instance, the
z/Architecture, a group of bytes in storage is addressed by the leftmost byte of the group.
The number of bytes in the group is either implied or explicitly specified by the operation to
be performed. When used in a CPU operation, a group of bytes is called a field. Within
each group of bytes, in, for instance, the z/Architecture, bits are numbered in a left-to-right
sequence. In the z/Architecture, the leftmost bits are sometimes referred to as the “high-
order” bits and the rightmost bits as the “low-order” bits. Bit numbers are not storage
addresses, however. Only bytes can be addressed. To operate on individual bits of a byte in
storage, the entire byte is accessed. The bits in a byte are numbered 0 through 7, from left to
right (in, e.g., the z/Architecture). The bits in an address may be numbered 8-31 or 40-63 for
24-bit addresses, or 1-31 or 33-63 for 31-bit addresses; they are numbered 0-63 for 64-bit
addresses. In one example, bits 8-31 and 1-31 apply to addresses that are in a location (e.g.,
register) that is 32 bits wide, whereas bits 40-63 and 33-63 apply to addresses that are in a
64-bit wide location. Within any other fixed-length format of multiple bytes, the bits
making up the format are consecutively numbered starting from 0. For purposes of error
detection, and in preferably for correction, one or more check bits may be transmitted with
cach byte or with a group of bytes. Such check bits are generated automatically by the
machine and cannot be directly controlled by the program. Storage capacities are expressed
in number of bytes. When the length of a storage-operand field is implied by the operation

code of an instruction, the field is said to have a fixed length, which can be one, two, four,

WO 2015/139992 PCT/EP2015/054850
53

eight, or sixteen bytes. Larger fields may be implied for some instructions. When the length
of a storage-operand field is not implied but is stated explicitly, the field is said to have a
variable length. Variable-length operands can vary in length by increments of one byte (or
with some instructions, in multiples of two bytes or other multiples). When information is
placed in storage, the contents of only those byte locations are replaced that are included in
the designated field, even though the width of the physical path to storage may be greater
than the length of the field being stored.

[00176] Certain units of information are to be on an integral boundary in storage. A
boundary is called integral for a unit of information when its storage address is a multiple of
the length of the unit in bytes. Special names are given to fields of 2, 4, 8, 16, and 32 bytes
on an integral boundary. A halfword is a group of two consecutive bytes on a two-byte
boundary and is the basic building block of instructions. A word is a group of four
consecutive bytes on a four-byte boundary. A doubleword is a group of eight consecutive
bytes on an eight-byte boundary. A quadword is a group of 16 consecutive bytes on a 16-
byte boundary. An octoword is a group of 32 consecutive bytes on a 32-byte boundary.
When storage addresses designate halfwords, words, doublewords, quadwords, and
octowords, the binary representation of the address contains one, two, three, four, or five
rightmost zero bits, respectively. Instructions are to be on two-byte integral boundaries. The

storage operands of most instructions do not have boundary-alignment requirements.

[00177] On devices that implement separate caches for instructions and data operands, a
significant delay may be experienced if the program stores into a cache line from which
instructions are subsequently fetched, regardless of whether the store alters the instructions

that are subsequently fetched.

[00178] In one example, the embodiment may be practiced by software (sometimes
referred to licensed internal code, firmware, micro-code, milli-code, pico-code and the like,
any of which would be consistent with one or more embodiments). Referring to FIG. 14,
software program code which embodies one or more aspects may be accessed by processor
5001 of the host system 5000 from long-term storage media devices 5011, such as a CD-

ROM drive, tape drive or hard drive. The software program code may be embodied on any

WO 2015/139992 PCT/EP2015/054850
54

of a variety of known media for use with a data processing system, such as a diskette, hard
drive, or CD-ROM. The code may be distributed on such media, or may be distributed to
users from computer memory 5002 or storage of one computer system over a network 5010

to other computer systems for use by users of such other systems.

[00179] The software program code includes an operating system which controls the
function and interaction of the various computer components and one or more application
programs. Program code is normally paged from storage media device 5011 to the
relatively higher-speed computer storage 5002 where it is available for processing by
processor 5001. The techniques and methods for embodying software program code in
memory, on physical media, and/or distributing software code via networks are well known
and will not be further discussed herein. Program code, when created and stored on a
tangible medium (including but not limited to electronic memory modules (RAM), flash
memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a
“computer program product”. The computer program product medium is typically readable
by a processing circuit preferably in a computer system for execution by the processing

circuit.

[00180] FIG. 15 illustrates a representative workstation or server hardware system in
which one or more embodiments may be practiced. The system 5020 of FIG. 15 comprises a
representative base computer system 5021, such as a personal computer, a workstation or a
server, including optional peripheral devices. The base computer system 5021 includes one
or more processors 5026 and a bus employed to connect and enable communication between
the processor(s) 5026 and the other components of the system 5021 in accordance with
known techniques. The bus connects the processor 5026 to memory 5025 and long-term
storage 5027 which can include a hard drive (including any of magnetic media, CD, DVD
and Flash Memory for example) or a tape drive for example. The system 5021 might also
include a user interface adapter, which connects the microprocessor 5026 via the bus to one
or more interface devices, such as a keyboard 5024, a mouse 5023, a printer/scanner 5030
and/or other interface devices, which can be any user interface device, such as a touch
sensitive screen, digitized entry pad, etc. The bus also connects a display device 5022, such

as an LCD screen or monitor, to the microprocessor 5026 via a display adapter.

WO 2015/139992 PCT/EP2015/054850
55

[00181] The system 5021 may communicate with other computers or networks of
computers by way of a network adapter capable of communicating 5028 with a network
5029. Example network adapters are communications channels, token ring, Ethernet or
modems. Alternatively, the system 5021 may communicate using a wireless interface, such
as a CDPD (cellular digital packet data) card. The system 5021 may be associated with such
other computers in a Local Area Network (LAN) or a Wide Area Network (WAN), or the
system 5021 can be a client in a client/server arrangement with another computer, etc. All of
these configurations, as well as the appropriate communications hardware and software, are

known 1n the art.

[00182] FIG. 16 illustrates a data processing network 5040 in which one or more
embodiments may be practiced. The data processing network 5040 may include a plurality
of individual networks, such as a wireless network and a wired network, each of which may
include a plurality of individual workstations 5041, 5042, 5043, 5044. Additionally, as those
skilled in the art will appreciate, one or more LANs may be included, where a LAN may

comprise a plurality of intelligent workstations coupled to a host processor.

[00183] Still referring to FIG. 16, the networks may also include mainframe computers or
servers, such as a gateway computer (client server 5046) or application server (remote server
5048 which may access a data repository and may also be accessed directly from a
workstation 5045). A gateway computer 5046 serves as a point of entry into each individual
network. A gateway is needed when connecting one networking protocol to another. The
gateway 5046 may be preferably coupled to another network (the Internet 5047 for example)
by means of a communications link. The gateway 5046 may also be directly coupled to one
or more workstations 5041, 5042, 5043, 5044 using a communications link. The gateway
computer may be implemented utilizing an IBM eServer System z server available from

International Business Machines Corporation.

[00184] Referring concurrently to FIG. 15 and FIG. 16, software programming code 5031
which may embody one or more aspects may be accessed by the processor 5026 of the
system 5020 from long-term storage media 5027, such as a CD-ROM drive or hard drive.

The software programming code may be embodied on any of a variety of known media for

WO 2015/139992 PCT/EP2015/054850
56

use with a data processing system, such as a diskette, hard drive, or CD-ROM. The code
may be distributed on such media, or may be distributed to users 5050, 5051 from the
memory or storage of one computer system over a network to other computer systems for

use by users of such other systems.

[00185] Alternatively, the programming code may be embodied in the memory 5025, and
accessed by the processor 5026 using the processor bus. Such programming code includes
an operating system which controls the function and interaction of the various computer
components and one or more application programs 5032. Program code is normally paged
from storage media 5027 to high-speed memory 5025 where it is available for processing by
the processor 5026. The techniques and methods for embodying software programming
code in memory, on physical media, and/or distributing software code via networks are well
known and will not be further discussed herein. Program code, when created and stored on a
tangible medium (including but not limited to electronic memory modules (RAM), flash
memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a
“computer program product”. The computer program product medium is typically readable
by a processing circuit preferably in a computer system for execution by the processing

circuit.

[00186] The cache that is most readily available to the processor (normally faster and
smaller than other caches of the processor) is the lowest (L1 or level one) cache and main
store (main memory) is the highest level cache (L3 if there are 3 levels). The lowest level
cache is often divided into an instruction cache (I-Cache) holding machine instructions to be

executed and a data cache (D-Cache) holding data operands.

[00187] Referring to FIG. 17, an exemplary processor embodiment is depicted for
processor 5026. Typically one or more levels of cache 5053 are employed to buffer memory
blocks in order to improve processor performance. The cache 5053 is a high speed buffer
holding cache lines of memory data that are likely to be used. Typical cache lines are 64,
128 or 256 bytes of memory data. Separate caches are often employed for caching
instructions than for caching data. Cache coherence (synchronization of copies of lines in

memory and the caches) is often provided by various “snoop” algorithms well known in the

WO 2015/139992 PCT/EP2015/054850
57

art. Main memory storage 5025 of a processor system is often referred to as a cache. In a
processor system having 4 levels of cache 5053, main storage 5025 is sometimes referred to
as the level 5 (L5) cache since it is typically faster and only holds a portion of the non-
volatile storage (DASD, tape ctc.) that is available to a computer system. Main storage 5025

“caches” pages of data paged in and out of the main storage 5025 by the operating system.

[00188] A program counter (instruction counter) 5061 keeps track of the address of the
current instruction to be executed. A program counter in a z/Architecture processor is 64
bits and can be truncated to 31 or 24 bits to support prior addressing limits. A program
counter is typically embodied in a PSW (program status word) of a computer such that it
persists during context switching. Thus, a program in progress, having a program counter
value, may be interrupted by, for example, the operating system (context switch from the
program environment to the operating system environment). The PSW of the program
maintains the program counter value while the program is not active, and the program
counter (in the PSW) of the operating system is used while the operating system is
executing. Typically, the program counter is incremented by an amount equal to the number
of bytes of the current instruction. RISC (Reduced Instruction Set Computing) instructions
are typically fixed length while CISC (Complex Instruction Set Computing) instructions are
typically variable length. Instructions of the IBM z/Architecture are CISC instructions
having a length of 2, 4 or 6 bytes. The Program counter 5061 is modified by either a context
switch operation or a branch taken operation of a branch instruction for example. In a
context switch operation, the current program counter value is saved in the program status
word along with other state information about the program being executed (such as condition
codes), and a new program counter value is loaded pointing to an instruction of a new
program module to be executed. A branch taken operation is performed in order to permit
the program to make decisions or loop within the program by loading the result of the branch

instruction into the program counter 5061.

[00189] Typically an instruction fetch unit 5055 is employed to fetch instructions on
behalf of the processor 5026. The fetch unit either fetches “next sequential instructions”,
target instructions of branch taken instructions, or first instructions of a program following a

context switch. Modern Instruction fetch units often employ prefetch techniques to

WO 2015/139992 PCT/EP2015/054850
58

speculatively prefetch instructions based on the likelihood that the prefetched instructions
might be used. For example, a fetch unit may fetch 16 bytes of instruction that includes the

next sequential instruction and additional bytes of further sequential instructions.

[00190] The fetched instructions are then executed by the processor 5026. In an
embodiment, the fetched instruction(s) are passed to a dispatch unit 5056 of the fetch unit.
The dispatch unit decodes the instruction(s) and forwards information about the decoded
instruction(s) to appropriate units 5057, 5058, 5060. An execution unit 5057 will typically
receive information about decoded arithmetic instructions from the instruction fetch unit
5055 and will perform arithmetic operations on operands according to the opcode of the
instruction. Operands are provided to the execution unit 5057 preferably either from
memory 5025, architected registers 5059 or from an immediate field of the instruction being
executed. Results of the execution, when stored, are stored either in memory 5025, registers

5059 or in other machine hardware (such as control registers, PSW registers and the like).

[00191] Virtual addresses are transformed into real addresses using dynamic address

translation 5062 and, optionally, using access register translation 5063.

[00192] A processor 5026 typically has one or more units 5057, 5058, 5060 for executing
the function of the instruction. Referring to FIG. 18A, an execution unit 5057 may
communicate 5071 with architected general registers 5059, a decode/dispatch unit 5056, a
load store unit 5060, and other 5065 processor units by way of interfacing logic 5071. An
execution unit 5057 may employ several register circuits 5067, 5068, 5069 to hold
information that the arithmetic logic unit (ALU) 5066 will operate on. The ALU performs
arithmetic operations such as add, subtract, multiply and divide as well as logical function
such as and, or and exclusive-or (XOR), rotate and shift. Preferably the ALU supports
specialized operations that are design dependent. Other circuits may provide other
architected facilities 5072 including condition codes and recovery support logic for example.
Typically the result of an ALU operation is held in an output register circuit 5070 which can
forward the result to a variety of other processing functions. There are many arrangements
of processor units, the present description is only intended to provide a representative

understanding of one preferred embodiment of the present invention.

WO 2015/139992 PCT/EP2015/054850
59

[00193] An ADD instruction for example would be executed in an execution unit 5057
having arithmetic and logical functionality while a floating point instruction for example
would be executed in a floating point execution having specialized floating point capability.
Preferably, an execution unit operates on operands identified by an instruction by performing
an opcode defined function on the operands. For example, an ADD instruction may be
executed by an execution unit 5057 on operands found in two registers 5059 identified by

register fields of the instruction.

[00194] The execution unit 5057 performs the arithmetic addition on two operands and
stores the result in a third operand where the third operand may be a third register or one of
the two source registers. The execution unit preferably utilizes an Arithmetic Logic Unit
(ALU) 5066 that is capable of performing a variety of logical functions such as Shift, Rotate,
And, Or and XOR as well as a variety of algebraic functions including any of add, subtract,
multiply, divide. Some ALUs 5066 are designed for scalar operations and some for floating
point. Data may be Big Endian (where the least significant byte is at the highest byte
address) or Little Endian (where the least significant byte is at the lowest byte address)
depending on architecture. The IBM z/Architecture is Big Endian. Signed fields may be
sign and magnitude, 1’s complement or 2’s complement depending on architecture. A 2’s
complement number is advantageous in that the ALU does not need to design a subtract
capability since either a negative value or a positive value in 2’s complement requires only
an addition within the ALU. Numbers are commonly described in shorthand, where a 12 bit
field defines an address of a 4,096 byte block and is commonly described as a 4 Kbyte (Kilo-
byte) block, for example.

[00195] Referring to FIG. 18B, branch instruction information for executing a branch
instruction is typically sent to a branch unit 5058 which often employs a branch prediction
algorithm such as a branch history table 5082 to predict the outcome of the branch before
other conditional operations are complete. The target of the current branch instruction will
be fetched and speculatively executed before the conditional operations are complete. When
the conditional operations are completed the speculatively executed branch instructions are
either completed or discarded based on the conditions of the conditional operation and the

speculated outcome. A typical branch instruction may test condition codes and branch to a

WO 2015/139992 PCT/EP2015/054850
60

target address if the condition codes meet the branch requirement of the branch instruction, a
target address may be calculated based on several numbers including ones found in register
fields or an immediate field of the instruction for example. The branch unit 5058 may
employ an ALU 5074 having a plurality of input register circuits 5075, 5076, 5077 and an
output register circuit 5080. The branch unit 5058 may communicate 5081 with general

registers 5059, decode dispatch unit 5056 or other circuits 5073, for example.

[00196] The execution of a group of instructions can be interrupted for a variety of
reasons including a context switch initiated by an operating system, a program exception or
error causing a context switch, an I/O interruption signal causing a context switch or multi-
threading activity of a plurality of programs (in a multi-threaded environment), for example.
Preferably a context switch action saves state information about a currently executing
program and then loads state information about another program being invoked. State
information may be saved in hardware registers or in memory for example. State
information preferably comprises a program counter value pointing to a next instruction to
be executed, condition codes, memory translation information and architected register
content. A context switch activity can be exercised by hardware circuits, application
programs, operating system programs or firmware code (microcode, pico-code or licensed

internal code (LIC)) alone or in combination.

[00197] A processor accesses operands according to instruction defined methods. The
instruction may provide an immediate operand using the value of a portion of the instruction,
may provide one or more register fields explicitly pointing to either general purpose registers
or special purpose registers (floating point registers for example). The instruction may
utilize implied registers identified by an opcode field as operands. The instruction may
utilize memory locations for operands. A memory location of an operand may be provided
by a register, an immediate field, or a combination of registers and immediate field as
exemplified by the z/Architecture long displacement facility wherein the instruction defines
a base register, an index register and an immediate field (displacement field) that are added
together to provide the address of the operand in memory for example. Location herein

typically implies a location in main memory (main storage) unless otherwise indicated.

WO 2015/139992 PCT/EP2015/054850
61

[00198] Referring to FIG. 18C, a processor accesses storage using a load/store unit 5060.
The load/store unit 5060 may perform a load operation by obtaining the address of the target
operand in memory 5053 and loading the operand in a register 5059 or another memory
5053 location, or may perform a store operation by obtaining the address of the target
operand in memory 5053 and storing data obtained from a register 5059 or another memory
5053 location in the target operand location in memory 5053. The load/store unit 5060 may
be speculative and may access memory in a sequence that is out-of-order relative to
instruction sequence, however the load/store unit 5060 is to maintain the appearance to
programs that instructions were executed in order. A load/store unit 5060 may communicate
5084 with general registers 5059, decode/dispatch unit 5056, cache/memory interface 5053
or other elements 5083 and comprises various register circuits 5086, 5087, 5088 and 5089,
ALUSs 5085 and control logic 5090 to calculate storage addresses and to provide pipeline
sequencing to keep operations in-order. Some operations may be out of order but the
load/store unit provides functionality to make the out of order operations to appear to the

program as having been performed in order, as is well known in the art.

[00199] Preferably addresses that an application program “sees” are often referred to as
virtual addresses. Virtual addresses are sometimes referred to as “logical addresses” and
“effective addresses”. These virtual addresses are virtual in that they are redirected to
physical memory location by one of a variety of dynamic address translation (DAT)
technologies including, but not limited to, simply prefixing a virtual address with an offset
value, translating the virtual address via one or more translation tables, the translation tables
preferably comprising at least a segment table and a page table alone or in combination,
preferably, the segment table having an entry pointing to the page table. In the
z/Architecture, a hierarchy of translation is provided including a region first table, a region
second table, a region third table, a segment table and an optional page table. The
performance of the address translation is often improved by utilizing a translation lookaside
buffer (TLB) which comprises entries mapping a virtual address to an associated physical
memory location. The entries are created when the DAT translates a virtual address using
the translation tables. Subsequent use of the virtual address can then utilize the entry of the
fast TLB rather than the slow sequential translation table accesses. TLB content may be

managed by a variety of replacement algorithms including LRU (Least Recently used).

WO 2015/139992 PCT/EP2015/054850
62

[00200] In the case where the processor is a processor of a multi-processor system, each
processor has responsibility to keep shared resources, such as 1/0, caches, TLBs and
memory, interlocked for coherency. Typically, “snoop” technologies will be utilized in
maintaining cache coherency. In a snoop environment, each cache line may be marked as
being in any one of a shared state, an exclusive state, a changed state, an invalid state and the

like in order to facilitate sharing.

[00201] 1/O units 5054 (FIG. 17) provide the processor with means for attaching to
peripheral devices including tape, disc, printers, displays, and networks for example. I/O
units are often presented to the computer program by software drivers. In mainframes, such
as the System z from IBM®, channel adapters and open system adapters are I/O units of the
mainframe that provide the communications between the operating system and peripheral

devices.

[00202] Further, other types of computing environments can benefit from one or more
aspects. As an example, an environment may include an emulator (e.g., software or other
emulation mechanisms), in which a particular architecture (including, for instance,
instruction execution, architected functions, such as address translation, and architected
registers) or a subset thereof is emulated (e.g., on a native computer system having a
processor and memory). In such an environment, one or more emulation functions of the
emulator can implement one or more embodiments, even though a computer executing the
emulator may have a different architecture than the capabilities being emulated. As one
example, in emulation mode, the specific instruction or operation being emulated is decoded,
and an appropriate emulation function is built to implement the individual instruction or

operation.

[00203] In an emulation environment, a host computer includes, for instance, a memory to
store instructions and data; an instruction fetch unit to fetch instructions from memory and to
optionally, provide local buffering for the fetched instruction; an instruction decode unit to
receive the fetched instructions and to determine the type of instructions that have been
fetched; and an instruction execution unit to execute the instructions. Execution may include

loading data into a register from memory; storing data back to memory from a register; or

WO 2015/139992 PCT/EP2015/054850
63

performing some type of arithmetic or logical operation, as determined by the decode unit.
In one example, each unit is implemented in software. For instance, the operations being
performed by the units are implemented as one or more subroutines within emulator

software.

[00204] More particularly, in a mainframe, architected machine instructions are used by
programmers, usually today “C” programmers, often by way of a compiler application.
These instructions stored in the storage medium may be executed natively in a z/Architecture
IBM® Server, or alternatively in machines executing other architectures. They can be
emulated in the existing and in future IBM® mainframe servers and on other machines of
IBM® (e.g., Power Systems servers and System x Servers). They can be executed in
machines running Linux on a wide variety of machines using hardware manufactured by
IBM®, Intel®, AMD, and others. Besides execution on that hardware under z/Architecture,
Linux can be used as well as machines which use emulation by Hercules, UMX, or FSI
(Fundamental Software, Inc.), where generally execution is in an emulation mode. In
emulation mode, emulation software is executed by a native processor to emulate the

architecture of an emulated processor.

[00205] The native processor typically executes emulation software comprising either
firmware or a native operating system to perform emulation of the emulated processor. The
emulation software is responsible for fetching and executing instructions of the emulated
processor architecture. The emulation software maintains an emulated program counter to
keep track of instruction boundaries. The emulation software may fetch one or more
emulated machine instructions at a time and convert the one or more emulated machine
instructions to a corresponding group of native machine instructions for execution by the
native processor. These converted instructions may be cached such that a faster conversion
can be accomplished. Notwithstanding, the emulation software is to maintain the
architecture rules of the emulated processor architecture so as to assure operating systems
and applications written for the emulated processor operate correctly. Furthermore, the
emulation software is to provide resources identified by the emulated processor architecture
including, but not limited to, control registers, general purpose registers, floating point

registers, dynamic address translation function including segment tables and page tables for

WO 2015/139992 PCT/EP2015/054850
64

example, interrupt mechanisms, context switch mechanisms, Time of Day (TOD) clocks and
architected interfaces to I/O subsystems such that an operating system or an application
program designed to run on the emulated processor, can be run on the native processor

having the emulation software.

[00206] A specific instruction being emulated is decoded, and a subroutine is called to
perform the function of the individual instruction. An emulation software function
emulating a function of an emulated processor is implemented, for example, in a “C”
subroutine or driver, or some other method of providing a driver for the specific hardware as
will be within the skill of those in the art after understanding the description of the preferred
embodiment. Various software and hardware emulation patents including, but not limited to
U.S. Letters Patent No. 5,551,013, entitled “Multiprocessor for Hardware Emulation”, by
Beausoleil et al.; and U.S. Letters Patent No. 6,009,261, entitled “Preprocessing of Stored
Target Routines for Emulating Incompatible Instructions on a Target Processor”, by Scalzi et
al; and U.S. Letters Patent No. 5,574,873, entitled “Decoding Guest Instruction to Directly
Access Emulation Routines that Emulate the Guest Instructions”, by Davidian et al; and U.S.
Letters Patent No. 6,308,255, entitled “Symmetrical Multiprocessing Bus and Chipset Used
for Coprocessor Support Allowing Non-Native Code to Run in a System”, by Gorishek et al;
and U.S. Letters Patent No. 6,463,582, entitled “Dynamic Optimizing Object Code
Translator for Architecture Emulation and Dynamic Optimizing Object Code Translation
Method”, by Lethin et al; and U.S. Letters Patent No. 5,790,825, entitled “Method for
Emulating Guest Instructions on a Host Computer Through Dynamic Recompilation of Host
Instructions”, by Eric Traut; and many others, illustrate a variety of known ways to achieve
emulation of an instruction format architected for a different machine for a target machine

available to those skilled in the art.

[00207] InFIG. 19, an example of an emulated host computer system 5092 is provided
that emulates a host computer system 5000' of a host architecture. In the emulated host
computer system 5092, the host processor (CPU) 5091 is an emulated host processor (or
virtual host processor) and comprises an emulation processor 5093 having a different native
instruction set architecture than that of the processor 5091 of the host computer 5000'. The

emulated host computer system 5092 has memory 5094 accessible to the emulation

WO 2015/139992 PCT/EP2015/054850
65

processor 5093. In the example embodiment, the memory 5094 is partitioned into a host
computer memory 5096 portion and an emulation routines 5097 portion. The host computer
memory 5096 is available to programs of the emulated host computer 5092 according to host
computer architecture. The emulation processor 5093 executes native instructions of an
architected instruction set of an architecture other than that of the emulated processor 5091,
the native instructions obtained from emulation routines memory 5097, and may access a
host instruction for execution from a program in host computer memory 5096 by employing
one or more instruction(s) obtained in a sequence & access/decode routine which may
decode the host instruction(s) accessed to determine a native instruction execution routine
for emulating the function of the host instruction accessed. Other facilities that are defined
for the host computer system 5000' architecture may be emulated by architected facilities
routines, including such facilities as general purpose registers, control registers, dynamic
address translation and 1/0 subsystem support and processor cache, for example. The
emulation routines may also take advantage of functions available in the emulation processor
5093 (such as general registers and dynamic translation of virtual addresses) to improve
performance of the emulation routines. Special hardware and off-load engines may also be

provided to assist the processor 5093 in emulating the function of the host computer 5000'.

[00208] In a further embodiment, one or more aspects relate to cloud computing. It is
understood in advance that although this disclosure includes a detailed description on cloud
computing, implementation of the teachings recited herein are not limited to a cloud
computing environment. Rather, embodiments of the present invention are capable of being
implemented in conjunction with any other type of computing environment now known or

later developed.

[00209] Cloud computing is a model of service delivery for enabling convenient, on-
demand network access to a shared pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage, applications, virtual machines,
and services) that can be rapidly provisioned and released with minimal management effort
or interaction with a provider of the service. This cloud model may include at least five

characteristics, at least three service models, and at least four deployment models.

WO 2015/139992 PCT/EP2015/054850
66

[00210] Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a network and accessed
through standard mechanisms that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and virtual resources
dynamically assigned and reassigned according to demand. There is a sense of location
independence in that the consumer generally has no control or knowledge over the exact
location of the provided resources but may be able to specify location at a higher level of
abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some
cases automatically, to quickly scale out and rapidly released to quickly scale in. To the
consumer, the capabilities available for provisioning often appear to be unlimited and can be
purchased in any quantity at any time.

Measured service: cloud systems automatically control and optimize resource use
by leveraging a metering capability at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage can
be monitored, controlled, and reported providing transparency for both the provider and

consumer of the utilized service.

[00211] Service Models are as follows:

Software as a Service (SaaS): the capability provided to the consumer is to use
the provider’s applications running on a cloud infrastructure. The applications are accessible
from various client devices through a thin client interface such as a web browser (e.g., web-
based email). The consumer does not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or even individual application
capabilities, with the possible exception of limited user-specific application configuration

settings.

WO 2015/139992 PCT/EP2015/054850
67

Platform as a Service (PaaS): the capability provided to the consumer is to deploy
onto the cloud infrastructure consumer-created or acquired applications created using
programming languages and tools supported by the provider. The consumer does not
manage or control the underlying cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed applications and possibly application
hosting environment configurations.

Infrastructure as a Service (1aaS): the capability provided to the consumer is to
provision processing, storage, networks, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software, which can include operating
systems and applications. The consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, storage, deployed applications, and

possibly limited control of select networking components (e.g., host firewalls).

[00212] Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for an organization. It
may be managed by the organization or a third party and may exist on-premises or off-
premises.

Community cloud: the cloud infrastructure is shared by several organizations and
supports a specific community that has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed by the organizations or a third
party and may exist on-premises or off-premises.

Public cloud: the cloud infrastructure is made available to the general public or a
large industry group and is owned by an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of two or more clouds
(private, community, or public) that remain unique entities but are bound together by
standardized or proprietary technology that enables data and application portability (e.g.,

cloud bursting for load balancing between clouds).

[00213] A cloud computing environment is service oriented with a focus on statelessness,
low coupling, modularity, and semantic interoperability. At the heart of cloud computing is

an infrastructure comprising a network of interconnected nodes.

WO 2015/139992 PCT/EP2015/054850
68

[00214] Referring now to FIG. 20, a schematic of an example of a cloud computing node
is shown. Cloud computing node 6010 is only one example of a suitable cloud computing
node and is not intended to suggest any limitation as to the scope of use or functionality of
embodiments of the invention described herein. Regardless, cloud computing node 6010 is
capable of being implemented and/or performing any of the functionality set forth

hereinabove.

[00215] In cloud computing node 6010 there is a computer system/server 6012, which is
operational with numerous other general purpose or special purpose computing system
environments or configurations. Examples of well-known computing systems,
environments, and/or configurations that may be suitable for use with computer
system/server 6012 include, but are not limited to, personal computer systems, server
computer systems, thin clients, thick clients, handheld or laptop devices, multiprocessor
systems, microprocessor-based systems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer systems, and distributed cloud

computing environments that include any of the above systems or devices, and the like.

[00216] Computer system/server 6012 may be described in the general context of
computer system executable instructions, such as program modules, being executed by a
computer system. Generally, program modules may include routines, programs, objects,
components, logic, data structures, and so on that perform particular tasks or implement
particular abstract data types. Computer system/server 6012 may be practiced in distributed
cloud computing environments where tasks are performed by remote processing devices that
are linked through a communications network. In a distributed cloud computing
environment, program modules may be located in both local and remote computer system

storage media including memory storage devices.

[00217] As shown in FIG. 20, computer system/server 6012 in cloud computing node
6010 is shown in the form of a general-purpose computing device. The components of
computer system/server 6012 may include, but are not limited to, one or more processors or
processing units 6016, a system memory 6028, and a bus 6018 that couples various system

components including system memory 6028 to processor 6016.

WO 2015/139992 PCT/EP2015/054850
69

[00218] Bus 6018 represents one or more of any of several types of bus structures,
including a memory bus or memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics
Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus.

[00219] Computer system/server 6012 typically includes a variety of computer system
readable media. Such media may be any available media that is accessible by computer
system/server 6012, and it includes both volatile and non-volatile media, removable and

non-removable media.

[00220] System memory 6028 can include computer system readable media in the form of
volatile memory, such as random access memory (RAM) 6030 and/or cache memory 6032.
Computer system/server 6012 may further include other removable/non-removable,
volatile/non-volatile computer system storage media. By way of example only, storage
system 6034 can be provided for reading from and writing to a non-removable, non-volatile
magnetic media (not shown and typically called a "hard drive"). Although not shown, a
magnetic disk drive for reading from and writing to a removable, non-volatile magnetic disk
(e.g., a "floppy disk"), and an optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or other optical media can be
provided. In such instances, each can be connected to bus 6018 by one or more data media
interfaces. As will be further depicted and described below, memory 6028 may include at
least one program product having a set (e.g., at least one) of program modules that are

configured to carry out the functions of embodiments of the invention.

[00221] Program/utility 6040, having a set (at least one) of program modules 6042, may
be stored in memory 6028 by way of example, and not limitation, as well as an operating
system, one or more application programs, other program modules, and program data. Each
of the operating system, one or more application programs, other program modules, and

program data or some combination thereof, may include an implementation of a networking

WO 2015/139992 PCT/EP2015/054850
70

environment. Program modules 6042 generally carry out the functions and/or

methodologies of embodiments of the invention as described herein.

[00222] Computer system/server 6012 may also communicate with one or more external
devices 6014 such as a keyboard, a pointing device, a display 6024, etc.; one or more
devices that enable a user to interact with computer system/server 6012; and/or any devices
(e.g., network card, modem, etc.) that enable computer system/server 6012 to communicate
with one or more other computing devices. Such communication can occur via Input/Output
(I/0) interfaces 6022. Still yet, computer system/server 6012 can communicate with one or
more networks such as a local area network (LAN), a general wide area network (WAN),
and/or a public network (e.g., the Internet) via network adapter 6020. As depicted, network
adapter 6020 communicates with the other components of computer system/server 6012 via
bus 6018. It should be understood that although not shown, other hardware and/or software
components could be used in conjunction with computer system/server 6012. Examples,
include, but are not limited to: microcode, device drivers, redundant processing units,

external disk drive arrays, RAID systems, tape drives, and data archival storage systems, etc.

[00223] Referring now to FIG. 21, illustrative cloud computing environment 6050 is
depicted. As shown, cloud computing environment 6050 comprises one or more cloud
computing nodes 6010 with which local computing devices used by cloud consumers, such
as, for example, personal digital assistant (PDA) or cellular telephone 6054 A, desktop
computer 6054B, laptop computer 6054C, and/or automobile computer system 6054N may
communicate. Nodes 6010 may communicate with one another. They may be grouped (not
shown) physically or virtually, in one or more networks, such as Private, Community,
Public, or Hybrid clouds as described hereinabove, or a combination thereof. This allows
cloud computing environment 6050 to offer infrastructure, platforms and/or software as
services for which a cloud consumer does not need to maintain resources on a local
computing device. It is understood that the types of computing devices 6054A-N shown in
FIG. 21 are intended to be illustrative only and that computing nodes 6010 and cloud
computing environment 6050 can communicate with any type of computerized device over

any type of network and/or network addressable connection (e.g., using a web browser).

WO 2015/139992 PCT/EP2015/054850
71

[00224] Referring now to FIG. 22, a set of functional abstraction layers provided by cloud
computing environment 6050 (FIG. 21) is shown. It should be understood in advance that
the components, layers, and functions shown in FIG. 22 are intended to be illustrative only
and embodiments of the invention are not limited thereto. As depicted, the following layers
and corresponding functions are provided:

Hardware and software layer 6060 includes hardware and software components.
Examples of hardware components include mainframes, in one example IBM® zSeries®
systems; RISC (Reduced Instruction Set Computer) architecture based servers, in one
example IBM pSeries® systems; IBM xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of software components include
network application server software, in one example IBM WebSphere® application server
software; and database software, in one example IBM DB2® database software. IBM,
zSeries, pSeries, xSeries, BladeCenter, WebSphere, and DB2, z/OS, z/VM, z/Architecture,
and Processor Resource/Systems Manager are trademarks of International Business
Machines Corporation registered in many jurisdictions worldwide. Other names used herein
may be registered trademarks, trademarks or product names of International Business
Machines Corporation or other companies.

Virtualization layer 6062 provides an abstraction layer from which the following
examples of virtual entities may be provided: virtual servers; virtual storage; virtual
networks, including virtual private networks; virtual applications and operating systems; and

virtual clients.

[00225] In one example, management layer 6064 may provide the functions described
below. Resource provisioning provides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the cloud computing environment.
Metering and Pricing provide cost tracking as resources are utilized within the cloud
computing environment, and billing or invoicing for consumption of these resources. In one
example, these resources may comprise application software licenses. Security provides
identity verification for cloud consumers and tasks, as well as protection for data and other
resources. User portal provides access to the cloud computing environment for consumers
and system administrators. Service level management provides cloud computing resource

allocation and management such that required service levels are met. Service Level

WO 2015/139992 PCT/EP2015/054850
72

Agreement (SLA) planning and fulfillment provide pre-arrangement for, and procurement
of, cloud computing resources for which a future requirement is anticipated in accordance

with an SLA.

[00226] Workloads layer 6066 provides examples of functionality for which the cloud
computing environment may be utilized. Examples of workloads and functions which may
be provided from this layer include: mapping and navigation; software development and
lifecycle management; virtual classroom education delivery; data analytics processing; and

transaction processing.

[00227] The terminology used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting. As used herein, the singular forms “a”,
“an” and “the” are intended to include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the terms “comprises” and/or
“comprising”, when used in this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps, operations, elements, components

and/or groups thereof.

[00228] The corresponding structures, materials, acts, and equivalents of all means or step
plus function elements in the claims below, if any, are intended to include any structure,
material, or act for performing the function in combination with other claimed elements as
specifically claimed. The description of one or more embodiments has been presented for
purposes of illustration and description, but is not intended to be exhaustive or limited to in
the form disclosed. Many modifications and variations will be apparent to those of ordinary
skill in the art. The embodiment was chosen and described in order to best explain various
aspects and the practical application, and to enable others of ordinary skill in the art to
understand various embodiments with various modifications as are suited to the particular

use contemplated.

WO 2015/139992 PCT/EP2015/054850
73

CLAIMS

1. A method for reconfiguring a computing environment, said method comprising:
determining, by a processor, that a configuration architectural mode facility is
installed in a computing environment that is configured for a plurality of architectural modes
and has a defined power-on sequence that is to power-on the computing environment in one

architectural mode of the plurality of architectural modes, the one architectural mode
comprising a first instruction set architecture and having a first set of supported features;
based on determining that the configuration architectural mode facility is installed,
reconfiguring, by the processor, the computing environment to restrict use of the one
architectural mode, wherein the reconfiguring comprises:

selecting a different power-on sequence to power-on the computing environment in
another architectural mode of the plurality of architectural modes, wherein the another
architectural mode is different from the one architectural mode, and the another architectural
mode comprises a second instruction set architecture and having a second set of supported
features; and

executing the different power-on sequence to power-on the computing environment
in the another architectural mode in place of the one architectural mode restricting use of the

one architectural mode.

2. The method of claim 1, wherein the executing the different power-on sequence
comprises creating a new program status word to control operations of the computing
environment in the another architectural mode, the creating the new program status word
comprising inverting an architectural mode indicator in the new program status word to

indicate the another architectural mode.

3. The method of claim 2, wherein the creating the new program status word comprises
forming the new program status word to have a format indicated by the another architectural
mode, the format comprising expanding an address field from a first size to a second size,

and performing the inverting of the architectural mode indicator.

WO 2015/139992 PCT/EP2015/054850
74

4. The method of any of the preceding claims, wherein the determining that the
configuration architectural mode facility is installed comprises checking a facility indicator,

the facility indicator to be set unconditionally or under control of a configuration indicator.

5. The method of any of the preceding claims, wherein the reconfiguring further
comprises disabling within the computing environment one or more operations to support
the one architectural mode, the one or more operations comprising a switch operation to
switch from the another architectural mode to the one architectural mode, wherein a switch

back to the one architectural mode is disabled.

6. The method of claim 5, wherein the disabling comprises altering processing of a
signal processor instruction to provide an error based on a request to switch back to the one

architectural mode.

7. The method of the preceding claims, wherein the method further comprises
performing a reset of at least one processor of the computing environment, wherein the
performing the reset comprises:

resetting the computing environment in the another architectural mode, the resetting
comprising setting an architectural mode of the computing environment to the another
architectural mode; and

inverting an architectural mode indicator in a program status word to indicate the
another architectural mode, the program status word used to control operations of the

computing environment.

8. The method of the preceding claims, wherein the reconfiguring comprises changing
processing of a signal processor operation, wherein a signal processor operation to set an
architectural mode of the computing environment to the architectural mode it is currently in
results in storing status indicating the computing environment is currently in the architectural

mode, this status being treated as acceptable by an issuer of the signal processor operation.

9. The method of the preceding claims, wherein the one architectural mode is a legacy

mode and the another architectural mode is an enhanced mode, and wherein the first set of

WO 2015/139992 PCT/EP2015/054850
75

supported features comprise 31-bit addressing and use of 32-bit general purpose registers,
and the second set of supported features comprises 64-bit addressing and use of 64-bit

general purpose registers.

10. The method of the preceding claims, wherein the computing environment is a virtual
guest environment having a host processor, a first guest virtual machine at a first level of
virtualization, and a second guest virtual machine at a second level of virtualization, and
wherein the reconfiguring is performed for the host processor and the first guest virtual
machine, but not for the second guest virtual machine, the second guest virtual machine

being initiated and processing in the one architectural mode.

11. A method for configuring a computing environment, said method comprising:

configuring, by a processor, a computing environment to perform operations in a
selected architectural mode, the configuring comprising:

commencing initialization of the computing environment using a stored program
status word, the stored program status word having a format of an architectural mode
different from the selected architectural mode;

determining that the stored program status word has the format of the architectural
mode different from the selected architectural mode;

based on determining the stored program status word has the format of the
architectural mode different from the selected architectural mode, automatically modifying
the stored program status word to have a format of the selected architectural mode, the
automatically modifying being performed absent an explicit request to switch to the selected
architectural mode; and

completing initialization of the computing environment using the modified program

status word to configure the computing environment in the selected architectural mode.

12. A computer system for reconfiguring a computing environment, said computer
system comprising:

a memory; and

a processor in communications with the memory, wherein the computer system is

configured to perform a method, said method comprising:

WO 2015/139992 PCT/EP2015/054850
76

determining, by the processor, that a configuration architectural mode facility is
installed in a computing environment that is configured for a plurality of architectural modes
and has a defined power-on sequence that is to power-on the computing environment in one
architectural mode of the plurality of architectural modes, the one architectural mode
comprising a first instruction set architecture and having a first set of supported features;

based on determining that the configuration architectural mode facility is installed,
reconfiguring, by the processor, the computing environment to restrict use of the one
architectural mode, wherein the reconfiguring comprises:

selecting a different power-on sequence to power-on the computing environment in
another architectural mode of the plurality of architectural modes, wherein the another
architectural mode is different from the one architectural mode, and the another architectural
mode comprises a second instruction set architecture and having a second set of supported
features; and

executing the different power-on sequence to power-on the computing environment
in the another architectural mode in place of the one architectural mode restricting use of the

one architectural mode.

13. The computer system of claim 12, wherein the executing the different power-on
sequence comprises creating a new program status word to control operations of the
computing environment in the another architectural mode, the creating the new program
status word comprising inverting an architectural mode indicator in the new program status

word to indicate the another architectural mode.

14. The computer system of claim 13, wherein the creating the new program status word
comprises forming the new program status word to have a format indicated by the another
architectural mode, the format comprising expanding an address field from a first size to a

second size, and performing the inverting of the architectural mode indicator.

15. The computer system of any of claims 11 to 14, wherein the reconfiguring further
comprises disabling within the computing environment one or more operations to support

the one architectural mode, the one or more operations comprising a switch operation to

WO 2015/139992 PCT/EP2015/054850
77

switch from the another architectural mode to the one architectural mode, wherein a switch

back to the one architectural mode is disabled.

16. The computer system of claim 15, wherein the disabling comprises altering
processing of a signal processor instruction to provide an error based on a request to switch

back to the one architectural mode.

17. The computer system of any of claims 11 to 16, wherein the reconfiguring comprises
changing processing of a signal processor operation, wherein a signal processor operation to
set an architectural mode of the computing environment to the architectural mode it is
currently in results in storing status indicating the computing environment is currently in the
architectural mode, this status being treated as acceptable by an issuer of the signal processor

operation.

18. A computer program product for reconfiguring a computing environment, the
computer program product comprising:

a computer readable storage medium readable by a processing circuit and storing
instructions for execution by the processing circuit for performing a method according to any

of claims 1 to 10.

19. A computer program product for configuring a computing environment, the computer
program product comprising:

a computer readable storage medium readable by a processing circuit and storing
instructions for execution by the processing circuit for performing a method according to

claim 11.

20. A computer program stored on a computer readable medium and loadable into the
internal memory of a digital computer, comprising software code portions, when said

program is run on a computer, for performing the method of any of claims 1 to 11.

PCT/EP2015/054850

WO 2015/139992

1127

r—-r———"""""""""""""""""""""">"""""""""""""""""""""”"”""”""”"”""”" ™" 1
_ _
_ _
][AoV | eyl o dav | |
i I 0z14| —— [Esol~zz1 |
_ SiL ENOILILYV | ~2Z)L _ 901
_ IUVMANIE VOO0 _ J0IA3d
_ ALV | lq—p T _ 8ol et -
| ¥3HLO
0€LT]) o dav | N el —
A TOHLINOD 501
| sy Ok 0214 = [2S0}1~22! | on |
_ 0 ddV Wl 30IA3Q
_ P CNOILILYYd | ~2L 1 T _ of
| W90 <> |
ov4 HOSIAYIAH N3LSASENS p—
AL < Hvd1 ol _ 90l
0€L™ WVO . f 301A3a
| W) e B e
| | 170uLN0D W
_ mmommﬁw_wmn_ LNOLLLLYYd [~Z1) _ ol 90}
. ANIOVA | |q—p _ w1001 | 30IA3a
_ ¥ bl SNOILILYYd ~~101 _ o
_ ondd [0k WOID0T _
_ AYONIW HOSSI00NMd _
L —— = - ~— 201

L (DdD) X31dWOD HOSSID0Md TWHINID

PCT/EP2015/054850

WO 2015/139992

2127

r—-r—————~—F~—~—™>">—">—YF"""""""""""”"""”""""”""”"¥""”¥—"¥—V7— V77— 07— 07—]
_ _
_ _
L T Adnove {3 dav | |
oel™H wo | [* 0z1<] £SOz |
_ undo L _ —
_ Gol CINHOYW |~zg _ 90l
_ IUVMNYNIL IVNLYIA _ J2IA3d
_ ALNIOVA i _ 8ol et -
> H3HIO
. 1INN
e W 0z [Tav]zoo] . | | rounoo v J o
| ZNd 0L ~—|1s3n9 _\ oll e
_ _ _ oll
— CIANIHOVA | ~29] LLL
| ¥l WNLYIA |
_ W3LsAsans | | —
| R HOSINYIdAH A | 501
0El| VD 1S0H f o3
_ L NdD —~0lL1L ONPAE isoll _ 801 b\(ol
JOYINOD ~J =
! FUYMANIS SINHOVW |~z9) | oll 90}
_ ALMIOv4 H0SS300Hd TVALHIA _ I0IAIQ
0cl VD ! _¢o) | o
_ SANIHOVI ~—~1G1 _
_ 0NdD 0Ll WNLHIA _
_ _
_ AHOWIW ¥0SSID0Nd _
- _ _
. ZS1

L (DdD) X31dWOD HOSSID0Md TWHINID

WO 2015/139992 PCT/EP2015/054850

3/27

200

CPU
202
204

CAM FACILITY

—206
208
CACHE [

o p~212

I
!

EXTERNAL |/O DEVICES
AND DATA ~—214

FIG. 2

WO 2015/139992

4/27

PCT/EP2015/054850

302 -
NATIVE CPU 304 306
REGISTERS

310~ I MEMORY
311—HCAM FACILITY EMCL)J(lngOR INPUT / OUTPUT
312J 308
FIG. 3A
312 MEMORY
Y A _ 3?0
/~L INSTRUCTION] ! GUEST
352 — FETCHING |el——
: ROUTINE : INSTRUCTIONS
| Y | i
INSTRUCTION
354— | TRANSLATION|—— INSTRUCTIONS
| | __ROUTINE |
I + |
| I
EMULATION
360— T~ CONTROL | |
| |_ROUTINE |
L _ _

WO 2015/139992

5/27

(' CURRENTPOWER-ON)

Y

SET ESA/390 MODE |~—400

Y

CCWIPL |~—402

'

PCT/EP2015/054850

WHEN THE IPL I/O OPERATION IS COMPLETED SUCCESSFULLY, THE
SUBSYSTEM-IDENTIFICATION WORD FOR THE IPL DEVICE IS STORED
IN ABSOLUTE STORAGE LOCATIONS 184-187, ZEROS ARE STORED IN }~— 404
ABSOLUTE STORAGE LOCATIONS 188-191, AND A NEW PSW IS
LOADED FROM ABSOLUTE STORAGE LOCATIONS 0-7

'

THE COMPUTING ENVIRONMENT ENTERS THE OPERATING
STATE, AND THE COMPUTING ENVIRONMENT OPERATION

~—406

PROCEEDS UNDER CONTROL OF THE NEW PSW

Y

BOOTED COMPUTING

ENVIRONMENT RUNS

—~—408

END

FIG.

4A

WO 2015/139992 PCT/EP2015/054850

6/27

(" BOOTED SYSTEMRUNS)

'

INITIATED IN ESA/390 MODE |~—420

Y
PERFORM OPERATIONS IN ESA/390 [~—422

Y
PERFORM SIGP ~— 424

430

SIGP
ACCEPTED?

ERROR

TRANSITION TO ZZARCHITECTURE MODE FOR
ALL CPUs RESPONSIVE TO RECEIVING SIGP [~ 428

END

FIG. 4B

WO 2015/139992

7127

PCT/EP2015/054850

FIG. 5

500
PROGRAM STATUS WORD
506 512 516 520
502 5048508 510 5148518 522 524 526
{ { { ! { { ! { {
| [E PROG. E
o[R|000 |T| 5| ke [1|m|w]p|as|cc| PR | 0000000 |
012 5678 1213141516 18 20 24 31
< 528 530
{ {
E INSTRUCTION ADDRESS
_ 32 33 63

WO 2015/139992 PCT/EP2015/054850

8/27

(' CZAMPOWER-ON)

Y
SET Z/ARCHITECTURE MODE {(~—600

Y
CCWIPL [~—602

'

WHEN THE IPL I/0 OPERATION IS COMPLETED SUCCESSFULLY, THE
SUBSYSTEM-IDENTIFICATION WORD FOR THE IPL DEVICE IS STORED IN
ABSOLUTE STORAGE LOCATIONS, e.g., 184-187, ZEROS ARE STORED IN

ABSOLUTE STORAGE LOCATIONS, e.g., 188-191, AND A NEW PSW IS CREATED

FROM ABSOLUTE STORAGE LOCATIONS, e.g., 0-7 (BIT 12 INVERTED)

~ 604

¢

THE COMPUTING ENVIRONMENT ENTERS THE OPERATING
STATE, AND THE COMPUTING ENVIRONMENT OPERATION |~ 606
PROCEEDS UNDER CONTROL OF THE NEW PSW

Y
BOOTED COMPUTING ENVIRONMENT RUNS |~—608

END

FIG. 6A

WO 2015/139992

9/27

(" BOOTED SYSTEMRUNS)

'

'

PCT/EP2015/054850

INITIATED IN Z/ARCHITECTURE MODE |~—620

PERFORM OPERATIONS IN zZ/ARCHITECTURE

~—622

'

ALL CPUs IN zZ/ARCHITECTURE MODE

~— 632

FIG. 6B

WO 2015/139992 PCT/EP2015/054850

10/27
700
LOAD PSW D,(B,)
OPCODE B, D,
0 3 8 163 20 5 31
702 704 706
FIG. 7
800
SIGNAL PROCESSOR Ry, Ry, Dy(B,)
OPCODE | R, | Ry | B, D,
0 3 8320316320 3 31
802 804 806 808 810

FIG. 8A

PCT/EP2015/054850

WO 2015/139992

11/27

d8 'Ol

HOYY3 SY qILvaL
v.8 1ON :31g¥.Ld300V
SNLYLS

» (H0w43)~088

18—~ 300W NI AQYRITY
098~{(¥0¥3) 228 “gnivis 3aInond SIS | g/g
JQINOYd
898 E
S3A »
_| snivis .
8581 30in0ud ¢30ON Q3Ld300V
= GEILEN = ToN 9.8
998~ Mt NI NdD
¢LIN ¢ IAON ,
p9g —] H3QNO SNOILIONOD GETRENVEN ¢QATIVLSNI
1300V WYZ0

S3A d3H10

298

NI Ndd

€S8 300N TVHNLOILIHOYY 03LS3NDIM NIVLEO

!

068 —— 3uNLOILHOYY L3S —3A0D ¥IAHO NIVLEO

!

@o% Em.%_mv

WO 2015/139992 PCT/EP2015/054850

12/27

(POWER - ON RECONF)

!

DETERMINE WHETHER A CAM FACILITY IS INSTALLED IN A COMPUTING
ENVIRONMENT CONFIGURED FOR A PLURALITY OF ARCHITECTURE MODES
AND HAS A DEFINED POWER - ON SEQUENCE TO POWER ON COMPUTING |~ 900
ENVIRONMENT IN ONE ARCHITECTURE MODE (e.g., LEGACY; e.g., ESA/390)
e eg., CHECK FACILITY INDICATOR

902 CAM
INSTALLED?

RECONFIGURE COMPUTING ENVIRONMENT TO RESTRICT 906
USE OF ONE ARCHITECTURE MODE |

PERFORM CURRENT
POWER-ON ~ 904
SEQUENCE

SELECT DIFFERENT POWER-ON SEQUENCE TO POWER-ON
IN ANOTHER ARCHITECTURE MODE (e.g., LATER VERSION OF ~908
ARCHITECTURE THAN THE ONE ARCHITECTURE)

! i

EXECUTE DIFFERENT POWER-ON SEQUENCE TO
POWER-ON IN THE OTHER ARCHITECTURE MODE ~ 910
RESTRICTING USE OF THE ONE ARCHITECTURE MODE
o CREATE NEW PSW-INVERT BIT 12

—_————————————

RUN COMPUTING ENVIRONMENT IN THE OTHER
ARCHITECTURE MODE (e.g., ZARCHITECTURE) [~912

END

FIG. 9

WO 2015/139992 PCT/EP2015/054850

13/27

(" RECONFIGURE)

!

DISABLE ONE OR MORE OPERATIONS TO SUPPORT THE ONE

ARCHITECTURE MODE

e SWITCH OPERATION - SIGP ALTERED TO PROVIDE ERROR BASED [~ 1000
ON REQUEST TO SWITCH TO ONE ARCHITECTURE MODE

CHANGE ONE OR MORE OTHER PROCESSES, OPERATIONS
AND/OR BEHAVIORS TO SUPPORT POWER-ON IN THE OTHER
ARCHITECTURE MODE INSTEAD OF THE ONE ARCHITECTURE

MODE; RESTRICT USE OF THE ONE ARCHITECTURE MODE

CONFIGURE CPU SCLP COMMAND PLACES CPU IN ARCHITECTURE
MODE OF THE CPUs ALREADY IN THE CONFIGURED STATE

Y

LOAD CLEAR KEY AND LOAD NORMAL KEY ARE OPERATOR
FACILITIES THAT SET THE ARCHITECTURE MODE AS DEFINED 1006
IN CLEAR RESET OR INITIAL CPU RESET, RESPECTIVELY

~ 1004

SIGP IS CHANGED TO ALLOW A SWITCH TO A SAME L1008
ARCHITECTURE MODE AS THE CURRENT ARCHITECTURE MODE

Y

FACILITY BITS ADDED (e.g., BIT 138 TO INDICATE
CZAM), BIT 21S TO BE 1, WHEN BIT 138 = 1
o SECOND LEVEL GUESTS NOT AFFECTED
BY CZAM — CAN STILL BE INITIATEDAND ~ |~1010
PROCESS IN THE ONE ARCHITECTURAL
MODE (e.g., ESA/390)

@ + @

FIG. 10

WO 2015/139992

14/27

OBTAIN RESET OPERATION

PCT/EP2015/054850

~1100

'

RESET THE COMPUTING ENVIRONMENT TO THE OTHER
ARCHITECTURE MODE (.g., ZZARCHITECTURE)

e SET THE ARCHITECTURE MODE

- USE APPROPRIATE FORMAT OF PSW
- INVERT ARCHITECTURE MODE INDICATOR

(e.g., BIT 12) IN PSW

~1102

END

FIG. 11

WO 2015/139992 PCT/EP2015/054850

15127

(' CONFIGURE)

CONFIGURE COMPUTING ENVIRONMENT TO PERFORM
OPERATIONS IN A SELECTED ARCHITECTURAL MODE

COMMENCE INITIALIZATION OF THE COMPUTING
ENVIRONMENT USING A STORED PROGRAM STATUS
WORD, THE STORED PROGRAM STATUS WORD HAVING |—+—1202
A FORMAT OF AN ARCHITECTURAL MODE DIFFERENT
FROM THE SELECTED ARCHITECTURAL MODE

'

I

I

I

I

DETERMINE THAT THE STORED PROGRAM STATUS WORD |
HAS THE FORMAT OF THE ARCHITECTURAL MODE ~1-1204
DIFFERENT FROM THE SELECTED ARCHITECTURAL MODE

!

BASED ON DETERMINING THE STORED PROGRAM STATUS
WORD HAS THE FORMAT OF THE ARCHITECTURAL MODE
DIFFERENT FROM THE SELECTED ARCHITECTURAL MODE,
AUTOMATICALLY MODIFYING THE STORED PROGRAM
STATUS WORD TO HAVE A FORMAT OF THE SELECTED [T—1206
ARCHITECTURAL MODE, AUTOMATICALLY MODIFYING
BEING PERFORMED ABSENT AN EXPLICIT REQUEST TO
SWITCH TO THE SELECTED ARCHITECTURAL MODE

I

I

I

I

Y |
COMPLETE INITIALIZATION OF THE COMPUTING :
ENVIRONMENT USING THE MODIFIED PROGRAM STATUS

WORD TO CONFIGURE THE COMPUTING ENVIRONMENT | —+—1208
IN THE SELECTED ARCHITECTURAL MODE

FIG. 12

WO 2015/139992 PCT/EP2015/054850

16/27

COMPUTER
PROGRAM
PRODUCT

1300

1304
(.

PROGRAM
CODE LOGIC

COMPUTER
READABLE
STORAGE
MEDIUM
1302

~—

FIG. 13

WO 2015/139992

17127

PCT/EP2015/054850

~—5011

FIG. 14

HOST COMPUTER 5000
5001
| [
PROCESSOR (CPU)
DAT
5003 ADDRESS
TLB i
5007 — !
|
LOAD/STORE |
UNIT - |
|
|
5005 5004 Y Y
[C
e pa e
C CENTRAL
E STORAGE
INSTRUCTION |
DECODE UNIT [2006 H
5009
5008
INSTRUCTIONF\ L5002
EXECUTION UNIT [™®
/ N\
MEDIA %/
— NETWORK

5010

WO 2015/139992 PCT/EP2015/054850

18/27
OPERATING SYSTEM
APPLICATION 2
APPLICATION 3
5022 a (5031
et /
/ / /// //
/ BASE COMPUTER * /
Y /
/ L~ 5021
MEMORY [/~ 2922
DISPLAY | c027
STORAGE |
PROCESSOR ORA
5023
MOUSE 5028
_J’ [=[u]u] [=[u]u] 5 EE E 5030
5024 KEYBOARD —

PRINTER/SCANNER

NETWORK
5029

FIG. 15

WO 2015/139992 PCT/EP2015/054850

19/27

5040
REMOTE SERVER

=
“‘;:;:::iizg:;:::="'EEE —~5048

INTERNET
5047
5046
[5051
= 5
— L
':.‘
—— H’
&
CLENT5 USERS
5050

j5041

(&)}
(o]
=
N~

£—) =
[—)

CLIENT 1 = k- | CLIENT 3 CLIENT 4

CLIENT 2 5042

FIG. 16

WO 2015/139992

20/27

5025—"

PROCESSOR

PCT/EP2015/054850

MEMORY

\\\\\\\ (5053

5026
A

CACHES
5055
PROGRAM COUNTER /4/////
5061—)
INSTRUCTION FETCH
5056 — (5060
DECODE/DISPATCH so5g | LOAD/STORE UNIT
BRANCH r——5062
UNIT
EXECUTION
UNIT DAT
5063
\ | REGISTERS 5059 | ART

\

5057)

FIG. 17

5054 —Y /O UNITS

WO 2015/139992 PCT/EP2015/054850

21127

5057
EXECUTION UNIT

5072

5071
OTHER
5065—) f_5056
DECODE/DISPATCH
5059 REGISTERS
r—5060
LOAD/STORE UNIT

FIG. 18A

WO 2015/139992 PCT/EP2015/054850

22127

5058
BRANCH UNIT

BHT

— 5081

OTHER

_)
5073 5056
f_

DECODE/DISPATCH

5059 REGISTERS

FIG. 18B

WO 2015/139992 PCT/EP2015/054850

23/27

5060
LOAD/STORE UNIT

CTL

—-5084

OTHER

_)
5083 5056
f_

DECODE/DISPATCH

5059 REGISTERS

CACHE/MEMORY | ~_
INTERFACE 5053

FIG. 18C

WO 2015/139992 PCT/EP2015/054850

24/27

5092

EMULATED (VIRTUAL)
HOST COMPUTER
MEMORY 5094
5000' 5096
COMPUTER
MEMORY
(HOST)

5}91
o B
| EMULATED (VIRTUAL) |
| PROCESSOR (CPU) |
I 5097 I
| |
! 5093 !
| EMULATION |
| ROUTINES |
! PROCESSOR !
| NATIVE |
| | INSTRUCTION SET [:
| ACHITECTURE 'B' |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
T |

/] AN
MEDIA %/
I~ 5011 NETWORK
5010

FIG. 19

PCT/EP2015/054850

WO 2015/139992

25/27

0109

0¢ OIld

(s)3oIn3a
TYNY3I1X3
\
109
H31dvayv ¥HOMLIN Amm_o,m“_wm_hz_ AV1dSId
/
0Z09 N N
2z09 ¥Z09
~-8109
| 2¥09
_ 2€09
009 / 1INN
IHOYD ONISSIDOUd
INILSAS _ \
J9VHOLS 9109
VY
¥€09)\
AHOW3N 0€09
/
8209 H3IAYAS WILSAS HILNdWOD [-2CL09

PCT/EP2015/054850

WO 2015/139992

26/27

W

(
g¥509
0109
- __
0509 @ EH _“
N I
[
0 0
<

1¢ Ol

N¥S09

V1609

PR

O¥509

PCT/EP2015/054850

WO 2015/139992

27127

¢¢ Old

0909
4

2/EMYOS
FETNES

2/em)os uopedyddy
oseqeled IOMISN

U @

SWoISAS
JouaDepelg
BupyomjoN ~ abeioig ® ahdl

@Hﬂ

Swolsks slemeg

SALASX SuNjoaNYdl
@ S PRIYdIY

) Wal OSH

2JEM)|0S pUE 8IeMpIEH

salueljuley
¢909

W/

SJUaLD
[ENUIA

suopeoyddy SYIOMJON
[ENpIA [ENpIA

abeio)g
[ENHIA

RE @M@

SIBAIOS
[ENUIA

uoRez|enyi

Juswebeue

wawin pue // woewsbeue //” enog sesn BuLd pue BUILOISINOI
Buueld v1s SEREERIVENS Buualay 90IN0SY
/
SPEOPOM
INETVIETg| Em&mmmcms_ 5
Buissaoold BuIsse00.q uoneanp3 SJoAd3YI UOREDIAEN
UonesuelL //sonfiely ereq ﬁwﬂ.ﬁm_o -~ gw"%,mo pue Buiddey
. 2JBM)j0S

International application No.
INTERNATIONAL SEARCH REPORT PCT/EP2015/054850
Box No.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. I:' Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. I:' Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

-

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers

only those claims for which fees were paid, specifically claims Nos.:

4. |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

I:' No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2015/054850

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/44 GO6F9/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y paragraph [0032]
paragraph [0043]
paragraph [0053]
paragraph [0077]

X US 2012/260064 Al (HENRY G GLENN [US] ET
AL) 11 October 2012 (2012-10-11)

1,12,18,
20

2-11,
13-17,19

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

18 May 2015

Date of mailing of the international search report

28/05/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kamps, Stefan

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2015/054850

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Relevant to claim No.

1 September 2002 (2002-09-01),
XP055187056,

ISBN: 978-0-73-842697-6

Retrieved from the Internet:
URL:http://proquest.safaribooksonline.com/
0738426970

[retrieved on 2015-04-30]

page 233

page 234

page 236

Category™ | Citation of document, with indication, where appropriate, of the relevant passages
Y Ibm Redbooks ET AL: "IBM eServer zSeries 2-11,
900 Technical Guide", 13-17,19

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/EP2015/054850
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2012260064 Al 11-10-2012 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

International Application No. PCT/ EP2015/ 054850

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-20
Invention 1-2
1.1. claims: 1-10, 12-18, 20

Restricting the use of a legacy architectural mode after
direct boot into an enhanced architectural mode.

1.2. claims: 11, 19

Modifying a program status word for enabling direct booting
into an enhanced architectural mode.

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - wo-search-report
	Page 108 - wo-search-report
	Page 109 - wo-search-report
	Page 110 - wo-search-report
	Page 111 - wo-search-report

