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(5T) Abstract

An adaptive error detection and correction apparatus for an

sensing unit (62) for sensing a congestion condition in the ATM network (10) and a global pacing rate unit (58) for adaptively reducing a
maximum allowable transmission ratio of ATM cells containing information to idle ATM cells in response to a sensed congestion condition.
A processor (52) stores a number corresponding to a relatively high maximum allowable transmission ratio in the global pacing rate
register (58¢c) in the absence of a sensed congestion condition, and stores a number corresponding to a relatively low maximum allowable
transmission ratio in the global pacing rate register (58c) in response to a sensed congestion condition.

Asynchronous Transfer Mode (ATM) network device (50) comprises a
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ERROR DETECTION AND CORRECTION APPARATUS FOR AN
ASYNCHRONOUS TRANSFER MODE (ATM) NETWORK DEVICE

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention generally relates to the art of
error detection and fault recovery in electronic data
systems, and more specifically to an adaptive error error
detection and correction apparatus for an Asynchronous
Transfer Mode (ATM) network device.

Descripticn of the Related Art

Electronic data networks are becoming increasing
widespread for the communication of divergent types of
data including computer coded text and graphics, voice and
video. Such networks enable the interconnection of large
numbers of computer workstations, telephone and television
systems, video teleconferencing systems and other
facilities over common data links or carriers.

Computer workstations are typically interconnected by
local area networks (LAN) such as Ethernet, Token Ring,
DECNet and RS-232, whereas metropolitan, national and
international systems are interconnected by wide area
networks (WAN) such as T1, V3.5 and FDDI.

LANs and WANs themselves can be interconnected by
devices known as hubs, bridges and routers in an unlimited
configuration. Although the distinction between these
interconnection devices is becoming increasingly arbi-
trary, they are officially classified in accordance with
the layer in the Open Systems Interconnection (0OSI) model
in which they operate.

Hubs interconnect devices using the Physical Layer,
bridges utilize the Data Link layer whereas routers
operate using the Network layer. Hubs and bridges gener-
ally act merely as switches or funnels, whereas routers
perform higher level functions including selecting optimal
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routes through the network for transmission of data
packets or cells on an individual basis, and performing
network management tasks such as forcing diagnostics
operations and controlling other routers or nodes.
Whereas hubs and bridges generally operate on data which
is formatted in a single protocol such as those listed
above (uniprotocol), routers can typically identify and
process data which can be in any one of several protocols
(multiprotocol).

Interconnect devices, especially the more sophisti-
cated routers, have typically been large, bulky and
expensive units which operate at relatively low speed.
As such, they limit the data throughput speed in the
network in which they are installed. The reasons why
routers have been so slow is that they are generally
multichip units which transfer data being processed to and
from Content Addressable Memory (CAM) chips which are
separate from the processor, input/output (I/0) and other
functional chips of the unit.

These transfer operations each require multiple system
clock cycles which fundamentally limit the transfer speed.
In addition, multiple latencies are present in the various
paths by which data moves through the unit. The degree
by which such latencies can be reduced, as well as the
degree by which the size and cost of a multichip system
can be reduced, are also fundamentally limited.

Ethernet is a network protocol embodying IEEE standard
802.3, which is more generically referred to as Carrier
Sense with Multiple Access and Carrier Detect (CSMA/CD).
Ethernet cores used in hubs and other devices comprise
transmit Dbackoff wunits which execute a truncated
exponential backoff algorithm in response to a sensed
collision condition (two or more nodes attempting to
transmit data simultaneously). This algorithm utilizes
a pseudo random number generator to generate a random
number which designates a backoff time, or a time for
which the transmit engine of the core should wait before
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attempting transmission.

If all of the cores in the network utilize the same
type of pseudo random number generator, they will generate
the same sequence of random numbers. If the random number
generators of two or more cores become synchronized with
each other, they will cause the associated cores to back
off by the same times. This will cause the cores to
continuously attempt to transmit at the same times. This
condition is called "lockup", and can result in the cores
generating collisions indefinitely, preventing any data
from being transmitted over the network.

Asynchronous Transfer Mode (ATM) is a network protocol
which is highly advantageous in that it enables high speed
transmission of divergent types of data, including codes,
video and voice. This is accomplished by breaking down
the data to be transmitted into cells including 48 bit
Conversion Sublayer Payload Data Unit (CS-PDUs) which
contain the actual data, and a header and trailer. ATM
can also be utilized as a universal protocol, replacing
the protocols which are currently in use and are specific
to LANs or WANs.

The header contains a virtual channel identifier and
a virtual path identifier which identify. the particular
cell and its intended destination, and specify an optimal
path through the network through which the cell should be
routed to reach its destination. The header can also
include numerous other information such as the type of
data in the CS-PDU and attributes of the data, the sender
and/or the destination.

The physical limitations discussed above regarding
routers in general also applies to ATM routers, adapters
and termination devices which interconnect an ATM network
to a network node using a different protocol (or to a host
such as a computer workstation). A major problem which
is inhibiting the widespread deployment of ATM is that no
single ATM protocol has been developed. A diverse
assortment of ATM protocols have been developed by various
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manufacturers throughout the industry, some of which are
so different as to be incompatible with each other. At
least, the difference between protocols prevents the
various higher 1level capabilities of the individual
protocols from being universally utilized.

Congestion is a problem in all networks. This occurs
when a large number of users feed data into the network
at the same time. ATM cells need not be contiguous, so
that computer coded data from one user can be interspersed
with, for example, voice data from another user in a time
divisioned manner. However, if too many users attempt to
inject too much data into the network simultaneously, the
bandwidth of the network can be exceeded resulting in
substantial delays in data transmission, transmission
errors and lost data.

Congestion is controlled by sensing the traffic in the
network at the various nodes, sending special information
packets between nodes to notify the other nodes of the
magnitude and type of congestion, and delaying trans-
mission of data at specified nodes in accordance with a
predetermined congestion control algorithm.

ATM networks are relatively new, and the nature and
patterns which congestion can take are not well under-
stood. This makes it difficult to formulate and implement
an effective congestion control algorithm. Similar to the
variety of ATM protocols which are currently in use, a
number of divergent congestion control algorithms have
been devised and placed into service.

ATM routers, termination devices and other network
elements are hardwired with the particular manufacturer’s
protocol and congestion control algorithm. Although it
is likely that a universal ATM standard will be developed
in the near future the multiprotocol problem will be
eliminated, ATM systems will have to accommodate newly
developed congestion control algorithms for an extended
period of time until the nature of congestion can be well

understood and handled. In the meantime, any changes to
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existing ATM systems require hard retooling, which is

extremely time consuming and expensive.

SUMMARY OF THE INVENTION

An asynchronous transfer mode (ATM) processing system
interconnection or termination unit embodying the present
invention is implemented on a single integrated circuit
chip. The unit includes a Virtual Channel Memory (VCR)
for storing ATM cells for segmentation and reassembly, a
Direct Memory Access (DMA) controller for interconnecting
the VCR to a host unit, and a Parallel Cell Interface
(PCI) for interconnecting the VCR to an ATM network.

A Reduced Instruction Set Computer (RISC) micropro-
cessor controls the DMA controller as well as segmentation
and reassembly of Conversion Sublayer Payload Data Unit
(CD-PDU)s and transfer between the memory, the host and
the ATM network and other operations of the device using
single clock cycle instructions. The operating program
for the RISC microprocessor is stored in a volatile
Instruction Random Access Memory (IRAM) in the form of
firmware which is downloaded at initialization. The
program can be user designed to accommodate changes in ATM
network protocols and congestion handling routines.

A Pacing Rate Unit (PRU) includes a global pacing rate
register which automatically reduces the maximum
transmission rate of ATM cells in response to a sensed
congestion condition in the ATM network.

The ATM termination unit is being manufactured on a
commercial basis as the ATMizer™ by LSI Logic Corporation
of Miltipas, CA. The ATMizer’s uniqueness and the power
of its architecture are derived from the inclusion of a
32 bit MIPS RISC CPU on chip.

The ATMizer is implemented on a single chip, thereby
eliminating the off-chip memory access delays and laten-
cies involved in conventional network interconnect devic-
es. Such integration enables the ATMizer to operate at
substantially higher speeds than conventional devices.
The ATMizer chip can be easily plugged into a socket in
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highly divergent types of network and host devices,
thereby providing a highly desirable and cost-efficient
replacement for conventional large, expensive and inflex-
ible network interconnects.

It will be further appreciated that the scope of the
invention includes embodying the present ATM interconnect
device as a hub, bridge, uniprotocol or multiprotocol
router, or in any other configuration regarding ATM
termination, switching or routing. The single chip
ATMizer concept also includes incorporating the ATMizer
per se on a single chip which can include other elements,
such as a host processor. The concept also includes any
single chip device which integrates an ATM device embody-
ing the present invention thereon.

It can be expected that ATM standards and/or conges-
tion control algorithms will become universalized at some
time in the future. When this occurs, some or all of the
functions of the ATMizer’s RISC microprocessor and/or
volatile firmware memory can be replaced with hardwired
or otherwise fixed options. It will be understood the
scope of the invention includes reconfiguring the comput-
ing and control functions of the ATMizer with a microcon-
troller, non-volatile memory, hard wired circuitry, or any
combination thereof.

While the basic function of the ATMizer is to provide
for the segmentation and reassembly (and ATM cell
generation) of ATM Adaptation Layer 1 data streams and ATM
Adaptation Layers 2, 3/4 and 5 CS-PDUs, its on-chip
processor allows user firmware to accomplish these tasks
in such a controlled fashion such that segmentation and
reassembly are just two of the many functions that the
ATMizer can perform. ‘

The features of the present ATMizer include fulfilling
the following objects.

SCATTER-GATHER DMA

CS-PDUs under segmentation need not be contiguous in

system memory when using the ATMizer. The Segmentation
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and Reassembly routines, written by the system designer
and executed by the ATMizer, can perform segmentation on
non-contiguous data structures that logically form a.
single CS-PDU. This is what is commonly referred to as
the "gather" function of a scatter-gather DMA controller.

These user supplied routines handle AAL and ATM header
generation and extraction as well as link list pointer
management and buffer allocation. The implications of
"scatter" and "gather" support, made possible by the
inclusion of a 32 bit CPU (referred to throughout the
specification as the APU or ATM Processing Unit) are
significant and described in the detailed description
portion of the specification.

APPLICATION ACCELERATION THROUGH HEADER STRIPPING AND
DATA ALIGNMENT

In specialty applications, the ATMizer can be saddled
with the responsibility of stripping higher layer headers
from incoming CS-PDUs and placing them in specific memory
locations to aid network software. In addition, the
ATMizer can utilize the powerful byte alignment
capabilities of its DMA engine to insure that the user
data payload portion of the higher layer PDU (Transport
Layer) is written into memory on a word aligned basis.
This releases application layer software from the respon-
sibility of insuring proper data alignment.

CELL SWITCHING

The ATMizer enables a system to either terminate all
VCs or terminate some but switch others, simultaneously.
On a per VC basis the APU can make a determination as to
whether it should reassemble the SAR User-Payload into a
CS-PDU or simply pass the entire cell, headers and trail-
ers intact, to some other memory mapped ATM port or ATM
switch interface. '

The ATMizer can even switch cells between its Receiver
and Transmitter without touching system memory. This
structure can be put to use in ring, dual and triple port
switching fabrics, and other topologies. In cell
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switching situations, the VCI, the VPI both or neither can
be selectively translated.

Multicast expansion can be selectively performed. The
APU can make these decisions in real time and perform the
operations. Furthermore, in switching applications, the
ATMizer can support a "user cell size" of up to 64 bytes.
This allows the user to pre-pend up to 12 bytes of
switch-specific information to each cell.

CONGESTION CONTROL

The manner in which congestion will develop in ATM
based networks, what it look like, and how an end station
should react to congestion are questions that cannot be
answered because no one has seen enough ATM networks in
operation to gain a real life understanding of ATM network
congestion. As the industry moves ahead with ATM so
rapidly, the ATMizer, with its user programmable CPU
positioned directly at the ATM line interface, is capable
of executing or facilitating almost any congestion control
algorithm imaginable.

Because its user generated firmware is downloaded at
system reset, systems in the field can be updated with new
congestion control algorithms as more is learned about
congestion in real ATM networks.

The ATMizer offers fast congestion response time.
Cells arriving at the ATMizer’s ATM port side with noti-
fication of network congestion can affect the transmission
of the very next cell, either inhibiting it altogether,
slowing down the rate of transmission of assigned cells
or forcing CLP reductions. With a wuser supplied
algorithm, the ATMizer provides the hardware pacing logic,
aggregate traffic shaping capability, and the processor
to execute the algorithm.

AALl REAL-TIME DATA STREAMS

The APU in the ATMizer can implement data transfers
with real-time data stream buffers (DS1, voice, video,
etc.), and transfer data from the data stream to main
memory. Residual Time Stamps are now required as part of
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the AALl1 SAR Header. The AALl1 segmentation routine
running on the APU can access RTS values from any memory
mapped device or location and carefully interleave the RTS
value into the headers of the AALl cell stream. When a
new RTS value is needed, the APU retrieves it. When
sequence numbers and sequence number protection are called
for, the APU generates and inserts the appropriated
inZormation into the SAR header, and on reasserily, the
APU will verify sequence number integrity and sequentially
and pass RTS values to the appropriate devices.
DIAGNOSTIC OPERATION

The ATMizer can actively participate in diagnostic
operations utilizing diagnostic firmware downloaded at
system reset. In diagnostic mode, the ATMizer can perform
functions including forcing HEC, CRC10 and CRC32 errors,
gather line statistics, and more. Under normal operating
conditions, the APU can be chartered with the additional
task of statistics gathering to aid in the network
management process. All of these operations are made
possible by the inclusion of the APU.

An adaptive error detection and correction apparatus
for an Asynchronous Transfer Mode (ATM) network device
such as the ATMizer comprises a sensing unit for sensing
a congestion condition in the ATM network and a global
pacing rate unit for adaptively reducing a maximum allow-
able transmission ratio of ATM cells containing informa-
tion to idle ATM cells in response to a sensed congestion
condition.

A processor stores a number corresponding to a
relatively high maximum allowable transmission ratio in
the global pacing rate register in the absence of a sensed
congestion condition, and stores a number corresponding
to a relatively low maximum allowable transmission ratio
in the global pacing rate register in response to a sensed
congestion condition.

A controller adjusts the maximum allowable transmis-
sion ratio in accordance with the number stored in the
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global pacing rate register. A plurality of peak pacing
rate counters reset to predetermined values upon decre-
mentation to zero, the predetermined values corresponding
to service intervals for segmentation of Conversion
Sublayer Payload Data Unit (CD-PDU)s. The processor
further comprises means for assigning the counters to
selected CD-PDUs, and sensing the counters to determine
whether or not segmentation of said selected CD-PDUs is
within the respective service intervals. The apparatus
further comprises a channel group credit register having
bits corresponding to the respective counters.

‘A random number generating apparatus for an interface
unit of a Carrier Sense with Multiple Access and Collision
Detect (CSMA/CD) Ethernet data network comprises a
transmit backoff unit for implementing a backoff algorithm
in response to a network collision signal and a random
number. The apparatus comprises a dual mode random number
generator and a multiplexer for switching the random
number generator between modes in accordance with the
serial address bits of a data packet being processed by
the interface unit.

The random number generator includes a 25 stage linear
feedback shift register. The multiplexer has two signal
inputs connected to outputs of the 18th and 22nd stages
of the shift register respectively, a switch input
connected to receive the serial address bits and an output
connected in circuit to an input of the shift register.

A single chip router for a multiplex communication
network comprises a packet memory for storing data pack-
ets, a Reduced Instruction Set Computer (RISC) processor
for converting the packets between a Local Area Network
(LAN) protocol and a Wide Area Network (WAN) protocol, a
LAN interface and a WAN interface. A Direct Memory Access
(DMA) controller transfers packets transferring packets
between the packet memory and the LAN and WAN interfaces.

A packet attribute memory stores attributes of the
data packets, and an attribute processor performs a non-
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linear hashing algorithm on an address of a packet being

processed for accessing a corresponding attribute of said
packet in the packet attribute memory. An address window
filter identifies the address of a packet being processed
by examining only a predetermined portion of said address,
and can comprise a dynamic window filter or a static
window filter.

A single chip hub for an electronic communication
network comprises a packet memory for storing data pack-
ets, a Reduced Instruction Set Computer (RISC) processor
for processing the packets, and a plurality of media
access interfaces. A Direct Memory Access (DMA) control-
ler transfers packets transferring packets between the
packet memory and the interfaces. The hub further com-
prises an attribute processor and a window filter which
correspond to those of the router.

These and other features and advantages of the present
invention will be apparent to those skilled in the art
from the following detailed description, taken together
with the accompanying drawings, in which like reference
numerals refer to like parts.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a hypothetical electronic
data network incorporating elements of the present
invention;

FIG. 2 is a diagram illustrating the organization of
the main functional units of an asynchronous transfer mode
(ATM) termination unit or ATMizer™ embodying the present
invention;

FIG. 3 is a diagram illustrating the ATM layers which
can be addressed by the ATMizer;

FIG. 4 is a block diagram of the ATMizer;

FIGs. 5a and 5b are diagrams illustrating application
examples of the ATMizer;

FIG. 6 is a diagram illustrating sample VCR software
structures for cell holding and on-chip channel support
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for segmentation;

FIG. 7 is a diagram illustrating a sample channel
parameter entry structure for receive channels;

FIG. 8 is a diagram illustrating Peak Rate Pacing
Counters and a Channel Group Credit Register of the
ATMizer;

FIG. 9 is a diagram illustrating a global pacing rate
control function of the ATMizer;

FIG. 10 is a diagram further illustrating the Pacing
Rate Unit;

FIG. 11 is a diagram illustrating a DMA controller of
the ATMizer;

FIG. 12 is a diagram illustrating a "store word"
function;

FIG. 13 is a diagram illustrating a second "store
word" function;

FIG. 14 1is a diagram illustrating a "load word"
function;

FIG. 15 is a diagram illustrating local address
pointers;

FIG. 16 is a diagram illustrating a Parallel Cell
Interface as including ATM port side Transmitter ' and
Receiver functions;

FIG. 17 1is a diagram illustrating received cell
handling options in a dual port switch/termination station
of the ATMizer;

FIG. 18 is a general signal timing diagram of the
ATMizer;

FIG. 19 is a diagram illustrating how a System Control
Register is programmed using a Store Word instruction;

FIG. 20 is a memory map of the ATMizer;

FIG. 21 is a flowchart illustrating an IDLE loop of
the ATMizer; '

FIG. 22 is a diagram of the ATMizer in a system
supporting AAL 1 and AAL 5 circuit termination and cell
switching;

FIG. 23 is a diagram illustrating AAL1 circuit
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emulation and data buffering as performed by the ATMizer
50;

FIGs. 24 and 25 are diagrams illustrating AAL 5 CD-PDU .
segmentation;

FIG. 26 is a diagram illustrating a cell generation
data path;

FIG. 27 is a pin diagram of the ATMizer;

FIG. 28a is a diagram listing the interfacing timing
signals of the ATMizer;

FIGs. 28b and 28c are timing diagrams illustrating PCI
Transmitter Synchronization.

FIG. 28d is a timing diagram illustrating a DMA write
operation;

FIG. 28e is a timing diagram illustrating a DMA read
operation;

FIG. 28f is a timing diagram illustrating a Parallel
Port write operation; and

FIG. 28g is a timing diagram illustrating a Parallel
Port read operation;

FIG. 29 is a schematic diagram of an Ethernet con-
troller according to the present invention;

FIG. 30 is a functional block diagram of a core of the
controller of FIG. 29;

FIG. 31 is an electrical schematic diagram of a random
number generator of the core of FIG. 30;

FIG. 32 is a diagram illustrating a multiprotocol or
uniprotocol single chip router; ,

FIG. 33 is a diagram illustrating a dynamic window
filter;

FIG. 34 is a diagram illustrating a static window
filter;

FIG. 35 is a diagram illustrating an example of static
window filtering; o

FIG. 36 is a diagram illustrating an example of a
single chip router as fabricated on a substrate; and

FIG. 37 is similar to FIG. 36, but illustrates a
single chip hub.
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DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 illustrates a hypothetical data communications

network 10 to which the present invention relates. The
network 10 comprises a public service telephone network
(PSTN) 12 which is generally represented as a cloud and
interconnects users nationally and internationally using
a combination of land lines and satellite links.

Although not illustrated in detail, the PSTN 12 com-
prises a number of multiprotocol routers which are capable
of interconnecting network nodes using a variety of Wide
Area Network (WAN) protocols, including T1, V.35 and FDDI.
Asynchronous Transfer Mode (ATM) is a universal protocol
which can be used for both WANs and Local Area Networks
(LAN) .

As illustrated in the exemplary network, the PSTN 12
is connected through an ATM link 14 to an end user such
as a computer workstation 16 through an ATM termination
device 50. The PSTN 12 is also connected through an ATM
link 18 and a device 50 to a router 18, which in turn is
connected to Ethernet hubs 22 and 24 through an Ethernet
LAN network. The hubs 22 and 24 are connected to work-
stations 16 through the Ethernet LAN.

Although the workstations are collectively designated
as 18, they need not be similar, but can individually be
constituted by diverse types of electronic communication
devices such as telephone switching stations, commercial
data collections terminals such as automatic bank teller
machines, video and/or voice communication devices.

Further illustrated in the exemplary network 10 is a
multiprotocol router 26 which is connected to the PSTN 12
through a wide area network link 28. The routerv26 is
connected to a Token Ring LAN hub 30 and a Novell LAN hub
32 through respective LAN interfaces. The hubs 30.and 32
are connected to workstations 32.

The device 50 is being commercially manufactured as
the ATMizer™, and has been designed to control almost all

aspects of ATM line operation from segmentation and
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reassembly of CS-PDUs and real-time data streams, to cell
switching. Scatter-gather DMA, ATM layer operations,
congestion control, statistics gathering, messaging,
error monitoring, and d: ynostic troubleshooting of the
ATM port are all under APU control.

In addition to Segmentation and Reassemk.y, the single
chip ATMizer 50 allow: active and intelligent control of
all aspects of ATM station operation. The provision of
high speed processing capabilities at the port interface
allows for the implementation of systems that can deliver
a level of operational control that can not be cost
effectively delivered in a discrete implementation.

The ATMizer 50 will now be described in detail.

INDEX

1.0 ATMizer Features
1.1 General Features
1.2 ATM Adaptation Layer Features
1.3 ATM Layer Features
1.4 ATM Port Physical Interface Features
1.5 Diagnostic Support Features
2.0 Operations Performed by the ATMizer
3.0 The ATMizer - Functional Blocks
3.1 The ATMizer Processing Unit (APU)
3.2 1024x32 Instruction RAM (IRAM)
3.3 The Virtual Channel RAM (VCR)
3.3.1 Using the VCR for Cell Storage
3.3.2 Using the VCR for Storing Channel Parameter Entries
3.3.3 Channel Groups. Combining active VCs into Logical

Groupings for Segmentation Pacing Synergy
3.3.4 Cell Multiplexing - Cell Demultiplexing. Number
of |

Channels Supported by the ATMizer
3.4 The Pacing Rate Unit .
3.4.1 Cell Rate Pacing (CS-PDU Segmentation Rates)
3.4.2 Global Pacing Rate
3.4.3 Channel Priority
3.5 The DMA Controller
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3.5.1 DMAC Control Registers and Counters
3.5.2 Programming the DMAC
3.5.3 Using the DMA Controller to implement Cell Switch-.
ing,

Segmentation and Reassembly
3.5.4 CRC32 Generation Considerations
3.5.5 Misaligned Operations Revisited
3.5.6 Using the DMA Controller to Implement Scatter and
Gather

Operations
3.5.7 How to Determine when a DMA Operation has Completed
3.6 The Parallel Cell Interface
3.6.1 The Parallel Cell Interface Transmitter
3.6.1.1 Transmit Cell Sources

3.6.1.2 Queuing a Cell for Transmission

3.6.1.3 Cell Rate Decoupling
3.6.1.4 Preparing the Transmitter to Transmit
3.6.2 The Parallel Cell Interface Receiver
3.6.2.1 Received Cell Handling Options ‘
3.6.2.2 Received Cell Indication. How the APU recognizes
that
Cells are awaiting processing in the VCR
3.6.3 HEC Generation and Checking
3.6.4 External Buffering of Received Cells
3.6.5 Frequency Decoupling
3.7 The Parallel Port
4.0 The System Control Register
5.0 The ATMizer Memory Map .
6.0 The ATMizer'’s Interrupt Structure and CpCond Hookups
7.0 Programming the ATMizer
8.0 ATMizer <-> Host Messaging
9.0 The ATMizer in Operation
9.1 Data Types Supported
9.2 The Cell Generation Process - An Overview
9.2.1 AALl Real?Time Data Streams
9.2.2 AAL 3/4 and 5 CS-PDU Segmentation
9.3 The CS-PDU Reassembly Process
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10.0 Congestion Notification and Handling
11.0 ATMizer Signals
11.1 ATMizer Pin Diagram
11.2 ATMizer Signal List
12.0 ATMizer Interface Timing
ATMizer DETAILED DESCRIPTION
1.0 ATMizer Features
1.1 General Features

Supports ATM data rates of up to 155.54 megabits per
second (mbps)-.

Supports simultaneous Segmentation and Reassembly of
certain VCs and cell switching of others.

User programmable on-chip 32 bit MIPS RISC CPU (ATM
Central Processing Unit - APU) controls all aspects of the
ATM cell generation and switching processes.

Handles contiguous and non-contiguous CS-PDUs (scat-
ter-gather DMA operations).

APU controls scatter-gather DMA algorithms, AAL Header
and Trailer Generation, ATM Header generation and
manipulation, ATMizer - Host messaging, error handling,
congestion control, statistics gathering, diagnostic
operation and more.

Supports ATM Adaptation Layers 1, 2, 3/4 and 5,
simultaneously. | -

Generates and appends 4 byte CRC32 field on AALS
CS-PDU segmentation.

Generates and checks 4 byte CRC32 field on AALS5 CS-PDU
reassembly.

Implements Peak Rate Pacing, Maximum Burst Length and
Global Pacing for aggregate traffic shaping.

Supports up to 65,536 VCs - actual numbers are
implementation specific.

On-chip elastic byte buffer and received cell buffers
(2, 4, 8 or 16 cells deep) eliminate the need for buffer-
ing at the ATM port. All metastability issues are handled
by the ATMizer 50.

On-chip caching of channel parameters, buffer lists
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and messages in 4 kilobyte Virtual Channel RAM, coupled
with received cell buffers allows for the development of
"memory-less" network interface cards that operate at
desktop speeds (<= 45 mbps). All CS-PDUs under segmenta-
tion and reassembly reside in system memory.

Operates out of system memory in low cost NIC appli-
cations, a single unified DRAM system in high speed
applications supporting a limited number of VCs (256) or
from a combination of high speed SRAM and DRAM in high
speed applications requiring the support of a large number
of VCs (greater than 256).

Robust ATM port interface with frequency decoupling
logic and metastability logic inside of the ATMizer 50.

Powerful 32 bit DMA addressing capabilities and 32 or
64 bit DMA Data interfacing capabilities.

General purpose eight bit Parallel Port Interface with
addressing of up to 16 external devices.

Extensive diagnostic support including HEC, CRC10 and
CRC32 error forcing.

1.2 ATM Adaptation Layer Features

Controlled AAL1l Cell Generation from real-time data
streams including SAR Header generation and Residual Time
Stamp Insertion. .

Controlled Segmentation and Reassembly of AAL 2, 3/4
and 5 CS-PDUs.

Scatter-gather capabilities on Reassembly and Seg-
mentation. CS-PDUs need not be contiguous in system
memory. Allows for efficient use of memory space, higher
throughput (no moves necessary to form contiguous CS-PDUs)
and low latency attributable to devices such as routers.
User firmware implements the scatter-gather algorithm.

Higher layer header extraction and data alignment
capabilities for application acceleration. o

CRC10 generation and checking for AAL 2 and 3/4 SAR
PDUs.

CRC32 generation and checking for AAL 5 CS~PDUs.

Supports simultaneous Segmentation and Reassembly of
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AAL 2, 3/4 and 5 CS-PDUs, AAL 1 cell generation from
real-time data streams and cell switching between the
ATMizer 50’s ATM Receiver port and ATM Transmitter port
or any memory mapped device (terminate some VCs, switch
others. Implement rings, dual attach stations, switching
fabrics, etc.).

1.3 ATM Layer Features

Controlled ATM Header generation and manipulation.

Cell Multiplexing/Cell Demultiplexing from up to
65,536 VCs/VPs.

On-chip caching of channel parameters in Virtual
Channel Ram allows for low cost network interface cards
to be implemented without any dedicated memory on the
card. Use the PC’s/Workstation’s main memory system for
CS-PDU storage during S&R.

Support for VCI/VPI translation and cell switching.

Supports a user defined cell size up to 64 bytes to
allow for the pre-pending of a switch specific header.

Support for multicast expansion.

On-chip Peak Rate Pacing Counters (up to 8 Peak
Rates), Maximum Burst Length control.

Global Pacing Rate Register allows the APU to set the
percentage of IDLE cells to be sent over the ATM port.
Provides for aggregate traffic shaping and is a quick way
of reducing data speeds upon congestion notification.
Gradually return to full speed operation under APU
control.

Advanced congestion control capabilities. User
firmware specified congestion control algorithms provide
for immediate reaction to congestion notification. Fast
response (within one cell time) results in fewer cells
sent into a congested network, minimizing cell loss and
CS-PDU retransmissions resulting in higher overall
throughput. Congestion control routines are part of user
firmware and can be modified as more is learned about
congestion in actual ATM networks.

Cell Loss Priority marking and manipulation (w/AAL 5
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High-Medium-Low Priority CS-PDU support).

Automatic Cell Rate Decoupling through IDLE cell
insertion.

1.4 ATM Port Physical Interface Features

Eight bit parallel transmit data output bus; PCI_-
TxData(7:0).

Eight bit parallel receive data input bus; PCI_Rc-
Data(7:0).

Separate transmitter and receiver sync inputs.

Eight byte deep elastic buffers in transmitter and
receiver allow for direct connection of data output and
input buses to transceivers. No external buffering
required.

Elastic buffers driven by transceiver generated/re-
covered byte clocks (PCI_TxClk, PCI_RcClk). Supports any
byte frequency < or = 25 MHz. Clocks can be "Gapped".

All buffering and metastability issues dealt with
inside the ATMizer 50.

Separate transmitter and receiver "data transfer
acknowledgment" input signals (PCI_TxAck, PCI_RcAck)
provide for Gappable operation with free running trans-
mitter and receiver clocks.

Allows connection to Transmission Convergence Sublayer

- framing logic that requires "gaps" in the assigned cell

stream for the insertion/extraction of framing overhead.
On-chip received cell buffers (user selectable 2, 4,
8 or 16 cells deep) adds second layer of buffering between
ATM port and main memory. Buffering allows ATMizer 50 to
absorb periods of high latency to main memory or 1long
exception handling routines without losing received cells.
Especially important in "memory-less" network add-in cards
for PCs and Workstations where the computer’s main memory
is the ATMizer 50’s working memory space.
HEC GENERATION AND CHECKING
Cell delineation using "slip and sync on HEC error"
protocol.
"Transmit Data Ready" (PCI_TxDrdy), "Beginning of
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Cell" (PCI_BOC), "IDLE Cell" (PCI_IDLE) and "HEC Error"

(PCI_HECError) outputs to aid the Transmission Convergence
Sublayer framing logic.
1.5 Diagnostic Support Features

Unlimited user firmware cdntrolled statistics gath-
ering capabilities. Keep track of any statistics the
application or network management architecture requires.

CRC10 and CRC32 error statistics gathering.

Force HEC, CRC10 and CRC32 errors for diagnostic
purposes.

ATMizer 50s are fully lock-steppable for use in fault
tolerant systems.

On board APU provides for network management and
troubleshooting of ATM system.

Download special diagnostic firmware to APU to aid
system level diagnostics when troubleshooting system or
line failures.

2.0 Operations Performed by the ATMizer 50

The ATMizer 50 is a single chip ATM network controller
from LSI Logic that, in general terms, fits into the
Segmentation and Reassembly category of ATM control chips.
In reality, the ATMizer 50 provides far more power and
flexibility than one would expect from a Segmentation and
Reassembly device.

The power of the ATMizer 50 comes from the inclusion
within the chip of a 32 bit, user programmable, RISC CPU
based on the MIPS R3000 architecture. It is user firmware
downloaded to the on-chip CPU during system reset that
controls most of the operational aspects of the ATMizer
50.

The ATMizer 50, as shipped, does not solve a partic-
ular ATM station design problem. It is a group of care-
fully chosen hardware functional blocks that can be woven
together by user firmware in such a fashion that the
ATMizer 50 becomes tuned to solve a set of problems
particular to the user’s system implementation.

Segmentation and reassembly are likely to be two of
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the major problems solved by the ATMizer 50, but addi-
tional issues can be handled as well including cell
switching, VCI/VPI translation, statistics gathering,
messaging and diagnostic operation. 1In addition, the way
that the user’s system manages CS-PDU lists (i.e. lists
of CS-PDUs in need of segmentation), memory buffers (in
scatter-gather implementations), Host-ATMizer messaging
and other structures can vary from system to system
depending on the firmware architecture implemented by the
user.

In general terms, the ATMizer 50 has been designed to
address the ATM layers enclosed in the box illustrated in
FIG. 3.

3.0 The ATMizer 50 - Functional Blocks

The ATMizer 50 is fabricated as a single integrated
circuit chip on a substrate 66 as illustrated in FIG. 2.
As stated previously, the objective in designing the
ATMizer 50 was to provide ATM system designers with a
Segmentation and Reassembly chip that can, through user
firmware control, be used to implement ATM end stations
and switching stations in a number of very divergent
fashions. As such the ATMizer 50 is a device that pro-
vides a number of critical hardware functions that are
"brought to life" by the firmware that a user downloads
to the ATMizer 50’s APU at system reset time.

The responsibilities attributed to the ATMizer 50 in
a system are a function of this firmware. Therefore, it
is important for the system designer to understand the
functional blocks of the ATMizer 50 prior to undertaking
any system architectural activities.

The ATMizer 50 .consists of the followingv seven
functional blocks as illustrated in FIG. 4.

1. ATMizer Processing Unit (APU) 52. The "brain" of
the ATMizer 50 is the on board 32 bit MIPS RISC based CPU
that controls all aspects of ATMizer 50 operation. This
specification refers to the on-board CPU as the APU 52.
The APU 52 must process every incoming cell and generate



10

15

20

25

30

35

WO 95/11554 v PCT/US94/11788

- 23 -

every outgoing cell. It is the APU 52 that provides the
level of operational control that is necessary to support
such functions as interleaved circuit termination (S&R)
and cell switching of multiple ATM Adaptation Layer type
cells, scatter-gather memory management operations,
intelligent congestion control algorithms, traffic
statistics gathering and robust ATMizer <-> Host
messaging.

2. Instruction RAM (IRAM) 54. The APU 52 runs the
user supplied firmware routine from an on-board 1024 x 32
single cycle SRAM which constitutes the IRAM 54. The SRAM
is loaded at system reset and the code then remains static
in the SRAM throughout system operation. However, if
system failures occur, the diagnostic operating system may
chose to download a diagnostic control routine to the IRAM
54 so that the APU 52 can actively participate in the
troubleshooting process.

3. Virtual Circuit RAM (VCR) 56. The VCR 56 is the
most configurable aspect of the ATMizer 50. While the VCR
56 is simply a 1024 x 32 two Read/Write port SRAM, the
software partitioning of this SRAM will vary dramatically
from user to user and application to application.
Tradeoffs in VCR configuration will impact issues such as
the number of channels supported and the ‘size, structure
and speed of the external main memory system.

All cells received from the ATM port side are written
into the VCR 56 to await either reassembly or switching
operations initiated by the APU 52. AAL 1, 2, 3/4 and 5
cells are "built" in the VCR 56 by a combination of DMA
operations and APU operations before being passed to the
ATM transmitter.

The VCR 56 may also be used to store Channel Parameter
Entries, available buffer lists and other data structures
required for system operation. 1In some applications, all
Channel Parameters Entries will be stored in the VCR 56
while in other applications Channel Parameter Entries will
be stored in main memory (combination systems are also
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4. Pacing Rate Unit (PRU) 58. The PRU 58 contains
eight Peak Rate Pacing Counters (PRPC) 58a that are used
to control the rate of CS-PDU segmentation. Whenever one
or more PRPCs 58a times out, the PRU 58 asserts the APU’s
CpCond2 input allowing the APU 52 to poll for this time
out condition. If the APU 52 finds CpCond2 set, it
branches to the Segmentation routine.

The PRU 58 also contains the Channel Group Credit
Register (CGCR) 58b, an eight bit, APU readable/writable
register containing one bit for each PRPC 58a. A PRPC 58a
that has timed out but has not yet been serviced by the
APU 52 has its bit set in the CGCR 58b. Firmware running
on the APU 52 can implement channel priority by
selectively servicing Channel Groups that have timed-out.
Four of the eight 12 bit PRPCs 58a can be configured into
two general purpose 24 bit timer/counters for general
purpose usage. These timer/counters provide a robust set
of features including APU interrupt on time-out capabili-
ties.

The PRU 58 further includes a Global Rate Pacing
Register (GRPR) 58c which will be described in detail
below.

5. DMA Controller (DMAC) 60. The DMA controller 60
is a slave resource (as seen by the APU 52) utilized by
the APU 52 to accomplish data transfers between the

on-chip VCR 56 and memory mapped devices. While the APU

52 is the "brains" behind DMA operations, the DMA con-
troller 60 is the "muscle" behind such operations.
Because the APU 52 initializes the DMA controller 60 at
the beginning of each operation, the DMA controller 60
effectively supports an unlimited number of channels.
The DMA Controller 60 is extremely powerful, Sup-
porting every combination of local and memory byte align-
ments on transfers. This powerful support of aligned and
misaligned operations gives the ATMizer 50 an ability to
participate in robust Scat-ter-Gather operations. The DMA
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controller 60 is also responsible for generating CRC32
results for AAL 5 SAR CS-PDUs. The DMA Controller 60
operates in 32 bit address and 32 bit data transfer mode.

6. Parallel Cell Interface (PCI) 62. The PCI 62 is
the ATMizer 50’s interface to the ATM port side circuitry,
and includes a PCI Transmitter 62a and a PCI Receiver 62b.
The PCI 62 is 8 bits wide in both the transmit and receive
directions and connects directly to the actual
Transmission Convergence Sublayer framing circuitry. 1In
the receive direction, the PCI 62 is responsible for
reconstructing ATM cells in the VCR 56 from data received
from the external framing logic. In the transmit direc-
tion, the PCI 62 is responsible for transferring cells
from the VCR 56 to the external framing logic.

The PCI 62 also. contains data buffers and frequency
decoupling logic to allow for a direct connection between
the ATMizer 50’s ATM ports and the ATM line transceivers.
All metastability issues are addressed and solved by the.
ATMizer 50.

7. Parallel Port 64. The Parallel Port 64 is an
eight bit port that can be accessed by the APU 52 directly
through Load and Store commands. The Parallel Port 64 may
be used to pass information between the ATMizer 50 and the
system controller, between two or more ATMizers or as part
of the ATMiéer <-> Host messaging systen. The Parallel
Port 64 can also be used to access external devices while
the DMA controller 60 is busy and to pass information to
an external device about an active DMA operation.

3.0 ATMizer FUNCTIONAL BLOCKS
3.1 ATMizer Processing Unit (APU) 52

The APU 52 is a 32 bit RISC CPU based on the MIPS
R3000 architecture. It is the inclusion of this powerful,
user programmable CPU that gives the ATMizer 50 its unique
capabilities. APU firmware is responsible for a range of
functions from cell building (SAR Header and Trailer
generation, ATM Header retrieval from the Channel
Parameter Entry for the VC, ATM Header manipulation and
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insertion, and DMA operation initialization for SAR SDU
retrieval) to ATMizer <-> Host messaging and channel
servicing sequencing.

The system designer is responsible for writing the
firmware that will be executed by the APU 52. Firmware
is downloaded to the ATMizer 50 at system reset and
controls almost all operational functions of the ATMizer
50 including the following functions:

SAR PDU GENERATION, ATM CELL GENERATION

The APU 52 is responsible for generating SAR Headers
(AAL 1, 2 and 3/4) and Trailers (AAL 2 and 3/4) during
segmentation and reassembly (the CRC10 field is automati-
cally generated and inserted by the PCI 62). SAR Header
generation includes sequence number generation and check-
ing as well as message type insertion and extraction
(BOM, COM, EOM, SSM).

The APU 52 is also responsible for initiating the
appropriate DMA operations to accomplish SAR SDU retrieval
from memory based real time data buffers (AAL 1) or
Cs-PDUs. The APU 52 is also responsible for ATM Header
retrieval and manipulation, including PTI and CLP field
modification. For cells that are to be switched, the APU
52 is responsible for making the initial switching deci-
sion based on information contained in the Channel Param-
eter Entry for the VC as well as for accomplishing VCI/VPI
translation if such an operation is specified in the
Channel Parameter Entry.

DMA OPERATION INITIALIZATION

To initiate a DMA operation the APU 52 sets the main
memory start address (byte offset), the local address and
local byte offset, the number of bytes to be transferred
and the transfer direction (Rd vs. Wr) in the DMA Engine.
Once these parameters have been written into the DMA
engine, the DMA controller operates autonomously to
accomplish the entire transfer.

The APU 52 initiates DMA operations to retrieve SAR
SDUs during segmentation operations, to restore SAR SDUs
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to their respective CS-PDUs during reassembly operation,
to switch entire cells, headers and trailers intact, to
other memory mapped ATM ports during switching operations,
to retrieve and restore Channel Parameter Entries in
applications utilizing off chip SRAM to support an
extended number of VCs or to retrieve a Channel Parameter
Entry to be appended to the end of a VCR based Channel
Group in applications supporting on-chip caching of
Channel Parameter Entries in the VCR 56, and to transfer
SAR SDUs to and from real time data stream buffers in
applications supporting AALl circuit interfaces (such as
Tl lines).
PACING RATE UNIT CONFIGURATION

The APU 52 has write access to the eight Peak Rate
Pacing Counters 58a and their initialization registers
(not shown). The APU 52 sets the initial count values by
writing a 12 bit value into one of the eight Peak Rate
Pacing Registers. The APU 52 can also read the Channel
Group Credit Register 58b to determine which PRPCs 58a
have expired.

The Pacing Rate Unit 58 informs the APU 52 that a PRPC
58a has timed-out by asserting the APU 52’s CpCond2 input.
The APU 52 polls this condition by periodically executing
the "Branch on CpCond2 True" instruction. If the APU 52
evaluates this condition as True it branches to the
Segmentation routine and begins segmenting the CS-PDUs
specified in the individual Channel Parameter Entries for
the Channel Group whose PRPC 58a has timed-out (forcing
the assertion of CpCond2).

The APU 52 will generate a number of cells per
CS-PDU/Channel Parameter Entry, as indicated in the
ChannelvParameter Entry, prior to proceeding to the next
Channel Parameter Entry in the Channel Group. The APU 52
implements channel priority by being selective (and
creative) in the order in which it handles segmentation
when multiple PRPCs have timed out simultaneously and are

awaiting service.
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In between cell generation procedures the APU 52 will
check for received cells, and must interleave the genera-

tion of cells with the reception (termination or

switching) of cells as well as with any ATMizer <-> Host
messaging actions that may be required.
PARALLEL CELL INTERFACE CELL QUEUING AND CELL
PROCESSING

The APU 52 is responsible for queuing cells for
transmission by writing the VCR 56 start address of a cell
into the Cell Address FIFO in the PCI Transmitter 62a.
If no cell address is present in the FIFO when an end of
cell boundary is reached, the Transmitter 62a will
automatically send an IDLE cell.

For received cells, the APU 52 is responsible for
deciding between cell switching and circuit termination
on a per VC basis. The APU 52 accomplishes internal cell
switching (cell switching between its Receiver and Trans-
mitter) by passing the VCR 56 addresses of a received cell
targeted for internal switching to the Cell Address FIFO
in the Transmitter. A cell targeted for external
switching (switching over DMA Data(31:0)) has its VCR 56
addresses passed to the DMA Controller 60.

The APU 52 also is responsible for setting the Global
Pacing Rate Register 58c in order to shape the assigned
cell content of the outgoing cell stream. For cells that
are to be terminated (i.e. reassembled into CS-PDUs) the
APU 52 retrieves the Channel Parameter Entry for the VC
over which the cell arrived to obtain information required
to reassemble the SAR SDU into its corresponding CS-PDU.

This information includes the memory address of the
tail end of the CS-PDU under reconstruction. The APU 52
then initiates a DMA operation to transfer the SAR SDU
from the VCR 56 to memory by passing the DMAC the local
(VCR 56) address of the SAR SDU, the memory address of the
CS~-PDU and the number of bytes of SAR SDU to be
transferred. The DMA Controller 60 then executes the
tranSfer, leaving the APU 52 free to do other things.
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MEMORY ALLOCATION

During the reassembly process the APU 52 is respon-
sible for memory buffer management. If memory is to be
allocated to incoming CS-PDUs in "fragments", the ATMizer
50’s APU 52 is responsible for tracking fragment bound-
aries, issuing additional fragments to CS-PDUs as needed,
generating link lists of the fragments allocated to a
given CS-PDU and ATMizer <-> Host messaging to inform the
host of CS-PDU complete situations, error and congestion
problems.

In the transmit direction, the APU 52 is responsible
for recognizing and dealing with the difference between
end-of-fragment boundaries and end-of-CS-PDU boundaries.

. ATMizer <-> HOST MESSAGING

The ATMizer 50 does not enforce a particular messaging
system between the on-chip APU 52 and the host system.
The user implements his own messaging system by polling
the ATMizer 50_Int input (connected directly to CpCondo
and tested with the "Branch on CpCond0 True" instruction)
for an indication that the host wishes to communicate with
the ATMizer 50 and by setting the ATMizer 50’s Host_Int
output to indicate to the host that the ATMizer 50 wishes
to or has already passed a message to the host system.

The APU 52 can also read and/or write any DMA memory
mapped or Parallel Port memory mapped location as part of
a messaging mailbox system. GP_Intl or GP_Int2 could also
be used in addition to or in place of ATMizer 50 Int as
part of the messaging system.

CONGESTION CONTROL

As stated previously, the ATMizer 50 is capable of
executing or facilitating almost any congestion control
algorithm. The APU 52 looks at the appro-riate ATM Header
field/s of each incoming cell for :otification of
congestion. If congestion notification is found to exist,
the APU 52 can take immediate action. Such actions may
include one or more of the following:

1. Notify the Host that congestion has been seen
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utilizing the ATMizer <-> Host messaging scheme developed
by the user.

2. Lower one or more Peak Rate Pacing Counter
initialization values.

3. Reduce the overall assigned cell throughput rate
by setting a "lesser" value in the Global Pacing Rate
Register.

4. Set the CLP fields of outgoing cells to 0 in lieu
of lowering the overall information rate.

3.2 1024 x 32 Instruction RAM (IRAM 54)

The 1024 x 32 Instruction RAM 54 contains the 4096
bytes of user written "firmware" that power the APU 52.
The IRAM 54 code is downloaded during system reset (Resetx
asserted) through a series of memory write operations
executed by the host processor with the ATMizer 50 serving
as the target device. The ATMizer 50 acts as a slave
device for the purpose of this download process.

The host accomplishes the data transfer to the ATMizer.
50 by issuing 1024 (or less) write operations to 1024 (or
less) consecutive memory addresses. These memory address
have common MSBs that result in external logic selecting
the ATMizer 50 as the targeted resource of the write
operations.

As a result of each write operation, external logic
asserts the ATMizer 50’s DMA_RdWrAck input. The ATMizer
50 responds to the assertion of DMA RAWrAck while Resetx
is low by writing the data sourced by the host on DMA -
Data(31:0) into the on-board IRAM 54 on the rising edge
of clock. The ATMizer 50 generates the IRAM 54 index
(i.e. the IRAM 54 write address) internally, starting at
location zero and incrementing the address by one word
each time DMA RdWrAck is asserted.

Therefore, it is imperative that the IRAM 54 code be
written consecutively until the entire firmware routine
has been written into the IRAM 54. Once the entire user
firmware routine has been written into the on-chip IRAM
54, the system can release the ATMizer 50’s Resetx input
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and the APU 52 will begin firmware execution at the R3000
reset vector. DMA DataOEx and DMA_AdrOEx should be
deasserted during slave write operations.

The ATMizer 50 will generate consecutive DMA memory
addresses to IRAM 54 code downloading, beginning at memory
address zero and incrementing by one word each time
DMA_RdWrAck is asserted. If external logic wishes to use
the address sourcing capability of the DMA to boot from
a ROM or some other device, it should assert DMA AdrOEx
during the ATMizer 50 initialization processor. If
external logic relies on programmed I/0 to configure the
IRAM 54, DMA AdrOEx should most likely be deasserted to
insure that the ATMizer 50 does not drive the DMA Ad-
dress(31:2) bus.

3.3 Virtual Channel RAM (VCR 56)

The Virtual Channel RAM 56 is a 1024 word x 32 dual
ported RAM that provides the ATMizer 50 with many of its
unique capabilities. The VCR 56 should be thought of as
the central resource within the ATMizer 50. Almost all
ATMizer 50 operations revolve around the transfer of data
to and from the VCR 56. The VCR 56 can be read and
written by the DMA controller 60, the Parallel Cell Inter-
face 62 and the APU 52.

All incoming cells (cells arriving over the Receiver
in the Parallel Cell Interface) are written into the VCR
56 prior to processing (the APU 52 will decide how to
process a cell. It can chose to terminate a cell (reas-
semble it into a CS-PDU or a data buffer) or to switch a
cell (internally or externally). All outgoing cells are
either constructed in the VCR 56 (segmentation) or trans-
ferred to the VCR 56 (external switching) prior to trans-
mission. 1In addition, Channel Parameter Entries, memory
buffer lists, messages and other parameters can all be
stored within the VCR 56. ,

It is this ability to store such parameters inside the
ATMizer 50 that allows the ATMizer 50 to be used in a
variety of cost sensitive applications such as memory-less
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network interface cards supporting a limited number of
simultaneously active VCs.

Two sample VCR 56 constructions are illustrated in
FIGs. 5a and 5b. In the first example, of FIG. 5a, a
Network Interface Card (NIC) for a PC or Workstation
supporting a limited number of open channels, all Channel
Parameter Entries for both transmit and receive channels
are stored in the VCR 56 eliminating the need for off chip
local memory. In the second example of FIG. 5b, a router
supports an unlimited number of open channels but places
a restriction on the number of VCs that can have CS-PDUs
under active segmentation at any one time.

In the sample system we have limited to 256 the number
of transmit channels that can be "active" simultaneously
and we cache all Channel Parameter Entries for these
active channels in the VCR 56. ‘

A 155 mbps ATM pipe evenly split amongst 256 channels
yields approximately 605 kilobytes/sec per channel. In
this scenario we have not limited the number of open
transmit channels, only the number of channels that can
have CS-PDUs undergoing segmentation simultaneously.

Once one CS-PDU has been completely segmented the APU
52 can swap out its Channel Parameter Entry for the next
in line. Channel Parameter Entries for channels that are
active in the receive direction are stored off-chip in
local memory. This allows the router to support an
unlimited number of simultaneously active receive
channels.

Without an intelligent memory fragment allocation
plan, support for a large number of VCs would swamp most
memory systems. Fortunately the ATMizer 50 combines
support for external Channel Parameter Entries with a
capability to do link list based CS-PDU scattering during
reassembly (allocate memory in small "fragments" as

needed). The net result is that the sample router is able

to support an unlimited number of open transmit and
receive channels from a single unified DRAM based memory
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system with a single restriction on the number of transmit
channels that can be actively undergoing segmentation at
one time.

In high end applications, it is possible to support
an unlimited number of simultaneously active transmit and
receive channels by storing all Channel Parameter Entries
off chip. This puts certain demands on the speed of local
memory that may force the usage of SRAM for Channel
Parameter Entry storage.

3.3.1 Using the VCR 56 for Cell Storage
INCOMING CELLS

The Receiver in the ATMizer 50’s Parallel Cell
Interface reconstructs cells received from the external
transmission convergence framing logic in the VCR 56. The
PCI 62 allocates 64 bytes of VCR 56 memory to each
incoming cell. The actual size of a cell is user select-
able (up to 64 bytes) and must be programmed in the System
Control Register as part of the APU 52’s system initial-
ization routine.

The Receiver reconstructs cells beginning at VCR
address 0000. The first 128 bytes (2 cells), 256 bytes
(4 cells), 512 bytes (8 cells) or 1024 bytes (16 cells)
of the VCR 56 are set aside for Received Cell Holders.
Cells are written into the VCR 56 in a modulo 2, 4, 8 or
modulo 16 fashion. Therefore, it is important that cells
be processed before they are overwritten.

Cell buffering in the VCR 56 helps to decouple the
incoming cell stream from memory interface latency and is
especially helpful in situations where the APU 52 is
temporarily unable to process incoming cells due to
execution of an extended routine.

Cells written into the VCR 56 are processed in the
order of their arrival by the APU 52 and are either:

1. switched over the internal Transmitter;

2. Switched over the main memory interface; or

3. Reassembled into memory based real time data stream
buffers or CS-PDUs. The decision to switch or terminate
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a cell is made by the APU 52 after examining the informa-
tion stored in the Channel Parameter Entry for the VC over
which the cell arrived.

OUTGOING CELLS

All cells must be either moved to (external switching)
or constructed in (segmentation) the VCR 56 prior to
transmission. Software can set aside an area in the VCR
56 to act as the staging area for cell switching and
generation (shown in Fig 3.3 as the Transmit Cell Builder
regions). Outgoing cells are transferred from the VCR 56
to the external transmission convergence framing logic by
the Transmitter in the PCI 62. The Transmitter works off
of VCR 56 memory pointers.

Whenever the APU 52 wishes to have a VCR 56 resident
cell transferred to the transmission convergence framing
logic, it simply writes a VCR 56 pointer to the cell into
the Transmitter’s Cell Address FIFO. The transmitter then
handles the transfer automatically.

A benefit to this pointer method is that it enforces
no restrictions on the internal location of cells slated
for transmission accept that they be VCR 56 resident. As
a result, the ATMizer 50 can switch Received Cell Holder
resident cells out over the Transmitter by simply passing
a pointer to the cell to the Cell Address FIFO (internal
switching).

To switch a cell from an external device (i.e. to
source a pre-existing memory based cell out over the
ATMizer 50’s PCI Transmitter 62a) the APU 52 must first
initiate a DMA operation to bring the cell into the VCR
56 from some temporary memory buffer. Once in the ATMizer
50, the APU 52 passes the VCR 56 pointer for the cell to
the Cell Address FIFO in the same fashion as for internal
switching. o

Segmentation requires ATM and SAR (AAL 1, 2 and 3/4)
Headers and Trailers (AAL 2 and 3/4) to be appended to the
SAR SDUs by the APU 52. But once a cell is constructed
in the VCR 56 the APU 52 again passes a pointer to the
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cell to the Cell Address FIFO and the Transmitter sends
the cell to the transmission convergence framing logic,
one byte at a time.

3.3.2 Using the VCR 56 for storing Channel Parameter
Entries

Beyond transmit and received cell holding, how the VCR
56 is used will vary dramatically from application to
application. For the APU 52 to generate a cell it must
know certain information about the virtual circuit over
which the cell will pass and information about the CS-PDU
from which the cell will be generated. Such information
includes:

1. The main memory address of the CS-PDU or real time
data buffer from which the SAR SDU will be retrieved.

2. The number of bytes remaining in the CS-PDU or
CsS-PDU fragment (in scatter-gather applications).

3. In scatter-gather applications, whether or not the
current CS-PDU fragment is the last fragment of a multi--
fragment CS-PDU.

4. The base ATM Header that is to be appended to each
cell. 5. The ATM Adaptation Layer type that is to be
used to segment or reassemble cells originating or
terminating on the given VC.

6. The previous SAR Header/Sequence Number (for AAL
1, 2 and AAL 3/4 circuits).

7. The CRC32 partial result for the CS-PDU (for AAL
5 circuits).

Collectively, these parameters provide the APU 52 with
all of the information that is needed to process an
incoming cell or to segment a CS-PDU into a stream of
cells. In this specification we refer to a RAM based data
structure that contains all of the pertinent information
about a single VC as a Channel Parameter Entry for the VC.

The ATMizer 50 is unique in that it does not enforce
any Channel Parameter Entry data structure. User firmware
will dictate the actual Channel Parameter Entry data
structure, how VCs are grouped together and how the
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segmentation process will be conducted on a grouping. The
system designer creates the Channel Parameter Entry data
structure architecture to fit his system and then writes .
the APU 52 firmware to work within this environment. @
example, a system that supports AALS5 CS-PDU segmentation
and reassembly will require less information in a Channel
Parameter Entry than a system that supports AAL5 CS-PDU
segmentation and reassembly and cell switching.
Furthermore, a system that supports simultaneous
segmentation and reassembly of AAL 1, 2, 3/4 and 5 CS-PDUs
will require an even more robust Channel Parameter Entry
for each VC.

Example Channel Parameter Entries for the first two
systems follow.

A SYSTEM SUPPORTING AAL 5 SEGMENTATION AND REASSEMBLY
ONLY
Channel Parameter Entry for CS-PDU/VC Undergoing
Segmentation

1. CS5-PDU Current Main Memory Address (2 to 4 bytes,
depending on the size of main memory).

2. Base ATM Header to be appended to each cell (4
bytes, APU 52 handles PTI and CLP manipulation).

3. CRC32 Partial Result (4 bytes).

4. DMA Current Byte Count (1-2 bytes, how many bytes
left in the CS-PDU or CS-PDU fragment).

5. Control (CS-PDU priority, segmentation burst
length, last fragment flag, etc.).

Channel Parameter Entry for CS-PDU/VC Undergoing

Reassembly

1. CS-PDU Current Main Memory Address (2 to 4 bytes,
depending on the size of main memory).

2. CRC32 Partial Result (4 bytes).

3. DMA Current Byte Count (1-2 bytes, # of bytes left
in current memory buffer).

A SYSTEM'SUPPORTING AAL 5 SEGMENTATION AND REASSEMBLY
AND CELL SWITCHING
Channel Parameter Entry for CS-PDU/VC undergoing
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segmentation

1. CS-PDU Current Main Memory Address (2 to 4 bytes,
depending on the size of main memory).

2. Base ATM Header to be appended to each cell (4
bytes, APU 52 handles PTI and CLP manipulation).

3. CRC32 Partial Result (4 bytes).

4. DMA Current Byte Count (1-2 bytes, how many bytes
left in the CS-PDU or CS-PDU fragment).

5. Control (CS-PDU priority, segmentation burst
length, 1last fragment flag, etc.).

~Channel Parameter Entry for CS-PDU/VC Undergoing
Reassembly

1. CS-PDU Current Main Memory Address (2 to 4 bytes,
depending on the size of main memory).

2. CRC32 Partial Result (4 bytes).

3. DMA Current Byte Count (1-2 bytes, # of bytes left
in current memory buffer).

4. Control (Switch or Terminate; if switch: VPI/VCI
Translation?, Local or Main Memory Switch?).

Channel Parameter Entry for CS-PDU/VC Undergoing Cell
Switching

1. New VCI and/or New VPI.

2. Control (Switch or Terminate; if switch: VPI/VCI
Translation?, Local or Main Memory Switch?).

It is important to understand that both the concept
of Channel Parameter Entries as well as the structure and
location of such entries are all user definable struc-
tures. The same is true for Channel Groups as described
below. A distinction must be made between the hardware
features that are provided by the ATMizer 50 and the means
of employing those features to get a particular job done
that are provided by user firmware.

3.3.3 Channel Groups. Combining active VCs into Logical
Groupings for Segmentation Pacing Synergy

This specification introduces the concept of a
"Channel Group". A Channel Group is simply a group of VCs
whose "Channel Parameter Entries" form a contiguous list,
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either in the VCR 56 (on-chip memory) or in main memory.
The VCs that form a Channel Group reach their segmentation

service intervals simultaneously (i.e. they are driven

by a common Peak Rate Pacing Counter (PRPC 58a)).

Once a Peak Rate Pacing Counter 658a times out,
firmware running on the APU 52 will proceed to sequence
through the list of VCs/CS-PDUs (i.e. the Channel Group),
generating a specified number of cells from each CS-PDU
before proceeding on to the next entry in the Channel
Group. CS-PDU before proceeding to the next Channel
Group entry (and therefore, the next CS-PDU) is controlled
by user firmware.

FIG. 6 illustrates sample VCR 56 software structures
for cell holding and on-chip channel support for segmen-
tation, whereas FIG. 7 illustrates a sample channel
parameter entry structure for receive channels. In FIG.
6, the AAL 5 channel parameter enﬁfy for a VC within a Cs-
PDU undergoing reassembly saves RAM space by limiting the
address field size and by tracking the number of 48 byte
blocks left in the CS-PDU fragment instead of the number
of bytes.

In the example system, a Channel Parameter Entry for
a VC over which we are segmenting and transmitting a
CS-PDU requires 16 bytes of information. 'These 16 bytes
include 4 bytes for storing the memory address (where we
left off) of the CS-PDU under segmentation on the VC, 4
bytes for storing the ATM header to be appended to each
SAR-PDU (the APU 52 will modify the PTI and CLP fields as
necessary), 4 bytes for CRC32 partial storage (if we are
using AAL 5 on this VC), 2 bytes for the CS-PDU byte count
(or CS-PDU fragment current byte count in scatter-gather
applications) and 2 bytes for control information such as
burst length (how many cells do we generate before
proceeding to the next Channel Group entry), CS-PDU
priority (High-Medium-Low) for AAL 5 VCs or the previous
SAR header for AAL 1 , 2 or 3/4 VCs as well as any other
user defined constructs.
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This is simply a user defined data=-structure and not
a structure enforced by the ATMizer 50). The host system
manages CS-PDU sequencing over a single VC through either
a linked list mechanism (parsing driven by the ATMizer 50)
or through an explicit messaging mechanism whereby the
host waits for a "CS-PDU Segmentation Complete" message
from the ATMizer 50 before "passing" a new CS-PDU to the
ATMizer 50 to be segmented and transmitted over a given
VC (passing implies passing a new Channel Parameter Entry
to the ATMizer 50 with an indication of which Channel
Group/PRPC the Channel Parameter Entry should be appended
to.

The ATMizer 50 appends the new entry to the specified
Channel Group). The Host uses memory mailboxes and Host
<=> ATMizer 50 messaging to "pass" a new Channel Parameter
Entry to the ATMizer 50. Channel Parameter Entries for
channels carrying CS-PDUs undergoing reassembly can be
built more compactly than for channels carrying CS-PDUs
undergoing segmentation.

In the sample VCR 56 (or it could be main memory based
in applications supporting a large number of simulta-
neously active receive VCs) construction illustrated in
FIGs. 5 and 6, the APU 52 uses the VCI contained in the
ATM Header of an incoming cell as an index into a table
that is either VCR 56 based (limited number of simulta-
neously active receive channels) or main memory based
(unlimited number of simultaneously active receive chan-
nels) to retrieve the Channel Parameter Entry for the VC.

In this fashion, Channel Parameter Entries for
receiver oriented channels are listed in order of their
VCIs. No such restriction applies in our sample system
for the transmit direction where a grouping and parsing
mechanism is employed. | .
3.3.4 Cell Multiplexing - Cell Demultiplexing. Number
of Channels Supported by the ATMizer 50

The ATMizer 50 can handle up to 65,536 VCs simulta-
neously, performing cell multiplexing and pacing for all
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of the active channels. However, there are tradeoffs to
be made between the number of channels supported, the data
rate of the ATM port and the cost and structure of the
memory system deployed.

For example, in a network interface card operating at
desktop speeds (<=45 mbps) it is possible to limit the
number of VCs supported to 256 (128 Tx and 128 Rc). 1In
such a scenario, the on-chip Virtual Channel Ram 56 can
be used to cache all the relative parameters for each of
these channels. As a result, the ATMizer 50 need only
access main memory to retrieve and retire SAR-SDUs and
host memory can be used for CS-PDU storage. In such a
scenario, the NIC itself need not contain any memory.

In applications requiring the support of a very large
number of channels, the on chip VCR 56 can not hold all
of the needed channel information. As a result, it may
be necessary to provide high speed SRAM, accessible by the
ATMizer 50’s DMA Engine, for channel parameter storage.
This gives the ATMizer 50 fast access to the information
needed for segmenting and reassembling CS-PDUs and for the
switching of cells. CS-PDU storage would 1likely be
handled in a local memory system, DRAM or SRAM based.

Scenarios exist that are essentially a cross between
the two examples listed above. In certain systems it is
possible to 1limit the number of simultaneously active
Transmit channels. In this scenario there is no limit on
the number of Tx VCIs supported, only in the number that
can have CS-PDUs under segmentation at any one point in
time. If the number is 1limited to 128, then all Tx
channel parameters can be cached on chip. The time
savings associated with caching Tx parameters in the VCR
56 yields added time to retrieve the parameters needed for
reassembly. o

This added time may allow the use of a single inter-
leaved DRAM system for both CS-PDU and Channel Parameter
storage. It is important to note that the number of TX
VCIs has not been limited in this example, only the number
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of Tx VCIs that can have CS-PDUs under active segmentation
by the ATMizer 50 at any one time. An unlimited number
of TX VCIs can be supported by "swapping out" a Channel
Parameter Entry/VC/CS-PDU for a new Channel Parameter
Entry/VC/CS-PDU once its CS-PDU (or CS-PDU fragment) has
been segmented. The inclusion of SRAM on the ATMizer 50
opens a wide range of possibilities for systenm
implementations.

3.4 Pacing Rate Unit (PRU) 58

CELL RATE PACING (CS-PDU SEGMENTATION RATES), GLOBAL
PACING AND CHANNEL PRIORITY

The Peak Rate Pacing Counters 58a and the Channel
Group Credit Register 58b are illustrated in FIG. 8.
3.4.1 Cell Rate Pacing (CS-PDU Segmentation Rates)

AVERAGE RATE

The ATMizer 50 contains all of the features necessary
for implementing the ATM layer Peak Rate Pacing and
Maximum Burst Length control functions. Average Pacing
is not expected to be implemented by the ATMizer 50
although it could be. Average pacing is expected to be
implemented by the host processor which will have access
to a real-time-clock.

To maintain the Average Pacing Rate agreed to at
connection establishment, the host processor keeps a
running total of the number of bytes sent over each
established VC. Prior to queuing a new CS-PDU for seg-
mentation over a given VC, the host processor must first
determine if queuing the CS-PDU would violate the Average
Rate for the VC.

To do this the processor calculates the amount of time
that has passed since the last checkpoint. It then
divides the total number of bytes sent out over the VC
since the last checkpoint by the elapsed time. The result
is the actual "Average Pacing Rate" in bytes/second.

If queuing the next CS-PDU would result in a violation
of the agreed to Average Pacing Rate for the Virtual
Circuit then the host processor will wait a period of time
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before passihg the CS-PDU to the ATMizer 50 for
segmentation.

If queuing the CS-PDU would not violate the Average
Pacing Rate parameter, the CS-PDU is "passed" to the
ATMizer 50 for segmentation. As statistical multiplexing
issues become better understood software can be modified
to implement Average Rate Pacing in the most ATM network
friendly fashion.

PEAK RATE PACING AND BURST LENGTH

Once a CS-PDU or CS-PDU fragment has been "passed" to
the ATMizer 50 for segmentation, the ATMizer 50 controls
the rate of cell generation from the CS-PDU and the number
of back-to-back cells generated from a CS-PDU each time
the ATMizer 50 segments a portion of it.

There are eight user programmable "Peak Rate Pacing
Counters" (PRPC 58a) in the ATMizer 50, and a CS-PDU can
be "attached" to any one of the eight. A Peak Rate Pacing
Counter 58a is simply a 12 bit down counter that
automatically reloads to an APU 52 specified value upon
reaching zero. Each PRPC 58a counts down by one on each
system clock tick (Clk). External logic can temporarily
or periodically suspend the down counting of the PRPC 58as
by asserting the ATMizer 50’s PRU_CountDisable input (pro-
viding that the PRPC 58a has been configured to be
sensitive to PRU_CountDisable).

Since each CS-PDU attached to a given PRPC 58a may
have its own "Burst Length" value, the count in the Peak
Rate Pacing Register actually determines the "Service
Interval" for the channel group and not necessarily the
peak rate of cell generation for CS-PDUs attached to that
PRPC 58a (note: CS-PDUs attached to a particular PRPC 58a
with similar characteristics such as channel prlorlty are
collectively referred to as a "Channel Group".

More than one Channel Group can be attached to a
single PRPC 58a). Of course, if the burst lengths for
each CS-PDU attached to a PRPC 58a are identical, the PRPC
58a count will determine the actual peak rate of
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segmentation for CS-PDUs belonging to that Channel Group.

CS-PDUs are attached to a PRPC 58a by the host
processor. When the host passes a "Segment CS-PDU"
information packet to the ATMizer 50, it includes in the
information packet an indication of which PRPC 58a should
be used to define the Service Interval for segmenting the
CS-PDU. It also includes the Burst Length value for the
CS-PDU (i.e. how many cells should be generated and sent,
back-to-back, for the CS-PDU at each service interval).
The ATMizer 50, upon receiving this "Segment CS-PDU"
information packet (through Host-ATMizer Messaging),
appends the channel parameters for the CS-PDU to the end
of the specified channel group and begins the segmentation
process on the CS-PDU the next time its associated PRPC
58a times-out.

When a PRPC 58a reaches zero, all CS-PDUs'associated
with that PRPC 58a are essentially given "Credit to Send".
Anytime one or more Peak Rate Pacing Counters 58a have.
timed out but have not yet been serviced (i.e. the APU 52
has yet to clear its bit in the Channel Group Credit
Register 58b), internal hardware asserts the APU 52 input
CpCond2.

Firmware running on the APU 52 periodically checks the
state of CpCond2 by executing the "Branch on Coprocessor
Condition 2 True" instruction. If CpCond2 is True, one
or more Peak Rate Pacing Counters 58a have timed-out and
the APU 52 must segment the CS-PDUs attached to the PRPC
58a or PRPC 58as that have reached their service
intervals. The APU 52 can determine which PRPC 58a has
timed-out by reading- the 8 bit Channel Group Credit
Register (CGCR) 58b.. Each bit set in the CGCR 58b
indicates that the corresponding PRPC 58a has timed out
since its bit was last cleared by the APU 52. APU 52
firmware clears the appropriate bit when it has serviced
all channels in a particular channel group.

When servicing a channel group, APU firmware can
choose to generate and send one or more cells for a VC
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before servicing the next VC in the channel group. The

number of cells to be sent before proceeding to the next
channel group entry can be defined either by construction
(i.e. the same for each member of a channel group and
embedded into the firmware directly) or by a field inside
the Channel Parameter Entry for the VC. Firmware running
on the ATMizer 50 segments the number of cells specified
by this Burst Length value before proceeding to the next
channel group entry.

A side effect of this process is that the amount of
time required to access and restore a Channel Parameter
Entry can be amortized over several cells, effectively
reducing the number of APU instructions and the amount of
time required to generate a cell. This may be of impor-
tance in high speed applications (155 mbps) supporting a
large number of VCs (> 512).

GENERAL FACTS ABOUT THE PRU - PRPC CONTROL

Each PRPC 58a in the PRU 58 has a 14 bit initializa-
tion register associated with it. The APU 52 writes an
initialization word into the initialization register using
a store word or store half word instruction. Bits eleven
through zero of the APU 52’s data bus are written into the
targeted initialization register as the initialization
count. Bits twelve and thirteen are also saved but are
used as control bits and are not part of the 12 bit down
count initialization value.

Bit 12 controls sensitivity to the external PRU_ -
CountDisable signal. If bit 12 is set for a given PRPC
58a, its count will be suspended whenever external logic
asserts PRU_CountDisable. If bit 12 is not set for a
given PRPC 58a, its count will not be suspended whenever
external logic asserts PRU_CountDisable. In this fashion,
implementations are possible that have certain .PRPCs
sensitive to the external count disable function while
other PRPC 58as are not sensitive to this external signal.

Bit 13 controls whether the PRPC 58a is enabled or
not. If a PRPC 58a is not being used it should not be
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allowed to accumulate credit and cause spurious assertions
of the APU 52’s CpCond2 input (segmentation request). By
setting bit 13 to zero, the APU 52 can disable the
targeted PRPC 58a from accumulating credit. All PRPC 58as
are disabled at system reset and must be enabled by the
APU 52 prior to activating a PRPC 58a.

In addition, a function is provided by the PRU 58 to

allow the APU 52 to stall one or more of the PRPC 58as at

any given time. An eight bit Stall Register 584 is
written by the APU 52 using a store instruction. The APU
52’s data bus carries the Stall Register Mask on bits
seven through zero. Writing a one into a bit of this
register will force the corresponding PRPC 58a to stall
until the one is overwritten by a zero during a subsequent
APU 52 write operation.

A special provision is added to ensure that a PRPC 58a
does not stall at time-out so software need not concern
itself with a PRPC 58a stalled generating credit
indefinitely. When the APU 52 writes a new value into the
PRPC 58a’s initialization register, that value will be
loaded into the PRPC 58a once the PRPC 58a reaches zero.

If the APU 52 wishes the effect to take place imme-
diately (overwrite the existing value in the PRPC 58a),
it asserts the immediate bit encoded as APU address bit
9. If APU address bit 9 is set during a write to an
initialization register, the initialization value is
written into both the initialization register and the PRPC
58a. If APU address bit 9 is not set, the initialization
value is loaded only into the initialization register and
will be loaded into the PRPC 58a only once the PRPC 58a
times out. '

USING PRPC 4/5 AND 6/7 AS 24 BIT TIMER/COUNTERS

PRPCs four and five and PRPCs six and seven are
capable of being converted into general purpose 24 bit
timer/counters. When configured in timer/counter mode,
the PRPCs 58a can be read and written by the processor.
PRPCs four and five are configured into one 24 bit timer
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counter by setting the COUNTER 4/5 bit in the System

Control Register. PRPC five makes up the high order 12
bits of the counter and PRPC four makes up the low order
12 bits.

PRPCs six and seven can be used in a similar fashion.
When configured in counter/timer mode, PRPCs 4, 5, 6 and
7 timing out will not cause CpCond 2 to be asserted but
they will continue to accrue credit in the credit register
58b. Once both PRPCs 58a making up a 24 bit timer counter
have counted down to zero, an interrupt will be sent to
the APU 52. Timer/counter 4/5 is connected to the APU
52’s interrupt 0 input and timer/counter 6/7 is connected
to the APU 52’s interrupt 1 input.

The interrupt assertion can be cleared by the APU 52
by clearing the associated bit/s in the Channel Group
Credit Register 58b. When configured in timer/counter
mode, most of the control features listed above still
apply. PRPCs 4 and 6 are still affected by the external
PRU_CountDisable input (if so configured in initialization
register bit 12), but PRPCs 6 and 7 are forcibly removed
from PRU_CountDisable sensitivity. Since in timer/counter
mode the count enable inputs of PRPCs 5 and 7 are
connected to the time out (credit bits) of timers 4 and
6, respectively, timers 5 and 7 effectively stall in
response to PRU_CountDisable if their associate low order
partners are configured to be sensitive to PRU CountDis-
able.

3.4.2 Global Pacing Rate

Average and Peak Rate Pacing and Burst Length are
useful constructs in managing bandwidth utilization by
a particular VC. Taken as a whole, OAM software can
manipulate these values for active VCs to manage the
overall data throughput rate (or information rate) on the
Transmission line. However, it is almost impossible to
effectively shape the overall ATM port information rate
through this mechanism. Shaping of the overall informa-
tion rate may be desirable when connecting into a system
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that can only handle a limited information rate or during
periods of high congestion in the switching network.

In the case of a congested network, the latency
between notification of congestion and the host proces-
sor’s ability to modify the pacing parameters may be high.
As a result, many cells will be sent into a congested
network and lost, requiring the retransmission of many
Cs-PDUs. This further exacerbates the congestion problem.
And by the time the system responds to the notification
of congestion, the congestion situation in the network may
have actually changed. That is why the ATMizer 50
implements a Global Pacing Rate Controller function as
illustrated in FIG. 9. The Global Pacing Rate Control
function is a quick way to limit the overall transmission
bandwidth consumed on the Transmit port. The Global
Pacing Rate Register (GPRR) 58c, as illustrated in FIG.
8, is an APU 52 accessible register that determines the
percentage of cells sent out over the ATMizer 50’s PCI
Transmit port that can be assigned cells (the remainder
being IDLE cells). Any assigned cell percentage can be
chosen as long as it is a multiple of 12.5% between 0% and
100%.

A single APU instruction is all that is required to
modify the GPRR 58c. With the GPRR 58c, the ATMizer 50
is able to throttle the data rate on its transmission port
within the same cell time that the congestion is
recognized from an incoming cell. And more importantly,
the amount of the initial reduction as well as the algo-
rithm by which the ATMizer 50 returns to full speed
operation can be implemented intelligently in APU 52
firmware and can be modified as more is learned about ATM
network congestion.

Furthermore, high priority channels can continue to
gain access to the reduced throughput capacity while lower
priority traffic will be blocked.

3.4.3 Channel Priority
Software can use the CGCR 58b to implement channel



10

15

20

25

30

35

WO 95/11554 PCT/US94/11788

- 48 -

priority. By checking the CGCR bits in a particular
order, the APU 52 implements "high priority" and "low
priority" channel groups. In an effort to give even
further priority to CS-PDUs/VCs belonging to "high prior-
ity" channel groups, the APU 52 can read the CGCR 58b
periodically during the servicing of a channel group
designated by software convention as "lower priority" to
see if a higher priority channel group has timed-out
during the servicing process.

If so the APU 52 can suspend servicing of the "lower
priority" channel group and begin servicing the "higher
priority" channel group immediately. The APU 52 can then
resume servicing of the lower priority channel where it
left off once all higher priority requests have been
satisfied.

In addition, if the user wishes to attach both high
and low priority CS-PDUs to a single PRPC 58a in order to
pace high and low priority CS-PDUs/VCs at the same Service.
Interval Rate, he can. Each PRPC 58a could have two (or
more) Channel Groups associated with it.

For instance a PRPC 58a could have a high priority
channel group and a low priority channel group attached
to it. The APU 52 could service all channels belonging
to the high priority channel group and then check for
other high priority requests pending by reading in the
CGCR 58b before servicing the low priority channel group
attached to that particular PRPC 58a. Virtually any
"channel priority" algorithm can be supported in user
firmware. There are no priority mechanisms enforced in
hardware.

In summary, the Pacing Rate Unit 58 consists of the
8 Peak Rate Pacing Counters 58a, the Channel Group Credit
Register 58b (as illustrated in FIG. 10), the external
count disable feature (PRU_CountDisable), the logic that
asserts CPCond2 when one or more bits are set in the CGCR
58b and the hardware to allow the processor to set the
PRPC 58a initialization values and to clear the Channel
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.Group Credit Register 58b bit fields as Channel Groups are

serviced. All other constructs are by software design and
make use of one or more of the hardware features listed
above.

Regarding Channel Priority Vs CS-PDU Priority, PRPCs
58a and their associated Channel Group or Channel Groups
can be given distinct priorities. If Channel Groups have
reached their Service Intervals and are awaiting servic-
ing, high priority requests can be serviced before low
priority requests. Existing high priority requests should
be serviced before new high priority requests.

New high priority requests may be serviced before
existing low priority reguests. This implementation of
"channel priority" is separate from the AAL5 high-medium-
-low CS-PDU Priority assignment. Both priority constructs
influence the cell generation process.

Channel priority affects Channel Group/CS-PDU ser-
vicing sequence while ATM AAL 5 CS-PDU priority is re-
flected in the PTI and CLP field values of the ATM header.
Both functions are controlled by the ATMizer 50. For AAL
5 traffic, the host must include an indication of the
CsS-PDU priority in the "Segment CS-PDU" message packet
provided to the ATMizer 50.

3.5 DMA Controller 60

As illustrated in FIG. 11, the DMA Controller 60 is
an assembly of registers, counters and a data path that
collectively control data transfer operations between the
on-chip VCR 56 and main memory. These transfers include
the retrieval of SAR User Payloads from memory based
CS-PDUs during segmentation operations, the writing of SAR
User Payloads back into memory based CS-PDUs during
reassembly operations, access to buffer lists, link list
pointers, messages and all other data structures required
by the user’s application.

In addition, in systems that support more simulta-
neously active VCs than can be supported directly out of
the on-chip VCR 56, the DMA controller 60 can be used to
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retrieve and restore memory based channel parameters.
The DMAC 60 also contains CRC32 generation circuitry that
is used to generate the CRC32 values required for AAL5
CS-PDU protection. All DMA registers and counters are
initialized by the APU 52 and all DMA operations are
initiated by the APU 52 as part of the standard servicing
of events such as "Cell Received" and "Peak Rate Pacing
Counter Time-Out".

Because the DMAC 60 is configured at the start of each
DMA operation, it effectively provides an unlimited number
of DMA channels. The following section describes the DMAC
registers and counters pictured above in more detail.
3.5.1 DMAC Control Registers and Counters

MAR Memory Address Register rt(31:24)

The Memory Address Register holds the 8 MSBs of the
main memory address during DMA operations. While the DMAC
does increment the main memory address for consecutive
transfers in a multiple word DMA operation, it does not
increment the 8 MSBs (i.e. the value in the MAR).
Therefore, if external logic relies on sequential incre-
menting of the DMA_Address bus during multiple word DMA
operations, the APU 52 should not initiate a DMA operation
that crosses a sixteen megabyte boundary. The contents
of the MAR are reflected on output pins DMA Address(31:24)
when input pin DMA_AdrOEx is asserted.

MAC Memory Address Counter rt(23:2)

The Memory Address Counter holds the lower 22 main
memory address bits. During a DMA operation, the Memory
Address Counter is incremented in response to the asser-
tion of DMA_RdAWrAck by external logic. The contents of
the MAC are reflected on DMA_Address(23:2) when DMA AdroOEx
is asserted.

MOR Memory (byte) Offset Register rt(1:0)

The Memory Offset Register holds the two LSBs of the
main memory address of a DMA operation. The DMAC will.
begin the memory access beginning at the byte pointed at
by the MOR. The DMA Bmask(3:0) outputs indicate which
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bytes should be retired to memory during DMA transfers.
The address of the first word of the operation is indi-
cated by the MAR/MAC.

LAC Local Address Counter ea(11:2)

The Local Address Counter holds the on-chip VCR 56
read or write word address (the "local address"). It is
programmed by the APU 52 with the local starting address
at the beginning of a DMA operation and then incremented
automatically by the DMAC 60 as the operation proceeds.

LOR Local (byte) Offset Register ea(31:30)

In applications supporting AAL 3/4 Segmentation and
Reassembly or in applications supporting "Scatter" and
"Gather" operation, it may be necessary to transfer a data
block between the VCR 56 and main memory that does not
begin on an even word boundary in the VCR 56. The Local
Address Offset field informs the DMA controller 60 of the
starting byte offset of the first byte of valid data in
the VCR 56. The LAR provides the word address of this
first byte.

TLC Transfer Length Counter ea(29:24)

The size (in bytes) of a DMA transfer is set by the
APU 52 in the TLC. Since the TLC is only a six bit
register, a 64 byte transfer length encoding is recognized
when the TLC is initialized to 000000.

G Ghost Bit ea(21)

The ghost bit is used to indicate to external cir-
cuitry that the DMA operation being requested is being
done solely for the purpose of creating a CRC32 partial
result for an AAL 5 SAR SDU that has been constructed in
the VCR 56 from two or more data block fragments. If a
SAR SDU is built from more than one data block, and if one
of the data blocks was not word aligned and of size evenly
divisible by four, the CRC32 partial generator in the DMAC
would not have been able to calculate a CRC32 partial
result for the SAR SDU over the numerous DMA operations
required to retrieve the sub blocks of the SAR SDU.

Therefore, once the entire SAR SDU has been built up
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in the VCR 56, the APU 52 will have to force a CRC32
partial generation by initiating a DMA write operation
targeting the SAR SDU as the local write data. The CRC32
generator can then calculate the need CRC32 partial result
for this SAR SDU. The write is not truly desired and so
the APU 52 sets the ghost bit to inform the memory
controller that this write should be acknowledged at full
speed but should not affect the contents of memory.

The memory controller responds by ignoring the
transaction accepts for provide the necessary number of
DMA_RdAWrAck assertions to move the 48 byte SAR SDU through
the CRC32 generator. Once the operation is complete, the
APU 52 can read out the result.

D DMA Operation Direction ea(20)

The DMA Operation Direction Register is a one bit
register that is used to indicate to the DMAC 60 and the
outside world the direction of the DMA operation. By
writing a 1 into this register the APU 52 indicates that
it wishes to perform a main memory read operation. A zero
indicates a main memory write operation. The value of
this register is directly reflected on output pin
DMA_ RdWrx.

CRC32 Partial Register rt(31:0)

The CRC32 Partial Register should be initialized to
all ones by the APU 52 prior to beginning the first SAR
User Payload retrieval for an AAL 5 CS-PDU. The CRC32
Partial Result, generated during the DMA operation, is
read from the CRC32 Partial Register by the APU 52 at the
end of the DMA operation. It is saved and then restored
prior to the next segmentation operation. The register
is used in a similar fashion for CRC32 generation during
reassembly.

WWW_DMA ea(19:16) = 0100 _ v

Internal logic asserts this signal when the APU 52
executes a Store Word instruction that carries 0100 on APU
52 address bits 19:16, respectively. This causes the
values on the APU 52 address and data bus to be written
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into the appropriate DMA control registers and counters.
It also results in the assertion of the DMA_ Rgst output
signal and initiation of the DMA operation.

3.5.2 Programming the DMAC 60

In order to initiate a DMA operation between main
memory and the on-chip VCR 56, the APU 52 programs the
DMAC 60 with the starting main memory address (byte
address), the local/VCR 56 starting address (word aligned
address written into the LAR and the starting byte offset
within the targeted word written into the LOR), the number
of bytes to be transferred and the direction of the
transfer.

In addition, the APU 52 may need to preset the CRC32
generator for AAL 5 CS-PDU CRC32 support or set the ghost
bit as needed.

The APU 52 can configure the DMAC control registers
and counters and initiate a DMA operation by éxecuting a
single "Store Word" instruction as illustrated in FIG. 12.
Both the effective address and data fields produced by the
Store Word instruction are used to configure the DMAC’s
registers and counters.

For AAL5 CS-PDU segmentation and reassembly, if the
ATMizer 50 is to be used for CRC32 generation and check-
ing, a second "Store Word" instruction is needed as
illustrated in FIG. 13 to initialize the CRC32 generator
with the correct CRC32 partial result value.

This second instruction should be executed immediately
before the Store Word instruction that is used to ini-
tialize the DMAC’s registers and initiate the DMA
operation. The CRC32 Partial register can be read at the
end of a DMA operation using a Load Word instruction with
EA(19:16) = 0101 as illustrated in FIG. 14.

The 16 bit offset is sign-extended and added to the
contents of general register rb to form a 32-bit unsigned
effective address. The contents of general register rt
are stored at the memory location specified by the effec-
tive address. If either of the two least significant bits
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.of the address is non-zero, an address exception occurs.

3.5.3 Using the DMA Controller 60 to implement Cell
Switching, Segmentation and Reassembly

The ATMizer 50, under APU 52 user firmware control,
can be used to implement CS-PDU segmentation, CS-PDU
reassembly, and ATM cell switching. On a per VC basis,
the APU 52 can decide whether to switch or terminate an
incoming cell. The decision can be based on static
principles (certain VC #s are dedicated to switched VCs
while other VC #s are dedicated to terminating VCs) or on
dynamic principles (the channel parameter entry for a
given VC has a flag field that indicates whether its cells
shouid be switched or terminated).

REASSEMBLY VS. CELL SWITCHING

If an incoming cell is to be "switched", it can be
passed, headers and trailers intact, to any memory mapped
device using the ATMizer 50’s DMA Controller 60 to accom-
plish the transfer. In networks implementing a ring-like
structure or a simple two way switching matrix, incoming
cells can be switched directly between the ATMizer 50’s
Receiver 62b and Transmitter 62a by simply passing a
pointer to the cell in the VCR 56 (i.e. the cell’s VCR 56
starting address) to the Transmitter in the PCI 62 (this
is the same procedure that is used for queuing a cell for
transmission). In this fashion, cells can be switched
within the ATMizer 50, never touching system memory.

Before a cell is switched, the APU 52 may choose to
perform operations on it such as VPI translation, VCI
translation, and congestion notification insertion. The
APU 52 accomplishes these actions by simply overwriting
the specific fields in the cell with new values. For
example, if VCI translation is required, a flag will be
set in the channel parameter entry for the VC that the
cell arrived over that indicates that the cell is to be
switched w/VCI translation.

The new VCI will be included in the channel parameter
entry as well. The APU 52 reads the new VCI from the
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channel parameter entry and writes it into the VCI field
of the cell held in the VCR 56 (remember that the VCR 56
holds either two, four, eight or sixteen 64 byte cells.
The Receiver 62b in the PCI 62 writes cells into the VCR
56 in a modulo two, four, eight or sixteen fashion). A
decision is then made to switch the cell over the back-
plane using the DMA controller 60 or to pass a pointer to
the cell to the ATM Transmitter 62a in the PCI 62.

In practice, the specific procedures for implementing
cell switching are defined by user firmware. From the
perspective of the DMA controller 60 and the Parallel Cell
Interface 62, there is no distinction between cell
switching and circuit termination. Cells arriving over the
ATM Receiver 62b are written into the VCR 56.

In the case of circuit termination, the APU 52
initiates a DMA operation to transfer the User Payload
portion of a cell to its corresponding memory based CS-PDU
and sets the LAC, LO and TLC values in the DMAC 60
accordingly. 1In cell switching applications where a cell
is to be transferred to a memory mapped device, the entire
cell, headers and trailers included, must be transferred.

Therefore, the pointer written into the LAC should
point to the beginning of the cell instead of the begin-
ning of the SAR User Payload field, the Local Offset is
most likely zero since the Receiver writes cells into the
VCR 56 starting at byte 0 of word zero for the active
Received Cell Holder, and the TLC value should be large
enough to include all ATM and SAR headers and trailers.

FIG. 15 illustrates the 1local address pointers
(labeled B) that would be written into the DMAC’s Local
Address Counter, Local Offset Register and Transfer Length
Counter to accomplish reassembly operations on 52 and 60
byte cells as well as the pointers (labeled A) that would
be written into these same registers to accomplish
switching operations on 52 and 60 byte cells.

In addition, the drawings illustrate that in the case
of AAL 3/4 cells, the SAR User Payload is not word aligned
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in the VCR 56. Therefore, the APU 52 must set the Local
Offset field to 10 when initiating the DMA transfer to
inform the DMA Controller 60 of the alignment condition.

The DMA controller 60 is responsible for merging bytes
from two VCR 56 words into a single word to be written to
a word aligned data structure in main memory. If the MOR
indicates that the targeted memory address is not word
aligned, the DMA controller 60 is also responsible for
adjusting the targeted local data to the proper memory
alignment.

The DMAC 60 has the capability to transfer from any
local offset to any memory offset and vice versa. This
is especially important in AAL 3/4 S&R operations, AAL 3/4
and AAL 5 "Gather" operations and in AAL 3/4 or AAL 5
"Scatter" operations where the system designer wishes to
rely on the ATMizer 50 to do higher layer (i.e. TCP/IP)
header stripping and Packet alignment to accelerate
application layer routines. When switching AAL 3/4 Cells
the Local Offset should be set to 00 because even though
the SAR User Payload field is misaligned, the cell itself
is not.

SEGMENTATION VS. CELL SWITCHING

Cell switching and segmentation differ from the
perspective of the DMAC 60 in a similar fashion. Fetching
a cell from memory differs from fetching a SAR User
Payload from memory in both the size of the transfer (i.e.
a cell is larger than a SAR SDU) and the LAC and LO
initialization values. In addition, segmentation is
usually triggered by an on-chip event such as a Peak Rate
Pacing Counter 58a timing-out while the need to switch a
cell from an external memory mapped device must be indi-
cated to the APU 52 using an external triggering event.

The relationship between CS-PDU main memory addresses
and VCR 56 cell holder us illustrated in FIG. 15. The
addresses are for a standard 52 byte cell and a user
specific 60 byte cell.

3.5.4 CRC32 Generation Considerations
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CRC32s can be calculated individually for each CS-PDU
actively undergoing either segmentation or reassembly.
For CS-PDUs undergoing segmentation, the final CRC32
result is appended, under APU 52 control, to bytes 44-48
of the SAR SDU of the last cell generated from the CS-PDU.
For CS-PDUs undergoing reassembly, the CRC32 result is
compared with the CRC32 received in the last cell of the
CS-PDU as a checking mechanism.

Because the ATMizer 50 supports cell multiplexing and
de-multiplexing from up to 64K VCs, the APU 52 must pro-
vide CRC32 partial result storage and retrieval services
to allow for multiple concurrently active CRC32
calculations to be performed by the single CRC32 genera-
tor.

As part of its Partial Results Management function the
APU 52 must set the CRC32 Partial Register to all ones
prior to retrieving the first SAR SDU for an AALS CS-PDU.
The 12 word DMA Read operation automatically generates a
32 bit CRC32 partial result in the CRC32 Partial Register.
The APU 52 must retrieve this value at the end of the DMA
operation and save it to preset the CRC32 Generator prior
to the next transfer from the same CS-PDU.

If more than one cell is to be built from a CS-PDU
before proceeding to the next CS-PDU (i.e. burst length
>1), and if no other DMA operation takes place in the
interim, the APU 52 need not retrieve and restore the
CRC32 partial result until the final SAR SDU has been
retrieved from the CS-PDU. Before proceeding to the next
CS-PDU, the AAL5 CRC32 partial result must be stored
safely away in a place where it can be retrieved the next
time that the CS-PDU is segmented (it will most likely be
stored in the channel parameter entry for the VC).

When the last SAR User Payload of a CS-PDU has been
fetched from memory, the APU 52 is responsible for reading
the CRC32 final result from the CRC32 Partial Register and
appending the result to the last four bytes of the cell
in the VCR 56 Cell Builder. If the final DMA transfer is



10

15

20

25

30

35

WO 95/11554 PCT/US94/11788

- 58 -

set as a 48 byte transfer, user software must be sure that

the last four bytes of the CS-PDU in main memory (i.e. the
CRC32 field) is preset to all zeros. If the last transfer
is executed as a 44 word transfer, no such restriction
applies.

On reassembly, the APU 52 must preset the CRC32
register with all ones prior to initiating the first
reassembly DMA operation for a CS-PDU. The APU 52 is
again responsible for retrieving the CRC32 partial result
at the end of the DMA operation, saving it away in the VCR
56 or system memory (where ever channel parameter entries
are saved) and restoring it prior to reassembling the next
cell of the CS-PDU. Again, if the last transfer is queued
up as a 48 byte transfer the APU 52 must first set the
CRC32 field in the Cell Holder to all zeros before
initiating the DMA operation.

At the end of the last transfer, the APU 52 reads the
CRC32 final result from the CRC32 partial register and.
compares it to the result carried into the ATMizer 50 in
the last cell of the CS-PDU. 1If they differ, a CRC32

‘error has been detected and the ATMizer 50 must inform

host software utilizing the user’s messaging systen.
3.5.5 Misaligned Operations Revisited

As mentioned above, the DMAC 60 in the ATMizer 50 is
capable of performing a DMA operation of any byte length
less than or equal to sixty four bytes beginning at any
VCR 56 byte offset and beginning at any memory byte offset
as well.

For example, during segmentation implementing "Gath-
er", if two physically disjunct data structures form a
single logical AAL 5 CS-PDU, one being 53 bytes and a
second being 91 bytes (87 bytes of significance and a four
byte zeroed out CRC32 field to be calculated and inserted
by the ATMizer 50), the ATMizer 50 must perform the
following operations to accomplish segmentation of this
disjunct CS-PDU:
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Assumptions
1. CS-PDU fragment one (53 bytes) starts at memory
address 00000000H.
2. CS-PDU fragment two (91 bytes) starts at memory
5 address 00001000H.
3. Next active Transmit Cell Builder in the VCR 56
starts at 0100H.

Procedure
1. Build first cell.
10 MAR-MAC-MOR = 00000000H SAR SDU retrieval
TLC = 48D SAR SDU will be placed
starting at 0104H
LAR = 0104H Received Cell Holder Starts at
0100H |
15 Lo = 00H ATM Header will be placed at
0100H
2. Build next cell (a fragment transition cell).
MAR-MAC-MOR = O00000030H Get remainder of first
fragment
20 TLC = 5D Use next Transmit Cell Builder
LAR = 0144H
Lo = 00H
MAR-MAC-MOR = 00001000H Fill SAR SDU from second
fragment
25 TLC = 43D
LAR = 0148H
LO = 01lH
3. Build final cell
MAR-MAC-MOR = 0000102BH Get remainder of second
30 fragment
TLC = 48D
LAR = 0184H
LO = OOH .
A problem of special significance when building AAL
35 5 transition cells is the fact that the CRC32 generator

will be thrown off track by the gap in the data stream
used to build the cell. If a cell is built from one or
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more word aligned data structures and if a data structure
is always an even multiple of four bytes, CRC32 generation
is not impacted greatly.

User firmware simply retrieves the CRC32 partial
result from the first data fetch (i.e. in step two if the
first data fetch were 8 bytes instead of 5 bytes) and
restores it to the CRC32 generator prior to undergoing the
second data transfer (i.e. 40 bytes instead of the 43
bytes shown above in step 2). 1In this fashion, the CRC32
generation process proceeds without a problém.

If however, the Gather function involves data struc-
tures that require non-word-aligned accesses, as shown in
step 2 above, the CRC32 generator will be thrown out of
alignment (because the CRC32 generator operates on 32 bits
of data at one time). Therefore, firmware must first
construct the SAR SDU in the VCR 56 completely, using as
many data structures as required to fill out the body of
the cell and without regard to data structure alignment,
before asking for a CRC32 calculation.

Once the SAR SDU has been constructed in the VCR 56,
the CRC32 partial (or final) result is calculated by
initiating a "Ghost" DMA write operation to an arbitrary
address. The DMA ghost operation acts internally like a
memory write operation. The DMAC 60 can be moved through
a Ghost write operation at a rate of one word per cycle.
Once the operation has completed, the CRC32 value can be
read from the CRC32 partial register the same as for any
AALS DMA Segmentation procedure.

Since the CRC32 generator works on aligned data (data
after it passes through the DMAC’s byte aligners), future
cells built from the final CS-PDU fragment will not
require ghost operations. CRC32 generation will proceed
smoothly as long as another unaligned boundary condition
is not encountered.

On reassembly operations, if Header stripping and data
field alignment is employed for application acceleration,
the same issues may arise with cells that contain the end
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of one header and the data field of a packet. On
reassembly, the CRC32 generator works on VCR 56 data
before it hits the data aligners. Therefore, after the
ghost operation is done to generate the CRC32 for the
transition cell, future operations to a single fragment
need not utilize ghost operations because the SAR SDU will
be word aligned in the VCR 56 even though it may not be
word aligned after being written into main memory.

That is why the CRC32 generator pulls its input data
prior to the data aligners in the memory write direction
and following the data aligners in the memory read direc-
tion. (The CRC32 generator uses data aligned to its VCR
56 destination alignment, not based on memory alignment.
This is true in both directions).

3.5.6 Using the DMA Controller 60 to Implement Scatter
and Gather Operations

By construction, the ATMizer 50 provides the system
design with all of the functionality needed to implement
a fully robust scatter-gather ATM network <-> Host inter-
face. 1In the Gather direction (during segmentation) the
ATMizer 50 is capable of generating cells from any number
of separate data structures as if they were a single
contiguous CS-PDU. By doing so, the ATMizer 50 precludes
the need for the host processor to do a series of time
consuming data movement operations to form a contiguous
CS-PDU in a local buffer memory prior to initializing the
Segmentation operation.

For example, in a TCP/IP application, the TCP/IP
header may reside in a different location within host
memory from the actual user CS-PDU data payload. In
addition, the actual CS-PDU data payload field may actu-
ally consist of a number of discontinuous pages of memory.
Because the ATMizer 50 supports "Gather" operations, there
is no need to move all of these data structures in advance
into a single CS-PDU.

The actual implementation of both Scatter and Gather
are up to user firmware. In general, the Gather function
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can be implemented by having the host processor pass to
the ATMizer 50 a series of "Segment CS-PDU fragment"
messages with the appropriate user defined control struc-
tures. The APU 52 recognizing that it is involved in a
gather operation, is programmed not to generate end of
CS-PDU header fields at the end of a CS-PDU fragment.

It is also programmed to understand how to resolve the
arrival at an end of CS-PDU fragment boundary (i.e. auto-
matically resolve the link list pointer or simply pass a
message to the host processor asking it to resolve the
next pointer for it).

3.5.7 How to Determine when a DMA Operation Has Completed

The APU 52 must determine that a DMA operation has
completed before it attempts to use the information
retrieved by the DMA operation. 1In the case of segmenta-
tion, the APU 52 must determine that the DMA controller
60 has retrieved the entire SAR SDU before it can queue
the cell for transmission. In systems where channel
parameter entries are kept off chip, the APU 52 must wait
for the DMA controller 60 to return the channel parameter
entry before attempting to access it.

There are three methods for the APU 52 to determine
when a DMA operation has completed.

1. "Branch on Coprocessor Condition 3 True"

The DMA controller 60 generates a DMA Busy internal
signal whenever it is involved in a DMA transfer. DMA -
Busy is connected directly to the APU 52’s CPCond3 input
pin.

Programmers familiar with the R3000 CPU architecture
understand that the four CpCond inputs to the R3000 can
be tested using a conditional branch instruction. If the
APU 52 wished to determine if the DMAC is busy, it can
execute a "Branch On Coprocessor Condition 3 True" in-
struction. If CPCond3 is True (i.e. DMA Busy is assert-
ed), the DMA Controller 60 is still busy and the APU 52
should not attempt to use the data (i.e. queue the cell
for transmission). If CPCond3 is False (i.e. DMA Busy is
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not asserted) the DMA controller 60 has finished its
operation and the data is valid in the VCR 56.

The APU 52 is free to queue the cell for transmission
or read the retrieved data from the VCR 56. If the APU
52 wishes to check that an entire AAL 5 SAR SDU has been
fetched from memory before queuing the cell for
transmission, it can execute a "Branch on Coprocessor
Condition 3 True" instruction where the branch target
address is the "Branch on Coprocessor Condition 3 True"
instruction itself.

While the DMAC 60 remains busy, this test evaluates
as True and the APU 52 loops continuously. Once the DMA
operation has completed the test will be evaluated as
false and the CPU will fall out of the loop. The next
instructions could be the instructions that queue the cell
for transmission and jump back to the event parsing
routine.

2. "Load w/DMA Busy Considerations, Type 1":

Another scenario exists when the application chooses
not to cache channel parameters on-chip. In such a
scenario, the APU 52 must gain access to a channel param-
eter entry in main memory before initiating a SAR SDU DMA
operation or Cell Switching operation. The APU 52 must
initiate a DMA operation to retrieve the channel parameter
entry, use these parameters to build one or more cells,
update the channel parameters (i.e. DMA address and Byte
Count) and restore the updated parameters to main memory.

In systems using aggressive memory system designs,
these channel parameters can be fetched quickly enough to
maintain peak rate throughput. However, if several cells
are built and sent for each channel, the overhead associ-
ated with the retrieval and restoration of these parame-
ters can be amortized over several "Cell Times" minimizing
its impact on transmission throughput in systems with
slower memory structures. The ideal scenario is, of
course, the caching of channel parameters in the VCR 56.

In situations where channel parameter entries are
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stored in main memory instead of the VCR 56, the APU 52

must be able to sense when the DMA operation used to
retrieve the entry has completed. The DMA engine can
accomplish this as before with the "Branch on Coprocessor
3 True" instruction or it can accomplish it in a more
efficient manner.

Since at some point the APU 52 will need the channel
parameter entry information to proceed, the APU 52 can
execute a "Load" instruction with a target address equal
to the beginning LAC address of the DMA operation. In the
normal scenario, a load to the VCR 56 is decoded as 0000
in effective address bits (19:16), by placing a "1" in
address bit 22, internal logic will stall the CPU load
operation until the first word of the DMA operation has
been retired to memory (we will call this a "Load w/DMA -
Busy Consideration, Type 1" instruction).

The benefit of this stalling mechanism is that if the
first word is available, no cycles are lost and if the
first word is not available, the CPU will stall but then
immediately recover as soon as the word is retrieved from
memory. And of equal importance, the CPU will have accom-
plished the access as well.

The Branch on Coprocessor 3 True method requires at
least two instructions to test the condition and does not
result in any transfer of the desired information to the
APU 52 register file. Therefore, "Load w/DMA Busy
Considerations, Type 1" is a far more efficient way of
accomplishing the test.

3. "Load w/DMA Busy Considerations, Type 2":

Under normal circumstances, it is assumed that once
the first word is retrieved from memory, the remainder of
the words will be retrieved in a deterministic fashion
(one every cycle or one every other cycle). Firmware
could then simply pace further reads of the information.

To support systems where DMA transfers could be
interrupted in the middle of the operation, the ATMizer
50 also supports a "Load w/DMA Busy Considerations, Type
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2" instruction. This differs from the "Load w/DMA Busy
Considerations, Type 1" instruction in that it forces an
APU 52 stall if the DMA controller 60 is busy. The first
instruction only forces a stall if the DMA Controller 60
has yet to retrieve the first word of the transaction.

This is a useful mechanism to guard against situations
where there may be an unpredictable amount of time between
retrieval of the first word of a DMA transaction and the
remaining words. "Load w/DMA Busy Considerations, Type
2" is indicated to internal hardware when Effective
Address Bit 23 is set to a 1 during Load or Store
instructions involving the VCR 56 as the target.

ADDITIONAL DMA STALLING OPERATIONS

If the APU 52 attempts to program a DMA operation into
the DMA controller 60 before the DMA controller 60 has
completed a pending operation, the DMA engine will assert
the CPU stall input forcing the CPU to stall until the DMA
operation has completed. As soon as the existing
operation completes, the new operation will be loaded into
the DMAC 60.

DMA_Rgst will not go low in the case of back to back
operations. This allows the ATMizer 50 to indicate that
it does not wish to give up the bus at the completion of
the DMA operation. External 1logic should monitor the
DMA_OpEnding output to distinguish between separate DMA
operation boundaries.

3.6 Parallel Cell Interface (PCI) 62

The Parallel Cell Interface 62 contains the ATM port
side Transmitter and Receiver functions as illustrated in
FIG. 16. The PCI’s Transmitter 62a is responsible for
taking cells that have been built in the VCR 56 and
transferring them one byte at a time to an external ATM

line serializer/transmitter. The Transmitter 62a also

generates and inserts the HEC and generates and appends
a CRC10 field to AAL 3/4 cells.

The Transmitter 62a is also responsible for Cell Rate
Decoupling. If there does not exist an assigned cell in
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the VCR 56 ready for transmission, the Transmitter 62a
will automatically send an IDLE cell. The Receiver 62b
accepts cells, one byte at a time, from the ATM line
parallelizer/receiver and reconstructs these cells in the
VCR 56 so that the APU 52 may process them (either
reassemble the cell or switch the cell).

The actual size of a cell is user programmable, up to
64 bytes, to support applications that employ extra header
fields to convey switch specific information. The actual
size of the cell must be a multiple of 4 bytes.

The typical ATM cell is represented in the VCR 56 as
a 52 byte entity. The HEC value is generated and inserted
into the cell as it is passed out of the ATMizer 50.
Therefore, the typical ATM cell adheres to the requirement
that it be a multiple of 4 bytes. If the user employees
a cell size other than 52 bytes, he must disable HEC
generation and checking and he shall be responsible for
generating and checking the HEC value externally.
3.6.1 Parallel Cell Interface Transmitter 62a

The Transmitter 62a in the Parallel Cell Interface 62
is responsible for transferring cells from the VCR 56 to
the ATM Transmission Convergence Sublayer framing logic
utilizing the ATMizer 50’s eight bit wide PCI_TxData(7:0)
output bus. Cells become available for transmission in
the VCR 56 in one of three ways.
3.6.1.1 Transmit Cell Sources

1. Segmentation: In response to an internal or
external event, the APU 52 determines that it must segment
one or more CS-PDUs or generate a cell from one or more
Real Time data buffers. The APU 52 chooses an available
Transmit Cell Holder to be used in the cell building
process (as described in section 2.3.0). In order to
accomplish segmentation, the APU 52 initiates a DMA Read
Operation to transfer the SAR SDU from a memory based
CS-PDU or Real Time Data Buffer into the VCR 56.

The APU 52 is careful to provide the DMA controller
60 with all of the proper address information such that
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. the SAR SDU is transferred into the Transmit Cell Holder

in its proper cell location. The APU 52 then generates
or retrieves and appends the necessary headers and trail-
ers to the cell and queues the cell for transmission. The
APU 52 queues the cell for transmission by writing the VCR
56 starting address of the cell into the Transmitter’s
Cell Address FIFO.

2. Internal Switching: The ATMizer 50 is capable of
transferring cells that arrive over the ATM port side
Receiver (PCI_RcData(7:0)) out of the ATMizer 50 utilizing
the ATM port side Transmitter without having to pass the
cell to main memory. This process works as follows.

All cells arriving into the ATMizer 50 over the
ATMizer 50’s Receiver Port are written into the VCR 56.
The ATMizer 50 sets aside the first 512 bytes (8 Cells)
or 1024 bytes (16 Cells) of VCR 56 memory for Received
Cell Buffering.

Once a cell is written into the VCR 56 the APU 52 must
process the cell. As with all operations, the APU 52 uses
cell header fields as an index into a VCR 56 or memory
based look up table that contains information on how the
cell should be processed. If the 1look up yields
information that indicates that . .the cell should be sent
out over the ATM port side Transmitter, the APU 52 can
perform any necessary header manipulation operations (such
as VCI or VPI translation and/or congestion notification
insertion) before queuing the cell for transmission. The
APU 52 queues the cell for transmission by writing the VCR
56 starting address of the cell into the Transmitter’s
Cell Address FIFO.

3. External Switching: In certain applications, the
ATMizer 50 will have access to main memory based cells
that have arrived over some other ATM port but need to be
transferred out over the ATMizer 50’s ATM port side
Transmitter. The ATMizer 50 is informed of the need to
switch a main memory resident cell through some user
defined external event mechanism (through assertion of
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ATMizer_Int or through APU 52 polling of some mailbox
location).

If the ATMizer 50 finds that a cell exists externally
(the location of which is likely to be known by conven-
tion), it can initiate a DMA operation to bring the cell
into the ATMizer 50. Once inside, the cell headers can
be modified by the APU 52 (or they may have already been
modified by the "ATMizer" that placed the cell in external
memory) . Once the cell has been fully retrieved from
memory and placed in the VCR 56, the APU 52 queues the
cell for transmission by writing the VCR 56 address of the
cell into the Transmitter’s Cell Address FIFO.
3.6.1.2 Queuing a cell for transmission

As described above, Transmission Cells can be gener-
ated in one of three fashions. What is common to each of
the scenarios listed above is that the APU 52 queues a
cell for transmission by writing an address pointer into
the PCI Transmitter 62a’s Cell Address FIFO. This address
pointer points to where the cell begins in the VCR 56.

The address is passed through the use of a Store Word
Instruction with Effective Address Bits (19:16) = 1100.
The address itself is conveyed to the Cell Address FIFO
over the CPU’s Data Bus (CPUDATA(11:6)). The address
should be 64 byte aligned (i.e. CPUDATA(5:0) should =
000000) .

If the APU 52 attempts to write an address to the Cell
Address FIFO but the Cell Address FIFO is already full,
the write operation will cause the APU 52 to enter a stall
operation and the APU 52 will remain in the stall
operation until the Transmitter finishes sending a cell
and a location becomes available in the Cell Address FIFO.
The APU 52 can prevent writing an address into a full
buffer (and prevent the delays associated with it) by
testing the state of the buffer before beginning a
segmentation or cell switching application.

As explained previously, the APU 52 1learns of an
internal event (PRPC 58a time-out) by polling its CPCond2
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input (Segment_CS-PDU_Request). CPCond2 is only asserted
if a location is available in the Cell Address Buffer.
Therefore, if the APU 52 polls CPCond2 and finds that it
is true, it knows that a location is available in the Cell
Address Buffer. By not clearing the Channel Group Credit
Register 58b until after all members of the channel group
have been serviced, the APU 52 can sense the state of
CPCond3 in between segmentation operations to insure that
a location is available in the Cell Address Holder before
branching to the segmentation routine.

If CPCond3 is not asserted at a time when the APU 52
knows that a bit is set in the Channel Group Credit
Register 58b, the APU 52 knows that CPCond2 is temporarily
deasserted due to the fact that the Cell Address FIFO is
full. The APU 52 would then forgo the segmentation
routine and check to see if there are any Received Cells
in need of processing or external messaging requests that
need to be resolved. In this fashion the APU 52 manages
to pace itself so that it does not allow the segmentation
process to get ahead of itself.

The Cell Address FIFO mentioned above is a two deep
FIFO that holds the VCR 56 addresses of cells that are
ready for transmission. When the Transmitter reaches the
end of a cell, it checks the Cell Address FIFO to see if
an address exists for a completed cell. If it does, the
PCI’s Transmitter 62a will automatically begin fetching
the new cell from the VCR 56 and sending it, one byte at
a time, to the external transmission convergence framing
logic over PCI_TxData(7:0). If an address does not exist
in the Cell Address FIFO when the end of the present cell
is reached, the Transmitter performs Cell Rate Decoupling.
3.6.1.3 Cell Rate Decoupling

As part of its start up code and prior to initiating
Transmitter operations, the APU 52 must build a complete
"IDLE Cell" in the VCR 56 and pass the address of the idle
cell to the Transmitter by writing it into the "IDLE Cell
Address Register". The IDLE cell pattern should be the
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same length as the user defined cell size. By designating
an area in the VCR 56 as the IDLE Cell Holder, a user is
free to generate an IDLE cell that matches his switch
specific structure.

During normal operation, if the ATMizer 50 reaches the
end of the current cell and no other address is available
in the Cell Address FIFO, it will send the cell that
resides in the VCR 56 location pointed to be the IDLE Cell
Address Register (most likely but not necessarily an "IDLE
cell"). The ATMizer 50 will assert its PCI_IDLE output
pin to inform external 1logic that the cell it is
transmitting is an IDLE cell. Please refer to section 11
for detailed timing of PCI_IDLE assertion and deassertion.

3.61.4 Preparing the Transmitter to Transmit

When the ATMizer 50 powers up, the contents of the VCR
56 and the IDLE Cell Address Register are both undefined.
External logic must not attempt to clock data out of the
ATMizer 50 before the ATMizer 50 has had a chance to
initialize at least the IDLE cell generation circuitry.
As part of its reset routine, the APU 52 must create the
IDLE cell pattern in the VCR 56 and set the IDLE Cell
Address Register to point to this cell structure.

Once the APU 52 has done this it ‘can enable the
Transmitter and initiate the IDLE Cell generatidn process
by setting the "Cells Available" bit in the control
register. As soon as the PCI Transmitter 62a sees the
"Cells Available" bit set, it will begin fetching and
transmitting the IDLE cell pattern. As soon as the APU
52 queues an assigned cell for transmission by writing its
start address into the Cell Address FIFO, the Transmitter
will send the assigned cell after reaching the end of the
current IDLE cell transmission. '

External logic can abort the sending of a cell by
asserting the PCI_TxSync input. If PCI_TxSync is asserted
prior to the APU 52 setting the Cells Available bit, the
Transmitter will not react to its assertion. It will
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remain idle. If PCI_TxSync is asserted after the APU 52
has generated the IDLE pattern and set the Cells Available
bit, the Transmitter will react to the assertion of
PCI_TxSync be suspending transmission of the existing cell
and immediately beginning Transmission of a new cell. If
there is an address available in the Cell Address FIFO,
the PCI Transmitter 62a will begin fetching and sending
the cell pointed to by that address. If no address is
available then the PCI 62 will fetch and send the IDLE
cell pattern. '

A short period of time exists between the assertion
of PCI_TxSync and the Transmitter’s ability to access the
first byte of cell data from the VCR 56. External logic
must be careful not to assert the data acknowledgment
(PCI_TxAck) input until the ATMizer 50 has successfully
retrieved the first byte of data from the VCR 56 and
sourced it onto PCI_TxData(7:0).

The ATMizer 50 indicates to the outside world that it
has retrieved the first byte of data by asserting its DRDY
output. After system reset or transmitter synchro-
nization, external logic must wait for the ATMizer 50 to
assert DRDY before proceeding (i.e. asserting PCI_TxAck).
DRDY is deasserted in response to either of the two reset
events described above. Once DRDY is asserted it will
remain asserted and data will continue to be sourced onto
PCI_TxData(7:0) as long as PCI_TxClk remains within
specification.

In addition to the IDLE and DRDY signals, the Trans-
mitter asserts BOC (Beginning of Cell) each time it has
placed the first byte of data for a cell onto PCI_TxData-
(7:0).

3.6.2 Parallel Cell Interface Receiver 62b

The Receiver in the Parallel Cell Interface 62 is
responsible for accepting bytes of cell data from the ATM
port side Receiver’s PCI_RcData(7:0) bus and using these
bytes of data to reconstruct cells in the VCR 56. The
Receiver 62b is also responsible for informing the APU 52
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that a cell has arrived by triggering an internal "Re-

ceived_Cell Indication" event.

Upon detecting the arrival of a cell, the APU 52 can
read the cell header and use it as an index into a VCR 56
based or memory based look up table. From this look up
the APU 52 determines the AAL type used for the VC and the
operation/s that must be performed on the cell. The
options are as follows:
3.6.2.1 Received Cell Handling Options

The received cell handling options in a dual port
switch/termination station are illustrated in FIG. 17.

1. Reassembly: The APU 52 can choose to reassemble
the cell into a CS-PDU in memory by initiating the appro-
priate DMA operations. In the case of reassembly, the DMA
controller 60 is configured with the VCR 56 address of the
SAR SDU, the memory address of the CS-PDU and the
appropriate transfer length count. The DMA controller 60
then automatically accomplishes the reassembly operation
through a series of memory write transfers.

2. Internal Switching: The ATMizer 50 is capable of
transferring cells that arrive over the ATM port side
Receiver out of the ATMizer 50 utilizing the ATM port side
Transmitter without ever passing the cell out to main
memory. See section 2.8.1 for more ‘information on
internal switching.

3. External Switching: 1In certain applications, the
ATMizer 50 will want to pass entire cells, headers and
trailers intact, to some other ATM port interface that has
access to the same memory space as the ATMizer 50 (perhaps
it is another ATMizer 50).

In such a situation, the ATMizer 50 may choose to
first execute one or more header manipulation operations
before transferring the cell to the centralized memory
structure. After performing these operations, the ATMizer
50 initiates a DMA operation to transfer the cell to
memory so that another ATM port interface can gain access
to it. After transferring the cell to memory the ATMizer
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50 can alert another port interface to the availability
of the cell by asserting one or more Parallel Port 64
output pins or by writing to a memory mapped mailbox
location.

4. Discard the Cell: The APU 52 can chose to discard
the cell by writing to the Received Cell Counter without
initiating any DMA operations. 1If the APU 52 wishes to
count IDLE cells, it can first increment the IDLE cell
counter before proceeding. In addition, the APU 52 may
wish to react to CRC10 errors by simply discarding the.
cell.
3.6.2.2 Received Cell Indication. How the APU 52 Recog-
nizes that Cells are Awaiting Processing in the VCR 56.

A general signal timing diagram is illustrated in FIG.
18.

As mentioned above, once the ATM port side Receiver
has reconstructed a cell in the VCR 56, it indicates this
to the APU 52 by asserting the internal signal "Received-
_Cell Indication". Received_Cell_Indication is connected
internally to the APU 52’s CPCondl input pin.

The APU 52 can check for the presence of received
cells that have yet to be processed by periodically
polling CPCondl using the "Branch on CPCondl True" in-
struction. If the APU 52 senses that CPCondl is set (i.e.
a cell is available) it can then begin processing the
cell. The logic in the PCI Receiver 62b that generates
Received Cell_Indication is an up/down counter.

Each time a cell arrives the counter counts up by one.
Each time that the APU 52 processes a cell it lowers the
count by one by writing to a special location in the PCI
62 that causes the counter to count down. Therefore, if
the APU 52 becomes occupied handling certain boundary
conditions or gets blocked from the memory backplane for
a period of time, cells will begin piling up in the VCR
56 and the Received Cell Count will continue to rise.

"Once the APU 52 frees up it should immediately begin
draining the Received Cell Buffer. Each time it processes
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a cell it reduces the Received Cell Counter by one and
then immediately checks to see if additional cells are in
the VCR 56 by polling its CPCondl input. If CPCondl
remains asserted cells have accumulated in the Receiver
and should be drained before processing any pending
segmentation requests.

Of course, the system designer may wish to interleave
segmentation handling in with Received Cell draining.
This is acceptable but it does prolong the period of time
required to drain the Received Cell Buffer and increases
the chance that a busy backplane will cause eventual
Received Cell Loss.

If the Receivers cell buffer overflows cells will no
longer be written into the VCR 56 until a locations is
freed up. The Overflow signal is sent off chip as PCI_-
RcBuffOver to inform the outside world of this condition.
It is also attached internally to APU 52 interrupt five.
If APU 52 interrupt five is enabled in the APU 52, the APU
52 will recognize the interrupt, otherwise it will not be
informed of the condition.

3.6.3 HEC Generation and Checking

In applications that generate and check their own HEC
values, ATMizer 50 HEC generation can be disabled by
asserting the HEC Disable bit in the ' System Control
register. If a cell of size other than 52 bytes (53
including the HEC) is used, internal HEC generation should
be disabled. When HEC generation is enabled, the
PCI_HECError pin is an output pin that indicates whether
an HEC error was detected on an incoming cell.

Cells arriving with HEC errors are discarded by the
PCI Receiver 62b and external circuitry is informed by the
assertion of PCI_HECError. If HEC generation is disabled,
no HEC checking will be performed. o

When configured with HEC generation disabled, PCI_-
HECError acts as an input pin. External logic can prevent
the ATMizer 50 from writing a corrupted cell into the VCR
56 by asserting PCI_HECError while providing the first
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byte of the SAR PDU to the Receiver. External logic
should not suspend cell transfer to the ATMizer 50 when
an HEC error is encountered. It should continue with cell
transfer but simply inform the ATMizer 50 to discard the
cell by asserting PCI_HECError.

3.6.4 External Buffering of Received Cells

The PCI Receiver 62b supplies a signal that can be
used by external logic to prebuffer received cells. The
PCI_RcBuffHalf output indicates to the Transmission
Convergence framing logic that the internal Received Cell
Holder buffer in the VCR 56 has reached or exceed one half
full. External logic can use this signal to switch cell
buffering over to an xKx8 SRAM buffer.

This buffer would be a dual port buffer that logically
had a read port and a write port. IDLE cells would be
filtered before entering this buffer. Once the APU 52 has
processed a number of cells in the VCR 56 and PCI_ -
RcBuffHalf is deasserted, external 1logic could begin
transferring the cells queued up in the external SRAM into
the ATMizer 50 for processing (maintaining FIFO sequen-
tiality).

3.6.5 Frequency Decoupling

The ATMizer 50 contains all of the logic necessary for
decoupling the ATMizer 50’s internal clock (i.e. the
system clock) from the clock rates of the transmission
lines. The user clocks byte wide data out of the ATMizer
50 relative to the byte clock that is used to drive the
transmission line and clocks data into the ATMizer 50
relative to the byte clock derived from the received data
stream.

All frequency decoupling and metastability issues are
dealt with inside the ATMizer 50’s Parallel Cell Interface

62 circuitry. The ATMizer 50 uses a simple handshake

acknowledgment mechanism to allow external logic pause
data transfers between the ATMizer 50 and the line
transceivers. Such a stall may be required if external
logic suspends the cell stream in order to generate and
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send or extract transmission convergence layer framing
overhead. Much more can be found on this interface in
section 11.0.

3.7 Parallel Port 64

The ATMizer 50 includes an eight bit Parallel Port 64
that can be used to accomplish a variety of data transfer
and control transfer operations between the APU 52 and the
outside world. Parallel Port 64 access differs from DMA
access in the following fashion:

1. The Parallel Port 64 can be read and written by
the APU 52 directly, utilizing Load Byte and Store Byte
instructions. The DMA controller 60 allows only indirect
APU 52 access to memory mapped devices (the APU 52
programs the DMAC 60 to transfer data between the VCR 56
and memory mapped devices).

2. The Parallel Port 64 is also unique in that it can
be accessed by the APU 52 when the DMA engine is busy. In
this fashion the parallel port gives the APU 52 an ability.
to control DMA operations simultaneously to the operation.
This may be of use in switching applications if the APU
52 wishes to notify another switching port that it is
about to source a cell targeted to it onto the memory
backplane.

3. The Parallel Port 64 can also be used to control
physical devices by mapping certain Parallel Port 64 data
bits to certain hardware functions.

4. The Parallel Port 64 can also be used in the
ATMizer <-> Host messaging system. The Host.processor can
pass a message to the ATMizer 50 by writing an 8 bit
message code to a parallel port mapped register and then
asserting ATMizer 50_Int. The APU 52, polling ATMizer -
Int, branches to the messaging routine, reads in the
register and takes the appropriate action based on the
message code retrieved. Or, the ATMizer 50 can simply
poll certain control information from the Parallel Port
64. ,

The Parallel Port 64 has a one deep write buffer in
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it. Writes to the Parallel Port 64 when the write buffer
is empty will not stall the APU 52. Writes to the Paral-
lel Port 64 when the write buffer is full will result in
the APU 52 stalling until the write in the write buffer
is retired to memory. The APU 52 will stall when reading
the Parallel Port 64 if the Parallel Port 64’s write
buffer is full or if external hardware prolongs the read
operation by withholding assertion of PP_RdWrAck.

In addition to 8 data bits, Parallel Port 64 accesses
provide 4 address bits to distinguish between up to 16
external devices. The Parallel Port 64 sources the
address bits transferred over CPUAddress(5:2) during APU
52 Load or Store operations that target the Parallel Port
64.

4.0 The System Control Register

Certain functions within the ATMizer 50 are program-
mable and must be configured at system reset time. All
ATMizer 50 configuration information is stored in the
System Control Register that is written by the APU 52 as
part of its initialization routine. The System Control
Register is programmed using a Store Word instruction.
CPUData(31:0) is written into the fields of the System
Control Register as illustrated in FIG. 19.

BUFFER SIZE

Buffer Size determines the size of the Received Cell
Holder Buffer. Received cells are written into the VCR
56, one per 64 byte block, starting at location 0. The
high order address is determined by the Buffer Size field.
0001 Buffer Size = 2 0100 Buffer Size = 8
0010 Buffer Size = 4 1000 Buffer Size = 16

CR ~ CELLS READY

The APU 52 sets the Cells Ready bit once it has
configured the System Control Register, built an IDLE cell
in the VCR 56 and passed a pointer to the IDLE cell to the
IDLE cell address holder in the PCI Transmitter 62a. The
PCI Transmitter 62a will not attempt to source any cell

data onto its output bus until Cells Ready is asserted.
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Once asserted, the PCI Transmitter 62a fetches a cell
(either the IDLE cell or an assigned cell if the APU 52
writes a cell address into the Cell Address FIFO before
setting Cells Ready) from the VCR 56 and sources it over
PCI_TxData(7:0).

DH - DISABLE HEC GENERATION AND CHECKING

In applications that generate and check their own HEC
values, ATMizer 50 HEC generation can be disabled by
asserting the HEC Disable bit in the system control
register. If a cell of size other than 52 bytes (53
including the HEC) is used, internal HEC generation should
be disabled. When HEC generation is enabled, the
PCI_HECError pin is an output pin that indicates whether
an HEC error was detected on an incoming cell.

Cells arriving with HEC errors are discarded by the
PCI Receiver 62b and external circuitry is informed by the
assertion of PCI_HECError. If HEC generation is disabled,
no HEC checking will be performed.

When configured with HEC generation disabled, PCI_-
HECError acts as an input pin. External logic can prevent
the ATMizer 50 from writing a corrupted cell into the VCR
56 by asserting PCI_HECError while providing the first
byte of the SAR PDU to the Receiver. External logic
should not suspend cell transfer to the ATMizer 50 when
an HEC error is encountered. It should continue with cell
transfer but simply inform the ATMizer 50 to discard the
cell by asserting PCI_HECError.

CTR 4/5 - COUNTER 4/5

When CTR 4/5 is set, PRPCs 4 and 5 are tied together
into a 24 bit timer/counter. PRPC 4 forms the low order
12 bits of the timer/counter and PRPC 5 forms the high
order 12 bits of the timer/counter.

CTR 6/7 - COUNTER 6/7 A

When CTR 6/7 is set, PRPCs 6 and 7 are tied together
into a 24 bit timer/counter. PRPC 6 forms the low order
12 bits of the timer/counter and PRPC 7 forms the high
order 12 bits of the timer/counter.



10

15

20

25

30

35

WO 95/11554 PCT/US94/11788

- 79 =

CELL SIZE

The ATMizer 50 supports a user defined cell size from
52 bytes up to 64 bytes. The actual cell size to be used
is programmed into the Cell Size field by the APU 52
during system reset. The APU 52 must program Cell Size
before setting the Cells Ready bit.

5.0 ATMizer 50 Memory Map

A map of the memory of the ATMizer 50 is illustrated
in FIG. 20.

Except where noted below under VCR 56 Notes (Load
w/DMA Busy Considerations, Type 1 and 2 Instructions) and
under DMA Notes (DMA Operation Initialization instruc-
tion), all internal access should be initiated with
CPUAddress(31:20) set to Os.

VCR 56 NOTES

If Address Bit 22 is set during a VCR 56 Read Opera-
tion we are executing a "Load with DMA Busy Consider-
ations, Type 1" instruction and the APU 52 will stall if
the first word of the DMA operation has not been retired
to the VCR 56.

If Address Bit 23 is set during a VCR 56 Read Opera-
tion we are executing a "Load with DMA Busy Consider-
ations, Type 2" instruction and the APU 52 will stall if
the DMA operation has not completed.

DMAC NOTES
CPUAddress(31:30) Local Offset Register
CPUAddress (29:24) Transfer Length Counter
CPUAddress(21) Ghost Bit
CPUAddress (20) Operation Direction (Rd Vs Wr)
CPUAddress (11:2) Local Address Counter
CPUData(31:0) Memory Address Register/Memory
Address Counter/Memory Offset Register

PRU NOTES

RRR PRPC RRR PRPC RRR PRPC RRR PRPC
000 PRPCO 010 PRPC2 100 PRPC4 110 PRPC6
001 PRPC1 011 PRPC3 101 PRPCS 111 PRPC7

BBE CRB BBB CRB BBB CRB BBB CRB



10

15

20

25

30

35

WO 95/11554 PCT/US94/11788

- 80 -
000 Bito 010 Bit2 100 Bit4 110 Bite6
001 Bit1 011 Bit3 101 Bit5 111 Bit7

The RRR field determines which of the eight Peak Rate
Pacing Counter Initialization Registers are the target of
the write operation.

The BBB field determines which bit of the Credit
Register 58b is targeted for being cleared. A write to
the Credit Register 58b clears the Credit Bit associated
with the PRPC 58a addressed by the BBB field. Reading the
Credit Register 58b returns the 8 bit Credit Register 58b
Value on Data Bits (7:0). The BBB field is ignored on
reads.

If the I bit is set to 1 the Initialization value is
immediately written into both the Initialization register
and the Peak Rate Pacing Counter 58a, overwriting the
values in each of these structures. If the I bit is set
to 0, the Initialization register is written but the
counter 58a is allowed to continue with its count. Once
the count reaches zero, the new initialization value will
be written into the Peak Rate Pacing Counter 58a.

PCI NOTES

When the PCI 62 Address FIFO is written, the value of
the CCC field (the command field) is used to determine
what actions the transmitter should take ih regards to the
cell being queued for transmission. If bit 9 is set, the
Transmitter will Force an HEC Error (HEC generation must
be enabled). If bit 8 is set, the Transmitter will
calculate and insert a 10 bit CRC10 value for this cell.

In this fashion, the ATMizer 50 can support AALs 1,
2, 3/4 and 5 simultaneously because a CRC10 is only
generated by the PCI 62 when it is instructed to do so by
the processor. If bit 7 is set, the Transmitter will
force an error in the CRC10 encoding (Big 8 must be set
as well).

The CRC1l0 error register is a 16 bit register that
contains one bit for each Received Cell Holder. If a
CRC10 error is detected for a cell in the corresponding
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received cell holder, the corresponding CRC10 error
register bit is set.

If a VC is determined to be an AAL 2 or AAL 3/4 VC,
the APU 52 must check the CRC10 error register for an
indication of a CRC10 error. If the VC is determined to
be an AAL 1 or AAL 5 VC, the APU 52 will not check the
CRC10 error bit for that Received Cell Holder. 1In this
fashion the ATMizer 50 can support simultaneously, cells
of all AAL types.

Parallel Port 64 NOTES

The address indicated in the four bit field marked
AAAA is sourced onto PP_Address(3:0) during parallel port
read and parallel port write operations. -

6.0 The ATMizer 50’s Interrupt Structure and CpCond
Hookups
INTERRUPT STRUCTURE _

The R3000 CPU has six interrupt inputs. Each of these
interrupts can be enabled or disabled by software running
on the APU 52 (see MIPS assembly language programmer’s
guide). The ATMizer 50 uses all six of the APU 52’s
interrupt pins for a variety of purposes. User firmware
may chose to enable and use any of these interrupts or may
instead chose not to implement interrupts and interrupt

handling.

Interrupt 1 Counter/Timer 4/5 time-out (Only asserted
if PRPC4/5 configured as counter/timer)
Interrupt 2 Counter/Timer 6/7 time-out (Only asserted
if PRPC 6/7 configured as counter/timer)
Interrupt 3 General Purpose External Interrupt 1
Interrupt 4 General Purpose External Interrupt 2
Interrupt 5 Received Cell Buffer Overflow

Interrupt 6 Received Cell Buffer Half Full

CPCOND CONNECTIONS .

The APU 52 can check the state of any one of the
CpCond inputs by executing a "Branch on Coprocessor x
Condition Input True/False" instruction. ATMizer Int
differs from GP_Intl and GP_Int2 in that it is not an
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interrupt in the lassic sense but simply a signal whose
state can be tested when so desired by the APU 52 by
issuing the "Branch on CPCond0 True/False" instruction.

CPCond0 Connected to ATMizer 50_Int external pin

CPCond1l Connected to Receive Cell Indication

CPCond2 Connected to PRU’s Transmit Request Output
(i.e CGCR 58b has a bit set)

CPCond3 Connected to DMA Rgst

7.0 Programming the ATMizer 50

No two ATMizer 50 applications are 1likely to be
identical, and therefore each system designer will create
APU 52 firmware specifically tailored to his system
implementation. 1In general though, it can be shown that
the basic firmware routine will revolve around the IDLE
loop illustrated in FIG. 21 which checks for the existence
of one of three conditions and takes the appropriate
actions if one of the states exists.

The order in which the CpCondx pins are tested in our
sample IDLE routine is significant. In our sample system
we always check for Received Cell Indication first. The
reason for this is that it is more important not to drop
a received cell (if the received cell buffer overflows)
than it is to prevent an IDLE cell from being transmitted.
IDLE
BCP1 True Receive Cell If RcInd is asserted jump to the

receive cell routine

LDW R8 R24 Load in the ATM Header of the received
cell

BCPO True Message If ATMizer 50_Int is asserted jump

to the message routine
NOP
BCP2 True Transmit Cell If TXReq is asserted jump to the
transmit cell routine
LW R1, PRUCB(RO) Get the eight bit CGCR (Channel
Group Credit Register) 58b value representing which
channel banks have expired

Therefore, we always check for received cell indica-
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tion before checking for either a Host messaging request
or a transmit cell request. Furthermore, because the
ATMizer 50 can be asked to accomplish certain complex
functions, the possibility exists that the servicing of
either a received cell indication, transmit cell request
or message request could take longer than the time nor-
mally allotted in steady state operation (approximately
65 instructions for transmit cell requests and received
cell processing at 50 MHz). As a result, cells may
accumulate in the VCR 56 and firmware may wish to always
drain this buffer before occupying the memory backplane
with segmentation data transfers. 8.0 ATMizer <-> Host
Messaging

The ATMizer 50 is further capable of messaging with
a host in a manner which can be programmed into the system
firmware.
9.0 The ATMizer in Operation

A diagram of the ATMizer 50 in a system supporting AAL
1 and AAL 5 circuit termination and cell switching is
illustrated in FIG. 22.
9.1 Data Types Supported

The ATMizer 50 is capable of handling a combination
of data types from a variety of data sources. In general,
if the necessary data and control information (i.e. the
Residual Time Stamp values for AAL1l connections) can be
accessed by the ATMizer 50 from a memory mapped entity
(either RAM or a peripheral interface controller) the
ATMizer 50 can create an ATM cell or cell stream from the
data source.

This applies to real-time data stream sources such as
DS1 1line termination as well as to packet generating
sources such as workstations, packet-based LANs and WAN
interfaces. This also applies to the switching of ATM
cells to and from other ATM ports or switching fabrics as
long as the switching fabric is mapped into the ATMizer
50’s DMA memory space or accessible over the ATMizer 50’s
Parallel Port 64 interface.
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9.2 The Cell Generation Process - An Overview
It is important to understand that almost all aspects

of the cell generation process are controlled by the ATM

Processing Unit (APU) 52 under user firmware control. To
accomplish segmentation, the APU 52 functions as an event
driven device. A segmentation triggering event can be an
external event such as the filling of a DS1 buffer or an
internal event such as the timing out of one of the eight
on-chip Peak Rate Pacing Counters (PRPCs) 58a.

The APU 52 learns about external events by periodi-
cally polling a DMA memory mapped or Parallel Port 64
memory mapped register that has a bit associated with each
external triggering event or by polling its ATMizer Int
signal for an indication that an external event has
occurred. Polling ATMizer_Int is a faster mechanism
because its state can be tested with a single APU 52
instruction (Branch on Coprocessor Condition 0 True).

However, since ATMizer_ Int is expected to be used as
part of the host-to-ATMizer messaging system, the asser-
tion of ATMizer Int may have to be qualified by access to
a "message type" field or register somewhere in DMA or
Parallel Port 64 memory space. This field indicates the
reason for which external logic asserted ATMizer Int. In
our example, the value would indicate that ATMizer Int was
asserted to alert the ATMizer 50 to a DS1 buffer full
condition.

An internal triggering event most likely consists of
the time-out of one or more Peak Rate Pacing Counters 58a.
In general, internal events are used to pace the
segmentation of CS-PDUs while external events are used to
pace cell generation from real time data streans. |

When one or more counters 58a times-out the Pacing
Rate Unit 58 responds by asserting the Coprocessor Condi-
tion 2 (CpCond2) input to the APU 52. The APU 52 fre-
quently checks the state of this input by executing a
single Branch on Coprocessor Condition 2 True instruction.
If the APU 52 senses CpCond2 asserted it branches to the
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Segmentation routine and reads in an 8 bit value from the
CGCR 58b that indicates which counters have expired.

The APU 52 can then proceed to segment the CS-PDUs
associated with the Peak Rate Pacing Counter/s 58a that
have expired. Since the APU 52 can read the CGCR 58b at
any time, even in the midst of servicing a Channel Group,
the User is able to implement almost any channel priority
scheme that fits the application.

9.2.1 AAL 1 Real-Time Data Streams

The ATMizer 50 is capable of generating AAL 1 SAR-PDUs
from memory mapped data buffers. In most cases, data
streams such as DS1 1lines will be terminated and
synchronized to the ATMizer 50’s system clock then pre--
buffered in dual 48 byte buffers in main memory.

Once a buffer fills, the ATMizer 50 can be instructed
(through an external event) to retrieve the SAR User Pay-
load, retrieve (RTS) or generate (SN/SNP) and append the
SAR Header and transfer the cell to the transmission
convergence framing logic using the Transmitter 62a in the
ATMizer 50’s Parallel Cell Interface 62.

As the ATMizer 50 is generating a cell from one buffer
the other buffer is being refilled by the real-time data
source. Eventually the second buffer will fill and the
first buffer will become the active fill buffer. ALL 1
data streams are continuous in time. The APU 52 under
user firmware control creates the Sequence Number and
Sequence Number Protection fields internally but is passed
the Residual Time Stamp field from an external device.

Residual Time Stamp values can be passed to the
ATMizer 50 in byte 0 of the SAR SDU (the logical posi-
tioning, in this case external logic calculates the RTS
and writes it into the data buffer) or the APU 52 can
proactively retrieve the RTS value, when needed, utilizing
either the Parallel Port 64 or DMA Engine.

The APU 52 is responsible for implementing RTS and
SN/SNP interleaving on transmission and for passing the
SAR SDUs and RTS values to the appropriate buffers and
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interfaces and SN/SNP checking on reassembly. The actual
AALl cell generation and received cell handling routines
shall be written by the user.

FIG. 23 illustrates AALl circuit emulation and data
buffering as performed by the ATMizer 50, whereas FIGs.
24 and 25 illustrate AAL 5 CD-PDU segmentation.

In situations where DSls are to be sourced over an ATM
port, the low data rates of the DSl1ls allow for multiple
such lines to be handled with ease. In low speed applica-
tions, the ATMizer 50 itself can be programmed to handle
the transfer of data from a small word buffer in the DS1
physical interface device to the dual 48 byte buffers in
main memory.

In some applications the VCR 56 itself could provide
the dual data buffer functionality. Using the ATMizer 50
in this fashion alleviates the need for intelligent DMA
operations at the DS1-main memory interface and éimplifies
memory controller design.

Since the overhead on the ATMizer 50 to facilitate
these transfers is quite high, such "dumb" DS1 ports may
only be usable at ATM port speeds at or below DS3 rates.
It is up to the user to make a final determination if a
chosen implementation can sustain the desired throughput
rates.

9.2.2 AAL 3/4 and 5 CS-PDUs Segmentation

AAL 5 CS-PDU Segmentation is illustrated in FIGs. 24
and 25.

If an internal event occurs (a PRPC 58a has expired
forcing the assertion of CpCond2), the APU 52 determines
which PRPC/ expired by reading the Channel Group Credit
Register 58b. The APU 52 then begins to parse through the
list of Channel Parameter Entries that are attached to the
expired PRPC 58a segmenting a number of cells from each
CS-PDU before proceeding on to the next entry in the
Channel Group (this is all by software design, the ATMizer
50 is APU 52 driven and different concepts of how segmen-
tation should be controlled are both imaginable and
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supportable).

As the APU 52 parses through the Channel Parameter
Entries in the Channel Group, it can generate one or more
cells from a given CS~PDU before proceeding on to the next
Channel Parameter Entry in the list. Again, depending on
the application this list will either be VCR 56 resident
or main memory resident with the tradeoff being that VCR
56 resident lists have limits on their sizes (i.e. a limit
on the number of channels that can be active simultaneous-
ly) but allow for less costly memory system implemen-
tations while memory based lists have few restrictions on
their size but may require fast SRAM to support the
processors need for fast access to the entry (as well as
fast access to restore the updated entry to memory at the
end of the segmentation/cell generation burst for each
Channel Parameter Entry/CS-PDU).

CONTIGUOUS CS-PDUS

In the most straight-forward of system implementa-
tions, AAL 3/4 and 5 CS-PDUs are created in system memory
by a host processor. The ATMizer 50’s job is to segment
these CS-PDUs into a series of SAR-SDUs, generate and
append ATM Adaptation Layer headers and trailers and ATM
headers to the SAR-SDUs and then transfer the newly built
cells to the external Transmission Convergence Sublayer
framing logic one byte at a time using the Transmitter
portion of the ATMizer 50’s Parallel Cell Interface (PCI)
62.

CS-PDUs undergoing segmentation will be resident and
contiguous in system memory prior to the ATMizer 50
beginning the segmentation process. In addition to
performing segmentation and ATM cell generation, the
ATMizer 50 will also calculate the CRC32 for AAL 5 CS-PDUs

-and append the resulting 4 bytes of CRC32 code to the end

(bytes 50-53) of the last cell generated from the given
AAL 5 CS-PDU. The host processor constructs the entire
AAL 3/4 or 5 CS-PDU in system memory but, in the case of
AAL 5, should stuff all zeros into the last four bytes
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(the CRC32 field).
NON-CONTIGUOUS CS-PDUS - THE "GATHER" FUNCTION OF
SCATTER-GATHER DMA

In more complicated system environments, CS-PDUs may
be resident in memory in a non-contiguous fashion. This
may occur in ATM network interface card applications if
the operating system builds higher layer header fields
apart from the actual "User Payload’ portion of the packet
or if headers from different layers are created physically
separate though logically belonging to the same CS-PDU.

It may also occur if the User Payload field consumes
more than one page in a virtual memory system and memory
management software allocates non-contiguous pages to the
application. Forced moves to create a contiguous CS-PDU
are wasteful of system resources and time. Fortunately,
such moves are unnecessary in systems employing the
ATMizer 50.

In routing applications (or CSU/DSU applications), the
system designer may wish to provide for the segmentation
of packets (CS-SDUs) prior to their complete arrival.
Segmenting a CS-SDU as it arrives reduces the amount of
buffer memory required in the bridging mechanism. It also
reduces the latency attributable to the router. In
applications employing ATM Adaptation Layer 5, the ATMizer
50 can begin packet segmentation as soon as enough bytes
arrive for the host processor to establish the route and
before the host processor has built the CS-PDU trailer.

In addition, the memory allocation mechanism of the
router may allocate memory to incoming packets in blocks
of size less than the maximum packet size (these blocks
are referred to as memory "fragments"). This is useful
in applications where packet sizes can vary dramatically.
Small packets may take up a single memory "fragment" while
much larger packets may require the allocations of several
"fragments".

The ATMizer 50 proceeds through the segmentation

process "one fragment at a time"; communicating with the
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host processor or accessing a link list of the CS-PDU from
system memory as fragment boundaries are reached.

In "Gather" applications, the APU 52 will periodically
reach the end of a particular CS-PDU fragment. The APU
52 must be able to determine if it has reached the end of
a fragment or if it has actually reached the end of the
CS-PDU. This information is needed to insure that the APU
52 does not prematurely insert an EOM (or SSM) identifier
into the SAR Headers of AAL 2 and 3/4 cells or encode an
EOM identifier into the PTI fields of the ATM Headers of
AAL 5 cells.

Therefore, it 1is important that a flag field be
included in the Channel Parameter Entry that indicates
whether the fragment represents the end of a CS-PDU or if
more fragments exist for the CS-PDU. Software running on
the APU 52 must check this condition during the segmenta-
tion process.

Since the APU 52 must check the resulting byte count
each time it decrements it, it is possible to signal
end-of-CS-PDU by providing a byte count in the Channel
Parameter Entry that will reach exactly zero at the end
of a fragment that represents the end of the CS-PDU and
one that will produce a negative result for fragments that
are not the last fragment (i.e. the byte count would by
at least 1 byte less than the actual count). These and
other techniques can be employed to dramatically reduce
the number of APU 52 instructions required to generate (or
process) a cell and shall be expanded upon later in the
section on programming the APU 52. »

As mentioned previously, the APU 52 may chose to
generate more than one cell from a given CS-PDU before
proceeding on to the next CS-PDU. This is up to the user
but it is important to understand that generating multiple
cells per CS-PDU reduces the number of APU 52 cycles
required to build a cell, and the APU 52 cycles required
to retrieve and restore the Channel Parameter Entry for
the CS-PDU can be amortized over the number of cells
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generated. This may be important in high speed applica-
tions (155 mbps), especially if a large number of simul-
taneously active Transmit channels are to be supported.

Once the cell generation routine has been entered,
cell generation involves the APU 52 retrieving a Channel
Parameter Entry (from the VCR 56 or off chip), using the
DMA Address to initiate a memory Read operation to re-
trieve the SAR SDU (size dependent on AAL type and on
"Gather" algorithm employed), retrieving the ATM Header
from the Channel Parameter Entry, modifying certain fields
(GFC, PTI, CLP) if necessary and writing the Header into
the appropriate location in the VCR 56 (just in front of
where the DMA Controller 60 was instructed to write the
SAR SDU).

If the cells are AAL 3/4 cells, the APU 52 must also
retrieve the previous SAR Header and use it (i.e. the
previous sequence number) to generate the current SAR
Header. The APU 52 must also set the LI field in the VCR
56 (by writing it to the tail end of where the DMA Con-
troller 60 was instructed to write the SAR SDU after the
SAR SDU retrieval has completed since the DMAC does not
clip VCR 56 or memory write operations on the tail end of
the last word) and finally by queuing the cell for trans-
mission by writing its VCR 56 address ‘into the cCell
Address FIFO in the PCI Transmitter 62a.

AAL 5 cells do not require SAR Header or Trailer
generation operations but they do require CRC32 partial
results maintenance and CRC32 insertion into the last cell
of a CS-PDU.

The number of actual scenarios are too many to explore
in detail in this specification (Scatter-Gather imple-
mentations, data alignment for application acceleration,
user defined parsing and messaging routines, congestion
control, statistics gathering, Interleaving of
Segmentation, Reassembly and Messaging in the most effec-
tive manner, etc.). The present invention is therefore

- not limited to the specific examples presented herein, but
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is capable of numerous modifications and applications
within the scope of the disclosure.

A Cell Generation Data Path is illustrated in FIG. 26.
As a overview of the segmentation process, CS-PDUs under-
going segmentation reside in system memory. SAR-SDUs are
retrieved from memory (AAL 5 SAR-SDU = 48 bytes, AAL 1
SAR-SDU = 47 bytes) and placed in a Tx Cell Buffer in the
VCR 56. SAR and ATM Headers are appended by the APU 52
and then the cell is queued for transmission over the
Parallel Cell Interface 62.

An eight byte Elastic Buffer (Tx Buff) in the PCI 62
sits between the VCR 56 and the line driver. Data is
fetched from the VCR 56 Tx Cell Buffer relative to the
ATMizer 50’s system clock (Clk) but transferred out of the
eight byte deep Elastic Buffer (Tx Buff) relative to the
line’s byte clock (PCI_TxClk).

Cs-PDUs undergoing reassembly also reside in system
memory. Data from the Receiver is temporarily buffered
in a second 8 byte deep Elastic Buffer (Rc Buff). This
buffered data is then transferred to the Receive Call
Buffers in the VCR 56. The combination of elastic buff-
ering and cell buffering provides all of the buffering
needed in many applications{

9.3 The CS-PDU Reassembly Process

In addition to segmentation, the ATMizer 50 performs
reassembly operations on AAL 3/4 and 5 CS-PDUs and AAL 1
real-time data streams. 1In the case of AAL 5 CS-PDUs,
reassembly is the process of reconstructing CS-PDUs in
system memory from a stream of cells received over the
ATMizer 50’s ATM port interface. Of course, this stream
of cells will contain SAR-PDUs from a number of VCS/CS--
PDUs simultaneously and the ATMizer 50 will have to track
operations on a number of active CS-PDUs.

The exact number of open VCs that the ATMizer 50 can
support is implementation dependent. By restricting the
number of active channels and caching all channel parame-
ters in the on-chip VCR 56, low cost network interface
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cards can be built that use system memory for CS-PDU
storage, alleviating the need for dedicated memory on the
NIC itself.

In higher speed applications, a larger number of
channels (up to 65,536) can be supported through the
provision of off-chip local DRAM and/or SRAM. In such
implementations, the ATMizer 50 will go off chip to obtain
the Channel Parameter Entries necessary for CS-PDU
reassembly. Of course not all high speed (155 mbps)
applications will support very large numbers of VCs. For
example, an implementation of an ATM backbone may choose
to encapsulate all traffic from a single network under a
single VC/VP.

At the destination ATM switching point, the Conver-
gence Sublayer strips out the ATM encapsulation informa-
tion exposing a diverse stream of higher layer packets.
In such systems, these high speed ATM interface devices
may wish to support only a limited number of network
segments/VCs (64 - 128) and as a result all channel
parameters can be cached inside the ATMizer 50 and local
memory could consist solely of DRAM.

As can be seen, the addition of on-chip memory allows
ATMizer 50 users to make several tradeoffs between system
cost (local memory vs. no local memory, DRAM vs. SRAM),
ATM data rates and the number of channels supported.

THE "SCATTER" FUNCTION

When the first cell of a CS-PDU arrives over the
ATMizer 50’s ATM port interface, a buffer must be set
aside in memory for reassembly. Because the ATMizer 50
is capable of "scatter" operations and buffer management,
it is possible to allocate buffer space one block at a
time. The ATMizer 50 can then construct a link list of
the buffers used during the reassembly process, requesting
additional buffer allocations as the CS-PDU extendé beyond
the bounds of the existing buffers.

With AAL 3/4 CS-PDUs, an intelligent decision can be
made up front concerning buffer allocation since AAL 3/4
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CS-PDUs contain a CS-PDU length indicator in their head-
ers. But with AAL 5 CS-PDUs, size can not be determined
until the last cell of the CS-PDU has arrived. Without
a "scatter" capability the system would be forced to allo-
cate the maximum size buffer to each new AAL 5 CS-PDU.
This could put a severe strain on memory resources if many
channels are active simultaneously.

With "scatter" control, the granularity of buffer
allocations can be as small as the designer wishes. User
firmware running on the ATMizer 50 is responsible for
retrieving available buffer lists, constructing link lists
for the CS-PDUs during reassembly, and passing these lists
or pointers to these lists to the host processor upon
completion of the reassembly process (or perhaps the

- pointer to the next buffer is simply appended to the

present buffer).

It is important to note that the ATMizer 50 by design
does not enforce a scatter architecture. The ATMizer 50
simply provides the resources to implement the scatter
function - the APU 52 and DMA Engines and ATMizer - Host
messaging capabilities. User firmware, downloaded to the
ATMizer 50 at system reset time, implements the buffer
allocation and 1link list pointer management processes
chosen by the system designers as the best mechanism for
their application.

HEC ERROR, AAL 3/4 CRC10 ERROR AND AAL 5 CRC32 ERROR
CHECKING

If HEC generation is enabled, the ATMizer 50 will
automatically check for HEC errors and discard cells that
are found to have HEC Errors (it will also assert PCI_-
HECError). If HEC generation is enabled the ATMizer 50
will also automatically discard IDLE cells. Therefore,
the reassembly routines need not check for either condi-
tion.

If AAL 3/4 cells are to be supported, the reassembly
routine will have to check the CRC10 error register for
an indication of CRC10 errors. Of course, if the Channel
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Parameter Entry for a VC indicates that the cell is
encoded using AAL 1 or 5, no CRC10 error checking should
be employed. AAL 5 CRC32 checking is explained in detail
in the section on the DMAC 60.

10.0 Congestion Notification and Handling

Switching nodes within an ATM network that are
experiencing congestion can inform ATM end stations by
modifying the ATM headers of ATM cells passing through
them. An end station receiving marked cells may take
corrective action. During reassembly, the APU 52 can
search each cell header for notification of congestion.

If congestion is found to exist, the APU 52 can
execute whatever congestion handling algorithm the system
designer has chosen to implement. There are several steps
that the ATMizer 50’s APU 52 can take in reaction to
congestion notification.

1. The APU 52 can inform host software of the
congestion problem but take no additional action. Host
software can react as it sees fit by lowering Average and
Peak segmentation rates or Burst Lengths for one or more
CS-PDUs/VCs.

2. The APU 52 can react by increasing the service
intervals for one or more Channel Groups (increase the
initialization values in one or more PRPCs).

3. The APU 52 can lower the Global Pacing Rate for
the overall Transmission pipe.

4. The APU 52 can choose to selectively lower the CLP
value for one or more VCs. For real time sensitive data
streams, CLP reduction may be preferable to throttling the
VC. These and other actions can be taken separately or
together to achieve the ultimate congestion handling
mechanism.

It is important to note that no congestion control
algorithm is enforced by hardware convention. Software
running on the ATMizer 50 is responsible for checking for
congestion and implementing a user design congestion
control routine if congestion notification is found.
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In actuality, the best congestion control algorithms
may not be fully understood until enough equipment is
fielded to put real life demands on ATM based networks.
Much of that existing equipment may not be able to be
updated to deal with actual congestion problens.

Systems employing the ATMizer 50 don’t have the same
problems. Because it is programmable, the ATMizer 50 can
execute virtually any congestion control algorithm.
Because its firmware is downloaded at system reset time,
software "patches" can be sent out to existing customer
sites with new congestion algorithms for the ATMizer 50
when more is learned about actual network congestion.
Because the APU 52 sits directly at the line interface,
the ATMizer 50 can react quickly, within a single cell
time, to congestion notification found on an incoming
cell. And because it has access to the Peak Pacing Rate
registers 58a, Maximum Burst Length values, Global Pacing
Rate Register 58c and the CLP fields in the ATM headers,
the ATMizer 50 has unlimited flexibility in its means for
implementing congestion control.

11.0 ATMizer 50 Pins
11.1 ATMizer 50 Pin Diagram

A pin diagram of the ATMizer 50 is illustrated in FIG.
27.

11.2 ATMizer 50 Signal List
DMA MEMORY INTERFACE

TERMINOLOGY |
The "DMA Engine" is that function within the ATMizer
50 that handles memory transactions. The DMA Engine

manages the functions of main and local (VCR 56) memory
address incrementing, byte count reduction, and byte
alignments and mergers for transactions where the local
byte starting offset which is not equal to the memory byte
starting offset.

A DMA “operation" is initiated by the APU 52. To
initiate a DMA operation, the APU 52 accesses the DMA
Engine and sets the memory starting address (byte ad-
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dress), the number of bytes in the transaction (<=64
bytes), the local VCR 56 starting address (byte address)
and the direction of the operation (Rd/Wr). The DMA
Engine responds by asserting DMA Rgst and by cycling
through the required number of data "transfers" to com-
plete the operation.

Devices accessed during DMA operations are responsible
for informing the DMA Engine that the sourced data has
been retired (on DMA Write transfers) or that the
requested data is available (on DMA Read transfers).
External devices (memory included) use the DMA RdWrAck
signal to signal these transfer "acknowledgments". The
DMA Engine can be idled indefinitely by the withholding
of an expected acknowledgment.

SIGNALS
DMA Rgst
DMA Operation Request - Output - Asserted High

Asserted by the ATMizer 50’s DMA Engine when the APU
52 has programmed the DMA Engine to execute a partial
word, word or block transfer to or from a memory mapped
device such as main memory. The accessed device shall
respond to DMA_Rgst by asserting DMA RAWrAck one or more
times.

The ATMizer 50 does not have a specific DMA Grant
input. External logic controls ATMizer 50 bus access with
DMA_AdrOEx, DMA DataOEx and DMA_RdAWrAck. DMA Rgst will
be removed following the rising clock edge upon which the
ATMizer 50 samples the final transfer acknowledgment
(DMA_RdAWrAck asserted) for the given DMA operation.

If the APU 52 has queued up back to back DMA opera-
tions (it may have even entered a write busy stall because
it attempted to write a new initialization word to a busy
DMAC) , DMA Rgst will not be deasserted in response to the
final DMA RdWrAck and the very next operation will begin
immediately. Therefore, external logic should check the
state of DMA_OpEnding to distinguish between DMA operation
boundaries. A benefit is that external logic can chose
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not to give up memory bus ownership if DMA Rgst is not
deasserted in response to the final transfer acknowledg-
ment.
DMA RdAWrx
DMA Operation Type - Output - High/Rd, Low/Wr

When DMA_RdWrx is high and DMA_Rgst is high, the
ATMizer 50’s DMA Engine is initiating a memory read
operation. If DMA RdWrx is low while DMA Rgst is high,
the ATMizer 50’s DMA Engine is initiating a memory write
operation. DMA_RdWrx remains valid throughout the entire
DMA operation.
DMA Drdy
DMA Data Ready - Output - Asserted High

Asserted by the DMA controller on memory write
operations when write data is valid on DMA Data(31:0).

DMA_RdWrAck
DMA Read/Write Acknowledgment - Input - Asserted High

During memory read operations initiated by the DMA
engine, external logic asserts DMA_ RdWrAck to indicate
that it has placed valid data onto DMA Data(31:0). The
DMA Engine samples the incoming data on the rising edge
of Clk if DMA_RAWrAck is asserted. During memory write
operations, an external device asserts DMA RdWrAck to
indicate to the ATMizer 50 that it has retired the present
write operation and is ready for the next address/data
pair. .

The ATMizer 50 will source the next address data pair
off of the rising edge of Clk if DMA RdWrAck is asserted
at the rising edge of Clk. Transactions can be extended
indefinitely by holding DMA RAWrAck deasserted.

If the acknowledged transfer was the last transfer of
the operation, DMA Rgst will be removed following the
rising edge of Clk. During both read and write operations
the DMA Engine will respond to DMA_RAWrAck by incrementing
the memory address by the appropriate number of bytes.
DMA OpEnding
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DMA Operation Ending - Output - Asserted High

Since the DMA controller 60 is capable of block
transfers of up to 64 bytes (16 words), the DMA_ OpEnding
signal is sourced during the last memory operation to
indicate to the outside world that the operation is in its
final transfer. This gives the memory controller warning

that the operation will end with the next DMA RdWrAck

returned to the ATMizer 50.

The memory controller can use this warning to gain an
early start on RAS precharge or to grant the bus to
another master on the next cycle. DMA OpEnding will be
removed following the rising clock edge upon which the
ATMizer 50 samples the final transfer acknowledgment
(DMA_RdAWrAck asserted) for the given DMA operation.

DMA AdrOEx .
DMA Address Bus Tristate Enable - Input - Asserted Low

When asserted (logical 0), the DMA Address(31:2)
outputs of the ATMizer 50’s DMA engine actively drive the
memory address bus. When deasserted (logical 1), the
DMA_Address(31:2) outputs are electrically isolated from
the memory address bus (tristated). Since the DMA engine
does not have an explicit DMA Grant input, external logic
can "Grant" the bus to the ATMizer 50 by turning on its
address and data outputs.

DMA DataOEx
DMA Data Bus Tristate Enable - Input - Asserted Low

When asserted (logical 0), the DMA Data(31:0) outputs
of the ATMizer 50 actively drive the memory data bus.
When deasserted (logical 1), the DMA Data(31:0) outputs
of the ATMizer 50 are electrically isolated from the .
memory data bus (tristated). The ATMizer 50 will not
drive the DMA_Data bus during read operations so the value
of DMA DataOEx during read operations is a "don’t care".
DMA Address(31:2)

DMA Memory Address Bus (31:2) - Output

The DMA Engine sources memory addresses on this bus

during DMA operations. These memory addresses can be used
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to access memory systems or memory mapped devices giving
the ATMizer 50 accessibility to all system components.

The ATMizer 50’s DMA Engine always increments the
DMA Address in response to DMA_RdAWrAck except on the last
word of a DMA transfer. DMA Address(31:24) is not incre-
mented. Therefore, it is important that user firmware not
initiate DMA operations that cross 16 megabyte boundaries.
DMA Data(31:0)
DMA Memory Data Bus (31:0) - Bidirectional

During memory read operations, the DMA Engine samples
DMA Data(31:0) on each rising edge of Clk for which
DMA_RAWrAck is asserted. During memory write operations
the DMA Engine sources data onto DMA_Data(31:0). DMA -
DataOEx should be asserted during memory write operations.

On Write operations the DMA Engine responds to
DMA RdWrAck by sourcing data for the next transfer onto
DMA_Data(31:0). DMA Data(31:0) is not changed following
acknowledgment of the last transfer of the DMA operation..
DMA BMask(0:2)
DMA Write Data Bus Byte Masks - Output - Asserted High

On Write transfers, the DMA engine asserts one or more
of the DMA_ BMask outputs to indicate which bytes contain
valid data that must be retired to memory. Only those
bytes should be written. DMA BMask(0) pertains to
DMA Data(31:24), etc.

The DMAC does not clip byte masks on the far side of
a word. For example at two byte write beginning at memory
byte offset 00 would result in DMA_BMask(0:3) being
asserted as 1111. A two byte Write operation beginning
at memory offset 01 would result in DMA_BMask(0:3) being
asserted as 0111l. A six byte transfer starting a memory
offset 10 would result in DMA BMask(3:0) being asserted
for the first word as 0011 and for the second word as
1111.

These examples show that the DMAC clips writes at the
beginning to prevent overwriting valid data in on a par-
tial word but does not (and need not in almost every
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system implementation) clip byte writes at the end of a
word. Therefore, DMA_BMask(3) is logically always as-
serted during writes and therefore need not be supplied.

External devices should operate as if DMA BMask(3) is
provided and always asserted on Write operations. On Read
transfers, DMA BMask(0:2) can be ignored. The accessed
device always sources all four bytes on Reads but only the
desired bytes are sampled and stored by the DMA Engine.
DMA_ GhostOp
DMA Ghost Write Operation - Output - Asserted High

In Scatter-Gather applications, it is possible that
a single SAR SDU may need to be built from more than one
memory based CS-PDU fragment and that one of the fragments
may not be of size divisible by four. The resulting
memory transfer operations may include non-aligned
transfers, throwing the CRC32 generator off.

In such situations, firmware should build the fragment
transition cell using as many DMA operations as necessary.
Once the SAR SDU is built in the VCR 56, a ghost write
operation is initiated by the APU 52 to transfer the SAR
SDU through the CRC32 generator. External circuitry,
seeing the DMA_GhostOp bit set, should ignore the transfer
except to provide the necessary number of DMA RdWrAck
assertions at the maximum rate possible to allow the DMA
interface to cycle through the data transfer in order to
calculate the CRC32 partial or final result.

DMA_ PLData
DMA Pipelined Read Data Indication - Input - Asserted High

Under normal operation, the data returned from nemory
during a memory Read transfer is sent directly into the
byte alignment circuitry prior to being latched. This
adds to the data-setup-to-clock requirement for
DMA Data(31:0) but also removes one cycle of latency from
the operation. External circuitry can opt to have the
data registered in the ATMizer 50 immediately to reduce
the setup requirement. This will add an additional cycle
of latency to the transfer.
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In such a scenario, the DMA_ RdWrAck must be withheld
for one cycle. Asserting DMA_PLData causes DMA_Data(31:0)
to be registered before entering the data alignment
circuitry. The resulting reduction in setup time will be
reflected in the timing section of the specification.
PARALLEL CELL INTERFACE 62

TERMINOLOGY

The "Parallel Cell Interface" (PCI) 62 is the ATMizer
50 functional block that interfaces to the ATM Port side
logic. Cells are created by the ATMizer 50 from memory
mapped CS-PDUs, Real Time Data Streams or from existing
memory resident cells. These cell are "built" in cell
holding areas inside the VCR 56. Once built they are
transferred to the Transmission Convergence Sublayer
framing circuitry one byte at a time through the PCI 62.

The PCI 62 contains special buffering circuitry to
de-couple the ATMizer 50’s system clock frequency from the
clock frequency required by the Transmission Convergence
Sublayer framing circuitry. The PCI 62 is driven by the
ATM line-derived byte clocks.

The ATMizer 50 is designed to calculate and source HEC
values in the fifth byte position of each cell. It is
also designed to generate IDLE cells when no valid
assigned cell is available for transmission. IDLE cell
generation can not be inhibited. IDLE Cells must be fully
ACK’ed out of the PCI 62.

In ATM, raw cell data is combined with certain
overhead information to form "transmission frames". The
logic that accomplishes this framing belongs to the
Transmission Convergence Sublayer. ATM supports framing
modes that insert several framing bytes per "transmission
frame". As a result bytes will be received that do not
correspond to data transfers between the TCS framing logic
and the ATMizer 50’s PCI ports.

As a result, data transfers to and from the ATMizer
50’s PCI Ports will need to be "Gappable". Therefore,
there must be a way to signal to the ATMizer 50 when no
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data transactions is desired. The two mechanism for
implementing this "Gapping" mechanism are:

1. Simply stop the PCI Port clock/s if a data
transaction is not required due to framing overhead.

2. Deassert PCI_TxAck or PCI_RcAck to indicate that
a data transaction is not required due to framing over-
head.

The former case corresponds to running the ATMizer
50’s PCI Ports off of "Gapped clocks". The latter corre-
sponds to running the ATMizer 50’s PCI interfaces off of
the free running line clocks and using a ""data ready"
mechanism"” to deal with gapping. Both approaches are
supported by the ATMizer 50.

SIGNALS - TRANSMIT
PCI_TxData(7:0)
Parallel Cell Interface Data for Transmission - Output

The ATMizer 50 sources byte aligned cell data onto
PCI_TxData(7:0). PCI_TxData(7:0) feeds the Transmission
Convergence Sublayer framing logic or, for 8B/10B encod-
ing, PCI_TxData(7:0) could feed the Taxi chip set direct-
ly. Logically, bit 7 is the first bit to be transmitted
over the serial line.

PCI_TxSync
Parallel Cell Interface Transmitter Synchronizer - Input -
Asserted High

PCI_TxSync is use to reset the state machines of the
Transmitter inside of the ATMizer 50’s Parallel Cell
Interface. Asserting PCI_TxSync will cause the Transmitter
logic to discard the current cell being transmitted and
begin sending the cell pointed to be the IDLE Cell Pointer
inside of the PCI Transmitter 62a.

PCI_BOC and PCI_IDLECell will both be asserted
following the removal of PCI_TxSync. If PCI_TxSync is
issued in conjunction with System reset (Resetx) then no
cell will be sent until the APU 52 enables the PCI Trans-
mitter 62a by setting the "Cell Available" field inside
of the ATMizer 50’s status register. Once the ATMizer 50
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has set this field, PCI_TxSync will result in the trans-
mission of the cell pointed to be the IDLE cell pointer.
The Transmitter synchronization process is completely
decoupled from both System reset (Resetx) and Receiver
reset (PCI_RcSync).

PCI_TxDrdy

Parallel Cell Interface Transmit Data Ready - Outpht -
Asserted High

PCI_Drdy is of significance after the transmitter has
been reset, either on System reset (Resetx) or on Trans-
mitter reset (PCI_TxSync). Upon leaving either of these
resets, data will become ready a number of cycles later
and the ATMizer 50 will assert PCI_TxDrdy and PCI_BOC to
indicate that external logic can sample PCI_TxData(7:0)
and issue a PCI_TxAck. External logic should not issue
PCI_TxAck prior to seeing PCI_TxDrdy asserted.

Once asserted, PCI_TxDrdy remains asserted until the
next System or Transmitter reset. This is a reflection
of the fact that the ATMizer 50 will always be ready to
source data on PCI_TxData(7:0) (Assigned or Unassigned
Cells) as long as the interface is operated at or below
25 MHz (PCI_TxClk frequency).

PCI_TxAck
PCI Transmitted Data Acknowledgment - Input - Asserted
High

PCI_TxAck is asserted by the Transmission Convergence

Sublayer framing logic when it has sampled the data value

on PCI_TxData(7:0). The ATMizer 50 responds to PCI_TxAck

by sourcing the next byte of the existing cell or the
first byte of the next cell (assigned or IDLE) onto
PCI_TxData(7:0).

If the next byte is the first byte of a new cell, the
ATMizer 50 will also assert PCI_BOC and possibly PCI_IDLE-
Cell in response to PCI_TxAck. PCI_TxAck allows the PCI
Transmitter 62a to operate in "Gappable" mode. The
ATMizer 50’s PCI Transmitter 62a can be gapped in two
fashions:
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1. PCI_TxAck is permanently asserted, PCI_TxClk is
occasionally shut off. ’

2. PCI_TxClk is free running. PCI_TxAck is deas-
serted if external logic is unable to sample the byte on
PCI_TxData(7:0) in a given cycle. This is the recommended
mechanism.

PCI_TxClk
Parallel Cell Interface Transmitter Clock - 1Input -
Signals sampled on “edge

The elastic byte buffer inside the Transmitter portion
of the ATMizer 50’s Parallel Cell Interface is driven by
PCI_TxClk. All data transfers from the ATMizer 50 over
PCI_TxData(7:0) are synchronized to this clock.
PCI_TxDrdy, PCI_BOC, and PCI_IDLECell are also synchro-
nized to this clock.

Logic inside of the ATMizer 50 handles synchronization
between the ATMizer 50’s system clock and the PCI Trans-
mitter 62a’s elastic data buffer circuitry which is.
sequenced off of PCI_TxClk. The system designer need not
worry about metastability at the Transmitter output.
PCI_TxClk is the byte clock of the external transmitter
and can be operated at any frequency less than or equal
to 25 MHz.

If external logic is not ready to sample PCI_TxData-
(7:0) on a rising edge of its byte clock, it can either
inhibit the rising edge from reaching PCI_TxClk or cause
the PCI Transmitter 62a to extend the current data cycle
by deasserting PCI_TxAck. The later is the preferred
approach. '

PCI_BOC
Beginning of Cell - Output - Asserted High

The PCI Transmitter 62a asserts PCI_BOC while the
first byte of a cell is sourced on PCI_TxData(7:0).
PCI_BOC is removed after the first PCI_TxAck is received
for a cell. PCI_BOC should be qualified with PCI_TxDrdy.
PCI_IDLECell
Idle Cell - Output - Asserted High
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The PCI Transmitter 62a asserts PCI_IDLECell during
the entire period that an IDLE cell is being sourced onto
PCI_TxData(7:0). (53 Bytes long). Transmission Conver-
gence framing logic that does not wish to transmit IDLE
cells must still assert PCI_TxAck until PCI_IDLECell goes
away. (i.e. it must "ACK" out the entire IDLE cell).

SIGNALS - RECEIVE
PCI_RcData(7:0)
Parallel Cell Interface Data for Reception - Input

The ATMizer 50 receives byte aligned cell data on
PCI_RcData(7:0). PCI_RcData(7:0) is fed from the Trans-
mission Convergence Sublayer framing logic or, for 8B/10B
encoding, PCI_RcData(7:0) could be fed from a Taxi chip
set directly. Logically, bit 7 is the first bit to be
received over the serial line.

PCI_RcSync
Parallel Cell Interface Receiver Synchronizer - Input -
Asserted High

PCI_RcSync is use to reset the state machines of the
Receiver 62b inside of the ATMizer 50’s Parallel Cell
Interface 62. Asserting PCI_RcSync will cause the Receiver
logic to discard the current cell being received and
proceed as if the next byte of data latched into the
ATMizer 50 (PCI_RcAck asserted on rising edge of PCI_-
RcClk) is the first byte of a cell.

PCI_RcSync is used during the cell boundary delinea-
tion process. External logic (or the ATMizer 50’s APU 52
with a bit of creative design work) assumes a cell bound-
ary and synchronize the ATMizer 50’s receiver. Logic then
monitors the ATMizer 50’s PCI_HECError output. If HEC
errors continue, it is assumed that a wrong cell boundary
was chosen. External logic can then "slip a byte" and
reassert PCI_RcSync. Eventually, this logic will yield
a correct choice for cell boundary and PCI_HECError will
no longer be asserted. The Receiver synchronization
processes is completely decoupled from system reset and
from the Transmission process.
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PCI_RcAck
PCI Receive Data Acknowledgment - Input - Asserted High

PCI_RcAck is asserted by the Transmission Convergence
framing logic when it has sourced data onto PCI_RcData-
(7:0). The ATMizer 50 responds to PCI_RcAck by sampling
PCI_RcData(7:0) on the rising edge of PCI_RcClk.
PCI_RcAck allows the PCI Receiver 62b to operate in
"Gappable" mode. The ATMizer 50’s PCI Receiver 62b can
be gapped in two fashions.

1. PCI_RcAck is permanently asserted, PCI_RcClk is
occasionally shut off.

2. PCI_RcClk is free running. PCI_RcAck is deasserted
if external logic is unable to supply a byte on PCI_-
RcData(7:0) in a given cycle. This is the recommended
mechanism.

PCI_RcClk
Parallel Cell Interface Receiver Clock - Input - Signals
sampled on “edge

The elastic byte buffer inside the Receiver 62b of the
ATMizer 50’s Parallel Cell Interface 62 is driven by
PCI_RcClk. All data transfers to the ATMizer 50 over
PCI_RcData(7:0) are synchronized to this clock. Assertion
of the PCI_HECError output is synchronized to this clock.
Logic inside of the ATMizer 50 handles synchronization
between the ATMizer 50’s system clock and the PCI’s
Receive data buffer circuitry powered by PCI_RcClk.

The system designer need not worry about metastability
at the Receiver input. PCI_RcClk is likely to be the
clock derived from the line data and can be operated at
any frequency less than or equal to 25 MHz. If external
logic is not ready to source PCI_RcData(7:0) on a rising
edge of its byte clock, it can either inhibit the rising
edge from reaching PCI_RcClk or simply deassert PCI_RcAck.
PCI_HECError
HEC Error - Bidirect - Asserted High

PCI_HECError acts as an output when HEC generation is
enabled and as an input when HEC generation is disabled.
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The ATMizer 50 asserts PCI_HECError when the HEC field
(byte 5 of a cell) received does not equal the HEC field
calculated by the ATMizer 50 for the ATM Header received.
W.:en HEC generation is disabled, the ATMizer 50 checks the
state of HEC Error while processing the first byte of a
SAR PDU. If PCI_HECError is asserted, external logic has
found an HEC error and the cell will be discarded.
PCI_RcBuffHalf
Received Cell Holder Buffer Half Full - Output - Asserted
High The ATMizer 50 asserts PCI_RcBuffHalf whenever the
Received Cell Buffer is at least half full (based on its
sized as set in the System Control Register). External
circuitry can use this signal to know when to transfer
cell buffering to a byte wide off chip SRAM operating as
a FIFO and when to start reading stored cells back out of
the SRAM and writing them back into the ATMizer 50.
PCI_RcBuffOver !
Received Cell Holder Buffer Overflow - Output - Asserted
High

The ATMizer 50 asserts PCI_RcBuffOver whenever the
internal Received Cell Buffer in the VCR 56 overflows.
The PCI will stop writing new cells into the VCR 56 once

the buffer fills and will simply discard any new cells

that the Transmission Convergence framing logic attempts
to write into the Receiver in the PCI.
PARALLEL PORT 64
SIGNALS

PP_Address(3:0)
Parallel Port 64 Address - Output

Set by the APU 52 on Parallel Port 64 Read and Write
Transfers. Bits (5:2) of CPUAddress(3:0) are latched and
sourced on PP_Address(3:0) during parallel port read and
write operations. ‘
PP_Data(7:0)
Parallel Port 64 Data - Bidirectional

Sampled by the APU 52 on Parallel Port 64 Read
transfers. Sourced by the APU 52 on Parallel Port 64
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Write transfers. The Parallel Port 64 contains a one deep
write buffer that drives PP Data(7:0) during Write
transfers.
PP_Rgst
Parallel Port 64 Request - Output - Asserted High

Asserted by the ATMizer 50 when it has sourced a valid
address on PP_Address(3:0) and wants to perform a transfer
using the parallel port.
PP_RdWrx
Parallel Port 64 Read/High, Write/Low - Output - High/Rd,
Low/Wr

Used to qualify PP_Rgst. If PP_RdWrx is high while
PP_Rgst 1is asserted, the ATMizer 50 is requesting a
Parallel Port 64 read operation. If PP_RdWrx is low while
PP_Rgst 1is asserted, the ATMizer 50 is requesting a
Parallel Port 64 write operation. The Parallel Port 64
will automatically disable the data output drivers on Read
Operations.
PP_AdroOEx
Parallel Port 64 Address Tristate Enable - Input - As-
serted Low

When asserted, the PP_Address(3:0) drive the Parallel
Port 64 Address bus. When deasserted, PP_Address(3:0) is
electrically isolated from the bus (tristated). PP_AdrOEx
should be deasserted if the Parallel Port 64 Address Bus
has been granted to an external device.
PP_DataOEx
Parallel Port 64 Data Tristate Enable ~ Input - Asserted
Low

When asserted, PP_Data(7:0) actively drive the
Parallel Port 64 Data bus. When deasserted, PP_Data(7:0)
is electrically isolated from the bus (tristated).
PP_Data(7:0) is automatically deasserted by the Parallel
Port 64 during Read operations. The state of PP_DataOEx
is a "don’t care" during Read operations. It should be
driven Low by external 1logic during ATMizer 50 Write
transfers over the parallel port.
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PP_RAWrAck
Parallel Port 64 Read/Write Acknowledgment - Input -
Asserted High

External logic asserts PP_RdWrAck during a Parallel
Port 64 Read operation when it has placed valid data on
PP_Data(7:0). External logic can extend a read access
indefinitely by withholding PP_RdWrAck. Withholding
PP_RdWrAck will force the APU 52 to stall until PP_RdAWrAck
is asserted. External logic also must assert PP_RdAWrAck
in response to a Parallel Port 64 Write operation.

External logic asserts PP_RAWrAck once it has retired
the Write data sourced on PP_Data(7:0). After queuing a
write transfer to the write buffer in the parallel port,
if the APU 52 attempts a second Parallel Port 64 operation
before PP_RAWrAck is asserted it will enter a stall cycle
until PP_RAWrAck is asserted.
MESSAGING

SIGNALS

ATMizer 50_Int
ATMizer 50 Interrupt - Input - Asserted High/Level Sensi-
tive

External logic asserts ATMizer 50_Int when it wishes
to gain the attention of the APU 52. Reasons to gain APU
52 attention include message passing (i.e. configure
Transmit Channel, Activate CS-PDU segmentation, Change
Pacing Rates, etc.) and other user defined constructs.
The actual usage of this input is entirely user program-
mable. ATMizer 50_Int is not an interrupt in the classic
sense.

Instead, it is connected to CpCond0 of the APU 52.
APU 52 firmware can sample this signal whenever it wishes
to determine if the host desires communication with the
APU 52. Branch on CpCond0 TRUE, will allow the ATMizer
50 to sense this signal. If asserted, the ATMizer 50 can
then read a value off of the Parallel Port 64 to get an
indication of why the host asserted ATMizer _Int.

In fact, a messaging system can be designed by the us-
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.er/system architect whereAthe eight bit value could act

as an index to a jump table, thus encoding the action to
be taken directly in the message.

Host_Int

Host Interrupt - Output - Asserted High

The ATMizer 50 asserts Host Interrupt when it wishes
to affect an action by the host. The usage of this signal
is user defined but is likely to be used as part of the
messaging system. Error conditions, congestion problems,
CS-PDUs reassembled, and other conditions may prompt the
APU 52 to seek host action. The ATMizer 50’s APU 52
asserts Host_Int by writing to an on-board register.
Host_Int remains valid for only one cycle and must be
latched by external logic.

GP_Intl, GP_Int2
General Purpose APU 52 Interrupts 1 and 2 - Input -
Asserted High

GP_Intl is connected to APU 52 interrupt 3, GP_Int2
is connected to APU 52 interrupt 4. Software running on
the APU 52 can choose to disable or enable interrupts as
necessary.

GENERAL SIGNALS
SIGNALS
PRU_CountDisable
Pacing Rate Unit Count Disable - Input - Asserted High

The down counters associated with the eight "Peak Rate
Pacing Counters" (PRPCs) 58a count down one tick every
System Clock tick (Clk). External logic can slow or
inhibit the counting process by asserting PRU_Count-
Disable. Asserting PRU_CountDisable prior to the rising
edge of Clk prevents the PRPCs 58a from counting down on
that clock tick.

This feature can be used creatively in DS1/Real Time
circuit emulation situations as a short cut mechanism for
informing the ATMizer 50 that a 47 byte payload has been
received and is ready for transmission. For a PRPC (Peak
Rate Pacing Counter) 58a to be inhibited by PRU_Count-
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Disable, it must have been configured to be sensitive to
the state of this bit. Otherwise, the PRPC 58a will ignore
PRU_CountDisable.
Clk
System Clock Input - Input

The Clk input runs the ATMizer 50 APU 52, DMA Con-
troller 60, Parallel Port 64 and much of the logic in the
Parallel Cell Interface 62. Clk does not however effect
the transfer of byte data to or from the ATMizer 50 over
the Parallel Cell Interface. These transaction are
controlled by PCI_TxClk and PCI_RcClk. Supported fre-
quencies on Clk are expected to be 33, 40 and 50 MHz.
16.5, 20 and 25 MHz memory systems can be supported by
running the ATMizer 50’s DMA interface at 1/2 frequency
(assert'DMA_RdWrAck.every other cycle).
Resetx
System Reset - Input - Asserted Low

This is the master reset for the ATMizer 50. External
logic should download firmware to the ATMizer 50 during
reset. Reset also causes the PCI Transmitter 62a and
Receiver 62b to be reset. PCI_TxDrdy will go 1low in
response to reset and stay low until the APU 52 queues a
cell for transmission.
Resetlx
LAC and MAC Reset - Input - Asserted Low

Resetlx is used to reset the circuitry involved in
downloading user firmware into the IRAM 54. It should be
deasserted prior to beginning the process of writing
firmware into the IRAM 54. Resetlx sets the Local Address
Counter and Memory Address Counter and Registers to zero.
These counters are then incremented each time DMA_RdWrAck
is asserted.
12.0 ATMizer 50 Interface Timing _

A timing diagram for the ATMizer 50 interface is
collectively illustrated in FIGs. 28a to 28g.

FIG. 28a is a diagram listing the interfacing timing
signals. FIGs. 28b and 28c illustrate the PCI Transmitter
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62a Synchronization. FIG. 28d illustrates a DMA write
operation. FIG. 28e illustrates a DMA read operation.
FIG. 28f illustrates a Parallel Port 64 write operation.
FIG. 28g illustrates a Parallel Port 64 read operation.

An Ethernet controller 80 embodying the present
invention is illustrated in FIG. 29, and is fabricated as
a single integrated circuit chip on a substrate 82. The
controller 80 comprises a plurality of network interface
units or cores 84, which can be operated separately or
interconnected at one end, as illustrated, to form a hub.

The cores 84 are synchronously driven from a clock
unit 86, which includes a phase locked loop PLL frequency
multiplier 88. A 10 MHz input signal from a system master
clock (not shown) is applied to one input of a phase
comparator 90 of the multiplier 88, the output of which
is fed through a loop filter 92 and voltage controlled
oscillator (VCO) 94 to a buffer 96. The scale factor of
the PLL multiplier 88 is selected to be eight, whereby the
frequency of pulses output from the VCO 94 to the buffer
is 80 MHz.

The output of the buffer 96 (80 MHz clock pulses) is
applied to an 80 MHz clock input of the first or leftmost
core 84. Each core 84 comprises an internal voltage
divider (not shown) which divides the 80 MHz signal by 2,
4 and 8 to produce 40, 20 and 10 MHz clock pulses at
outputs thereof. The pulse outputs of the first to third
cores 84 are applied to the pulse inputs of the second to
fourth cores 84 respectively.

The 10 and 20 MHz outputs of the fourth core 84 are
connected to the 10 and 20 MHz inputs of the first core
84 through buffers 98 and 100 respectively. The output
of the buffer 98 is applied to the other input of the
phase comparator 90 to complete the phase locked loop.

As illustrated in FIG. 30, each core 84 comprises a
media access controller (MAC) 102 including the elements
enclosed in a dashed line box, and a serial interface
adaptér (SIA) 104 including the other elements illustrated
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in the drawing. The MAC 102 is connected externally
through lines which are collectively designated as 106,
whereas the SIA 104 is connected externally through lines
which are collectively designated as 108.

The cores 84 can be used independently of each other,
with the lines 106 leading to individual units such as
computer workstations. However, the controller 80 is more

~useful with the lines 106 interconnected as illustrated

in FIG. 29 to form a hub. The lines 106 can be further
connected to another network eiement such as a router (not
shown) . The lines 108 are connected to other network
elements through Ethernet interfaces which are not shown
in the drawing.

The entire controller 80 is fabricated on a single
integrated circuit chip, with the cores being clocked
synchronously by the clock unit 86. This forces the
individual cores 84 to transmit and receive data in a
synchronous manner through the 1lines 106 in the hub
configuration, and enables a router or other element which
is connected to the network node constituted by the
interconnected lines 106 to operate in a periodic manner
which is much more efficient than if the cores 84 were
attempting to communicate through the lines 106 in an
unsynchronized manner at random intervals. This latter
operation would occur if a separate clock unit were
provided for each core 84, and each core 84 was clocked
independently as in the prior art.

The present arrangement by which the cores 84 are
integrated on a single integrated circuit chip and driven
synchronously by a single clock unit 86 is advantageous
in that only one clock unit 86 is required, rather than
a clock unit for each core, and the that the synchronous
operation greatly facilitates the smooth operation of the
controller 80 when operated as a hub.

As illustrated in FIG. 30, each core 84 is configqured
to provide the functionality stipulated by IEEE standard
802.3. Ethernet is a network protocol embodying this
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standard, which is more generically referred to as Carrier
Sense with Multiple Access and Carrier Detect (CSMA/CD).

An input data signal DATA IN enters the SIA 104
through a data input line 110 which is connected to a link
test unit 112, a squelch unit 114 and a phase locked loop
unit 116. The link test unit 112 generates a LINK signal
on a link test line 113 which indicates whether or not the
core 84 is connected correctly in circuit. The squelch
unit 114 distinguishes a valid DATA IN signal from noise,
and provides an output to a carrier deference unit 117
which is connected to a transmit engine 118.

A collision signal COL is fed through a collision
signal line 120 and a collision squelch unit 122 to a
transmit backoff unit 124, the output of which is applied
to the transmit engine 118. The PLL unit 116 generates
a PLL signal on a PLL line 126 which indicates that the
PLL unit 116 is locked on a signal.

The DATA IN signal is locked by the PLL unit 116 and.
applied to a receive engine 128, which receives a receive
signal REC on a line 129. A receive CRC unit 130 performs
cyclic redundancy checks on data in the receive engine
128, whereas a transmit CRC unit 130 perfofms this
function on data in the transmit engine 118.

Data from the transmit engine 118 is fed through an
encoder 136 to a data output line 138 as a data signal
DATA OUT. Data enters the transmit engine as a signal
XMIT on a transmit line 140. The lines 110, 120 and 138
constitute the line 108, whereas the lines 113, 126, 129
and 140 constitute the line 106.

Data applied to the XMIT line 140 is received by the
transmit engine, encoded by the encoder 136 and transmit-
ted out through the line 138. Data received on the line
110 is decoded by the PLL unit 116, and fed out by the
receive engine 128 through the line 129. If the line 108
is busy, as indicated by a DATA IN signal on the line 110,
the carrier deference unit 117 inhibits the transmit
engine 118 from transmitting data until the line is clear.
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The transmit backoff unit is responsive to a collision
signal COL on the line 120, which indicates that two or
more units are attempting to transmit on the network at
the same time. In response to the signal COL, the
transmit backoff unit 124 executes a truncated exponential
backoff algorithm as specified in IEEE 802.3. This
algorithm utilizes a pseudo random number generator to
generate a random number which designates a backoff time,
or a time for which the transmit engine 118 should wait
before attempting transmission.

If all of the cores in the network utilize the same
type of pseudo random number generator, they will generate
the same sequence of random numbers. If the random number
generators of two or more cores become synchronized with
each other, they will cause the associated cores to back
off by the same times. This will cause the cores to
continuously attempt to transmit at the same times. This
condition is called "lockup", and can result in the cores
generating collisions indefinitely, preventing any data
from being transmitted over the network.

This problem is overcome by employing a pseudo random
number generator 142 in the transmit backoff unit 124 as
illustrated in FIG. 31. The generator 142 comprises a
linear feedback shift register 144 including 25 flip-flops
146 which are synchronously clocked by a 10 MHz clock
signal. Further illustrated is a chip reset signal which
can be applied to reset all of the flip-flops 146. The
flip-flops 146 are designated in the drawing as stages BIT
0 to BIT 24.

The flip-flops 146 are connected in a ring, with the
outputs of upstream flip-flops 146 being connected to the
inputs of the adjacent downstream flip-flops 146. The
output of the 25th flip-flop 146 (BIT 24) is connected
through an exclusive NOR gate 148 to the input of the 1st
flip-flop 146 (BIT 0).

The shift register 144 has two modes of operation,
each operating on a division ratio of 33,554,431, (2% -
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1). In each mode, the shift register 144 generates the
same random numbers, but in different orders. The first
mode appears at the output of the 18th shift register 146
(BIT 17), whereas the other mode appears at the output of
the 22nd shift register 146 (BIT 21). These mode outputs
are connected to signal inputs of a multiplexer 150, the
output of which is connected to another input of the gate
148.

Each data packet being transmitted by the transmit
engine 118 has a header including a serial address. This
address is applied serially (bit by bit) to an input of
an AND gate 152, the output of which is connected to a
switch input of the multiplexer 150. The AND gate 152 is
enabled by a TRANSMIT signal which is generated in the
transmit backoff unit 124.

When the bit of the serial address being applied to
the multiplexer 150 is high, the multiplexer 150 will
switch or gate the BIT 17 mode signal through the gate 148
to the BIT 0 input of the shift register 144. When the
bit is low, the multiplexer 150 will gate the BIT 21 mode
signal to the input of the shift register 144. }

In this manner, the random number generatof 142 is
repeatedly switched between its two operating modes, in
accordance with the logical sense of the individual bits
of the serial packet address, thereby increasing the
randomness of the random numbers produced by the generator
142 by an enormous factor. This reduces the possibility
of two or more cores attempting to transmit data after
waiting the same backoff time after a collision to such
a low level that it can be assumed for practical purposes
that this condition and the resulting network lockup will
never occur.

FIG. 32 illustrates a single chip device which can be
configured as a hub, a bridge or a router depending on the
types of interface units provided. As illustrated, a
single chip router 200 comprises a filter engine 202, a
RISC CPU 204, an instruction RAM 206, a packet data RAM
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208, a direct memory access controller 210, a window
filter 212, a plurality of packet attribute buffer memo-
ries 214, a plurality of LAN media access interface units
216 and a WAN interface unit 218. The router 200 can be
converted to a hub by omitting or not using the WAN
interface unit 218. These units are interconnected as
illustrated in the drawing.

Each interface unit 216 comprises a buffer 220, a
media access controller 222, an encoder/decoder 224 and
a 10BaseT interface 226. The interface unit 218 comprises
a buffer 228, a serial controller 218, a framer 232 and
a serial interface 234.

The CPU 204 controls all processing of data packets
in the memory RAM 208 including segmentation, reassembly,
routing, address hashing and address filtering. The CPU
204 also utilizes the DMA controller 210 as a slave
resource for transferring data packets from the memory 208
to and from the interfaces 216 and 218 using scatter and
gather techniques. The instruction RAM 206 stores an
operating program for the CPU 206 in volatile or non-
volatile memory.

The packet attribute buffers 214 store attributes of
packets which are accessed using the packet addresses.
The filter engine 202 and CPU 204 perform a non-linear
hashing algorithm on the packet addresses for accessing
the corresponding attributes in the buffers 214 with
reduced processing time and hardware. The window filter
212 further facilitates attribute access by examining only
predetermined portions of the addresses rather than the
entire addresses.

The combination of the non-linear hashing function and
the window filter enable the router 200 to be fabricated
on a single chip, eliminating the problems with external
memory access and latency which plague the prior art.
These functions enable the data packets to be stored in
the on-chip data RAM 208, rather than in external CAM
memory as in the prior art.
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Typical Network topologies today make extensive use
of Local Area Network (LAN) traffic and "routing" of such
LAN traffic over a Wide Area Network (WAN). The node
devices provide a desktop or terminal interface for
traffic at speeds of up to 100 mbps. These nodes may be
linked together or individually instantiated. The linked
units are typically 30 to 50 per 1link, sharing the band-
width of an individual "port" or Media Access Controller
(MAC) and thus operating at a lower throughput due to
shared bandwidth.

The hub provides the concentration and decision point
for network traffic that must be passed between
"segments", with each segment being represented by a
unique port on the "port" or local side of the hub. The
hub decides whether to forward a packet to another node
or out of the WAN port based on the attributes of that
packet, or whether to "drop" if the address is a local one
and will be therefore picked up by another node on that
same segment.

Typical hub operation is therefore known as "physical
layer" passthrough, as it simply works at the physical
wire 1level, moving LAN mode traffic from physical
interface to physical interface as needed, wave shaping
the signal and amplifying it if necessary.

The topology of providing a single node per MAC and
switching this traffic through the hub provides full
bandwidth for that node, significantly improving perfor-
mance for that individual node over conventional shared
MAC topologies. By dedicating the Media Access Controller
to the port and providing for a single address and packet
switching fabric, a substantial performance gain can be
attained.

A hub can terminate dozens of segments, however, each
representing 30 to 50 nodes, with each node being
identified by a unique 48 byte static address. As such

' the range of each address is 2%, and the number of ad-

dresses terminated on a hub could be on the order of
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1,000. This traffic level can corngest a node to the point
of saturation in a populated LAN environment. By
filtering LAN segment addresses and only passing through
those as required to other segments, bridging can be
performed, greatly reducing traffic on each segment. This
process operates at the "data 1link" layer of the O0SI
network model and involves learning the LAN topology in
address tables and deciding on whether to pass a packet
through a bridge point, as it is destined for some other
segment, or dropping it, as it is destined for another
user on the same local segment.

The nodes can represent various types of LAN traffic
or communications standards, all terminating on the hub.
Typical LAN protocols include Ethernet (IEEE 802.3) and
Token Ring (IEEE 802.5).

These LAN standards must often be routed out of the
WAN to reach a remote hub or node, by utilizing a process
known as routing. This process involves the following:

1. Mapping the LAN packet into a desired outgoing
port format.

2. Attaching a routing address to the final desti-
nation.

3. Attaching an intermediate address to the next node
in the mesh that represents the optimal intermediate path
to reach that node.

This process is currently accomplished by multi-
protocol routers at the Network Layer, requiring substan-
tially higher processing power than the hub or bridge.
The entire process is reciprocated in the reverse direc-
tion. |

Packet processing, address filtering and destination
routing all require a central processing unit. In accor-
dance with the present invention, these functions are
integrated on a signal chip. A single chip router or hub
embodying the present invention includes the following
elements.

A high performance RISC CPU 204 which operates at a
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speed of greater than 5\40mips. ‘

Multiple media access controllers 216 with full
interface connectivity.

A direct memory access controller 210 with a Linked-
List capability.

Wide area network ports 218.

A packet cache memory 208.

A packet address memory 214 with a non-linear search
mechanism (hash/window filter.

A packet attribute table with learning capability.
SINGLE DEVICE IMPLEMENTATION - ELIMINATION OF DISCREET
PERFORMANCE BOTTLENECKS

A hub or router conventionally comprises a LAN I/O
subsystem, a WAN/ I/O subsystem, DAM controller, central
processing unit (CPU) and buffer memory all connected to
a common system bus. The primary bottleneck is the packet
memory and I/O subsystem 1latency. In order to move
traffic into and out of the CPU, the latencies are
introduced by chip to chip and memory delays. In order
to quickly assembly and disassembly the various packet
structures provided by these multiple standards, the CPU
must move traffic from the I/O subsystem to and from
buffer memory and perform a variety of bit level manipu-
lations on the traffic. This is the secondary bottleneck
in the conventional router architecture.

The incoming source and destination addresses must be
matched with a filter/forward tree, and other attributes
pertaining to security, protocol type, speed, etc. must
be obtained. These can be done in a linear fashion at
considerable time expense, or with a complex mechanism of
Content Addressable Memories (CAM). Since the performance
advantage obtained by embodying the entire system in a
single chip is substantial, bringing this mechanism on-
chip would be required.

This is not technically feasible. RISC architectures
can be utilized to improve the overall CPU performance,
but the ability to bring the packet memory on-chip with
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a more efficient packet access structure eliminates the
latencies associated with off-chip packet access in
conventional DRAM technology. By also accommodating the
I/0 subsystem and memory controller, external accesses are
virtually eliminated, significantly improving packet
throughput.

' ATTRIBUTE LOOK-UP/DECISION MAKING

Once a network configuration is learned by a typical
router, the requirement to manipulate the entire address
field is seldom required. As a matter of fact, of the 48
bits of address, as few as 12 bits need be processed. By
using a variable window filter on the packet memory, the
access time for channel or packet attributes can be
further reduced.

The nodes or segments terminating on a hub are similar
in location, user group and/or matching type. By
recognizing the fact that these address fields will be
similar in some respects, particularly in the most sig-
nificant bit fields, it is possible to substantially
reduce the attribute look-up time by using the variable
width window filter on the special RAM structure as
illustrated in FIG. 33. This provides an entire rout-
ipg/bridging/filter decision to the CPU in the form of a
comprehensive control word.

DYNAMIC WINDOW FILTER

A typical Data Link Layer Frame Format in the Ethernet
format consists of destination, source, type, data payload
and frame check sequences. The window filter finds the
maximum common address range for the active addresses
terminated on the device by parsing the source packet
address tables at network configuration and as a backup
task upon instantiation of a new address. Although this
procedure is time consuming for the first pass, it
substantially reduces packet attribute searches when done
in real time.

The filtering process typically starts at the most
significant bit first, and reduces the size of the window
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until a difference in incoming address bit field is found
(FIG. 33). The architecture does not require a separate
memory for packet addresses, as this would consume con-
siderable space on the device. Instead, the packet window
filter adjusts to the minimum size as incoming packet
addresses are passed through the device. This packet
address table can be stored off-chip in less costly DRAM
for background access and window filter setup. This
window filter feeds the hash-function dynamically or as
instructed by the CPU. This function utilizes the Packet
Attribute memory by configuring it for the parameters
required.

In the dynamic mode of operation, source address
windows can be reduced from the 48 bit field to a consid-
erably smaller number of entries. In the example of FIG.
33, a 16 bit unique field is identified and the entire
Type field is utilized as the control word to instruct the
CPU what to do with the packet. The CPU decision can be
created while the packet payload is being streamed as
outlined by the command word in real time.

The actual filter algorithm is run on the CPU so as
to provide higher 1levels of flexibility in choosing a
particular algorithm for a specific network topology.

STATIC WINDOW FILTER

As outlined above, the dynamic window filter sizes
itself to the smallest least common address window size.
In specific routing or attribute environments, the window
can be programmed to be a fixed size to greatly improve
decision time. For example, encryptation or compression
of only addresses going to a certain destination range can
be triggered by filter memory locations based on a fixed
window. An example of a static window filter is
illustrated in FIG. 34, with an example of the operation
thereof illustrated in FIG. 35.

NON-LINEAR PACKET ATTRIBUTE LOOK-UP

Once the window size has been determined, access to

packet attributes can be accelerated by the use of a non-
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. linear algorithm running on the CPU. This also reduces

the size of the packet attribute memory, facilitating the
single chip solution. The CPU is passed a filter "key"
in the form of a window under examination and the CPU
implements the desired filtering in the form of a hashing
function. The CPU then provides the resultant address to
the packet attribute memory (PAM) for storage and subse-
quent retrieval.
CONTROL WORD PASS THROUGH

Instead of yielding a single decision as in a bridge
(drop of forward packet) or a routing decision outcome,
the entry in the PAM can provide a complete control word
to the CPU instructing it on what to do with the packet.

HIGH SPEED PACKET BUILDING/MEMORY FRAGMENTING

Using a DMA controller to build packets in memory or
move them quickly from one buffer location to another is
required. By construction, the present invention provides
the system design with all of the functionality needed to
implement a fully robust scatter-gather Device to Memory
interface. In the gather direction (during packet
building for transmission), the invention is capable of
generating cells from any number of separate data packets
in memory as if they were a single contiguous packet.

By doing so, the invention precludes the need for the
host processor to do a series of time consuming data
movement operations to form a contiguous packet in a local
buffer memory prior to initializing the transmit
operation. For example, in a TCP/IP application, the
TCP/IP header may reside in a different location within
host memory from the actual user packet data payload. In
addition, the actual packet data payload field may actu-
ally consist of a number of discontinuous pages of memory.
Because the invention supports "Gather" operations, there
is no need to move all of these data structures in advance
into a single packet.

The actual implementation of both scatter and gather
are defined in user firmware running on the RISC CPU 204.
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In general, the gather function can be implemented by
having the host processor pass to the invention a series

. of "Segment Packet Fragment" messages with the appropriate

user defined control structures. The RISC CPU 204,
recognizing that it is involved in a gather operation, is
programmed not to generate end of packet header fields at
the end of a packet fragment. It is also programmed to
understand how to resolve the arrival at an end of a:
packet fragment boundary (i.e. automatically resolve the
link list pointer or simply pass a message to the host
processor asking it to resolve the next pointer for it).

Packets under segmentation need not be contiguous in
system memory when using the invention. The segmentation
and reassembly routines, written by the system designer
and executed by the invention, can perform segmentation
on non-contiguous data structures that logically form a
single packet. This is what is commonly referred to as
the "gather" function of a scatter-gather DMA controller.
These user supplied routines handle packet and packet
header generation and extraction as well as link list
pointer management and buffer allocation. The implica-
tions of "scatter" and "gather" support, made possible by
the inclusion of a 32 bit RISC CPU 204, enable accelerated
packet building so as to eliminate the newly created
packet building/memory scatter bottleneck.

In specialty applications, the invention can also
perform the stripping of higher layer headers from incom-
ing packets and placing them in specific memory locations
to aid network software. 1In addition, the invention can
utilize the powerful byte alignment capabilities of the
DMA engine to ensure that the higher layer (Transport
Layer) is written into memory on a word aligned basis.
This releases application layer software from the respon-
sibility of ensuring proper data alignment.

FIGs. 36 and 37 are architectural examples of the
layout of components of a single chip router and a single
chip hub respectively which are fabricated on an integral
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substrate in accordance with the above described princi-
ples of the present invention.

While several illustrative embodiments of the inven-
tion have been shown and described, numerous variations
and alternate embodiments will occur to those skilled in
the art, without departing from the spirit and scope of
the invention. Accordingly, it is intended that the
present invention not be limited solely to the specifi-
cally described illustrative embodiments. Various modi-
fications are contemplated and can be made without de-
parting from the spirit and scope of the invention as
defined by the appended claims.
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WE CLAIM:

1. An adaptive error detection and correction
apparatus for an Asynchronous Transfer Mode (ATM) network
device, comprising:

a sensing unit for sensing a congestion condition
in said ATM network; and

a global pacing rate unit for adaptively reducing
a maximum allowable transmission ratio of ATM cells
containing information to idle ATM cells in response to
a sensed congestion condition.

2. An apparatus as in claim 1, in which the global

pacing rate unit comprises:

a global pacing rate register;

a processor for storing a number corresponding to
a relatively high maximum allowable transmission ratio in
the global pacing rate register in the absence of a sensed
congestion condition, and storing a number corresponding
to a relatively low maximum allowable transmission ratio
in the global pacing rate register in response to a sensed
congestion condition; and

a controller for adjusting said maximum allowable
transmission ratio in accordance with said number stored
in the global pacing rate register.

3. A programmable pacing rate apparatus for an
Asynchronous Transfer Mode (ATM) network device, compris-
ing:

a sensing unit for sensing a congestion condition
in said ATM network; and

a global pacing rate unit for reducing a maximum
allowable transmission ratio of ATM cells containing
information to idle ATM cells in response to a sensed
congestion condition.

4. An apparatus as in claim 3, in which the global
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pacing rate unit comprises:

a global pacing rate register;

a processor for storing a number corresponding to
a relatively high maximum allowable transmission ratio in
the global pacing rate register in the absence of a sensed
congestion condition, and storing a number corresponding
to a relatively high maximum allowable transmission ratio
in the global pacing rate register in response to a sensed
congestion condition; and

a controller for adjusting said maximum allowable
transmission ratio in accordance with said number stored
in the global pacing rate register.

5. An apparatus as in claim 3, further comprising:

a plurality of peak pacing rate counters which
reset to predetermined values upon decrementation to zero,
said predetermined values corresponding to service
intervals for segmentation of Conversion Sublayer Payload
Data Unit (CD-PDU)s; in which

the processor comprises means for assigning said
counters to selected CD-PDUs and sensing said counters to
determine whether or not segmentation of said selected CD-
PDUs is within said service interval respectively.

6. An apparatus as in claim 5, in which:
the processor further comprises means for
designating a plurality of CD-PDUs having similar charac-
teristics and causing said plurality of CD-PDUs to be
segmented simultaneously as a channel group.

7. An apparatus 6, further comprising a channel group
credit register having bits corresponding to the counters
respectively, said bits being set to a first logical sense
prior to segmentation of a channel group and being set to
a second logical sense upon decrementation of the
respective counter; in which

the processor comprises means for designating a
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.channel group as being credited for transmission if the

respective bit in the channel group credit register has
said second logical sense.

8. An apparatus as in claim 6, in which the processor
further comprises means for assigning priorities to
channel groups and causing channel groups to be segmented
in order of priority.

9. An apparatus as in claim 5, in which the processor
further comprises means for selectively stalling the
counters. '

10. An apparatus as in claim 5, in which the processor
further comprises means for combining two of the counters
in series for operation as a single counter.
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NIC
Transmit A
ransmi .
and T>?4Ct¢:rt\'r\::ls Memory 64 Rc Channels
Receive X Fragment X
Cell 16 Bytes Cache 8 or 16 Bytes
Holders
)
Fig.5a
Router
[ Transmit A
ransmi .
and Memory TzzéhAth?
Receive Frcgrr;]ent X mrannels
Cell Cache
Holders ' 16 Bytes
J
Fig.5b
- 32 bits > A Channel Parameter Entry

Channel Parameter Entry - Channel 0

/for a Receiver Channel

Channel Parameter Entry - Channel 1

AAL1 Channel Parameter Entry

Channel Parameter Entry - Channel 2

0000 "pry SR-HDR| DMA Address

Channel Parameter Entry - Channel 3

0004 ATM Header

VCR Based
(limited number of channels)
or

Main Memory Based
(unlimited number of channels)

ML5 Channel Parameter Entry

# Blocks | DMA Address
CRC32 Partial

0000
0004

Fig.7
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Transmit Cell Builder 3

Channel Group 6-VC/CSPDU 1

Channel Group 6-VC/CSPDU 2

Channel Group 6~VC/CSPDU 3

Channel Group 1-VC/CSPDU 1

Channel Group 6-VC/CSPDU 4

Channel Group 1-VC/CSPDU 2

Channel Group 1-VC/CSPDU 3

Channel Group 1-VC/CSPDU 4

AAL1 Real Time Channel 1

AML1 Real Time Channel 2

ML1 Real Time Channel 3

Channel Group 2-VC/CSPDU 1

ML1 Real Time Channel 4

Channel Group 2-VC/CSPDU 2

Channel Group 2-VC/CSPDU 3

Channel Group 2-VC/CSPDU 4

Available Buffer Lists
Statistics

Fig.6
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- 32 bits ->—<———— 32 bits -
) : A Channel Parameter Entry
0000 0003 | Channel Group 3-VC/CSPDU 1 }&

Received Cell Holder 1 Channe! Group 3-VC/CSPDU 2 AAL1 Cell Holder
003C 003F | Channel Group 3-VC/CSPDU 3 | 0000 ATM _Header |
0400 0403 | Channel Group 3-VC/CSPOU 4 | o00% SAR Har

Received Cell Holder 2 . 000C
007C 007F . oe L

0030
Channel Group 4-VC/CSPDU 1 | 0034
Channel Group 4-VC/CSPDU 2 gg;g Available
Channel Group 4-VC/CSPDU 3
Received Cell Holder 4/8/16 | Channel Group 4-VC/CSPDU 4
[ J
. AALS Cell Holder
IDLE Cell Holder 0000 ATM Header
Channel Group 5-VC/CSPDU 1 | 0004
Channel Group 5-VC/CSPDU 2 %
Transmit Cell Builder 1 Channel Group 5-VC/CSPDU 3 .o e o0
| Channel Group 5-VC/CSPDU 4 0030
0034
Transmit Cell Builder 2 * 0038 Available
o 003C

AL1 Channel Parameter Entry

0000 [pry SR-HDR] DMA Address
0004 AN Header

ML5 Channel Parameter Entry

0000 DMA Address

0004 ATM Header
CRC32 Partial

Byte Count | Control

Max Burst Len
CS-PDU Priori
(next entry)
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580\ Global Pacing Rate Register
S 7171(11111]0|0|0]0}0

50% Information rate

L]

Assigned | Assigned | Assigned | Assigned | IDLE IDLE IDLE IDLE
Cell Cell Cell Cell Cell Cell Cell Cell

58°‘\Global Pacing Rate Register
7T1{o{1]{ol[1]ol1T0]o

50% Information rate

Assigned | IDLE | Assigned | IDLE | Assigned | IDLE Assigned | IDLE
Cell Cell Cell Cell Cell Cell Cell Cell

Fig.9

Channel Group Credit Register Bit 0 Set= Peak Pacing Rate Counter O Expired
7/6(5])4]|3|2|1]0| Bit1 Set=Peak Pacing Rate Counter 1 Expired

(58b -0 Al bits cleared on system reset
Fig.10

Store Word; SW rt, offset(rb)

31 26 25 21 20 16 15 0
Sw base adr reg| dato reg signed imed address offset
10101 rb rt offset
Fig.12
3130 29 242322212019 16 15 12 11 2 10
LO |TLC(<64 bytes) G|D LAC (VCR Start Address)

XX | xxxxxxxx | oo |x|x| 199 | 5ppo XXXXXXXXXX 00

Effective Address Field Settings for Write to DMA Control Registers/Counters

Ea(31:30) written into LO

Ea(29:24) written into TLC

Ea(21) written into Ghost Register

EaéZO) written into DMA Operation Direction Register

Ea(19:16) = 0100 targets the DMA Control Registers/Counters

Ea(11:2) written into LAC

Rt(31:24) written into MAR, Rt(23:2) written into MAC, Rt(1:0) written into the MOR

Fig.13
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31 2019 16 15 0
000000000000 | 2101 0000000000000000

Effective Address Field Settings for Rd/Mr the DMA's CRC32 Partial Results Register

Ea(19:16) = 0101 targets the DMA's CRC32 Partial Results Register
Rt(31:0) written into CRC32 Partial Register(31:0) during Store Word execution
CRC32 Partial Register(31:0) loaded into Rt(31:0) during Load Word execution

Fig.14

Host Interface

Terminations

and switchingj-l

BusGrant

ATMAzer
ATMInt
R TxData
8

1

(50

ata

Adr Rd/Wrx
BusReq
. BusGrant
1Zer
ATMInt
TxData
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Clock
ATMizer_Int

PRU_CountDisable

GP_Int1
GP_Int2

Resetx
Reset1x

Host_Int

PP_RdWrAck

12/32

SysClkFreq
f——

__Lj_{U1 J S I I I

gp1

asynchronous assertion synchronous 'deassertion
A\ I Vi ap4

gp3

gp2 7

Tristate Operation on Reads

The DMA Engine will turn off its DMA_Data(31:0) drivers during memory read
operations. The Drivers begin to shut off automatically (Pt a) following the
rising edge of the clock that sources DMA_Rqst. At this point the state of
DMA_DataOEx is a don’t care. The DMA_Data(31:0) drivers will tum back
on in the cycle following the cycle during which DMA_Rgqst is driven low.

External circultry can keep DMA_Data(31:0) from driving the bus by deasserting
DMA_OEx.

PtA — The ATMizer drives DMA_Data and DMA_DataP.

PtB — In response to the execution of a DMA Read operation, the ATMizer
stops driving the DMA_Data bus.

PtC — Extemnal circuit begins to drive DMA_Data(31:0); although with
unknown data to start.

PtD — The DMA Read operation complete, external logic stops driving
DMA_Data(31:O§. If DMA_DataOEx is asserted, the ATMizer will
begin driving the data bus as shown at PtE.

Fig.18

System Control Register

24 23 22 21 20 18 16 15 0

31 30 29
Cell CTR|CTR Buffer
Rsrvd Size 67 | a5 DH | CR Size Reserved

Fig.19
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'

[Check for Receive Cell Indication]

CPCond1 asserted by PCl
Branch on CPCond1 True

CPCond1 True

#

Reassembly CPCond1 False
Routine

Y
[Check for Host Message Indicotion]

CPCond0 asserted by Host
Branch on CPCondQ True

CPCond0 True

'

[ Messaging J CPCond0 False |

Routine

Y
[ Check for Transmit Request ]

CPCond2 asserted by PRU
Branch on CPCond2 True

CPCond2 True

‘ CPCond2 False

Segmentation ‘
Routine

Fig.21



PCT/US94/11788

WO 95/11554

15/32

S ‘siayng oy puo x| desp ¢ NN w MF.H — ] 21607 mm:_Eo.E
aouabiaauo
9|qDJIDAY UORD20T X| Eai— :o_mm_EmcEw
/7150 Apy pjpg 2y _
saur EZ\;W& —
isa | 2y E (0:2)030Q |0Qu0d 9 g
- {1 30 — %»
$390[2
[ ]
® ¢ Hod Hod
. ° —————=1  [9]|0JDd ALY
-
o -
> syng | ¥ m._w_.u_um sjng
oy @ X 12)
9|qDJIDAY UORDOOT X] - UBXL lswoing| xy wm
1S 1 v | ew
1~1Sa Apy D10Q 2y
saur E;\..ww —
I|WMQ|1' oy E (0:£)o30q — \_ON:\/_._./\
S u—— 1] 0+
05—t A 90D 4I8}U|
Owsly YAQ
SIqooAY :o_ﬁu.m_ mm_
— Py
isd PV —
— 10y E : (0:2)030Q ﬁ
S 1] 30 — \ \ ‘
suopuiuls) |SQ ~————1 |o53u0p sng ]
=~————1 ‘uoisuodx3 SNAd—-SO S wy

20
20DpIBYY| JoWIay)] %
80DUB1U| YOYMS

0)e ‘Apjgy ewpi4 ‘SANS ‘Duiy usedoj




WO 95/11554 PCT/US94/11788

16/32

: Memory
96 Byte Buffer ‘B\

Null Convergence Sublayer

FromA FromB

FromA
SAR Y SAR Payload \N SAR Payload \Y SAR Payload
Sublayer \\ 47 by%es Ny 47 by{es \\ 47 boy)';es * e
//] Cell payload //] Cell payload /] Cell payload
é 48 bytes é 48 bytes % 4ap§yty'es e
time
- e
Fig.23
Convergence | Type | BTag | BASize | CS-Payload PAD | PCF | ETag | Length
Sublayer |1 byte|1 byte[2 bytes|0-65,536 bytes|0-3 bytes|1 byte[1 byte|2 bytes
CS Header CS Trailer
e o
SAR  KYSAR Payload N QY SAR Payload Ny~ ATMizer YSAR Payload RN
Sublayer 44 bcMes \\ \\ 44 boyes \\ ¢ 44 buy'tYles \\
AIM /] Cell payload /] Cell payload AlMizer 771 Cell payload
Sublayer /| 48 pbytes 48 Pbytes e 2L ptgyytes
Fig.24
ATMizer
User Generated — Memory Based Generated
- >
,, HOST CPU
(48
Convergence CS-Payload PAD g°g;{g Length {CRC 32
Sublayer 0-65,536 bytes - 0-47 bytes 0000 2 bytes|4 bytes
. CS Trailer
SAR SAR PDU SAR PDU ATMizer SAR PDU
Sublayer 48 bytes 48 bytes 48 bytes
ATM |//] Cell payload /] Cell payload ATMizer 74" Cell payload
Sublayer /J 48 bytes é 48 bytes e e /J 48 p:;tes

Fi1g.295
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PCL_TxData(7:0)
- DMA_Rgqst PCLTxSync
<¢+———— DMA_RdWrx PCL_TxDrdy
<¢——— DMA_Drdy PCI_TxAck

—| DMA_RdWrAck
<¢+——— DMA_OpEnding
——— DMA_AdrOEx
—» DMA_DataOEx
<¢—#— DMA_Address(31:2)
<t DMA_Data(31:0)
- DMA_BMask(0:2)
<¢—*— DMA_XferLgth(3:0)
~¢———— DMA_GhostOp
——— DMA_PLData

<+—— PP_Address(3:0)
<+ PP_Data(7:0)
<¢———— PP_Rgst
<¢—— PP_RdWrx

—» PP_AdrOEx

PCL_TxClk jt—
PCI_BOC p——»
PCI_IDLECell |——

PCL_RcData(7:0) jt—r—o
PCl_RcSync je——
PCL_RcAck je—o
PCL_RcClk jt———
PCLHECError }——»
PCL_RcBuffHalf |——
PCL_RcBuffOver p————»

ATMizer_Int je——
Host_int |———

GP_Int1, GP_Int2 jt———
PRU_CountDisable jt——

——» PP_DataOEx ‘ Ck jt———o

——» PP_RdWrAck

Fig.27

Resetx, Resetix ft——
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DMA_Address(31:2) is valid during the same cycle as DMA_Rgst is asserted.
This diagram shows DMA_AdrOEx os the critical path. For systems that have
DMA_AdrOEx asserted previously, Clk to DMA_Address(31:2) valid will be the
critical address path.

This diagram shows the earliest DMA_Data(31:0) can be sourced by the
ATMizer. In certain situations (if the memory byte offset is greater than
the local byte offset) the byte alignment logic will add an extra stage of
latency to the data path. When this happens DMA_Data(31:0) will appear
one cycle later and DMA_Drdy will also appear one cycle later. .

DMA WRITE

Fig.28d
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Tristate Operation on Reads

The DMA Engine will turn off its DMA_Data(31:0) drivers during memory read
operations. The Drivers begin to shut off outomatical& (Pt a) following the
rising edge of the clock that sources DMA_Rqst. At this point the state of
DMA_DataOEx is a don't care. The DMA_Data(31:0) drivers will tumn back
on in the cycle following the cycle during which DMA_Rgst is driven low.
[E)xh:xr_nglEx circuitry can keep DMA_Data(31:0) from driving the bus by deasserting

PtA — The ATMizer drives DMA_Dote and DMA_DataP.

PtB — In response to the execution of a DMA Read operation, the ATMizer
stops driving the DMA_Data bus. : ’

PtC ~ External circuit begins to drive DMA_Data(31:0); olthodgh with

unknown data to start.

VPtD — The DMA Recd operation complete, external logic .stops driving
DMA_Data(31:0§. If DMA_DataOEx is asserted, the ATMizer will
begin driving the data bus as shown at PiE.

DMA READ

Fig.28e
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PP_Address(3:0) and PP_Data(7:0) are both volid in the sume cycle that PP_Rast is asserted.
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Tristate Operation on Reads

The Parallel Port will tum off the PP_Data(7:0) drivers during parallel port
read operations. The drivers begin to shut off automatically one cycle
before PP_Rqst is asserted. In the case of o Read following a Write, a
one cycle delay will be added before the parallel port asserts PP_Rqst to
give the parallel port a chance to disable its drivers.

PtA - The ATMizer drives DMA_Data and DMA_DataP.

PtB — In response to the execution of a DMA Read operation, the ATMizer
stops driving the DMA_Data bus.

PtC — External circuit begins to drive DMA_Data(31:0); although with
unknown data to start.

PtD — The DMA Read operation complete, external logic stops driving
DMA_Dato(31:0§. If DMA_DataOEx is asserted, the ATMizer will
begin driving the data bus as shown at PtE.

PARALLEL PORT READ

Fig.28g
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