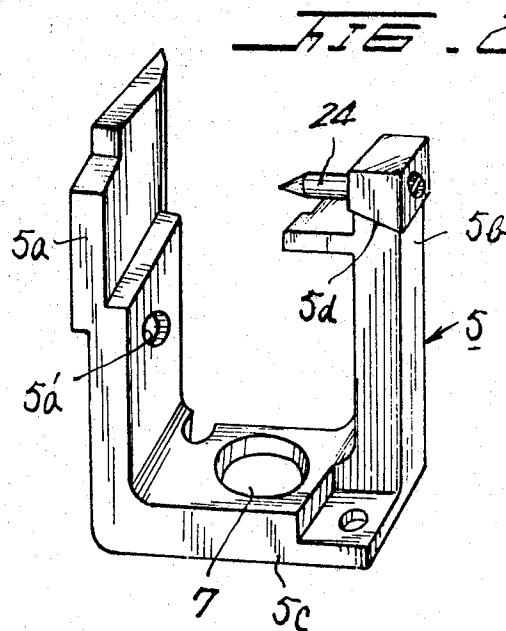
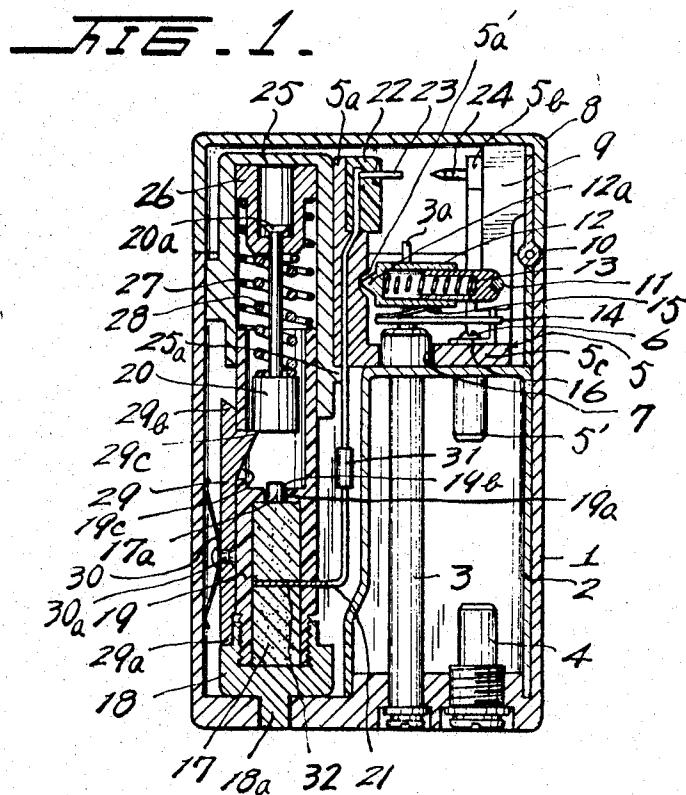


July 28, 1970



KENJIRO GOTO

3,521,987

**ELECTRIC GAS LIGHTER WITH MANUALLY OPERABLE  
PIEZOELECTRIC IGNITION DEVICE**

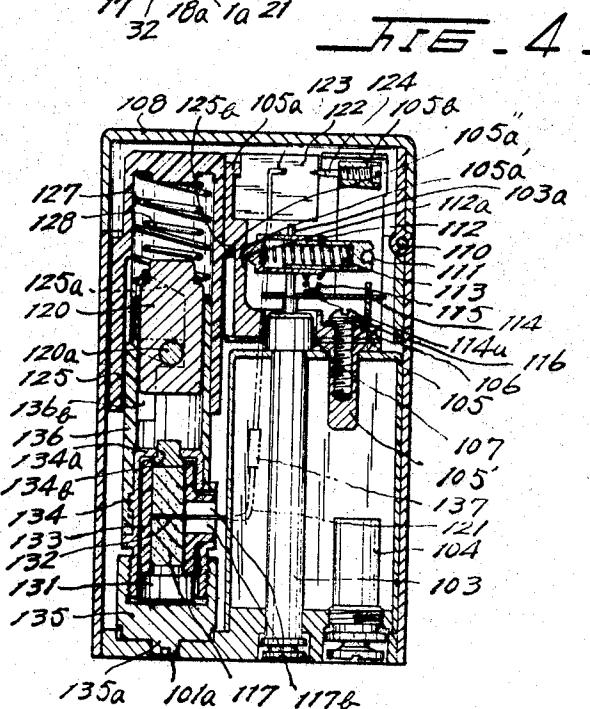
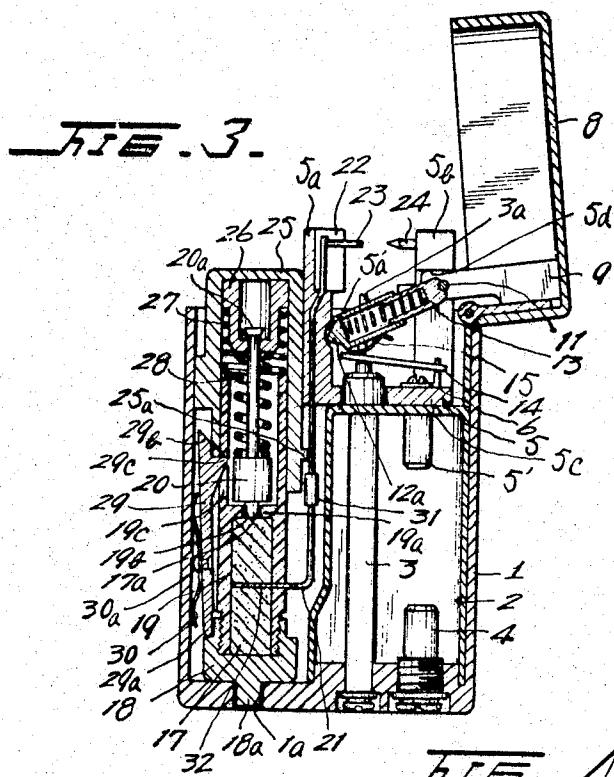
Filed Aug. 5, 1968

3 Sheets-Sheet 1



INVENTOR  
KENTIRO GOTO  
By Glascock, Downing & Subbold  
ATTORNEYS

July 28, 1970



KENJIRO GOTO

3,521,987

ELECTRIC GAS LIGHTER WITH MANUALLY OPERABLE  
PIEZOELECTRIC IGNITION DEVICE

Filed Aug. 5, 1968

3 Sheets-Sheet 3



July 28, 1970

KENJIRO GOTO

3,521,987

ELECTRIC GAS LIGHTER WITH MANUALLY OPERABLE  
PIEZOELECTRIC IGNITION DEVICE

Filed Aug. 5, 1968

3 Sheets-Sheet 3

FIG. 5.



## 1

3,521,987

**ELECTRIC GAS LIGHTER WITH MANUALLY OPERABLE PIEZOELECTRIC IGNITION DEVICE**  
Kenjiro Goto, Tokyo, Japan, assignor to Mansei Kogyo Kabushiki Kaisha, Kamiaoki-cho, Kawaguchi, Saitama Prefecture, Japan, a company of Japan

Filed Aug. 5, 1968, Ser. No. 750,279

Claims priority, application Japan, Aug. 3, 1967, 42/66,975; Aug. 26, 1967, 42/73,107

Int. Cl. F23g 2/28, 3/01

U.S. Cl. 431—255

12 Claims

### ABSTRACT OF THE DISCLOSURE

A liquefied gas-fueled lighter for cigarettes, cigars and the like having a piezoelectrically-energized high voltage generation device as the fuel ignition source in which a fuel tank is located within a casing and a fuel gas discharge valve device is disposed within said tank in fuel transfer relation thereto. A fuel gas injection valve is disposed in a spaced relation to said discharge valve device within said tank in fuel transfer relation to the tank and a cap is pivotally secured to said casing. A spouting valve control device operates in response to the pivotal movement of said cap to control the nozzle of said discharge valve device. A high voltage generation device having piezoelectric elements and electrodes adapted to provide a spark to ignite the fuel gas which, is adapted to discharge from said tank through said discharge valve device upon the operation of said cap.

### BACKGROUND OF THE INVENTION

There have been proposed various types of liquefied gas-fueled lighters which utilize piezoelectric elements as their gas ignition means and some of the prior art lighters of the above type have been disclosed in U.S. Pats. Nos. 3,200,295; 3,167,687 and 3,295,024. The lighters of these patents have placed their principal importance on improvements of only the mechanisms which deliver impact or depressing force to piezoelectric elements and therefore the impact delivery mechanisms incorporated in such lighters have satisfied only the requirements that sparks can be struck in the spark gaps between sparking electrodes in a timed relation to the discharge of fuel gas from the tanks through the discharge valve devices and nozzles as the result of depression of the discharge valve actuating member against the force of the springs in the valve devices. These prior art lighters of the above-mentioned U.S. patents have not given any consideration to the relative arrangement or disposition of the fuel gas tanks, discharge electrodes, high voltage generation devices and so on within the casings and also as to the manner by which these lighter components can be easily and economically fabricated. Therefore, such prior art lighters have required complicated and troublesome procedures and consumed considerable time in assembling. Furthermore, when these lighters were out of order or damaged in order to adjust or repair them the entire lighters had to be dismantled into individual component units or parts which made the repair work very inconvenient.

### SUMMARY OF THE INVENTION

The present invention relates to an improved liquefied gas-fueled lighter which utilizes a piezoelectrically energized high voltage generation device as the fuel gas ignition source and which can effectively eliminate the above-mentioned defects of the prior art lighters.

One object of the present invention is to provide an

## 2

improved liquefied gas-fueled lighter which utilizes a piezoelectrically energized high voltage generation device as the fuel gas ignition source and which has an improved arrangement of various structural components within the casing whereby a discharge electrode supporting member can be mounted on the top of a fuel tank and a high voltage generation device can be mounted in side by side relation with respect of the electrode supporting member.

Another object of the present invention is to provide an improved high voltage generation device for a liquefied gas-fueled lighter utilizing piezoelectric elements as its energizing source in which said high voltage generation device is so designed that the device can be easily incorporated into the casing of the lighter and the device can be also easily removed from the lighter casing for inspection and repair purposes.

The above and other objects and advantages of the present invention will be more readily apparent to those skilled in the art from a reading of the following description referring to the accompanying drawings.

### BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a vertical section view of one preferred form of lighter constructed in accordance with the present invention showing the lighter in its normal closed state;

FIG. 2 is a fragmentary perspective view on an enlarged scale of an electrode supporting member to be suitably employed in the lighter of FIG. 1;

FIG. 3 is a vertical section view of said lighter of FIG. 1 showing the lighter in its fully opened state;

FIG. 4 is a vertical section view of a modified form of lighter constructed in accordance with the present invention which employs a modified form of high voltage generation device; and

FIG. 5 is a fragmentary perspective view on an enlarged scale of said modified high voltage generation device shown in FIG. 4.

### EMBODIMENTS OF THE INVENTION

Referring first to FIGS. 1 to 3, inclusive, wherein a preferred form of liquefied gas-fueled lighter constructed in accordance with the present invention is illustrated, the lighter generally comprises a conventional casing 1 which houses all of the component parts of the lighter therein. A liquefied gas fuel tank or reservoir 2 is fixedly provided within the casing 1 and extends vertically and upwardly from the inner bottom of the casing along one end wall of the latter by a distance in excess of one half of the height of the casing and is adapted to receive and discharge a supply of fuel under pressure. The tank 2 has a conventional fuel discharge valve device 3 extending vertically through the tank which has a conventional nozzle return spring (not shown) received therein and which is provided with a nozzle 3a at the upper end thereof in fuel transfer relation to the valve device 3. The device 3 is further provided in the periphery with an opening through which the valve device communicates with the tank 2 for receiving the fuel from the tank. The lower end of the valve device 3 is fixedly received in the bottom of the casing 1 which also constitutes the bottom of the tank 2 and the upper end of the valve device extends through the top wall of the tank so as to position its nozzle 3a above the tank top wall. The tank 2 has a conventional fuel injection valve device 4 extending upwardly from the inner bottom of the casing 1 at a point laterally spaced from the valve 3 into the interior of the tank. The injection valve device 4 has a center opening through the length thereof for a fuel supply relation to the tank 2 and the bottom of the injection valve device 4 is also fixedly received in the bottom of the casing 1. Since the construction and operation of the fuel discharge and injection valves 3 and 4 are conventional and do not constitute part

of the present invention, detailed descriptions of these valves are omitted herein. An electrode supporting member 5 is fixedly mounted on the top wall of the fuel tank 2 by means of a set screw 6 which is threaded into a threaded bore (not shown) formed in the tank top wall and an inner threaded depending extension 5' thereof extends downwardly from the underside of the tank top wall into the tank 2. The electrode supporting member 5 generally has at a point laterally spaced from the depending extension 5', a circular through bore 7 through which the upper portion of the valve 3 extends and a pair of parallel and laterally spaced arms 5a and 5b which extend vertically and upwardly at the opposite ends of a bight portion 5c which connects the arms 5a and 5b at their lower ends. The detailed construction and function of the electrode supporting member 5 will be described hereinbelow. A cap or discharge valve operating member 8 having a support bracket 9 fixedly secured to the inner surface of the cap is pivotally secured at one end of the upper edge of the casing 1 by means of a hinge 10. The support bracket 9 fixedly supports a transverse shaft 11 extending through laterally of the bracket 9 and received in a recess formed at one end of a substantially horizontal two-part construction cylinder 12 which is positioned laterally displaced relative to the nozzle 3a and in which a coiled spring 13 is received. The spring 13 normally urges the two parts of the cylinder 12 outwardly in opposite directions to each other so as to extend the cylinder so that the shaft 11 pivotally receives the adjacent end of the cylinder at the recess, but limits the extending movement of the latter. The other end of the cylinder 12 remote from the shaft 11 is pointed as shown at 12a and the pointed end 12a is slidably received in a conical recess 5a' formed on the inner side of the arm 5a. A horizontal discharge valve control member 14 is supported at one end on the upright portion of a substantially L-shaped stationary support piece 16 with the horizontal portion thereof being fixedly secured to the upper surface of the bight portion 5c by means of the set screw 6. The supported end of the control member 14 is provided with an opening larger than the size of the cross section of the support piece 16. A leaf spring 15 is secured at one end to the upper surface of the member 14 and the other end thereof abuts against the underside of the cylinder 12. The other end of the control member 14 has an opening in which the nozzle 3a of the valve 3 is received for normally urging the nozzle 3a to the valve closing position under the force of the spring 15 which opposes the force of the nozzle return spring (not shown) received in the valve 3 and normally tending to urge the nozzle to the valve opening position. The control member 14 is so designed that when the cap 8 is in its closed position as shown in FIG. 1, the control member 14 urges the nozzle 3a to the discharge valve closing position assisted by the spring 15 which then opposes the force of the inner return spring of the valve 3. According to the present invention, a high voltage generation device is provided within the casing and which extends upwardly from the inner bottom to a position slightly short of the inner side of the top wall of the cap 8 to a position adjacent to the inner side of one wall of the casing 1 remote from the fuel tank 2. The high voltage generation device generally comprises a piezoelectric element assembly 17 having an impact receiving reduced diameter top end 17a and a periphery surrounded and protected by a suitable insulation material with the lower end of the element assembly being covered or protected by a suitable cup-shaped positioning member 18 which has a depending extension 18a fixedly received in a bore 1a in the bottom of the casing 1 to hold the assembly 17 in position. The piezoelectric element assembly 17 includes a pair of conventional piezoelectric elements with a suitable conductive terminal piece 32 interposed between the adjacent ends of the two elements. One pole of the piezoelectric assembly 17 is connected to a lead wire 21 leading to an electrode 23 which

is fixedly supported on a suitable insulation material electrode mount 22 which is in turn fixedly supported on the arm 5a. A suitable resistance 31 is disposed on the lead wire 21 between the piezoelectric element assembly 17 and the electrode 34. The other pole of the piezoelectric element assembly 17 is electrically connected through the casing 1 to another electrode 24 which is adjustably inserted through the other arm 5b.

As seen in FIG. 1, the electrodes 23 and 24 are arranged in alignment with each other in a spaced relation so as to form a spark gap therebetween. The adjustable electrode 24 is so inserted in the arm 5b that the electrode may be moved toward or away from the opposite electrode 23 to adjust the distance of a spark gap between the electrodes as desired or necessary. The piezoelectric element assembly 17 is surrounded by a sheath 19 which has a peripherally threaded lower end portion threaded received in the threaded interior of the cup member 18. The sheath member 19 has a transverse partition 19a extending thereacross and provided with a center bore 19b through which the impact receiving top end 17a extends. The sheath member 19 further has, in the upper portion of its periphery, a vertically extending elongated slot 19c for a purpose to be described hereinbelow. A spring-loaded striking member or impact delivery depending member 20 is suitably supported for rapid vertical movement in a suitable cup-shaped member 26 which is, in turn, disposed within an inverted cup-shaped finger piece 25. The striking member 20 includes a lower larger diameter head portion and a reduced diameter shank portion having one end integrally connected to the head portion and a flared upper end portion received in the opening of the cup-shaped mounting member 26. A compressed coil spring 28 is disposed around the striking member shank having an end abutting against the inner or upper end face of the striking member head portion and the other end against and secured to the underside of the bottom of the member 26 by means of a securing or caulking pin 20a. A further coil spring 27 is disposed in a compressed state between the sheath member 19 and the inverted cup-shaped finger piece 25 with one of the upper end encircling the reduced diameter lower portion of the mounting member 26 and the other or lower end abutting against the upper edge of the sheath with the spring serving as a return spring for the finger piece 25. A stop pawl or lateral projection 25a is provided on the finger piece 25 at a position adjacent to and inwardly spaced from the lower end thereof and adapted to allow the finger piece 25 to move a substantial distance downwardly when the finger piece is depressed against the force of the spring 28, but to abut against the lower edge of the arm 5a and limit the upward movement of the finger piece when the piece is released so that the finger piece is effectively prevented from springing out of the casing 1 when the finger piece is released. A cam member 29 is movably disposed along the outer side of the sheath member 19 extending by a substantial distance of the height of the sheath member and has lower end 29a seated on the top of the cup-shaped member 18 and a slanted upper or cam end 29b adapted to engage the lower edge of the finger piece 25 when the piece is depressed to a predetermined distance for actuating the striking member 20. The upper end 29b is bevelled as shown in FIG. 1 so as to form a cam for the purpose to be described hereinbelow. The upper bevelled end or cam 29b extends inwardly and laterally to provide a striking member seat 29c on which the lower end of the striking member 20 normally seats. The seat 29c is normally received in an opening 19c formed in the adjacent side in the periphery of the sheath member 19. A leaf spring 30 is secured at a substantially mid point between the opposite ends to the outer side of the cam member 29 as shown at 30a in FIG. 1 between the inner surface of the adjacent end wall of the casing 1 and the cam member 29. The spring normally urges the cam member

against the sheath member 19 so that the head portion of the striking member 20 may normally seat on the seat 29c. However, when the finger piece 25 is depressed for energizing the high voltage generation device and as a result, the lower end of the finger piece 25 engages and frictionally slides down the bevelled upper end or cam 29b, the cam member 29 is caused to pivot with the lower end 29a as its fulcrum to displace the upper end 29b outwardly relative to the striking member 20 against the force of the leaf spring 30 coming off the seat 29c out of the opening 19c and resulting in a disengagement of the cam member 29 and striking member 20. In such a case, as will be easily understood, when the cam member 29 comes out of its engagement with the striking member 20 in the manner mentioned above, the striking member 20 strikes against the top 17a of the piezoelectric element assembly 17 with a high energy so as to energize the high voltage generation device.

In operation, the cap 8 is first manually pivoted about the hinge 10 by the user's thumb, for example to the position as shown in FIG. 3 in which the cap is in a substantially upright or fully open state. In pivoting the cap 8 from its closed position of FIG. 1 to the fully open position of FIG. 3, the user releases the cap after the cap has been pivoted by a predetermined angular distance or a portion in its full rotational movement whereupon the cap is allowed to rapidly move to the substantially upright or fully open position of FIG. 3 by virtue the arrangement of the spring-loaded two-part cylinder 12 whose pointed end 12a frictionally slides in the conical recess 5a' in the electrode supporting member arm 5a and the recess at the other end of the cylinder 12 pivots about the transverse shaft 11 supported in the mounting bracket 9. The thus opened cap 8 is maintained in the open position by the extension of the two-part cylinder 12 under the force of the coil spring 13 and in this position of the cap, the cylinder 12 assumes an inclined position relative to its normal substantially horizontal position as seen in FIG. 3. Simultaneously, the spring 15 which has been depressed by the cylinder 12 in the horizontal position is released whereby the valve actuating member 14 and accordingly, the nozzle 3a is allowed to move upwardly by the force of the internally disposed spring of the valve 3 so as to open the valve 3 to allow the fuel gas under pressure to discharge from the tank 2 through the valve and nozzle. When the finger piece 25 is manually depressed until the lower end thereof abuts against and slides down the bevelled upper end 29b of the cam 29 to cause the head portion of the striking member 20 to disengage from the seat 29c of the cam member 29 against the force of the springs 27 and 28, the cam upper end 29b is caused to displace relative to the sheath member 19 toward the adjacent end wall of the casing 1 against the force of the spring 30 which is now forcing the cam member away from the wall and the actuating member head portion strikes against the receiving top 17a of the assembly 17 with a high striking energy. The assembly 17 squeezes its piezoelectric elements together with the conductive terminal piece 32 therebetween to provide a potential difference between the opposite electrodes 23 and 24 which then strike a spark in the spark gap between the electrodes. The spark ignites the fuel gas which is now discharging from the nozzle 3a as the result of the opening of the actuating member 8 in the manner above mentioned. After a cigarette, for example, has been lit by the ignited fuel gas, the user releases the finger piece 25 to allow the finger piece to return to the normal upper or inactive position by virtue of the return spring 27 and at the same time the cup-shaped mounting member 26, and accordingly, the striking member 20 also return to the normal upper or inactive position until the stop extension 25a abuts against the lower end of the arm 5a by the force of the spring 28 in which the top of the finger piece 25 engages the inner surface of the top wall of the actuating member 25. As the mounting member 26 is returning to

the upper or inactive position, the striking member 20 is also being returned to the upper or inactive position because the flared upper end of the striking member 20 is received within the opening of the mounting member 26. As soon as the lower end of the finger piece 25 has cleared the upper bevelled end or cam 29b of the cam member 29, the cam member 29 is caused to automatically pivot from its displaced position to its normal upright position by the force of the leaf spring 30 until the lower end or head portion of the striking member 20 seats again on the lateral extension or seat 29c at the end 29b. However, since the gas discharge mechanism and the high voltage generation or ignition mechanism are separately or independently operated from each other, even when the high voltage generation mechanism has returned to its inoperative or deenergized position, as long as the cap or valve actuating member 8 is maintained in its open position the discharge valve and nozzle are maintained open and the fuel continues to discharge from the tank and sustain its flame. In order to extinguish the flame, the user manually pivots the cap 8 in the direction opposite to the arrow direction of FIG. 1 to the closed position and as the cap 8 is pivoted to the closed position the pointed end 12a and the other recessed end of the cylinder 12 are caused to frictionally slide on the conical recess 5a' in the electrode mounting member 5 and pivot about the shaft 11 supported in the mounting bracket 9, respectively until the two-part cylinder 12 returns from its inclined position to its horizontal position against the force of the spring 13. The leaf spring 15 is depressed by the underside of the cylinder 12 and the depressed spring in turn depresses the valve actuating member 14 whose free end receives the nozzle 3a. The depressed actuating member 14 closes the nozzle 3a and valve 3 against the force of the internally disposed spring of the valve and the discharge of the fuel from the tank 2 through the valve and nozzle ceases.

FIGS. 4 and 5 illustrate a modified form of lighter constructed in accordance with the present invention which generally comprises a casing 101 housing all the component parts of the lighter therein. A liquefied gas fuel tank or reservoir 102 is fixedly mounted within the casing 101 and extends vertically and upwardly from the inner bottom of the casing along one end wall of the latter by a distance in excess of one half of the height of the casing and is adapted to receive and discharge a supply of liquefied gas under pressure therein. The tank 102 includes a conventional fuel discharge valve device 103 having a conventional nozzle return spring (not shown) received therein and the valve device is provided with a nozzle 103a at the upper end thereof in fuel transfer relation thereto. The valve device 103 is provided with an opening (not shown) for fuel receiving relation with the tank 102 and has the lower end fixedly received in the bottom of the casing 101 which also constitutes the bottom of the tank 102 with the upper end extending through the top wall of the tank 102 into the upper portion of the interior of the casing and terminating at the nozzle 103a. The tank 102 also has a conventional fuel injection valve device 104 extending vertically and upwardly through the bottom of the casing 101 into the interior of the tank at a position laterally spaced from the valve device 103. Since the construction and operation of the valve device 103 and valve device 104 are conventional and the same as those of the corresponding devices of the first embodiment, a detailed description of these devices are omitted. An electrode supporting member 105 is fixedly mounted on the top wall of the tank 102 by means of a set bolt 106 which is threaded through a threaded bore (not shown) in the top wall of the tank 102 into an internally threaded depending extension 105' of the member 105 which extends downwardly through the tank top wall into the tank 102. The electrode supporting member 105 generally has, at a point laterally spaced from the depending extension 105', a circular

through bore 107 through which the upper portion of the valve device 103 extends and a pair of parallel and laterally spaced arms 105a and 105b which extend vertically and upwardly above the open top of the casing 101 and connected at the lower ends by a bight portion 105c. The detailed construction and operation of the electrode supporting member 105 will be further described hereinafter. A cap or discharge valve actuating member 108 having an integral mounting bracket 109 is pivotally secured at one end of the upper edge of the casing 101 by means of a hinge 110. The mounting bracket 109 has a transverse shaft 111 fixedly secured thereto and which extends horizontally and laterally and transversely of the casing 101. A two-part construction extensible cylinder 112 is pivotally supported on the shaft 111 by means of a substantially circular recess at one or the outer end of the cylinder which pivots about the shaft 111 and the other or inner end of the cylinder 112 is pointed as shown at 112a. When the cylinder 112 is in its inoperative position, the cylinder is maintained in a substantially horizontal position as shown in FIG. 4. A coil spring 113 is received within the cylinder 112 for normally urging the two parts thereof outwardly in the opposite directions from each other to maintain the cylinder in its extended condition when the lighter is in its inoperative position. The extent of extension 7 of the cylinder 112 by the spring 113 is limited by the recess in the outer end which pivots about the shaft 111 and by the pointed other or inner end of the cylinder which is slidably received in a conical recess 105a' formed in the inner side of the arm 105a. A normally horizontal discharge valve operating or control member 114 is supported at one end by the upright portion of a substantially L-shaped mounting member 116 with the horizontal portion thereof being fixedly secured to the bight portion 105c by means of the set bolt 106. The above one end of the operating member 114 is formed with a suitably shaped opening (not shown) having a size for loosely receiving the upright portion of the mounting member 116 for the purpose to be described hereinbelow. The free end of the operating member 114 is also formed with a suitably shaped opening having a size for receiving the nozzle 103a of the valve device 103. The operating member 114 is further provided at a suitable point on the upper surface with an upwardly extending boss 114a around which the lower end of a coiled spring 115 is snugly fit and the other or upper end of the spring 115 abuts against the underside of the two-part cylinder 112 so that the spring is normally held in a compressed state for normally urging the nozzle 103a to the valve closing position against the force of the nozzle return spring (not shown) received in the valve device 103 when the cap 108 is in its closed position of FIG. 4.

The spring 115 is provided for the purpose that even if the component parts of the lighter have dimensions slightly differing from the requisite specifications called for, the parts the valve operating member and the cap may effectively perform their operations without difficulties. The modified high voltage generation device of this embodiment generally comprises a piezoelectric element assembly 117 including a pair of upper and lower piezoelectric elements with an electrode or terminal piece 132 interposed between the adjacent ends of the piezoelectric elements. The assembly 117 has an impact receiving top 117a and is surrounded by a suitable electric insulation member 133. The lower end of the assembly 117 seats on a rigid supporting block 131. Each of the upper and lower piezoelectric elements has a lateral extension 117b between which the terminal piece or electrode 132 extends. A metallic sheath member 134 surrounds the insulation member 133 except for the free end face of each of the lateral extensions 117b. The lower portion of the member 134 is provided with an outer thread for threaded engagement with the threaded inner periphery of a substantially cup-shaped stop member 135 which has a center

depending extension 135a fixedly received in a through bore 101a in the bottom of the casing 101. A synthetic resin outer sheath member 136 surrounds a substantial height of the member 134 and extends from a mid point to a point substantially beyond the top of the member 134. The sheath member 136 has a lateral hollow extension in which the lateral extensions 117a are received. The member 134 further has a transverse portion 134a formed with a center opening 134b through which extends the top impact receiving top of the piezoelectric element assembly. The member 136 is provided in its peripheral wall with inverted L-shaped slots 136b at diametrically opposite points for guiding the pin of a striking member to be described hereinafter. An impact delivery or striking member 120 having a transverse pin 120a with the opposite ends extending through the opposite slots 136b is mounted within the outer sheath member 136 with the upper portion normally projecting beyond the top of the member 136. A synthetic resin high voltage generation device actuating member or finger piece 125 in the form of an inverted cup shape is provided with an open lower end partially overlapping and slightly spaced from the upper portion of the member 136. The finger piece is provided in the diametrically opposite positions of the peripheral wall with substantially parallelogram guide slots 125a for the pin 120a of the striking member 120. As clearly shown in FIG. 5, the area of each guide slot 125a is substantially larger than that of the inverted L-shaped slot 136b in the outer sheath 136 with the longer sides of the slot 125a extending in the longitudinal direction with the shorter sides extending at an angle with respect to the longer sides. The finger piece 125 has a lateral projection 125b on the side facing the arm 105a of the electrode supporting member 105 and the projection is adapted to serve as a stop for limiting the upward movement of the finger plate 125.

For this purpose, the arm 105a is offset in the lower portion on the outer side to form a shoulder 105a' against which the projection 125b abuts so that the finger piece 125 may be effectively prevented from leaving the casing 101 when the latter is opened. The finger piece 125 is outwardly protruded in the lower portion on the side opposite to the lateral projection 125b and the protruded portion is adapted to slide in contact with the inner surface of the adjacent end wall of the casing 101 for guiding the finger piece 125 in its upward and downward movement. A return spring 127 is provided between the finger piece 125 and outer sheath member 136 with one end abutting against the inner surface of the top wall of the finger piece 125 and the other end against the upper edge of the outer sheath member 136. A second spring or striking energy accumulating spring 128 is disposed between the actuating member 125 and striking member 120 with one end snugly fitting around the center boss on the underside of the top wall of the finger piece 125 and the other end abutting against the upper edge of the striking member 120. A lead wire 121 extends from the electrode 132 to a discharge electrode 123 fixedly supported on an insulated electrode mounting block 122. The block 122 is fixedly supported on the arm 105a of the member 105 and the electrode 123 is connected to the positive side of the piezoelectric element assembly 117 via the electrode 132. Disposed in opposition to the electrode 123 is another adjustable discharge electrode 124 which is threaded through a threaded opening formed in the other arm 105b of the electrode mounting member 105. The second electrode 124 is connected to the negative side of the piezoelectric element assembly 117 via the casing 101. The position of the electrode 124 relative to the electrode 123 is adjustable by moving the former toward or away from the latter as in the first embodiment.

The arm 105b of the member 105 is provided with a recess 105b' which is adapted to engage the supporting bracket 109 of the cap 108 to limit the pivotal movement of the cap in the opening direction. The operation of this

form of lighter is substantially the same as that of the first embodiment except for the operation of the modified high voltage generation device and a brief explanation. The user manually pivots the cap 108 to open the cap and then depresses the actuating member 125 to a portion of its full downward movement against the force of the spring 127. In such a case, the striking energy accumulating spring 128 is simultaneously compressed for accumulating the striking energy because the opposite ends of the pin 120a of the striking member 120 are disposed within the lateral shorter portions of the outer sheath slots 136b and at the lowermost edge of the respective lower sides of the parallelogram slots 125a when the cap is closed. Thereafter, the finger piece 125 is further depressed for the remaining portion of the downward movement until the upper shorter sides of the parallelogram slots 125a abut against the pin 120a whereupon the opposite ends of the pin 120a rapidly displace from the lateral portions to the vertical portions of the slots 136b and the compressed spring 128 instantaneously releases all of its accumulated energy to deliver the energy to or strike against the striking member 120. The member 120 in turn strikes against the piezoelectric element assembly 117 with the delivered striking energy whereby a potential difference may be provided between the opposite electrodes 123 and 124 to strike a discharge spark in the discharge gap between the opposite electrodes 123 and 124. The struck spark ignites the fuel gas which is now discharging from the tank 102 through the valve device 103 and nozzle 103a as the result of the opening of the cap 108. After a cigarette, for example, has been lit by the ignited fuel gas, the user releases the finger piece 125 so that the piece may be returned to its inoperative or upper position by the force of the spring 127 and as the finger piece 125 is returned, the striking member 120 is simultaneously returned to its inoperative or upper position. This is due to the fact the pins 120a of the striking member 120 are pushed up by the lower shorter sides of the parallelogram slots 136a of the rising finger piece 125 into the initial lateral portions of the slots 125c by the combined force of both the springs 127 and 128 whereupon the high voltage generation device is deenergized to extinguish the flame. Thereafter, the cap 108 is manually pivoted to the closing position in which the cylinder 112 assumes the substantially horizontal position whereby the spring 115 may be compressed by the cylinder to urge the valve control member 114 to close the valve and nozzle against the inner return spring of the valve. It should be noted that the pin 120a of the striking member 120 connects the outer sheath member 136 and finger piece 125 by means of their respective slots 136b and 125a, and the sheath member and finger piece may be effectively prevented from inadvertently displacing with respect to the stationary parts of the high voltage generation device.

Although two preferred embodiments of the present invention have been described and illustrated in detail herein, it is to be understood that these are illustrative in nature and not necessarily limiting upon the scope of these teachings in their broader aspects. Many additional variations within the scope of the appended claims will occur to those skilled in the art.

What is claimed is:

1. A liquefied gas-fueled lighter which utilizes a piezoelectrically energized high voltage generation device as the fuel ignition source, a casing; a fuel gas tank disposed within said casing for receiving and discharging fuel gas; a fuel gas discharge valve device disposed within said tank in fuel transfer relation thereto; a cap pivoted to said casing adapted to open said discharge valve device as the cap is pivoted to its open position and to close the valve device as the cap is pivoted back to its closed position; a pair of spaced opposite electrodes provided right above said discharge valve; a high voltage generation device including piezoelectric elements electrically connected to said electrodes; a striking member disposed in a position

5 to strike against said piezoelectric elements when the striking member is actuated; a striking energy accumulating spring abutting at one end against said striking member and at the other end against a finger piece which is operatively connected to and encircles said striking member; and a cap member normally holding said striking member in its inoperative position and adapted to compress said spring when said finger piece is depressed so as to cause the spring to accumulate an energy for driving the striking member and then after release of said finger piece to rapidly drive the striking member against said piezoelectric elements whereby a potential difference is caused to momentarily generate between said electrodes so as to strike a spark therebetween for igniting the fuel 10 which is discharging from said tank through said valve device as the result of the pivotal movement of said cap to the open position.

2. The liquefied gas-fueled lighter as set forth in claim 1, in which a gas discharge valve device control member 20 engages a portion of a cylinder which has one end pivotally supported by said pivotal cap and the other end slidably engaging a portion of a support member for said electrodes, said control member being adapted to be actuated in response of the pivotal movement of said cap.

25 3. The liquefied gas-fueled lighter as set forth in claim 2, in which a gas discharge nozzle of the gas discharge valve device is positioned laterally spaced from said cylinder and adapted to frictionally move vertically in response to the pivotal movement of said cap.

30 4. The liquefied gas-fueled lighter as set forth in claim 1, in which an electrode support member provides an atmosphere of the gas discharging from said tank through said discharge valve device therein and is fixedly mounted the top of said fuel tank which houses said fuel discharge 35 valve device with a fuel discharge nozzle projecting above said tank top, said support member supporting a pair of opposite and spaced electrodes at points remote from the pivot point of said cap to the casing and having an engaging recess in one portion below said electrodes along 40 which recess one end of said cylinder may slidably engage.

5. The liquefied gas-fueled lighter as set forth in claim 4, in which one of said pair of opposite electrodes is 45 adapted to strike a fuel ignition spark in corporation with the other electrode in response to the energization of said high voltage generation device in corporation with the other electrode and disposed within said atmosphere of fuel gas discharging from said tank through said discharge valve device and the other element is supported in said electrode support member in an adjustably displacable relation to said first-mentioned electrode for adjusting the distance of a discharge gap to be formed between the two electrodes.

55 6. The liquefied gas-fueled lighter as set forth in claim 4, in which said electrode support member fixedly mounted on the top of said fuel tank further has an engaging portion which is adapted to limit the movement of a finger piece or high voltage generation device actuating member in one direction in cooperation with a projection formed with said finger piece.

65 7. The liquefied gas-fueled lighter as set forth in claim 1, in which said high voltage generation device further includes a vertically movable striking member positioned laterally spaced from an electrode support member for delivering an impact force against said piezoelectric elements and a striking energy accumulating spring disposed between said finger piece and striking member, said finger piece being adapted to be exposed as said cap is pivoted to its open position.

70 8. The liquefied gas-fueled lighter as set forth in claim 1, in which said high voltage generation device includes at least one piezoelectric element mounted within a stationary sheath member and a piezoelectric element supporting cup member in threaded connection with the lower end portion of said sheath member, said cup mem-

## 11

ber having a positioning portion for said high voltage generation device connected to a portion of said casing.

9. The liquefied gas-fuel lighter as set forth in claim 1, in which said striking member has a pin extending transversely of said striking member and a sheath member has a pair of diametrically opposite slots formed in the peripheral wall for receiving the opposite exposed ends of said pin, said pin and slots cooperating with each other in accumulating and releasing said striking energy in said spring disposed between said finger piece and striking member.

10. The liquefied gas-fueled lighter as set forth in claim 9, in which said finger piece and sheath member are formed of synthetic resin.

11. The liquefied gas-fueled lighter as set forth in claim 9, in which said high voltage generation device comprises a piezoelectric element positioning section and an impact force delivery section including said striking member, said sheath member for the striking member, and a spring for returning said finger piece to its inoperative position, said two sections being telescopically connected to each other.

12. The liquefied gas-fueled lighter as set forth in claim

## 12

1, in which said pivotal movement of the cap and the operation of said finger piece are effected independently of each other and a lead wire extends from said high voltage generation device to said electrodes mounted in an electrode support member, said lead wire having a resistance connected thereto for extending the holding time of said spark to be struck between said opposite electrodes.

## References Cited

## UNITED STATES PATENTS

|    |           |         |              |           |
|----|-----------|---------|--------------|-----------|
| 10 | 2,848,655 | 8/1958  | Florman      | 431—255 X |
|    | 3,167,687 | 1/1965  | Buithus      | 431—255 X |
|    | 3,200,295 | 8/1965  | Owens et al. | 431—131   |
| 15 | 3,295,024 | 12/1966 | Newman       | 317—81 X  |
|    | 3,425,783 | 2/1969  | Goto         | 431—255   |

V. Y. MAYEWSKY, Primary Examiner

U.S. CL. X.R.

20 317—81, 96; 431—264

UNITED STATES PATENT OFFICE  
CERTIFICATE OF CORRECTION

Patent No. 3,521,987

Dated July 28, 1970

Inventor(s) Kenjiro Goto

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 10, lines 10 and 11, change "finger piece"  
to -- striking member --

Signed and sealed this 29th day of August 1972.

(SEAL)

Attest:

EDWARD M.FLETCHER, JR.  
Attesting Officer

ROBERT GOTTSCHALK  
Commissioner of Patents