Title: SUBSTITUTED ARYL PIPERAZINES AS NEUROKININ ANTAGONISTS

Abstract

Disclosed are substituted aryl piperazines of Formula (I) which are tachykinin receptor antagonists useful in the treatment of inflammatory diseases, pain or migraine, asthma and emesis. In particular compounds of Formula (I) are shown to be neurokinin antagonists.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
TITLE OF THE INVENTION
SUBSTITUTED ARYL PIPERAZINES AS NEUROKININ ANTAGONISTS

BACKGROUND OF THE INVENTION
The invention disclosed herein is directed to certain substituted aryl piperazines useful as tachykinin receptor antagonists. In particular, the compounds disclosed herein are neurokinin receptor antagonists.

The tachykinins, substance P (SP), neurokinin A (NKA) and neurokinin B (NKB), are structurally similar members of a family of neuropeptides. Each of these is an agonist of the receptor types, neurokinin-1 receptor (NK-1), neororokinin-2 receptor (NK-2) and neurokinin-3 receptor (NK-3), which are so defined according to their relative abilities to bind tachykinins with high affinity and to be activated by the natural agonists SP, NKA and NKB respectively.

The neurokinin receptors are widely distributed throughout the mammalian nervous system (especially brain and spinal ganglia), the circulatory system and peripheral tissues (especially the duodenum and jejunum) and are involved in regulating a number of diverse biological processes. This includes sensory perception of olfaction, vision, audition and pain, movement control, gastric motility, vasodilation, salivation, and micturition (B. Pernow, Pharmacol. Rev., 1983, 35, 85-141). The NK1 and NK2 receptor subtypes are implicated in synaptic transmission (Laneuville et al., Life Sci., 42: 1295-1305 (1988)).

Substance P acts as a vasodilator, a depressant, stimulates salivation and produces increased capillary permeability. It is also capable of producing both analgesia and hyperalgesia in animals, depending on dose and pain responsiveness of the animal (see R.C.A. Frederickson et al., Science, 199, 1359 (1978); P. Oehme et al., Science, 208, 305 (1980)) and plays a role in sensory transmission and pain perception (T.M. Jessell, Advan. Biochem. Psychopharmacol. 28, 189 (1981)). In particular, substance P has been shown to be involved in the transmission of pain in migraine (see B.E.B. Sandberg et al., Journal of

In the airways, it has been indicated that NK1 receptors are associated with microvascular leakage and mucus secretion, while NK2 receptors regulate smooth muscle contraction. Also, it has been shown that both substance P and neurokinin A are effective in inducing airway constriction and edema. Based on such findings, it is believed that substance P and neurokinin A may be involved in the pathogenesis of neurogenic inflammation, including allergic diseases such as asthma. (Frossard et al., Life Sci., 49, 1941-1953 (1991); Advenier, et al., Biochem. Biophys. Res. Comm., 184(3), 1418-1424 (1992)).

In experimental studies, sensory neuropeptides, especially tachykinins such as substance P and neurokinin A, can bring about many of the pathophysiological features of asthma. Neurokinin A is a very potent constrictor of human airways in vitro, and substance P causes mucus secretion in the airways. (Barnes P.J., Lancet, pp 242-44 (1986); Rogers D.R., Aursudkij B., Barnes P.J., Euro. J. Pharmacol, 174, 283-86 (1989)).

Inhalation of bradykinin causes bronchoconstriction in asthmatic patients but not in normal subjects. (Fuller R.W., Dixon C.M.S., Cuss F.M.C., Barnes P.J., Am Rev Respir Dis, 135, 176-80 (1987)). Since the bradykinin-induced bronchoconstriction is partly opposed by anticholinergic agents and since bradykinin is only a weak constrictor of human airways in vitro, it has been suggested that the bronchoconstrictor response is partly mediated by a neural reflex. Bradykinin stimulates vagal afferent C fibers and causes bronchoconstriction in dogs. (Kaufman M.P., Coleridge H.M., Coleridge J.C.G., Baker D.G., J. Appl. Physio., 48, 511-17 (1980)). In guinea-pig airways, bradykinin causes a bronchoconstrictor response by way of cholinergic and sensory-nerve-mediated mechanisms. (Ichinoe M., Belvisi M.G., Barnes P.J., J. Pharmacol. Exp. Ther., 253, 594-99 (1990). Bradykinin-induced bronchoconstriction in human airways may therefore be due partly to tachykinin released from sensory nerve terminals via axon reflex mechanisms. Clinical trials have shown that a
dual NK-1/NK-2 antagonist (such as FK-224) protects against bradykinin-induced bronchoconstriction in asthmatic patients. (Ichinoe, M. et al., Lancet, vol. 340, pp 1248-1251 (1992)). The tachykinins have also been implicated in gastrointestinal (GI) disorders and diseases of the GI tract, such as inflammatory bowel disease, ulcerative colitis and Crohn's disease, etc. (see Mantyh et al., Neuroscience, 25 (3), 817-37 (1988) and D. Regoli in Trends in Cluster Headache Ed. F. Sicuteri et al., Elsevier Scientific Publishers, Amsterdam, 1987, pp. 85-95).

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula I.

![Chemical Structure I](image)

The invention is also concerned with pharmaceutical formulations with these novel compounds as active ingredients and the use of the novel compounds and their formulations in the treatment of certain disorders.

The compounds of this invention are tachykinin receptor antagonists and are useful in the treatment of inflammatory diseases, pain or migraine, asthma and emesis.

DETAILED DESCRIPTION OF THE INVENTION

In one embodiment, this invention is directed to compounds of Formula I

![Chemical Structure I](image)
and pharmaceutically acceptable salts thereof,
wherein the nitrogen attached to R₁ shown above is optionally
quaternized with C₁-₄alkyl or phenylC₁-₄alkyl or is optionally present
as the N-oxide (N+O⁻), and wherein:

R₁ is selected from a group consisting of:
linear or branched C₁-₈ alkyl, linear or branched C₂-₈
alkenyl, wherein the C₁-₈ alkyl or C₂-₈ alkenyl is
optionally mono, di, tri or tetra substituted, the substituents
individually selected from:
(a) hydroxy,
(b) oxo,
(c) cyano,
(d) halogen which is defined to include Br, Cl, I, and F,
(e) trifluoromethyl,
(f) phenyl or mono, di or tri-substituted phenyl, the
substituents independently selected from
(1) phenyl,
(2) hydroxy,
(3) C₁-₃alkyl,
(4) cyano,
(5) halogen,
(6) trifluoromethyl,
(7) -NR₆COR₇,
(8) -NR₆CO₂R₇,
(9) -NR₆CONHR₇,
(10) -NR₆S(O)ₜR₇, wherein j is 1 or 2,
(11) -CONR₆R₇,
(12) -COR₆,
(13) -CO₂R₆,
(14) -OR₆,
(15) -S(O)ₖR₆ wherein k is 0, 1 or 2.

(g) -NR₆R₇,
(h) -NR₆COR₇,
(i) -NR₆CO₂R₇,
(j) -NR₆CONHR₇,
(k) -NR₆S(O)jR₇,
(l) -CONR₆R₇,
(m) -COR₆,
(n) -CO₂R₆,
(o) -OR₆,
(p) -S(O)ₖR₆,
(q) heteroaryl, wherein heteroaryl is selected from the group consisting of:
 (1) benzimidazolyl,
 (2) benzofuranyl,
 (3) benzoxazolyl,
 (4) furanyl,
 (5) imidazolyl,
 (6) indolyl,
 (7) isooxazolyl,
 (8) isothiazolyl,
 (9) oxadiazolyl,
 (10) oxazolyl,
 (11) pyrazinyl,
 (12) pyrazolyl,
 (13) pyridyl,
 (14) pyrimidyl,
 (15) pyrrolyl,
 (16) quinolyl,
 (17) tetrazolyl,
 (18) thiadiazolyl,
 (19) thiazolyl,
 (20) thienyl,
 (21) triazolyl,

wherein the heteroaryl is unsubstituted or mono di or tri-substituted, the substituents independently selected from:
(a) phenyl,
(b) hydroxy,
(c) oxo,
(d) cyano,
(e) halogen,
(f) trifluoromethyl;

Ar is selected from the group consisting of:
(1) phenyl,
(2) pyridyl,
(3) pyrimidyl,
(4) naphthyl,
(5) furyl,
(6) pyrryl,
(7) thienyl,
(8) isothiazolyl,
(9) imidazolyl,
(10) benzimidazolyl,
(11) tetrazolyl,
(12) pyrazinyl,
(13) quinolyl,
(14) isoquinolyl,
(15) benzofuryl,
(16) isobenzofuryl,
(17) benzothienyl,
(18) pyrazolyl,
(19) indolyl,
(20) isoindolyl,
(21) purinyl,
(22) isoxazolyl,
(23) thiazolyl,
(24) oxazolyl,
(25) triazinyl, and
(26) benzthiazolyl,
(27) benzoxazolyl,
(28) imidazopyrazinyl,
(29) triazolopyrazinyl,
(30) naphthyridinyl,
(31) furopyridinyl,
(32) thiopyranopyrimidyl and the 5-oxide and 5-dioxide thereof,
(33) pyridazinyl,
(34) quinazolinyl,
(35) pteridinyl,
(36) triazolo pyrimidyl,
(37) triazolopyrazinyl,
(38) thiapurinyl,
(39) oxapurinyl,
(40) deazapurinyl,

wherein Ar items (1) to (40) are optionally mono or di-substituted, said
substituents being independently selected from:

(a) C1-3 alkyl, unsubstituted or substituted with
 (1) oxo,
 (2) hydroxy,
 (3) OR6,
 (4) halogen,
 (5) trifluoromethyl,
 (6) phenyl or mono, di or tri-substituted phenyl,

(b) -(CH2)nS(O)k-(C1-6 alkyl), wherein n is 0, 1 or 2,
(c) -(CH2)nS(O)j-NH2,
(d) -(CH2)nS(O)j-NH(C1-6 alkyl),
(e) -(CH2)nS(O)j-NHR6,
(f) -(CH2)nS(O)j-NR6-(C1-6 alkyl),

(g) -(CH2)nCONH2,
(h) -(CH2)nCONH-(C1-6 alkyl),
(i) -(CH2)nCONHR6,
(j) -(CH2)nCONR6-(C1-6 alkyl),
(k) -(CH2)nCO2H,
(l) \(-(\text{CH}_2)_n\text{CO}_2-\text{(C}_1\text{-6 alkyl)}\),
(m) \(-(\text{CH}_2)_n\text{NR}_6\text{R}_7\),
(n) \(-(\text{CH}_2)_n\text{NH-C(O)-C}_1\text{-6alkyl}\),
(o) \(-(\text{CH}_2)_n\text{NH-C(O)NH}_2\),
5
(p) \(-(\text{CH}_2)_n\text{NH-C(O)NHC}_1\text{-6alkyl}\),
(q) \(-(\text{CH}_2)_n\text{NH-C(O)N-(diC}_1\text{-6 alkyl)}\),
(r) \(-(\text{CH}_2)_n\text{NH-S(O)k-C}_1\text{-6alkyl}\),
(s) \(-(\text{CH}_2)_n\text{N(C}_1\text{-3alkyl)-C(O)-N(diC}_1\text{-6 alkyl)}\),
(t) \(-(\text{CH}_2)_n\text{-heteroaryl or -C(O)-heteroaryl or }\)-(\text{CH}_2)_n\text{-O-heteroaryl}\), wherein the heteroaryl is selected from the group consisting of:
(1) benzimidazolyl,
(2) benzofuranyl,
(3) benzoxazolyl,
15
(4) furanyl,
(5) imidazolyl,
(6) indolyl,
(7) isooxazolyl,
(8) isothiazolyl,
(9) oxadiazolyl,
(10) oxazolyl,
(11) pyrazinyl,
(12) pyrazolyl,
(13) pyridyl or oxopyridyl,
20
(14) pyrimidyl,
(15) pyrrolyl,
(16) quinolyl,
(17) tetrazolyl,
(18) thiadiazolyl,
(19) thiazolyl,
25
(20) thienyl,
(21) triazolyl, wherein the heteroaryl group of items (1) to (21) is unsubstituted, mono, di or tri substituted, the substituents selected from:
(a) hydrogen,
(b) C_{1-6} alkyl, branched or unbranched, unsubstituted or mono or di-substituted, the substituents being selected from hydrogen and hydroxy,
(c) hydroxy,
(d) oxo,
(e) OR_6,
(f) halogen,
(g) trifluoromethyl,
(h) nitro,
(i) cyano,
(j) -NHR_6,
(k) -NR_6R_7,
(l) -NHCOR_6,
(m) -NR_6COR_7,
(n) -NHCO_2R_6,
(o) -NR_6CO_2R_7,
(p) -NHS(O)jR_6,
(q) -NR_6S(O)jR_7,
(r) -CONR_6R_7,
(s) -COR_6,
(t) -CO_2R_6,
(u) -S(O)jR_6;

R_6 is

(1) hydrogen,
(2) C_{1-6} alkyl, or mono or di-substituted C_{1-6} alkyl, the substituents independently selected from:

(a) phenyl,
(b) hydroxy,
(c) oxo,
(d) cyano,
(e) halogen,
(f) trifluoromethyl,

(3) phenyl or mono di or tri-substituted phenyl, the substituents independently selected from:
 (a) hydroxy,
 (b) C₁₋₃alkyl,
 (c) cyano,
 (d) halogen,
 (e) trifluoromethyl,

R₇ is

10 (1) hydrogen,
 (2) C₁₋₆ alkyl, or mono or di-substituted C₁₋₆ alkyl, the substituents independently selected from:
 (a) phenyl unsubstituted or substituted with
 (1) hydroxy,
 (2) C₁₋₃alkyl,
 (3) cyano,
 (4) halogen,
 (5) trifluoromethyl,
 (6) C₁₋₃alkyloxy,

15 (b) hydroxy,
 (c) oxo,
 (d) cyano,
 (e) halogen,
 (f) trifluoromethyl,

20 (3) phenyl or mono di or tri-substituted phenyl, the substituents independently selected from:
 (a) hydroxy,
 (b) C₁₋₃alkyl,
 (c) cyano,

25 (d) halogen,
 (e) trifluoromethyl,

30 (4) naphthyl or mono di or tri-substituted naphthyl, the substituents independently selected from:
 (a) hydroxy,
(b) C₁₋₃alkyl,
(c) cyano,
(d) halogen,
(e) trifluoromethyl,

5 (5) C₁₋₃alkyloxy,

or

R₆ and R₇ are joined together to form a 5-, 6-, or 7-
membered monocyclic saturated ring containing 1 or 2
heteroatoms independently selected from nitrogen, oxygen,
and sulfur, and in which the ring is unsubstituted or mono
or di-substituted, the substituents independently selected
from:

(1) hydroxy,
(2) oxo,
(3) cyano,
(4) halogen,
(5) trifluoromethyl,

R₈ and R₉ are each independently hydrogen or substituted C₁₋₄alkyl
wherein the substituent is selected from the group consisting of

20 (1) hydroxy,
(2) hydrogen,
(3) cyano,
(4) halogen,
(5) trifluoromethyl,
(6) C₁₋₃alkyloxy,

provided that when Ar is phenyl, pyridyl or pyrimidyl then Ar is mono
di or tri-substituted, and further provided that when Ar is mono
substituted phenyl then the substituent is other than halo, hydroxy,
-OC₁₋₄alkyl, CF₃ or C₁₋₄alkyl, and further provided that when Ar is
di- or tri-substituted, at least one of the substituents is other than halo,
hydroxy, -OC₁₋₄alkyl, CF₃ or C₁₋₄alkyl.

One genus within this embodiment is the compounds of

Formula I wherein:
R1 is selected from a group consisting of:
 C3, C4, C5, C6, C7, C8 linear or branched alkyl, unsubstituted or
 mono, di or tri-substituted, the substituents independently
 selected from:
 (a) hydroxy,
 (b) Cl or F,
 (c) phenyl or mono, di or tri-substituted phenyl, the
 substituents independently selected from:
 (1) phenyl,
 (2) hydroxy,
 (3) C1-3alkyl,
 (4) cyano,
 (5) halogen,
 (6) trifluoromethyl,
 (d) -NR6COR7, wherein R6 is hydrogen or C1-3 alkyl
 and R7 is phenyl optionally substituted with Cl, F,
 CF3 or C1-3alkyl,
 (e) -NHS(O)jR6,
 (f) -COR6,
 (h) -OR6,
Ar is selected from the group consisting of:
 (1) phenyl,
 (2) pyrazinyl,
 (3) pyrazolyl,
 (4) pyridyl,
 (5) pyrimidyl, and
 (6) thienyl,
 wherein Ar is unsubstituted or mono or di-substituted, the
 substituents independently selected from
 (a) C1-3 alkyl, unsubstituted or substituted with
 (1) oxo,
 (2) hydroxy,
 (3) OR6,
- 14 -

(4) halogen,
(5) trifluoromethyl,
(b) CONR\(_6\)-(C\(_1\)-2 alkyl),
(c) CO\(_2\)H,

5
(d) CO\(_2\)-(C\(_1\)-2 alkyl),
(e) CH\(_2\)NR\(_6\)-(C\(_1\)-2 alkyl),
(f) CH\(_2\)NH-C(O)-C\(_1\)-3alkyl,
(h) CH\(_2\)NH-C(O)NH\(_2\),
(i) CH\(_2\)NH-C(O)NHC\(_1\)-3alkyl,
(j) CH\(_2\)NH-C(O)N-diC\(_1\)-3 alkyl),
(k) CH\(_2\)NH-S(O)i-C\(_1\)-3alkyl,
(l) CH\(_2\)-heteroaryl group, with the heteroaryls selected from the group consisting of:

10 (1) imidazolyl,
(2) oxazolyl,
(3) pyridyl,
(4) tetrazolyl,
(5) triazolyl,

the heteroaryl group is unsubstituted, mono, di or tri-substituted, the substituents selected from:

(a) hydrogen,
(b) C\(_1\)-6 alkyl, branched or unbranched, unsubstituted or mono or di-substituted, the substituents being selected from hydrogen and hydroxy; and

20

R\(_9\) is hydrogen.

One class of compounds within this genus is the compounds of

Formula I wherein:

30

Ar is mono substituted or di-substituted phenyl wherein the substituents are selected from the group consisting of:

(a) C\(_1\)-3 alkyl, unsubstituted or substituted with

35 (1) oxo,
(2) hydroxy,
(3) OR₆,
(b) -CH₂NR₆-(C₁-2 alkyl),
(c) -CH₂NH-C(O)-C₁-3alkyl,
(d) -CH₂NH-C(O)NH₂,
(i) -CH₂NH-C(O)NHC₁-3alkyl,
(j) -CH₂NH-C(O)N-diC₁-3 alkyl),
(k) -CH₂NH-S(O)_j-C₁-3alkyl,
(l) -CH₂-heteroaryl group, with the heteroaryls selected from the group consisting of:
(1) imidazolyl,
(2) oxazolyl,
(3) pyridyl,
(4) tetrazolyl,
(5) triazolyl,
the heteroaryl group is unsubstituted, mono, di or tri substituted, the substituents selected from:
(a) hydrogen,
(b) C₁-6 alkyl, branched or unbranched,
unsubstituted or mono or disubstituted, the substituents being selected from hydrogen and hydroxy.
Illustrating the invention are the compounds wherein Ar is selected from

![Chemical structures](image-url)
A second genus of this invention encompasses the compounds of Formula I wherein Ar is selected from the group consisting of:
Illustrating the invention are the following compounds as well as those listed in Table 1:
As appreciated by those of skill in the art, halo as used herein are intended to include chloro, fluoro, bromo and iodo. Similarly, C1-6, as in C1-6alkyl is defined to identify the group as having 1, 2, 3, 4, 5, or 6 carbons, such that C1-6alkyl specifically includes methyl, ethyl, propyl, butyl, pentyl or hexyl.

Exemplifying the invention are the compounds of the Examples 1-32.
In an alternative embodiment the compounds of formula I are co-administered with a β2-agonist such as:

The compounds of Formula I are particularly useful in the treatment of diseases or conditions that are advantageously treated by concomitant antagonism of both NK1 and NK2 receptors or NK1, NK2 and NK3 receptors. These diseases include neuropathy, such as diabetic or peripheral neuropathy and chemotherapy-induced neuropathy; asthma; osteoarthritis; rheumatoid arthritis; and migraine.

In a second alternative embodiment the compounds of Formula I may be co-administered with another NK1 or NK2 antagonist such as those described in:

Appln No. DO-139125, filed 08-Jun-78, Pub. 12-Dec-79;
Appln No. EP-82568, filed 22-Dec-81, Pub. 29-Jun-83;
Appln No. EP-353732, filed 05-Aug-88, Pub. 07-Feb-90;
Appln No. EP-161007, filed 13-Jan-84, Pub. 13-Nov-85;
Appln No. EP-385-43, filed 28-Feb-89, Pub. 05-Sep-90;
Appln No. WO8301251, filed 09-Oct-81, Pub. 14-Apr-83;
Appln No. BE-894602, filed 09-Oct-81, Pub. 31-Jan-83;
Appln No. DE3205991, filed 19-Feb-82, Pub. 01-Sep-83;
AppIn No. EP-327009, filed 02-Feb-88, Pub. 09-Aug-89;
AppIn No. EP-336230, filed 05-Apr-88, Pub. 11-Oct-89;
AppIn No. 394989, filed 28-Apr-89, Pub. 31-Oct-90;
AppIn No. AU9068010, filed 22-Dec-89, Pub. 27-Jun-91;
AppIn No. EP-482539, filed 24-Oct-90, Pub. 29-Apr-92;
AppIn No. EP-443132, filed 10-Dec-90, Pub. 28-Aug-91;
AppIn No. WO9222569, filed 19-Jun-91, Pub. 23-Dec-92;
AppIn No. JO4297492, filed 24-Oct-91, Pub. 21-Oct-92;
AppIn No. US4997853, filed 02-Dec-88, Pub. 05-Mar-91;
AppIn No. EP-272929, filed 24-Dec-86, Pub. 29-Jun-88;
AppIn No. US3862114, filed 22-Nov-71, Pub. 21-Jan-75;
AppIn No. EP-219258, filed 30-Sep-85, Pub. 22-Apr-87;
AppIn No. US4742156, filed 30-Sep-85, Pub. 03-May-88;
AppIn No. EP-401177, filed 29-May-89, Pub. 05-Dec-90;
AppIn No. WO9202546, filed 03-Aug-90, Pub. 20-Feb-92;
AppIn No. EP-176436, filed 26-Sep-84, Pub. 02-Apr-86;
AppIn No. US4680283, filed 26-Sep-84, Pub. 14-Jul-87;
AppIn No. WO9220661, filed 22-May-91, Pub. 26-Nov-92;
AppIn No. EP-520555, filed 24-Jun-91, Pub. 30-Dec-92;
AppIn No. WO9005729, filed 23-Nov-88, Pub. 31-May-90;
AppIn No. WO9005525, filed 23-Nov-88, Pub. 31-May-90;
AppIn No. EP-436334, filed 04-Jan-90, Pub. 10-Jul-91;
AppIn No. WO9118878, filed 31-May-90, Pub. 12-Dec-91;
AppIn No. WO9118899, filed 01-Jun-90, Pub. 12-Dec-91;
AppIn No. WO9201688, filed 23-Jul-90, Pub. 06-Feb-92;
AppIn No. WO9206079, filed 28-Sep-90, Pub. 16-Apr-92;
AppIn No. WO9212152, filed 03-Jan-91, Pub. 23-Jul-92;
AppIn No. WO9212151, filed 10-Jan-91, Pub. 23-Jul-92;
WO9215585, filed 01-Mar-91, Pub. 29-Apr-92; Appln No.

In a third alternative embodiment the compounds of Formula I can be co-administered with a leucotriene antagonist, such as a leucotriene D4 antagonist, exemplified by those disclosed in EP O 480,717, published April 15, 1992; US 5,270,324, issued December 14, 1993; EP O 604,114, published June 1994; and US 4,859,692, issued August 22, 1989. This combination is particularly useful in the treatment of respiratory diseases such as asthma, chronic bronchitis and cough.
In a fourth embodiment the compounds of Formula I may be used in combination with a aerosolized corticosteroid such as Kenalog, Aristocort, Nasalide, Preferid, Benecorten or others such as disclosed in U.S. 2,789,118, U.S. 2,990,401, 3,048,581, U.S. 3,126,375, U.S. 3,929,768, U.S. 3,996,359, U.S. 3,928,326 and 3,749,712.

The compounds of Formula I are useful in the prevention and treatment of a wide variety of clinical conditions (as detailed in this specification) which are characterized by overstimulation of the tachykinin receptors, in particular NK1, NK2 and NK3.

These conditions may include disorders of the central nervous system such as anxiety, depression, psychosis and schizophrenia; neurodegenerative disorders such as AIDS related dementia, senile dementia of the Alzheimer type, Alzheimer’s disease and Down’s syndrome; demyelinating diseases such as multiple sclerosis and amyotrophic lateral sclerosis and other neuropathological disorders such as diabetic or peripheral neuropathy, AIDS related neuropathy, chemotherapy-induced neuropathy, and neuralgia; respiratory diseases such as chronic obstructive airways disease, bronchopneumonia, bronchospasm and asthma; inflammatory diseases such as inflammatory bowel disease, psoriasis, fibrositis, osteoarthritis and rheumatoid arthritis; allergies such as eczema and rhinitis; hypersensitivity disorders such as poison ivy; ophthalmic diseases such as conjunctivitis, vernal conjunctivitis, and the like; cutaneous diseases such as contact dermatitis, atopic dermatitis, urticaria, and other eczematoid dermatitis; addiction disorders such as alcoholism; stress related somatic disorders; reflex sympathetic dystrophy such as shoulder/hand syndrome; dysthymic disorders; adverse immunological reactions such as rejection of transplanted tissues and disorders related to immune enhancement or suppression such as systemic lupus erythematosus; gastrointestinal (GI) disorders and diseases of the GI tract such as disorders associated with the neuronal control of viscera such as ulcerative colitis, Crohn’s disease, irritable bowel syndrome, incontinence, nausea, and emesis, including acute, delayed, post-operative, late-phase, and anticipatory emesis, such as emesis induced by for example chemotherapy, radiation,
surgery, migraine, toxins, such as metabolic or microbial toxins, viral or bacterial infections, pregnancy, vestibular disorder, motion, mechanical stimulation, psychological stress or disturbance, high altitude, weightlessness, intoxication, resulting for example from consumption of alcohol, and variations in intracranial pressure, in particular, for example, drug or radiation induced emesis or post-operative nausea and vomiting; disorders of bladder function; fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliases; disorders of blood flow caused by vasodilation and vasospastic diseases such as angina, migraine and Reynaud's disease; and pain or nociception, for example, that is attributable to or associated with any of the foregoing conditions especially the transmission of pain in migraine. Hence, these compounds are readily adapted to therapeutic use for the treatment of physiological disorders associated with the overstimulation of the tachykinin receptors, in particular NK1, NK2 and NK3.

The compounds of the present invention are particularly useful in the treatment of pain or nociception and/or inflammation and disorders associated therewith such as, for example: neuropathy, such as diabetic or peripheral neuropathy and chemotherapy-induced neuropathy; asthma; osteoarthritis; rheumatoid arthritis; and migraine.

For the treatment of any of these diseases compounds of Formula I may be administered orally, topically, parenterally, ICV, by inhalation spray or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intracisternal injection or infusion techniques. In addition to the treatment of warm-blooded animals such as mice, rats, horses, cattle, sheep, dogs, cats, etc., the compounds of the invention are effective in the treatment of humans.

The pharmaceutical compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. Compositions intended for oral use may be prepared according
to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example, starch, gelatin or acacia, and lubricating agents, for example, magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. They may also be coated by the techniques described in the US Patents 4,256,108; 4,166,452; and 4,265,874 to form osmotic therapeutic tablets for control release.

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example, peanut oil, liquid paraffin, or olive oil.

Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example, sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example, polyoxyethylene stearate,
or condensation products of ethylene oxide with long chain aliphatic alcohols, for example, heptadecaethylene-oxyacetol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example, polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example, ethyl, or n-propyl, p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.

Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example, arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example, beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example, sweetening, flavoring and coloring agents, may also be present.

The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example, olive oil or arachis oil, or a mineral oil, for example, liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example, gum acacia or gum tragacanth, naturally-occurring phosphatides, for example, soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example, sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example,
polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.

Syrups and elixirs may be formulated with sweetening agents, for example, glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents. The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleagenous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butane diol. Among the acceptable vehicles and solvents that may be employed are water, Ringer’s solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

The compounds of Formula I may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and polyethylene glycols.

For topical use, creams, ointments, jellies, solutions or suspensions, etc., containing the compounds of Formula I are employed. (For purposes of this application, topical application shall include mouth washes and gargles.)

In the treatment of a condition associated with an excess of tachykinins, an appropriate dosage level will generally be about 0.001 to 50 mg per kg patient body weight per day which can be administered in single or multiple doses. Preferably, the dosage level will be about 0.01 to about 25 mg/kg per day; more preferably about 0.05 to about 10 mg/kg per day. A suitable dosage level may be about 0.001 to 25 mg/kg
per day, about 0.005 to 10 mg/kg per day, or about 0.005 to 5 mg/kg per day. Within this range the dosage may be 0.005 to 0.05, 0.05 to 0.5 or 0.5 to 5.0 mg/kg per day. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.

5 TACHYKININ ANTAGONISM ASSAY

The compounds of this invention are useful for antagonizing tachykinins, in particular substance P and neurokinin A in the treatment of gastrointestinal disorders, central nervous system disorders, inflammatory diseases, pain or migraine and asthma in a mammal in need of such treatment. This activity can be demonstrated by the following assay.

15 A. Receptor Expression in COS
To express the cloned human neurokinin-1 receptor (NK1R) transiently in COS, the cDNA for the human NK1R was cloned into the expression vector pCDM9 which was derived from pCDM8 (INVITROGEN) by inserting the ampicillin resistance gene (nucleotide 1973 to 2964 from BLUESCRIPT SK+) into the Sac II site. Transfection of 20 μg of the plasmid DNA into 10 million COS cells was achieved by electroporation in 800 μl of transfection buffer (135 mM NaCl, 1.2 mM CaCl2, 1.2 mM MgCl2, 2.4 mM K2HPO4, 0.6 mM KH2PO4, 10 mM glucose, 10 mM HEPES pH 7.4) at 260 V and 950 uF using the IBI GENEZAPPER (IBI, New Haven, CT). The cells were incubated in 10% fetal calf serum, 2 mM glutamine, 100U/ml penicillin-streptomycin, and 90% DMEM media (GIBCO, Grand Island, NY) in 5% CO2 at 37°C for three days before the binding assay. Similar methods were used to express the NK2 receptor.

30 B. Stable Expression in CHO
To establish a stable cell line expressing the cloned human NK1R, the cDNA was subcloned into the vector pRcCMV (INVITROGEN). Transfection of 20 μg of the plasmid DNA into CHO
cells was achieved by electroporation in 800 μl of transfection buffer supplemented with 0.625 mg/ml Herring sperm DNA at 300 V and 950 uF using the IBI GENEZAPPER (IBI). The transfected cells were incubated in CHO media (10% fetal calf serum, 100 U/ml penicillin-streptomycin, 2 mM glutamine, 1/500 hypoxanthine-thymidine (ATCC), 90% IMDM media (JRH BIOSCIENCES, Lenexa, KS), 0.7 mg/ml G418 (GIBCO)) in 5% CO₂ at 37°C until colonies were visible. Each colony was separated and propagated. The cell clone with the highest number of human NK1R was selected for subsequent applications such as drug screening.

Similar methods were used to express the human NK2 receptor.

C. Assay Protocol using COS or CHO

The binding assay of human NK1R expressed in either COS or CHO cells is based on the use of ¹²⁵I-substance P (¹²⁵I-SP, from DU PONT, Boston, MA) as a radioactively labeled ligand which competes with unlabeled substance P or any other ligand for binding to the human NK1R. Monolayer cell cultures of COS or CHO were dissociated by the non-enzymatic solution (SPECIALTY MEDIA, Lavallette, NJ) and resuspended in appropriate volume of the binding buffer (50 mM Tris pH 7.5, 5 mM MnCl₂, 150 mM NaCl, 0.04 mg/ml bacitracin, 0.004 mg/ml leupeptin, 0.02 mg/ml BSA, 0.01 mM phosphoramidon) such that 200 μl of the cell suspension would give rise to about 10,000 cpm of specific ¹²⁵I-SP binding (approximately 50,000 to 200,000 cells). In the binding assay, 500 μl of cells were added to a tube containing 20 μl of 1.5 to 0.25 nM of ¹²⁵I-SP and 5 μl of unlabeled substance P or any other test compound in DMSO. The tubes were incubated at 4°C or at room temperature for 1 hour with gentle shaking. The bound radioactivity was separated from unbound radioactivity by GF/C filter (BRANDEL, Gaithersburg, MD) which was pre-wetted with 0.1% polyethylenimine. The filter was washed with 3 ml of wash buffer (50 mM Tris pH 7.5, 5 mM MnCl₂, 150 mM NaCl) three times and its radioactivity was determined by gamma counter. A
similar assay was used for NK2 except 125I-NKA was used as the ligand.

The activation of phospholipase C by NK1R may also be measured in CHO cells expressing the human NK1R by determining the accumulation of inositol monophosphate which is a degradation product of IP3. CHO cells are seeded in 12-well plate at 250,000 cells per well. After incubating in CHO media for 4 days, cells are loaded with 0.025 uCi/ml of 3H-myoinositol by overnight incubation. The extracellular radioactivity is removed by washing with phosphate buffered saline. LiCl is added to the well at final concentration of 0.1 mM with or without the test compound, and incubation is continued at 37°C for 15 min. Substance P is added to the well at final concentration of 0.3 nM to activate the human NK1R. After 30 min of incubation at 37°C, the media is removed and 0.1 N HCl is added. Each well is sonicated at 4°C and extracted with CHCl3/methanol (1:1). The aqueous phase is applied to a 1 ml Dowex AG 1X8 ion exchange column. The column is washed with 0.1 N formic acid followed by 0.025 M ammonium formate-0.1 N formic acid. The inositol monophosphate is eluted with 0.2 M ammonium formate-0.1 N formic acid and quantitated by beta counter.

similar methods were used to assess antagonism at the NK2 receptor, except NKA was used as the stimulating agonist.

The compounds of Formula I as Exemplified in the EXAMPLES below have been found to displace radioactive ligand for the NK-1 receptor at a concentration range of 0.01 nM to 1.0 μM, for the NK-2 receptor, 0.01 nM to 5 μM, and for the NK-3 receptor, 1.0 nM to 10 μM. For comparison the activity of FK-224 is disclosed in Ichinoe, M. et al., Lancet, vol. 340, pp 1248-1251 (1992).
TABLE 1

Piperazine Compounds as NK₁-NK₂ and NK₃ Antagonists

\[
\text{Ra} \xrightarrow{\text{N}} \text{N} \xrightarrow{\text{N}} \text{N} \xrightarrow{\text{O}} \text{Rb} \xrightarrow{\text{N}} \text{Rc}
\]

<table>
<thead>
<tr>
<th>Ra</th>
<th>Rb</th>
<th>Rc</th>
<th>NK<sub>1</sub></th>
<th>NK<sub>2</sub></th>
<th>NK<sub>3</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>H<sub>3</sub>CO-N-N-N</td>
<td>3,4-diCl<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td>0.45 nM</td>
<td>9 nM</td>
<td>25 nM</td>
</tr>
<tr>
<td>F-CH<sub>3</sub>O-N-N-N</td>
<td>3,4-diCl</td>
<td>CH<sub>3</sub></td>
<td>1 nM</td>
<td>20 nM</td>
<td>200 nM</td>
</tr>
<tr>
<td>CH<sub>3</sub>O-N-N-N</td>
<td>3,4-diCl</td>
<td>CH<sub>3</sub></td>
<td>0.2 nM</td>
<td>10 nM</td>
<td>60 nM</td>
</tr>
<tr>
<td>H<sub>3</sub>C-N-N-N</td>
<td>4-Cl</td>
<td>CH<sub>3</sub></td>
<td>2.5 nM</td>
<td>25 nM</td>
<td>60 nM</td>
</tr>
<tr>
<td>Ra</td>
<td>Rb</td>
<td>Rc</td>
<td>NK₁</td>
<td>NK₂</td>
<td>NK₃</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>3,4-diCl</td>
<td>CH₃</td>
<td>0.6 nM</td>
<td>15 nM</td>
<td>300 nM</td>
</tr>
<tr>
<td></td>
<td>3,4-diCl</td>
<td>CH₃</td>
<td>0.45 nM</td>
<td>20 nM</td>
<td>150 nM</td>
</tr>
<tr>
<td></td>
<td>3,4-diCl</td>
<td>CH₃</td>
<td>0.9 nM</td>
<td>5 nM</td>
<td>60 nM</td>
</tr>
<tr>
<td></td>
<td>3,4-diCl</td>
<td>CF₃</td>
<td>0.9 nM</td>
<td>12 nM</td>
<td>640 nM</td>
</tr>
<tr>
<td></td>
<td>4-Cl</td>
<td>CF₃</td>
<td>2.4 nM</td>
<td>14 nM</td>
<td>173 nM</td>
</tr>
<tr>
<td></td>
<td>3,4-diCl</td>
<td>CH₃</td>
<td>1.5 nM</td>
<td>40 nM</td>
<td>250 nM</td>
</tr>
<tr>
<td></td>
<td>3,4-diCl</td>
<td>CH₃</td>
<td>0.8 nM</td>
<td>35 nM</td>
<td>450 nM</td>
</tr>
<tr>
<td></td>
<td>3,4-diCl</td>
<td>CH₃</td>
<td>0.65 nM</td>
<td>35 nM</td>
<td>140 nM</td>
</tr>
<tr>
<td></td>
<td>3,4-diCl</td>
<td>CH₃</td>
<td>0.9 nM</td>
<td>25 nM</td>
<td>50 nM</td>
</tr>
<tr>
<td></td>
<td>3,4-diCl</td>
<td>CH₃</td>
<td>2 nM</td>
<td>10 nM</td>
<td>130 nM</td>
</tr>
</tbody>
</table>
TABLE 1 CONTINUED

<table>
<thead>
<tr>
<th>Ra</th>
<th>Rb</th>
<th>Rc</th>
<th>NK1</th>
<th>NK2</th>
<th>NK3</th>
</tr>
</thead>
</table>
| \[
\begin{array}{c}
\text{CH}_3 \\
\text{N} \\
\text{S} \\
\text{N} \\
\end{array}
\] | 3,4-diCl | \text{CH}_3 | 0.3 nM | 15 nM | 55 nM |
| \[
\begin{array}{c}
\text{CH}_3 \\
\text{N} \\
\text{S} \\
\end{array}
\] | 3,4-diCl | \text{CH}_3 | 1.5 nM | 30 nM | 300 nM |

Several methods for preparing the compounds of this invention are illustrated in the following Schemes and Examples. Starting materials are made from known procedures or as illustrated. Substituted purines may be prepared as disclosed in US 5,057,517; imidazo(1.2-a)pyrazinyl, as disclosed in US 4,242,344; (1,2,4)-triazolo(1.5-a)pyrazinyl as disclosed in J. Org. Chem., 1974, 39, 2143 and J.C.S. Perkin I, 1980, 506; 1,7-naphthyridinyl as disclosed in J. Org. Chem. 1963, 28, 1753; furo(3.2-c)pyridinyl as disclosed in J. Heterocyclic Chem., 1982, 19, 1207; and substituted 6-H-7,8-dihydrothiopyrano(3.2-d)pyrimidyl as disclosed in Arch. Int. Pharmacodyn. 1986, 280, pp302-313. As appreciated by those of skill in the art, compounds bearing the substituents R8 and R9 may be prepared essentially as described in the Schemes.

The compounds of the present invention are prepared by alkylating piperazine 1 (R1 = H) under appropriate conditions (Scheme 1). In one method illustrated by Example 1, Step E, piperazine 1 (R1 = H) is combined with the appropriate aldehyde and the intermediate imine is reduced to the amine chemically (e.g. using sodium cyanoborohydride) or catalytically (e.g. using hydrogen and palladium on carbon or Raney nickel catalyst) (Scheme 1). The aldehyde needed
for this reaction can be prepared by methods generally known in the chemical literature; for the purposes of the present invention the preparation of a representative aldehyde is described in Examples 1 Step A by Hale, J.J.; Finke, P.E.; MacCoss, M. *Bioorganic and Medicinal Chemistry Letters* 1993 3, 319-322.

In an alternative embodiment of the present invention, piperazine 1 (R₁ = H) can be alkylated with an alkyl halide or alkyl sulfonate ester (with or without an added base to neutralize the mineral acid or sulfonic acid by-product) to give the desired compound (Scheme 1). The alkyl halide or alkyl sulfonate needed for this reaction can be prepared by methods generally known in the chemical literature; for the purposes of the present invention an aldehyde, prepared as described above, can be reduced to an alcohol with sodium borohydride, diisobutylaluminum hydride or lithium aluminum hydride, and the product alcohol converted to either the alkyl halide using methods described in March J., *Advanced Organic Chemistry*, 3rd ed., John Wiley & Sons, New York, pp. 382-384 (1985), or alkyl sulfonate ester using methods described in March J., *Advanced Organic Chemistry*, 3rd ed., John Wiley & Sons, New York, p. 444 (1985).

In an alternative embodiment of the present invention, 1 (R₁ = H) can be acylated to give the tertiary amide and subsequent reduction with a strong reducing agent (e.g. diborane including borane dimethylsulfide; and, lithium aluminum hydride) will give the desired compound (Scheme 1). The acylating agent needed for this reaction can be prepared by methods generally known in the chemical literature; for the purposes of the present invention an aldehyde, prepared as described above, can be oxidized using such commonly used reagents as permanganate in acid or silver oxide, and the resulting acid activated as an acid chloride or mixed anhydride which can be used to acylate 1.

The product amide can in and of itself be a neurokinin antagonist or can be reduced with a strong reducing agent, such as diborane or lithium aluminum hydride, to give the tertiary amine.
SCHEME I

```
  RCHO, [H]

  Ar-N \equiv N-H → Ar-N \equiv N-R_1
  R_1X

  RCOX →

  Ar-N \equiv N \equiv N R

  Strong [H]
```

Optionally, Compound 1 formed in the alkylation step may be further modified in subsequent reactions. In one illustration of such an approach, the piperazine fragment may contain a nitro group, which is reduced to the amine after the coupling step. The resulting amine is further modified by acylation to provide the desired compounds. The piperazine fragment may also contain a protecting group such as a benzyl ester or a t-butyl ester. After reductive amination the protecting group is removed and the resulting acid is further reacted to provide additional analogs. Alternatively, the aldehyde portion may also contain a protecting group such as a t-butoxycarbonyl for an amino function.

After reductive amination, the t-butoxycarbonyl group is removed by treatment with a strong acid such as trifluoroacetic acid, formic acid or
hydrochloric acid and the resulting amine may be acylated to provide other analogs.

Substituted 4-aryl piperazines can be prepared from appropriate fluorobenzene derivative as shown in Scheme 2. Thus, reaction of 2-fluorobenzonitrile with 1-t-butoxycarbonylpiperazine in the presence of a base such as K$_2$CO$_3$ gives 1-t-butoxycarbonyl-4-(2-cyanophenyl)-piperazine. Reduction of the cyano group by hydrogenation in the presence of Raney nickel or by other known methods gives a benzyl amine which can be acylated (Example 1, Step D). The t-butoxycarbonyl protecting group is removed by treatment with trifluoroacetic acid or anhydrous HCl to give a piperazine which can be used in the reductive amination step (Example 1, Step E). Similar reactions using 2-chloro-nitrobenzene in the place of 2-fluorobenzonitrile can provide compounds containing a substituted aniline. Analogs containing a benzoic acid or its derivatives can be prepared by substituting 2-fluorobenzoic acid in this sequence.
SCHEME 2

\[
\text{CN} \quad \text{F} \quad \text{+} \quad \text{HN} \quad \text{N} \quad \text{Boc} \quad \xrightarrow{\text{K}_2\text{CO}_3, \text{DMF}} \quad 150^\circ\text{C} \quad \text{NH}_2
\]

\[
\text{CN} \quad \text{N} \quad \text{N} \quad \text{Boc} \quad \xrightarrow{\text{H}_2, \text{Raney Ni}} \quad 1000 \text{ psi, 80}^\circ\text{C} \quad \text{N} \quad \text{N} \quad \text{Boc}
\]

\[
\text{NHR} \quad \xrightarrow{\text{Acylation}} \quad \text{NHR} \quad \xrightarrow{\text{CF}_3\text{CO}_2\text{H or HCl, EtOAc}} \quad \text{NHR}
\]

Arylpiperazine derivatives containing heterocyclic substituents can be synthesized as shown in Scheme 3. Reaction between 2-fluorobenzaldehyde and 1-t-butoxycarbonylpiperazine as described above gives 1-t-butoxycarbonyl-4-(2-formylphenyl)-piperazine (Example 9, Step A). Reduction of the aldehyde and treatment of the resulting alcohol with methanesulfonyl chloride gives a mesylate, while treatment of the alcohol with triphenylphosphine and carbon tetrabromide gives the bromide. Displacement of the mesylate by a heterocycle such as imidazole (Example 9, Step C) in the presence of a base and removal of the t-butoxycarbonyl protecting group furnishes piperazine which is used in the coupling reactions described in Scheme I.
Preparation of piperazines containing a heteroaryl substituent is outlined in Scheme 4. Reaction of 1-t-butoxycarbonylpiperazine with a chloro substituted heteroaromatic compound such as 8-chloro-1,7-naphthyridine (Example 22, Step A) or 8-chloro-(1,2,4)-triazolo(1,5-a)pyrazine (Example 23, Step A) gives a protected piperazine. Removal of the t-butoxycarbonyl protecting group by treatment with acid provides the piperazine substrate for use in the coupling step.
Preparation of hydroxymethyl derivatives of the target compounds is outlined in Scheme 5. The oxazolidinone imide is made from the indicated acid, by formation of the corresponding acid chloride (by treatment with oxalyl chloride or thionyl chloride) and addition of N-lithio 2(S)-benzyl oxazolidinone. The enolate azidation can be accomplished by a variety of methods, such as the procedure of Evans, D. A.; et. al. *J. Am. Chem. Soc.* 1990, 112, 4011-4030. Reduction of the oxazolidinone moiety can be carried out by a variety of metal hydride reagents (e.g. LiBH₄/MeOH, LiAlH₄, etc.). The azide is then reduced by treatment with PPh₃/H₂O or NaBH₄. Formation of the cyclic carbamate is accomplished by literature methods; i.e. phosgene, triphosgene or carbonyl diimidazole. The target compounds are prepared by oxidative cleavage of the olefin to the aldehyde followed by reductive amination with an amine salt as described for Scheme 1. In one method illustrated by Example 48, the aldehyde is reductively aminated with a heteroaryl substituted aryl piperazine to afford the target precursors. Hydrolysis of the cyclic carbamate under basic conditions (for example, potassium hydroxide in ethanol at elevated temperature) followed by selective amide formation at 0°C by combining with an active acylating agent derived from an aryl
carboxylic acid (for example, an aroyl chloride) gives the α-hydroxymethyl amides.
SCHEME 5

1) (COCl)₂, CH₂Cl₂, r.t.
2) N-lithio-2S-benzyl oxazolidinone

HOAc

KHMDST, THF, trisyl azide

1) LiBH₄, MeOH, THF, 0°C
2) PPh₃, THF/H₂O 65°C

1) triphosgene, THF, r.t.
2) NaH, Mel DMF, 70°C

1) OsO₄, NaIO₄ tBuOH, H₂O
2) NaCNBH₃, MeOH/THF 4-Ar-piperazine•HX

1) 1M KOH, EtOH, 85°C
2) Ar'COCl, Et₃N, CH₂Cl₂, 0°C
Preparation of piperazines containing a heteroaryl substituent on a branched side chain is outlined in Scheme 6. Reaction of the 2-piperazinyl-benzaldehyde derivative whose synthesis is described in Scheme 3 with a carbon nucleophile such as a Grignard reagent, for example methyl magnesium bromide, provides the corresponding benzyl alcohol. Conversion to the benzyl amine can be carried out by treatment of the alcohol with potassium phthalimide in the presence of diethyl azodicarboxylate and triphenyl phosphine, to provide the benzyl N-phthalimido derivative. Heating with hydrazine hydrate then gives the free primary amine. Conversion to the corresponding benzyl amine can also be carried out by activation of the hydroxyl group with a alkyl- or arylsulfonyl chloride, such as p-toluenesulfonyl chloride, to give a benzyl sulfonate ester. The sulfonate ester is then displaced with ammonia or a primary or secondary amine. Alternatively, the sulfonate ester can be displaced with a suitable salt of the azide anion, such as sodium azide, zinc azide, or tetrabutylammonium azide, and the resulting alkyl azide can be reduced to the primary amine with hydrogen gas in the presence of a suitable catalyst, such as 5% palladium on carbon. Alternatively, the alkyl azide can be reduced by treatment with triphenyl phosphine followed by hydrolysis to provide the primary amine.

The benzyl amine can then be derivatized with a number of electrophilic reagents, such as alkyl or aryl sulfonyl chlorides, carboxylic acid chlorides, carboxylic acid anhydrides, alkyl chloroformates, carbamyl chlorides or alkyl or aryl isocyanates to provide sulfonamides, carboxamides, ureas, or carbamates. These intermediates can then be deprotected under acidic conditions to remove the Boc group to provide the free piperazines for use in the coupling reactions described in Scheme 1.
SCHEME 6

1) Diethyl azodicarboxylate, Ph₃P, phthalimide

2) NH₂NH₂·H₂O

R₅SO₂Cl, RCOCl, R(R')NCOCl, RNCO,
or ROCOCl

1) CF₃CO₂H

or HCl, EtOAc

where X = -SO₂-, -CO-, -OC(O)-, -CONH-, or -CONR'.
EXAMPLE 1

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methyl-amino))butyl)-4-((2-acetylaminomethyl)phenyl)-piperazine

Step A: 3-((S)-(3,4-Dichlorophenyl))-4-((3,5-dimethylbenzoyl)methyl-amino)-butanal

To a suspension of 4.81 g (32 mmol) of 3,5-dimethylbenzoic acid in 30 mL of CH2Cl2 and 7 drops of DMF was added 3.3 mL (38 mmol) of oxalyl chloride. After stirring for 1 h all the solids were dissolved and gas evolution had stopped. The solution was concentrated and the residual acid chloride was dissolved in 20 mL of CH2Cl2. This solution was added to a solution of 7.2 g (29 mmol) of 3-(S)-(3,4-dichlorophenyl)-4-methylamino-1-pentene (prepared as described by J. Hale et al., Bioorganic and Medicinal Chemistry Letters, 1993, 3, 319-322) in 50 mL of CH2Cl2 and 5.3 mL (38 mmol) of triethylamine (Et3N) with cooling in an ice bath. The ice bath was removed after 5 min and stirring was continued for 1 h. The reaction mixture was diluted with CH2Cl2 and washed with water, 1.2 N HCl, saturated NaHCO3 and brine. The solution was dried over Na2SO4 and concentrated to give 11.98 g of residual oil.

1H NMR (CDCl3, ppm ranges are given because of amide rotamers and line broadening) 2.26 (s, 6 H), 2.1-3.9 (m, 8 H), 4.9-5.1 (m, 2 H), 5.4-5.7 (m, 1 H), 6.5-7.4 (m, 6 H).

The residue was dissolved in 45 mL of acetone, 15 mL of t-butanol and 15 mL of water. To this solution 0.75 mL of osmium tetroxide (4% solution in water) and 3.63 g (31 mmol) of 4-methylmorpholine N-oxide were added. After stirring for 18 h, the reaction was quenched with approximately 30 mL of 10% aqueous Na2SO3 and concentrated to 25% of the original volume. The residue was partitioned between water and 1:1 ether (Et2O), ethyl acetate
(EtOAc), the layers were separated and the aqueous layer was reextracted with Et₂O:EtoAc. Each organic layer was washed with water, brine and dried by filtering through Na₂SO₄. The combined filtrate was concentrated to afford the crude diol.

A solution of the diol in 60 mL of tetrahydrofuran (THF) and 20 mL of water was treated with 6.63 g (31 mmol) of sodium periodate. After stirring for 2 h, the reaction was diluted with Et₂O:EtoAc and washed with water and brine. The organic layer was dried (Na₂SO₄) and the filtrate was concentrated. The residue was purified by prep LC using 30% EtOAC/hexane to furnish 7.86 g (72% yield for three steps) of the title compound as a light yellow solid.

1H NMR (CDCl₃, ppm ranges are given because of amide rotamers and line broadening) δ 2.27 (s, 6 H), 2.6-3.9 (m, 8 H), 6.5-7.5 (m, 6 H), 9.73 (s, 1 H).

Step B: 1-t-Butoxycarbonyl-4-(2-cyano)phenyl-piperazine

To a 30ml DMF solution of t-butyllpiperazine carboxylate 10g (53.7mmol) and o-fluorobenzonitile 4.34g (35.8mmol) were added potassium carbonate 22.26 g (161 mmol) and copper powder 230mg (3.6mmol). The reaction mixture was stirred at 150 °C in an oil bath overnight. After cooling to rt, the reaction mixture was concentrated reduced pressure. The residual material was suspended in EtOAc and was filtered through a pad of celite. The filtrate was washed with sat NH₄Cl aq. solution, dried over anhydrous Na₂SO₄, filtered, concentrated, chromatographed on silica gel column eluting with Hexanes : EtOAc = 10:1 to 7:1 to give 7.84g of the title compound.

1H-NMR (400MHz CDCl₃) δ 1.46(9H,s), 3.13(4H, m), 3.61(4H, m), 6.99-7.04(2H, s), 7.46-7.58(2H,s).

Step C: 1-t-Butoxycarbonyl-4-(2-aminomethyl)phenyl-piperazine
1-t-Butoxycarbonyl-4-(2-cyano)phenyl-piperazine 3g (10.4mmol) was dissolved in EtOH (65ml) and liq. NH₃ (13ml), and was hydrogenated in a bomb (H₂ 1000psi, 80° C, 36hr). The solvent was then removed under reduced pressure to give the title compound. This material was used in step D below without further purification.

Step D: 4-(2-(Acetilaminomethyl)phenyl)-piperazine

A solution of 0.258 g (0.89 mmol) of 4-(2-aminomethyl)-phenyl-1-t-butoxycarbonylpiperazine (from Step C above) in 3 mL of CH₂Cl₂ was treated with 0.075 mL (1.06 mmol) of acetyl chloride and 0.15 mL (1.07 mmol) of Et₃N. After stirring for 20 min the reaction mixture was diluted with CH₂Cl₂ and washed with water, saturated NaHCO₃, brine and dried over Na₂SO₄. The filtrate was concentrated and the residue was treated with 10 drops of anisole and 2 mL of cold TFA. The solution was stirred in an ice bath for 1 hr, then concentrated. The residue was partitioned between CH₂Cl₂ and dilute NaOH. The organic layer was washed with brine, dried and the filtrate was concentrated to furnish 0.198 g (96%) of the title compound which was used in the next step without purification.

1H NMR (CDCl₃) δ 2.0 (s, 3 H), 2.90 (m, 4 H), 3.02 (m, 4 H), 4.52 (AB, 2 H), 6.55 (br s, 1 H), 6.85-7.4 (m, 4 H).

Step E: 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methyl-amino))butyl)-4-(2-(acetilaminomethyl)phenyl)-piperazine

To a solution of 0.12 g (0.32 mmol) of 3-((S)-(3,4-dichlorophenyl))-4-((3,5-dimethylbenzoyl)methylamino)butanal (Step A) in 1 mL of MeOH were added 0.099 g (0.42 mmol) of 4-(2-acetylaminomethyl)phenyl-piperazine (Step D), 0.3 g of powdered 4 Å molecular sieves and 20 µL of acetic acid. After stirring the mixture for 1.5 h a solution of 0.063 g (1 mmol) of NaCNBH₃ in 3 mL of THF was added. Some gas evolution was observed. After 1 h when the reaction was complete by TLC the mixture was filtered through a pad
of celite, the reaction flask and the pad were rinsed with MeOH. The filtrate was concentrated to approximately 2 mL and the residue was diluted with Et₂O:EtOAc. The Et₂O:EtOAc solution was washed with water, brine and dried over Na₂SO₄. The filtrate was concentrated and the residue was purified by prep TLC using 88:10:2 EtOAc:MeOH:Et₃N to isolate 0.163 g (86%) of the title compound as a white foam.

¹H NMR (CDCl₃, ppm ranges are given because of amide rotamers and line broadening) δ 1.98 (s, 3 H), 1.5-3.9 (m, 18 H), 2.27 (s, 6 H), 4.48 (AB, 2 H), 6.3-6.5 (br, 1 H), 6.6-7.5 (m, 10 H).

EXAMPLE 2

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dichlorobenzoyl)-(methylamino))butyl)-4-(2-(acetylaminomethyl)phenyl)-piperazine

Step A: 3-((S)-(3,4-Dichlorophenyl))-4-((3,5-dichlorobenzoyl)methyl-amino)-butanal

The title compound was prepared following the procedures described in Example 1, Step A but using 3,5-chlorobenzoyl chloride in the place of freshly prepared 3,5-dimethylbenzoyl chloride.

¹H NMR (CDCl₃, ppm ranges are given because of amide rotamers and line broadening) δ 2.6-3.9 (m, 8 H), 6.7-7.5 (m, 6 H), 9.7 (s, 1 H).

Step B: 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dichlorobenzoyl)-(methylamino))butyl)-4-(2-acetylaminomethylphenyl)-piperazine

The title compound was prepared by the procedure described in Example 1, Step E by substituting 3-((S)-(3,4-
dichlorophenyl)-4-((3,5-dichlorobenzoyl)methylamino)butanal as the aldehyde component.

Mass Spectrum (Cl) 637 (37Cl + 35Cl isotope), 635 (35Cl + 35Cl isotope).

The compounds in Examples 3-8 were prepared by reacting the requisite piperazine with either 3-((S)-(3,4-dichlorophenyl))-4-((3,5-dimethylbenzoyl)methylamino)butanal (Example 1, Step A) or 3-((S)-(3,4-dichlorophenyl))-4-((3,5-dichlorobenzoyl)methylamino)butanal (Example 2, Step A) according to the procedure of Example 1, Step E. The piperazine substrates were synthesized by the method of Example 1, Step D by substituting the appropriate acylation reagent.

EXAMPLE 3

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methylamino)butyl)-4-((2-methylaminocarbonylaminomethyl)phenyl)-piperazine

Mass Spectrum (Cl) 612 (37Cl + 35Cl isotope), 610 (35Cl + 35Cl isotope).

EXAMPLE 4

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methylamino)butyl)-4-((2-dimethylaminocarbonylaminomethyl)phenyl)-piperazine

Mass Spectrum (Cl) 626 (37Cl + 35Cl isotope), 624 (35Cl + 35Cl isotope).

EXAMPLE 5
1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-methylsulfonylaminomethylphenyl)-piperazine
Mass Spectrum (CI) 633 (37Cl + 35Cl isotope), 631 (35Cl + 35Cl isotope).

EXAMPLE 6

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dichlorobenzoyl)-(methylamino))butyl)-4-((2-methylaminocarbonylaminomethyl)phenyl)-piperazine
Mass Spectrum (CI) 652 (37Cl + 35Cl isotope), 650 (35Cl + 35Cl isotope).

EXAMPLE 7

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dichlorobenzoyl)-(methylamino))butyl)-4-((2-dimethylaminocarbonylaminomethyl)phenyl)-piperazine
Mass Spectrum (CI) 668 (37Cl + 35Cl isotope), 666 (35Cl + 35Cl isotope).

EXAMPLE 8

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dichlorobenzoyl)-(methylamino))butyl)-4-(2-methylsulfonylaminomethylphenyl)-piperazine
Mass Spectrum (CI) 675 (37Cl + 35Cl isotope), 673 (35Cl + 35Cl isotope).

EXAMPLE 9
1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methyl-amino))butyl)-4-[(1'-imidazolyl)methyl]phenyl)-piperazine

Step A: 1-t-Butoxycarbonyl-4-(2-formylphenyl)-piperazine

To a solution of 1 g (8 mmol) of 2-fluorobenzaldehyde in 14 mL of DMF was added 2.25 g (12.1 mmol) of t-butyl 1-piperazine-carboxylate. The resulting solution was treated with 50 mg (0.8 mmol) of copper powder and 5.1 g (36.3 mmol) of ground K$_2$CO$_3$ and the suspension was heated to 150°C in a sealed tube. After 18 h, the reaction was cooled and the contents of the tube were partitioned between water and EtOAc. The aqueous layer was reextracted with EtOAc and the organic layers were combined. The organic layer was washed with water, brine and dried. The filtrate was concentrated and the residue was chromatographed on a flash column with 12% EtOAc-Hexane to furnish 1.15 g (49%) of 1-t-butoxycarbonyl-4-(2-formyl-phenyl)-piperazine.

1H NMR (CDCl$_3$) δ 1.44 (s, 9 H), 3.0 (m, 4 H), 3.59 (m, 4 H), 7.0-7.8 (m, 4 H), 10.31 (s, 1 H).

Step B: 1-t-Butoxycarbonyl-4-(2-hydroxymethylphenyl)-piperazine

A solution of 1.15 g (3.96 mmol) of 1-t-butoxycarbonyl-4-(2-formyl-phenyl)-piperazine in 10 mL of MeOH was treated with 0.15 g (3.96 mmol) of NaBH$_4$. After 2 h the reaction was quenched by adding 1.2 N HCl and the mixture was extracted with EtOAc. The EtOAc solution was washed with water, brine and dried. The filtrate was concentrated to yield 1.1 g (95%) of 1-t-butoxycarbonyl-4-(2-hydroxymethyl-phenyl)-piperazine as a white foam which was used without purification.

1H NMR (CDCl$_3$) δ 1.24 (s, 9 H), 2.92 (m, 4 H), 3.59 (m, 4 H), 4.84 (s, 2 H), 7.0-7.4 (m, 4 H).
Step C: 1-t-Butoxycarbonyl-4-(2-((1'-imidazolyl)methyl)phenyl)-piperazine

To 0.2 g (0.68 mmol) of 1-t-butoxycarbonyl-4-(2-hydroxy-methylphenyl)piperazine in 2 mL of CH2Cl2 were added 0.064 mL (0.82 mmol) of methanesulfonyl chloride and 0.11 mL (0.82 mmol) of Et3N. After stirring for 30 min the reaction was partitioned between water and CH2Cl2. The CH2Cl2 layer was washed with brine, dried and concentrated and the residue was dissolved in 1 mL of DMF. This solution was added to a mixture of 51 mg (0.75 mmol) of imidazole in 1 mL of DMF and 18 mg (0.75 mmol) of NaH which had been stirred for 30 min. After heating the reaction mixture for 18 h at 60 °C, it was cooled and partitioned between water and EtOAc. The organic layer was washed with water, brine, dried and the filtrate was concentrated. The residue was chromatographed using 5% MeOH-CH2Cl2 to isolate 0.096 g (41%) of 1-t-butoxycarbonyl-4-(2-((1'-imidazolyl)methyl)phenyl)-piperazine.

1H NMR (CDCl3) δ 1.46 (s, 9 H), 2.74 (m, 4 H), 3.53 (m, 4 H), 5.2 (s, 2 H) 6.89 (s, 1 H), 7.0-7.4 (m, 5 H), 7.54 (s, 1 H).

Step D: 4-(2-((1'-Imidazolyl)methyl)phenyl)-piperazine

Cold TFA (1 mL) and 0.1 mL of anisole were added to 0.096 g (0.28 mmol) of 1-t-butoxycarbonyl-4-(2-((1'-imidazolyl)-methyl)phenyl)-piperazine. The bath was removed and the mixture stirred for 1 h while it warmed to room temperature. The reaction mixture was concentrated and the residue was partitioned between CH2Cl2 and dilute NaOH. The CH2Cl2 layer was washed with brine, dried and concentrated to give 0.047 g (69%) of the title compound which was used without purification.

1H NMR (CDCl3) δ 2.78 (m, 4 H), 3.02 (m, 4 H), 5.2 (s, 2 H), 6.89-7.4 (m, 6 H), 7.54 (s, 1 H).
Step E:

\[1-(3-((S)-(3,4-Dichlorophenyl))\text{-}4\text{-}(N\text{-}3,5\text{-}dimethylbenzoyl(methylamino))butyl} \text{-} 4\text{-}((1\text{'-}imidazolyl)methyl)\text{-}phenyl)piperazine \]

A reaction between 47 mg (0.19 mmol) of 4-((2-\text{-}(1\text{'-}imidazolyl) methyl)phenyl)-piperazine and 92 mg (0.24 mmol) of 3-\((S)-(3,4\text{-}dichlorophenyl))\)-4-((3,5\text{-}dimethylbenzoyl)methylamino)-butanal according to the method of Example 1, Step E furnished 55 mg (47\%) of the title compound.

\[^1H\text{ NMR (CDCl}_3\text{, ppm ranges are given because of amide rotamers and line broadening)}\
\delta 1.5\text{-}3.9 \text{ (m, 18 H)}, 2.27 \text{ (s, 6 H)}, 5.14 \text{ (s, 2 H)}, 6.6\text{-}7.6 \text{ (m, 13 H)}.\]

Mass Spectrum (CI) 606 (\(^{37}\text{Cl} + {35}\text{Cl isotope})\), 604 (\(^{35}\text{Cl} + {35}\text{Cl isotope})\).

The compounds in Examples 10-14 were prepared by the procedure of Example 9 substituting the requisite heterocycle for imidazole in Step C and carrying out Step E with either 3-\((S)-(3,4\text{-}dichlorophenyl))\)-4-((3,5\text{-}dimethylbenzoyl)methyl-amino)-butanal (from Example 1, Step A) or 3-\((S)-(3,4\text{-}dichlorophenyl))\)-4-((3,5\text{-}dichlorobenzoyl)methyl-amino)-butanal (from Example 2, Step A).

EXAMPLE 10

\[1-(3-((S)-(3,4\text{-}Dichlorophenyl))\text{-}4\text{-}(N\text{-}3,5\text{-}dichlorobenzoyl)-(methylamino))butyl} \text{-} 4\text{-}((2\text{-}(1\text{'-}(1\text{,'}2\text{'},4\text{,'}\text{-}triazolyl)methylphenyl)\text{-}piperazine \]

Mass Spectrum (CI) 647 (\(^{37}\text{Cl} + {35}\text{Cl isotope})\), 645 (\(^{35}\text{Cl} + {35}\text{Cl isotope}).\)
EXAMPLE 11

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-(1',1',2',4'-triazolyl)methylphenyl)-piperazine

Mass Spectrum (CI) 607 (37Cl + 35Cl isotope), 605 (35Cl + 35Cl isotope).

EXAMPLE 12

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-(1',1',2',3',4'-tetrazolyl)methylphenyl)-piperazine

Mass Spectrum (CI) 608 (37Cl + 35Cl isotope), 606 (35Cl + 35Cl isotope).

EXAMPLE 13

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-(3'-pyridyloxy)methylphenyl)-piperazine

The title compound was synthesized by the method of Example 9 by substituting 3-hydroxy pyridine for imidazole in Step C.

Mass Spectrum (CI) 633 (37Cl + 35Cl isotope), 631 (35Cl + 35Cl isotope).

EXAMPLE 14

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-(1'-(2'1'H)-pyridone)methylphenyl)-piperazine

The title compound was prepared according to Example 9 and using 2-hydroxy pyridine in Step C.
Mass Spectrum (CI) 633 (37Cl + 35Cl isotope), 631 (35Cl + 35Cl isotope).

EXAMPLE 15

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-methylphenyl)piperazine

10 **Step A:**

3-(S)-(3,4-Dichlorophenyl)-4-(N-(3,5-dimethylbenzoyl)methylamino)butanol

To a solution of 3-((S)-(3,4-dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)methylamino)butanal (2.5 g; from Example 1, Step A) in 35 mL of methanol at 0°C was added portionwise over 5 min sodium borohydride (400 mg). After stirring for 1 h at r.t., the reaction was slowly quenched with 2 N HCl and extracted twice with ethyl acetate. The organic layers were washed with brine, dried (Na2SO4), combined and evaporated to give 2.5 g (100%) of a crude oil. Residual water and methanol were removed by concentration from a portion of isopropyl acetate.

15 **Step B:**

4-Bromo-2-(S)-(3,4-dichlorophenyl)-1-(N-(3,5-dimethylbenzoyl)methylamino)butane

25 To a solution of crude 3-(S)-(3,4-dichlorophenyl)-4-(N-(3,5-dimethylbenzoyl)methylamino)butanol (2.5 gm) from Step A in 30 mL of acetonitrile was added 3.5 g (8.25 mmol) of triphenylphosphine dibromide. The reaction was stirred at r.t. for 16 h and was then partitioned between ethyl ether and water. The organic layer was washed with brine, dried (Na2SO4) and concentrated. The residue was flash chromatographed with a solvent gradient of 25-40% EtOAc/Hexanes to give 2.6 g (89% from Step A) of oil which solidified on standing.
Mass Spectrum (ESI 80/20 MeCN/H2O, 0.01% TFA) M+H = 441, 443, 445(35,37Cl, 79Br, 81Br-isotope).

Step C: (3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methyl-amino))butyl)-4-(2-methylphenyl)piperazine

A solution of 4-bromo-2-(S)-(3,4-dichlorophenyl)-1-(N-(3,5-dimethylbenzoyl)methylamino)butane prepared in Step B (50 mg), N,N-diisopropylethylamine (40 ul) and 1-(2-methylphenyl)-piperazine (40 mg) in 0.5 mL of acetonitrile was heated in a tightly capped vial at 50°C for four days. The solvent was evaporated and the residue was purified on a 1000 um silica gel prep plate (4% MeOH/CH2Cl2) to furnish 30 mg (50%) of the title compound as a white foam.

Mass Spectrum (Cl/NH₃) M+H = 537,539 (35,37Cl-isotope).

EXAMPLE 16

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methyl-amino))butyl)-4-(phenyl)piperazine

Following essentially the same procedure as in Example 15 but substituting 1-phenylpiperazine (35 mg), 30 mg (51%) of the title compound was prepared.

Mass Spectrum (Cl/NH₃) M+H = 523, 525 (35,37Cl-isotope).

EXAMPLE 17

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methyl-amino))butyl)-4-(9-(2-fluoroethyl)-2-methoxy-purin-6-yl) piperazine
A mixture of 4-bromo-2-(S)-(3,4-dichlorophenyl)-1-(N-(3,5-dimethylbenzoyl)methylamino)butane prepared in Example 15, Step B above (43.5 mg), N,N-diisopropylethylamine (68 ul) and 9-(2-fluoroethyl)-2-methoxy-6-(1-piperazinyl)purine dihydrochloride (69 mg; prepared according to D.B. Johnston, M. MacCoss, S. Marburg, L. Meurer, and R. L. Tolman; U.S. Patent # 5,057,517) in 0.5 mL of acetonitrile was heated in a tightly capped vial at 50°C for four days. The solvent was evaporated and the residue was purified on a 1000 um silica gel prep plate (93:5:2 ethyl acetate:methanol:triethylamine) to furnish 32.5 mg of the title compound as a white foam.

Mass Spectrum (Cl/NH3) M+H = 642, 644(35,37Cl-isotope).

The compounds in Examples 18-30 were (unless otherwise stated) prepared from 4-bromo-2-(S)-(3,4-dichlorophenyl)-1-(N-(3,5-dimethylbenzoyl)methylamino)butane (prepared in Example 15, Step B) and the appropriate piperazine derivatives by essentially the same procedure as in Example 17.

EXAMPLE 18

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(9-(2-methoxymethyl)-2-methoxy-purin-6-yl) piperazine.

The starting piperazine was prepared according to D.B. Johnston, M. MacCoss, S. Marburg, L. Meurer, and R. L. Tolman; U.S. Patent # 5,057,517.

Mass Spectrum (Cl/NH3) M+H = 640, 642 (35,37Cl-isotope).

EXAMPLE 19
1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(9-methyl-purin-6-yl)piperazine.

The starting piperazine was prepared according to D.B. Johnston, M. MacCoss, S. Marburg, L. Meurer, and R. L. Tolman; U.S. Patent # 5,057,517.

Mass Spectrum (CI/NH$_3$) M+H = 580, 582 (35,37Cl-isotope).

EXAMPLE 20

1-(3-((S)-(4-Chlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(9-methyl-purin-6-yl)piperazine.

The title compound was prepared from 4-bromo-2-(S)-(4-chlorophenyl)-1-(N-(3,5-dimethylbenzoyl)methylamino)butane (prepared by analogy to 4-bromo-2-(S)-(3,4-dichlorophenyl)-1-(N-(3,5-dimethylbenzoyl)methylamino)butane in Example 15, Steps A and B) and the requisite piperazine, which was prepared according to D.B. Johnston, M. MacCoss, S. Marburg, L. Meurer, and R. L. Tolman; U.S. Patent # 5,057,517.

EXAMPLE 21

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(6-methyl-imidazo(1,2-a)pyrazin-1-yl) piperazine.

EXAMPLE 22

1-(3-(((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(1,7-naphthyridin-8-yl)piperazine.

Step A: 8-(1-(4-t-Butyloxy carbonyl)piperazinyl)-1,7-naphthyridine.

To a solution of 1.56 g (9.48 mml) of 8-chloro-1,7-naphthyridine (*J. Org. Chem.* **1963**, 28, 1753) in 100 mL of isoamyl alcohol was added 1-(t-butyloxy carbonyl)piperazine (6.36 g, 34.15 mmol). This solution was heated under reflux, under nitrogen for 2hr and then the reaction mixture was evaporated to dryness and the residue was dissolved in CH$_2$Cl$_2$ (100 mL) and 10% aq. Na$_2$CO$_3$ (100 mL). After shaking, the layers were separated and the aqueous layer was washed with CH$_2$Cl$_2$ (2 x 100 mL) and the pooled organic layers were dried (over MgSO$_4$), filtered, and evaporated to dryness. This oily residue was dissolved in a little CH$_2$Cl$_2$, absorbed onto silica gel 60, and chromatographed on a dry-packed silica gel 60 column (3.5 x 20.5 cm) developed with EtOAc : hexanes (1 : 3). Fractions containing the desired product were pooled and evaporated to dryness to give a thick yellow syrup which crystallized on standing. Yield 2.78 g (8.84 mmol, 93% yield).

Mass Spec. showed M$^+$ at m/e 314.

Analysis calculated for C$_{17}$H$_{22}$N$_4$O$_2$ (314)

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>H</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>64.95</td>
<td>7.05</td>
<td>17.82</td>
</tr>
</tbody>
</table>

Found: C, 64.53; H, 6.71; N, 17.66
Step B: 8-(1-Piperazinyl)-1,7-naphthyridine dihydrochloride

8-(1-(4-t-Butyloxycarbonyl)piperazinyl)-1,7-naphthyridine, prepared as described above (1.02g. 3.24mmol), was dissolved in abs. EtOH (10mL) and ethanolic HCl (8mL) was added. This solution was left at room temperature for 10min and then was evaporated to dryness slowly under a nitrogen stream. This residue was evaporated to dryness from H2O and then from EtOH to give a white residue that was triturated under EtOH, filtered, and dried at 45°C in vacuo to give 0.71g (2.47mmol, 76% yield) of the title compound.

Analysis calculated for C12H16N4Cl2 (287.19)
C, 50.19; H, 5.62; N, 19.51
Found: C, 49.89; H, 5.51; N, 19.28

Step C: 1-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl) (methylamino))butyl)-4-(1,7-naphthyridin-8-yl)piperazine.

The title compound was prepared by reacting 4-bromo-2-(S)-(3,4-dichlorophenyl)-1-(N-(3,5-dimethylbenzoyl)methylamino)butane and 8-(1-piperazinyl)-1,7-naphthyridine dihydrochloride according to the procedure of Example 17.

EXAMPLE 23

1-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(1,2,4-triazolo(1,5-a)pyrazin-8-yl)piperazine.

Step A: 8-(1-(4-t-Butyloxycarbonyl)piperazinyl)-(1,2,4)-triazolo(1,5-a)pyrazine
8-Chloro-(1,2,4)-triazolo(1,5-a)pyrazine (J. Org. Chem, 1974, 39, 2143 and J.C.S. Perkin I, 1980, 506) (1.62g, 10.41mmol) and 1-(t-butyloxycarbonyl)piperazine (8.15g, 43.76mmol, prepared as described in J. Het. Chem. 1990 27, 1559) were mixed and dissolved in EtOH (75mL). This solution was heated under reflux, under nitrogen, for 2hr and then the mixture was evaporated to dryness under reduced pressure and the residue was dissolved in i-pentyl alcohol (75mL) and the reflux continued for 4hr. The reaction mixture was cooled and evaporated to dryness to give a yellow syrupy residue that was dissolved in CH2Cl2 (60mL) and 10% aq. Na2CO3 (60mL). After shaking, the layers were separated and the aqueous layer was washed with CH2Cl2 (2 x 60mL) and the pooled organic layers were dried (over MgSO4), filtered, and evaporated to dryness. The residue was dissolved in a little CH2Cl2, absorbed onto silica gel 60, and chromatographed on a dry-packed silica gel 60 column (3 x 36 cm) developed with EtOAc : hexanes (1 : 3). Fractions containing the required product were pooled and evaporated to dryness to give 2.15g (7.04mmol, 67% yield) of the title compound.

Mass Spec. showed M+ at m/e 304.

Analysis calculated for C14H20N6O2 (304.35)
C, 55.25; H, 6.62; N, 27.61
Found: C, 55.18; H, 6.53; N, 27.30

Step B: 8-(1-Piperazinyl)-(1,2,4)-triazolo(1,5-a)pyrazine dihydrochloride

8-(1-(4-t-Butyloxycarbonyl)piperazinyl)-(1,2,4)-triazolo(1,5-a)pyrazine (1.18g, 3.86mmol), was dissolved in EtOH : EtOAc (1 : 1, 40mL) with warming and ethanolic HCl (10mL) was added. Precipitation occurred immediately and the mixture was left at room temperature for 21/2 hr. The reaction mixture was blown down to dryness under a nitrogen stream and triturated under EtOH/EtOAc/Et2O and the white solid so obtained was filtered off and
dissolved in CF₃CO₂H (15mL) and then evaporated under a stream of nitrogen over a period of 1½ hr. The residue so obtained was evaporated to dryness twice from H₂O and then dissolved in a little H₂O and passed down a Dowex 1x2 (OH⁻ form) column (2 x 26 cm) packed and developed in H₂O. Fractions containing the required product were pooled and evaporated to dryness to give 0.78g (3.82mmol, 99% yield) of the title compound as the free base. This was dissolved in EtOH (15mL) with warming and ethanolic HCl was added. Immediate precipitation of the product occurred and this was filtered off after dilution with Et₂O to give 1.00g (3.61mmol, 94% yield overall) of the title compound.

Analysis calculated for C₉H₁₄N₆Cl₂·0.5H₂O (286.15)
C, 37.77; H, 5.28; N, 29.37

Found: C, 37.63; H, 5.28; N, 29.23

Step C: 1-(3-((S)-(3,4-Dichlorophenyl)))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(1,2,4-triazolo(1,5-a)pyrazin-8-yl)piperazine.

Reaction of 4-bromo-2-(S)-(3,4-dichlorophenyl)-1-(N-(3,5-dimethylbenzoyl)methylamino)butane with 8-(1-piperazinyl)-(1,2,4-triazolo(1,5-a)pyrazine dihydrochloride as described in example 17 gave the title compound.

Mass Spectrum (CI/NH₃) M+H = 566, 568 (35,37Cl-isotope).

EXAMPLE 24

1-(3-((S)-(3,4-Dichlorophenyl)))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(5-methyl-pyrid-2-yl)piperazine.

The starting piperazine was prepared according to U.S. Patent # 4,876,256 (1989).
Mass Spectrum (Cl/NH₃) M+H= 539, 541 (35.37 Cl-isotope).

5

EXAMPLE 25

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-amino-pyrazin-4-yl)piperazine.

10 Step A: 2-Amino-4-(1-piperazinyl)pyrimidine dihydrochloride

2-Amino-6-chloro-4-(1-piperazinyl)pyrimidine, prepared as described in J. Med. Pharm. Chem., 5, 558 (1962), (1.07g, 5mmol) was suspended in EtOH (100mL) and heated and sonicated to effect maximum dissolution. MgO (0.75g) was added followed by 5% Pd on C (0.48g). The mixture was hydrogenated for 18 3/4 hr at room temperature and then was warmed and filtered while hot through a Celite pad, washing the pad well with hot EtOH. The filtrate was evaporated to a white solid residue (1.14g, quantitative yield). An analytical sample was obtained by conversion to the dihydrochloride salt using ethanolic HCl in the usual fashion.

Anal. Calc. for C₈H₁₅N₅Cl₂.0.1H₂O (253.94):

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Found</td>
<td>37.84</td>
<td>6.03</td>
<td>27.58</td>
<td>27.92</td>
</tr>
<tr>
<td></td>
<td>38.21</td>
<td>5.90</td>
<td>27.15</td>
<td>28.02</td>
</tr>
</tbody>
</table>

25 Step B: 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-amino-pyrazin-4-yl)piperazine.

30 Reaction of 4-bromo-2-(S)-(3,4-dichlorophenyl)-1-(N-(3,5-dimethylbenzoyl)methylamino)butane with 2-amino-4-(1-piperazinyl)pyrimidine dihydrochloride according to the procedure given in Example 17 gave the title compound.
Mass Spectrum (Cl/NH₃) M+H = 541, 543 (³⁵Cl,³⁷Cl-isotope).

EXAMPLE 26

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(furo(2,3-c)pyrid-4-yl))piperazine.

10 Step A: 7-(1-(4-t-Butyloxy carbonyl)piperazinyl)furo(2,3-c)pyridine

7-Chlorofuro(2,3-c)pyridine, prepared as described in J. Heterocyclic Chem., 19, 1207 (1982), (1.54g, 10mmol) and 1-(t-butyloxy carbonyl)piperazine (7.45g, 40mmol) were mixed and heated at 180°C under nitrogen for 3hr, cooled, and the residue was partitioned between CHCl₃ (50mL) and 5% aqueous NaHCO₃ (30mL). The organic phase was dried and evaporated to dryness and the oil so obtained was dissolved in CHCl₃ and chromatographed on a column of silica gel, developed initially with CHCl₃ and then with hexanes : EtOAc (3 : 1).

20 Fractions containing the required product were pooled and evaporated to dryness to give 1.90g of the title compound.

anal. Calc. for C₁₄H₂₂N₄O₃ (294.36): C 57.12; H 7.53; N 19.03
Found: C 56.77; H 7.24; N 19.16

25 Step B: 7-(Piperazinyl)furo(2,3-c)pyridine trifluoroacetate

The title compound was prepared by deprotection of 7-(1-(4-t-butyloxy carbonyl)piperazinyl)furo(2,3-c)pyridine with trifluoroacetic acid in methylene chloride in the presence of anisole.

30 The crude product was used immediately in Step C.
Step C: \(1-(3-(((S)-(3,4\text{-Dichlorophenyl}))\text{-}4-(N-(3,5\text{-dimethylbenzoyl})-(methylamino))\text{-}butyl})\text{-}4-(\text{fuoro}(2,3\text{-c})\text{-}pyridin-4\text{-yl}))\text{-}piperazine. \)

Reaction of 4-bromo-2-((S)-(3,4-dichlorophenyl))-1-(N-(3,5-dimethylbenzoyl)methylamino)butane with 7-(piperazinyl)fuoro(2,3-c)pyridine trifluoroacetate according to the procedure given in example 17 gave the title compound.

Mass Spectrum (CI/NH\(_3\)) M+H = 565, 567 (35,37Cl-isotope).

EXAMPLE 27

\[1-(3-(((S)-(3,4\text{-Dichlorophenyl}))\text{-}4-(N-(3,5\text{-dimethylbenzoyl})-(methylamino))\text{-}butyl})\text{-}4-(2\text{-amino-7,8\text{-dihydro-6H-thiopyrano}(3,2-d)pyrimidin-4-yl})\text{-}piperazine. \]

Mass Spectrum (CI/NH\(_3\)) M+H = 613, 615 (35,37Cl-isotope).

EXAMPLE 28

\[1-(3-(((S)-(3,4\text{-Dichlorophenyl}))\text{-}4-(N-(3,5\text{-dimethylbenzoyl})-(methylamino))\text{-}butyl})\text{-}4-(2\text{-methyl-7,8\text{-dihydro-6H-thiopyrano}(3,2-d)pyrimidin-4-yl})\text{-}piperazine. \]

The title compound was prepared by reaction of 4-bromo-2-((S)-(3,4-dichlorophenyl))-1-(N-(3,5-dimethylbenzoyl)methylamino)butane (Example 15, Steps A and B) and
2-methyl-7,8-dihydro-4-piperazinyl-6H-thiopyrano[3,2-d]pyrimidine
(prepared by analogy to the preparation of 2-amino-7,8-dihydro-4-
piperazinyl-6H-thiopyrano[3,2-d]pyrimidine, as described in Ohno et al,
acetamidine hydrochloride for guanidine carbonate in the reaction with
ethyl 3-oxotetrahydrothiapyran-2-carboxylate) according to the
procedure given in Example 17.

EXAMPLE 29

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-
bis(trifluoromethyl)benzoyl)-(methylamino))butyl)-4-(1,2,4-
triazolo(1,5-a)pyrazin-8-yl)piperazine.

The title compound was prepared by reaction of 4-bromo-
2-(S)-(3,4-dichlorophenyl)-1-(N-(3,5-
bis(trifluoromethyl)benzoyl)methylamino)butane (prepared by analogy
to 4-bromo-2-(S)-(3,4-dichlorophenyl)-1-(N-(3,5-
dimethylbenzoyl)methylamino)butane in Example 15, Steps A and B)
and 8-(1-piperazinyl)-(1,2,4-triazolo(1,5-a)pyrazine dihydrochloride
(prepared in Example 23, Step B) according to the procedure given in
Example 17.

Mass Spectrum (CI/NH3) M+H = 674.

EXAMPLE 30

1-(3-((S)-(4-Chlorophenyl))-4-(N-(3,5-bis(trifluoromethyl)benzoyl)-(methylamino))butyl)-4-(1,2,4-triazolo(1,5-a)pyrazin-8-yl)piperazine.
The title compound was prepared by reaction of 4-bromo-2-(S)-(4-chlorophenyl)-1-(N-(3,5-bis(trifluoromethyl)benzoyl)methylamino)butane (prepared by analogy to 4-bromo-2-(S)-(3,4-dichlorophenyl)-1-(N-(3,5-dimethylbenzoyl)methylamino)butane in Example 15, Steps A and B) and 8-(1-piperazinyl)-(1,2,4)-triazolo(1,5-a)pyrazine dihydrochloride (prepared in Example 23, Step B) according to the procedure given in Example 17.

Mass Spectrum (Cl/NH3) M+H = 640.

EXAMPLE 31

1-(3-((S)-(3,4-Dichlorophenyl)))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-amino-7,8-dihydro-6H-thiopyrano(3,2-d)pyrimid-4-yl)piperazine-5-oxide

A solution of 1-(3-((S)-(3,4-dichlorophenyl)))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-amino-7,8-dihydro-6H-thiopyrano(3,2-d)pyrimid-4-yl)piperazine (13 mg; Example 27) in .5 mL of methanol at 0°C was treated with a solution of 17 mg of oxone in 0.5 mL of water. After three minutes the reaction was quenched with 10% aqueous sodium bisulfite and stirred for five minutes. The mixture was diluted with saturated sodium bicarbonate and extracted twice with dichloromethane. The combined organic layer was washed with brine, dried (Na2SO4) and evaporated to a clear oil. Purification on a 1000 um silica gel prep plate (9:1 CH2Cl2:MeOH) provided 4.6 mg of product as a white foam.

Mass Spectrum (Cl/NH3) M+H = 629, 631(35,37Cl-isotope).

EXAMPLE 32
1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-methyl-7,8-dihydro-6H-thiopyrano(3,2-d)pyrimid-4-yl)piperazine-5-oxide

The title compound was prepared by following essentially the same procedure as in Example 31 but employing 1-(3-((S)-(3,4-dichlorophenyl))-4-(N-(3,5-dimethyl-benzoyl)-(methylamino))butyl)-4-(2-methyl-7,8-dihydro-6H-thiopyrano(3,2-d)pyrimid-4-yl)piperazine (from Example 28) as starting material.

Mass Spectrum (CI/NH₃) M+H = 628, 630 (35,37Cl-isotope).

EXAMPLE 33

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-((2′-(tetrazolyl)methyl)phenyl)-piperazine

Step A: 3-((S)-(3,4-Dichlorophenyl))-4-((N-3,5-bis-trifluoromethylbenzoyl)methylamino)-butanal

Following the procedure described in Example 1 step A, 3-((S)-(3,4-dichlorophenyl))-4-((N-3,5-bis-trifluoromethylbenzoyl)methylamino)-butanal was prepared using 3,5-bis-trifluoromethylbenzoic acid instead of 3,5-dimethylbenzoic acid.

¹H-NMR (500MHz CDCl₃) δ2.5-4.0(8H, m), 6.7-8.0(6H, m), 9.78(1H, s).

Step B: 1-t-Butoxycarbonyl-4-(2-bromomethyl)phenyl)-piperazine
To 410mg (1.4mmol) of 1-t-butoxycarbonyl-4-(2-hydroxymethyl)phenyl)piperazine (prepared in Example 9, Step B) in 12 mL of acetonitrile was added 625 mg (2.38mmol) of triphenylphosphine and 698mg (2.1mmol) of carbon tetrabromide with cooling in an ice-water bath. After the mixture was stirred in a cold room (4°C) for 14hr, the solvent was removed under reduced pressure. The resulting oil was dissolved in EtOAc and water was then added. The phases were separated and the aqueous phase was extracted with two small portions of EtOAc. The combined organic phases were dried over anhydrous Na₂SO₄, filtered, concentrated, and triturated with hexane. The triphenylphosphine oxide which precipitated was removed by filtration. The filtrate was concentrated to give the title compound, which was used in step C without further purification.

1H-NMR (500MHz CDCl₃) δ 1.51(9H, s), 2.94(4H, m), 3.61(4H,s), 4.72(2H,s), 7.1-7.5(4H, m).

Step C: 1-t-Butoxycarbonyl-4-(2-(1'-(tetrazolyl)methyl)phenyl)piperazine

and

1-t-Butoxycarbonyl-4-(2-(2'-(tetrazolyl)methyl)phenyl)piperazine

To a solution of 294mg (4.2mmol) of 1H-tetrazole in 9ml DMF was added 111mg (4.63mmol) sodium hydride at rt. After stirring for 10min, 9ml of the DMF solution of 1-t-butoxycarbonyl-4-(2-bromomethyl)phenyl)piperazine prepared in step B was added, and the mixture was stirred in an oil bath at 70°C for 1.5hr. The DMF was then removed under reduced pressure. The resulting material was dissolved in EtOAc and sat. NH₄Cl aq. solution. The organic phase was separated and the aqueous phase was extracted twice with small portions of EtOAc. The combined organic phases were dried over anhydrous Na₂SO₄, filtered, concentrated, and chromatographed on silica gel eluting with Hexane : EtOAc = 5 : 1 to 1 : 1 to give 144.3mg of 1-t-
butoxycarbonyl-4-(2-(2'-(tetrazolyl)methyl)phenyl)-piperazine (higher Rf), and 224.1 mg of 1-t-butoxycarbonyl-4-(2-(1'-(tetrazolyl)methyl)phenyl)-piperazine (lower Rf).

1-t-Butoxycarbonyl-4-(2-(2'-(tetrazolyl)methyl)phenyl)-piperazine:

\[^1H-NMR\ (500MHz\ CDCl_3)\ \delta\ 1.50(9H,\ s),\ 2.83(4H,\ s),\ 3.58(4H,\ s),\ 6.00(2H,\ s),\ 7.1-7.4(4H,\ m),\ 8.52(1H,\ s). \]

Mass Spectrum (CI) 345 (M++1)

1-t-Butoxycarbonyl-4-(2-(1'-(tetrazolyl)methyl)phenyl)-piperazine:

\[^1H-NMR\ (500MHz\ CDCl_3)\ \delta\ 1.50(9H,\ s),\ 2.80(4H,\ s),\ 3.55(4H,\ s),\ 5.73(2H,\ s),\ 7.1-7.43(4H,\ m),\ 8.52(1H,\ s). \]

Mass Spectrum (CI) 245(M++H-Boc)

Step D: 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(2'-(tetrazolyl)methyl)phenyl)-piperazine

1-t-Butoxycarbonyl-4-(2-(2'-(tetrazolyl)methyl)phenyl)-piperazine was deprotected under the conditions given in Example 9, Step D, and the product was then reacted with 4-bromo-2-(3,4-dichlorophenyl)-4-(N-3,5-bis-trifluoromethylbenzoyl)methylamino)butanal (prepared in step A) following the procedure described in Example 1 step E to give the title compound.

MS(CI) 714(M++H)\(^{35}\text{Cl}x2\), 716\(^{35}\text{Cl},\ 37\text{Cl}\)

EXAMPLE 34
- 77 -

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1'-(tetrazolyl)-methyl)phenyl)-piperazine

The title compound was prepared as following the procedure in Example 33, Step D using 1-t-butoxycarbonyl-4-(2-(1'-(tetrazolyl)methyl)phenyl)-piperazine prepared in Example 33, Step C.

MS(Cl) 714(M+H)(35Clx2), 716(35Cl, 37Cl)

EXAMPLE 35

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1'-(1', 2', 4'-triazolyl)methyl)phenyl)-piperazine

Step A 1-t-Butoxycarbonyl-4-(2-(1'-(1', 2', 4'-triazolyl)methyl)phenyl)-piperazine

and

1-t-Butoxycarbonyl-4-(2-(4'-(1', 2', 4'-triazolyl)methyl)phenyl)-piperazine

Following the procedure described in Example 33, Step C, the title compounds were prepared using 1,2,4-triazole instead of 1-H tetrazole.

1-t-Butoxycarbonyl-4-(2-(1'-(1', 2', 4'-triazolyl)methyl)phenyl)-piperazine:

1H-NMR(500MHz CDCl3) δ 1.50(9H, s), 2.81(4H, s), 3.56(4H, s), 5.49(2H, s), 7.1-8.1(6H, m).

Mass Spectrum (CI) 344(M+H).
1-t-Butoxycarbonyl-4-(2-(4′-(1′, 2′, 4′-triazolyl)methyl)phenyl)piperazine:

1H-NMR (500 MHz CDCl₃) δ 1.50 (9H, s), 2.79 (4H, s), 3.56 (4H, s), 5.29 (2H, s), 7.1-7.42 (4H, m), 8.21 (2H, s).

Mass Spectrum (Cl) 344 (M⁺+H).

Step B: 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1′-(1′, 2′, 4′-triazolyl)methyl)phenyl)-piperazine

According to the procedure described in Example 33, Step D, the title compound was prepared from 1-t-butoxycarbonyl-4-(2-(1′-(1′, 2′, 4′-triazolyl)methyl)phenyl)-piperazine.

Mass Spectrum (Cl) 713 (M⁺+H, 35Clx2), 715 (M⁺+H, 35Cl, 37Cl)

EXAMPLE 36

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(4′-(1′, 2′, 4′-triazolyl)-methyl)-phenyl)-piperazine

According to the procedure described in Example 33, Step D, the title compound was prepared from 1-t-butoxycarbonyl-4-(2-(4′-(1′, 2′, 4′-triazolyl)methyl)phenyl)-piperazine prepared in Example 35, Step A.

Mass Spectrum (Cl) 713 (M⁺+H, 35Clx2), 715 (M⁺+H, 35Cl, 37Cl)

EXAMPLE 37
1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-((1', 2', 3'-triazolyl)-methyl)-phenyl)-piperazine

Step A: 1-t-Butoxycarbonyl-4-(2-((1', 2', 3'-triazolyl)methyl)phenyl)-piperazine

The title compound was prepared according to the procedure described in Example 33, Step C using 1,2,3-triazole instead of 1H-tetrazole.

1H-NMR(400MHz CDCl3) δ 1.46(9H, s), 2.78(4H, s), 3.55(4H, s), 5.70(2H, s), 7.05-7.75(6H, s).

Step B 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1', 2', 3'-triazolyl)-methyl)-phenyl)-piperazine

Following the procedure described in Example 33, Step D, the title compound was prepared using 1-t-butoxycarbonyl-4-(2-((1', 2', 3'-triazolyl)methyl)phenyl)-piperazine.

MS(CI) 713(M++H, 35Clx2), 715(M++H, 35Cl, 37Cl)

EXAMPLE 38

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(methanesulfonylaminomethyl)phenyl)-piperazine

Step A: 1-t-Butoxycarbonyl-4-(2-(methanesulfonylaminomethyl)phenyl)-piperazine
The piperazine synthesized in Example 1, Step C was subjected to the condition described in Example 1 Step D using methanesulfonyl chloride instead of acetyl chloride.

Step B 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(methanesulfonylaminomethyl)phenyl)-piperazine

The piperazine obtained in Step A was reacted with the aldehyde prepared in Example 33, Step A following the conditions described in Example 1, Step E to give the title compound.

MS(Cl) 739(M++H)(35Cl)x2, 741(M++H)(35Cl, 37Cl)

EXAMPLE 39

1-(3-((S)-(4-Chlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1'-(tetrazolyl)-methyl)-phenyl)-piperazine

1-t-Butoxycarbonyl-4-(2-((1', 2', 3', 4'-tetrazolyl)methyl)phenyl)piperazine prepared in Example 33, Step C was subjected to the conditions described in Example 9 Step D, then reacted with 4-bromo-2-((S)-(4-Chlorophenyl))-4-((N-3,5-bis-trifluoromethylbenzoyl)methylamino)-butane (prepared in Example 30) according to the procedure described in Example 15 step C to give the title compound.

MS(Cl) 680(M++H)

The compounds in Examples 40 to 44 were prepared by successively carrying out the procedures described in Example 9, Step D and Example 15, Step C, using the piperazines synthesized in
Example 33, Step C for Example 40, Example 35, Step A for Examples 41 and 42, Example 37, Step A for Example 43, and Example 38, Step A for Example 44, which in each case are allowed to react with the bromide prepared in Example 30.

EXAMPLE 40

1-(3-((S)-(4-Chlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(2'-tetrazolyl)methyl)phenyl)-piperazine

MS(CI) 680(M++H)

EXAMPLE 41

1-(3-((S)-(4-Chlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1'-(1', 2', 4'-triadizolyl)methyl)phenyl)-piperazine

MS(CI) 679(M++H)

EXAMPLE 42

1-(3-((S)-(4-Chlorophenyl))-4-(N-3,5-bis-trifluoromethylbenzoyl(methylamino))butyl)-4-(2-(4'-(1', 2', 4'-triadizolyl)methyl)phenyl)-piperazine

MS(CI) 679(M++H)
EXAMPLE 43

1-(3-((S)-(4-Chlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1'-(1', 2', 3'-triazolyl)-methyl)-phenyl)-piperazine

MS(Cl) 679(M+H)

EXAMPLE 44

1-(3-((S)-(4-Chlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(methanesulfonylaminomethyl)phenyl)-piperazine

MS(Cl) 705(M+H)

EXAMPLE 45

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3-fluoro-5-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1'-(tetrazolyl)-methyl)phenyl)-piperazine

25 Step A: 3-((S)-(3,4-Dichlorophenyl))-4-((3-fluoro-5-dimethylbenzoyl)methyl-amino)-butanal

The title compound was prepared following the procedure described in Example 1, Step A using 3-fluoro-5-trifluoromethylbenzoic acid instead of 3,5-dimethylbenzoic acid.

Step B: 4-Bromo-2-((S)-(3,4-Dichlorophenyl))-4-((N-3-fluoro-5-trifluoromethyl)benzoyl)(methylamino)-butane
The aldehyde prepared in Step A was treated with the conditions described in Example 15, Steps A and B to give the title compound.

Step C: 1-\((3-((S)-(3,4-Dichlorophenyl))-4-(N-3-fluoro-5-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-\((1'-(tetrazolyl)-methyl)phenyl\))piperazine

1-t-Butoxycarbonyl-4-\((2-(1'-(tetrazolyl)methyl)phenyl)\)-piperazine (prepared in Example 33, Step C) was deprotected according to the conditions in Example 9, Step D and the product was carried on according to Example 1, Step E using the aldehyde prepared in Step A above to give the title compound.

MS(Cl) 664(M\(\text{+H}\)(\(^{35}\text{Cl}\)\times2)), 666(M\(\text{+H}\)(\(^{35}\text{Cl},^{37}\text{Cl}\))

EXAMPLE 46

1-\((3-((S)-(3,4-Dichlorophenyl))-4-(N-3-fluoro-5-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(2'-(tetrazolyl)-methyl)phenyl)piperazine

1-t-Butoxycarbonyl-4-\((2-(2'-(tetrazolyl)methyl)phenyl)\)-piperazine (prepared in Example 33, Step C) was subjected to the conditions described in Example 45, Step C to give the title compound.

MS(Cl) 664(M\(\text{+H}\)(\(^{35}\text{Cl}\)\times2)), 666(M\(\text{+H}\)(\(^{35}\text{Cl},^{37}\text{Cl}\))

EXAMPLE 47

1-\((3-((S)-(3,4-Dichlorophenyl))-4-(N-3-fluoro-5-trifluoromethylbenzoyl(methylamino))butyl)-4-(2-(methanesulfonylaminomethyl)phenyl)piperazine
1-t-Butoxycarbonyl-4-(2-(methanesulfonylaminomethyl)phenyl)-piperazine prepared in Example 38. Step A was subjected to the conditions described in Example 45. Step C to give the title compound.

5 MS(Cl) 689(M+H)(³⁵Clₓ2), 691(M+H)(³⁵Cl, ³⁷Cl)

EXAMPLE 48

10 1-(3-((S)-(3,4-Dichlorophenyl))-4-((S)-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))-5-hydroxy-pentyl)-4-(2-(1'- (tetrazolyl)-methyl)phenyl)-piperazine

Step A: Diazomethyl-(2-(S)-(3,4-dichlorophenyl)-pent-4-enyl)-ketone.

To a solution of 2-(S)-(3,4-dichlorophenyl)-pent-4-enoic acid (5.04g, 20.6mmol) in 60mL of dichloromethane was added 2.15mL (24.6mmol) of oxalyl chloride and 0.1mL of dimethylformamide with cooling in an ice-water bath. The cooling bath was then removed and the reaction mixture was stirred at rt overnight. The solvent was removed under reduced pressure, and the resulting material was diluted in ethyl acetate and concentrated in vacuo in order to remove residual HCl. The residual crude acid chloride was dissolved in 70mL of ether and was slowly added to a 100mL ether solution of diazomethane (77mmol). After stirring for 2hr at rt, the solvent was removed under vacuum. The resulting yellow oil was chromatographed on silica gel column eluting with a gradient of hexane:ethyl acetate = 20 : 1 to 3 : 1 to give 4.66g (84%) of diazomethyl-(2-(S)-(3,4-dichlorophenyl)-pent-4-enyl)-ketone.

³¹H-NMR (CDCl₃ 400MHz): δ 2.44(app. quint. 1H), 2.82(app. quint. 1H), 3.43(br s. 1H), 4.98 & 5.02 (d of AB quart., 2H), 5.16 (br s, 1H), 5.63(m, 1H), 7.09 (dd, J=2.2Hz, 8.3Hz, 1H), 7.34(d, J=2.2Hz, 1H), 7.38 (d, J=8.3Hz, 1H).
Step B: \(3-(R)-(3,4\text{-Dichlorophenyl})\text{-hex-4-enoic acid}\)

To a solution of the above diazoketone 4.56g (17.0mmol) in 340mL of tetrahydrofuran was added 170mL aqueous solution of silver nitrate 3.02g (17.8mmol). After stirring at rt overnight, tetrahydrofuran was removed under reduced pressure. The remaining aqueous layer was extracted with two 100mL portions of dichloromethane. The combined organic phases were washed with brine, dried over anhydrous magnesium sulfate, filtered, and concentrated. The resulting material was purified by silica gel column chromatography. Elution with dichloromethane : methanol = 10 : 1 gave 3.94g (90%) of \(3-(R)-(3,4\text{-dichlorophenyl})\text{-hex-4-enoic acid}\).

Step C: \(3-(3(S)-(3,4\text{-Dichlorophenyl})\text{-2(S)-azido-1-oxo-5-hexenyl})\text{-4(S)-benzyl-2-oxazolidinone}\)

A solution of \(3-(3(S)-(3,4\text{-dichlorophenyl})\text{-1-oxo-5-hexenyl})\text{-4(S)-benzyl-2-oxazolidinone}\) (190 mg, 0.45 mmol; prepared from \(3-(R)-(3,4\text{-dichlorophenyl})\text{-hex-4-enoic acid}\) (from Step B above) and 4(S)-benzyl-2-oxazolidinone according to the procedure of Evans, D. A.; et. al. J. Am. Chem. Soc. 1990, 112, 4011-4030) in THF (2.5 mL) was added to a solution of KHMDS (1.0 mL of 0.5 M in PhCH\(_3\), 0.50 mmol), and THF (1.5 mL) at -78°C. The reaction was maintained at -78°C for 30 min whereupon a solution of trisyl azide (177 mg, 0.57 mmol) and THF (1.5 mL) was added. The mixture was stirred for 2 min and HOAc (0.13 mL, 4.6 mmol) was added. The reaction mixture was stirred 1 h in a 30°C water bath, whereupon it was diluted with H\(_2\)O (50 mL) and extracted with CH\(_2\)Cl\(_2\) (3 x 30 mL). The combined organic extracts were washed with sat. aq. NaHCO\(_3\), brine, dried (MgSO\(_4\)) and concentrated in vacuo. The residue was purified by column chromatography (silica gel 60, 15-25% EtOAc/hexanes) to afford the title compound (169 mg, 81%) as a colorless oil.
1H NMR (CDCl$_3$, 500 MHz) δ 7.44 (d, 1H, J = 8.2 Hz), 7.20-7.46 (m, 6H), 7.15 (d, 1H, J = 8.3 Hz), 5.58-5.65 (m, 1H), 5.45 (d, 1H, J = 8.4 Hz), 5.03-5.05 (m, 1H), 4.97-5.02 (m, 1H), 4.64-4.70 (m, 1H), 4.26-4.34 (m, 2H), 3.28-3.36 (m, 2H). 2.88 (dd, 1H, J = 9.1, 13.5 Hz), 2.47 (t, 2H, J = 7.3 Hz) ppm.

Step D: 2(S)-Azido-3(S)-(3,4-dichlorophenyl)-5-hexen-1-ol

To a solution of 3-(3(S)-(3,4-dichlorophenyl)-2(S)-azido-1-oxo-5-hexenyl)-4(S)-benzyl-2-oxazolidinone (890 mg, 1.94 mmol) and THF (25 mL) at 0°C was added MeOH (126 mL, 3.1 mmolL), followed by LiBH$_4$ (68 mg, 3.1 mmol). The mixture was allowed to stir for 2 h, and was then quenched by addition of sat. aq. Rochelle salts (50 mL) and was allowed to warm to room temp and stirred vigorously for 2 h. The mixture was diluted with H$_2$O (150 mL) and extracted with CH$_2$Cl$_2$ (3 x 100 mL). The combined organic extracts were washed with brine, dried (Na$_2$SO$_4$) and concentrated in vacuo. The residue was purified by column chromatography (silica gel 60, 10-40% EtOAc/hexanes) to afford the alcohol (452 mg, 82%) as a colorless oil.

1H NMR (CDCl$_3$, 500 MHz) δ 7.36-7.42 (m, 2H), 7.10 (dd, 1H, J = 2.1, 8.2 Hz), 5.59-5.69 (m, 1H), 5.09 (dd, 1H, J = 1.4, 17.1 Hz), 5.05 (dd, 1H, J = 0.9, 10.3 Hz), 3.77-3.85 (m, 1H), 3.65 (dd, 1H, J = 4.5, 11.2 Hz), 3.52 (dd, 1H, J = 7.6, 17.3 Hz), 2.88-2.95 (m, 1H), 2.55-2.64 (m, 1H), 2.43-2.52 (m, 1H). 1.28-1.34 (m, 1H) ppm. FTIR 3388, 2930, 2102, 1471, 1271, 1030, 930 cm$^{-1}$.

Step E: 2(S)-Amino-3(S)-(3,4-dichlorophenyl)-5-hexen-1-ol

A solution of 2(S)-azido-3(S)-(3,4-dichlorophenyl)-5-hexen-1-ol (620 mg, 2.17 mmol) and PPh$_3$ (682 mg, 2.60 mmol) in 4:1 THF/H$_2$O (20 mL) was stirred at room temp for 14 h and then heated to 65°C for 2 h. The reaction mixture was concentrated, and the residue diluted with H$_2$O (50 mL) and extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with brine, dried (Na$_2$SO$_4$) and
concentrated in vacuo. The residue was purified by column chromatography (silica gel 60, 2.5-8% MeOH/CH₂Cl₂) to afford the amino alcohol (260 mg, 46%) as a colorless oil.

1H NMR (CDCl₃, 500 MHz) δ 7.40 (d, 1H, J = 8.3 Hz), 7.25-7.31 (m, 1H), 7.04 (dd, 1H, J = 1.9, 8.1 Hz), 5.51-5.61 (m, 1H), 4.92-5.03 (m, 2H), 3.68 (dd, 1H, J = 4.1, 10.7 Hz), 3.39 (dd, 1H, J = 7.4, 10.6 Hz), 3.01-3.08 (m, 1H), 2.68-2.75 (m, 1H), 2.49-2.56 (m, 1H), 2.32-2.41 (m, 1H) ppm.

Step F: 4(S)-(1(S)-(3,4-Dichlorophenyl)-3-butenyl)-2-oxazolidinone

A solution of 2(S)-amino-3(S)-(3,4-dichlorophenyl)-5-hexen-1-ol (3.85 g, 14.8 mmol) and triphosgene (4.39 g, 14.8 mmol) in THF (100 mL) was stirred at room temp for 2 h. The reaction mixture was concentrated in vacuo and the residue was purified by column chromatography (silica gel 60, 1-5% MeOH/CH₂Cl₂) to afford the oxazolidone (3.35 g, 79%) as a colorless solid.

1H NMR (CDCl₃, 500 MHz) δ 7.45 (d, 1H, J = 8.2 Hz), 7.25-7.31 (m, 1H), 7.05 (dd, 1H, J = 2.1, 8.3 Hz), 5.50-5.62 (m, 1H), 4.99-5.16 (m, 2H), 4.56 (t, 1H, J = 8.7 Hz), 4.21 (dd, 1H, J = 6.4, 9.0 Hz), 4.00-4.08 (m, 1H), 2.73-2.80 (m, 1H), 2.30-2.43 (m, 2H) ppm.

Step G: 4(S)-(1(S)-(3,4-Dichlorophenyl)-3-butenyl)-3-methyl-2-oxazolidinone

To a solution of 4(S)-(1(S)-(3,4-dichlorophenyl)-3-butenyl)-2-oxazolidinone (3.25 g, 11.4 mmol) in DMF (25 mL) at room temp was added NaH (573 mg, 95%, 22.7 mmol). The mixture was stirred for 20 min whereupon MeI (3.54 mL, 57.0 mmol) freshly filtered through basic alumina was added and the resultant reaction mixture was stirred at 70°C for 14 h. The cooled reaction mixture was diluted with H₂O
(250 mL) and extracted with EtOAc (3 x 125 mL). The combined organic extracts were washed with H₂O (3 x 100 mL), brine, dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by column chromatography (silica gel 60, 1-5% MeOH/CH₂Cl₂) to afford the title compound (2.93 g, 86%) as a colorless solid and recovered starting material (382 mg, 11%).

¹H NMR (CDCl₃, 500 MHz) δ 7.45 (d, 1H, J = 8.3 Hz), 7.25-7.31 (m, 1H), 7.06 (dd, 1H, J = 2.1, 8.2 Hz), 5.52-5.62 (m, 1H), 4.99-5.08 (m, 2H), 4.12-4.26 (m, 2H), 3.82-3.90 (m, 1H), 3.00-3.07 (m, 1H), 2.75 (s, 3H), 2.38-2.49 (m, 2H) ppm.

FTIR 2922, 1747, 1472, 1433, 1405, 1122, 1030, 914, 733 cm⁻¹.

Step H: 4(S)-(1(S)-(3,4-Dichlorophenyl)-3-oxopropyl)-3-methyl-2-oxazolidinone

The title compound was prepared from 4(S)-(1(S)-(3,4-dichlorophenyl)-3-butenyl)-3-methyl-2-oxazolidinone (prepared in Step G above) as in Example 1. Step A to afford the aldehyde (98%).

¹H NMR (CDCl₃, 500 MHz) δ 9.76 (s, 1H), 7.45 (d, 1H, J = 8.4 Hz), 7.25-7.31 (m, 1H), 7.06 (dd, 1H, J = 2.0, 8.5 Hz), 4.15-4.20 (m, 1H), 4.10 (dd, 1H, J = 5.5 Hz, 9.2 Hz), 3.88-3.94 (m, 1H), 3.72-3.78 (m, 1H), 2.99 (ddd, 1H, J = 0.9, 9.8, 17.8 Hz), 2.84 (s, 3H), 2.79 (dd, 1H, J = 4.1, 17.9 Hz) ppm.

Step I: 4(S)-(1(S)-(3,4-Dichlorophenyl)-3-(4-(2-(1'-(tetrazolyl)-methyl)phenyl)-1-piperazinyl)-propyl)-3-methyl-2-oxazolidinone

The title compound was prepared (77%) from 4(S)-(1(S)-(3,4-dichlorophenyl)-3-oxopropyl)-3-methyl-2-oxazolidinone (prepared in Step H above) and 1-(2-(1'-(tetrazolyl)-methyl)phenyl)-piperazine.
(prepared according to the procedure in Example 34) as in Example 1, Step E.

\[
{^1}H\text{ NMR (CDCl}_3, 500 \text{ MHz}) \delta 8.52 (s, 1H), 7.47 (d, 1H, J = 8.3 \text{ Hz}), \\
7.42 (dt, 1H, J = 1.9, 8.1 \text{ Hz}), 7.15-7.38 (m, 4H), 7.09 (dd, 1H, J = 2.1, \\
8.3 \text{ Hz}), 5.66 (s, 2H), 4.26 (t, 1H, J = 8.9 \text{ Hz}), 4.17 (dd, 1H, J = 6.2, 9.2 \\
\text{Hz}), 3.82-3.90 (m, 1H), 3.07-3.14 (m, 1H), 2.80-2.92 (m, 4H), 2.73 (s, \\
3H), 2.50-2.61 (m, 2H), 2.38-2.50 (m, 2H), 2.20-2.33 (m, 2H), 1.65-1.90 (m, 3H) \text{ ppm.}
\]

Step J: 2(S)-Amino-3(S)-(3,4-dichlorophenyl)-5-(4-(2-(1'-(tetrazolyl))-methylphenyl)-1-piperazinyl))-pentan-1-ol

To a solution of 4(S)-(1(S)-(3,4-dichlorophenyl)-3-(4-(2-(1'-(tetrazolyl)-methyl)phenyl)-1-piperazinyl)-propyl)-3-methyl-2-oxazolidinone (88 mg, 0.166 mmol) and EtOH (2 mL) was added 1M aq KOH (2 mL). The resultant mixture was heated to 85°C for 14 h. The cooled mixture was then diluted with H_2O (50 mL) and extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with brine, dried (Na_2SO_4), and concentrated in vacuo yielding the amino alcohol (77 mg, 92%) as a colorless solid.

\[
{^1}H\text{ NMR (CDCl}_3, 500 \text{ MHz}) \delta 8.52 (s, 1H), 7.08-7.42 (m, 7H), 5.66 (s, \\
2H), 3.76 (dd, 1H, J = 3.7, 11.2 \text{ Hz}), 3.60 (dd, 1H, J = 3.9, 11.2 \text{ Hz}), \\
2.80-2.96 (m, 4H), 2.63-2.68 (m, 1H), 2.52-2.62 (m, 2H), 2.40-2.51 \\
(m, 2H), 2.31 (s, 3H), 2.14-2.22 (m, 3H), 2.04-2.14 (m, 2H) \text{ ppm.}
\]

Step K: 1-(3-((S)-(3,4-Dichlorophenyl))-4-((S)-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino)))-5-hydroxy-pentyl)-4-(2-(1'-(tetrazolyl)-methyl)phenyl)-piperazine

To a solution of 2(S)-amino-3(S)-(3,4-dichlorophenyl)-5-(4-(2-(1'-(tetrazolyl))-methylphenyl)-1-piperazinyl))-pentan-1-ol (24 mg, 0.048 mmol) and CH_2Cl_2 (1.5 mL) at 0°C was added Et_3N (13.3 \mu L,
0.096 mmol), and 3,5-bis(trifluoromethyl)benzoyl chloride (9.0 μL, 0.050 mmol). The resultant reaction mixture was stirred 30 min at 0°C whereupon it was purified directly, without concentration, by column chromatography (silica gel 60, 2.5-8 % MeOH/CH₂Cl₂) to afford the title compound (26 mg) as a colorless solid.

Mass spectrum (Cl): m/z = 744 (35Cl + 35Cl isotope + H⁺), 746 (37Cl + 35Cl isotope + H⁺).

EXAMPLE 49

1-(3-((S)-(3,4-Dichlorophenyl))-4-((S)-(N-3,5-bis-
(trifluoromethyl)benzoyl(methylamino)))-5-hydroxy-pentyl)-4-(2-(1'-
(1',2',4'-triazolyl)-methyl)phenyl)-piperazine

Step A: 4(S)-(1(S)-(3,4-Dichlorophenyl)-3-(4-(2-(1'-(1',2',4'-
triazolyl)-methyl)phenyl)-1-piperazinyl)-propyl)-3-methyl-
2-oxazolidinone

The title compound was prepared (98%) from 4(S)-(1(S)-(3,4-
dichlorophenyl)-3-oxopropyl)-3-methyl-2-oxazolidinone (prepared in Example 48, Step H) and 1-(2-(1'-(1',2',4'-triazolyl)-methyl)phenyl)-
piperazine (prepared according to the procedure in Example 33, Step D) as in Example 1, Step E.

1H NMR (CDCl₃, 500 MHz) δ 8.08 (s, 1H), 7.94 (s, 1H), 7.68 (dd, 1H, J = 7.1, 12.1 Hz), 7.45-7.60 (m, 2H), 7.32-7.40 (m, 2H), 7.09 (dd, 1H, J = 2.1, 8.2 Hz), 5.44 (s, 2H), 4.27 (t, 1H, J = 9.0 Hz), 4.17 (dd, 1H, J = 6.1, 9.1 Hz), 3.82-3.88 (m, 1H), 3.08-3.16 (m, 1H), 2.82-2.94 (m, 4H), 2.73 (s, 3H), 2.52-2.63 (m, 2H), 2.42-2.51 (m, 2H), 2.20-2.34 (m, 2H), 1.71-1.93 (m, 3H) ppm.
Step B: 2(S)-Amino-3(S)-(3,4-dichlorophenyl)-5-(4-(2-(1',
(1',2',4'-triazolyl))-methylphenyl)-1-piperazinyl))-pentan-
1-ol

To a solution of 4(S)-(1(S)-(3,4-dichlorophenyl)-3-(4-(2-(1'-
tetrazolyl)-methyl)phenyl)-1-piperazinyl)-propyl)-3-methyl-2-
oxazolidinone (78 mg, 0.147 mmol) and EtOH (2 mL) was added 1M aq
KOH (2 mL). The resultant mixture was heated to 85°C for 14 h. The
cooled mixture was then diluted with H2O (50 mL) and extracted with

EtOAc (3 x 50 mL). The combined organic extracts were washed with
brine, dried (Na2SO4), and concentrated in vacuo yielding the amino
alcohol (71 mg, 96%) as a colorless solid.

1H NMR (CDCl3, 500 MHz) δ 8.08 (s, 1H), 7.95 (s, 1H), 7.06-7.72 (m,
7H), 5.44 (s, 2H), 3.77 (dd, 1H, J = 3.7, 11.5 Hz), 3.60 (dd, 1H, J = 3.9,
11.2 Hz), 2.80-2.96 (m, 4H), 2.61-2.67 (m, 1H), 2.53-2.61 (m, 2H),
2.42-2.52 (m, 2H), 2.32 (s, 3H), 2.16-2.27 (m, 3H), 2.07-2.15 (m, 2H)
ppm.

Step C: 1-(3-((S)-(3,4-Dichlorophenyl))-4-((S)-(N-3,5-bis-
(trifluoromethyl)benzoyl(methylamino))-5-hydroxy-
pentyl)-4-(2-(1'(1',2',4'-triazolyl)-methyl)phenyl)-piperazine

To a solution of 2(S)-amino-3(S)-(3,4-dichlorophenyl)-5-(4-(2-(1'-(
1',2',4'-triazolyl))-methylphenyl)-1-piperazinyl))-pentan-1-ol (22 mg,
0.044 mmol) and CH2Cl2 (1.5 mL) at 0°C was added Et3N (12.0 μL,
0.088 mmol), and 3,5-bis(trifluoromethyl)benzoyl chloride (8.3 μL,
0.046 mmol). The resultant reaction mixture was stirred 30 min at 0°C
whereupon it was purified directly, without concentration, by column
chromatography (silica gel 60, 2.5-8 % MeOH/CH2Cl2) to afford the
title compound (20 mg) as a colorless solid.
Mass spectrum (CI): m/z = 743 (35Cl + 35Cl isotope + H+), 745 (37Cl + 35Cl isotope + H+).

EXAMPLE 50

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-
(methylamino))butyl)-4-(2-(methylthiomethyl)phenyl)-piperazine

10 Step A: 1-t-Butoxycarbonyl-4-(2-(methylthiomethyl)phenyl)-
piperazine

Potassium t-butoxide (159 mg, 1.42 mmol) in 15 mL of abs.
EtOH was saturated with methyl mercaptan gas. To this mixture was
added 1-t-butoxycarbonyl-4-(2-(methanesulfonyloxy)methyl)phenyl-
piperazine (0.94 mmol, which was generated according to the procedure
described in Step C of Example 9). The resulting mixture was refluxed
for 50 min and concentrated. The residue was purified by preparative
TLC (20% EtOAc in Hex) to give the title compound (157 mg).

15 1H NMR (200 MHz, CDCl3) δ 1.47 (s, 9H), 2.05 (s, 3H), 2.87 (t, 4H),
3.55 (t, 4H), 3.80 (s, 2H), 7.08 (m, 2H), 7.20 (dd, 1H), 7.35 (dd, 1H).

Step B: 1-(2-(Methylthiomethyl)phenyl)-piperazine

20 The title compound was prepared from 1-t-butoxycarbonyl-4-(2-
(methylthiomethyl)phenyl)-piperazine (from Step A above) according to
the procedure given in Example 9, Step D, and was used below without
further purification.

25 Step C: 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-
dimethylbenzoyl)-(methylamino))butyl)-4-(2-
(methylthiomethyl)phenyl)-piperazine
The title compound was prepared from 1-(2-(methylthiomethyl)phenyl)-piperazine (from Step B above) and 3-((S)-(3,4-dichlorophenyl))-4-((3,5-dimethylbenzoyl)methylamino)-butanal (see Example 1, Step A) according to the procedure given in Example 1, Step E.

1H NMR (400 MHz, CDCl$_3$) δ 2.02 (s, 3H), 2.26 (s, 6H), 3.76 (s, 2H).
Mass Spectrum (CI) m/z 584, 586 (M+1, M+3).

EXAMPLE 51

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bistrifluoromethylbenzoyl)-(methylamino))-butyl)-4-(2-(methylthiomethyl)phenyl)-piperazine

The title compound was prepared by analogy to the procedure given in Example 50, Step C, using 3-((S)-(3,4-dichlorophenyl))-4-((3,5-bis(trifluoromethyl)benzoyl)methylamino)-butanal (from Example 33, Step A) instead of 3-((S)-(3,4-dichlorophenyl))-4-((3,5-dimethylbenzoyl)methylamino)-butanal.

1H NMR (400 MHz, CDCl$_3$) δ 2.03 (s, 3H), 3.76 (s, 2H).
Mass Spectrum (CI) m/z 692.1 (M+1).

EXAMPLE 52

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3-methylbenzoyl)-(methylamino))-butyl)-4-(2-(methylthiomethyl)phenyl)-piperazine

The title compound was prepared by analogy to the procedure given in Example 50, Step C, using 3-((S)-(3,4-dichlorophenyl))-4-((3-
methylbenzoyl)methylamino)-butanal instead of 3-((S)-(3,4-dichlorophenyl))-4-((3,5-dimethylbenzoyl)methylamino)-butanal.

1H NMR (400 MHz, CDCl$_3$) δ 2.02 (s, 3H), 2.31 (s, 3H), 3.76 (s, 2H).

Mass Spectrum (CI) m/z 570.3, 572.3 (M$^+$$+1$, M$^+$$+3$).

EXAMPLE 53

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-(methylthiomethyl)phenyl)-piperazine, S-oxide

The title compound was prepared from 1 equiv. of 1-(3-((S)-(3,4-dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-(methylthiomethyl)phenyl)-piperazine (from Example 50, Step C) and 1.5 equiv of oxone (potassium peroxymonosulfate) in MeOH/H$_2$O at 0°C for 6 min.

1H NMR (400 MHz, CDCl$_3$) δ 2.27(s, 6H), 2.40 (s, 3H), 4.07 (d, 1H), 4.14 (d, 1H).

Mass Spectrum (CI) m/z 600.2, 602.3 (M$^+$$+1$, M$^+$$+3$).

EXAMPLE 54

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bistrifluoromethylbenzoyl)-(methylamino))butyl)-4-(2-(methylthiomethyl)phenyl)-piperazine, S-oxide

The title compound was prepared according to the procedure given in Example 53, using 1-(3-((S)-(3,4-dichlorophenyl))-4-(N-3,5-
bistrifluoromethylbenzoyl)-(methylamino))-butyl)-4-(2-(methylthiophenyl)-phenyl)-piperazine (from Example 51) as starting material.

1H NMR (400 MHz, CDCl₃) δ 2.40 (s, 3H), 4.06 (d, 1H), 4.15 (d, 1H).
Mass Spectrum (Cl) m/z 708.1 (M⁺+1).

EXAMPLE 55

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3-methylbenzoyl)-(methylamino))-butyl)-4-(2-(methylthiophenyl)-phenyl)-piperazine, S-oxide

The title compound was prepared according to the procedure given in Example 53, using 1-(3-((S)-(3,4-dichlorophenyl))-4-(N-3-methylbenzoyl)-(methylamino))-butyl)-4-(2-(methylthiophenyl)-phenyl)-piperazine (from Example 52) as starting material.

1H NMR (400 MHz, CDCl₃) δ 2.31 (s, 3H), 2.40 (s, 3H), 4.07 (d, 1H), 4.13 (d, 1H).
Mass Spectrum (Cl) m/z 586.2, 588.2 (M⁺+1, M⁺+3).

EXAMPLE 56

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methylamino))-butyl)-4-(2-(methylthiophenyl)-phenyl)-piperazine, S, S-dioxide

The title compound was prepared from 1-(3-((S)-(3,4-dichlorophenyl))-4-(N-3,5-dimethylbenzoyl)-(methylamino))-butyl)-4-
(2-(methylthiomethyl)phenyl)-piperazine, S-oxide and 3 equiv of oxone in MeOH/H2O at room temperature for 1 h.

1H NMR (400 MHz, CDCl$_3$) δ 2.27 (s, 6H), 2.67 (s, 3H), 4.39 (s, 2H).

Mass Spectrum (CI) m/z 616.2 (M$^+$+1).

EXAMPLE 57

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bistrifluoromethylbenzoyl)-(methylamino))-butyl)-4-(2-(methylthiomethyl)phenyl)-piperazine, S, S-dioxide

The title compound was prepared from 1-(3-((S)-(3,4-dichlorophenyl))-4-(N-3,5-bistrifluoromethylbenzoyl)-(methylamino))-butyl)-4-(2-(methylthiomethyl)phenyl)-piperazine, S-oxide and 3 equiv of oxone in MeOH/H2O at room temperature for 1 h.

1H NMR (400 MHz, CDCl$_3$) δ 2.68 (s, 6H), 4.39 (s, 2H).

Mass Spectrum (CI) m/z 724.1 (M$^+$+1).

EXAMPLE 58

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3-methylbenzoyl)-(methylamino))butyl)-4-(2-(methylthiomethyl)phenyl)-piperazine, S, S-dioxide

The title compound was prepared from 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3-methylbenzoyl)-(methylamino))butyl)-4-(2-(methylthiomethyl)phenyl)-piperazine, S-oxide and 3 equiv of oxone in MeOH/H2O at room temperature for 1 h.
- 97 -

1H NMR (400 MHz, CDCl$_3$) δ 2.31 (s, 3H), 2.68 (s, 6H), 4.39 (s, 2H).

Mass Spectrum (Cl) m/z 602, 604.3 (M$^+$+1, M$^+$+3).

Additional compounds for Formula I can be prepared from the piperazine starting materials given in the following Examples 59 or Example 60 or from the sources listed below by using the methods given in Example 1, Step E, Example 15, Step C or Example 17:

EXAMPLE 59

7-(1-Piperazinyl)triazolo(2,3-a)pyrimidine dihydrochloride

Step A: 7-(1-(4-t-Butyloxy carbonyl)piperazinyl)triazolo(2,3-a)pyrimidine

7-Chloro-triazolo(2,3-a)pyrimidine (Chem. Pharm. Bull., 1959, 7, 907)(1.01g, 6.54mmol), was suspended in isoamyl alcohol (25mL) and 1-(t-butyloxy carbonyl)piperazine (4.86g, 26.13mmol) was added. This solution (dissolution occurred readily upon warming) was heated under reflux, under nitrogen for 1hr and then the reaction mixture was cooled, evaporated to dryness and the residue was dissolved in CH$_2$Cl$_2$ (100mL) and 10% aqu. Na$_2$CO$_3$ (100mL). After shaking, the layers were separated and the organic layer was washed with 10% aqu. Na$_2$CO$_3$ (2 x 100mL) and the pooled organic layers were dried (over MgSO$_4$), filtered, and evaporated to dryness. This oily residue was dissolved in a little CH$_2$Cl$_2$, absorbed onto silica gel 60, and applied to a silica gel 60 column (3.5 x 22.0 cm), packed and developed in CH$_2$Cl$_2$. Fractions containing the required product were pooled and evaporated to dryness to give a white solid which was crystallized from CH$_2$Cl$_2$/Et$_2$O to give 1.47g of the title compound as a white crystalline solid. Yield 1.71g (5.63mmol, 86% yield) in two crops.
Analysis calculated for C_{14}H_{20}N_{6}O_{2} (304)
 C, 55.25; H, 6.62; N, 27.61
Found: C, 55.17; H, 6.32; N, 27.75

5 Step B: 7-(1-Piperazinyl)triazolo(2,3-a)pyrimidine dihydrochloride
 7-(1-(4-t-Butyloxycarbonyl)piperazinyl)triazolo(2,3-
a)pyrimidine prepared as described in step A (0.301g, 0.99mmol), was
dissolved in anhydrous HCO_{2}H (10mL) and allowed to stand at room
10 temperature for 1\(1/2\)hr and then was evaporated to dryness in vacuo.
This residue was dissolved in a little H_{2}O and applied to a Dowex 1 x 2
(OH\(^{-}\) form) column (2 x 23cm). The column was developed with H_{2}O
and fractions containing the required product were pooled and
15 evaporated to dryness to give 0.21g. TLC indicated a small amount of
starting material remaining and the residue was then dissolved in
CF_{3}CO_{2}H (10mL) and allowed to stand at room temperature for 45
min. The reaction was then evaporated to dryness slowly under a
nitrogen stream and the residue was evaporated to dryness once from
H_{2}O before being dissolved in a little H_{2}O and passed down a Dowex 1
20 x 2 (OH-form) column (2 x 25cm) as before. Fractions containing the
required product were pooled and evaporated to dryness to give the title
compound as a white solid (0.21g, quantitative yield) in the free base
form.

25 Analysis calculated for C_{9}H_{12}N_{6}\cdot 1.7 H_{2}O (234.86)
 C, 46.02; H, 6.61; N, 35.78
Found: C, 46.31; H, 6.01; N, 35.64

A portion of this material (0.10g) was dissolved in EtOH
30 (3.5mL) and 3.49M HCl in MeOH (1mL) was added. A white
precipitate formed immediately which was removed by centrifugation
after standing at room temperature for 4hr and was washed with cold
EtOH (2 x 5mL) and Et_{2}O (5mL) to give 0.11g (0.407mmol) of the
title compound as the dihydrochloride salt.
35 Analysis calculated for C_{9}H_{14}N_{6}Cl_{2}\cdot 0.7H_{2}O (289.75)
EXAMPLE 60

7-(1-Piperazinyl)triazolo(2,3-a)pyrimidine dihydrochloride

Step A: 7-Chloro-triazolo(2,3-a)pyrimidine

This was prepared according to procedures given in Chem. Pharm. Bull., 7, 907 (1959).

Step B: 7-(1-(4-t-Butyloxycarbonyl)piperazinyl)triazolo(2,3-a)pyrimidine

7-Chloro-triazolo(2,3-a)pyrimidine, prepared as described in Step A above (1.01 g, 6.54 mmol), was suspended in isoamyl alcohol (25 mL) and 1-(t-butyloxycarbonyl)piperazine (4.86 g, 26.13 mmol) was added. This solution (dissolution occurred readily upon warming) was heated under reflux, under nitrogen for 1 hr and then the reaction mixture was cooled, evaporated to dryness and the residue was dissolved in CH₂Cl₂ (100 mL) and 10% aq. Na₂CO₃ (100 mL). After shaking, the layers were separated and the organic layer was washed with 10% aqu. Na₂CO₃ (2 x 100 mL) and the pooled organic layers were dried (over MgSO₄), filtered, and evaporated to dryness. This oily residue was dissolved in a little CH₂Cl₂, absorbed onto silica gel 60, and applied to a silica gel 60 column (3.5 x 22.0 cm), packed and developed in CH₂Cl₂. Fractions containing the required product were pooled and evaporated to dryness to give a white solid which was crystallized from CH₂Cl₂/Et₂O to give 1.47 g of the title compound as a white crystalline solid. Yield 1.71g (5.63 mmol, 86% yield) in two crops.

Anal. Calc. for C₁₄H₂₀N₆O₂ (304):

C, 55.25; H, 6.62; N, 27.61

Found: C, 55.17; H, 6.32; N, 27.75
Step C: \textit{7-(1-Piperazinyl)triazolo(2,3-a)pyrimidine dihydrochloride}

7-(1-(4-t-Butyloxy carbonyl)piperazinyl)triazolo(2,3-a)pyrimidine, prepared as described in Step B above (0.301 g, 0.99 mmol), was dissolved in anhydrous HCO$_2$H (10 mL) and allowed to stand at room temperature for 11/2 hr and then was evaporated to dryness \textit{in vacuo}. This residue was dissolved in a little H$_2$O and applied to a Dowex 1 x 2 (OH$^{-}$ form) column (2 x 23 cm). The column was developed with H$_2$O and fractions containing the required product were pooled and evaporated to dryness to give 0.21 g. TLC indicated a small amount of starting material remaining and the residue was then dissolved in CF$_3$CO$_2$H (10 mL) and allowed to stand at room temperature for 45 min. The reaction was then evaporated to dryness slowly under a nitrogen stream and the residue was evaporated to dryness once from H$_2$O before being dissolved in a little H$_2$O and passed down a Dowex 1 x 2 (OH$^{-}$ form) column (2 x 25 cm) as before. Fractions containing the required product were pooled and evaporated to dryness to give the title compound as a white solid (0.21 g, quantitative yield) in the free base form.

\textbf{Anal. Calc. for C$_9$H$_{12}$N$_6$·1.7H$_2$O (234.86)}:

\begin{align*}
\text{C} & : 46.02; \\
\text{H} & : 6.61; \\
\text{N} & : 35.78
\end{align*}

\textbf{Found:}

\begin{align*}
\text{C} & : 46.31; \\
\text{H} & : 6.01; \\
\text{N} & : 35.64
\end{align*}

A portion of this material (0.10 g) was dissolved in EtOH (3.5 mL) and 3.49 M HCl in MeOH (1 mL) was added. A white precipitate formed immediately which was removed by centrifugation after standing at room temperature for 4 hr and was washed with cold EtOH (2 x 5 mL) and Et$_2$O (5 mL) to give 0.11 g (0.407 mmol) of the title compound as the dihydrochloride salt.

\textbf{Anal. Calc. for C$_9$H$_{14}$N$_6$Cl$_2$·0.7H$_2$O (289.75)}:

\begin{align*}
\text{C} & : 37.30; \\
\text{H} & : 5.36; \\
\text{N} & : 29.00
\end{align*}

\textbf{Found:}

\begin{align*}
\text{C} & : 37.52; \\
\text{H} & : 5.17; \\
\text{N} & : 28.92
\end{align*}
Additional starting materials are prepared as described in US Patent 5,057,517 which is hereby incorporated by reference:

5 6-(1-piperazinyl)-8-methylpurine dihydrochloride,
6-(1-piperazinyl)-8,9-dimethylpurine dihydrochloride,
6-(1-piperazinyl)-9-methyl-3-deazapurine dihydrochloride,
(i.e. 1-methyl-4-(1-piperazinyl)-1H-imidazo(4,5-c)pyridine dihydrochloride),

10 8-bromo-6-(1-piperazinyl)purine dihydrochloride,
8-bromo-9-methyl-6-(1-piperazinyl)purine dihydrochloride,
2,9-dimethyl-8-methylamino-6-(1-piperazinyl)purine dihydrochloride,
2,9-dimethyl-8-dimethylamino-6-(1-piperazinyl)purine dihydrochloride,

15 2,9-dimethyl-6-(1-piperazinyl)-8-(1-pyrrolidinyl)purine dihydrochloride,
8-methoxy-9-methyl-6-(1-piperazinyl)purine dihydrochloride,
9-methyl-6-(1-piperazinyl)-8-(1-pyrrolidinyl)purine dihydrochloride,
8-dimethylamino-9-methyl-6-(1-piperazinyl)purine dihydrochloride,

20 6-(1-piperazinyl)-2,8,9-trimethylpurine dihydrochloride,
2,8,9-dimethyl-6-(1-piperazinyl)purine dihydrochloride,
2-chloro-9-methyl-6-(1-piperazinyl)purine dihydrochloride,
9-methyl-2-morpholino-6-(1-piperazinyl)purine dihydrochloride,
9-methyl-6-(1-piperazinyl)-2-(1-pyrrolidinyl)purine dihydrochloride,

25 9-methyl-2-methylamino-6-(1-piperazinyl)purine dihydrochloride,
2-dimethylamino-9-methyl-6-(1-piperazinyl)purine dihydrochloride,
2,8-bis(dimethylamino)-9-methyl-6-(1-piperazinyl)purine dihydrochloride,
2-methoxy-9-methyl-6-(1-piperazinyl)purine dihydrochloride,

30 9-methyl-6-(1-piperazinyl)-2-(2-propoxy)purine dihydrochloride,
2-dimethylamino-6-(1-piperazinyl)purine dihydrochloride,
2-amino-6-(1-piperazinyl)purine dihydrochloride,
2-methoxy-6-(1-piperazinyl)-9-(1-propyl)purine dihydrochloride,
2-methylthio-6-(1-piperazinyl)-9-(1-propyl)purine dihydrochloride,
2-ethoxy-9-methoxymethyl-6-(1-piperazinyl)purine maleate,
9-ethoxymethyl-2-methoxy-6-(1-piperazinyl)purine maleate,
9-cyclopropylmethyl-2-ethoxy-6-(1-piperazinyl)purine dihydrochloride,
2-methoxy-9-methoxyethyl-6-(1-piperazinyl)purine dihydrochloride,
5 2-methoxy-6-(1-piperazinyl)-9-(1-(2-propynyl)purine dihydrochloride,
9-(1-allenyl)-2-methoxy-6-(1-piperazinyl)purine dihydrochloride,
2-methoxy-6-(1-piperazinyl)-9-(1-(2-propenyl))purine dihydrochloride,
9-cyclopropyl-2-ethyl-6-(1-piperazinyl)purine,
2-ethyl-9-(1-(2,2,2-trifluoroethylamino))-6-(1-piperazinyl)purine,
10 2-ethyl-9-methyl-6-(1-piperazinyl)purine dihydrochloride,
2-methoxy-6-(1-piperazinyl)-9-(2-propyl)purine dihydrochloride,
2-methoxy-9-(1-(2-oxopropyl))-6-(1-piperazinyl)purine dihydrochloride,
9-(1-(2,2-difluoropropyl))-2-methoxy-6-(1-piperazinyl)purine,
15 2-ethyl-9-(2-fluoroethyl)-6-(1-piperazinyl)purine dihydrochloride,
2-methoxy-6-(1-piperazinyl)-9-(2-furanylmethyl)purine,
9-((1S,2R)-2-fluoro-1-methylpropyl)-2-methoxy-6-(1-piperazinyl)purine,
9-((1R,2S)-2-fluoro-1-methylpropyl)-2-methoxy-6-(1-piperazinyl)purine,
20 9-((1S,2S)-2-fluoro-1-methylpropyl)-2-methoxy-6-(1-piperazinyl)purine,
9-((1R,2R)-2-fluoro-1-methylpropyl)-2-methoxy-6-(1-piperazinyl)purine,
25 Additional starting materials are prepared as described in US Patent 4,980,350 which is hereby incorporated by reference:
4-methyl-2-(1-piperazinyl)pyrimidine dihydrochloride,
4,5-dimethyl-2-(1-piperazinyl)pyrimidine dihydrochloride,
30 4,6-dimethyl-2-(1-piperazinyl)pyrimidine dihydrochloride,
4,5,6-trimethyl-2-(1-piperazinyl)pyrimidine dihydrochloride,
6-(1-butyl)-4-methyl-2-(1-piperazinyl)pyrimidine dihydrochloride,
4-(2-butyl)-2-(1-piperazinyl)pyrimidine dihydrochloride,
4-methyl-5-methoxy-4-(1-piperazinyl)pyrimidine dihydrochloride,
2-methyl-4-(1-piperazinyl)-S-triazine dihydrochloride.

Additional starting materials are prepared as described in US Patent No. 4,876,256 which is hereby incorporated by reference:

6-methyl-2-(1-piperazinyl)pyridine dihydrochloride,
2-(1-piperazinyl)pyridine dihydrochloride.

Additional starting materials are prepared as described in J. Heterocyclic Chem., 27, 1559 (1990) which is hereby incorporated by reference:

8,9-dihydro-1-methyl-5-(1-piperazinyl)-7H-thiopyrano(2,3-e)(1,2,4)triazolo(4,3-a)pyrimidine,
8,9-dihydro-5-(1-piperazinyl)-7H-thiopyrano(2,3-e)(1,2,4)triazolo(4,3-a)pyrimidine,
8,9-dihydro-5-(1-piperazinyl)-7H-tetrazolo(1,5-a)thiopyrano(2,3-e)pyrimidine,
5,6-dihydro-7H-9-(1-piperazinyl)thiopyrano(3,2-d)(1,2,4)triazolo(2,3-a)pyrimidine.
EXAMPLE 61

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(R)-
(methanesulfonylamino)ethyl)phenyl)-piperazine and
1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(S)-
(methanesulfonylamino)ethyl)phenyl)-piperazine

Step A 1-t-butoxycarbonyl-4-(2-(1-(RS)-hydroxyethyl)phenyl)-piperazine

To a solution of 1g of 1-t-butoxycarbonyl-4-(2-formylphenyl)-piperazine (3.44mmol) (prepared as described in example 9 step A) in
THF 30ml was added methylmagnesium bromide (3M THF solution)
1.26ml (3.78mmol) with cooling in an ice-water bath. The cooling bath
was then removed and the reaction mixture was stirred at rt for 1hr.
The reaction was quenched by the addition of saturated NH₄Cl solution.
After removal of THF under reduced pressure, the reaction mixture was diluted with ethyl acetate and water. Organic phase was separated. The aqueous phase was extracted twice with ethyl acetate, and the combined org. phases were dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography on silica gel eluting with a hexanes/ethyl acetate mixture to give 919mg (87%) of the desired alcohol.

1H-NMR (500MHz, CDCl$_3$): δ1.51(s, 9H), 1.55(d, J=6.5Hz, 3H), 2.91-2.97(m, 4H), 3.4-3.8(br s, 4H), 5.1(br s, 1H), 5.8(br s, 1H). Mass spectrum (Cl) m/z 307 (M$^+$+1).

Step B 1-t-butoxycarbonyl-4-(2-(1-(RS)-aminoethyl)phenyl)-piperazine

To a solution of 1g of the alcohol obtained in step A (3.26mmol) in THF 10ml was added 1.03g (3.93mmol) of triphenyolphosphine and 624mg (4.24mmol) of phthalimide, and finally 0.565ml (3.44mmol) of diethylazodicarboxylate with cooling in an ice-water bath. The cooling bath was then removed and the reaction mixture was stirred at rt overnight. THF was removed under reduced pressure. The remaining material was diluted with ethyl acetate and water, and the organic phase was separated. The aqueous phase was extracted twice with ethyl acetate. The combined organic phases were dried over anhydrous sodium sulfate, filtered, concentrated, and the residue was purified by flash chromatography on silica gel eluting with 10:1 to 3:1 hexanes/ethyl acetate to give 1.13g (79%) of the desired compound.
\[^1H\text{-NMR (500HMz, CDCl}_3\]: }\delta1.5 \& 1.55 (s, 9H), 1.82(d, 3H), 2.7-2.82(br s, 4H), 3.2-4.0(br s, 4H), 6.1(m, 1H), 7.1-7.8(m, 8H).

To a solution of 1.13g (2.6mmol) of the compound obtained above dissolved in 25 mL of absolute ethanol was added 0.8ml (26mmol) of hydrazine hydrate and the reaction mixture was heated to reflux for 1.5hr. The voluminous precipitate of phthalimide was removed by filtration through a pad of celite. The filtrate was concentrated to give 750mg (95%) of the desired amine. This material was pure enough to be used in the next step.

\[^1H\text{-NMR (500MHz. CDCl}_3\]: }\delta1.41(d, J=6.7Hz, 3H), 1.51(s, 9H), 2.85-2.87(br s, 4H), 4.6(q, J=6.7Hz, 1H), 7.1-7.5(m, 4H).

Step C 1-t-butoxycarbonyl-4-(2-(1-(RS)-(methanesulfonylamino)ethyl)phenyl)-piperazine

This compound was synthesized following the procedure described in example 38 step A.

\[^1H\text{-NMR (500MHz, CDCl}_3\]: }\delta1.51(s, 9H), 1.54(d, J=7Hz, 3H), 2.75(s, 3H), 2.8-3.0(br s, 4H), 3.3-3.9(br s, 4H), 5.05(m, 1H), 5.85(br s, 1H), 7.2-7.4(m, 4H).\] Mass spectrum (CI) m/z 284 (M\(^+\)+1).

Step D: 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(R)-(methanesulfonylamino)ethyl)phenyl)-piperazine and
1-((3)-((S)-(3,4-Dichlorophenyl)))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-((S)-(methanesulfonylamino)ethyl)phenyl)-piperazine

The title compounds were prepared as an inseparable mixture following the procedure described in example 33 step D.

Mass spectrum: (Cl) m/z 755(37Cl+35Cl), 753 (35Clx2).

The compounds in example 62-70 were prepared by reacting the requisite piperazine with either 3-((S)-(3,4-dichlorophenyl)))-4-((3,5-bistrifluoromethylbenzoyl)methylamino)butanal (Example 33 step A) or 3-((S)-(3,4-dichlorophenyl)))-4-((3-fluoro-5-trifluoromethylbenzoyl)methylamino)butanal (Example 45 step A), or 3-((S)-(4-chlorophenyl)))-4-((3,5-bistrifluoromethylbenzoyl)methylamino)butanal (example 30) according to the procedure of Example 1, step E. The piperazine substrates were synthesized by the method of example 61 step C by substituting the appropriate acylation agent. In each case diastereomeric mixtures were obtained.

EXAMPLE 62

1-((3)-((S)-(3,4-Dichlorophenyl)))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-((R)-(dimethylaminocarbonylamino)ethyl)phenyl)-piperazine and
1-((3)-((S)-(3,4-Dichlorophenyl)))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-((S)-(dimethylaminocarbonylamino)ethyl)phenyl)-piperazine
Mass spectrum: (CI) m/z 748 (^{37}\text{Cl}+^{35}\text{Cl}), 746(^{35}\text{Cl}x2).

EXAMPLE 63

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(R)-(methylaminocarbonylamino)ethyl)phenyl)-piperazine and 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(S)-(methylaminocarbonylamino)ethyl)phenyl)-piperazine

Mass spectrum: (CI) m/z 734 (^{37}\text{Cl}+^{35}\text{Cl}), 732(^{35}\text{Cl}x2).
EXAMPLE 64

1-(3-((S)-(3,4-Dichlorophenyl)))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(R)-(methylaminocarbonyl(N-methyl)aminocarbonylamino)ethyl)phenyl)-piperazine

and

1-(3-((S)-(3,4-Dichlorophenyl)))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(S)-(methylaminocarbonyl(N-methyl)aminocarbonylamino)ethyl)phenyl)-piperazine

Mass spectrum: (Cl) m/z 791 (\(^{37}\text{Cl}+^{35}\text{Cl}\)), 789(\(^{35}\text{Cl}\times 2\)).

EXAMPLE 65

1-(3-((S)-(4-Chlorophenyl)))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(R)-(methanesulfonylamino)ethyl)phenyl)-piperazine and

1-(3-((S)-(4-Chlorophenyl)))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(S)-(methanesulfonylamino)ethyl)phenyl)-piperazine
Mass spectrum: (Cl) m/z 721(37Cl), 719(35Cl).

EXEMPLARY 66

1-(3-((S)-(4-Chlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-((1-(R)-
(dimethylaminocarbonylamino)ethyl)phenyl)-piperazine and
1-(3-((S)-(4-Chlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-((1-(S)-
(dimethylaminocarbonylamino)ethyl)phenyl)-piperazine

Mass spectrum: (Cl) m/z 714(37Cl), 712(35Cl).
EXAMPLE 67

1-((3-(S)-(4-Chlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(R)-(methylaminocarbonylamino)ethyl)phenyl)-piperazine and 1-((3-(S)-(4-Chlorophenyl))-4-(N-3,5-bis-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(S)-(methylaminocarbonylamino)ethyl)phenyl)-piperazine

Mass spectrum: (Cl) m/z 701(37Cl), 699(35Cl).

EXAMPLE 68

1-((3-(S)-(3,4-Dichlorophenyl))-4-(N-3-fluoro-5-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(R)-(methanesulfonylamino)ethyl)phenyl)-piperazine and 1-((3-(S)-(3,4-Dichlorophenyl))-4-(N-3-fluoro-5-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(S)-(methanesulfonylamino)ethyl)phenyl)-piperazine
Mass spectrum: (Cl) m/z 705\(^{(37\text{Cl} + 35\text{Cl})}\), 703\(^{(35\text{Cl} \times 2)}\).

EXAMPLE 69

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3-fluoro-5-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(R)-(dimethylaminocarbonylamino)ethyl)phenyl)-piperazine and

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3-fluoro-5-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(S)-(dimethylaminocarbonylamino)ethyl)phenyl)-piperazine

Mass spectrum: (Cl) m/z 698\(^{(37\text{Cl} + 35\text{Cl})}\), 696\(^{(35\text{Cl} \times 2)}\).
EXAMPLE 70

1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3-fluoro-5-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(R)-(methylaminocarbonylamino)ethyl)phenyl)-piperazine and 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3-fluoro-5-(trifluoromethyl)benzoyl(methylamino))butyl)-4-(2-(1-(S)-(methylaminocarbonylamino)ethyl)phenyl)-piperazine

Mass spectrum: (Cl) m/z 684\((^{37}\text{Cl}+^{35}\text{Cl})\), 682\((^{35}\text{Cl}x2)\).
WHAT IS CLAIMED IS:

1. A compound of Formula I

\[
\begin{array}{c}
\text{Ar} \\
\text{N} \quad \text{R}_9 \\
\text{R}_8 \quad \text{N} \\
\text{R}_1
\end{array}
\]

or a pharmaceutically acceptable salt thereof,
wherein the nitrogen attached to R₁ shown above is optionally quaternized with C₁-4alkyl or phenylC₁-4alkyl or is optionally present as the N-oxide (N+O⁻), and wherein:

R₁ is selected from a group consisting of:
linear or branched C₁-8 alkyl, linear or branched C₂-8 alkenyl, wherein the C₁-8 alkyl or C₂-8 alkenyl is optionally mono, di, tri or tetra substituted, the substituents independently selected from:

(a) hydroxyl,
(b) oxo,
(c) cyano,
(d) halogen which is defined to include Br, Cl, I, and F,
(e) trifluoromethyl,
(f) phenyl or mono, di or tri-substituted phenyl, the substituents independently selected from
 (1) phenyl,
 (2) hydroxyl,
 (3) C₁-3alkyl,
 (4) cyano,
 (5) halogen,
 (6) trifluoromethyl,
(7) -NR₆COR₇,
(8) -NR₆CO₂R₇,
(9) -NR₆CONHR₇,
(10) -NR₆S(O)ᵢR₇, wherein i is 1 or 2,
(11) -CONR₆R₇,
(12) -COR₆,
(13) -CO₂R₆,
(14) -OR₆,
(15) -S(O)ₖR₆ wherein k is 0, 1 or 2.

(g) -NR₆R₇.
(h) -NR₆COR₇,
(i) -NR₆CO₂R₇,
(j) -NR₆CONHR₇,
(k) -NR₆S(O)ᵢR₇,
(l) -CONR₆R₇,
(m) -COR₆,
(n) -CO₂R₆,
(o) -OR₆,
(p) -S(O)ₖR₆,

(q) heteroaryl, wherein heteroaryl is selected from the group consisting of:
(1) benzimidazolyl,
(2) benzofuranyl,
(3) benzoazolyl,
(4) furanyl,
(5) imidazolyl,
(6) indolyl,
(7) isooxazolyl,
(8) isothiazolyl,
(9) oxadiazozylyl,
(10) oxazolyl,
(11) pyrazinyl,
(12) pyrazolyl,
(13) pyridyl,
(14) pyrimidyl,
(15) pyrrolyl,
(16) quinolyl,
(17) tetrazolyl,
(18) thiazolyl,
(19) thienyl,
(20) triazolyl,
(21) triazolyl,

wherein the heteroaryl is unsubstituted or mono di or
tri-substituted, the substituents independently selected from:

(a) phenyl,
(b) hydroxy,
(c) oxo,
(d) cyano,
(e) halogen,
(f) trifluoromethyl;

\textbf{Ar} is selected from the group consisting of:

(1) phenyl,
(2) pyridyl,
(3) pyrimidyl,
(4) naphthyl,
(5) furyl,
(6) pyrryl,
(7) thiencyl,
(8) isothiazolyl,
(9) imidazolyl,
(10) benzimidazolyl,
(11) tetrazolyl,
(12) pyrazinyl,
(13) quinolyl,
(14) isoquinolyl,
(15) benzofuryl,
(16) isobenzofuryl,
(17) benzothienyl,
(18) pyrazolyl,
(19) indolyl,
(20) isoindolyl,
(21) purinyl,
(22) isoxazolyl,
(23) thiazolyl,
(24) oxazolyl,
(25) triazinyl, and
(26) benzthiazolyl.
(27) benzoisoxazolyl,
(28) imidazopyrazinyl,
(29) triazolopyrazinyl,
(30) naphthyridinyl,
(31) furopyridinyl,
(32) thiopyranopyrimidyl and the 5-oxide and 5-dioxide thereof,
(33) pyridazinyl,
(34) quinazolinyl,
(35) pteridinyl.
(36) triazolopyrimidyl,
(37) triazolopyrazinyl,
(38) thiapurinyl,
(39) oxapurinyl,
(40) deazapurinyl,

wherein Ar items (1) to (40) are optionally mono or di-substituted, said
substituents being independently selected from:

(a) C_{1-3} alkyl, unsubstituted or substituted with
(1) oxo,
(2) hydroxy,
(3) OR_6,
(4) halogen,
(5) trifluoromethyl,
(6) phenyl or mono, di or tri-substituted phenyl,
the substituents independently selected from
hydroxy, cyano, halogen, and trifluoromethyl,
(b) \(-(CH_2)_nS(O)\)k-(C1-6 alkyl), wherein n is 0, 1 or 2,
(c) \(-(CH_2)_nS(O)j-NH_2\),
(d) \(-(CH_2)_nS(O)j-NH(C1-6 alkyl),
(e) \(-(CH_2)_nS(O)j-NHR_6\),
(f) \(-(CH_2)_nS(O)j-NR_6\)-(C1-6 alkyl),
(g) \-(CH_2)_nCONH_2\),
(h) \-(CH_2)_nCONH-(C1-6 alkyl),
(i) \-(CH_2)_nCONHR_6\),
(j) \-(CH_2)_nCONR_6\)-(C1-6 alkyl),
(k) \-(CH_2)_nCO_2H\),
(l) \-(CH_2)_nCO_2-(C1-6 alkyl),
(m) \-(CH_2)_nNR_6R_7\),
(n) \-(CH_2)_nNH-C(O)-C1-6alkyl,
(o) \-(CH_2)_nNH-C(O)NH_2\),
(p) \-(CH_2)_nNH-C(O)NHC1-6alkyl,
(q) \-(CH_2)_nNH-C(O)N-(diC1-6 alkyl),
(r) \-(CH_2)_nNH-S(O)k-C1-6alkyl,
(s) \-(CH_2)_nN(C1-3alkyl)-C(O)-N(diC1-6 alkyl),
(t) \-(CH_2)_n-heteroaryl or -C(O)-heteroaryl or
\-(CH_2)_n-O-heteroaryl\), wherein the heteroaryl is selected
from the group consisting of:
(1) benzimidazolyl,
(2) benzofuranyl,
(3) benzoazolyl.
(4) furanyl,
(5) imidazolyl,
(6) indolyl,
(7) isoaxazolyl,
(8) isothiazolyl,
(9) oxadiazolyl,
(10) oxazolyl,
(11) pyrazinyl,
(12) pyrazolyl,
(13) pyridyl or oxopyridyl,
(14) pyrimidyl,
(15) pyrrolyl,
(16) quinolyl,
(17) tetrazolyl,
(18) thiadiazolyl,
(19) thiazolyl,
(20) thienyl,
(21) triazolyl, wherein
the heteroaryl group of items (1) to (21) is unsubstituted, mono, di or
tri substituted, the substituents selected from:

(a) hydrogen,
(b) C1-6 alkyl, branched or unbranched,
 unsubstituted or mono or di-substituted, the
 substituents being selected from hydrogen and
 hydroxy,
(c) hydroxy,
(d) oxo,
(e) OR6,
(f) halogen,
(g) trifluoromethyl,
(h) nitro,
(i) cyano,
(j) -NHR6,
(k) -NR6R7,
(l) -NHCOR6,
(m) -NR6COR7,
(n) -NHCO2R6,
(o) -NR6CO2R7,
(p) -NHS(O)jR6,
(q) -NR6S(O)jR7,
(r) -CONR6R7,
(s) -COR6,
(t) -CO2R6,
(u) -S(O)jR6;
R₆ is

(1) hydrogen,
(2) C₁-₆ alkyl, or mono or di-substituted C₁-₆ alkyl, the substituents independently selected from:
 (a) phenyl,
 (b) hydroxy,
 (c) oxo,
 (d) cyano,
(3) phenyl or mono di or tri-substituted phenyl, the substituents independently selected from:
 (a) hydroxy,
 (b) C₁-₃alkyl,
 (c) cyano,
 (d) halogen,
 (e) trifluoromethyl,

R₇ is

(1) hydrogen,
(2) C₁-₆ alkyl, or mono or di-substituted C₁-₆ alkyl, the substituents independently selected from:
 (a) phenyl unsubstituted or substituted with
 (1) hydroxy,
 (2) C₁-₃alkyl,
 (3) cyano,
 (4) halogen,
 (5) trifluoromethyl,
 (6) C₁-₃alkyloxy,
(30) hydroxy,
 (c) oxo,
 (d) cyano,
 (e) halogen,
 (f) trifluoromethyl,
(3) phenyl or mono di or tri-substituted phenyl, the substituents independently selected from:
 (a) hydroxy,
 (b) C₁-₃alkyl,
 (c) cyano,
 (d) halogen,
 (e) trifluoromethyl,

(4) naphthyl or mono di or tri-substituted naphthyl, the substituents independently selected from:
 (a) hydroxy,
 (b) C₁-₃alkyl,
 (c) cyano,
 (d) halogen,
 (e) trifluoromethyl,

(5) C₁-₃alkyloxy,

or
R₆ and R₇ are joined together to form a 5-, 6-, or 7-membered monocyclic saturated ring containing 1 or 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and in which the ring is unsubstituted or mono or di-substituted, the substituents independently selected from:

 (1) hydroxy,
 (2) oxo,
 (3) cyano,
 (4) halogen,
 (5) trifluoromethyl,

R₈ and R₉ are each independently hydrogen or substituted C₁-₄alkyl wherein the substituent is selected from the group consisting of

(1) hydroxy,
(2) hydrogen,
(3) cyano,
(4) halogen,
(5) trifluoromethyl,
(6) C₁₃-alkyloxy,
provided that when Ar is phenyl, pyridyl or pyrimidyl then Ar is mono
di or tri-substituted, and further provided that when Ar is mono
substituted phenyl then the substituent is other than halo, hydroxy,
-OC₁₃-alkyl, CF₃ or C₁₃-alkyl, and further provided that when Ar is
di- or tri-substituted, at least one of the substituents is other than halo,
hydroxy, -OC₁₃-alkyl, CF₃ or C₁₃-alkyl.

2. A compound according to Claim 1 wherein:

R₁ is selected from a group consisting of:
C₃, C₄, C₅, C₆, C₇ or C₈ linear or branched alkyl, unsubstituted
or mono, di or tri-substituted, the substituents independently
selected from:

(a) hydroxy,
(b) Cl or F,
(c) trifluoromethyl,
(d) phenyl or di-substituted phenyl, the substituents
independently selected from:

(1) phenyl,
(2) hydroxy,
(3) C₁₃-alkyl,
(4) cyano,
(5) halogen,
(6) trifluoromethyl,
(7) -NR₆COR₇,
(8) -NR₆CO₂R₇,
(9) -NR₆CONHR₇,
(10) -NR₆S(O)jR₇, wherein j is 1 or 2,
(11) -CONR₆R₇,
(12) -COR₆,
(13) -CO₂R₆,
(14) -OR₆,
(15) -S(O)k'R₆,
(e) -NR₆COR₇,
(f) -NR₆CO₂R₇,
(g) -NR₆CONHR₇,
(h) -NHS(O)jR₆,
(i) -COR₆,
(j) -OR₆,
(k) heteroaryl, wherein heteroaryl is selected from the group consisting of:

(1) pyrazinyl,
(2) pyrazolyl,
(3) pyridyl,
(4) pyrimidyl, and
(5) thiényl,

wherein the heteroaryl is unsubstituted or mono di or tri-substituted, the substituents independently selected from:

(a) phenyl,
(b) hydroxy,
(c) oxo,
(d) cyano,
(e) halogen, and
(f) trifluoromethyl,

Ar is selected from the group consisting of:

(1) phenyl,
(2) naphthyl,
(3) pyridyl,
(4) furyl,
(5) pyrryl,
(6) thiényl,
(7) isothiazolyl,
(8) imidazolyl,
(9) benzimidazolyl,
(10) tetrazolyl,
(11) pyrazinyl,
(12) pyrimidyl,
(13) quinoly1,
(14) isoquinoly1,
(15) benzofury1,
(16) isobenzofury1,
(17) benzothienyl,
(18) pyrazoly1,
(19) indoly1,
(20) isoindoly1,
(21) puriny1,
(22) carbazoly1,
(23) isoxazoly1,
(24) thiazoly1,
(25) oxazoly1,
(26) benzthiazoly1, and
(27) benzoaxazoly1,

and mono and di-substituted aryl as defined above in items (1) to (27) wherein the substituents are independently selected from:

(a) C1-3 alkyl, unsubstituted or substituted with

(1) oxo,
(2) hydroxy,
(3) OR6,
(4) halogen,
(5) trifluoromethyl,
(6) phenyl or mono, di or tri-substituted phenyl, the substituents independently selected from hydroxy, cyano, halogen, and trifluoromethyl,

(b) S(O)k-(C1-2 alkyl),
(c) S(O)k-NH,
(d) S(O)j-NH(C1-2 alkyl),
(e) S(O)j-NHR6,
(f) S(O)j-NR6-(C1-2 alkyl),
(g) CONH2,
(h) CONH-(C1-2 alkyl),
(i) CONHR₆,
(j) CONR₆-(C₁-₂ alkyl),
(k) CO₂H,
(l) CO₂-(C₁-₂ alkyl),
(m) CH₂NR₆-(C₁-₂ alkyl),
(n) CH₂NH-C(O)-C₁-₃alkyl,
(o) CH₂NH-C(O)NH₂,
(p) CH₂NH-C(O)NHC₁-₃alkyl,
(q) CH₂NH-C(O)N-(diC₁-₃ alkyl),
(r) CH₂NH-S(O)k-C₁-₃alkyl,
(s) -CH₂N(C₁-₃alkyl)-C(O)-N(diC₁-₃ alkyl),
(t) -CH₂-heteroaryl group, with the heteroaryl is selected from the group consisting of:

(1) benzimidazolyl,
(2) benzofuranyl,
(3) benzooxazolyl,
(4) furanyl,
(5) imidazolyl,
(6) indolyl,
(7) isooxazolyl,
(8) isothiazolyl,
(9) oxadiazolyl,
(10) oxazolyl,
(11) pyrazinyl,
(12) pyrazolyl,
(13) pyridyl,
(14) pyrimidyl,
(15) pyrrolyl,
(16) quinolyl,
(17) tetrazolyl,
(18) thiadiazolyl,
(19) thiazolyl,
(20) thienyl,
(21) triazolyl,
the heteroaryl group is unsubstituted, mono, di or tri-substituted, the
substituents selected from:

(a) hydrogen,
(b) C\textsubscript{1-6} alkyl, branched or unbranched,
5 unstated or mono or di-substituted, the
substituents being selected from hydrogen and
hydroxy,
(c) hydroxy,
(d) oxo,
10 (e) OR\textsubscript{6},
(f) halogen,
(g) trifluoromethyl,
(h) nitro,
15 (i) cyano,
(j) NHR\textsubscript{6},
(k) NR\textsubscript{6}R\textsubscript{7},
(l) NHCOR\textsubscript{6},
(m) NR\textsubscript{6}COR\textsubscript{7},
20 (n) NHCO\textsubscript{2}R\textsubscript{6},
(o) NR\textsubscript{6}CO\textsubscript{2}R\textsubscript{7},
(p) NHS(O)\textsubscript{j}R\textsubscript{6},
(q) NR\textsubscript{6}S(O)\textsubscript{j}R\textsubscript{7},
(r) CONR\textsubscript{6}R\textsubscript{7},
25 (s) COR\textsubscript{6},
(t) CO\textsubscript{2}R\textsubscript{6},
(u) S(O)\textsubscript{j}R\textsubscript{6}.

R\textsubscript{6} is selected from:

(1) hydrogen,
30 (2) C\textsubscript{1-6} alkyl, or mono or di-substituted C\textsubscript{1-6} alkyl, the
substituents independently selected from:
(a) phenyl,
(b) hydroxy,
(c) oxo,
(d) cyano,
(e) halogen,
(f) trifluoromethyl,

(3) phenyl or mono di or tri-substituted phenyl, the substituents
independently selected from:
(a) hydroxy,
(b) C₁-3alkyl,
(c) cyano,
(d) halogen,
(e) trifluoromethyl;

R₇ is selected from:
(1) hydrogen,
(2) C₁-6 alkyl, or mono or di-substituted C₁-6 alkyl, the
substituents independently selected from:
(a) phenyl,
(b) hydroxy,
(c) oxo,
(d) cyano,
(e) halogen,
(f) trifluoromethyl,

(3) phenyl naphthyl or mono di or tri-substituted phenyl, or
naphthyl the substituents independently selected from:
(a) hydroxy,
(b) C₁-3alkyl,
(c) cyano,
(d) halogen,
(e) trifluoromethyl, or

(4) C₁-3alkyloxy,

or

R₆ and R₇ are joined together to form a 5-, 6-, or 7-
membered monocyclic saturated ring containing 1 or 2
heteroatoms independently selected from nitrogen, oxygen,
and sulfur, and in which the ring is unsubstituted or mono
or di-substituted, the substituents independently selected
from:

(1) hydroxy,
(2) oxo,
(3) cyano,
(4) halogen, or
(5) trifluoromethyl;

R₈ and R₉ are each independently hydrogen or substituted C₁₋₄alkyl

wherein the substituent is selected from the group consisting of

(1) hydroxy,
(2) hydrogen,
(3) halogen,

provided that when Ar is phenyl, pyridyl or pyrimidyl then Ar is mono
di or tri-substituted, and further provided that when Ar is mono
substituted phenyl then the substituent is other than halo, hydroxy,

-OC₁₋₄alkyl, CF₃ or C₁₋₄alkyl, and further provided that when Ar is
di- or tri-substituted, at least one of the substituents is other than halo, hydroxy, -OC₁₋₄alkyl, CF₃ or C₁₋₄alkyl.

3. A compound according to Claim 2 wherein:

R₁ is selected from a group consisting of:

C₄, C₅, C₆, C₇ or C₈ linear or branched alkyl, unsubstituted or
mono, di or tri-substituted, the substituents independently
selected from:

(a) hydroxy,
(b) Cl or F,
(c) phenyl or mono, di or tri-substituted phenyl, the
substituents independently selected from:

(1) phenyl,
(2) hydroxy,
(3) C₁₋₃alkyl,
(4) cyano,
(5) halogen,
(6) trifluoromethyl,
- 129 -

(d) \(-\text{NR}_6\text{COR}_7\), wherein \(R_6\) is hydrogen or C\(_{1-3}\) alkyl and \(R_7\) is phenyl optionally substituted with Cl, F, CF\(_3\) or C\(_{1-3}\)alkyl,

(e) \(-\text{NHS}(\text{O})j\text{R}_6\),

(f) \(-\text{COR}_6\),

(h) \(-\text{OR}_6\),

Ar is selected from the group consisting of:

(1) phenyl,
(2) pyrazinyl,
(3) pyrazolyl,
(4) pyridyl,
(5) pyrimidyl, and
(6) thienyl,

wherein Ar is unsubstituted or mono or di-substituted, the substituents independently selected from

(a) C\(_{1-3}\) alkyl, unsubstituted or substituted with

(1) oxo,
(2) hydroxy,
(3) \(\text{OR}_6\),

(4) halogen,
(5) trifluoromethyl,

(b) CONR\(_6\)-(C\(_{1-2}\) alkyl),

(c) \(\text{CO}_2\text{H}\),

(d) \(\text{CO}_2\)-(C\(_{1-2}\) alkyl),

(e) CH\(_2\)NR\(_6\)-(C\(_{1-2}\) alkyl),

(f) CH\(_2\)NH-C(O)-C\(_{1-3}\)alkyl,

(h) CH\(_2\)NH-C(O)NH\(_2\),

(i) CH\(_2\)NH-C(O)NHC\(_{1-3}\)alkyl,

(j) CH\(_2\)NH-C(O)N-diC\(_{1-3}\) alkyl),

(k) CH\(_2\)NH-S(O)k-C\(_{1-3}\)alkyl,

(l) CH\(_2\)-heteroaryl group, with the heteroaryls selected from the group consisting of:

(1) imidazolyl,
(2) oxazolyl,
(3) pyridyl,
(4) tetrazolyl,
(5) triazolyl,
the heteroaryl group is unsubstituted, mono, di or tri-
substituted, the substituents selected from:

(a) hydrogen,
(b) C₁₋₆ alkyl, branched or unbranched,
 unsubstituted or mono or di-substituted, the
 substituents being selected from hydrogen and
 hydroxy; and
R₉ is hydrogen.

4. A compound according to Claim 3 wherein:

R₁ is selected from a group consisting of:

C₄, C₅, C₆, C₇ or C₈ linear or branched alkyl, mono,
di- or tri-substituted, the substituents independently selected
from:
(a) hydroxy,
(b) Cl or F,
(c) phenyl or mono or di-substituted phenyl, the substituents
 independently selected from:
 (1) hydroxy,
 (2) methyl or ethyl,
 (3) Cl or F,
 (4) trifluoromethyl,
(d) -NR₆COR₇, wherein R₆ is methyl and R₇ is phenyl
 optionally substituted with halo, CF₃, C₁₋₃alkyl or
 C₁₋₃alkoxy.

5. A compound according to Claim 4 wherein
Ar is mono substituted or di-substituted phenyl or pyridyl wherein the
substituents are selected from the group consisting of:
(a) C₁₋₃ alkyl, unsubstituted or substituted with
 (1) oxo,
(2) hydroxy,
(3) OR₆,
(b) -CH₂NR₆-(C₁-2 alkyl),
(c) -CH₂NH-C(O)-C₁-3alkyl,
(d) -CH₂NH-C(O)NH₂,
(i) -CH₂NH-C(O)NHC₁-3alkyl,
(j) -CH₂NH-C(O)N-diC₁-3 alkyl,
(k) -CH₂NH-S(O)k-C₁-3alkyl,
(l) -CH₂-heteroaryl group, with the heteroaryls selected from
the group consisting of:
(1) imidazolyl,
(2) oxazolyl,
(3) pyridyl,
(4) tetrazolyl,
(5) triazolyl,
the heteroaryl group is unsubstituted, mono, di or tri-
substituted, the substituents selected from:
(a) hydrogen,
(b) C₁-6 alkyl, branched or unbranched,
unsubstituted or mono or di-substituted, the
substituents being selected from hydrogen and
hydroxy; and
R₈ is hydrogen.

6. A compound according to Claim 5 wherein:
R₁ is

\[
\begin{array}{c}
\text{or}
\end{array}
\]
where B is

(a) phenyl or naphthyl or mono di or tri-substituted phenyl or naphthyl wherein the substituents are independently chloro, methyl, phenyl,

\[C_1-3\text{alkoxy}, \text{ or } CF_3; \]

(b) -CH₂phenyl or mono or di-substituted -CH₂phenyl wherein the substituents are independently chloro, methyl, phenyl, \[C_1-3\text{alkoxy or } CF_3; \]

(c) pyridyl or mono di or tri-substituted pyridyl wherein the substituents are independently chloro, methyl, phenyl, \[C_1-3\text{alkoxy or } CF_3; \] and

(d) thiophene or mono or disubstituted thiophene wherein the substituents are independently chloro, methyl, phenyl, \[C_1-3\text{alkoxy or } CF_3; \] and

\[Ar \] is mono substituted phenyl wherein the substituent is selected from the group consisting of:

(a) -CH₂-tetrazolyl,

(b) -CH₂-triazolyl,

(c) -CH₂-imidazolyl,

(d) -CH₂-N(H)C(O)N(CH₃)₂,

(e) -CH₂-N(H)C(O)N(H)CH₃,

(f) -CH₂-N(H)C(O)CH₃, and

(g) -CH₂-N(H)S(O)₂CH₃,

(h) -CH₂-pyridyl,

(i) -CH₂-oxopyridyl,

(j) -CH₂-O-pyridyl,

(k) mono or di-substituted purine wherein the substituents are selected from:

(1) \[C_1-3\text{alkyl}, \]

(2) \[C_1-3\text{alkoxy}, \]

(3) fluoro,

(4) hydrogen, and

(5) fluoro\[C_1-3\text{alkyl}. \]
7. A compound according to Claim 1 wherein Ar is unsubstituted or mono substituted phenyl wherein the substituent is selected from the group consisting of:

- Chemical structures of various compounds are shown, including substituted phenyl groups with different functional groups.

5
8. A compound according to Claim 1 wherein Ar is unsubstituted or mono substituted group selected from:
9. A compound according to Claim 8 wherein:

\(\text{R}_1 \) is selected from a group consisting of:

- C3, C4, C5, C6, C7 or C8 linear or branched alkyl,
- mono, di, tri- or tetra-substituted, the substituents independently selected from:
 - (a) hydroxy,
 - (b) Cl or F,
 - (c) trifluoromethyl,
- (d) phenyl or di-substituted phenyl, the substituents independently selected from:
 - (1) phenyl,
 - (2) hydroxy,
 - (3) \(\text{C}_1\text{-3alkyl}, \)
 - (4) cyano,
 - (5) halogen,
 - (6) trifluoromethyl,
 - (7) \(-\text{NR}_6\text{COR}_7,\)
 - (8) \(-\text{NR}_6\text{CO}_2\text{R}_7,\)
 - (9) \(-\text{NR}_6\text{CONHR}_7,\)
 - (10) \(-\text{NR}_6\text{S(O)}_j\text{R}_7, \) wherein \(j \) is 1 or 2,
 - (11) \(-\text{CONR}_6\text{R}_7,\)
 - (12) \(-\text{COR}_6,\)
 - (13) \(-\text{CO}_2\text{R}_6,\)
 - (14) \(-\text{OR}_6,\)
 - (15) \(-\text{S(O)}_k\text{R}_6,\)
 - (e) \(-\text{NR}_6\text{COR}_7,\)
 - (f) \(-\text{NR}_6\text{CO}_2\text{R}_7,\)
 - (g) \(-\text{NR}_6\text{CONHR}_7,\)
 - (h) \(-\text{NHS(O)}_j\text{R}_6,\)
 - (i) \(-\text{COR}_6,\)
 - (j) \(-\text{OR}_6,\)
 - (k) heteroaryl, wherein heteroaryl is selected from the group consisting of:
(1) pyrazinyl,
(2) pyrazolyl,
(3) pyridyl,
(4) pyrimidyl, and
(5) thienyl,

wherein the heteroaryl is unsubstituted or mono di or tri-substituted, the substituents independently selected from:

(a) phenyl,
(b) hydroxy,
(c) oxo,
(d) cyano,
(e) halogen, and
(f) trifluoromethyl;

R₆ is selected from:

(1) hydrogen,
(2) C₁-6 alkyl, or mono or di-substituted C₁-6 alkyl, the substituents independently selected from:

(a) phenyl,
(b) hydroxy,
(c) oxo,
(d) cyano,
(e) halogen,
(f) trifluoromethyl,

(3) phenyl or mono di or tri-substituted phenyl, the substituents independently selected from:

(a) hydroxy,
(b) C₁-3alkyl,
(d) cyano,
(e) halogen,
(f) trifluoromethyl;

R₇ is selected from:

(1) hydrogen,
(2) C₁-₆ alkyl, or mono or di-substituted C₁-₆ alkyl, the substituents independently selected from:
 (a) phenyl,
 (b) hydroxy,
 (c) oxo,
 (d) cyano,
 (e) halogen,
 (f) trifluoromethyl,
(3) phenyl or mono di or tri-substituted phenyl, the substituents independently selected from:
 (a) hydroxy,
 (b) C₁-₃alkyl,
 (c) cyano,
 (d) halogen,
 (e) trifluoromethyl, or
(4) C₁-₃alkyloxy,
or
R₆ and R₇ are joined together to form a 5-, 6-, or 7-membered monocyclic saturated ring containing 1 or 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and in which the ring is unsubstituted or mono or di-substituted, the substituents independently selected from:
 (a) hydroxy,
 (b) oxo,
 (c) cyano,
 (d) halogen,
 (e) trifluoromethyl,

10. A compound according to Claim 9 wherein:

R₁ is selected from a group consisting of:
 C₄, C₅, C₆, C₇ or C₈ linear or branched alkyl,
 mono, di or tri-substituted, the substituents independently
selected from:

(a) hydroxy,
(b) Cl or F,
(c) phenyl or mono, di or tri-substituted phenyl, the
5subsituents independently selected from:
 (1) phenyl,
 (2) hydroxy,
 (3) C\textsubscript{1-3}alkyl,
 (4) cyano,
 (5) halogen,
 (6) trifluoromethyl,
(d) -NR\textsubscript{6}COR\textsubscript{7}, wherein R\textsubscript{6} is hydrogen or C\textsubscript{1-3} alkyl and R\textsubscript{7} is phenyl optionally substituted with Cl, F, CF\textsubscript{3} or C\textsubscript{1-3}alkyl,

(e) -NHS(O)jR\textsubscript{6},
(f) -COR\textsubscript{6},
(g) -OR\textsubscript{6}.

11. A compound according to Claim 10 wherein:

R\textsubscript{1} is selected from a group consisting of:
C\textsubscript{4}, C\textsubscript{5}, C\textsubscript{6}, C\textsubscript{7} or C\textsubscript{8} linear or branched alkyl,
mono, di or tri-substituted, the substituents independently
selected from:

(a) hydroxy,
(b) Cl or F,
(c) phenyl or mono or di-substituted phenyl, the substituents
independently selected from:
 (1) hydroxy,
 (2) methyl or ethyl,
 (3) Cl or F,
 (4) trifluoromethyl,
(d) -NR\textsubscript{6}COR\textsubscript{7}, wherein R\textsubscript{6} is methyl and R\textsubscript{7} is phenyl
optionally substituted with halo, CF\textsubscript{3}, C\textsubscript{1-3}alkyl or
- 139 -

C₁-3alkoxy.

12. A compound according to Claim 11 wherein:

\[
\text{R}_1 \text{ is}
\]

\[
\text{\begin{tabular}{c}
 & \text{B} \\
 & \text{Cl} \\
& \text{Cl}
\end{tabular}}
\]

where B is

(a) phenyl or naphthyl or mono di or tri-substituted phenyl or naphthyl wherein the substituents are independently chloro, methyl, phenyl,

(b) -CH₂ phenyl or mono or di-substituted -CH₂ phenyl wherein the substituents are independently chloro, methyl, phenyl, C₁-3alkoxy or CF₃;

(c) pyridyl or mono di or tri-substituted pyridyl wherein the substituents are independently chloro, methyl, phenyl, C₁-3alkoxy or CF₃; and

(d) thiophene or mono or di-substituted thiophene wherein the substituents are independently chloro, methyl, phenyl, C₁-3alkoxy or CF₃.

13. A compound according to Claim 12 wherein:

\[B \text{ is}
\]

phenyl or mono di or tri-substituted phenyl wherein the substituents are independently chloro, methyl, phenyl or CF₃.
14. A compound selected from the group consisting of

![Chemical Structure 1]

![Chemical Structure 2]

![Chemical Structure 3]
15. A compound of the formula

wherein

<table>
<thead>
<tr>
<th>R_a</th>
<th>R_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>3,5-diMe</td>
</tr>
<tr>
<td>NCOCH_3</td>
<td>3,5-diCl</td>
</tr>
<tr>
<td>C_6H_5</td>
<td>3,5-diCF$_3$</td>
</tr>
</tbody>
</table>
16. A compound selected from the group consisting of
(a) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl-(methylamino))butyl)-4-(2-acetylaminomethyl)-phenyl-piperazine;
(b) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dichlorobenzoyl-(methylamino))butyl)-4-(2-acetylaminomethylphenyl)-piperazine;
(c) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl-(methylamino))butyl)-4-((2-methylaminocarbonylaminomethyl)phenyl)-piperazine;
(d) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl (methylamino))butyl)-4-((2-dimethylaminocarbonylaminomethyl)phenyl)-piperazine;
(e) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl-(methylamino))butyl)-4-(2-methylsulfonylaminomethylphenyl)-piperazine;
(f) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dichlorobenzoyl-(methylamino))butyl)-4-((2-methylaminocarbonylaminomethyl)phenyl)-piperazine;
(g) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dichlorobenzoyl-(methylamino))butyl)-4-((2-dimethylaminocarbonylaminomethyl)phenyl)-piperazine;
(h) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dichlorobenzoyl-(methylamino))butyl)-4-(2-methylsulfonylaminomethylphenyl)-piperazine;
(i) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl-(methylamino))butyl)-4-(2-(1'-imidazolyl)methyl)phenyl)-piperazine;
(j) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dichlorobenzoyl-(methylamino))butyl)-4-(2-(1'-(1',2',4'-triazolyl)methyl)phenyl)-piperazine;
(k) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl-(methylamino))butyl)-4-(2-(1'-(1',2',4'-triazolyl)methyl)phenyl)-piperazine;
(l) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl- (methylamino))butyl)-4-(2-1'-(1',2',3',4'-tetrazolyl)methylphenyl)piperazine;

(m) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl- (methylamino))butyl)-4-(2-(3'-pyridyloxy)methylphenyl)piperazine;

(n) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-3,5-dimethylbenzoyl- (methylamino))butyl)-4-(2-(1'-2'(1'H)-pyridone)methylphenyl)piperazine;

(o) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methyl-amino))butyl)-4-(2-amino-7,8-dihydro-6H-thiopyrano(3,2-d)pyrimid-4-yl)piperazine-5-oxide;

(p) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methyl-amino))butyl)-4-(2-methyl-7,8-dihydro-6H-thiopyrano(3,2-d)pyrimid-4-yl)piperazine-5-oxide.

(q) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(9-(2-fluoroethyl)-2-methoxy-purin-6-yl) piperazine.

(r) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(9-(2-methoxymethyl)-2-methoxy-purin-6-yl) piperazine;

(s) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(9-methyl-purin-6-yl)piperazine;

(t) 1-(3-((S)-(4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(9-methyl-purin-6-yl)piperazine;

(u) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(6-methyl-imidazo(1,2-a)pyrazin-1-yl) piperazine;

(v) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(1,7-naphthyridin-8-yl)piperazine;

(w) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(1,2,4-triazolo(1,5-a)pyrazin-8-yl)piperazine;
(x) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(5-methyl-pyrid-2-yl)piperazine;
(y) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-amino-pyrazin-4-yl)piperazine;
(z) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-amino-7,8-dihydro-6H-thiopyrano(3,2-d)pyrimid-4-yl)piperazine;
(ab) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-dimethylbenzoyl)-(methylamino))butyl)-4-(2-methyl-7,8-dihydro-6H-thiopyrano(3,2-d)pyrimid-4-yl)piperazine;
(ac) 1-(3-((S)-(3,4-Dichlorophenyl))-4-(N-(3,5-bis(trifluoromethyl)benzoyl)-(methylamino))butyl)-4-(1,2,4-triazolo(1,5-a)pyrazin-8-yl)piperazine; and
(ad) 1-(3-((S)-(4-Chlorophenyl))-4-(N-(3,5-bis(trifluoromethyl)benzoyl)-(methylamino))butyl)-4-(1,2,4-triazolo(1,5-a)pyrazin-8-yl)piperazine.

17. A pharmaceutical composition for antagonizing the effect of substance P in a patient in need of such treatment comprising a pharmaceutically acceptable carrier and a non-toxic therapeutically effective amount of the compound of Claim 1.

18. A pharmaceutical composition for the antagonizing the effect of neurokinin A, in a patient in need of such treatment comprising a pharmaceutically acceptable carrier and a non-toxic therapeutically effective amount of the compound of Claim 1.

19. A pharmaceutical composition for treating respiratory disease, in a patient in need of such treatment comprising a pharmaceutically acceptable carrier, a non-toxic therapeutically effective amount of the compound of Claim 1 and a non-toxic
therapeutically effective amount of compound selected from the group consisting of a leukotriene antagonist and a β2 agonist.

20. A method of treating respiratory disease in a patient in need of such treatment which comprises the administration to the patient of a non-toxic therapeutically effective amount of the compound according to Claim 1 and optionally a non-toxic therapeutically effective amount of compound selected from the group consisting of a leukotriene antagonist and a β2 agonist.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(6) : C07D 295/15, 403/14; A61K 31/495
 US CL : 544/360, 366, 370; 514/252, 255
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 U.S. : 544/360, 366, 370; 514/252, 255

 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 CAS Online

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

<table>
<thead>
<tr>
<th>*</th>
<th>Special categories of cited documents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A"</td>
<td>document defining the general state of the art which is not considered to be of particular relevance</td>
</tr>
<tr>
<td>"E"</td>
<td>earlier document published on or after the international filing date</td>
</tr>
<tr>
<td>"L"</td>
<td>document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</td>
</tr>
<tr>
<td>"O"</td>
<td>document referring to an oral disclosure, use, exhibition or other means</td>
</tr>
<tr>
<td>"P"</td>
<td>document published prior to the international filing date but later than the priority date claimed</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search: 05 JANUARY 1996

Date of mailing of the international search report: 30 JAN 1996

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
ROBERT GERSTL

Telephone No. (703) 308-1235

Form PCT/ISA/210 (second sheet)(July 1992)*
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
 6–13 and 1-5,14-20 (in part)

Remark on Protest □ The additional search fees were accompanied by the applicant’s protest.
□ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)★
BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING
This ISA found multiple inventions as follows:

I. Claims 6-13, and 1-5 (in part), 14-20 (in part), and are directed to compounds where Ar is phenyl or naphthyl.

II. Claims 1-5 (in part) and 14-30 (in part) are directed to compounds where Ar is heterocyclic.

Pursuant to PCT Rules 13.1 and 13.2 the compounds of Group II are properly separate from those of Group I since they are structurally different, made from different compounds, and do not suggest each other.