发明名称

源自山玉兰、紫玉兰、白玉兰的小白菊内酯的制备方法

摘要

本发明涉及一种小白菊内酯的提取制备方法，具体涉及从山玉兰、紫玉兰、白玉兰皮中提取小白菊内酯的方法，以山玉兰、紫玉兰、白玉兰皮为原料，粉碎，经极性有机溶剂提取，适当有机溶剂萃取后得到总内酯，总内酯再经柱层析分离，收集所需成分后，再用适当溶剂结晶即得到小白菊内酯。本发明从山玉兰、紫玉兰、白玉兰皮提取制备小白菊内酯的方法，适合工业化生产。
1. 一种从山玉兰、紫玉兰、白玉兰根皮中分离提取小白酒肉桂的方法，该方法包括以下步骤：
 (1) 取山玉兰、紫玉兰、白玉兰干燥根皮，粉碎成粉；
 (2) 取粉碎的粗粉，用 5 ~ 20 倍重量的适当的提取溶剂在一定温度下提取多次，每次 1 ~ 108 小时；
 (3) 过滤，合并滤液，减压回收溶剂得提取浸膏；
 (4) 提取浸膏用质量浓度 10% ~ 30% 的乙醇或甲醇溶液溶解，再用适当的有机溶剂萃取至颜色变淡，合并有机溶剂，减压回收有机溶剂，干燥得结晶干粉内酯类化合物；
 (5) 取上述总倍半萜内酯类化合物上硅胶色谱柱，以混合有机溶剂梯度淋洗，跟踪检测，收集含小白酒肉桂的流份，合并减压回收混合有机溶剂，干燥得小白酒肉桂。

2. 根据权利要求 1 所述的方法，该方法还包含小白酒肉桂的结晶过程，结晶过程如下：
 (6) 小白酒肉桂在适当的溶剂中得无色结晶状化合物小白酒肉桂。

3. 根据权利要求 1 或 2 所述的方法，其中提取溶剂为甲醇、乙醇、丙酮、氯仿中的任一种或甲醇、乙醇、丙酮、氯仿分别按一定比例（水的百分含量为 0% ~ 100%）混合的提取溶剂。

4. 根据权利要求 1 或 2 所述的方法，其中提取的温度为 0℃ ~ 100℃。

5. 根据权利要求 1 或 2 所述的方法，其中萃取所用有机溶剂为乙酸乙酯、氯仿、二氯甲烷、石油醚、正已烷中的任一种。

6. 根据权利要求 1 或 2 所述的方法，其中淋洗所用混合有机溶剂为石油醚：乙酸乙酯 = 20 : 1 ~ 1 : 20，己烷：乙酸乙酯 = 20 : 1 ~ 1 : 20，石油醚：丙酮 = 20 : 1 ~ 1 : 20，己烷：丙酮 = 20 : 1 ~ 1 : 20，氯仿：乙酸乙酯 = 40 : 1 ~ 1 : 1，氯仿：丙酮 = 40 : 1 ~ 1 : 1，氯仿：甲醇 = 200 : 1 ~ 1 : 1 中的任一种。

7. 根据权利要求 2 所述的方法，其中结晶所用有机溶剂选自石油醚 / 乙酸乙酯，己烷 / 乙酸乙酯，石油醚 / 丙酮，己烷 / 丙酮混合溶剂中的任一种。

8. 一种山玉兰、紫玉兰、白玉兰根皮用于提取小白酒肉桂的用途。
源自山玉兰、紫玉兰、白玉兰的小白菊内酯的制备方法

技术领域
[0001] 本发明属于药物提取技术领域，具体地说，本发明涉及一种小白菊内酯的制备方法，具体涉及从山玉兰、紫玉兰、白玉兰根皮中提取小白菊内酯的方法。

背景技术
[0002] 肿瘤极大威胁着人类健康，我国现有癌症患者约200万人，每年新发160万例，这是一个不小的群体，肿瘤研究是当今生命科学领域极具挑战性且意义重大的领域。过去的治疗方法侧重于对癌细胞的铲除和杀伤，目前，临床上常用的抗肿瘤药物主要是细胞毒类药物，这类抗肿瘤药物具有选择性差、毒副作用强、易产生耐药性等缺点，是典型的双刃剑药物，而且难以根除癌症，不少癌症的复发比例较高。恶性肿瘤的高复发率一直是困扰肿瘤医生的难题，越来越多的研究证实肿瘤细胞群体中存在少数能使群体扩增的肿瘤干细胞。它们通常处于慢周期状态，对化疗药物敏感性低，是肿瘤复发的根源。因此肿瘤干细胞的发现给肿瘤治疗带来新的靶标，针对肿瘤干细胞的药物研究为彻底治愈癌症提供可能。

[0003] 近年来，从天然产物中寻找抗癌活性化合物已经成为抗肿瘤药物的开发热点，前20年间，全世界推出的药物小分子新化合物实体中，有61%可追溯到天然产物。天然产物在某些治疗领域出现率非常高，87%的抗肿瘤化合物和74%的抗肿瘤化合物都是天然产物，或从某个天然产物衍生而来，实践证明，天然产物在抗肿瘤药物发现中的独特作用引起高度重视。中国传统治疗肿瘤的化疗药物均存在耐药问题，尤其是肿瘤干细胞更不敏感。抗癌中药博大精深，高效低毒，从中有可能筛选出高效杀伤肿瘤干细胞，从而治疗恶性肿瘤的药物。

[0004] 倍半萜内酯类化合物小白菊内酯 (Parthenolide) 是从小白菊中提取的化合物，最初被用来治疗皮肤感染、风湿病以及偏头痛。近期研究表明，小白菊内酯可抑制前列腺癌、乳腺癌、胃癌、白血病、胰癌、肺癌、结肠癌、成神经管细胞瘤等癌细胞的生长，在动物模型上小白菊内酯还能治疗紫外线引起的皮肤癌。对其进行机制研究发现，小白菊内酯能抑制转录因子NF-κB的激活，其活性可能主要来源于p65/NF-κB亚基的Cys38上的疏基与含氮内酯发生了Michael加成反应。由于NF-κB是调控肿瘤侵袭、转移、药物抗性的重要基因，抑制NF-κB的激活有可能提高肿瘤对化疗药物所引起的细胞凋亡的敏感性。最近，纽约罗切斯特大学医学院的Jordan，C. T. 博士及其同事发现小白菊内酯能够在基本不损伤正常干细胞的情况下，针对性地消灭引发恶性骨髓性白血病的干细胞，从而有可能从根本上遏制白血病复发，小白菊内酯这一独特的作用机制，已引起人们的广泛关注。

[0005] 小白菊内酯 (parthenolide) 的分子式:C_{15}H_{18}O_{5}，分子量:248，性状:无色晶体，其结构如下:

![小白菊内酯结构式](image)
发明内容

本发明还提供了一种从山玉兰、紫玉兰、白玉兰根皮中提取小白菊内酯的方法。
具体地，本发明提供了一种从山玉兰、紫玉兰、白玉兰根皮中分离提取小白菊内酯的方法，该方法包括以下步骤：
(1) 取山玉兰、紫玉兰、白玉兰干燥根皮，粉碎成粉；
(2) 取粉碎的粗粉，用5～20倍重量的适当的提取溶剂在一定温度下提取多次，每次1～108小时；
(3) 过滤，合并滤液，减压回收溶剂得提取浸膏；
(4) 提取浸膏用质量浓度10%～30%的乙醇或甲醇溶液溶解，再用适当的有机溶剂萃取至颜色变淡，合并有机溶剂，减压回收有机溶剂，干燥得总倍半萜内酯类化合物；
(5) 取上述总倍半萜内酯类化合物上硅胶色谱柱，以缓冲有机溶剂梯度淋洗，跟踪检测，收集含小白菊内酯的流份，合并减压回收混合有机溶剂，干燥得小白菊内酯。
该方法还包含小白菊内酯的结晶过程，结晶过程如下：
(6) 将小白菊内酯为10%～30%乙醇溶液，用适量的水中稀释，冷却结晶，过滤，洗涤，干燥得小白菊内酯。
其中提取溶剂为甲醇、乙醇、丙酮、氯仿中的任一种或甲醇、乙醇、丙酮、氯仿分别与水按一定比例（水的百分含量为0%～100%）混合的提取溶剂。
(7) 其中提取的温度为0℃～100℃。
(8) 其中萃取所用有机溶剂为乙酸乙酯、氯仿、二氯甲烷、石油醚，正丁烷中的任一种。
其中淋洗所用混合有机溶剂为石油醚：乙酸乙酯＝20：1：1：20，己烷：乙酸乙酯＝20：1：1：20，石油醚：丙酮＝20：1：1：20，己烷：丙酮＝20：1：1：20，氯仿：乙酸乙酯＝40：1：1：1，氯仿：丙酮＝40：1：1：1，氯仿：甲醇＝200：1：1：1中的任一种。
其中结晶所用有机溶剂选自石油醚/乙酸乙酯，己烷/乙酸乙酯，石油醚/丙酮，己烷/丙酮混合溶剂中的任一种。
本发明还提供了山玉兰、紫玉兰、白玉兰根皮用于提取小白菊内酯的用途，应用山玉兰、紫玉兰、白玉兰根皮可以提取出小白菊内酯，所以应用山玉兰、紫玉兰或白玉兰根皮提取小白菊内酯是获得小白菊内酯的新的途径，也发现了山玉兰、紫玉兰、白玉兰根皮的一种新的有价值的用途。
有益效果
本发明提供的是小白菊内酯的制备方法解决了小白菊内酯制备产率低、工艺过程复杂的技术缺陷，本发明所提供的小白菊内酯的制备方法，提取分离过程简单，易于工业化。

具体实施方式

为了理解本发明，下面以实施例进一步说明本发明，但不限制本发明。
实施例1：从山玉兰根皮中分离纯化小白菊内酯

取山玉兰干燥根皮1公斤，粉碎成粉。取粉碎的粗粉，用10倍（重量）的95%乙醇在回流提取3次，每次3小时。过滤，合并滤液，减压回收溶剂得提取浸膏。浸膏用20%的乙醇溶解，再用乙酸乙酯萃取至萃取液的颜色变淡，合并有机溶剂，减压回收溶剂，干燥得固体114克。上硅胶色谱柱，以石油醚：乙酸乙酯=15：1～4：1梯度淋洗，TLC跟踪检测，与小白菊内酯标准品对照，收集含小白菊内酯的流份，合并减压回收溶剂，得干燥固体。在石油醚：丙酮=10：1的混合溶剂中结晶得无色结晶状小白菊内酯52克（纯度99.2%），得率为5.2%。

实施例2：从紫玉兰根皮中分离纯化小白菊内酯

取紫玉兰干燥根皮1公斤，粉碎成粉。取粉碎的粗粉，用10倍（重量）的95%乙醇在回流提取3次，每次3小时。过滤，合并滤液，减压回收溶剂得提取浸膏。浸膏用20%的乙醇溶解，再用乙酸乙酯萃取至萃取液的颜色变淡，合并有机溶剂，减压回收溶剂，干燥得固体102克。上硅胶色谱柱，以石油醚：乙酸乙酯=15：1～4：1梯度淋洗，TLC跟踪检测，与小白菊内酯标准品对照，收集含小白菊内酯的流份，合并减压回收溶剂，得干燥固体。在石油醚：丙酮=10：1的混合溶剂中结晶得无色结晶状小白菊内酯32克（纯度99.6%），得率为3.2%。

实施例3：从白玉兰根皮中分离纯化小白菊内酯

取白玉兰干燥根皮1公斤，粉碎成粉。取粉碎的粗粉，用10倍（重量）的95%乙醇在回流提取3次，每次3小时。过滤，合并滤液，减压回收溶剂得提取浸膏。浸膏用20%的乙醇溶解，再用乙酸乙酯萃取至萃取液的颜色变淡，合并有机溶剂，减压回收溶剂，干燥得固体112克。上硅胶色谱柱，以石油醚：乙酸乙酯=15：1～4：1梯度淋洗，TLC跟踪检测，与小白菊内酯标准品对照，收集含小白菊内酯的流份，合并减压回收溶剂，得干燥固体。在石油醚：丙酮=10：1的混合溶剂中结晶得无色结晶状小白菊内酯36克（纯度99.4%），得率为3.6%。

实施例4：与广玉兰干叶的对比实施例

为了更好的说明本发明，按照CN101190258中公开的提取复合小白菊内酯提取物的方法，从1公斤广玉兰干叶中分离纯化得小白菊内酯2.5克，得率为0.25%。而且过程较繁琐，生产成本较高。

本发明的方法已经通过具体的实施例进行了描述。本领域技术人员可以借鉴本发明的内容适当改变工艺条件等环节来实现相应的其它目的，其相关改变都没有脱离本发明的内容，所有类似的替换和改动对于本领域技术人员来说是显而易见的，都被视为包括在本发明的范围之内。