wo 2016/071663 A1 | I 01N OO OO 0 A0 R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/071663 Al

12 May 2016 (12.05.2016) WIPOIPCT
(51) International Patent Classification: 110 Fulbourn Road, Cherry Hinton, Cambridge Cam-
GOG6F 9/30 (2006.01) GOG6F 7/48 (2006.01) bridgeshire CB1 9NJ (GB). HINDS, Christopher Neal;
C/O ARM Inc, Encino Trace 5707 Southwest Pkwy, Bld 1
(21) International Application Number: ite 100. Austin. T 9735
PCT/GB2015/052700 Suite 100, Austin, Texas 78735 (US).
. - (74) Agent: BERRYMAN, Robert; D Young & Co LLP, 120
(22) International Filing Date: Hol L ECIN 2DY (GB
18 September 2015 (18.09.2015) olborn, London EC (GB).
- . . (81) Designated States (uniess otherwise indicated, for every
(25) Filing Language: English kind of national protection available): AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
L. BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(30) Priority Data: DO, DZ, EC, EE, EG, ES, F1, GB, GD, GE, GH, GM, GT,
62/074,149 3 November 2014 (03.1 1.2014) UsS HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
14/582,812 24 December 2014 (24.12.2014) us KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(71) Applicant: ARM LIMITED [GB/GB]; 110 Fulbourn MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
Road, Cherry Hinton, Cambridge Cambridgeshire CBl PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
9NJ (GB). SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors: LUTZ, David Raymond; C/O ARM Inc, En-
(84) Designated States (uniess otherwise indicated, for every

cino Trace, 5707 Southwest Pkwy, Bld 1 Suite 100 Austin,
Texas 78735 (US). BURGESS, Neil; C/O ARM Limited,

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

[Continued on next page]

(54) Title: APPARATUS AND METHOD FOR PERFORMING A FIXED POINT FORMAT CONVERSION OPERATION

Vi3] vzl Vi1l vifol

vl] | |

Lsize
- negate 170
e
vi | 00000000 Joooolt .. Ll LT L I
no 1 bitt ‘ﬁ[—/ ‘b-\!r._._.l
K=min (Lsize-l7C, =—le |
Fsize) m

Fsiza-k,
G.S

Faize-k

Valjj+Lsize-LZC+B

(57) Abstract: An apparatus comprises processing circuitry
to perform a conversion operation to convert a data value
comprising a plurality of bit significance portions of a bin-
ary value, wherein the bit significance is stored in associ-
ation with the data value, to a value comprising an alternat -
ive representation of said binary value.

WO 2016/071663 A1 |IIIWAK 00N 00 O U

TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Published:

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,

GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

1

APPARATUS AND METHOD FOR PERFORMING A FIXED POINT FORMAT CONVERSION OPERATION

The present application claims priority to US provisional application 62/074,149, the
entire contents of which are herein incorporated by reference.

The present technique relates to the field of data processing.

It is known to provide data processing systems supporting integer arithmetic and
floating point arithmetic.

One aspect provides an apparatus comprising:

processing circuitry to perform a conversion operation to convert a vector
comprising a plurality of data elements representing respective bit significance portions
of a binary value to a scalar value comprising an alternative representation of said binary
value.

Another aspect provides a data processing method comprising:

performing, using processing circuitry, a conversion operation to convert a vector
comprising a plurality of data elements representing respective bit significance portions
of a binary value to a scalar value comprising an alternative representation of said binary
value.

Another aspect provides an apparatus comprising:

processing circuitry to perform a conversion operation to convert a first data value
in a high-precision anchored format to a second data value providing an alternative
representation of the first data value.

The above, and other objects, features and advantages will be apparent from the
following detailed description of illustrative embodiments which is to be read in
connection with the accompanying drawings.

Figure 1 schematically illustrates a carry-select adder;

Figure 2 schematically illustrates a carry-lookahead adder;

Figure 3 illustrates a way of adding a floating-point number to an HPA number;

Figure 4 illustrates an example HPA representation of a number;

Figure 5 an example of generating a significand when converting an HPA number

to a floating-point number;

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

2

Figure 6 illustrates an example of adding several floating-point values using HPA
arithmetic, where the HPA number fits in the hardware size;

Figure 7 illustrates an example of adding several floating-point values using HPA
arithmetic, where the HPA number is wider than the hardware size;

Figure 8 schematically illustrates a data processing system;

Figure 9 schematically illustrates different formats for representing numbers to be
manipulated within data processing systems;

Figure 10 schematically illustrates an example relationship between a double
precision floating point value and an HPA value;

Figure 11 schematically illustrates circuitry for aligning input operands with a
result HPA register;

Figure 12 schematically illustrates circuitry for performing a processing operation
upon a vector HPA number in dependence upon both the number of components in that
HPA number and a program instruction with the different components being processed in
parallel;

Figure 13 schematically illustrates circuitry for performing a processing operation
upon a vector HPA number in dependence upon both the number of components in that
HPA number and a program instruction with the different components being processed in
series;

Figure 14 schematically illustrates exception indication generation in respect of
processing performed using HPA numbers;

Figure 15 illustrates an example of an apparatus having processing circuitry for
generating a result based on a target significance and/or target size specified by
programmable control data;

Figure 16 illustrates an example of setting upper and lower significance
boundaries for an arithmetic operation;

Figure 17 illustrates an example of a high-precision anchored (HPA) data format;

Figure 18 shows an example of a metadata storage element for storing metadata
(including an anchor value a) indicating a target significance for a data value to be stored

in a corresponding data storage element;

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

3

Figure 19 shows an example of processing circuitry comprising a number of
processing units for performing parallel lanes of processing;

Figure 20 illustrates an example of an accumulation operation for adding a series
of floating-point values;

Figure 21 illustrates an example of converting a floating-point value into a value
having the HPA data format; and

Figure 22 illustrates an example of converting a value having the HPA data
format into a floating-point value.

There 1s disclosed a new datatype and new instructions that allow fast and correct
accumulation of floating-point (FP) numbers in a programmer-selectable range. For the
modest ranges that will accomodate most problems, the accumulation is faster than FP
addition, and is associative. Associative addition allows the problems to be parallelized
while still giving reproducible and correct results, enabling speedups by, for example, a
factor of 100 or more as compared to existing hardware. We believe these benefits will
be irresistible in the high-performance computing (HPC) space, and compelling for many
non-HPC applications.

A known issue with floating-point (FP) arithmetic is that it is non-associative, a
fact that makes sums problematic:

. programmers need to worry about wildly different results, even when

adding 3 numbers

. programmers use wider formats than they need, in the hope of avoiding

the wildly different results

. programmers can’t easily parallelize code, because sums aren’t

reproducible unless computed in the exact same order.

For example, in single precision,

220, (44944520
but
(220421240

Depending upon the order the operations are performed, the result is one million

or zero. This is an extreme example because the exponents differ by 24, but we can get

different answers if the exponents differ by 1, or even if all of the exponents are the same

10

15

20

25

WO 2016/071663 PCT/GB2015/052700

4

and we are adding more than 3 things. The C programming language addresses the
reproducibility problem by requiring sums to be evaluated left-to-right, in order, but this
does nothing for correctness, and makes parallelization impossible.

The problems are especially acute for high-performance computing (HPC), where
programs may need to add millions of things. Programmers would like to parallelize
these problems, but then the lack of reproducibility makes debugging even harder than it
usually is. Different configurations of machines will produce different answers even if
the reprogramming for those machines is done perfectly.

Floating-point numbers

Floating-point (FP) is a useful way of approximating real numbers using a small
number of bits. The IEEE 754-2008 FP standard proposes multiple different formats for
FP numbers, some which are binary 64 (also known as double precision, or DP), binary
32 (also known as single precision, or SP), and binary 16 (also known as half precision,
or HP). The numbers 64, 32, and 16 refer to the number of bits required for each format.
Representation

FP numbers are quite similar to the “scientific notation” taught in science classes,
where instead of negative two million we’d write —2.0 x 10° The parts of this
number are the sign (in this case negative), the significand (2.0), the base of the exponent
(10), and the exponent (6). All of these parts have analogs in FP numbers, although there
are differences, the most important of which is that the constituent parts are stored as
binary numbers, and the base of the exponent is always 2.

More precisely, FP numbers consist of a sign bit, some number of biased
exponent bits, and some number of fraction bits. In particular, the DP, SP and HP formats

consist of the following bits:

DP[63:0] |63 |62:52(11 bits) 51:0 (52 bits) 1023
SP[31:0] |31 |30:23 (8 bits) 22:0 (23 bits) 127
HP[15:0] |15 | 14:10 (5 bits) 9:0 (10 bits) 15

The sign 1s 1 for negative numbers and O for positive numbers. Every number, including

zero, has a sign.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

The exponent is biased, which means that the true exponent differs from the one
stored in the number. For example, biased SP exponents are 8-bits long and range from 0
to 255. Exponents 0 and 255 are special cases, but all other exponents have bias 127,
meaning that the true exponent is 127 less than the biased exponent. The smallest biased
exponent 1s 1, which corresponds to a true exponent of -126. The maximum biased
exponent is 254, which corresponds to a true exponent of 127. HP and DP exponents
work the same way, with the biases indicated in the table above.

SP exponent 255 (or DP exponent 2047, or HP exponent 31) is reserved for
infinities and special symbols called NaNs (not a number). Infinities (which can be
positive or negative) have a zero fraction. Any number with exponent 255 and a nonzero
fraction is a NaN. Infinity provides a saturation value, so it actually means something like
“this computation resulted in a number that is bigger than what we can represent in this
format.” NaNs are returned for operations that are not mathematically defined on the real
numbers, for example division by zero or taking the square root of a negative number.

Exponent zero, in any of the formats, is reserved for subnormal numbers and
zeros. A normal number represents the value:

—1%%9" x 1.fraction x 2°
where e is the true exponent computed from the biased exponent. The term
1.fraction is called the significand, and the 1 is not stored as part of the FP number,
but is instead inferred from the exponent. All exponents except zero and the maximum
exponent indicate a significand of the form 1. fraction. The exponent zero indicates a
significand of the form 0. fraction, and a true exponent that is equal to 1-bias for the
given format. Such a number is called subnormal (historically these numbers were
referred to as denormal, but modern usage prefers the term subnormal).

Numbers with both exponent and fraction equal to zero are zeros.

The following table has some example numbers in HP format. The entries are in
binary, with °_’ characters added to increase readability. Notice that the subnormal entry
(4th line of the table, with zero exponent) produces a different significand than the

normal entry in the preceding line.

10

15

20

WO 2016/071663 PCT/GB2015/052700

6
0 01111 00_0000_0000 100_0000_0000 1.0 x 2°
1 01110 10_0000_0000 110_0000_0000 -1.1 x 27t
0 00001 10_0000_0000 110_0000_0000 1.1 x 274
0 00000 10_0000_0000 010_0000_0000 0.1 x 27t
1 11111 00_0000_0000 —infinity
0 11111 00_1111_ 0011 NaN

A large part of the complexity of FP implementation is due to subnormals,
therefore they are often handled by microcode or software. Some processors handle
subnormals in hardware, speeding up these operations by a factor of 10 to 100 compared
to a software or microcode implementation.

Integers, Fixed-Point, Floating-Point

The FP way of handling signs is called sign-magnitude, and it is different from the
usual way integers are stored in the computer (two’s complement). In sign-magnitude
representation, the positive and negative versions of the same number differ only in the
sign bit. A 4-bit sign-magnitude integer, consisting of a sign bit and 3 significand bits,
would represent plus and minus one as:

+1 = 0001
1001

-1
In two’s complement representation, an n-bit integer 1 is represented by the low
order n bits of the binary n+1-bit value 2°+1, so a 4-bit two’s complement integer would

represent plus and minus one as:
0001
-1 = 1111

+1

The two’s complement format is practically universal for signed integers because it
simplifies computer arithmetic.

A fixed-point number looks exactly like an integer, but actually represents a value
that has a certain number of fractional bits. Sensor data is often in fixed-point format, and

there i1s a great deal of fixed-point software that was written before the widespread

10

20

WO 2016/071663 PCT/GB2015/052700

7

adoption of FP. Fixed-point numbers are quite tedious to work with because a
programmer has to keep track of the “binary point”, i.e. the separator between the integer
and fractional parts of the number, and also has to constantly shift the number to keep the
bits in the correct place. FP numbers don’t have this difficulty, so it is desirable to be able
to convert between fixed-point numbers and FP numbers. Being able to do conversions
also means that we can still use fixed-point software and data, but we are not limited to
fixed-point when writing new software.
Rounding FP Numbers

Most FP operations are required by the IEEE-754 standard to be computed as if
the operation were done with unbounded range and precision, and then rounded to fit into
an FP number. If the computation exactly matches an FP number, then that value is
always returned, but usually the computation results in a value that lies between two
consecutive floating-point numbers. Rounding is the process of picking which of the two
consecutive numbers should be returned.

There are a number of ways of rounding, called rounding modes; six of these are:

to even pick the even value

RNE | round-to nearest, ties | pick the closest value, or if both values are equally close then

to away pick the value farthest away from zero

RNA |round to nearest, ties | pick the closest value, or if both values are equally close then

RZ round to zero pick the value closest to zero

RP round to plus infinity | pick the value closest to plus infinity

RM |round to minus | pick the value closest to minus infinity
infinity

RX round to odd pick the odd value

The definition doesn’t tell us how to round in any practical way. One common
implementation is to do the operation, look at the truncated value (i.e. the value that fits
into the FP format) as well as all of the remaining bits, and then adjust the truncated value

if certain conditions hold. These computations are all based on:

10

15

20

WO 2016/071663 PCT/GB2015/052700

L — (least) the least significant bit of the truncated value

G — (guard) the next most significant bit (i.e. the first bit not included in the truncation)

S — (sticky) the logical OR of all remaining bits that are not part of the truncation

Given these three values and the truncated value, we can always compute the correctly

rounded value according to the following table:

RNE increment if (L&G) | (G&S)
RNA increment if G

RZ none

RP increment if positive & (G| S)
RM increment if negative & (G| S)
RX set LifG|S

For example, consider multiplying two 4-bit significands, and then rounding to a

4-bit significand.

sigl 1011 (decimal 11)

sig2 = 0111 (decimal 7)
multiplying yields

sigl x sig2 = 1001_101 (decimal 77)

L Gss

The least significant bit of the truncated 4-bit result is labeled 1., the next bit G,
and S 1s the logical OR of the remaining bits labeled s (ie. S = 0 | 1 = 1). To
round, we adjust our 4-bit result (1001) according to the rounding mode and the
computation in the table above. So for instance in RNA rounding, G is set so we return
1001 + 1 = 1010. ForRXrounding G | SistruesowesetL tol (it’s already 1,
so in this case nothing changes) and return 1001.
Rounding Integer and Fixed-Point Numbers

If we convert an FP number to integer or fixed-point we also round. The concept
is basically the same as FP rounding. An FP number that happens to be an integer always

rounds to that integer. All other FP numbers lie between two consecutive integers, and

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

9

rounding dictates which integer is returned. Unfortunately the rounding logic for integers
is somewhat harder because of the differences between two’s complement and sign-
magnitude form. Incrementing a sign-magnitude number always increases the
magnitude, so the incremented number is farther away from zero. The same thing
happens for positive two’s complement numbers, but negative two’s complement
numbers become closer to zero when incremented. This means that the rounding logic
has to change based on whether the integer is positive or negative. It also means we have
to be careful in picking the base value (the value which will be incremented or not). For
positive integers, that value is just the truncated FP significand, so 1.37 will have a base
value of 1, and a result of either 1 or 2. For negative integers, we again truncate the
significand and take the one’s complement of the result (one’s complement is the original
number with all bits inverted), -1.37 1s truncated to 1 and then inverted, giving a base
value of -2. Everything then works out since we want our result to be either -2 or (when
incremented) -1.

To further complicate things, our method of conversion requires some
computation to find L, G, and S for negative integers. Correct rounding would require us
to complete the two’s complement process (invert and add 1) and then compute L, G, and
S, but adding that 1 is slow compared to just inverting. Ideally we would like to compute
the actual L, G, and S from the original shifted input (i.e., from the input before we’ve
done anything about signs. So the floating-point 1.37 or -1.37 would both be right shifted
to the integer 1).

Let LO, GO, and SO be the least significant bit (Isb), guard and sticky before
inverting, and let Li, Gi, and Si be Isb, guard and sticky after inverting, and finally let L,
G, and S be the Isb, guard and sticky after inverting and adding 1.

If SO is zero, then the bits contributing to Si are all ones, and hence S (obtained by
adding 1 to those Si bits) is also zero. If SO is nonzero, then Si is not all ones, and hence
S is nonzero. So in all cases SO=S.

If GO 1s zero, then Gi is 1, and G is also one except for the case when there is a
carry-in from the S bits, which only happens when SO is zero. If GO is 1, then Gi is zero,
and again G is also one except for the case where there is a carry-in from the S bits,

which only happens when SO is zero. So G= GO " SO.

10

15

20

WO 2016/071663 PCT/GB2015/052700

10

By very similar logic, L =10 "~ (GO | SO).
Now that we have L, G, and S for both negative and positive integers, we can

come up with our rounding rules:

RNE increment if (L&G) | (G&S) increment if (L&G) | (G&S)
RNA increment if G increment if (G&S)

RZ none increment if (G| S)

RP increment if (G| S) increment if (G| S)

RM none none

RX setLif G| S set Lif G| S

Fixed-point numbers round exactly the same way as integers. The rules for unsigned
conversions (to integer or fixed-point) are the same as the rules for positive conversions.
Injection Rounding
A faster way to do rounding is to inject a rounding constant as part of the significand
addition that is part of almost every FP operation. To see how this works, consider adding
numbers in dollars and cents and then rounding to dollars. If we add
$1.27
£ $2.35
$3.62
We see that the sum $3.62 is closer to $4 than to $3, so either of the round-to-
nearest modes should return $4. If we represented the numbers in binary, we could
achieve the same result using the L, G, S method from the last section. But suppose we

just add fifty cents and then truncate the result?

1.27

+ 2.35

+ 0.50 (rounding injection)
4.12

If we just returned the dollar amount ($4) from our sum ($4.12), then we have
correctly rounded using RNA rounding mode. If we added $0.99 instead of $0.50, then

we would correctly round using RP rounding. RNE is slightly more complicated: we add

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

11

$0.50, truncate, and then look at the remaining cents. If the cents remaining are nonzero,
then the truncated result is correct. If there are zero cents remaining, then we were exactly
in between two dollar amounts before the injection, so we pick the even dollar amount.
For binary FP this amounts to setting the least significant bit of the dollar amount to zero.

Adding three numbers is only slightly slower than adding two numbers, so we get
the rounded result much more quickly by using injection rounding than if we added two
significands, examined L, G, and S, and then incremented our result according to the
rounding mode.

Implementing Injection Rounding

For FP, the rounding injection is one of three different values, values which
depend on the rounding mode and (sometimes) the sign of the result.

Both RNA and RNE require us to inject a 1 at the G position (this is like adding
$0.50 in our dollars and cents example).

RP and RM rounding depends on the sign as well as the mode. RP rounds positive
results up (increases the magnitude of the significand towards positive infinity), but
truncates negative results (picking the significand that is closer to positive infinity).
Similarly RM rounds negative results up (increasing the magnitude of the significand
toward negative infinity), but truncates positive results (picking the significand that is
closer to negative infinity). Thus we split RM and RP into two cases: round up (RU)
when the sign matches the rounding direction, and truncation (RZ) when the sign differs
from the rounding injection. For RU cases we inject a 1 at the G-bit location and at every
location that contributes logically to S (this is like adding $0.99 in our dollars and cents
example).

For RZ and RX modes, and for RP and RM modes that reduce to RZ mode, we
inject zeros.

For most of the rounding modes, adding the rounding injection and then
truncating gives the correctly rounded result. The two exceptions are RNE and RX, which
require us to examine G and S after the addition. For RNE, we set L to 0 if G and S are
both zero. For RX we set L to 1 if G or S are nonzero.

FP number are not real numbers

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

12

It’s tempting to think of FP numbers as being just like real numbers, but they are
fundamentally different, even for the most basic properties:

1. They are not associative. For example, in SP we can add 3 numbers and return 1
million or zero, perhaps not what people think of as a rounding error:

(245 + _245) + 220 _ 220

2+ (=2%° + 2%% =0
% They don’t obey the distributive laws. Again in SP:

3,000,001 * (4.00001 + 5.00001) = Ox4bcdfe83
(3,000,001 4.00001) + (3,000,001 * 5.00001) = Ox4bcdfe82
and things get even worse in the presence of overflow:

250 (278 _ 277) _ pl27

(2°9 = 278y — (2°° * 277y = infinity
3. For some implementations, they aren’t even commutative unless we are in default NaN
mode (a mode that converts all NaNs to a single NaN), because in general nanA + nanB
!=nanB + nanA. Numeric adds and multiplies are commutative.

4. Because of IEEE NaN rules, there are no multiplicative or additive identities. One and
zero work as identities for numeric values.

One useful way to think of FP numbers is to consider them to be very long fixed-
point numbers in which at most a few (53 for DP) consecutive bits can be nonzero. For
example, non-infinite DP numbers can have the first bit of the significand in any of 2046
places, and that first bit is followed by 52 other significand bits, and there 1s a sign bit, so
any finite DP number can be represented as a 2046 + 52 + 1 = 2099-bit fixed point
number. Examined this way it becomes very obvious that adding two FP numbers does
not, in general, result in another FP number: the result of the addition has to be rounded
so that it becomes an FP number.

High-Precision Anchored Numbers

A high-precision anchored (HPA) number is a pair (7,a) consisting of a long two’s
complement integer 1 (commonly 128 bits or more), and a smaller anchor integer a that
represents the weights of the bits of 1 (typically by specifying the exponent value of the
smallest bit of 1). The anchor integer a may be considered to provide a programmable

significance parameter/value. The anchor integer a may form part of metadata for the

10

15

20

WO 2016/071663 PCT/GB2015/052700

13

HPA number that can include addition information, such as exception information:
infinite, sign, NaN. The pair is somewhat analagous to an FP number’s significand and
exponent values, but differs in that the long integer 1 is not normalized and is usually
much larger than an FP significand, and the anchor value a may be fixed for all of the
inputs to a sum. Adding FP numbers causes the exponent to change, but adding HPA
numbers does not change the anchor.

As a trivial example, consider an HPA representation consisting of a 10-bit 1 and a anchor

value of -4. Some values in this format are given in Table 1:

1 (binary) value(decimal)
00000 00001 0.0625

00000 01000 0.5

00000 11000 1.5

00001 00000 2.0

00100 11000 9.5

11111 _01000 -1.5

Table 1: example HPA numbers (7,—4)

When we add two of these numbers, say 0.5 and 1.5, the anchor doesn’t change,
and the sum is conveniently given by just adding the i parts. Since HPA sums are just
two’s complement addition, HPA sums are associative.

One way of making a realizable HPA accumulator employs the following:

1. a way to limit the range of numbers required so that the HPA

accumulators don’t have to be enormous.

2. a way to add large two’s complement numbers quickly.
3. a fast unit to convert from FP to HPA, and
4. a unit to convert from the HPA to FP.

We will address each of these requirements in the following sections.
Limiting the Range
FP numbers have a large range. Double precision (DP) numbers can be smaller

2719 and larger than 2'°, but most accumulations do not span this entire range.

than
Indeed, it’s hard to imagine the kind of problem that would meaningfully accumulate

values over all of that range. Sub-atomic problems might accumulate very small values,

10

15

20

25

WO 2016/071663 PCT/GB2015/052700

14

and astronomic computations might accumulate very large values, but it is not generally
useful to add the width of a proton to the distance between galaxies. Even for high-
performance computing, most accumulations happen over a limited range.

Many programmers use FP for convenience, not for FP’s range. Audio codecs
may use FP, and audio data has a limited range both in frequency and volume. It’s easier
to program in FP, and this is attractive to programmers.

If a programmer determines that all of the data for a particular sum has magnitude

less than 260, and that values with magnitude below 2720 won’t affect the sum in any
meaningful way, then, if the data is added using the HPA format (i,—50) with 128-bit 1,
then the accumulation is associative and the numbers can be added in any order.

Adding Large Numbers

We propose considering a vector of 64-bit integers to be one longer integer. For
example, 256-bit integers would consist of four 64-bit integers.

Given two such vectors, we can make modest changes to a 64-bit SIMD adder
(like ARM Limited’s NEON SIMD engine) to compute the 256-bit sum a+b. Addition is
accomplished by adding the low-order 64 bits, then the next 64 bits together with the
carry out of the low-order addition, and so on. In practice this may be implementable in a
single cycle for quite large SIMD units —a 1024-bit adder is probably achievable.

One way for modest sizes (say up to 256 bits) is to construct a carry-select adder,

as in Figure 1. Each lane i computes a,+b; and a,+b;+1, and the carry out of lane i—1 is

used to choose between the two sums. We think this could be easily computed in a single
cycle for our current CPUs.
For wider SIMD units (say up to 1024 bits), a carry-lookahead adder like the one

in Figure 2 can keep single-cycle performance. As before, each lane i computes a;+b; and
a;+b+1, but the lane also computes whether its sum is all ones (p;), i.e., whether the sum

in lane 7 would propogate an input carry to lane 7+1.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

15

For SIMD widths that are more likely to be implemented in the near term, say 128 or 256
bits, the processor will need to keep track of vector carry-out and vector carry-in. A
1024-bit add could be accomplished in 4 cycles with a 256-bit implementation.

Subtraction would be done in the usual way, with each lane i computing a;~b; as

al.-i- bl. ,

with a carry-in to the low order lane on the low order vector.

We propose 4 new instructions to accomplish long addition and subtraction:

1. LONGADD Vd, Vm, Vn

Vd=Vm+Vn, treating each SIMD vector as a single long integer. The instruction
also creates a carry out C, where C=1 if there is a carry out from the high order lane of
the sum, and C=0 otherwise.

2. LONGADDC Vd, Vm, Vn

Vd=Vm+Vn+C, treating each SIMD vector as a single long integer. The
previously generated carry out C is added to the sum, and a new carry out is generated.

3. LONGSUB Vd, Vm, Vn

Vd=Vm-Vn = Vm + ~Vn +1, treating each SIMD vector as a single long
integer. The instruction also creates a carry out C, where C=1 if there is a carry out from
the high order lane of the sum, and C=0 otherwise.

4. LONGSUBC Vd, Vm, Vn

Vd=Vm-Vn+C=Vm+ ~Vn +1 + C, treating each SIMD vector as a single long
integer. The previously generated carry out C is added to the sum, and a new carry out is
generated.

In practice, these instructions would be used as follows. Suppose we have a 256-
bit SIMD implementation, and we want to add 1024-bit vectors x and y. In C, these
vectors would be declared as

long long x[15:0], y[15:0];

So as to not get bogged down in load/store semantics, lets assume that these
vectors are already in the register file. Then 1024-bit addition and subtraction look like
the following:

//' VO contains x[3:0], V1 contains x[7:4],

//' V2 contains x[11:8], V3 contains x[15:12]

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

16

//' V4 contains y[3:0], V5 contains y[7:4],

//'V6 contains y[11:8], V7 contains y[15:12]

// long addition to put x[15:0] + y[15:0]

//1n (V13, V12, V11, V10)

LONGADD V10, VO, V4,

LONGADDC V11, V1, V5;

LONGADDC V12, V3, Vo;

LONGADDC V13, V4, V7,

// long subtraction to put x[15:0] - y[15:0]

//1n (V23, V22, V21, V20)

LONGSUB V20, VO, V4,

LONGSUBC V21, V1, V5;

LONGSUBC V22, V3, V6,

LONGSUBC V23, V4, V7,

Given a 256-bit implementation, 1024-bit adds and subtracts could each take 4
cycles. Such a capability would be useful for things other than FP accumulation,
including cryptographic applications.

Converting, Adding, Subtracting FP to HPA

An HPA number is a pair (7,a), where 7 is a long two’s complement integer and a
is an anchor value giving the weight of the least significant bit of the integer (and hence
the weight of all of the bits of the integer). Our long integers are going to be processed on
SIMD units, so let’s be a bit more specific about 7 and a. Suppose we have a 256-bit
SIMD unit. Then the low order 256 bits of i are broken into four 64-bit parts, Vi[3:0]. It
will be convenient to also have the anchor in four parts, Va[3:0], where Va[O]=a and
Valil=Va[i—1]+64 for i>0. We haven’t really changed anything here, but we are just
adopting a more convenient SIMD representation, with the low order 256 bits of the HPA
number (7,a) being represented as (Vi,Va).

Figure 3 shows an efficient way of adding an FP number /" to an HPA number
(Vi,Va). Each lane of the SIMD unit has the lane-specific values of (Vi,Va), i.e., lane j has
Vi[j] and Va[j]. Each lane also receives a copy of /. Each lane compares the exponent of

F to its anchor value Valj], and populates the lane with the appropriate bits of the

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

17

significand of F. At most two of the lanes will contain significand bits. Each lane
computes its 64-bit converted value independently, with the resulting 256-bit integer
comprising the four 64-bit lane values. That 256-bit value is then added to Vi, possibly
with a carry-in value cin, and the result is a new 256-bit value that reprents (Vi,Va)+F,
together with a carry-out value cout. Note that it is meaningful to add these two 256-bit

values as integers because both values have identical anchors.

Suppose we have a 128-bit SIMD unit, and we want to convert values using the
anchor -50. This means that the lowest order bit of the 128-bit 7 corresponds to 273 O, the
next bit corresponds to 2_49, and so on (see Figure 4). The high-order bit of Vi[0]
corresponds to 213, while the low order bit if Vi[l] corresponds to 214 S0 an HPA

number with value 214+213=24,576 would have these two bits set. Bit 127 of 7 (the
high order bit of Vi[1]) is a sign bit. An alternative embodiment may use an unsigned
HPA format in which the value represented by the Vi part of the HPA number is
unsigned. In this case, bit 127 of i would have value 2"(127+a), where a is the anchor
value.

For FP conversions to HPA, each lane examines the true exponent of F and then
compare that to the lane specific anchor. The same anchor (-50) is used for all examples,
and the examples will be easier to follow by refering to Figure 4.

Example 1 Suppose we want to convert the DP number F'=1.0—ulp=
3fef fiff fif ffff to HPA. The biased exponent is 3fe, the true exponent is -1, and the
significand is 53 ones. The top lane sees that the exponent is too low (that lanes minimum
weight is 14), so it fills its bits with zeros. The bottom lane sets bits [63:50] to zeros, and
bits [49:0] to ones. There are 3 ones left in the significand, (corresponding to the value
272157324575 3), but these will be omitted from the conversion because their weight is
less than the anchor value -50. An alternate implementation might round the converted

value, but for now let’s assume truncation.

Example 2 F—220—ulp— 412f £fff £Fff £Fff The true exponent is 19, so bits
[127:70] are zeros, [69:17] are ones, and [16:0] are zeros. This number fits exactly, so

rounding is irrelevant. Note that each lane still works independently on its own 64 bits.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

18

Example 3 77— 20— ¢130_0000 0000 _0000. The true exponent is 20, but now
we have to deal with the sign. One method is to do the conversion as we did for positive
numbers, but return the ones complement of the value we compute in each lane, then add
one to the 128-bit value. In this case, bit 70 is the one set bit before the ones complement,
so it is the one zero bit after the ones complement. Adding 1 to the 128 bit value gives us

bits [127:70] set to ones, and bits [69:0] set to zeros.

Example 4 7-280— 44f0 0000 0000 0000. The true exponent is 80, but our
maximum weight is 76 so we set the overflow flag. I propose we return zeros in this case,
or perhaps the maximum value in the high-order lane and zeros elsewhere (the low-order
lanes don’t know about the overflow, so we can’t follow the examples of integer converts
and return the maximum integer). This is a serious error, and so the result would be
meaningless in any case.

Example 5 F = infinity or NaN. Return zeros, set OFC (infinity) or IOC (NaN).

Each lane does the conversions in the same way. One way is to position the
significand just to the right of the 64 bits of the lane, and then left shift the significand by
the value Ishift =e—bias—Va[i]+1. Note that e¢'—bias is the the true exponent e, and if the
Ishift value is negative or zero then no shifting is done.

Conceptually, the input to the shifter is the 64+53=117 bit value consisting of 64
zeros followed by the significand (in practice the 64 zeros are not needed on input). The
output of the shifter is the 64-bit value for the lane. Meaningful shift distances (i.e., shift
distances that can put a significand bit into the lane) range between 1 and 64+52=116.
Lshift values outside of this range don’t require any shifting because they will always
return zeros.

For example 1, e=—1, so the upper lane has Ishift[1] =—1-14+1=—14 (negative, so
no shift, and the lane contains all zeros) and the lower lane has Ishift[0]
=—1—(—50)+1=50, so the bottom 50 bits of the lane contain the high-order 50 bits of the
significand.

For example 2, e = 19, so Ishift[1] =19-14+1=6 (top 6 bits of the significand are
shifted in) and Ishift[0] =19—(—50)+1=70. Note that the top 6 bits of the significand are
shifted past the 64 bits of lane 0, and so are discarded for that lane.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

19

For example 3, e = 20, so Ishift[1] = 7 and Ishift[0] = 71. Because the input is
negative, each lane returns the one’s complement of its shifted value (and all ones for
out-of-range shifts). The carry-in to the 128-bit adder is set to complete the two’s
complement operation for conversions or adds (HPA + FP). For subtracts (HPA - FP), the
conversion should treat the FP number as positive and change the operation to an add.

We propose 3 new instructions for DP numbers:

1. ADDO HPA DP Vi, Va,F

Add with overflow: convert F to HPA using the anchor values in Va, then add to
Vi. If bits of F are greater than the maximum weight bit in Vi, or if the sum causes an
(integer) overflow, set the overflow flag. Note that, in this example, only the high-order
lane of Vi can set the overflow flag, so implementations distinguish that lane from the
lower-order lanes.

2, SUBO_HPA_DP Vi, Va, F

Subtract with overflow: convert F to HPA using the anchor values in Va, then
subtract from Vi. If bits of F are greater than the maximum weight bit in Vi, or if the
difference causes an (integer) overflow, set the overflow flag. Again, in this example,
only the high-order lane of Vi can set the overflow flag, so implementations distinguish
that lane from the lower-order lanes.

3. CVTO_HPA DP Vi, Va,F

Convert with overflow: convert F to HPA using the anchor values in Va. If bits of
F are greater than the maximum weight bit in Vi, set the overflow flag. Again, in this
example, only the high-order lane of Vi can set the overflow flag, so implementations
distinguish that lane from the lower-order lanes.

Note that, in at least some example embodiments, these operations can be done in
two fully-pipelined cycles if the vector length fits in the SIMD implementation.

For vectors that are wider than the SIMD implementation, the converts and adds
are done in pieces, from low order part to high order part. Just as in the long addition and
subtract instructions described above, the higher order parts cope with a carry flag
generated by the lower order parts, so there are also versions of the instructions that do
that:

1. ADDCO HPA DP Vi, Va,F

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

20

Add with carry and overflow: convert F to HPA using the anchor values in Va,
then add to Vi. If the carry flag is high, add 1 to the integer part of the HPA number. If
bits of F are greater than the maximum weight bit in Vi, or if the sum causes an (integer)
overflow, set the overflow flag.

2. SUBCO_HPA DP Vi, Va, F

Subtract with carry and overflow: convert F to HPA using the anchor values in
Va, then subtract from V1. If the carry flag is high, add 1 to the integer part of the HPA
number. If bits of F are greater than the maximum weight bit in Vi, or if the difference
causes an (integer) overflow, set the overflow flag.

3. CVTCO_HPA DP Vi, Va, F

Convert with carry and overflow: convert F to HPA using the anchor values in
Va. If the carry flag is high, add 1 to the integer part of the HPA number. If bits of F are
greater than the maximum weight bit in V1, set the overflow flag.

There are also non-overflowing versions of the instructions, so that the low order
parts of an operation do not set the overflow flag.

1. ADD HPA_DP Vi, Va, F
SUB_HPA_DP Vi, Va, F
CVT HPA DP Vi, Va, F
ADDC _HPA DP Vi, Va, F
SUBC_HPA _DP Vi, Va, F
CVTC_HPA_DP Vi, Va, F

S

There are analogous instructions for SP numbers.

The convert instructions are not strictly necessary, because they are equivalent to
add instructions where the integer part of the HPA number is all zeros.

Suppose the HPA numbers are implemented as 128-bit vectors. The following
examples show how these instructions could be used.

Example 6 the HPA numbers fit in a 128-bit value. Then adding a DP number
DO to an HPA number (VO, V10) 1s simply

ADDO_HPA DP V0, V10, DO

Carries are not needed because there is no higher-order term, but overflow

detection is important.

10

15

20

25

WO 2016/071663 PCT/GB2015/052700

21

Example 7 HPA numbers are 256-bits wide, but the hardware handles 128 bits at
a time. The HPA numbers are split into a low-order part (VO, V10), and a high-order part
(V1, V11). Adding a DP number DO is now

ADD_HPA_DP V0, V10, DO

ADDCO_HPA DP V1, V11, D0

Note that both instructions receive the same DP number DO. This is necessary
because we do not know where the bits of the significand of DO might be, within (VO,
V10), within (V1, V11), or spread across both vectors. The low order part 1s added
without overflow detection because an overflow out of the lower bits is not a problem.
The high order part has to handle a carry from the low order part, and it also detects
overflow because overflow out of the upper bits is always a problem.

Example 8 HPA numbers are 384-bits wide, but the hardware handles 128 bits at
a time. The HPA numbers are split into a low-order part (VO, V10), an intermediate part
(V1, V11), and a high-order part (V2, V12).

ADD_HPA_DP V0, V10, DO

ADDC _HPA DP V1, V11, DO

ADDCO_HPA DP V2, V12, DO

Note that all three of the instructions receive the same DP number DO, for the
same reasons outlined in example . Both the low order and intermediate parts are added
without overflow detection because an overflow out of these parts is not a problem. The
intermediate part needs to deal with a carry out of the low order part. The high order part
has to handle a carry from the intermediate part, and it also detects overflow because
overflow out of the upper bits 1s always a problem.

Example 9 the HPA numbers fit in a 128-bit value. Then subtracting a DP
number DO from an HPA number (VO, V10) 1s simply

SUBO _HPA DP V0, V10, DO

Carries are not needed because there is no higher-order term, but overflow
detection is important. The subtract is done in the usual way, inverting the 128-bit term

that DO has been converted into, then adding 1.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

22

Example 10 HPA numbers are 384-bits wide, but the hardware handles 128 bits
at a time. The HPA numbers are split into a low-order part (VO, V10), an intermediate
part (V1, V11), and a high-order part (V2, V12).

SUB HPA DP V0, V10, DO

SUBC _HPA DP V1, V11, DO

SUBCO _HPA DP V2,V12 DO

Note that all three of the instructions receive the same DP number DO, for the
same reasons outlined in example. In this example, in all cases, the number to be
subtracted i1s inverted (one’s complement), but a carry-in for completing the two’s
complement operation is, in this example, only generated for the low order instruction,
SUB_HPA DP. The carry-in for completing the two’s complement operation is, in this
example, only set for the non-carry versions of the subtract operation, SUB_ HPA DP
and SUBO HPA DP. At this point the instruction proceeds exactly like the add in
example 3.

Converting HPA to FP

As above, we will consider the HPA number (i,a) to also have a vector
representation (Vi,Va), where Vi 1s a vector of 64-bit integers and Va 1s a vector of
weights Va[Ol=a and Va[i]=Va[i—1]+64 for i>0. In order to convert to FP, we need to
record the sign of Vi, find the first non-sign bit in Vi, construct a significand out of it and
the format-specified number of following bits (52 for DP, 23 for SP), round the
significand, and construct the appropriate exponent from the location of the first bit and
the corresponding weight.

For simplicity, let’s assume that we are converting (i,a) to DP (53 bit significand).
In more detail, the conversion steps are:

1. the sign bit is the high order bit of 7. If it is set the HPA number is
negative, and it is negated so that it is a positive number. One way to do this is to subtract
the integer part of the HPA number from zero. The original sign is remembered because
1t 1s needed for the construction of the FP number, but the rest of this conversion assumes
that the value it is converting is non-negative.

2. Starting with the high-order lane, each lane does a count leading zero

operation (CLZ) to determine the number of zeros before the first one in the lane. This

10

15

20

25

WO 2016/071663 PCT/GB2015/052700

23

number, the leading zero count (LZC) ranges from O to 63 if a one is present. If a one is
found, the lane returns k=min(64—LZC,53) bits of significand starting with that bit
position, and if 64—LZC>53, the next bit to the right of the significand (G), and if
64—LZC>54, then the logical OR of all the bits to the right of G (S). All of this
information from lane j is passed to the next lane j—1, along with a count 53—k of how
many bits of significand to take from the high order bits of lane j—1. Figure 5 shows how
the significand is constructed from two adjacent lanes for various LZCs. If the first one is
found in lane j, then we use the anchor for that lane to compute the (unbiased) exponent:

e=V[j]+63-LZC.

3. the sign, exponent, significand, G and S are passed to the right until they
arrive at the low order lane. Each intermediate lane (including the low order lane) updates
S with the logical or of all of its bits. The low order lane constructs the DP number and
rounds it according to whatever rounding mode has been specified.

The conversion HPA to FP is slightly slower than FP to HPA. If implemented as
described, a 128-bit HPA number would require 3 cycles to construct a FP output: 1
cycle to make the HPA number positive, one to handle the high-order lane, and one to
handle the low order lane and produce the rounded result. This is not likely to be a
problem because there is one such conversion for each accumulation. For larger
implementations, say 256 or 512-bit vectors, we may wish to use a more parallel
approach, where the LZCs and lane results are computed all at once for each lane, and
where the individual lane results are combined in a binary fashion.

Sums of Products

The constructs described above can be extended to handle sums of products. No
changes are needed if we want to add rounded products: we just multiply and then add
the products exactly as we would any other FP number. In order to accumulate
unrounded full-length products we will need new instructions.

1. MADD HPA DP Vi, Va, Dn, Dk Multiply-accumulate: compute Dn*Dk
without rounding (i.e., retain the full 106-bit significand product), then convert the
product to HPA using the anchor values in Va, then add the converted product to V7.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

24

2. MADDO_HPA DP Vi, Va, Dn, Dk Same as MADD HPA DP, but if the
conversion or addition causes an overflow (high-order lane only in this example), set the
overflow flag.

3. MADDC_HPA DP Vi, Va, Dn, Dk Same as MADD HPA DP, but also
respond to a carry.

4. MADDCO_HPA DP Vi, Va, Dn, Dk Same as MADD HPA_ DP, but also
respond to a carry, and if the conversion or addition causes an overflow (high-order lane
only in this example), set the overflow flag.

We anticipate that, in at least some example embodiments, these instructions will
take 5 cycles: three cycles for the multiplication, one for the conversion to HPA, and one
for the HPA addition. The conversion is essentially the same as shown above, but with
wider signficands that can span three 64-bit lanes. Instead of broadcasting a single DP
number to each lane, a double-length DP product is broadcast to each lane.

A multiply and convert to HPA instruction is just a MADD instruction with Vi=0.
There would of course be SP variants, and possibly multiply-subtract variants.

The instructions are still fully pipelined, and can be issued each cycle, so a sum of
n products would require n+4 cycles if the HPA number fits in the hardware-length
registers.

Highly Accurate Inputs, and Multiplying HPA numbers by scalar values

For certain applications that require high internal accuracy, such as polynomial
approximations, or Taylor series, or range reduction for elementary functions, it may be
useful to include more accuracy in an HPA number than can be expressed in an FP
input. For example, we might want to have the constant 1/pi expressed to 128 bits or
more of accuracy. This is easily accomplished by computing the desired value and
storing it as a long integer (in 64-bit vector parts), together with the correct anchor. The
resulting HPA number can be used just like any other.

We may wish to multiply an HPA number (i, a) with an FP number f. If f has
significand s and true exponent e, then the result is an HPA number (i*s, ate). If (1, a) is
represented by the vectors (Vi, Va), then one way to do this is via vector by scalar
multiplies with high and low parts.

MUL _VEC SCALAR low Vd, Vi, s

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

25

multiplies each of the 64-bit components of Vi by the scalar 64-bit s, each lane returning
the low 64 bits of the products in the corresponding part of Vd.
MUL VEC SCALAR high Vd, Vi, s
multiplies each of the 64-bit components of Vi by the scalar 64-bit s, each lane returning
the high 64 bits of the product in the corresponding part of Vd.

The high part is then shifted so that it can be added to the low part. The anchor
may be adjusted by a separate instruction that adds a and e, or a vector by scalar add that

adds e to each of the entries in Va.

The product (i*s, a+e) has more bits in the integer part than the original (1,a), so it may be
useful to have instructions that convert back to the original accuracy, adjusting the results
anchor.

Applications

This section uses sample applications to show some of the performance and
energy benefits of HPA in some example embodiments.

Application 1 Adding » FP items using HPA, where the HPA number fits in the
hardware size (e.g., 128-bit HPA on 128-bit SIMD). The convert and add instructions
have 2-cycle latency, and are fully pipelined with a throughput of 1 HPA addition per
cycle. Figure 6 shows the addition of 4 FP numbers to an HPA number (Vi, Va).
Instructions go from top to bottom, and cycles are read from left to right, so that in cycle
1 the first add instruction is performing the FP to HPA conversion (C in the table), and in
cycle 2 the converted value from the first add instruction is added (A in the table) while
the second add instruction is performing its FP to HPA conversion (C).

In general, we can add »n values in n+/ cycles, with the arithmetic being
associative and (to the accuracy specified by the programmer) correct. In contrast, normal
FP addition done according to C rules would require axn cycles, where a is the latency
of a FP add, so 3n cycles on ARM’s fastest FPU. Even this understates the HPA
advantage. ARM’s “big” cores have two 128-bit SIMD integer pipelines, and since HPA
addition is associative, we can easily use two accumulators, accumulating » FP numbers

in about n/2 cycles, then adding the two accumulator values to get the final sum. This

10

15

20

25

WO 2016/071663 PCT/GB2015/052700

26

means that HPA accumulation on an ARM core can be six times faster than FP
accumulation on the same core.

Application 2 Adding » FP items using HPA, where the HPA number is wider
than the SIMD hardware size (e.g., 256-bit HPA on 128-bit SIMD). The convert and add
instruction still has the same latency, but two convert and adds are needed for each HPA
value. Figure 7 shows the addition of 2 FP numbers to an HPA number (Vi, Va). Vi and
Va are broken into high and low parts, and each FP number 1s first added to the low part,
and then added to the high part with carry out of the lower part.

Adding n items in this way requires 2n+/ cycles, still faster than FP
accumulation. As shown in application 1, we can also halve this latency by using a
second SIMD unit.

Application 3 FP AMR codec. This codec spends much of its processing time in
the simple subroutine Dotproduct40, which adds 40 SP products using DP, then converts
back to SP. This subroutine obviously use DP for accumulation because the roundoff
errors were problematic in SP. On ARM’s fastest FPU, this routine would take a
minimum of 126 cycles: 40 SP multiplies, 40 SP to DP converts, 39 DP adds, plus one
convert back to SP. Because of C ordering rules, the DP adds alone require 39x3=117
cycles. If we do the same thing using HPA, Dotproduct40 could be done in 47 cycles on
one SIMD unit: 40 HPA multiply-adds, and one convert HPA to SP. As shown in
application 1, we can also halve this latency by using a second SIMD unit. Besides being
faster, the HPA solution uses considerably less control logic (about 1/3 of the
instructions, saving numerous fetch, decode, issue, and retire resources), so it will likely
require much less power. It will certainly require much less energy.

Application 4 Dense matrix multiplication, simplest algorithm. This is a series of
dotproducts, every row times every column. HPA multiply-adds could do this in a
reproducible (and correct!) way on any number of processors. Speedup could again be
factor of three or six on a single processor, with much larger speedups possible due to the

ability to use parallelism.

10

15

20

25

WO 2016/071663 PCT/GB2015/052700

27

Exceptions

Because of the reduced range for HPA, out-of-range numbers are much more
likely. We need to provide tools and instrumentation to allow programmers to establish
correct boundaries, but we especially need to provide information when boundaries are
violated. We propose using underflow, inexact, and overflow exceptions, either the same
exceptions used by FP or else new HPA-specific exceptions, to indicate boundary
problems.

Suppose we have a 256-bit HPA number (7,a). There are two boundaries, a on the

low end, and a+254 on the high end. Any FP numbers that have bits with weight less
than 29 are going to lose some information on conversion. This is usually not a problem

because by picking the weight a the programmer has indicated that values below 24 are
unimportant. Nevertheless, we still need to flag the fact that bits have been lost. One way
to do this s to set the inexact flag when the conversion to HPA discards some bits on the
low end, and the underflow flag when the entire FP input is discarded. In this example,
these computations only apply to the low order lane for the non-carrying instructions, so
an implementation should be able to distinguish that lane.

2"Jr25 4 sets the overflow

Converting numbers that have bigger magnitude than
exception, and this is always a serious problem, requiring the program to recompute
using a different anchor. The same exception happens for overflow in the integer adder,
and again the solution is to recompute using a different anchor. An HPA program should
check the overflow flag to see if the program’s results are meaningful.

Most accumulations use a small fraction of the range of FP numbers, and so they
can be computed more quickly and correctly using HPA numbers. HPA accumulation is
reproducible and parallelizable, and after figuring out data bounds, is not appreciably
harder than FP for programmers. Of course in cases where FP’s lack of associativity
causes problems, HPA is much easier on programmers. Very few people are trained to
analyze situations where FP gives poor results. One frequent response is to recode using a

wider FP format, but this has poor performance for anything bigger than DP. Using HPA

gives better performance and gets rid of the most pernicious of the roundoff problems.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

28

HPA 1s also simple to implement, requiring modest changes to ARM’s SIMD
unit. While these changes add a small amount of area and power to the SIMD units
themselves, at the core level power and especially energy will be much lower. Execution
units are not where energy is mostly spent in an out-of-order machine, and making
accumulations faster allows us to shut down the the control logic where the energy is
being spent.

Figure 8 schematically illustrates a data processing apparatus 2 for performing
data processing operations under control of program instructions. A data processing
apparatus 2 comprises a memory 4 storing program instructions 6 and data to be
manipulated 8. A processor core 10 is coupled to the memory 4 and includes a register
bank 12, processing circuitry 14, an instruction fetch unit 16, an instruction pipeline unit
18 and an instruction decoder 20. It will be appreciated that in practice the data
processing system 2 may include many additional elements and that the representation of
Figure 8 1s simplified to aid understanding. In operation, program instructions 6 are
fetched from the memory 4 by the instruction fetch unit 16 and supplied to the instruction
pipeline 18. When the program instructions reach the appropriate stage within the
instruction pipeline 18 they are decoded by the instruction decoder 20 and generate
control signals which serve to control the operation of the register bank 12 and the
processing circuitry 14 to perform the processing operation(s) specified by the program
instruction decoded. Multiple input operands may be read from the register bank 12 and
supplied to the processing circuitry 14 where they are manipulated and then a result value
written back into the register bank 12.

The register bank 12 can have a variety of different forms. The operands to be
manipulated may, for example, include floating point operands, fixed point operands,
integer operands and HPA number operands (as will be described later). The register
bank 12 may serve to store a mixture of these types of operands depending upon the
configuration of the register bank 12. The operands can have differing levels of
precision, as may be predefined by their format, or as may be programmably specified
using metadata associated with the registers as will be described later in relation to the

HPA number operands.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

29

Figure 9 schematically illustrates a floating point operand. A floating point
operand i1s normally formed of a sign, an exponent and a significand. Floating point
operands can represent values with a wide variety of magnitudes indicated by their
exponent values. The precision with which a number can be represented is limited by the
size of the significand. Floating point operations typically are more complex and slower
to implement than integer arithmetic.

Figure 9 also illustrates a 64-bit integer operand. Such an integer operand can
represent numbers in the range 0 to (2°*-1) for unsigned integers, or -2% to 2%-1 for
signed integers. Integer arithmetic is typically quick and consumes comparatively little
energy to perform, but suffers from the disadvantage that numbers of a comparatively
limited range of values may be specified compared to the range of numbers which may be
represented by a floating point value.

Figure 9 also illustrates an HPA number comprising a vector of multiple
components (in this example three) each comprising a 64-bit integer. The HPA number
has metadata associated with it. The metadata includes an anchor value indicating a
programmable significance of the bits of the components forming part of the HPA
number. The anchor value(s) specifies directly, or indirectly, a lower boundary of the bit
significance and an upper boundary of the bit significance. The term metadata used
below can be considered to correspond to data including the anchor value(s) that specify
the bit significance of an HPA number. The different components together specify the bit
values which contiguously span this range of bit significance. Depending upon the
position of the lower boundary of the bit significance and the upper boundary of the bit
significance, the range of bit significance may include the binary point position. It is also
possible that the binary point position may lie outside of the range of bit significance
specified for a particular HPA value.

The anchor value(s) may be provided so that they are capable of representing a
range of bit significance extending from a lower boundary of bit significance
corresponding to a smallest significance that can be represented by a floating point value
(e.g. a double precision FP value) up to an upper boundary of the bit significance
corresponding to a highest bit significance that can be represented by that floating point

value.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

30

The number of components which form the HPA number can vary between
different implementations. The size of the components may be fixed in some
embodiments, but in other embodiments may vary. The overall width of the range bit
significance may in some embodiments be constrained to change in units of a fixed
component size (e.g. with 64-bit components, the range of the bit significance may have a
width of, for example, 64, 128, 192, 256,...). It is also possible that the width of the
range of bit significance could vary continuously in steps of one bit width.

As previously mentioned, the anchor value(s) (within the metadata) may specify
the programmable bit significance in a variety of different ways. One example is to
specify the lower boundary bit significance of each vector component. Thus, each vector
component may comprise an integer value representing its portion of the significant bits
of the value within the overall range of bit significance together with metadata
representing (anchoring) the significance of the lowest bit within that component.
Another option is that the anchor value(s) specifies the lower boundary of the bit
significance of the whole HPA number together with the total width of the range of bit
significance. A further option is that the anchor value(s) may comprise data specifying
the lower boundary and the upper boundary of the range of bit significance. Still further
variations are also possible, such as anchor value(s) comprising the lower boundary of the
range of bit significance together with the number of the components where those
components are known to be fixed width components.

Figure 10 schematically illustrates a relationship between size of values
representable with a double precision floating point and the significance range of an HPA
number. In the case of a double precision floating point number, the size of bit values

which may be specified extends from approximately 279 to 2797

(not counting
subnormals). The binary value representing 2° lies approximately midway in this range.
As illustrated, the HPA number has a programmable bit significance range which
may be considered as a window of bit significance within the range of bit significance
representable using the floating point value. This programmable bit significance may be
specified by a lower boundary and an upper boundary, and depending upon the values of

the lower boundary and the upper boundary, may be considered to slide along the range

of bit significance provided by the floating point value. The width of the window, as well

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

31

as its starting point and ending points, may be specified by appropriate values of the
programmable metadata (that includes the anchor value(s)) which specifies the bit
significance. Thus the HPA number may have a form selected by the programmer to
match the computation to be performed.

Figure 11 schematically illustrates circuitry 22 which may form part of the
processing circuitry 14 of Figure 1. The circuitry 22 includes alignment circuitry 24, 26
which serves to perform alignment operations upon input operands in dependence upon
the programmable significance value specified for a result register 28 and stored within a
metadata store 30 (which stores the anchor value(s)) associated with the result register 28.
The input operands, which may be floating point numbers, fixed point numbers, integer
values, HPA numbers, or a mixture thereof, are aligned such that the values of their
integer bits are aligned with the bit significance specified for the result register 28 prior to
the result value which is to be stored within the result register 28 being determined. The
alignment circuitry 24, 26 generates aligned input operands which are supplied to
arithmetic circuitry 32. The arithmetic circuitry 32 may be, for example, an integer adder
or an integer multiplier, which treats the aligned input operands as integer values and
accordingly performs relatively high speed and lower energy arithmetic operations upon
these aligned input operands. The result value generated by the arithmetic circuitry 32 is
already aligned to the programmable significance of the result register 28 and is stored
into the result register 28 as an HPA number.

In the case of one or more of the input operands supplied to the alignment
circuitry 24, 26 being a floating point value, then the alignment circuitry 24, 26 is also
responsive to the exponent value of the floating point value when determining how the
significand of the floating point value should be aligned to match the bit significance
specified for the result register 28.

It will be appreciated that as the programmable bit significance parameter (anchor
value(s)) stored within the metadata storage element 30 is independent of the aligned
result value generated by the arithmetic circuitry 32; there is no normalization of the HPA
number performed. Accordingly, overflows, underflows and other exception conditions
are possible in relation to the processing performed on the HPA numbers as will be

discussed later below.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

32

In the example of Figure 11, the programmable significance parameter (anchor
value(s)) is stored within the metadata storage element 30 in advance of processing being
performed. In other embodiments, it is also possible that the programmable significance
parameter for the result register 28 may be taken from the programmable significance
parameters associated with one or more of the input operands if these are HPA operands,
e.g. the largest of the programmable significance parameters of any of HPA input
operands may be taken and used as the programmable significance parameter for the
result register 28.

Figure 12 schematically illustrates circuitry which may form part of the
processing circuitry 14 of Figure 1 in some example embodiments. This circuitry 34
performs processing upon an HPA number in the form of a vector comprising multiple
components stored within respective vector storage elements 36, 38, 40, 42. A metadata
storage element 44 (e.g. metadata register) serves to store metadata including at least how
many components form a particular vector HPA number. The lowest significance
component of the vector is stored within the vector storage element 42 and then higher
order significance components are stored within the vector storage elements 40, 38, 36 as
necessary.

The circuitry 34 further comprises processing circuitry 46, 48, 50, 52 associated
with respective components of the vector HPA number and which may be arranged to
perform operations such as addition, subtraction and multiplication as specified by a
program instruction being executed. In practice, the processing performed by the
processing circuitry 46, 48, 50 and 52 is dependent upon both how many components
comprise the vector HPA number value and the program instruction being executed. In
particular, when a vector HPA number is composed of multiple components, then a carry
out value 1s propagated between the different parts of the processing circuitry 46, 48, 50,
52 starting from the least significant bit end.

In the example illustrated in Figure 12, four separate lanes of processing are
illustrated. If the vector HPA number comprises four components, then all of these four
lanes may be used in parallel. It is also possible that if the HPA numbers comprise two

components, then two such two-component HPA numbers may be processed in parallel

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

33

within the circuitry of Figure 12 with a carry not being performed between the
components of the processing circuitry 50 and 48.

Figure 13 illustrates a variant of the circuitry of Figure 12. In the circuitry 54 of
Figure 13, a vector HPA number value is again subject to processing as specified by a
program instruction. In this case the processing circuitry 58 is controlled by micro-
operation instructions generated by micro-operation generating circuitry 60 in
dependence upon the program instruction and the metadata indicating how many
components are within the vector HPA numbers. In particular, if four pairs of
components need to be added to perform the addition between two four-component HPA
numbers, then these four additions are performed in series by the processing circuitry 58.
The first of these additions does not have a carry in input and may be represented by a
micro-operation instruction ADD. The next three additions do receive a carry input from
the previous addition and may be specified by the micro-operation instructions ADDC.
The final result vector HPA number is written into the result register 62.

Figure 14 schematically illustrates circuitry 64 which may form part of the
processing circuitry 14 of Figure 1. The circuitry 64 is similar to that of Figure 11, but in
this case additionally includes exception generating circuitry 66. The exception
generating circuitry 66 is responsive to inputs from the alignment circuitry 68, 70 and the
processing circuitry 72 to identify the occurrence of a variety of exception conditions.
These exception conditions may include one or more of the conditions that: one of the
input operands is a subnormal floating point number; the conversion of a number between
formats has been inexact; a result value generated has underflowed the programmable
significance range of a result register 74; a result value generated has overflowed the
programmable range significance of the result register 74, an input operand has a value of
infinity; is not a number; or is a signed value when being converted to a target value that
is unsigned. It will be appreciated that various other forms of exception indications are
possible. The exceptions when they occur may be noted within a global exception store
76. Alternatively, exceptions may be associated with individual HPA numbers and form
part of the metadata associated with those HPA values. Other arrangements are also

possible.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

34

At least some embodiments of this disclosure include a method for handling
conversion and arithmetic exceptions for HPA numbers that represent floating-point (FP)
values. A goal of some embodiments may be to produce the same exceptions (except for
inexact) that would be produced when adding FP numbers (e.g., +infinity added to —
infinity returns a NaN and the invalid operation exception I0C), as well as giving the
programmer information needed to detect whether the significances specified by the
anchor vectors are too small.

The use of HPA datatypes to represent full-width or partial-width floating-point
values raises issues with IEEE 754 exception handling. Table 2 contains entries for FP
exceptions except DZC (divide by zero, an exception that happens during division, not
conversions), as well as metadata entries for infinity, NaN, and sign. These exceptions
may be recorded immediately in a global exception word, or after the HPA datatype has
been converted to a standard FP datatype (SP or DP), or never recorded in the global
word. They may be incorporated in the metadata for the datatype or not. Some are non-
standard exceptions while the others are IEEE 754 specified.

The FP->int and int->FP columns of Table 2 show what happens during IEEE-
754 conversions between FP and 64 or 32-bit integers. These are included to provide
guidance as to IEEE-754 behavior. The last three columns show which exceptions are
possible for the conversions and additions involving HPA values, as well as how these
operations can deal with infinities and NaNs.

If the HPA number vector is large enough to exactly represent the FP type, then
most of the exceptions will not happen. There is a unique HPA number for every finite
FP number and so overflow and underflow should not occur, and even inexact should not
occur for conversions to HPA numbers. Addition and subtraction can’t cause underflow,
and they are exact, so no exceptions should arise. Finally converting back to FP should
not underflow if the full HPA precision is used.

Overflow can happen for both addition and conversion back to FP. Simply
adding the HPA equivalent of the maximum positive FP number to itself will give a result
that might overflow the addition (depending on how many bits we give to the HPA

number), and it will overflow the conversion back to FP.

WO 2016/071663 PCT/GB2015/052700

35

If using smaller vectors (something programmers will want to do for performance
reasons), then more of the exceptions become possible. Furthermore, these exceptions
become meaningful to programmers, because the one possible aim for this arithmetic is to
be reproducible and exact. In general, seeing an overflow, an underflow or an inexact

5 indicates that larger vectors are needed to store the HPA numbers.

Table 2 is an example of one embodiment handling/generating exception
indication; other definitions of exception bits and other situations may be possible. The
column “FP->int” is conversion of standard floating-point datatypes (e.g., SP and DP) to
the standard integer formats (full or arbitrary precision), “int-> FP” is the reverse

10 conversion, “FP-> AHP” is conversion of a standard floating-point format or the
computed products of FP values to an HPA datatype, “HPA->FP” is the reverse
conversion for an HPA datatype to a standard FP format; and “AP add/sub” considers
addition or subtraction of HPA data.

Table 2 indicates which exceptions are possible (indicated by y), which

15 exceptions can’t happen (indicated by n for no or NA for not applicable), and the
footnotes explain the exceptional behavior in more detail.

_exception, metadata FP->int _int->FP FP->HPA HPA->FP . HPA add/sub

ide (input subnormal) y NA y ' y NA

ixc (inexact) y Y y () y NA

_ufc (underflow) n (a) NA y () y NA
L e A e
ioc (invalid) vy NA y@® NA NA
inf (infinity) (d) NA metadata (j) metadata (J) metadata (j)
NaN(nDtanumber) ““““ (e) NA metadata (j) metadata (j) metadata (j)

.... SlgnNANAmetadata(J)metadata(J)metadata(J)
“Table2

(a) Numbers smaller than integers are converted to zero, without setting exception

flags.

20 (b) Numbers larger than the integer can hold are converted to the maximum positive

or maximum negative integers, and ioc is returned rather than ofc.

10

15

20

25

WO 2016/071663 PCT/GB2015/052700

36

(c) Numbers larger than the integer can hold, negative numbers converted to

unsigned formats, input infinity, or input NaN are all invalid. The integer

returned 1s zero or maximum positive or maximum negative.

(d) These are converted to the maximum positive or maximum negative integers,

returning IOC.

(e) These are converted to zeros, returning IOC.

(f) Given a large enough destination vector, this exception won’t happen, but a

programmer can specify a smaller destination (say the programmer knows all
inputs are in the range 2°-100 to 2"°+100). This flag indicates that the programmer

was 1ncorrect.

(g) Like (f), this flag can indicate a programmer error, namely that the input value 1s

smaller than what can be represented in the given anchored point range.
Depending on what the programmer is trying to do, this may or may not be
serious (e.g., the programmer might want to disregard tiny numbers). In some
implementations, the combination of IXC and UFC gives additional information:
UFC only means none of the bits were converted, while UFC and IXC means a

partial conversion. No attempt is made to round partial conversions.

(h) This flag indicates a serious problem, namely that the input value is larger than

)

what can be represented in the given HPA vector. As in (g), we will use the IXC
flag to indicate partial success in the conversion, but in all cases this flag says we

need to try again with larger HPA vectors.

This flag indicates a serious problem. We propose setting it for input infinity or
NaN, and (if we make an unsigned HPA format) for conversion of negative
nonzeros to unsigned HPA format. Input infinities or NaNs should also adjust the

metadata flags.

See the discussion of metadata below. In order to give the same results as FP
computations involving the symbols infinity and NaN, we need some indication
that the given numbers are infinities or NaNs, as well as the signs of the infinities.

These together with some record of exceptions generated during the production of

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

37

the HPA number are best stored with the HPA number, ideally as part of the

second metadata vector.

At least some embodiments of this disclosure includes using SIMD-like hardware
to add or subtract HPA numbers or integers, i.e., numbers wider than 64 bits. Using
scalable registers it may be possible in some implementations to add numbers that are
thousands of bits long, with single-cycle addition of whatever the implemented vector
length is (at least for likely implementations).

A SIMD-like system may contain scalable vector registers, and those registers can
contain multiple 64-bit values. It is proposed that for the purposes of new add and
subtract instructions, the scalable vector register be considered to be one long 64*n-bit
two’s complement integer instead of a register of n 64-bit numbers. Following a SIMD
scheme, the addition or subtraction is split by hardware into implementation-defined
chunks (e.g. 256 bits or 512 bits) and added from low-order chunks to high-order chunks.
Each chunk may execute in a single cycle (at least up to 1024-bits chunks).

If a chunk generates a carry out, then that carry out may be an input into the next
chunk. This can be indicated/controlled using predicate condition flags. This is a
nonstandard use of predicate conditions.

Each addition or subtraction on a chunk would both read and write the carry
predicate condition flag (hereafter referred to as PCARRY), setting a carry-in to the
addition or subtraction if PCARRY was set, and then setting or clearing PCARRY based
on the presence of a carry out from that chunk.

Subtraction can be done in the usual two’s complement way, i.e., A-B=A +~B +
1. The +1 would be handled as a carry-in to the low-order chunk (this is unused because
there is nothing of lower order to generate a carry).

The single-cycle addition on a chunk would likely be done using the existing 64-
bit adders, with carry-select logic used to extend the addition to whatever the chunk size
is. An example of a 256-bit adder constructed from several 64-b adders is shown in
Figure 1.

An alternative “carry-lookahead” approach (as illustrated in Figure 2) can be
utilized to accelerate the carry inputs along the adder, as shown in Figure 2, where g, is a

64-b carry generate signal, p, is a 64-b carry propagate signal and Gy is a carry signal

10

15

WO 2016/071663 PCT/GB2015/052700

38

that combines all the 64-b adder generate and propagate signals from significance
64x(n+1) down.

The carry-lookahead approach may enable single-cycle execution of sums of size
up to 1024-bits.

If the Add/Subtract instructions also used a predicate register, a predicate bit may
be used to control whether or not carries could propagate at any given 64-bit boundary.
This would allow a vector to contain multiple 128-bit or larger integer values. So a 1024-
bit vector register could be regarded as sixteen 64-bit values, or four 256-bit values, or a
single 1024-bit value, and a single add instruction would work correctly in all cases.

One possible implementation of this would be to have a predicate bit meaning
“enable PCARRY”, which when set for any 64-bit element would allow a carry-in to that
particular adder. Subtractions (A-B) in this more general scheme are implemented by
inverting B (at all 64-bit positions) and adding 1 at those locations for which the “enable
PCARRY” bit is not set.

This scheme would allow the existing add instruction to work just as it does
currently (if no “enable PCARRY” bits were set), but would also allow the input vectors
to be interpreted as containing any mix of higher-precision numbers. Consider the
addition of 512-bit vectors along with a predicate that contained “enable PCARRY” bits
as in Table 3:

(a) 8 x 64 bits 0o 0 0 0 0 o 0 0
(b) 4 x 128 bits 10 1 0 1 0 1 0
(©0)2x256bits 1110 1 110

(d) 1 x 512 bits 1

Table 3

In case (a) none of the new predicate bits (denoted PCi) are set, so the addition 1s
interpreted to be separate additions of each of the 8 64-bit values.

In case (b), the predicate bits allow carries from the even 64-bit registers to the

odd 64-bit registers, which means that the additions are now working on 128-bit values.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

39

In (c) and (d) these carries are allowed for progressively larger numbers.
Case (e) shows that even mixed interpretations are possible for a given vector.

Figure 15 shows an example of an apparatus comprising processing circuitry 102
which receives one or more operands and generates a result in response to the operands.
The processing circuitry receives programmable control data 104 specifying at least one
of a target significance and a target size (length) for the result value. In response to the
programmable control data C4, the processing circuitry 102 generates the result value
having the target significance and/or target size irrespective of the values of the operands
supplied to the processing circuitry 102. If performing a processing operation (e.g. a
multiplication or addition) on the input operands would give a value which is not
representable in the result value having the specified target significance and target size,
the processing circuitry may output an exception signal 106 to indicate that the result
value 1s not exact. For example, the exception indication may indicate one of’

¢ an overflow condition when the result of the processing operation is larger than
can be represented using the result value of the specified significance and size;

¢ an underflow condition when the result is smaller than can be represented by the
result value having the specified significance and size; or

¢ an inexact condition when the result is more precise than can be represented using

a value having the target significance and size.

It may seem counter-intuitive that the processing circuit should be allowed to
generate a result of a specified significance even if the true result of processing lies
outside that significance. However, as shown in the example of Figure 16, this can be
useful for limiting the amount of processing required so that it is not necessary to process
very large numbers if the result is generally expected to fit within a smaller number of
bits. For example, the control data 104 may specify one or both of a lower significance
boundary 110 and an upper significance boundary 112. The processing circuitry 102 may
limit its processing so that it determines the bit values of the result value lying within the
specified significance boundaries 110, 112 and does not determine bit values lying
outside the boundaries. Hence, while the result value has a format that can represent
numbers in a wide range of a number space 114, the control data 104 defines a window of

variable length and position within the number space, and the processing circuitry 102

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

40

calculates only the bits within the specified window, to speed up processing and reduce
energy consumption. For example, the programmer may know that valid operand values
and results are expected to lie within a certain range of significance, and so by setting the
control data appropriately, processing resources are not wasted in calculating bit values
which are less significant or more significant than the expected range. Nevertheless, the
window within processing is performed can be adjusted by changing the programmable
control data so that a wide range of values can be supported, but with smaller hardware
overhead.

In some cases the size of the result value may be fixed, and the control data 104
may specify only one of the lower and upper significance boundaries 110, 112, with the
other one being determined from the specified boundary and the known result size.
Alternatively the size may be variable and may be specified explicitly in the control data
104 or may be expressed as a multiple of a certain number of bits (e.g. 32 or 64 bits). In
another example, the control data 104 may specify both the lower and upper significance
boundaries 110, 112, which effectively identifies the size as the difference between the
boundaries. Hence, there are a number of ways in which a target size and target
significance for the result value can be determined from the control data.

Figure 17 illustrates an example of a data value in a high-precision anchored
(HPA) data format. The HPA number comprises a data vector Vi comprising a number
of data elements d[0]-d[3] each comprising a two’s complement number representing a
respective portion of a binary value (which is unnormalised), and a metadata vector or
“anchor” vector Va including anchor value elements a[0]-a[3] each specifying the
significance (“weight”) of the corresponding data element in the data vector Vi. For
example each anchor value element a[i] may specify the significance of the least
significant bit in the corresponding data vector Vi. While Figure 17 shows an example
where the vectors Vi, Va comprise 4 data elements, which may be of a certain element
size such as 64 or 128 bits, it will be appreciated that the vectors may have varying
numbers of data elements. The number of elements in the vector may be indicated within
the anchor value Va, e.g. by providing a predetermined bit pattern or status flag in the
anchor value element a[i] of any vector lanes which are not being used, so that the

number of elements to be processed is indicated by the anchor value elements not having

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

41

that bit pattern. For example a anchor value vector Va having weights (X, 118, 54,-10),
where X is the bit pattern or status flag indicating an unused lane, may indicate that the
64-bit data elements d[2], d[1] and d[0] together represent a 192-bit binary value with a
least significant bit of significance 2™ and a most significant bit of significance 2'*'.
Alternatively, the HPA number may have some further metadata 120 specifying the
number of elements to be processed in this HPA number. Also, the anchor value vector
Va or the further metadata 120 may also specify other information such as the sign of the
data value represented by the data vector Vi, exception information indicating any
exception conditions which may have arisen during processing of the vector (e.g.
overflow, underflow, inexact, invalid operation or input subnormal exceptions), or
characteristic information indicating for example whether the data value 1s infinity, Not a
Number (NaN), or zero. When adding or subtracting HPA values, the anchor value is
fixed for the various inputs to the addition/subtraction, and the result is generated with the
same anchor value. This means a simple fixed-point adder can be used to process the
HPA wvalues, so that floating-point addition circuitry supporting rounding and
normalization is not required, which can be make processing a series of additions or
subtractions faster. The anchor value is used when converting between the HPA format
and other formats such as floating-point or integer or fixed-point formats, to generate
values having the appropriate significance. Representing the value as a vector in this way
is useful because it allows the processing of variable length values of varying
significances to be processed efficiently without requiring a very large accumulator (e.g.
see Figure 19 below).

Figure 18 illustrates an example of a storage unit (e.g. a register file) 130 for
supporting data values in the HPA number format. The apparatus shown in any
embodiment of this disclosure may be provided with the storage unit shown in Figure 18.
The storage unit includes a number of data storage elements (registers) 132 which each
have a corresponding metadata storage element (register) 134. In some examples the
metadata registers 134 may be in a separate register file from the data storage registers
132. Alternatively, the data registers and metadata registers may be part of a single
register file or may comprise different parts of the same register. Each data storage

register 132 may store the data vector Vi for a given HPA number. The corresponding

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

42

metadata storage register 134 stores the anchor vector Va and any further metadata 120
(1if provided) for that HPA value.

In some examples, the metadata in the metadata storage register 134 may be
considered to be associated with the corresponding data storage register 132 itself rather
than the particular data value in the corresponding data storage register. That is, the
anchor value Va may be defined for a given register before any value is actually
calculated for storing in the data storage register. When performing a processing
operation specifying one of the data storage registers 132 as a destination register, the
processing circuitry 102 may read anchor values from the corresponding metadata
register 134 and generate the result value having the target significance and/or target
length specified by the anchor value(s), independently of the value or significance of any
inputs to the processing operation. The anchor value is programmable based on control
data supplied by a programmer. In some cases the programmer may specify the anchor
value directly, while in other examples a library or other software program may convert
control data input by the programmer into anchor value(s) of a suitable format which can
be read by the processing circuitry 102 (this approach allows the programmer to set the
anchor values without having to understand the internal metadata format used by the
hardware).

If the HPA number requires more elements than can be stored in a single data
register 132, then the HPA number may span multiple registers with the corresponding
metadata identifying how many registers correspond to the HPA number and defining the
significances of the portions of a given binary value represented by each data element.

Figure 19 illustrates an example of processing circuitry 102 for processing
numbers in the HPA format. The processing circuitry 102 may have a number of
processing units 140 for performing parallel lanes of processing (e.g. conversion or
arithmetic operations) on respective data elements of the data vector Vi, based on the
anchor value in the corresponding metadata vector Va of a given HPA number. In some
cases the processing circuitry 102 may operate on two HPA numbers and each lane may
receive corresponding elements dO[i], d1[i] of the two HPA numbers. In this case, the
HPA numbers share the same anchor value and corresponding data elements r[i] of the

result are generated to produce a result value in the HPA format which also has the same

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

43

anchor value as the inputs. It is possible to map HPA numbers with different anchor
values to HPA numbers having the same anchor value before performing the processing.

Alternatively, in response to an instruction specifying as source operands one
HPA number and a floating-point number, the floating-point number (or a floating-point
number obtained from an arithmetic operation performed on multiple floating-point
operands) can be mapped to the HPA format before being combined with the other HPA
number. Each lane receives the corresponding anchor value a[i] of the anchor vector Va
and this may control how the floating-point operand FP is mapped to a corresponding
element of an HPA number.

The number of elements processed for a given calculation may vary depending on
the metadata. While processing units 140 are provided for a certain number of lanes, if
not all the lanes are required for a particular calculation, the unused lanes may be power
gated or provided with zero inputs to prevent toggling of internal bit states within the
lane, to save power. On the other hand, if the metadata or anchor value specifies a
greater number of elements than the number of processing units 140 provided in
hardware, then the HPA number may be processed in multiple passes of the hardware.

In summary, the high-precision fixed-point arithmetic system described herein
incorporates the “high-precision anchored” (HPA) datatype. The HPA datatype may be a
pair of vectors, one containing the data as an ordered set of fixed-length integers (e.g., an
ordered set of eight 64-bit integers), and the other containing metadata (anchor values)
specifying how each one of the fixed-length integers is to be interpreted by hardware
(e.g., range information giving the exponent weight of each bit in the integer). Since each
lane receives both data and metadata specific to that data, the lanes can do different
operations that produce a meaningful result for the vector as a whole. For example, an
HPA value may represent a very long integer, e.g. 200 to 4000 bits long, which represents
a floating-point number or product in fixed-point form. The anchor element associated
with each 64-bit part of that long integer tells a 64-bit lane how to interpret that 64-bit
integer. Hence, a datatype i1s provided consisting of data and the metadata associated
with the data, and the ability to create multiple data items each with metadata specific to
that data item.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

44

The HPA data may be the full size datatype or a portion of the range and precision
of the full size data type. The full size datatype could be 2099 bits (for holding all
double-precision numbers), or 4198 bits (for holding all double-precision products), for
example, or some even larger size allowing us to add many of these values without
overflowing. Clearly this is a large number of bits, and operations on these datatypes
would require multiple cycles, and storage would be significant. However, in many
cases, the function or application being executed will not require the full datatype, but
only a portion of the datatype, and this will be known to the programmer through numeric
analysis and simulation. For example, a particular program might never have subnormal
inputs, or might have some other range limitations. In these cases, we can use smaller
HPA data.

This datatype may be defined by only a few characteristics. These include the size
of the datatype, in some cases in bits or multiples of a vector lane size, or it could also be
defined in terms of a fixed data size, such as 32-bits or 64-bits. Further, the datatype may
be defined by the lowest exponent that can be represented. For example, if the algorithm
processes single-precision data in the range [+/- 10%, 10%], and all intermediate
computations are in the same range (the range for intermediate computations could be
greater or smaller than the input data range, but the final range should in most cases
incorporate the extents of both ranges), then the datatype would contain only the number
of bits necessary to represent data within this range. In this example, 10% is slightly

2"%% 5o an appropriate datatype for this

larger than 2% and 10% is just smaller than
algorithm would be 91 bits (150-83+24) and the anchor value would identify the smallest
exponent representable as 83. Summations to this data item would involve the 91 bits of
the datatype and not the full 2099 bits, resulting in greatly reduced computation time and
storage requirements.

In order to process floating-point exceptions, it can also be useful for the metadata
for each HPA number to include at least the following information:
. sign (whether the value is positive or negative)

. exception bits, e.g. IEEE 754-2008 defined bits — IXC (inexact exception), IOC

(invalid operation exception), UFC (underflow exception), OFC (overflow exception); or

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

45

implementation-defined bits — IDC (input denormal exception). A DZC (division by
zero) exception bit may not be required if division of HPA numbers is not required.

. characteristic bits (e.g. indicating whether the value is infinity, NaN (Not a
Number), zero)

These bits would be part of the datatype, and would not necessarily be duplicated for
every lane.

Figure 20 shows an example of an operation which may be performed using an
HPA value. In this case the operation is an accumulation operation to find the sum of a
series of floating-point values. If these were processed in floating-point arithmetic, then
the order in which the floating-point values are added would affect the result since each
addition of a pair of floating-point values may result in imprecision due to rounding and
normalization, and so floating-point additions are not associative. Therefore, to give a
predictable result, accumulating a series of floating-point values using floating-point
addition would require the additions to be performed sequentially in a fixed order, which
makes it difficult to perform quickly.

In contrast, by using the HPA format the performance can be improved greatly
because additions of HPA numbers are associative and so even if some additions are
performed in parallel within a multi-processor system, or the additions are reordered
depending on which operands become available first, the result will still be correct and
repeatable. Figure 20 shows the steps performed in one addition, which may then be
repeated a number of times to accumulate each floating-point value. In each addition, an
input floating-point value FP is mapped to a data vector Vil in the HPA format, based on
programmable anchor vector Va specified in advance for the HPA number. The
significand F of the floating-point value FP is mapped to a portion of one or more
elements of the data vector Vil, depending on the significance boundaries defined in the
anchor vector Va and an exponent E of the floating-point value. As the vector is much
larger than the significand F of the floating-point value, typically only a few lanes of the
vector would be populated with bit values from the significand, with higher lanes
populated entirely with sign bits and lower lanes populated with zeroes. The conversion

operation will be discussed in more detail below.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

46

Hence, the converted data vector Vil is effectively a long fixed-point value which
provides an alternative representation to the binary value represented by the floating-
point value. This means that it can be added to another data vector Vi0 in the HPA
format (which has the same anchor value as Vil) by simple integer addition, without
requiring alignment, normalisation, rounding and exponent adjustment steps as for
floating-point arithmetic. This means that the addition operation is associative with other
additions and so can be performed in parallel or can be reordered to improve
performance. A vector ViR is generated by adding the data vectors Vi0, Vil, and this
represents the data vector of a result value in the HPA format having the same anchor
vector Va as Vi0, Vil. If this is not the last addition of the accumulation, then the result
vector ViR becomes the second vector ViO for the next addition, when another floating-
point value FP is input and converted to HPA format and added to the previous
accumulation result. By repeating these steps several times a series of floating-point
values can be added very quickly without loss of precision, which is not possible with
floating-point arithmetic. Having generated the final accumulation result, the data vector
ViR of the result may then be converted back to a floating-point value if desired, with the
anchor vector Va controlling the way in which the conversion is performed so that the
floating-point value represents a binary value corresponding to the result value (with
rounding if necessary).

Hence, a floating-point (FP) number or product may be converted to a high-
precision anchored (HPA) number. These HPA numbers can be hundreds (single
precision) or thousands (double precision) of bits long, but they may be exact
representations of the FP inputs, and unlike FP numbers these numbers obey the normal
associative properties of arithmetic.

The conversion from a FP number to an HPA number will now be discussed in
more detail. Single-precision floating-point (SP) numbers comprise a sign bit, 8
exponent bits, and 23 fraction bits. There is also a hidden bit (based on the exponent) that
is used to construct a significand of form 1.fraction or O.fraction. The largest exponent
and the smallest exponent are reserved for special numbers, but the first bit of the
significand can appear in any of the other 2°-2 = 254 positions specified by the exponent.

The first bit of the significand is followed by the fraction, and there is one additional bit

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

47

to represent the sign, so any finite SP number can be represented as a 254 + 23 + 1 = 278-
bit fixed-point number. If we were to construct a vector of five 64-bit values to hold this
number, the low-order vector element would hold bits 0-63, the next element would hold
bits 64-127, and so on, with the high order element holding bits 256-279.

How does this fit into a vector processor? Suppose we have an instruction for
converting a SP floating-point number Si to an HPA number Vi, Va (where Vi is the data
vector and Va is the anchor vector):

CVT SP to HPA Vi, Va, Si

Vi will contain the 279-bit fixed-point result. Va will contain boundary
information for each of the five 64-bit destinations in Vi, so in the example above
Va =<256, 192, 128, 64, 0 >. Each 64-bit lane will get a copy of the SP number Si, and
it will use the boundary information and the exponent of the SP number to compute
which bits to set in the appropriate portion of Vi. Let Vi =< D4, D3, D2, D1, DO > If
Si has exponent 70, bits [70:64] of Vi (i.e., bits [6:0] of D1) will be set to the top 7 bits of
the significand of Si, and bits [63:47] of Vi (ie., bits [63:47] of DO) will be set to the
bottom 17 bits of the significand of Si. All of the remaining bits would be set to zeros
(for simplicity let’s assume a positive number for now). Each lane receives the complete
significand, the exponent, and the boundary information from the corresponding entry of
Va.

In the usual case, Va is completely determined by the base value in its low order
64-bits, with each successive 64-bit value being 64 more than the value in the previous 64
bits, so we could get by with a scalar base value if every lane “knew” its location within
Va. However, for some vector processing circuits it may be more straightforward to
include a vector of base values, so that each lane does not need to be aware of its position
within the vector, but in an alternative implementation we could imagine a single base
value being sufficient.

The binary value represented by Vi is a two’s complement number, so we change
the 24-bit significand to a two’s complement number (we could also change to two’s
complement after the conversion, but converting a 279-bit value is much slower than
converting a 24-bit value). We convert to two’s complement in the usual way: doing

nothing if the number is positive, otherwise using the value ~significand + 1. After this

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

48

conversion, the conversion to 279-bits proceeds exactly as in the preceding paragraph,
but using the possibly altered significand and setting bits to the left of the significand to
sign bits instead of zeros.

The beauty in this method lies in its flexibility. There are many possible fixed-
point numbers that a programmer might want to use to represent the FP number. Suppose
the programmer was certain that all of the FP significand bits would end up in the range
70-197? Then by appropriately altering the entries in Va the fixed-point number could be
held in a 128-bit destination. Dealing with 128-bit fixed-point numbers is a lot faster
than dealing with possibly much larger fixed-point numbers.

It would also be desirable to add the products of FP numbers precisely, and our
method easily extends to permit this. The proposed instruction would be

MUL _SP_to HPA Vi, Va, Sn, Sm

Vi will contain the fixed-point result, and again Va will contain boundary
information for each lane. The two SP numbers Sn and Sm are multiplied without
rounding, retaining the full 48-bit product of the significands, and computing a new
exponent that is a 9-bit biased (excess 255) representation of the product exponent. The
extra exponent bit is provided because the product of two SP numbers can be much larger
or much smaller than an SP number. The conversion happens exactly the same as in the
CVT SP to fixed instruction, taking the two’s complement of the product, then having
each lane compute based on Va whether the fixed-point number has any significand bits,
and filling in the remaining bits with sign bits to the left of the significand and zeros to
the right.

Besides the two SP instructions proposed, there will be two analogous DP
instructions, or instructions for any other floating-point format. They work in the same
way, but know how to interpret the DP input or product (wider significands and
exponents). The sizes of fixed-point vectors can be much higher for DP. We might want
to exclude huge (bigger than representable) or tiny (smaller than representable) numbers.

The maximum size for the main interesting cases is as follows:

10

15

20

WO 2016/071663 PCT/GB2015/052700

. DP prod nontiny 3069 105 3175 50

. DP prod, nontiny + 2046 105 2152 34

_nonhuge |

. 254 023 L 278 S
SP prod 508 47 556 9

_SPprod nontiny 381 47 429 7

SP prod, nontiny + 254 47 302 5

. nonhuge f f

The “first bit” column says how many possible places can hold the first bit of the
significand, and “frac bits” says how many fraction bits follow that significand (these
numbers are higher for products). The “length” field is just the sum first bit + frac_bits
+ 1, which is the minimum length required to hold all numbers in fixed-point form for the
specified input. The “64-bit words” column is the minimum number of 64-bit words
required to hold all numbers in fixed-point form for the specified input.

The row entries are DP (all DP numbers), DP prod (all possible DP products), DP
prod nontiny (all products ignoring any bits below DP min subnormal), and DP prod
nontiny + nonhuge (all products ignoring any bits below DP subnormal or above DP
max). The SP rows have similar explanations. We don’t need separate instructions for
all of these interesting cases because we can just adjust the boundary vector Va to reflect
the bits that we are interested in.

We believe that programmers will create their own boundaries. Perhaps products
that are smaller than 2™ are irrelevant to a particular computation. These kinds of cases
are easily managed by simply adjusting the boundary vector Va.

Figure 21 shows in more detail an example of converting a floating-point value
into a value having the HPA data format. It will be appreciated that the conversion could
be implemented with a different series of operations to the ones shown in Figure 21,
which provide the same result. Figure 21 shows steps performed to generate a single data
element Vil[x] of the data vector of the HPA value based on the corresponding anchor
vector Va[x], but the same steps can be performed for each other data element in the

vector. As shown in Figure 21, at step 150 the significand F of the floating-point value

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

50

(including the implicit bit of 1) is negated at step 150 if the sign bit S of the floating-point
value 1s 1. The negation may be performed by inverting the bits of the significand and
adding 1, to find the two’s complement of the significand value F. Alternatively, if an
addition is to be performed on the converted HPA value (e.g. as in Figure 20 above), then
at step 150 the significand F may be inverted to generate the one’s complement of the
significand, without adding 1 at this stage, and later when performing the addition a carry
input to the adder can be asserted to complete the two’s complement (this approach may
be faster by eliminating one addition step). Either way, the negation accounts for the fact
that in the floating-point format, values are represented in sign-magnitude format so that
all bits of the significand are negatively weighted if the sign bit is 1, while in the HPA
format the vector represents a two’s complement value in which even if the most
significant bit is 1, any less significant bits are still positively-weighted.

An intermediate value 162 is then formed from the significand F or the modified
significand —F resulting from the negation step 150. The significand F or modified
significand —F is placed at the least significant portion of the intermediate value 162, with
the upper part of the intermediate value 162 comprising a certain number, Lsize, of Os,
where Lsize is the vector lane size (the number of bits within one data element). For
example, Lsize may be 64, 128 or 256 bits. A shifter 160 then lefts shifts the
intermediate value 162 by a number of places indicated by a shift amount Lshift
determined as follows:

e Lshift=Z=E-B-Va[x]+1,ifZ>0and Z <Lsize + Fsize, where:
o E is the biased exponent of the FP value,
o B is the bias amount for the FP value (e.g. 1023 for DP and 127 for SP)
o Vm[x] is the target significance of the least significant bit of the data
element being processed, as determined from the anchor point value Va,
o Lsize is the number of bits in the data element (the vector lane size), and
o Fsize is the number of bits in the significand of the FP value (not including
the implicit bit).
o Lshift=0,1f Z <0 or Z > Lsize + Fsize.
Effectively, Lshift is O if none of the bits of the significand F of the FP value have

significances corresponding to the significances of the bits of the data element currently

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

51

being processed. If Lshift is non-zero then left shifting the intermediate value 162 by
Lshift bit positions causes at least part of the FP significand to be mapped to bits of
corresponding significance within the data element of the HPA vector. The Lsize-bit
value for data element Vi[x] is then selected as the upper Lsize bits from the result of
the shift.

The same operations can be performed in a similar way for each other data
element of the vector to generate the overall vector Vil of the HPA value, with each data
element representing a respective portion of a binary value corresponding to the floating-
point value.

For the processing applied to the most significant data element of the vector, if the
shift applied by the shifter 160 results in any non-sign extension bits of the significand F
being shifted out past the most significant bit of the shift result, then an exception
indication can be generated to signal an overflow condition, which indicates that the
floating-point value was larger can be represented by the HPA vector using the metadata
indicated. Similarly, for the processing applied to the least significant element of the
vector, an underflow exception can be signalled if all the bits of the floating-point value
FP have significances smaller than the significance of the least significant bit of that
element. Also, an inexact exception can be signalled if some of the bits of the floating-
point significand are represented in the converted HPA vector but other bits were less
significant than the least significant bit of the vector. These exception conditions can
signal that the significance boundaries set in the metadata Vm were inappropriate for the
current floating-point value being processed.

The conversion operation shown in Figure 21 may be performed in response to a
dedicated conversion instruction for converting a floating-point value into a
corresponding HPA value. Alternatively, the conversion may be performed in response
to an arithmetic instruction which also performs some arithmetic. For example, an
addition or subtraction instruction may cause a floating-point value to be converted to
HPA form before being added or subtracted with another HPA value, or a multiply-and-
convert instruction may trigger multiplication of two floating-point operands and the
product of these operands in floating-point form may then be converted to an HPA value

using the operations shown in Figures C7.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

52

Similarly, an HPA number can be converted into a floating-point number. The
basic instruction for SP is:

CVT HPA to SPSd, Vd, Va

where Sd is the destination SP number, Vd is the data vector containing high-
precision fixed-point data, and Va is the anchor vector containing boundary information
for each 64-bit lane of Vd. Vd is a two’s complement number, and every bit of Vd has a
weight based on the boundary information in Va, so if the low-order 64-bit word of Va
contains 100, then the low-order bit of the low-order word in Vd has weight 100, and the
next bit has weight 101, etc. In the usual case, Va is completely determined by the base
value in its low order 64-bits, with each successive 64 bits differing by 64. So in this
case

Va=< .., 296,228,164 100 >

The reason we provide a vector Va to have all these values is that each 64-bit lane
will interpret its portion of the vector Vd without any global knowledge. If the lanes
“knew” their own location within the larger vector then a base value (in this case 100)
would give sufficient information to complete the conversion.

The base value corresponds exactly with an exponent in a floating-point number.
If we constructed a significand starting at bit 62 of the low-order word of Vd, and Va was
as above, then the exponent corresponding to that significand is completely determined
by the significand position (62) and the base value (100). For SP numbers that exponent
would be 100 + 62 — 23 = 139. The -23 comes from the number of fraction bits in an SP
value. In the case where we want to represent all SP numbers, the high-precision fixed-
point number would be 278 bits long, and the low order bit of that would correspond to
the low order bit of a subnormal number. The first possible normal significand has
exponent 1 and would be located at bits [23:0] of Vd.

There are two basic ways of converting Vd to SP, left-to-right or right-to-left.

Left-to-right conversion is more straightforward. The first bit at the top of Vd is a
sign bit, and that becomes the sign of the SP result Sd. We then search for the first
nonsign bit (zero if the sign is one, one if the sign is zero). That bit becomes the first bit
of the significand, and we then take the next 23 bits as the fraction, the 24™ bit as the

guard bit, and the logical OR of all remaining bits as the sticky bit. The exponent is

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

53

computed based on the weight of the lane in which the first nonsign bit is found (W), the
location of the first nonsign bit (L), and the number of fraction bits in an SP number (23),
giving an exponent of W + L - 23, If the exponent computation returns a value less than
zero then the returned exponent is zero. If the input is negative and the first zero is part
of a string of 24 or more zeros, then the exponent is incremented by 1. The fraction is
unchanged for positive inputs, otherwise the two’s complement of the fraction is used.
The resulting number is rounded in the usual way, based on rounding mode, the least
significant bit of the fraction, the guard, and finally the sticky bit. For double precision
the operations are the same but with larger significands and exponents.

Figure 22 shows an example of using left-to-right conversion to convert an HPA
value with data vector Vi and metadata Vm into a floating-point value FP. Again, this
may be performed in response to a standalone conversion instruction or an arithmetic
instruction which includes a conversion as well as some arithmetic. The most significant
bit of the data vector Vi is mapped directly to the sign bit S of the floating-point value FP.

To generate the significand F of the floating-point value, a series of operations are
performed as follows. If the most significant bit of the vector is 1 (i.e. the HPA value is
negative), then at step 170 the vector Vi is negated (invert and add 1) to produce a
modified vector Vi’. For positive values the vector Vi is unchanged. Hence, the vector
V1’ has at least one leading zero, so represents a positive value. Starting with the most
significant element of the vector, a significand generation operation is performed element
by element sequentially. The processing lane for the most significant element searches
for the first non-sign bit within that element (i.e. the first bit value of 1). In this example
the upper element Vi[3] does not comprise any non-sign bits and so processing moves to
the next lane Vi[2].

The processing for element Vi[2] identifies a non-sign bit of 1 and determines a
leading zero count LZC representing the number of zeroes preceding the non-sign bit 1.
A partial significand is then formed from k bits of the corresponding data element Vi[2],
where k = min(Lsize — LZC, Fsize), where Lsize 1s the number of bits in one data
element, Fsize is the number of bits in the significand of the FP value to be generated
(including the implicit bit) and LZC is the leading zero count. The k-bit partial

significand value is output together with an indication (Fsize — k) of the number of

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

54

remaining bits still to be obtained for the significand, a guard bit G and sticky bit S. If
Lsize — LZC > Fsize, then the guard bit G equals the bit of element Vi[2] one place to the
right of the bits taken for the partial significand, and if Lsize - LZC <= Fsize then G= 0.
Similarly, if Lsize - LZC > Fsize + 1 then the sticky bit S equals a bitwise OR of any bits
of element Vi[2] to the right of the guard bit G, and otherwise the sticky bit S = 0.

The processing then moves to the next lane for element Vi[l], where another
partial significand value i1s generated. The upper portion of element Vi[1] is selected as
the partial significand, with the number of bits taken corresponding to the value Fsize — k
which was output from the previous lane. This lane also updates the values of the guard
and sticky bits G, S, with the guard bit G being equal to the bit of element Vi[1] one place
to the right of the lowest bit taken for the partial significand and the sticky bit S
corresponding to the bitwise OR of any bits less significant than the guard bit G. The
lane of processing for the least significant element Vi[0] receives the sticky bit S from the
higher lane and updates it by ORing all bits of element Vi[0] with the sticky bit S from
the previous lane.

The partial significands generated for lanes 2 and 1 are then concatenated to form
a significand value F. The significand is rounded based on the values of the guard and
sticky bits G, S, using any desired rounding mode. The stored significand for the
floating-point value FP is then obtained from the rounded significand value, ignoring the
most significant bit of the rounded significand, which is implicit in the floating-point
representation.

Meanwhile, the biased exponent E for the floating-point value is determined as:

E =Va[j] + Lsize-LZC + B,

where Va[j] is the significance of the least significant bit of the data element Vi[j]
within which the most significant non-sign bit was found (e.g. the significance indicated
by the anchor point value for element Vi[2] in the example shown in Figure 22), Lsize is
the number of bits in one data element, LZC is the leading zero count and B is the bias
value for the floating-point representation being used.

If Fsize < Lsize, then at most only two adjacent data elements can contain bit
values which contribute to the unrounded significand F, as in the example of Figure 22,

and other lanes will either be more significant lanes containing only sign bits or less

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

55

significant lanes which contribute only to the sticky bit S. It is also possible that the
unrounded significand could be formed entirely from bit values within one lane,
depending on the position of the first non-sign bit within a lane. However, if Lsize <
Fsize then there may be more lanes which contribute to the unrounded significand.

Figure 22 shows an example of processing each data element of the HPA value
sequentially from left to right. However, as the vector size becomes larger this may be
relatively slow. This may not always be a problem. For example, with the accumulation
operation shown in Figure 20 the conversions from FP to HPA may occur much more
frequently than a conversion back from HPA to FP (the FP-HPA conversion occurs for
each addition, while the HPA-FP conversion occurs only once the final result is
generated). However, if it is desired to speed up processing, it is possible to perform
operations in parallel for several lanes. For example, processing circuitry of the form
shown in Figure 19 may be used. In this case, each lane may detect the highest non-sign
bit and generate a partial significand assuming that it contains the highest non-sign bit
within the entire vector, and then the processing circuitry may later combine the partial
significands by obtaining Fsize bits from the lane which actually contains the first non-
sign bit, and if necessary obtain Fsize — k bits from the next lane down.

Right-to-left conversion is also possible, where the least significant element is
processed first. Suppose Vd = < D4, D3, D2, D1, DO >, which is sufficient to hold any
SP number, and let Va = < 256,192, 128, 64, 0 >. Recall that the Va vector may specify
another range for the Vd source Two methods could be used for right-to-left conversion.

1. The lane holding DO computes an SP number as if only those 64-bits were
available, using the same algorithm as in the left-to-right conversion but without doing
any rounding or sign-based manipulation. The value returned is a 35-bit vector <sign,
exponent[7:0], significand[23:0], guard, sticky> The lane holding D1 does the same
thing, but also looks at the data generated by the DO lane. If the D1 lane is all sign bits
then the DO result is passed upward. Otherwise a new SP number is computed based on
the new location of the first non-sign bit. Some of the fraction bits for this new number
might come from DO, but we have the information about those bits from the 35-bit vector
returned by that lane. We also compute new exponent, sign, guard and sticky bits. The

process is repeated for D2, and then D3, and finally ends by rounding the vector returned

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

56

by the D4 lane. DP conversions work just the same way, but have larger exponents and
significands.

2. In the second method, each Dx block computes the 35-bit vector independently
of the others. In a system with 4 Dx blocks implemented in hardware, each 35-bit vector
is output to a second block that computes a single 35-bit vector for the set of 4 Dx blocks.
This value is held and combined in a like fashion with the 35-bit vector from the output
of the next set of data bits. In the example above, with a 256-bit Shoji engine, 64-bit
chunks D3 to DO would be processed in the first iteration, each Dx block producing a 35-
bit vector, and a final vector generated for the D3 to DO set. A second pass would
generate another 35-bit vector for the bits in the D4 block, and the second block would
combine this vector with the vector from the lower D3-DO blocks to generate a final
vector. This final vector would be rounded according to the specified or default rounding
mode to produce the final single-precision result. As with method 1, DP conversions
would work similarly, but require different implementation due to the large exponents
and significands.

We do not require all of the 278 possible bits to generate an SP number if the
boundary vector contains values that limit our possible range, and similarly we don’t
need all 2099 possible bits to generate a DP number if the boundary vector limits the
range. Also notice that some numbers may be beyond the range of SP or DP numbers.
This is especially likely when converting sums of products, but it can also happen when
adding many large numbers. Numbers that are bigger than DP or SP max should follow
the usual rounding conventions (usually returning infinity), and numbers that are smaller
than DP or SP min subnormal should adjust the sticky bit before rounding. To support
this a means of capturing an overflow will be required, and in one embodiment a single
bit identifying the overflow condition would be sufficient.

Nothing prevents a high-precision fixed-point sum from being converted to a
different format than its inputs. For example, half-precision and quad-precision (128-bit
formats) may be implemented using the same methods as described above, as could any
imaginable integer or fixed-point format or decimal floating-point format.

An apparatus may have processing circuitry for performing arithmetic operations.

The processing circuitry may be responsive to programmable significance data indicative

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

57

of a target significance for the result value to generate a result value having the target
significance. This exploits the realisation that in practice the programmer is aware of
what range of significance is expected to accommodate typical data values for a given
application, e.g. data measured by a temperature sensor on Earth is likely to be limited to
a relatively confined range of values depending on the location of the sensor or the
precision of the sensor. Hence, the programmer can set programmable significance data
to specify an expected significance for the result. The processing circuitry then does not
have to calculate portions of the result outside those boundaries, to save energy and
provide faster processing.

For example the programmable significance data may cause the processing
circuitry to generate the result value having the target significance independent of the
significance of at least one operand used to generate the result value. Hence even if the
operands have values such that the result of a given arithmetic operation should be
outside the significance indicated in the programmable significance data, the result may
still be generated with the indicated significance even if that may be incorrect. In some
cases the result value may be an integer or fixed-point data value, or a value represented
in the HPA format discussed above. In some examples the programmable significance
data may comprise boundary information indicative of at least one significance boundary
for the result value. The processing circuitry may respond to the boundary information to
determine bit values of the result value having significance within the at least one
significance boundary. The processing circuitry may for example for example limit
processing to determining the portions of the result value within the indicated boundaries.

In some examples the boundary information may indicate at least one of a lower
significance boundary and upper significance boundary indicative of a significance of
least and most significant bits of the result value respectively. In some cases both the
lower and upper boundaries may be indicated explicitly by the boundary information.
Alternatively one of these may be indicated and the other could be implicit from the size
(length) of the value being processed. The size could be fixed, or could be a variable size
specified in the boundary information. In some examples the target size indicated by the
programmable data may be independent of the size of values supported in hardware. For

example the hardware may only be able to generate a maximum of N bits of the result

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

58

value in parallel. If the programmable size information indicates a size of more than N
bits then the arithmetic operation may be performed in multiple passes of the hardware.
If the size is less than N bits then not all of the hardware may be used.

For example, processing units for performing parallel lanes of processing may be
provided in the processing circuitry and the programmable significance data may specify
how many lanes should be used. The programmable significance data may indicate a
significance for one of the lanes, with the significance for other lanes being determined
from this indication. Alternatively, the significance may be expressed separately for each
lane, which can be useful to allow each lane to process the data elements for that lane,
without needing any “global knowledge” of that lane’s position within the overall vector.

In another example an apparatus may have at least one data storage element, and a
metadata storage element for storing metadata for at least one corresponding data storage
element. The metadata (e.g. the anchor point value discussed above) may be indicative of
a target significance and target length of a data value to be stored in the corresponding
data storage element. Hence, the metadata may be associated with the storage element
rather than any particular data value stored in the data storage element. When generating
a data value to be placed in the data storage element, processing circuitry may reference
the corresponding metadata in the metadata storage element to determine the significance
and size of the data value to be generated. This allows the processing circuitry to limit its
processing to generate bit values within the window defined by the target significance
and size specified by the metadata.

Again, the metadata may be programmable. In some cases the metadata storage
element may be a separate storage element from the data storage element. In other
examples the metadata storage element may comprise part of the corresponding data
storage element.

In some cases one metadata storage element may be shared between a number of
data storage elements so that they each share the same metadata. A data storage element
may include a programmable value which indicates which metadata storage element
should be associated with it.

The target size indicated by the metadata may be independent of the physical size

of the data storage elements themselves. Hence, the metadata may specify a target size

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

59

which is greater than the storage element size of the data storage element. If the target
size is larger than the data storage element size then the data value may be stored across a
number of data storage elements. The metadata may include information specifying how
many data storage elements represent portions of the same data value.

The metadata may also express other information such as exception information
indicating whether an exception condition has arisen during generation of the data value
in the corresponding data storage element, sign information indicating whether the data
value 1s positive or negative, or characteristic information indicating a characteristic of
the data value such as whether it is zero, infinity or Not a Number. For example, the
exception information may indicate an overflow condition if the result of an arithmetic
operation for generating the data value to be stored in the data storage element was larger
than could be represented using a value having the target significance and length
indicated in the metadata.

In other examples, an apparatus may be provided with processing circuitry to
perform a conversion operation to convert a floating-point value to a vector comprising a
plurality of data elements representing respective bit significance portions of a binary
value corresponding to the floating-point value. This is useful for supporting arithmetic
using the vector format which is more easily parallelized than floating-point arithmetic
using the floating-point value itself. Representing the binary value in a vector form is
useful because this provides a framework for allowing processing hardware to scale the
amount of processing it carries out depending on the number of data elements of the
vector. For example, the vector may have the HPA format discussed above. The vector
may have a greater number of bits than a significand of the floating-point value, to
provide increased precision.

The conversion operation may be responsive to programmable control
information so that processing circuitry selects values for each data element of the vector
based on the floating-point value and the control information. The control information
could be specified as a parameter in an instruction executed to perform the conversion
operation, for example as an immediate value or a register specifier identifying a register
storing the control information, or could be provided in a dedicated location such as a

control register.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

60

In one example the control information may indicate a significance of at least one
of the bit significance portions to be represented by the data element of the vector to be
generated in the conversion operation. Hence, the vector may represent binary values of
programmably selected significance. In some cases the control information may indicate
a significance for a predetermined data element of the vector, with significances of other
elements derived from the significance of the predetermined data element (e.g. counting
up in intervals of a known data element size). However, other examples may provide
separate indications of the significance for each element. This is useful to simplify vector
processing so that each vector lane does not need to consider the position of its data
element relative to other elements.

The control information may also indicate a variable number of data elements of a
vector. This can be done with an explicit size indication specifying the number of data
elements, or by using the significance indications for each lane. For example, a
predetermined bit pattern indicated for the significance of a particular data element may
signal that this data element is not being used in the current calculation.

The control information may be independent of the floating-point value being
converted. Therefore, irrespective of the significance or value of the floating-point value,
a vector may be generated with the significance and/or size indicated in the control
information even if the floating-point value would have a value which could not be
represented exactly by a vector of this significance and size.

Some implementations may use processing circuitry which generates a single
element of the vector at a time. However, to improve performance the processing
circuitry may have processing units to generate at least two of the data elements to the
vector in parallel.

The conversion may be performed in different ways. In one example, for each
data element the processing circuitry may determine based on the exponent of the
floating-point value and the significance of the portion of the binary value to be
represented by that data element, whether to populate the data element with bit values
selected based on the floating-point value. For example, some data elements may have a
significance which does not correspond to the significance of any of the bits of the

floating-point significand, in which case these elements would not be populated with any

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

61

bit values selected from the floating-point significand. In one example, for each data
element the processing circuitry may form an initial value depending on the significand
of the floating-point value and then shift the initial value by a shift amount which
depends on the exponent of the floating-point value and the significance indicated by the
control information for that data element. This provides a relatively simple technique in
which each lane of processing can generate its data element independently of any other
lanes, which is useful for supporting either a sequential or parallel implementation of the
vector processing. The result vector can then be assembled from the values generated by
the shifter for each lane. The shift operation may also be useful for generating exception
information to indicate overflow, underflow or imprecision conditions when the binary
value corresponding to the floating point value cannot be exactly represented by the
vector having the significance or size indicated in the metadata. Such exception
information may allow the system to determine when the significance set by the
programmer is not suitable for handling the current values of floating-point value being
converted.

In general each data element may comprise a two’s complement value (as
opposed to the significand of the floating-point value in sign-magnitude form).
Therefore, if the floating-point value is negative, a negation operation may be performed
during the conversion operation so that at least one data element of the vector is
generated with a value which has been negated relative to a significand of the floating-
point value. This ensures that the vector represents a value of the same sign as the
floating-point value.

In general the processing circuitry may perform the conversion operation in
response to a first instruction, which could be a standalone conversion instruction for
performing a conversion only, or an arithmetic instruction which combines an arithmetic
operation with the conversion. For example, in response to the arithmetic instruction the
processing circuitry may perform an arithmetic operation (e.g. a multiplication) to
generate a result floating-point value, which can then be converted into the vector during
the conversion operation. In other examples, the conversion may be performed first and
then an arithmetic operation (e.g. addition or subtraction) may be applied to the converted

vector and a further vector.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

62

Also, a conversion operation may be performed to convert a vector of the form
discussed above into a scalar value which represents an alternative representation of the
binary value represented by the respective bit significance portions of the vector. For
example, the scalar value could be a binary or decimal floating-point value, an integer
value or a fixed-point value. This allows the vector form discussed above to be mapped
back to an externally representable format as required. For example, for compatibility
with other devices it may be useful to map the vector format used for internal processing
to a fixed-point, integer or floating-point format.

Again, the vector-to-scalar conversion operation may be responsive to
programmable control information to generate the scalar value in dependence on the
vector. The control information could be specified in the instruction via an immediate
value or register specifier, or be placed in a fixed control register. The control
information may indicate significance of the bit significance portions represented by the
data elements of the vector, either as a single value or as multiple values specified
separately for each element. The control information may also specify how may data
element of the vector are present. This allows the programmer to define control
information so that vector can represent binary values of variable size and significance.
The vector can be processed sequentially element-by-element, or in parallel with
processing units to process at least of the two data elements in parallel.

If the scalar 1s an integer or fixed-point value, then for at least some of the data
elements of the vector the processing circuitry may select, based on the significance
indicated by the control information, one or more bits of the data elements which have a
corresponding significance to bit positions of the scalar value, and then form the scalar
value based on the selected bits.

For converting the vector to a floating-point value, the processing circuitry may
determine an exponent based on a position of a most significant non-sign bit of the vector
and the significance indicated by the control information for the data element of the
vector having the most significant non signed bit. The significand of the floating-point
value may be generated by performing a significand generation operation to generate a
partial significand value for at least one of the elements for the vector, with the

significand of the floating-point value formed based on the partial significand values

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

63

generated for each element. For example, the significand generation operation for a
given data element may comprise detecting whether that element has at least one non-
sign bit, and if so, outputting as the partial significand value the most significant non-sign
bit of the data element and a number of less significant bits of the data element selected
depending on the position of the most significant non signed bit.

In some implementations the significand generation operation may be performed
in parallel for at least some of the data elements to speed up processing. The results for
each element may then be combined later to determine the overall significand. For
example, each processing lane may perform the significand generation operation on the
assumption that its element of the vector contains the most significant non-sign bit of the
entire vector. The processing circuitry may then form the significand of the floating-
point value based on which lane actually contains the most significant non-sign bits, once
the results of each lane are known.

Alternatively, the significant generation operation may be performed sequentially
for at least some of the elements. This may simplify processing because for at least some
lanes it may not be necessary to generate a partial significand if it is already known that
the significand will be formed entirely from partial significand values generated for other
lanes. The significand generation operation for a later element may depend on
information generated in the significand generation operation for an earlier element, to
reduce the amount of processing required. In one example the significand generation
operations may be performed sequentially from left to right starting with the most
significant element of the vector and ending with the least significant element. In this
case, when the most significant element having a non-sign bit is located then if the partial
significant value generated for that element has fewer bits than the total number of bits
required for the significand of the floating-point value, a control value indicating a
number of remaining bits to be generated can be output and this can be used in the
significand generation operation for the next element to select the required remaining
number of bits. This avoids the need to perform the full significand generation operation
for each element. Lanes of processing for less significant elements of the vector may
merely update status information such as guard/sticky bits used for rounding, rather than

needing to generate a partial significand.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

64

In other examples, the significand generation operation can be applied
sequentially from right to left starting with the least significant portion and ending with a
more significant portion of a vector.

When the scalar value comprises a floating-point value and the vector represents a
negative binary value, a negation operation may be performed during the conversion
operation so that the significand of the floating-point value has a binary value which has
been negated relative to at least part of the vector. This preserves the sign of the number
represented in the vector format.

As for floating-point to vector conversions, the vector-to-scalar conversion may
be performed in response to a dedicated conversion instruction or an arithmetic
instruction which combines the conversion with an arithmetic operation.

In general, conversions may be performed in either direction between a value
having the high position anchored point (HPA) format discussed in this specification and
another data value providing an alternative representation of binary value represented by
the HPA data value.

Other examples may provide:

(1) An apparatus comprising: processing means for performing a conversion
operation to convert a vector comprising a plurality of data elements representing
respective bit significance portions of a binary value to a scalar value comprising an
alternative representation of said binary value.

(2) An apparatus comprising: processing means for performing a conversion
operation to convert a first data value in a high-precision anchored format to a second
data value providing an alternative representation of the first data value.

(3) A data processing method comprising: performing, using processing circuitry, a
conversion operation to convert a first data value in a high-precision anchored format to a

second data value providing an alternative representation of the first data value.

Although illustrative embodiments have been described in detail herein with
reference to the accompanying drawings, it is to be understood that the invention is not
limited to those precise embodiments, and that various changes and modifications can be
effected therein by one skilled in the art without departing from the scope and spirit of the

appended claims.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

65

CLAIMS:

1. An apparatus comprising:

processing circuitry to perform a conversion operation to convert a vector
comprising a plurality of data elements representing respective bit significance portions
of a binary value to a scalar value comprising an alternative representation of said binary

value.

2. The apparatus according to claim 1, wherein in the conversion operation, the
processing circuitry is to generate the scalar value in dependence on the vector and

programmable control information.

3. The apparatus according to claim 2, wherein the control information is indicative

of a significance of the bit significance portions represented by the data elements.

4. The apparatus according to claim 3, wherein the control information is indicative
of a significance of the bit significance portion represented by a predetermined data
element of said plurality of data elements, and the processing circuitry is to determine the
significance of the bit significance portion to be represented by at least one other data

element in dependence on the significance indicated for the predetermined data element.

5. The apparatus according to claim 3, wherein the control information comprises
separate indications of the significance of the bit significance portions represented by the

plurality of data elements.

6. The apparatus according to any of claims 2 to 5, wherein the control information

1s indicative of a variable number of data elements of the vector.

7. The apparatus according to any of claims 3 to 6, wherein when the scalar value
comprises an integer value or fixed-point value, for at least some of the plurality of data

elements, the processing circuitry i1s configured to select, based on the significance

10

15

20

25

WO 2016/071663 PCT/GB2015/052700

66

indicated by the control information, one or more bits of the data element having a
corresponding significance to bit positions of the scalar value, and to form the scalar

value based on the selected bits.

8. The apparatus according to any of claims 3 to 7, wherein when the scalar value
comprises a floating-point value, then the processing circuitry is configured to determine
an exponent of the floating-point value based on a position of a most significant non-sign
bit within the plurality of data elements and the significance indicated by the control

information for the data element comprising the most significant non-sign bit.

0. The apparatus according to any of claims 3 to 8, wherein when the scalar value
comprises a floating-point value, the processing circuitry is configured to perform a
significand generation operation to generate a partial significand value for at least one of
the plurality of data elements, and the processing circuitry is configured to form a
significand of the floating-point value based on the partial significand value generated for

said at least one data element.

10. The apparatus according to claim 9, wherein the significand generation operation
for a selected data element comprises detecting whether the selected data element
comprises at least one non-sign bit, and when the selected data element comprises at least
one non-sign bit, outputting as the partial significand value for the selected data element a
most significant non-sign bit and a number of less significant bits of the data element
selected depending on the position of the most significant non-sign bit within the selected

data element.

11. The apparatus according to claim 10, wherein the processing circuitry is
configured to perform the significand generation operation in parallel for at least some of

the plurality of data elements.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

67

12. The apparatus according to claim 11, wherein the processing circuitry is
configured to perform the significand generation operation sequentially for at least some

of the plurality of data elements.

13. The apparatus according to claim 12, wherein the significand generation operation
for a later processed data element is dependent on information generated in the

significand generation operation for an earlier processed data element.

14. The apparatus according to any of claims 12 and 13, wherein the processing
circuitry i1s configured to perform the significand generation operation for a first data
element before performing the significand generation operation for a second data element
representing a less significant bit significance portion of the first value than the first data

element.

15. The apparatus according to claim 14, wherein in the significand generation
operation for the first data element, when the partial significand value generated for the
first data element comprises fewer bits than a number of bits required for a significand of
the floating-point value, the processing circuitry is configured to output a control value
indicating a number of remaining bits of the significand of the scalar value to be
generated, and

in the significand generation operation for the second data element, the processing
circuitry is configured to generate the partial significand value comprising a number of
bits of the second data element selected based on the control value output for the first

data element.

16. The apparatus according to claim 12, wherein the processing circuitry is
configured to perform the significand generation operation for a first data element before
performing the significand generation operation for a second data element representing a

more significant portion of the first value than the first data element.

10

15

20

25

30

WO 2016/071663 PCT/GB2015/052700

68

17. The apparatus according to any preceding claim, wherein when the scalar value
comprises a floating-point value, the processing circuitry is configured to determine
whether the binary value represented by the vector is negative, and when the binary value
is negative, to perform a negation operation during the conversion operation to generate
the significand of the floating-point value with a value negated relative to at least part of

at least one data element of the vector.

18. The apparatus according to any preceding claim, wherein the vector comprises a

greater number of bits than the scalar value.

19. The apparatus according to any preceding claim, wherein the scalar value
comprises one of a binary floating-point value, a decimal floating-point value, an integer

value and a fixed-point value.

20. The apparatus according to any preceding claim, wherein the processing circuitry
comprises a plurality of processing units to process at least two of the data elements in

parallel.

21. The apparatus according to any preceding claim, wherein the processing circuitry

is to perform the conversion operation in response to a first instruction.

22. The apparatus according to claim 21, wherein the first instruction comprises a

conversion instruction.

23. The apparatus according to claim 21, wherein the first instruction comprises an

arithmetic instruction.

24, A data processing method comprising:
performing, using processing circuitry, a conversion operation to convert a vector

comprising a plurality of data elements representing respective bit significance portions

WO 2016/071663 PCT/GB2015/052700

69

of a binary value to a scalar value comprising an alternative representation of said binary

value.

25. An apparatus comprising;
processing circuitry to perform a conversion operation to convert a first data value
in a high-precision anchored format to a second data value providing an alternative

representation of the first data value.

WO 2016/071663 PCT/GB2015/052700

1/15

a[630] bsl630] apl630] bol630] a[630] by[63:0] agl63:0]

ootz | - el bGEGBG}
1o 1o 1o i,

+ + + + + + +
L L L [suls30)

63.0] a[63:0]

le[@S:O}
¥

E

sub
oG e

isg[ez‘;z:@}

WO 2016/071663 PCT/GB2015/052700

F
Va[3] Val2] Val[1] Val[0]
E E | |
lane lane lane lane
convert convert convert convert

256-bit integer

W%
coutzﬁx\ ;;ﬁ; cir
I (Vi,Vaj + F
FIG. 3

TP 111y 1111010103501 010103103010

index[127:0} 127 126 125~ 65 64 63 62 -~ 51 50 49 - 2 1 0

weight sign 76 75 15 14 13 12 - 0 -1 48 48 50
FIG. 4

WO 2016/071663 PCT/GB2015/052700

3/15
LeGi Vil Vi1l
0 6311
1 6210
11 5210

2 510 63

13 500 6362
14 490 6361
62 10 6313
63 0 6312

FIG. 5

112131415
ADDO_HPF_FP (¥, Va, F1) ClA
ADDO_HPF_FP (Vi, V&, F2) ClA
ADDO_HPF_FP (¥, Va, F3) ClA
ADDO_HPF_FP (Vi, V&, F4) ClA
FiG. 6

112131415
ADD_HPF_FP (Vi,, Va,, F1) CLLA
ADDCO_HPF_FP (Viy, Vay, F1) Cil An
ADD_HPF_FP (Vi,, Va,, F2) C A
ADDCO_HPF_FP (Viy, Vay, F2) Crl Ay

FIG. 7

WO 2016/07166

3

4/15

PCT/GB2015/052700

10
/
Core
) " I
Register 12 Processing 14
Bank Circuitry
I . g
Nz
20 16
Decoder |~ ,
8 /
18 .
Instruction Pipeline A Ensé:;ggcﬂ

6
Z

Program

FIG. 8

Instructions

WO 2016/071663 PCT/GB2015/052700
o BXponent significand
sign V" . -
Floating
Point
63 0
63 0
Integer
63 0 63 0 63 0
component 2 component 1 component @ | Programmable
i ? Significance
upper variable lower
boundary binary point boundary
of bit position of bit
significance significance
N e
W”
bit significance
Metadata s | lower boundary significance

1 of each vector component

\ [Lower boundary of bit
s significance and total

L width of bit significance

\ | Lower boundary of bit

=4 significance and upper

L boundary of bit significance
Lower boundary of bit
significance and number
of fixed width components

FIG. 9

PCT/GB2015/052700

WO 2016/071663

6/15

Ol "I

aBues soueaiubis
wiod Buneoi4
uoisiaald ejgnop
e

2201-C

0% £701+C

W |

aBuel eouroyiubis
Je1sifias nsa)

IBQUING YdH

e S, ~ R
MOpUIM

Arepunog ; Arepunog

J8MO| ﬂ BOUBOIUDIS 11 w Jaddn

gjqeuwesboid

WO 2016/071663 PCT/GB2015/052700
Floating point, D9
fixed point, input input o
integer, operand & operand 1 '

anchored point
T ¥
Alignment 24 Alignment
Circuitry @ Circuitry 1
™~
26
aligned input aligned input
operand @ operand 1
¥ ¥
Arithmetic
Circuity V7 52
(+, = %)
28 30
amgi?fd Result ;e iste: - - ngrarjmame
5aiu o g Significance

FIG. 11

PCT/GB2015/052700

WO 2016/071663

8/15

AWIE
anjea |nsay
w & J) w
A% 0% 1217 9%
N N N N
OloNAS ‘o - o 5 ‘L > ‘s
ggwhmm‘m% m (%= A2 S Aieo =) Aiieo =)
reuondo reuoiido feuoido
‘_” w 4 &4 4 w 4 & & w 4 & & w & 4 &
ov 817 8 9
susuOdWod | N\ N N N
Austy
wou' | m mn m‘
.ww@ 1 i)
o SULEIHENE]
m‘ abeiols
| ejepesw

Apnong
Buissseooid

sluswele
abeiois
JO18A

.
%

WO 2016/071663

9/15

54

\

metadata
storage
glements

PCT/GB2015/052700

{7

<

|

.E how

vector [
storage E
elements

many
components

optional micro-
carry 58 operation
¥ 131 / instructions ¥
{é.m
/"""'"A'""""\ . ,
Micro-operation
: - Generating
i ADD:; Ciroutry
- ADDC;
.= %) ADDC:
ADDC.
60 T
program
S 62 instruction
€ /
result value |1

FIG. 13

WO 2016/071663 PCT/GB2015/052700
;4
Input Operand & input Operand 1
VY
¥ ¥ ¥ ¥
Alignment 68 Alignment
Circuitry & d Circuitry 1 70
P
L 1 66
Processing B £
Circuitry Exception
(conversion, K Generating
+, = %) 72 circuitry
T S Péggra%mmabie —
gniticance input denormal:
- inexact;

74 underflow;
overfiow;
invalid;
infinity;
not_a_number

| sign.
76~

FIG. 14

global exception

WO 2016/071663

11/15

PCT/GB2015/052700

operand(s)
102~ , programmable
processing target significance/
circuitry 4-: size
104
106
exception? result
FIG. 15
112 110
increasing / / decreasing
significance ~ Ubound size Lbound significance
07 V7,
7 Z %
| |
114
processing
result

FIG. 16

WO 2016/071663 PCT/GB2015/052700
12/15
HPA
a3} d[2] a[1] dio] Vi
a[3] al2] alt] afdi Va
other
metadata
N
120
FIG. 17
~ datastorage metadata storage -
B , o other
Viix] Valx] metadata []
0 ?
1 ?
2 ?
3 7
132 134 \

FIG. 18

130

WO 2016/071663 PCT/GB2015/052700

13/15

dO[3] d1{3¥FF dof2] di{2yFF doft] d11yFP doi0] d1[OYFP

N PP N P S (O S

lane 3 lane 2 lane 1 lane 0
Ltio 4 to o 4ot 4w
140 140 140 140
3 2 1 0
3] 2] 1] 0] ‘\mmz
FIG. 19
FP 1S} E F
e v Convert(Va, E)
\\ \\
Vit | 85555 | 5885 44444 0000 | 000000
+
Vio
l accumulate next
cycle
ViR

\Caﬂvert {Va)

FP 1S} E F

FIG. 20

PCT/GB2015/052700

WO 2016/071663
FP 1S, E F
¥
1 F
¥ /ESG
negate o35
Lsize -
<% B ¥
1 000000000 F/-F
1627

e N Lshift=
1 5@>\ 7= bias_Valx]+

or
& if
L size £Zs0or
- - 2> Lsize
+ Fsize
' A
N
Villx]
Vit <o Villx]

FIG. 21

WO 2016/071663 PCT/GB2015/052700
Vi[3] Vi[2] Vil Vi[0]
Vi
~ Lsize g
1? 170
negate 7
LZC
Vit 1 00000000 1000001 . 0 oL oL
no 1 hit! T“’“‘W‘"“’ T“
k=min (Lsize-LZC, =k
¥ Fsize) OR
Fsize-k,
@, ¥
Fsize-k
B T o]
GiS
5 ~lOR] Valjl+lsize-LZC+B
{ y Fsize | l
S 1 F oo G S+ E
ciiscgrd ¥
round =
f
¥ ¥
FP 1 S E F

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2015/052700

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/30 GO6F7/48
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2013/311532 Al (OLSEN ERIC B [US])
21 November 2013 (2013-11-21)
the whole document

1,24,25

A US 5 968 165 A (HANSEN CRAIG C [US]) 1-25
19 October 1999 (1999-10-19)
the whole document

A GB 2 396 929 A (ADVANCED RISC MACH LTD 1-25
[GB]) 7 July 2004 (2004-07-07)

the whole document

X US 2005/055389 Al (RAMANUJAM GOPALAN [US])
10 March 2005 (2005-03-10)

paragraph [0051] - paragraph [0052]
paragraph [0053] - paragraph [0054]
paragraph [0063] - paragraph [0064]
paragraph [0040] - paragraph [0042]

_/__

1,24,25

See patent family annex.

Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international

- "X" document of particular relevance; the claimed invention cannot be
filing date

considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

31 March 2016

Date of mailing of the international search report

12/04/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Klocke, Lynn

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2015/052700

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

GB 2 186 105 A (GEN ELECTRIC)

5 August 1987 (1987-08-05)

the whole document

US 2002/154769 Al (PETERSEN METTE
VESTERAGER [DK] ET AL)

24 October 2002 (2002-10-24)

the whole document

US 6 671 796 B1 (SUDHARSANAN SUBRAMANIA
[US] ET AL) 30 December 2003 (2003-12-30)
the whole document

US 20047128331 Al (HINDS CHRISTOPHER N
[US] ET AL) 1 July 2004 (2004-07-01)
paragraph [0025] - paragraph [0040]
paragraph [0121] - paragraph [0136]

US 2009/113186 Al (KATO NAOKI [JP] ET AL)
30 April 2009 (2009-04-30)

the whole document

US 6 247 116 B1 (ABDALLAH MOHAMMAD A F
[US] ET AL) 12 June 2001 (2001-06-12)
Summary;

the whole document

column 9, paragraph 3

column 9, last paragraph - column 10,
paragraph 1

column 13, paragraph 1

column 14, paragraph 2 - paragraph 3
column 22, paragraph 4

US 20127089655 Al (ERINJIPPURATH GOPAL
[US] ET AL) 12 April 2012 (2012-04-12)
the whole document

paragraph [0045]

1-25

1-25

1-25

1-25

1-25

1-25

1-25

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2015/052700
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2013311532 Al 21-11-2013 CA 2868833 Al 28-11-2013
EP 2761432 Al 06-08-2014
US 2013311532 Al 21-11-2013
US 2014129601 Al 08-05-2014
US 2015339103 Al 26-11-2015
WO 2013176852 Al 28-11-2013

US 5968165 A 19-10-1999 NONE

GB 2396929 A 07-07-2004 GB 2396929 A 07-07-2004
JP 2004213622 A 29-07-2004
JP 2009093662 A 30-04-2009
US 2004128331 Al 01-07-2004
US 2007220076 Al 20-09-2007

US 2005055389 Al 10-03-2005 CN 1846193 A 11-10-2006
DE 112004001648 T5 13-07-2006
US 2005055389 Al 10-03-2005
US 2011106867 Al 05-05-2011
US 2013024664 Al 24-01-2013
US 2013024665 Al 24-01-2013
US 2013080742 Al 28-03-2013
US 2013218936 Al 22-08-2013
US 2013238879 Al 12-09-2013
US 2013326194 Al 05-12-2013
US 2015301801 Al 22-10-2015
WO 2005026944 A2 24-03-2005

GB 2186105 A 05-08-1987 DE 3701599 Al 06-08-1987
FR 2593620 Al 31-07-1987
GB 2186105 A 05-08-1987
JP HO544686 B2 07-07-1993
JP S62197823 A 01-09-1987
Us 4815021 A 21-03-1989

US 2002154769 Al 24-10-2002 NONE

US 6671796 Bl 30-12-2003 NONE

US 2004128331 Al 01-07-2004 GB 2396929 A 07-07-2004
JP 2004213622 A 29-07-2004
JP 2009093662 A 30-04-2009
US 2004128331 Al 01-07-2004
US 2007220076 Al 20-09-2007

US 2009113186 Al 30-04-2009 JP 2009110353 A 21-05-2009
US 2009113186 Al 30-04-2009

US 6247116 Bl 12-06-2001 NONE

US 2012089655 Al 12-04-2012 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - wo-search-report
	Page 88 - wo-search-report
	Page 89 - wo-search-report

