
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0023642 A1

US 2010.0023642A1

LADD et al. (43) Pub. Date: Jan. 28, 2010

(54) METHOD AND SYSTEM FOR Publication Classification
TRANSFORMING INPUT DATA STREAMS

(51) Int. Cl.
(75) Inventors: DENNIS D. LADD, ACTON, MA G06F 5/16 (2006.01)

(US); ANDERS HERMANSSON,
GOTHENBURG (SE) (52) U.S. Cl. .. 709/231

Correspondence Address:
HOWISON & ARNOTT, L.L.P
P.O. BOX 741715 (57) ABSTRACT
DALLAS, TX 75374-1715 (US)

The present system and method transforms an input data
(73) Assignee: DUTCH BRANCH OF stream in a first data format of a plurality of first data formats

STREAMSERVE to an output data stream in a second data format of a plurality
DEVELOPMENT AB, AT of second data formats. A plurality of input connector mod
ROTTERDAM (NL) ules receive respective input data streams and at least one

(21) Appl. No.: 12/573,352 input queue Stores the received input data streams. A plurality
of job threads is operatively connected to the at least one input

(22) Filed: Oct. 5, 2009 queue, each job thread, in parallel with at least one other job
O O thread, formatting a stored input data stream to produce an

Related U.S. Application Data output data stream. At least one output queue respectively
(63) Continuation of application No. 1 1/583,369, filed on stores the output data streams from the plurality of job

Oct. 19, 2006, which is a continuation of application
No. 10/184,430, filed on Jun. 28, 2002, now Pat. No.
7,127,520.

INPUT THREAD

threads. A plurality of output connector modules is opera
tively connected to the at least one output queue, the output
connector modules Supplying respective output data streams.

PARSING MODEL

THREAD JOB
MANAGER

PHYSICAL
OUTPUt

804

OUTPU RECEIVING
DATA DEVICE

STREAN 810

Patent Application Publication Jan. 28, 2010 Sheet 1 of 8 US 2010/0023642 A1

SYSTEM FOR
TRANSFORMING DATA

STREAMS

OB
THREAD

INPUT 116
CONNECTOR

100

UOB OUTPUT
THEAD CONNECTOR

NPUT 136
CONNECTOR

102

INPUT JOB OUTPUT
CONNECTOR THREAD CONNECTOR

104. 120 138

JOB OUTPUT
THREAD

122 D
RAW
DATA FORMATED -->

DATA REGUEST

FIG. 1

Patent Application Publication Jan. 28, 2010 Sheet 2 of 8 US 2010/0023642 A1

DESIGN PHASE 232 PROCESS TOOL
226

MAPPING
EVENT TOOL TOOL PROCESSING

220 222 RULES
224

PROVIDERS

TRANSFORMATION PROCESS
MODEL MODEL
212 218

TRANSFORMATION PROCESS
ENGINE ENGINE
240 242

INPUT
DATA

STREAM
200

OUTPUT
DATA

STREAM
208

CONSUMER

COMMUNICATION REYNG
MODEL

202 230 204

SOURCE
DEVICE

FG. 2

Patent Application Publication Jan. 28, 2010 Sheet 3 of 8 US 2010/0023642 A1

PROJECT TOOL 302

PROCESS
OUT EVENT IN

308 310

PAGEOUT OUTPUT
QUEUE
314

SAMPLE FILE
322 STREAMOUT

PAGEN
XMLOUT

STREAMIN
SMSOUT

MAILOUT

PLATFORM
CONFIGURATION

MESSAGE
CONFIGURATION

306

BUSINESS
APPLICATION

318

PARSING MODEL 324

OUTPUT
DATA
320

INPUT DATA
316 RUNTIME MODEL 326

SERVER 300

FIG. 3

Patent Application Publication Jan. 28, 2010 Sheet 4 of 8 US 2010/0023642 A1

MAN
THREAD PARSENGMODEL

400 404

INPUT THREAD 402

THREAD OB
MANAGER

INPUT
DATA

STREAM

OUTPUT PIPELINE 414

OUTPUT OUTPUT
DATA DEVICE

FIG. 4 STREAM 418

Patent Application Publication Jan. 28, 2010 Sheet 5 of 8

MAN
THREAD PARSING MODEL

500 502

INPUT THREAD 504

THREAD JOB PHYSICAL
NPUT FEER AET MANAGER
506 514

INPUT OATA Let Le LI
STREAM

US 2010/0023642 A1

OUTPUT PIPELINE 522

OUTPUT
DATA

FIG 5 STREAM

PHYSICAL
OUTPUT

528

RECEIVING
DEVICE
530

Patent Application Publication Jan. 28, 2010 Sheet 6 of 8 US 2010/0023642 A1

PARSING MODEL
612

INPUT THREAD 600

PHYSICAL THREAD UOB
INPUT FEER AET MANAGER

- 602 - - 604 INPUT
DATA

STREAM

OUTPUT PIPELINE 616

F.G. 6

Patent Application Publication Jan. 28, 2010 Sheet 7 of 8 US 2010/0023642 A1

UOB BEGIN

COLLECT BEGIN

EVENT 1
COLLECT

RETRIEVE RETRIEVE PASE
EVENT EVENT
DATA DATA

COLLECT BEGIN

EVENT 1

PRE-PROCESS
PRE- PRE- PHASE

PROCESS PROCESS 702
EVENT EVENT

OUTPUT BEGIN

EVENT 1 EVENT in

PROCESS

EXECUTE EXECUTE PA E
EVENT EVENT

OUTPUT END

UOBEND

TIME

FIG. 7

Patent Application Publication Jan. 28, 2010 Sheet 8 of 8 US 2010/0023642 A1

PARSING MODEL

THREAD JOB
MANAGER

INPUT THREAD

INPUT
DATA

STREAM 1st

OUTPUT PIPELINE 800

PHYSICAL
OUTPUT

804

OUTPUT RECEIVING
DATA DEVICE

FIG. 8 STREAM 810

US 2010/0023642 A1

METHOD AND SYSTEM FOR
TRANSFORMING INPUT DATA STREAMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 1 1/583,369, filed on Oct. 19, 2006, and
entitled METHOD AND SYSTEM FORTRANSFORM
ING INPUT DATA STREAMS, which application is a con
tinuation of U.S. patent application Ser. No. 10/184,430, filed
on Jun. 28, 2002, entitled “Method and System for Trans
forming Input Data Streams, now U.S. Pat. No. 7,127.520,
both of which are incorporated herein by reference in their
entirety.

BACKGROUND

0002. The field of the invention relates to data transforma
tion, and more particularly, to apparatus and method for trans
forming an input data stream in a first data format of a plu
rality of first data formats to an output data stream in a second
data format of a plurality of second data formats.
0003 Businesses communication has become increas
ingly complex. The demands of business trends such as Cus
tomer Relationship Management and Supply Chain Manage
ment combined with emerging communication technologies,
which allow business partners to share information instantly,
are mainly responsible for this communication evolution. The
number of business partners and the means with which they
collaborate (using e-mail, fax, public internet and mobile
devices) are steadily increasing. Adding to this complexity, a
growing number of customers and Suppliers require that the
communication be tailored to their specific needs. In short,
businesses today need to provide communication processes
that are automated and personalized. Meeting this challenge
requires a new understanding of business communications in
the age of the Internet. Thus, there is a need for better control
of the complexity of business communication.

BRIEF DESCRIPTION OF THE DRAWINGS

0004. The features of the present invention, which are
believed to be novel, are set forth with particularity in the
appended claims. The invention may best be understood by
reference to the following description taken in conjunction
with the accompanying drawings, in the several figures of
which like reference numerals identify like elements, and in
which:
0005 FIG. 1 is a general block diagram of one embodi
ment of a system for transforming an input data stream in a
first data format of a plurality of first data formats to an output
data stream in a second data format off a plurality of second
data formats;
0006 FIG. 2 is a more detailed block diagram of one
embodiment of the system;
0007 FIG. 3 is a further block diagram of an implemen
tation of one embodiment of the system;
0008 FIG. 4 is a block diagram of one embodiment of a
portion of the system;
0009 FIG. 5 is a block diagram of another embodiment of
a portion of the system;
0010 FIG. 6 is a block diagram of yet another embodi
ment of a portion of the system;
0011 FIG. 7 is a diagram of run-time phases of an embodi
ment of the system; and

Jan. 28, 2010

0012 FIG. 8 is block diagram of a further embodiment of
a portion of the system.

DETAILED DESCRIPTION

0013 While the present invention is susceptible of
embodiments in various forms, there is shown in the drawings
and will hereinafter be described some exemplary and non
limiting embodiments, with the understanding that the
present disclosure is to be considered an exemplification of
the invention and is not intended to limit the invention to the
specific embodiments illustrated.
0014. One embodiment of a system for transforming an
input data stream in a first data format of a plurality of first
data formats to an output data stream in a second data format
of a plurality of second data formats is depicted in FIG.1. A
plurality of input connector modules 100, 102, 104 receive
respective input data streams 106, 108, 110. A plurality of
input queues 112, 114 store the received input data streams
106, 108, 110. A plurality of job threads 116, 118, 120, 122
are operatively connected to respective input queues 112,
114. Each job thread (116, 118, 120, 122) in parallel with at
least one other job thread (116, 118, 120, 122) formatting a
stored input data stream to produce an output data stream
(124, 126, 128, 130). A plurality of output queues 132, 134
respectively store the output data streams 124, 126, 128, 130
from the plurality of job threads 116, 118, 120, 122. A plu
rality of output connector modules 136, 138, 140 are opera
tively connected to the output queues 132, 134, the output
connector modules 136,138,140 supplying respective output
data streams (124, 126, 129, 130). It is to be understood that
the novel system may have any number of input connector
modules 100, 102, 104, input queues 112, 114, job threads
116, 118, 120, 122, output queues 132, 134, and output con
nector modules 136, 138,140. Also, there is no restriction on
how they may be shared and FIG. 1 is only one example of a
system configuration. Furthermore, a job thread may be
directly connected to an input connector and/or to an output
connector (see job thread 122 and output connector 140 in
FIG. 1, for example).
0015 FIG.2 depicts an embodiment of the system in more
detail. An input data stream 200 from a source device 202 or
application (provider) is evaluated and manipulated based on
the data content, transmission protocol and data format
requirements of the receiving device 204 or application (con
Sumer). Input can originate from a number of sources, refined
and then multiplexed to multiple output channels. Thus, one
to-many and many-to-many processing from provider to con
Sumer is possible.
0016. The input is processed according to communication
rules 224, which define how the content is transformed, deliv
ered and presented to the consumer. The communication rules
224 are applied based on matching the input from the source
device 202 to the requirements of the receiving device 204 of
the output data stream 208.
0017. At runtime, the input data stream 200 is described in
an event parsing model 210 and a corresponding transforma
tion model 212 upon which the data transformation is based.
The data stream is manipulated based on mapping rules 214 in
the transformation model 212, communication rules 216 in
the process model 218 and the content and structure of the
input event.
0018. The event parsing model 210, transformation model
212, and process model 218 are statically defined in a design
phase and determine the global framework for the communi

US 2010/0023642 A1

cation process between the provider (source device 202) and
the consumer (receiving device 204). The input event parsing
model 210 is defined using an event tool 220, which defines
the sequences and patterns to detect in the input data stream
200. The transformation model 212 can correspond to the
event parsing model 210 or can consist of a combination of
events derived from the data stream or from additional map
ping rules defined at design time in a mapping tool 222. The
processing rules 224 for the presentation and delivery to the
output data stream is defined in the process tool 226.
0019. External communication rules for the processing
and delivery of the information personalized for the consumer
is derived from a matching consumer model 230 at run time.
The consumer model 230 is dynamic and need not be pre
defined before the information is transformed or processed at
runtime. The consumer model 230 is applied to the process
ing model 218 to determine the actual communication rules
206.

0020. The event tool 220, the mapping tool 222, and the
process tool 226 occur in the design phase 232. The event
parsing model 210, the transformation model 212, and the
process model 218 form the provider schema 234. In the
runtime phase 236 the input data stream 200 is received by an
event agent 238, which parses the input data stream 200. A
transformation engine 240 effects the actual transformation
of the data from one format to another format. A process
engine 242 then applies the communication rules 224 and
sends the output data stream 208 to the receiving device 204.
0021. The multi-threading system increases the perfor
mance and provides Support for parallel job execution. This
system architecture also offers better scalability for multi
processor Systems. All threads are connected to queues and/or
connectors, enabling extremely flexible configuration. Sev
eral job threads can serve one or several queues and several
input connectors can use one or several queues and job
threads.
0022. In one embodiment job threads pick up data from
the queue in the same order as it was stored. Jobs that arrive
via input connectors are stored in input queues, and job
threads pick up the jobs and execute them independently of
other job threads. When an input connector has written a job
to a queue, that connector is immediately ready to receive
more data; it does not have to wait for the system to process
previous jobs. After processing, jobs are stored in output
queues, from where output connectors can pick them up and
pass them on to their final destination. Thus, the use of queu
ing is one embodiment of the system.
0023 The following is a more detailed description of the
operation of the system and method for transforming an input
data stream in a first data format of a plurality of first data
formats to an output data stream in a second data format of a
plurality of second data formats.
0024. In the embodiment depicted in FIG.3, the server 300

is the “main engine' and is configured using a project tool
302. All configurations are defined in the project tool 302 and
then exported in two text files 304,306 for platform configu
ration and message configuration to the server 300. The server
300 reads these files 304, 306 at startup and creates and
connects events 308, processes 310 and queues 312, 314
according to the instructions in the files 304, 306. This
embodiment focuses on how the server 300 builds its pipe
lines and how it processes data 316 from a business applica
tion 318 and provides output data 320. The system is appli
cable to other applications, which need to reformat data

Jan. 28, 2010

streams. During an initiation phase the project tool 302 uses a
sample file 322 from the business application 318. As will be
explained below, the server 300 has a paring model 324 and a
runtime model 326.

0025. The system is multi-threading, but for the purpose of
describing the operation of the system, the threading model is
considered to consist of a main thread 400 and input threads,
such as input thread 402 (see FIG. 4). The main thread 400 is
responsible for initiation. It parses all command line options,
all driver files and all export files from the project tool. Based
on this information it creates the parsing model 404. Finally it
creates one input thread 402 for each input queue, starts these
threads and then becomes passive. It remains passive until it
gets a signal that a user wants to terminate the server. When
this occurs, it stops all input threads, de-allocates all
resources and exits. Each input thread listens to a physical
port from which it can receive data and execute any jobs found
on this port.
0026. The parsing model 404 is created as a read-only
object by the main thread 400 at startup and cannot be
changed. The parsing model 404 contains all the information
specified by the user in the project tool. This information is
exported to the server and stored in the parsing model 404.
0027. The parsing model 404 communicates with the
objects in the runtime model and provides information Such
as: agent information, which is information about which
agent 406 a thread job manager 408 shall use; variable infor
mation, which is information about which variables to create
and instantiate; message structure, which is information
about how to structure a message (such as messages 410.
412); output action, which is how the process communicates
with the parsing model 404 to receive instructions about
which actions to take (These actions may include sending
output to the output pipeline 414, running a script or carrying
out sorting, for example); Sorting information, which is infor
mation about whether sorting should be done or not; output
pipeline objects information, which is information regarding
how the thread job manager 408 creates the output pipeline
414 and makes Sure that the required objects are inserted into
the pipeline 414 based on information in the parsing model
404; events and processes information, which is information
regarding which events 416 to detect in the data stream and
which processes to launch when an event 416 is detected.
0028. The runtime model contains components that are
created at start-up and dynamic components that are created
during runtime. The main thread 500 creates the parsing
model 502 and all input threads, such as input thread 504.
These components cannot be changed during the session. All
other components, events, messages and output pipeline
objects, are dynamically created at runtime.
0029. The following is a step-by-step description of an
example of the flow in one embodiment of the runtime model.

0030) 1. When the server starts, the main thread 500
creates the parsing model and all input threads 504 by
using information in the files exported from the project
tool. When this is done, the main thread becomes idle
and listens only to a server shutdown command. When
this occurs, the main thread 500 is responsible for clos
ing all input threads 504.

0.031 2. Input data (from a business application, for
example) is received by a physical input 506.

0032. 3. A filter 508 in the input thread 504 ensures that
only relevant data is passed to an agent 510.

US 2010/0023642 A1

0033 4. When the agent 510 receives the data, the col
lect-phase begins. In this phase the agent 510 reads the
entire input file and then carries out the following steps
for each event 512 in the job;
0034. 4.1. The event 512 is identified and the data is
retrieved from it.

0035 4.2. A field list is created for the event 512.
0036 4.3. The retrieved script for the event 512 is
run. Once these steps have been carried out for each
event 512, Sorting (if any) is performed using vari
ables set in the events 512 and the retrieved scripts.

0037 5. The collect phase is now complete.
0038 6. When the thread job manager 514 receives
permission from the global thread manager, the first
event 512 is created by the thread job manager 514.
Information about how to create the event 512 is
retrieved from the parsing model 502.

0039 7. The agent 510 fills the event with fields.
0040 8. The event 512 creates a message 516 based on
the event's field list and the information in the parsing
model 502. A message tree is built using fields, blocks
and variables. The message 516 is then passed on to the
thread job manager 514.

0041 9. The threadjob manager 514 runs “script before
event'.

0042 10. The thread job manager 514 creates a process
520 by using information in the parsing model 502 and
message 518.

0043. 11. The thread job manager 514 runs “script
before process”.

0044 12. A check is made to determine if this process
should be skipped. A skip can be forced by a rule
attached to the process 529 or by executing a script
function “skip ()' in the “script before process'.

0045 1.3 If no skip is detected, the thread job manager
514 creates the output pipeline 522 for the process 520.
This is based on the information in the parsing model
504. The process 520 is then executed according to the
instructions in the parsing model 504 and in the data
flow. The output pipeline 522 may contain objects, such
as sort/archive 524, driver 526, physical output 528. The
output pipeline 522 may be operatively connected to a
receiving device 530.

0046) 14. When the process 520 is finished, “script after
process is executed.

0047 15. Steps 12 to 14 are repeated for all processes
520 defined for the event 512.

0048 16. When all processes 520 are created the thread
job manager 514 runs “script after event'.

0049 17. Steps 9 to 16 are performed for each event
S12.

0050. In another embodiment depicted in FIG. 6 an input
pipeline (input thread 600) consists of a pipeline of objects
that are connected through one data channel and one message
channel. The pipeline 600 always starts with a physical input
object 602 and ends with a thread job manager 604. Other
objects can be inserted between the physical input object 602
and the thread job manager 604. These objects can perform
various operations with the data as long as they send it to the
next object in the pipeline. Normally these objects are filters
606 that remove unwanted data from the data channel.
0051 Each input thread 600 consists of only one input
pipeline. Its only task is to find incoming jobs arriving at the
physical input object 602 and sendjobs down to the different

Jan. 28, 2010

objects in the pipeline. Eventually, it reaches the thread job
manager 604 that processes a job.
0.052 The physical input object 602 is a physical port
through which incoming data is received. It is also the start of
the input thread data, pipeline. A physical port may be one of
the following types: serial (receives data directly from a serial
port); directory scan (scans a file system directory for files
that match a file search criterion); device (listens directly to a
hardware device, e.g. a parallel port); standard input (listens
to standard input); TCP/IP sockets (listens to a socket for
incoming data); named pipe; (listens: to a named pipe); inter
nal (data is sent from a server output queue in the same
system); netware bindery (acts as a NetWare printer); netware
NDS (acts as a NetWare NDS printer).
0053. The physical input object 602 starts to listen for
incoming data. As soon as the physical input object 602
detects an incoming job the physical input object 602 sends
the job down the input thread data pipeline byte by byte as raw
data. How ports are listened to depend on the type of port.
0054 If a filter has been chosen for the input queue in
project tool, an input filter object 606 is inserted in the input
thread data pipeline 600 after the physical input object 602. If
several filters have been chosen, several filter objects are
inserted in serial in the pipeline 600.
0055. A filter's task is to remove unwanted sequences or to
convert sequences in the incoming data stream. An example
of removing sequences is a filter that removes PCL escape
codes and just sends the actual PCL document data to the next
object in the pipeline. An example of converting is a filter that
receives compressed (Zipped) data and uncompresses (un
Zips) it before sending it to the next object.
0056. The script language makes it possible at runtime to
decide what output to produce and to which queue to send it.
The script language is an event driven procedural language.
0057 The input thread data pipeline of the input thread
600 always ends with a thread job manager 604 Each thread
job manager 604 contains an agent 610. The thread job man
ager 604 is responsible for detecting events and launching and
controlling the events and processes.
0.058 An agent 610 is the interface between the thread job
manager 604 and the input thread data pipeline and receives
the incoming data. It is responsible for detecting events and
extracting fields in the raw data input stream. There may be
several different agents 610; each specialized for a specific
type of input. For example, one agent for record based input
from mainframes, another agent for XML data. The agent to
use is specified in the project tool. The thread job manager
604 finds this information in the parsing model 612. In one
embodiment the agent 610 receives data as one page and
breaks it down into a field list.
0059. The agent 610, when a job arrives and when events
are found in the job, notifies the thread job manager 604. The
thread job manager's main task is to control the execution of
the job (i.e. the events, Scripts, sorting and processes of the
job). When executing the job, the thread job manager 604
creates events and processes and makes Sure that they are
executed in the right order. When processes are executed, the
thread job manager 604 is also responsible for setting up the
output pipeline 616 for the process.
0060. In general, the main task for the process is to pro
duce output and send it to an output pipeline. The data may be
received as a message containing blocks that contain fields. In
this embodiment the execution is block driven, meaning that
the process identifies all blocks in the message and then

US 2010/0023642 A1

communicates with the parsing model to get instructions
about which actions to take for each block, for example, to
send output to the output pipeline, to runa Script or to perform
sorting. The type of output created differs depending on the
type of process used.
0061 The following are examples of types of processes.
The process “PageOUT produces a page layout. This is by far
the most complicated process and is used for creating docu
ments for printing, faxing, PDF, web etc. The process
“StreamOUT produces flat field and record based text files.
The process “XMLOUT produces XML output. This is a
special version of “StreamOUT'. The process “Mail OUT
produces e-mail and can also attach the result of another
process to the e-mail. The process "SMSOUT produces
SMS messages that can be sent to mobile phones.
0062. In another embodiment output sent to the output
pipeline is sent as meta records containing instructions for the
device drivers. An example of a meta record is as follows:
output the text". Inc.' at position x=346 and y=345 using font
Arial size 10. When fields and variables are used in the output,
the process retrieves the current field or variable value. This
means that a reference to a field or variable is never included
in meta records. Instead, the value of the field or variable is
sent. To the output pipeline objects, it is transparent if it is
static text or text from the incoming data that is being deliv
ered. The device drivers convert Meta records to device spe
cific output. The device drivers are part of the output pipeline.
0063. In threadjob execution the threadjob manager splits

all requests that receive and process into jobs. Each job con
sists of one or more events together with all processes belong
ing to these events. The processes can send their output to one
or more output pipelines. Each of these pipelines produce one
output entity for the complete job. For example if 30 invoices
are received at the input pipeline and a “PageOUT process
produces 30 invoices and sends the invoices to a spooler
system, these 30 invoices being sent as one print job to the
spooler.
0064. The default scope of a job is that each input file will
result in one job. However, the incoming file may be split the
incoming file into several Smaller jobs. The Smallest possible
job is when the job consists of only one event. The thread job
manager (actually the thread job manager agent) is respon
sible for deciding when a job starts and ends. Normally this is
straight forward since one incoming request to a physical
input object will result in one job.
0065. There can be many reasons for dividing a large job
into smaller jobs. For example, there may be one entry in the
spooler system for each process, for example for each invoice.
In a further embodiment some settings may be sent to the
output queue. This is usually performed at the beginning of
the job, for example downloading overlay files to a printer.
0066. One example of an implementation of the system
occurs when an external application that is required to process
an outputjob sends this job as one file to the system. When the
agent receives the job and recognizes it as something that
should trigger an event, the job begins. This sends signals to
the thread job manager for the job to begin and for the collect
phase 700 to begin (see FIG. 7).
0067. The agent will now start to scan the input for fields
and new events. All fields found are stored in a list that is
associated with the current event. If, in the parsing model, the
field is designated to create a variable, this is done at this
stage. If a new event is found it will be added to a list of found
events, and any fields found after this will be associated with

Jan. 28, 2010

this event. This process continues until a list of all events, with
all fields, has been created. This signals an end of the collect
phase 700 to the thread job manager. The Collect phase is
necessary for creating this list, which in turn is used to sort the
incoming events. Information is stored in the parsing model
about whether or not sorting should be carried out.
0068. The thread job manager will now pre-process all
events and processes belonging to the job in a pre-process
phase 702. During the pre-process phase 702 the whole job is
executed, but without sending anything to the output pipeline.
The pre-process phase 702 is used, for example, to calculate
the number of pages and where page breaks occur and to
determine which resources are to be used. A resource may, for
example, be an overlay that should be sent to a printer. It is
also possible to cancel the job, that is undo everything that has
been done in the job and skip the rest of the input. This can be
done conditionally, based on input field values, in Scripts.
Event and process execution is carried out in, the pre-process
phase 702 in the following order:

0069. 1 The first event in the event list is pre-processed
first, then all the processes for this event.

0070 2 The next event in the event list, together with its
processes, is preprocessed.

0071. 3 This continues until all the events in the list have
been pre-processed.

0072. Note that this is the order after events have been
Sorted. Before and after each event and process a script is run.
In this script, the process can conditionally be skipped.
0073. Now the thread job manager has stored all informa
tion needed from the pre-process phase 702 and can execute
the events and processes in a process phase 704. First, it
performs a rollback on everything. For example, variables are
restored to their values before the pre-process phase 702 and
ODBC operations that have been executed in a transaction are
rolled-back. Next it sends any resources (for example, over
lays) that were found during the pre-process phase 702 to the
output pipeline. The events and processes are executed in the
process phase 704 in the same order as in the pre-process
phase 702. The difference is that this time the output is actu
ally sent to the output pipeline. After the last process is
executed, the job is complete. The thread job manager
releases all resources that were temporarily assigned.
0074. In FIG. 8 the output pipeline 800 consists of a pipe
line of objects that are connected through one data channel
and one message channel. The pipeline 800 always starts with
a process 802 and ends with a physical output object 804.
Between the process 802 and the physical output object 804
other objects may be inserted. These objects may be used to
perform various operations with the data and then pass the
data on to the next object in the pipeline 800. Examples of
operations that may be performed in various embodiments are
sorting, or splitting the pipeline into two branches (such as
sorting object 806). Also one of the objects may be a device
driver 808 that converts the metadata into formatted data.
0075. The physical output object 804 always points to a
physical destination, such as receiving device 810. This can,
for example, be a printer or an e-mail server. The physical
output object 804 is responsible for the actual delivery of the
output data to its final destination.
0076. Different objects may be included in the pipeline
800 depending on information in the parsing model. The
thread job manager creates the output pipeline 800 and

US 2010/0023642 A1

ensures that the required objects are inserted in the pipeline
800. The threadjob manager also connects the pipeline 800 to
the process 802.
0077. In one embodiment the following rules may apply to

all output pipelines in the system: Each physical output object
corresponds to one, and only one, queue as defined in the
parsing model. There may only be one pipeline for each
physical output object. The physical output object for a pipe
line is always the same throughout an entire job. The pipeline
is always connected to one process at a time. These rules
imply that output from different processes in the same job,
that use the same physical output object, will be kept together,
that is, delivered as one unit to the final destination, for
example a spooler system.
0078. In the data channel, the process sends meta records
down the pipeline. If there is a device driver in the pipeline, it
reformats the meta record according to the format expected
by the destination. Eventually the information reaches the
physical output object, which sends it to a physical destina
tion, for example, a spooler system or a file. The message
channel is used by the threadjob manager to send messages to
notify the objects in the pipeline when certain events occur.
0079. Output processors or objects may be inserted any
where in the pipeline. These processors may change the data
that is sent through the data channel. It is also possible to use
a pipeline without any output processors, that is a pipeline
with just a device driver and a physical output object.
0080 Thus in general terms the present system (and the
corresponding method) is for transforming an input data
stream in a first data format of a plurality of first data formats
to an output data stream in a second data format of a plurality
of second data formats. A plurality of input connector mod
ules receive respective input data streams and at least one
input queue Stores the received input data streams. A plurality
of job threads is operatively connected to the at least one input
queue, each job thread, in parallel with at least one other job
thread, formatting a stored input data stream to produce an
output data stream. At least one output queue respectively
stores the output data streams from the plurality of job
threads. A plurality of output connector modules is opera
tively connected to the at least one output queue, the output
connector modules Supplying respective output data streams.
0081. In an embodiment each of the job threads has at least
one event agent associated with at least one parsing model,
the event agent having an input port that receives an input data
stream, and having an output port. At least one transformation
engine is associated with at least one transformation model,
the transformation engine having an input port operatively
connected to the output port of the event agent. At least one
process engine is associated with at least one process model,
the process engine having an input port operatively connected
to the output port of the transformation engine, and having an
output port for Supplying an output data stream. The transfor
mation model has mapping rules for manipulating the input

Jan. 28, 2010

data stream, and the process model has communication rules
for formatting the output data stream.
I0082 In another embodiment the at least one input queue
may be shared between the input connector modules and the
job threads, and the at least one output queue maybe shared
between the job threads and the output connectors. The job
threads may receive input data streams in the order in which
the input data streams are stored in the at least one input
queue. In general, the job threads receive input data streams
from the at least one input queue, format the input data
streams into output data streams, and store the output data
streams in the at least one output queue, independent of one
another and in parallel.
I0083. It is to be understood, of course, that the present
invention in various embodiments can be implemented in
hardware, Software, or in combinations of hardware and soft
Wa.

I0084. The present invention is not limited to the particular
details of the apparatus and method depicted, and other modi
fications and applications are contemplated. Certain other
changes may be made in the above-described apparatus and
method without departing from the true spirit and scope of the
invention herein involved. It is intended, therefore, that the
subject matter in the above depiction shall be interpreted as
illustrative and not illuminating sense.
What is claimed is:
1. A system for transforming an input data stream in a first

data formatofa plurality of first data formats to an output data
stream in a second data format of a plurality of second data
formats, comprising:

a parsing model comprising information about message
structure; at least one input queue for storing input data
Streams;

a plurality of job threads operatively connected to the at
least one input queue, each job thread, in parallel with at
least one other job thread, formatting a respective stored
input data stream to produce an output data stream, each
job thread comprising:
a filter for filtering irrelevant data from the respective

retrieved input data stream;
an event identifier for identifying events in the input data

stream, the events comprising sequences, patterns or
both, in the input data stream: a field list for each of the
identified events the fields comprising data, variables,
or both in the input stream;

a message generator for generating messages associated
with each identified event in response to the field list
for the identified event and the parsing model; and

a processor for processing each message in response to
the parsing model to generate meta records, the meta
records comprising output data that is not formatted
for a specific output device.

c c c c c

