WO 02/077904 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

3 October 2002 (03.10.2002)

0 0 OO 0

(10) International Publication Number

WO 02/077904 A2

(51) International Patent Classification’: GO6K

(21) International Application Number: PCT/US02/09528

(22) International Filing Date: 26 March 2002 (26.03.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/278,930
09/916,243

26 March 2001 (26.03.2001)
25 July 2001 (25.07.2001)

Us
Us

(71) Applicant: US SEARCH.COM INC. [US/US]; 5401
Beethoven Street, Los Angeles, CA 90066 (US).

(72) Inventor: WACHTEL, David, C.; 5401 Beethoven Street,
Los Angeles, CA 90066 (US).

(74) Agent: CIRE, Frank, L.; Christie, Parker & Hale, LLP,
Post Office Box 7068, Pasadena, CA 91109-7068 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, 7ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR INTELLIGENT DATA ASSIMILATION

/‘ 100

—
¥ ® ®
@/ ConsumerB28+ Z
Trust Services eMarket

Fornatted
Outpent

(57) Abstract: An intelligent data
assimilation system including an ontology
description, workflows, and logical search
objects. The logical search objects operably
connect to external and internal data providers
and return search results using an ontology
describing atomic data objects and semantic
objects. The semantic objects are grouped
into larger semantic structures by workflows
to create customized services that return
search results termed data products. Services
are accessed through an application server
capable of responding to service requests
from different types of data clients. Graphical
user interfaces provide for creating logical
search objects and aggregating logical search
objects into workflows and services.

112

Search Object
{Onology)

118

Raw Seard Resits

Data Mapping
Tools
{Semantic
Iintelligence)

/
/

JotwiDoe(310 55-1212{Los AngdeyCA

w0 02/077904 A2 IO AR 000 VRO A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report

ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

METHOD AND APPARATUS FOR INTELLIGENT DATA ASSIMILATION

BACKGROUND OF THE INVENTION

This invention relates generally to the field of servers coupled to computer networks and
more specifically to servers used as search engines.

Web servers are software applications hosted by computer systems operably connected
to the Internet. Web serversreceive requests from Web clients and provide responses in the form
of documents written in a document markup language such as Hyper Text Markup Language
(HTML). The first Web servers operated as connections to file systems and served static HTML
documents stored as files within a computer system.

The static HTML documents were quickly replaced by programs that accept as input

parameters a client requesf and generate as output a document. These programs are typically

. written in a variety of interpreted procedural languages such as Perl and acquired procedural

languages such as C.

The use of document generating programs also introduced new capabilities. Data could
be drawn from any source and used to create a document. For éxample, databases could be
queried and the results used within a document. Furthermore, the document generating pro gfams
could create side effects during the execution of a document generating program. For example,
a typical side effect may include creation and storage of tracking statistics for later use and
analysis by a Web site’s host.

The use of document generating programs created a bottleneck within a computer system
hosting a Web server. Each document generating program ran in its own process and the
constant creation and destruction of the required processes created unacceptable overhead
requirements. These overhead requirements resulted in the creation of application servers
capable of invoking document generation programs without creating new processes.

In one type of such an application server, the application server comprises an interpreter
and the document generating programs are written in a proprietary programming language. In
the case where the proprietary programming language is a procedural language, the application
server reads and runs the document generating programs without invoking a new process. In the
case where the proprietary programming language is an object oriented language such as Java,
each document generating program is a software object known as a servlet. In this case, the Web
server invokes the servlets as needed and the servlets handle the remaining document generation
functions.

Previous development of Web servers focused on producing the most efficient use of
computing resources to produce finer and finer vertical slices through a Web site. For example,
a servlet once invoked includes all of the necessary logic necessary to acquire data according to

-1-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

a client request, format the acquired data into a document, and report back to the hosting system
any statistics about the client/servlet interaction. Finer and finer vertical slices through a Web
site leads to an unscalable Web server architecture because all the logic for acquiring data,
generating a document, and producing side effects is included within a monolithic software
object thus defeating the ability to reuse or integrate a particular software object in another
system or software object.

Therefore, a need exists for a scalable Web server architecture that features a high degree
of reusability of a Web server’s components. The present invention meets such a need.

SUMMARY OF THE INVENTION

In one aspect of the invention, a method is provided for fulfilling a data service request.
The method includes providing an ontology description of a data service a first logical search
object operably coupled via a first communications link to a data provider. The first logical
search object transmits to the data provider via the communications link a search request
generated by the first logical search object from the data service request. The first logical search
object receives from the data provider via the communications link a data set in response to the
search request. The first logical search object generates a knowledge instance from the data set
using the ontology description. ,

In other aspects of the invention, the method for fulfilling a data service request is adapted
for a plurality of data providers including a database server, a FTP server, a Web server, a file
system, and a human data provider. Additionally, the method is adapted for a communications
protocol proprietary to a data provider.

In another aspect of the invention, the data service request is included in a XML
document.

In another aspect of the invention, the method for fulfilling a data service request further
includes providing a first workflow operably coupled to the logical search object and transmitting
by the first logical search object to the first workflow the knowledge instance.

In another aspect of the invention, the method for fulfilling a data service request further
includes providing a second logical search object operably coupled to the first workflow, with
the first workflow encapsulating the ontological relationship between the first and second logical
search objects. ‘

In another aspect of the invention, the method for fulfilling a data service request further
includes providing an application server operably coupling a data client to the first workflow via
a second communications link. The application server receives from the data client via the
second communications link a data service request message with the data service request

included in the data service request message. The application server transmits to the first

-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

workflow thé data service request message and the first workflow ﬁansmits to the logical search
object the data service request message.

In other aspects of the invention, the second communications link is adapted for
communications using SMTP, IMS, HTTP, or RMIL

In another aspect of the invention, the method for fulfilling a data service request further
includes providing a formatter and formatting by the formatter the data set encapsulated in the
knowledge instance into a format requested by the data client.

In another aspect of the invention, the method for fulfilling a data service request further
includes providing a second workflow operably coupled to the first workflow.

In another aspect of the invention, a data processing system is adapted to access a data
provider via a communications link. The data processing system includes a processor and a
memory operably coupled to the processor and having program instructions stored therein, the
processor being operable to execute the program instructions. The program instructions include
receiving by a software object a search request message document and generating by the software
object a data request for the data provider from the search request message document. The
software object transmits to the data provider the data request via the communications link. The
software object receives from the data provider a data set via the communications link and
generates a semantic object from the data set.

In another aspect of the invention, s data processing system adapted to access a data
provider via a communications link includes a parser adaptor operably coupled to a software
object. A parser semantic description of the data set and a semantic object semantic description
is provided for use by the parser adaptor. The parser adaptor generates extracted data from the
data set using the parser semantic description. The parser adaptor then generates a semantic
object using the extracted data according to the semantic object semantic description.

In another aspect of the invention, a data processing system adapted to access a data
provider via a communications link includes a request builder operably coupled to a software
object. A mnative object is operably coupled to the request builder with the native object
encapsulating implementation details of a data request for the data provider. A native semantic
description is provided including ontology information describing a data structure used by the
request builder to build a data request for the data provider. The request builder transmits to the
native object a search request and the native object generates a data request from the search

request using the native semantic description.

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

BRIEF DESCRIPTION OF THE DRAWINGS ,

These and other features, aspects, and advantages of the present invention will become
better understood with regard to the following description and accompanying drawings where:

FIG. 1 is adeployment diagram of an intelligent data assimilation system according to the
present invention,

FIG. 2 is a hardware architecture diagram ofa general purpose computer suitable for use
as an intelligent data assimilation system host;

FIG. 3 is an architecture diagram illustrating an embodiment of an intelligent data
assimilation system according to the present invention;

FIG. 4 is adiagram of the levels within one embodiment of an intelligent data assimilation
system ontology according to the present invention;

FIG. 5 is a diagram depicting an exemplary embodiment of an ontological rélationship
between semantic constructs and their associated logical search objects in an ontology according
to the present invention;

FIG.6isa diagram depicting an exemplary embodiment of how service classes are created
using the ontological relationships of logical search objects according to the present invention;

FIGS. 7a and 7b are diagrams depicting how semantic objects are described within the
metadata store;

FIG. 8 is a diagram depicting the operations of an embodiment of an exemplary workflow
according to the present invention;

FIG. 9 is a collaboration diagram depicting the interactions within an embodiment of a
workflow process according to the present invention;

FIG. 10 depicts an exemplary embodiment of a logical search object used within a
workflow according to the present invention;

FIG. 11 is a diagram depicting the layered architecture of an embodiment of a generic
logical search object according to the present invention and how this layered architecture is used
to generate logical search objects with various connectivity capabilities;

FIG. 12 is a sequence diagram illustrating the sequence of events that occur when a
request message is received by an embodiment of an intelligent data assimilation system
according to the present invention;

FIG. 13 illustrates an intelligent data assimilation system employing logical search objects
according to the present invention;

FIG. 14 is an XML document embodiment of an exemplary service request message
according to the present invention;

FIG. 15 is an XML document embodiment of an exemplary status message according to

the present invention;

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

FIG. 16 is an XML document embodiment of an exemplary cancel message according to
the present invention;

FIG. 17 is an XML document embodiment of an exemplary output message according to
the present invention; and

FIG. 18 is an XML document embodiment of an exemplary response message according

to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is adeployment diagram of an intelligent data assimilation system according to the
present invention. An intelligent data assimilation system host 10 is operably coupled to a
communications network 14, such as the Internet, via a communications link 12 adapted for
communications using a variety of transport protocols such as Transmission Control
Protocol/Internet Protocol (TCP/IP). The logical search object host communicates with a data
provider host 22 operably coupled to the communications network by a communications link 20
adapted for communications using TCP/IP. The data provider host is operably coupled to a data
store such as, but not limited to, a data provider database 24. A data client host 18 is operably
coupled to the intelligent data assimilation system host via a communications link 16 adapted for
communications using TCP/IP. |

In operation, a data client 26 hosted by the data client host transmits a service request
message 27 to an intelligent data assimilation system 101 hosted by the intelligent data
assimilation system host. The service request message includes search parameters that the
intelligent data assimilation system uses to generate and transmit a query 29 to a data provider
server 28 hosted by the data provider host. The data provider server responds to the query by
generating and transmitting a data set 31 back to the intelligent data assimilation system. The
intelligent data assimilation system populates the ontological instance of the returned data and
formats the data set into a formatted data result 33 transmitted to the data client as a response to
the service request message.

FIG. 2 is a hardware architecture diagram of a general purpose computer suitable for use
as anintelligent data assimilation system host. A processor 300, comprising a Central Processing
Unit (CPU). 310, a memory cache 320, and a bus interface 330, is operatively coupled via a
system bus 335 to a main memory 340 and a /O control unit 345. The I/O control unit is
operatively coupled via a I/O local bus 350 to a disk storage controller 395, and a network
controller 380.

The disk storage controller is operatively coupled to a disk storage device 325. Computer

program instructions 397 for implementing an intelligent data assimilation system are stored on

-5-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

the disk storage device until the microprocessor retrieves the computer program instructions and
stores them in the main memory. The microprocessor then executes the computer program
instructions stored in the main memory to implement the features of an intelligent data
assimilation system.

The network controller is operatively coupled to a communications device 396. The
communications device is adapted to allow an intelligent data assimilation system hosted by the
general purpose computer to communicate viaa computer network such as the Internet with other
software objects on the computer network.

FIG. 3 is an architecture diagram illustrating an embodiment of a an intelligent data
assimilation system according to the present invention. An intelligent data assimilation system
is coupled to a computer network through the services of an application server (not shown). The
intelligent data assimilation system is an object-oriented component-based server platform
providing mechanisms and subsystems to create and manipulate a repository 102 of Logical
Search Objects (LSOs) that encapsulate knowledge and capabilities used to execute a search for
data from a plurality of data providers 104. The intelligent data assimilation system is accessed
by a data client via the communications network through the application server.

The data providers are logically coupled to the intelligent data assimilation system using
avariety of methods. The data providers provide data sets including various data products from
data providers such as data aggregators, search robots or agents, HTML-based search engines,
in-house databases, or any other mechanism capable of providing a mechanism to extract
electronic information. Additionally, a data provider can be a human actor receiving a request
from the intelligent data assimilation system to find and return a data set that is not electronically
accessible. For example, a private investigator may be used to collect data for a data set such as
confirming the physical location of a person.

A LSO 106 is areusable, configurable and self-contained software component capable of
establishing connectivity to a particular data set provided by a data provider. Furthermore, a LSO
includes logic for qualifying or filtering a data set and delivering the resulting information as a
document written in eXtensible Markup Language (XML) or as an intelligent data object herein
termed a semantic object.108. Additionally, a LSO reveals its capabilities and information to
other software components for use by those software components.

The complete definition of a LSO is stored in a database 110 as a metadata description.
At runtime, when a specific instance of a particular LSO is called for, an LSO instance is created
from the LSO’s metadata definition. However, the intelligent data assimilation system has the
ability to pre-instantiate LSOs if needed.

The intelligent data assimilation system provides data mapping tools to add semantic

intelligence to atomic data with the purpose of providing users the ability to manipulate LSO

-6-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

results. By abstracting (grouping) various fields together into a well-defined ontology 112, an
intelligent data assimilation system provides abstracted views of data allowing users to
manipulate encapsulated data. For example, an intelligent data assimilation system can group
a LSO called “First Name” 114 and a LSO called “Last Name” 116 into a semantic object 118
called “Name”, and then group “Name” with another semantic object called “Address” 108 into
a semantic object called “Person” 120. This semantic structure allows intelligent traversal and
identification of any available information.

By revealing all their intelligence on connectivity, such as ontological data and cost, the
LSOs provide a mechanism for the logical search object subsystems to provide tools 122 for the
definition of services that may be requested from the intelligent data assimilation system by a
data client. The services generate results in the form of data products including data requested
by the data client. Through the use of a graphical user interface, designers view all the available
LSOs and semantic objects in a repository and manipulate LSOs and select desired LSOs or
semantic objects and place LSOs and semantic objects into workflows.

Each workflow typically represents a single service offering. By placing one or many
LSOs into a workflow, a designer creates workflows resulting in a service. Some of the features
of these workflows include the ability to run multiple LSOs in parallel, define failover LSOs, and
define contingencies where the output of one LSO can be the input of another object.

An ontology designer 122, is used to create the data mapping of data from a data provider
into an intelligent data assimilation system ontology. It is through this process that the intelligent
abstractions of data are performed to create semantic objects used by the LSOs maintained in the
intelligent data assimilation system repository.

A product configurator 122 is used to browse and select semantic objects and apply
workflow definitions with the purpose of creating intelligent data assimilation system services.
The product configurator provides robust productivity features such as drag and drop
functionality and wizard style forms.

The product configurator surfaces the information encapsulated in semantic objects. This
allows the designer to manipulate data as simple atomic data or highly abstracted complex data.
Data encapsulated in a LSO is mapped as a single semantic object, thus the designer is able to
place that semantic object representing a particular LSO into a workflow. However, semantic
objects are not constrained by LSOs, the product configurator allows the designer to manipulate
even higher abstracted semantic objects that straddle multiple LSOs and thus the product
configurator derives which LSOs are to be inserted into a workflow for a given service and what
constraints, if any, exist between the LSOs encapsulated in a semantic object.

With LSOs encapsulating information about connectivity, cost, query mechanism, and

ontology, the product configurator is able to manipulate abstractions of data and place those

-7-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

items into a workflow.

' Inaddition to the ability to choose and place semantic objects into a workflow the product
configurator also provides the designer the ability to configure other attributes about a data
product generated by the service including input display attributes, input rules, result eXtensible
Style Language (XSL) stylesheets, and other attributes that define the data product.

When the service definition is complete, the designer has the capability to iteratively test
and enhance the service in real-time, using either live or simulated data, and see the results in
real-time and when satisfied that the service is complete, save the service to the intelligent data
assimilation system metadata store and thus have a real time deployment of the service.

The intelligent data assimilation system consolidates the results of all LSOs executed in
a workflow and represents the resulting data as XML documents that can be delivered to a data
client in that form. In one embodiment, the intelligent data assimilation system reformats the
XML documents to create formatted outputs 124 using XSL stylesheets 125. These XSL
stylesheets provide for the rendering of formatted data, including the simultaneous delivery of
results in HTML 126, XML, Wireless Application Protocol (WAP) 128, Rich Text Format
(RTF), Word (DOC), WordPerfect (WPS), or other formats 130.

An intelligent data assimilation system ontology facilitates the exchange of data between
multiple computer systems independently of the individual system technologies, information
architectures and application domain, and allows the creation of groupings of atomic data fields
into intelligent building blocks termed semantic objects allowing the construction of services
provided by the intelligent data assimilation system.

An ontology includes a vocabulary of terms and a specification of what those terms mean.
The intelligent data assimilation system ontology provides a set of well-founded constructs that
are used to build meaningful higher-level knowledge. Basic terms in the intelligent data
assimilation system ontology are selected such that basic foundational concepts and distinctions
are defined and specified. The basic terms chosen form a complete set, whose relationship to one
another is defined using formal techniques. These formally defined relationships provide the
semantic basis for the terminology chosen. It is these relationships included in the intelligent data
assimilation system ontology that enables the expression of domain-specific knowledge without
including domain-specific terms.

An intelligent data assimilation system ontology includes definitions of abstractions. For
example, a person semantic is constructed by the underlying atomic or semantic items, first
name, middle name, and last name. The definition is used to create a knowledge instance of the
ontology, for example when at runtime the ontology is populated with specific semantic and
atomic instances returned by the LSOs.

The life span of a definition and a knowledge instance vary. Definitions included in an

-8-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

intelligent data assimilation system ontology are persistent, reused extensively, and have global
scope within an intelligent data assimilation system. A knowledge instance created at run time
is either transient or persistent. Within the context of the intelligent data assimilation system,
requests are typically transient because knowledge is persisted into the ontology only for the
duration of a particular request instance and then discarded. For example, data is retrieved from
a data provider, a portion of the ontology corresponding to LSOs in a workflow is populated
using a run-time knowledge instance, and only the knowledge instance created within a particular
request instance is processed and once processed the knowledge instance is discarded from the
ontology. In one embodiment of an intelligent data assimilation system according to the present
invention, knowledge instances are persistent such that the knowledge instances can be later
queried from the intelligent data assimilation system and assimilated into another service request.
A persistent knowledge instance thus has global scope as described above.

Commerce agents using the intelligent data assimilation system are adaptable and able to
communicate domain-specific knowledge. Commerce agents do this by using the basic terms and
relationships defined in the intelligent data assimilation system ontology and through these
definitions of the basic terms the intelligent data assimilation system allows the basic terms to
be grouped (abstracted) to form higher-level intelligent constructs.

In one embodiment of an intelligent data assimilation system according to the present
invention, an intelligent data assimilation system ontology is stored in a metastore as an XML
definition and is represented at many different levels using its XML definition.

An intelligent data assimilation system enforces security for all data clients. The
fundamental mechanism for performing security is name and password authentication against the
Java Naming and Directory Interface (JNDI) tree in the intelligent data assimilation system.
Messages sent to intelligent data assimilation system across a protocol method, such as Java
Messaging Service (JMS), Remote Method Invocation (RMI), or Hyper Text Transfer Protocol
(HTTP), have name and password authentication level security applied. The intelligent data
assimilation system also supports the use of digital signatures. Data sent to the server may
include a digital signature that can be verified against a checksum generated from the request and
a stored public key. The intelligent data assimilation system also supports data encryption.

Once the intelligent data assimilation system has accepted a service request message at
a processing tier, the intelligent data assimilation system secures the service request against
available services for that customer. Clients do not have access to services not available to them.

Anintelligent data assimilation system also enforces the return of results to the originating
data client. This type of security restricts access to search results and allows access to data by
those data clients that submitted a corresponding service request.

The intelligent data assimilation system supports a notification mechanism that allows for

-9-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

multiple notifications for any given request. This feature allows the intelligent data assimilation
system to respond to a service request by sending results to one or all of a user's email, cell
phone, web page etc.

The intelligent data assimilation system enforces business rules that relate to particular
business processes. These business rules are abstracted into a generalized mechanism through
which an intelligent data assimilation system conditionally evaluates and determines an
appropriate action. The intelligent data assimilation system supports the ability to perform rules
validation at various levels of the intelligent data assimilation system.

The intelligent data assimilation system rule architecture is open such that there are well
defined exit points that are expected to return boolean values that indicate the success or failure
of any rule. These rules are implemented by deployment of any business process, be it a manual
intervention, a proprietary algorithm, or an off-the-shelf rules engine.

The intelligent data assimilation system architecture is désigned to take advantage of
current enterprise development standards. In one embodiment of an intelligent data assimilation
system according to the present invention, components of an intelligent data assimilation system
adhere to the Java 2 Enterprise Edition (J2EE) standard for developing multi-tiered enterprise
applications. J2EE simplifies enterprise applications by basing them on standardized, modular
components, by providing a complete set of services to those components, and by handling many
details of application behavior automatically, without complex programming. This embodiment
of an intelligent data assimilation system also takes advantage of many features of the J2EE
standards such as software portability, the JDBC API for database access, and a security model
that protects data even in Internet applications.

In one embodiment of an intelligent data assimilation system according to the present
invention, the underlying platform for these components is a J2EE compatible application server.
A suitable application server is BEA Weblogic Application Server. The capabilities of BEA’s
Weblogic Application Server include a distributed transaction manager, Java Messaging Services
(IMS), support for eXtensible Markup Languége (XML), and J2EE staﬁdards support.

In one embodiment of an intelligent data assimilation system according to the present
invention, an intelligent data assimilation system uses a BEA Weblogic Process Integrator
(WLPI) to implement workflow tasks. WLPI provides the intelligent data assimilation system
the ability to design and automate business processes that integrate data provider applications,
search services, and human intervention.

In an embodiment of an intelligent data assimilation system according to the present
invention, an Oracle DataBase Management System (DBMS) provides the intelligent data
assimilation system with persistence capabilities.

FIG. 4 is a diagram of levels within an exempléry portion of one embodiment of an

-10-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

intelligent data assimilation system ontology according to the present invention. The intelligent
data assimilation system ontology manages three levels of data abstraction. Initially, raw data
fields 140 in a data set are positionally mapped from a data provider into atomic objects such as
person atomic object 146 and credit atomic object 148. Atomic objects add type and basic
naming information to the data fields. Intelligence about the meaning of the data fields included
in the atomic objects is created through the semantic object abstractions in the semantic level
142,

The intelligent data assimilation system views data fields as the most basic elements of
any data set retrievable by the intelligent data assimilation system. Prior to the ontological
definition, these data fields generally include no semantic context or intelligence. Character or
byte strings, numbers, decimals and dates can be identified; however, no meaningful definition
1s applied providing understanding of the data. For example, position 1 to 9 in a data field may
include the value "561929975" but a typical data assimilation system does not understand
whether this is a social security number, order number, or product number. Associating a
semantic context to the data field by an intelligent data assimilation system results in an atomic
object.

Atomic objects have a semantic context associated with a value of a particular type. Thus,
data fields can be translated into an atomic object. For example, the value might be a string
"John 10/9/2000 21:23.234 8AS5S6FB" and include semantic information in the format: First
Name, Date, and Result of Query ID. *

Semantic objects are groupings of atomic objects, defined in the intelligent data
assimilation system ontology, which have a particular business meaning. Intelligence is created
by these higher-level groupings. For example, the following atomic objects: first name 147,
middle initial 151, and last name 149 can be grouped to provide a "person name" semantic object
150. Additionally, the following atomic objects: address1 153, city 155, state 157, and zip code
159 are grouped to create a "person address" semantic object 152. Subsequently, a higher-level
semantic object can be created by combining a "person name" with a "person address" to build
a "person” semantic object 156. In a similar fashion, a credit file atomic object 148 is used to
create a credit score semantic object 154. The credit score semantic object is then used to create
a higher-level credit risk semantic object 158. Semantic objects are grouped in a data service
level 144 of the intelligent data assimilation system ontology to create high-level data
abstractions used by other sub-systems within in the intelligent data assimilation system.

FIG. 5 is a diagram depicting an exemplary embodiment of an ontological relationship
between semantic constructs and their associated LSOs in an ontology according to the present
invention. The exemplary embodiment depicts a legal entity class 200 with two children classes,

person 218 and corporation 202. Each of these classes includes a child class encapsulating the

-11-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

concept of where an instantiation of the legal entity class may live as defined for legal purposes.
In the case of the person class, the appropriate class is the domicile class 220 and for the
corporation the appropriate class is the corporate address class 204. The classes sireet address
212, city 210, Zip Code 208, and state 206 have multiple parents through multiple inheritance,
namely the domicile and corporate address class.

The street class further includes two methods, method 1 214 and method 2 216, for
retrieving a street address. These methods can be addressed and used by an object sending a
request to an instantiation of the domicile or corporate address class in order to customize the
data provider for retrieving a street address. For example, a request for data about a person's
domicile may include a request for a street address from tax records. Another request for data
about the same person's domicile may include a request for a street address pulled from vehicle
registration records. In each case, the data provider is different and a different method may be
used to request and receive data from the different data providers.

In operation, instantiations of the domicile class or the corporation class answer requests
for returning the legal address of a person or a corporation respectively. For example, if arequest
1s made to find the legal address of a person when the system receives the appropriate request,
it invokes a workflow that will instantiate the appropriate LSOs to fetch the requested data. Each
of'these objects contacts a data provider and requests and receives the appropriate data from the
data provider. Associated with this workflow an instance of the ontology will be invoked and
when the data has been retrieved, any node, (such as domicile in the example), in the instantiated
ontology is able to represent the underlying aggregation of data for that particular node in the
ontology. Thus, the domicile object with its ability to aggregate the received data, is capable of
representing the person's address.

FIG. 6 is adiagram depicting an exemplary embodiment of how service classes are created
using the ontological relationships of LSOs according to the present invention. The ontological
relationships between LSOs are selectively traversed using a data service class. Such a traversal
through the ontology results in an answer to a query. For example, exemplary service class,
Seivice 1 222, encapsulates a query "Where does John (a person) live?". An instantiation of the
Service 1 class results in a traversal of the ontological relationships from person 218, to domicile
220, to street 212 using method 1 214, city 210, Zip Code, 208, and state 206. This traversal is
shown as a solid line surrounding the appropriate objects.

In another example, exemplary service class, Service 2 224, encapsulates a query "Where
can ABC corporation (a legal entity) be served?". An instantiation of the Service 2 class results
in a traversal of the ontological relationships from legal entity 200, to corporation 202, to
corporate address 220, to street 212 using method 2 216, to city 210, to Zip Code, 208, and to

state 206. This traversal is shown as a broken line surrounding the appropriate objects.

-12-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

The exemplary services exploit the ontological relationships between the LSOs by
accessing the relationships in different ways. Service 1 encapsulates a query about a person's
address and Service 2 encapsulates a query about a corporations place of service. In each case,
the service must determine a street address and each service ultimately uses the same street, city,
Zip Code, and state object classes. However, each service obtained access to these objects from
a different parent class.

The semantic object construct is not limited to a particular LSO and thus a particular data
set. The intelligent data assimilation system is capable of extrapolating LSOs and LSO’s
appropriate position in multiple workflows from the semantic object. Definitions of the
intelligent data assimilation system ontology and the included semantic objects are held in a
metadata store of the intelligent data assimilation system and are part of a global internal data
dictionary.

A metadata store provides persistence for configuration data used by LSOs at execution
time. A search configuration includes: an identification of the data provider, a mapping of the
results data fields to the ontology of atomic objects known to the intelligent data assimilation
system, and a mapping of the request data fields to the ontology of atomic objects known to the
data provider. Finally, the search configuration includes reference to a LSO to use when
performing a search at execution time.

FIGS. 7a and 7b are diagrams depicting how semantic objects are described within the
metadata store. A semantic object may include other semantic objects and ultimately atomic
objects of varying types. For example, a semantic object person 400 includes another semantic
object address 402, which includes state 404, city 406, Zip Code 408, and street number 410
atomic objects. The person semantic object also includes atomic objects firstname 412 and last
name 414.

FIG. 7b is a depiction of how the semantic object of FIG. 7a is constructed using a
semantic descriptor stored in the metadata store within an embodiment of an intelligent data
assimilation system according to the present invention. A generic descriptor, such as “city” data
descriptor 420 is a concrete implementation of data descriptor including set methods. A data
descriptor describes the name of the data, the type of the data and the data sequence. Since the
data is just accessed, a data descriptor interface only exposes get methods for accessing a data
provider. A semantic descriptor, such as “person” semantic descriptor 416 exposes methods to
retrieve child elements that the person semantic descriptor includes. These child elements could
be other semantic descriptors, such as “address” semantic descriptor 418 or data descriptors such
as “first name” data descriptor 428 and “last name” data descriptor 430. An interface defined in
the intelligent data assimilation system has a concrete class that implements the functionality of

the interface. For example, a data descriptor is implemented by a generic data descriptor. This

-13-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

class provides the set methods that are not exposed in the data descriptor interface. During
initialization, components creating descriptors use a concrete class to create set values.

The following is a list of descriptors:

. DataDescriptor -> exposes get methods for name, type, and sequence

. GenericDescriptor -> concrete implementation of DataDescriptor that includes set
methods '

. PositionalDescriptor -> exposes get methods for position, and length

. GenericPositionalDescriptor -> concrete implementation of PositionalDescriptor

- that includes set methods

. SemanticDescriptor -> exposes get methods elemerits, hasMoreElements,
getNextElement
. GenericSemanticDescriptor -> concrete implementation of SemanticDescriptor that

“includes set methods

. SemanticListDescriptor -> exposes get methods getAtomicLength
. GenericSemanticListDescriptor -> ‘concrete implementation of

SemanticListDescriptor that includes set methods

The intelligent data assimilation system model abstracts how the data is represented and
focuses more on how pieces of data relate to each other. An intelligent data assimilation system
ontology is free to change without inhibiting another data provider’s ontology. This provides
extensibility because the intelligent data assimilation system and data provider are loosely
coupled. Anintelligent data assimilation system ontology constructs the semantic context where
by search result definitions are defined.

An intelligent data assimilation system deploys a workflow engine that manages the
execution of service requests that relate to services. The workflow engine is a state machine that
manages tasks within a workflow with each workflow having a start node followed by zero or
many task nodes followed by an end node.

In the process of defining a service the designer identifies all the LSOs that are included
in a service. The LSOs are then associated with task nodes in the workflow and thus definition
of a given service is achieved.

When the intelligent data assimilation system receives a request for the fulfillment of a

particular service, the intelligent data assimilation system maps the service request to a specific

-14-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

workflow, instantiates the workflow, consolidates the resulting data sets returned by the
workflow and invokes any analytical or business rule processing for the workflow. In one
embodiment of an intelligent data assimilation system according to the present invention, the
requestor is notified that the data set is available. In another embodiment, the data set is stored
(herein termed persisted) for later retrieval by the requestor. In another embodiment, the
resulting data set is delivered to the requestor.

The intelligent data assimilation system workflow mechanism provides not only for the
sequential execution of task nodes including LSOs but also provides for LSOs to be executed in
parallel as well as the ability to create contingent relationships between the LSOs. For example
the output of a particular LSO may be the input of another LSO. Additionally, the intelligent data
assimilation system workflow mechanism allows for task nodes in the workflow to be associated
with other workflows that could include services or other business processes, and thus create a
mechanism whereby nesting workflows are used to generate different classes of services and
workflows reused.

FIG. 8 is a diagram depicting the operations of an embodiment of an exemplary workflow
according to the present invention. In one embodiment of an intelligent data assimilation system,
the workflow processing environment used is a Weblogic Process Integrator (WLPI)supplied by
BEA Systems, Inc. of San Jose California, USA. Workflows are specified using a Weblogic
Process Integrator (WLPI) Studio software tool or by creating an XML representation of the
workflow. The previously described metadata store includes the data used to construct a
particular instance of a workflow used to fulfill a service request. Therefore, the metadata store
manages the workflow definition and the LSO definitions that fulfill a service request.

A workflow 600 receives a service request from a service request handler 602 in the form
of a XML document. The workflow validates the request at step 604. An exemplary validation
includes determining if the request includes sufficient information to route and complete the
request using internal decision rules. If the request is invalid, results are returned in a results
document 608 without performing any search tasks. If the request is validated, then search tasks
are initiated at node 610 to fulfill the request. A workflow can initiate multiple tasks at one time.
In this exemplary workflow, task A 612 and task B 614 are initiated at one time. Task A uses
LSO A 616 to connect to and retrieve data from an external data provider A 618. At the same
time, task B uses LSO B 620 to connect to and retrieve data from an external data provider B
622. The results returned from the two LSOs are merged in a merge process 624. The merging
of the results occurs according to an intelligent data assimilation system ontology as previously
described. A

The intelligent data assimilation system allows for additional filtering of a data set once

the data has been assimilated. For example, optional “opt-out” rules may be applied to the

-15-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

merged results allowing individuals or entities to exclude personal information from the data set
that the individuals or entities do not wish disseminated. An opt-out rule is an internal rule that
stops certain information from being released to a service object in response to a data request.
In one embodiment of a workflow according to the present invention, the results are returned to
the service request handler 608 at the end of the workflow process in the case of an instant
search. In an instant search, the data client transmits a search request with the expectation of
receiving a search response within a short period of time during which the data client remains
coupled to the intelligent data assimilation system. In another embodiment of a search request
according to the present invention, the data client transmits a search request with the expectation
of returning to the intelligent data assimilation system to retrieve the search results at a latter
time.

FIG. 9 is a collaboration diagram depicting the interactions within an embodiment of a
workflow according to the present invention. The depicted embodiment of a workflow includes
several optional processes that may be used alone or collectively within a workflow.

An iﬁtelligent data assimilation system supports the ability to group together the
fulfillment of numerous services in a single request. This provides a mechanism whereby an
entire order with associated line items can be sent to the intelligent data assimilation system as
a single request. When the intelligent data assimilation system receives a search service request
message, a service request handler component creates one fulfillment request.

For each request item present in the message, a service request handler 700 creates a
fulfillment line row 702 in a fulfillment line table 765 and invokes a workflow instance 704
passing the fulfillment line Id as a parameter.

The state of a running workflow is stored in the fulfillment line. When the workflow
instance completes, the results of the search are stored in the fulfillment line. For non real-time
requests intelligent data assimilation system sends a message to the workflow engine to
asynchronously generate a workflow instance. All state information is maintained with the
fulfillment line so that any following status requests messages can be answered. It is through the
fulfillment line that an intelligent data assimilation system recognizes if a workflow instance is
still processing, has failed, or is waiting for user input or the results of a manual search.

The invocation of the workflow instance includes a message 703 including the fulfillment
line ID and the request parameters in the form of an XML document. The workflow instance
receives the message and starts 706 a data collection process.

The workflow instance sends a notification 710 to a workflow state manager 711 during
a start notification node 708. The workflow status manager transmits a status update message
719 to the fulfillment line so that a query of the fulfillment line will indicate that the workflow

instance is working on the data request.

-16-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

The Workﬂow instance includes an abort node 712 within the workflow instance that waits
for an external abort message 716 to be sent to the workflow instance from an external cancel
request handler 714. If an abort message is received, the abort node ends 718 the data collection
processes of the workflow instance and an abort message 720 is transmitted to the workflow state
manager. Inresponse, the workflow status manager updates the fulfillment line to indicate that
the workflow instance has aborted.

The workflow instance checks the input parameters at node 712 to determine if the
parameter values are properly formed for making a request of a data provider. If the input
parameter values are not properly formed, an exception is thrown 713 to an exception handler.
To maintain the appropriate error state in case of failure (runtime exceptions) each workflow
instance has an exception handler 715. If anything goes wrong, such as the execution of a LSO
raising an exception, the exception handler is executed and the state of the workflow instance is
set to "FAILED". In the case of a workflow instance failure, the exception handler sends a status
failed message 717 to the workflow state manager so that the status of the workflow instance can
be updated in the fulfillment line. '

A workflow instance can call multiple LSOs either sequentially or in parallel. In this
example, a first LSO 728 is called at step 722 and an invocation message in the form of an XML
document 724 is sent to the LSO. The first LSO transmits data request messages 730 to a data
provider 732 and receives requested data messages 734 from the data provider. The LSO
responds by sending the requested data messages back to the workflow instance.

The workflow instance determines if a complex search is being performed at step 738.
If the search is a simple search and only the first LSO is to be called, then the workflow instance
ends its search process at step 740 and transmits a status complete message 742 to the workflow
state manager. Ifthe workflow instance completed the search, a updated result XML document
764 is sent to the fulfillment line. If the workflow state manager determines that the workflow
instance did not complete normally, it throws an exception 760 to the intelligent data assimilation
system notifier 762. \

If a complex search is requested, such as using several LSOs to query separate databases
or an LSO will be collecting data from a manual process, the workflow instance invokes a second
LSO 744 and sends a second semantic context message 736 in the form of a XML document to
a second LSO (not shown). Clients using services from an intelligent data assimilation system
may request a fulfillment to be performed within the same session as the request, as in the case
of real-time searches. To facilitate this, an intelligent data assimilation system has services that
are configured to process the request synchronously. For searches that cannot be immediately
fulfilled (as in the case of manual searches) an intelligent data assimilation system has services

that are configured to process asynchronously. Anintelligent data assimilation system, therefore,

-17-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

has the ability to synchronize a response message to the completion of workflow and include the
resulting output in a response messagé. When an asynchronous service is requested, an
intelligent data assimilation system responds to the data client independently of the completion
of the workflow with the idea that the data client will "come back later" to request the results.

A workflow instance can call other workflow instances. To do so, a workflow instance
calls 746 a sub-workflow instance 750 and transmits an invocation message 748 in the form of
a XML document to the sub-workflow instance. The sub-workflow instance operates
independently of the workflow instance. However, the workflow instance can wait 746 for the
sub-workflow instance to finish processing. The workflow instance may send an exception
message in the form of an XML document 754 to the workflow instance if the sub-workflow
instance encounters problems during execution. When the sub-workflow instance completes
processing, the sub-workflow transmits a workflow end message 752 in the form of a XML
document to the workflow instance. The workflow instance receives 756 the end workflow
message and merges 758 the data included in the end workflow message into a semantic object
for further processing by an intelligent data assimilation system.

Definition of a workflow can be done by directly manipulating a service metadata store
or through a product configuration tool. Thus, workflow definition is achieved by defining the
processing flow for LSOs included in a particular service. The intelligent data assimilation
system views this as a service request that passes through a set of decisions and LSOs.

Various workflow patterns can be developed to support searches synchronously or
asynchronously and to merge the resulting output into a well-defined structure. Business rules
or proprietary algorithms can be applied to the search results to support the specific nature of
workflow context.

The workflow engine provides support for pauses in the workflow in order to perform
manual intervention. Through this capability, searches that cannot be fulfilled via automation can
be performed and the resulting information returned into the workflow and merged with
automated searches. ‘

Anintelligent data assimilation system provides anotification mechanism that is triggered
upon completion of a workflow instance. A notification dispatcher utilizes intelligent data
assimilation system services that provide e-Mail, facsimile transmission (fax), telephony, pager,
DBMS Storage and IMS functionality. Client applications using the intelligent data assimilation
system provide notification information as part of a service request message. An intelligent data
assimilation system accepts multiple notification methods for any service request.

The e-Mail service transmits a formatted e-Mail message to an e-Mail address included
in the service request message with an identification of the completed search and information on

how the results can be obtained. The e-Mail service can also format the search results and include

-18-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

them in the e-Mail message body.

A telephony notification service provides for notification via pagers, fax, and wireless
phones.

For systems that provide access to a DBMS, an intelligent data assimilation system
updates database tables with values that indicate the completion of the service request.

Other systems may request notification by posting a message to a message queue topic.
This is accomplished through an intelligent data assimilation system’s JMS service. Clients
implement a mechanism to listen for messages posted to the queue. Upon receipt of a message,
the data client performs request management activities and submits output requests to the
intelligent data assimilation system.

FIG. 10 depicts an exemplary embodiment of a LSO used within a workflow according
to the present invention. A LSO is a self contained software object including a set of components
that, when combined together, encapsulate the capability to connect to a data provider, generate
aknowledgeinstance by extracting and parsing the datareturned by the data provider in response
to arequest, and deliver the knowledge instance into the ontology for use by the current instance
of the request so that the data can be consolidated into a result set.

LSOs are reusable components and understand the various access methods to the data
provider, protocols on which a search request can be made, and the translation of returned data
into a knowledge instance including atomic and semantic structures used by intelligent data
assimilation system. These features form a partitioning of several layers of an LSO 500: a
translation layer; a data acquisition layer; and the connectivity layer. These layers are realized
by software objects termed adaptors. An instantiated LSO includes a translator adaptor 502, an
acquisition adaptor 504, and a connection adaptor 506.

The translation layer includes software objects that build a data request to a data provider
508 and subsequently parse the returned data stream 510. A request builder software object 512
understands how to structure the request in the manner defined by the data provider. For
example, the data provider may request a Structured Query Language (SQL) statement to be sent
to a database, a query string to be sent to a Uniform Resource Locator (URL), or a proprietary
query protocol. A response parser software object 514 is capable of recognizing a format in
which the data is being returned and translate that data into a meaningful semantic context usable
by an intelligent data assimilation system and populate a run-time instance of the ontology
representing the semantic and atomic objects included within the LSO . For instance, the data
provider may return an SQL recordset or a character delimited text file in which case the
response parser will parse the recordset or character delimited text file and generate the necessary
atomic objects as specified for the LSO.

The request builder abstracts the construction of request information by building a request

-19-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

at the protocol level. For example, a request builder task creates content that can be immediately
fed to a connection adaptor to be executed. Examples request builders are an HTTP request
builder for building a request for transmission over an HTTP communications link and a Telnet
request builder for transmission of a request over a Telnet communications link.

The request builder works on a semantic object to create request queries. This coupled
with descriptor information creates a prepared request string. A request builder can utilize
different schemes to achieve this. In an embodiment of a request builder according to the present
invention, a request builder utilizes a native object and a native descriptor. The native object
holds the implementation details of how a request looks to a particular protocol and data
provider. The native object is thus an interface describing an object representing a native view
of a search request. For example, an HTTP request builder utilizes a URL native object. The
URL native object hides the details of constructing a URL query string that the HTTP protocol
uses. The request builder makes use of subordinate classes that perform the work. The request
builder then becomes like a container class to perform the action or a controllers.

A native descriptor includes ontology information describing a data structure. For
example, if a request being sent to'a data provider entails a fixed length packet, then the native
descriptor includes descriptions of the data structures used to create a fixed length request.
Previously described semantic descriptors are used within the native descriptor to describe the
ontology information.

The response parser abstracts the parsing of a data stream from a data provider and
construction of ontological objects. The respoﬂse parser concentrates on the format that the data
stream comes back in, not the protocol that retrieved the data stream. For example, if the data
stream is character delimited, binary, positional or so on, the parser will deal with those

complexities and construct atomic and semantic objects used to populate the portions of a run-

time instance of an intelligent data assimilation ontology included within a LSO.

A response parser generates ontological objects such as atomic or semantic objects. To
achieve this, the parser iterates through a parser descriptor's semantic descriptor discovering new
data structures to be accounted for. When a new data structure is encountered, data is extracted
from the data stream and an ontological object is created and added to the runtime instance of
the intelligent data assimilation ontology. The parser descriptor includes ontology information
describing data structures utilizing semantic descriptors. Stream and string tokenizers are also
used when it is convenient to transform the data into string arrays or tokens.

The data acquisition layer includes a data acquisition adaptor software object used to
conduct a search. The data acquisition adaptor manages the translation of parameters into a
search request 516, supplies the request to the appropriate connecﬁvity protocol in the

connectivity layer, obtains the results 518, manages the translation of the data stream into a

-20-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

semantic XML structure and returns the results into the intelligent data assimilation system.

In operation, a data acquisition adaptor initializes a request builder, a response parser, and
a connection adaptor. Once that happens, the adaptor has the task of interacting with each of
these components in order to build a request, send a query to a data provider and parse a reply
and populate an ontology with a knowledge instance generated from the reply. For example, an
acquisition adaptor at initialization time generates a request builder, a response parser, and a
connection adaptor. The data acquisition adaptor "builds" a request by making a method
invocation on the request builder. The data acquisition adaptor takes the output from the request
builder and feeds the response to the connection adaptor. When the connection adaptor returns,
the output, such as an input stream, is fed into the response parser where semantic and atomic
objects are made from the input stream. The semantic and atomic objects are then passed back .
to the LSO which populates the intelligent data assimilation ontology.

The connectivity layer includes a connection adaptor for transmitting data packets 520 and
receiving data packets 522 to and from an external data provider 521 using various
communication and data provider access protocols. An intelligent data assimilation system is
capable of connecting to external data providers using a variety of protocols such as HTTP,
various RDBMS protocols such as Oracle Net or SQL Net, and other protocols proprietary to
specific data providers. The intelligent data assimilation system understands that a request via
HTTP may entail that a socket be established or a request to a database may entail making
particular drivers available. The connectivity layer of an LSO provides this capability. The
request can then subsequently be passed to the data provider, where it is executed and search
results obtained.

The connection adaptor hides transport specific headers found within a data stream. The
connection adaptor also concatenates responses from a data provider. For example, if a search
produces three results then the data stream returned should include the three results concatenated
together.

A connection adaptor establishes a link between the connection adaptor’s environment and
an external data provider. For example, a connection adaptor knows the external data provider’s
IP address, port number, and whatever information is entailed in contacting the data provider so
that data can be sent. A connection adaptor utilizes a plurality of subordinate classes to
accomplish the connection adaptor’s tasks. The responses from the external data provider are
included in an input stream. In one embodiment of a connection adaptor according to the present
invention, a connection to the data provider is setup before runtime so that the connection adaptor
can send the request data to the external data provider without re-establishing a connection with
the data provider for each request.

There are multiple data provider interface components available at each layer of the LSO,

21-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

with each data provider interface component implementing specific variations of data provider

interfaces. In an embodiment of an LSO according to the present invention, an LSO is

implemented using Enterprise Java Bean (EJB) wrappers providing the LSO with the ability to
deploy various combinations of data provider interface components into the LSO at runtime.

Because a LSO has the LSO’s configuration parameters determined at runtime, semantic
objects defined in the intelligent data assimilation system ontology are not constrained by a single
LSO. Thus semantic objects can straddle multiple LSOs, and have the ability that, when invoked,
semantic objects are intelligent enough to connect, extract, and assimilate data from numerous
disparate data providers. The ability of semantic objects to straddle multiple LSOs allows users
of an intelligent data assimilation system to manipulate a single construct that represents either
atomic data or an abstracted assimilation of data from a plurality of data providers.

FIG. 11 is adiagram depicting the layered architecture of an embodiment of a generic LSO
according to the present invention and how this layered architecture is used to generate different
LSOs with various connectivity capabilities. The operation between objects within the layers has
been previously described in FIG. 10. As previously described, a LSO includes a translator layer
502, an acquisition adapter layer 504, and a connection adapter layer 506. As previously
described, the translator layer transmits workflow task data requests down through the acquisition
adapter layer, through the connection adapter layer, through the connectivity layer to the data
provider. The data provider responds to the data request by accessing a data store 503 to satisfy
the data request and transmits data satisfying the request to the LSO. The LSO then reformats
the requested data and builds previously described semantic objects included in the ontology that
are used by an intelligent data assimilation system to respond to data requests from external data
clients as previously described.

In one embodiment of an LSO according to the present invention, the acquisition layer
includes an EJB wrapper sub-layer 526 encapsulating previously described data access objects
528 such as a previously described request builder and response parser. The connection adapter
layer includes a language specific protocol sub-layer 530 operably coupled to a high-level
protocol sub-layer 532. The high-level protocol sub-layer sits atop a low-level protocol sub-
layer 534.

In an embodiment of a database LSO suitable for connection to an external data provider
in the form of a database 501, a database LSO 500 includes database data access objects 505
including Java DataBase Connectivity (JDBC) APIto execute SQL statements, thus allowing the
database LSO to interact with a SQL-compliant database. The JDBC data access objects use a
JDBC connection pool 507 within the language specific protocol sub-layer and a networked
database driver 509 in the high-level protocol sub-layer to connect to an external database using

a physical communication medium such as a fixed network link 511 or a telephone dial-up link

22

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

513 through a TCP/IP low-level protocol sub-layer 547.

In an embodiment of a Web server LSO suitable for connection to an external data
provider in the form of a Web server 539, a Web server LSO includes HTTP data access objects
515 for connection to a data provider over a communications network adapted for
communications using HTTP. The HTTP data access objects use a HTTP connection pool 517
within the language specific protocol sub-layer and HTTP driver API 519 in the high-level
protocol sub-layer to connect to an external Web server using a physical communication medium
such as a fixed network link 511 or a telephone dial-up link 513 through a TCP/IP low-level
protocol sub-layer 547. '

In an embodiment of a FTP server LSO suitable for connection to an external data
provider in the form of a FTP file server 541, aFTP server LSO includes FTP data access objects
521 for connection to a data provider over a communications network adapted for
communications using FTP. The FTP data access objects use a FTP connection pool 523 within
the language specific protocol sub-layer and FTP driver API 525 in the high-level protocol sub-
layer to connect to an external FTP server using a physical communication medium such as a
fixed network link 511 or a telephone dial-up link 513 through a TCP/IP low-level protocol sub-
layer 547.

In an embodiment of a file LSO suitable for connection to an external data provider in the
form of a file system 543, a file server LSO includes file data access objects 521 for connection
to a data provider’s file system. The file data access objects use file /O API 523 within the
language specific protocol sub-layer and file system API525 in the high-level protocol sub-layer
to connect to a file system 543 stored on a physical medium such as a floppy disk 551 or
magnetic tape 553.

In an embodiment of a manual entry LSO a suitable for connection to an external data
provider in the form of a human actor 545, a manual entry LSO includes que list data access
objects 521 for management of the manual entry data. The manual entry access objects use an
application 537 within the language specific protocol sub-layer and a user interface in the form
of forms and screens 539 in the high-level protocol sub-layer to connect to a human actor 545
through a manual entry input device such as a screen and keyboard 549.

An application server provides an interface with an intelligent data assimilation system
by accepting service requests from external systems and responding with fulfilled service
requests. An application server is also that process that ensures all service requests received by
the intelligent data assimilation system are reliably executed. An application server accepts
numerous service requests that either request an informational response about the state or
information managed by the intelligent data assimilation system or service requests to initiate a

service request by instantiating a workflow. While the workflow mechanism supports the ability

23-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

to create automated workflows including a plurality LSOs without any manual intervention, the
workflow mechanism also supports the ability to suspend a workflow and allow for a manual
process to occur that will provide data back into the system and then resume the workflow
execution.

Service requests are submitted to an intelligent data assimilation system through the
intelligent data assimilation system’s exposed APL. These service requests are fulfilled against
different data providers. Once the service request is fulfilled, the intelligent data assimilation
system will optionally host the result until it is requested by the specific system that submitted
the service request. Search results can remain in the intelligent data assimilation system for a
configurable period of time.

The intelligent data assimilation system API structure is built upon the ability to accept
XML messages via a variety of transport mechanisms. In one embodiment of an intelligent data
assimilation system according to the present invention, the intelligent data assimilation system’s
processing tier handles the following transports:

. Java Messaging Service (JMS)

‘o Hyper Text Transfer Protocol (HTTP)

. Remote Message Interface (RMI)

. Simple Mail Transfer Protocol (SMTP)

~ The processing tier accepts documents sent according to each of the transport protocols.
Each of the documents includes a XML document including a service request. The intelligent
data assimilation system provides an EJB wrapper to various intelligent data assimilation system
proxies that provide an interface to build XML messages and send the XML messages via the
requested transport. Configuring a deployment descriptor file sets the transport method utilized
by the wrapper component. ’

A data client accessing an intelligent data assimilation system's services can choose to use
the wrapper component to facilitate the building and sending of messages or may alternatively
choose to communicate directly to the intelligent data assimilation system proxy.

Each message sent to the logical search object application server results in obtaining a
response from the intelligent data assimilation system coupled to the intelligent data assimilation
system. The type of response depends on the kind of submitted message. In one embodiment of
an intelligent data assimilation system according to the present invention, the messages used
include: a service request, a status request, a service information request, and a cancellation
request. In this embodiment of an intelligent data assimilation system, the messages are

transmitted to the intelligent data assimilation system by a data client as an XML document.

24

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

Each message includes an outer message wrapper including attributes which help identify
the type of a message, the source of a message, and the uniqueness of a message from the
perspective of a data client.

The basic message elements are described in the following tablé:

message Element which wraps the entire intelligent data assimilation
system | Message.
message#client-id Attribute which mcludes the data client identifier which
' | identifies the sender of the message. .
message#type Attribute which includes the type of the intelligent data
assimilation system message.
data Element including the data of the message.

A servicerequest message initiates arequest for service in an intelligent data assimilation
system. The service request message includes two outer elements ‘message’ and ‘data’. The
‘message’ element includes attributes to identify the origin and type of message.

The “‘data’ element includes information about what services have been requested. A
service request may include one or many requests for service, with one by the ‘product’ element
for each request. The product element includes a number of attributes indicating which services
have been requested. Inside the ‘product’ element there may be multiple tags indicating
parameters for the request, formatting options and notification options.

The following table includes a description of the elements in a service request message:

service-request Element which wraps the individual service requests.

service-request#message- | A unique 1dentifier used to identify this request message.

id . '

service-1tem Element which represents an individual service request
item.

service-item#sku An identifier indicating which service has been requested.

service-ltem#item An identifier used to differentiate between service requests

. E the same message

parameter | Element to represent a parameter.

parameterffname The name of the parameter.

parameter#value The value of the parameter

notification Element indicating a notification option. May include any
number of parameter elements

notification#type attribute indicating the type of notification requested.

format Element indicating a formatting option to be used for this

element. If it is within a notification block applies only to

, the notifier.
format#style The stylesheet to used to format the notification.
result-format Element which includes options relating to the final output

-25-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

of the message. Includes format element described earlier.
results Element which the workflow uses to populate the result

data.

Referring now to FIG. 14, an exemplary XML document service request message 1100
is shown. The exemplary XML document service request message includes an outer message
element 1101 and an inner data element 1102 as previously described. Included in the data
element is a service-request element 1104 including a service-item element 1106. The service-
item element includes two parameter elements, 1108 and 1110, defining a first and last name as
part of the search request. The data element further includes a notification element 1112
specifying the type of notification to be used to notify the data client when a data product
resulting from the service request is ready. The data element further includes a result-format
element for specifying the format of the data product 1114. A results element is included in the
data element as a place holder for the resulting data product to be sent to the data client in
response to the service request.

A status request message is arequest for an intelligent data assimilation system to provide
status information for a previously sent service request.

The following table includes a description of the elements in a status request message:

status Element which wraps the mdividual status requests.
status#message-1d A unique 1dentifier used to 1identify this status message.
status-request Element which represents a individual status request item.
status-requestfitem An 1dentifier used to differentiate between status requests in

the same message

IDAS-1d The 1dentifier of the intelligent data assimilation system

request the data client wants status information for

FIG. 15 is an XML document embodiment of an exemplary status message according to
the present invention. A message element 1118 includes a data element 1120 as previously
described. The message element includes a type attribute 1119 indicating that this is a status
message. The data element includes a status element 1122 which includes a plurality of status-
request elements 1124, each with its own item and identifier attributes.

A cancel request message is a request for an intelligent data assimilation system to stop
processing a previous service request. It is possible that before an intelligent data assimilation
system has a chance to process the cancel request message, the processes to be cancelled may
have already completed.

The following table includes a description of the elements in a cancel request message:

-26-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

cancel Element which wraps the mmdividual cancel requests.

cancel #message-id A unique identifier used to identify this cancel message.
cancel-request Element which represents a individual cancel request item.
cancel-request#item An 1dentifier used to differentiate between cancel requests in

the same message

1das-1d The 1dentifier of the intelligent data assimilation system

request a data client is cancelling.

FIG. 16 is an XML document embodiment of an exemplary cancel message according
to the present invention. The XML document embodiment of an exemplary cancel message
includes a previously described message element 1126 including a previously described data
element 1128. The type attribute of the message element is “Cancel” 1127 indicating that this
is a cancel message. The data element includes a cancel element 1130 which includes a plurality
of cancel request elements 1132.

An output message is transmitted by a data client to an intelligent data assimilation
system to request the results of a previously transmitted service request. The following table

includes a description of the elements in an output request message:

output Element which wraps the individual output requests.

output¥#message-1d A unique 1dentifier used to identify this output message.

output-request Element which represents a individual output request item.

output-request#item An 1dentifier used to differentiate between output requests
| in the same message

1das-1d The 1dentifier of the intelligent data assimilation system

process you wish to retrieve data from.
format Element indicating a formatting option to be used.
format#style The XML stylesheet to used to format the output.

FIG. 17 is an XML document embodiment of an exemplary output message according
to the present invention. The XML document embodiment of an exemplary output message
includes a message element 1134 including a data element 1136 as previously described. The
data element includes an output element 1138 including an output-request element. The output-
request element includes an identifier attribute 1141 identifying the service request for which a
data client requests a result. A format element 1142 specifies the format of the requested data
using a style attribute 1144.

A response message represents a response given to a request to the intelligent data
assimilation system if the request is correctly structured and formatted. The response includes
product data, search results data or status data. It also includes indicators whether the request was
successful or not.

The following table includes a description of the elements in a response message:

-27-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

message-type "| Indicates the message type. For a response

message this is always ‘Response’.

service-response-message-id A unique identifier used to identify the

message that this is a response to.

response-item The line-id from the request message that

this response is for.

result Attribute indicating a disposition of a

response such as‘Success’ or ‘Error’.

request A type of the request we are responding to.

idas-id An identifier of an intelligent data
assimilation system process that a response
is about.

response-value A freeform tag which includes the response

data for that particular response.

data no attributes defined.

FIG. 18 is an XML document embodiment of an exemplary response message according
to the present invention. The XML document embodiment of an exemplary response message
includes a previously described message element 1146 including a previously described data
element 1148. The message element includes a type attribute 1149 indicating that the message
is a response message. The data element includes a service-response element 1150 including a
response element 1152, The response element includes a response-value element 1154 which
indicates the date and time that a workflow task was instantiated to satisfy a subject service
request.

A selection message includes the response to a user selection. It is issued when a user
makes a selection from a list of options, and the message encapsulates the result.

The following table includes a description of the elements in a selection message:

election-results element which includes the selection results data.
Kelection-results#message- | Attribute which includes the message 1dentifier.
ul
pdditional-data-1tem element mncluding an individual selection result.

pndditional-data-item#item | attribute representing the item number.

ndditional-data-item#idas- | The intelligent data assimilation system 1dentifier which the

(d selection refers to.
selected element which represents a selected options.

.28-

1

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

kelected#item | attribute which give the item which was selected.

A product information message is used to request information about one or more services
provided by the intelligent data assimilation system. A response to a product information
message includes information describing the service, available formatting options, an intelligent
data assimilation system ontology used for the input parameters and the intelligent data
assimilation system ontology for the expected output.

In an embodiment of an intelligent data assimilation system according to the present
invention, data clients access the se}vices of the intelligent data assimilation system via an
application server. The application server provides a consistent interface for communications
with data clients over a variety of communication networks. The application server receives
search request messages from data clients via a plurality of commuhnication networks, translates
the search request messages into a consistent internal format for use by the intelligent data
assimilation system, and coordinates the transmission of responses to the data clients via the
communication networks.

FIG. 12 is a sequence diagram illustrating the sequence of events that occur when a
request message is received by an embodiment of an application server according to the present
invention. An application server includes a processing tier 1000 and a server tier (not shown).
The processing tier includes a protocol specific message extractor 1004, a request processor
1010, and a request to event translator 1014. A data client transmits 1002 a protocol specific
message 1003 including a previously described request message in the form ofa XML document.
For example, the data client might be a Web browser and the protocol specific message might
be a post transmitted via the Internet using HTTP. In one embodiment of a processing tier
according to the present invention, the supported protocols include HTTP, SMTP, RMI, and
JMS.

The protocol specific message is received by a protocol specific extractor 1004 and the
protocol specific extractor extracts 1006 the embedded XML document request message 1008.

The XML document request message is transmitted to a request processor 1010. The request
processor parses 1009 the XML document request message and extracts attributes in order to
determine the class of event handler to be instantiated. The request handler then creates the event
handler with the extracted attributes and the XML document request message. The XML
document request message 1012 then propagates up to the server tier where it is broken into
various components 1016 for the workflow by the request to event translator.

FIG. 13 illustrates how an embodiment of an intelligent data assimilation system is
coupled to a according to the present invention. An application server includes a server tier

including a server controller for controlling the operations of the intelligent data assimilation

-29-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

system. Operations within an intelligent data assimilation system are initiated by a plurality of
server events 902 generated within the previously described proceésing tier 1000 in response to
request messages transmitted to the application server by a data client. A state manager 905
coordinates the actions of a plurality of server event handlers 908 responding to the plurality of
server events. The server event handlers in turn use the services of the previously described
workflow engine 910 to create a instances of previously described workflows. The workflows
include a task node 912 that invokes a previously described LSO 914. The properties of the LSO
are defined by a set of previously described descriptors stored in the previously described
metadata store 916. The LSO includes a previously described translator 918 for interfacing with
the workflow task and a previously described acquisition adapter for building queries and parsing
responses, and a previously described connection adapter 922 for connection to an external data
provider.

The LSO makes a connection to an external data provider such as data providers 926,
930, and 934 using an appropriate communications link such as communications links 924, 928,
and 932 as previously described. The LSO collects a data set and creates a semantic object
encapsulating the data set as previously described. The workflow uses the semantic object to
transmit a data result to results data store 938.

The intelligent data assimilation system manages the data results in XML format in the
results data store. A product definition identifies the duration that the data result will remain in
the results data store. Data results that persist in the intelligent data assimilation system can be
used for archival purposes. The data result is rendered into an appropriate format for
transmission to the data client using XSL stylesheets by the formatter 940 according to a format
tag included in the request message. The server controller receives the rendered data result from
the formatter and transmits the rendered data result 942 to the data client as a response to the data
client’s service request message.

Although this invention has been described in certain specific embodiments, many
additional modifications and variations would be apparent to those skilled in the art. It is
therefore to be understood that this invention may be practiced otherwise than as specifically
described. Thus, the present embodiments of the invention should be considered in all respects
as illustrative and not restrictive, the scope of the invention to be determined by claims supported

by this application and the claim’s equivalents rather than the foregoing description.

~-30-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

WHAT IS CLAIMED IS:

1. A method for fulfilling a data service request, the method comprising:

providing an ontology description of a data service;

operably coupling a first logical search object to a data provider via a first
communications link;

generating a search request by the first logical search object from the data service
request;

transmitting the search request by the first logical search object to the data
provider via the communications link,

receiving by the first logical search object from the data provider via the
communications link a data set in response to the search request; and

generating by the first logical search object a knowledge instance from the data
set using the ontology description.

2. The method of claim 1, further comprising the first communications link

communicating with a database server.

3. The method of claim 1 the first communications link communicating with a FTP

SCrver.

4. The method of claim 1, further comprising. the first communications link

communicating with a Web server.

5. The method of claim 1, further comprising the first communications link

communicating with a file system.

6. The method of claim 1, further comprising the first communications link

communicating with a human data provider.

7. The method of claim 1, further comprising the first communications link

communicating with a communications protocol proprietary to the data provider.

8. The method of claim 1, further comprising the data service request is included in
a XML document.

31-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

9. The method of claim 1, further comprising:
operably coupling a first workflow to the logical search object; and
transmitting the knowledge instance by the first logical search object to the first
workflow.

10. The method of claim 9 further comprising:

operably coupling a second logical search object to the first workflow, the first
workflow; and

encapsulating by the first workflow the ontological relationship between the first
and second logical search objects.

11. The method of claim 9, further comprising:

operably coupling by an application server a data client to the first workflow via
a second communications link, and

_ receiving by the application server from the data client via the second

communications link a data service request message, the data service request message
including the data service request;

transmitting by the application server to the first workflow the data service
request message; and ,

transmitting by the first workflow to the logical search object the data service

request message.

12. The method of claim 10, further comprising the second communications link

communicating using SMTP.

13. The method of claim 10, further comprising the second communications link

communicating using JMS.

14. The method of claim 10, further comprising the second communications link

communicating using HTTP.

15. The method of claim 10, further comprising the second communications link
communicating using RMI.

16. The method of claim 9, wherein the logical search object is specified by the first

workflow.

-32-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

17. Themethod of claim 11, wherein the first workflow is specified by the application

server using the service request message.

18. The method of claim 10 further comprising:
~ providing a formatter; and
formatting by the formatter the data set encapsulated in the knowledge instance

into a format requested by the data client.

19. The method of claim 9 further comprising operably coupling a second workflow

to the first workflow.

20. A method foraccessing by a software object a data provider via a communications
link, comprising:

receiving by the software object from a second software object a search request
message document;

generating by the software object a data request for the data provider from the
search request message document;

transmitting by the software object to the data provider the data request via the
communications link;

" receiving by the software object from the data provider a data set via the

communications link; and

generating by the software object a semantic object from the data set.

21. The method of claim 20 wherein generating by the software object a semantic
object from the data set further includes:

operably coupling a parser adaptor to the software object;

providing a parser semantic description of the data set for use by the parser
adaptor;

providing a semantic object semantic description;

generating by the parser adaptor extracted data from the data set using the parser
semantic description; and

generating by the parser adaptor the semantic object using the extracted data

according to the semantic object semantic description.

-33-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

22. The method of claim 20 wherein generating by the software object a data request
for the data provider from the search request further includes:

operably coupling a request builder to the software object;

operably coupling a native object to the request builder;

encapsulating by the native object implementation details of a datarequest for the
data provider;

providing a native semantic description including ontology information describing
a data structure used by the request builder to build the data request for the data provider;

transmitting by the request builder to the native object the search request; and

generating by the native object the data request from the search request using the

native semantic description.

23. A dataprocessing system adapted to fulfill a data service request, comprising:
a processor; and
a memory operably coupled to the processor and having program instructions
stored therein, the processor being operable to execute the program instructions, the
program instructions including:
providing an ontology description of a data service;
operably coupling a first logical search object to a data provider via a first
communications link; '
generating a search request by the first logical search object from the data
service request;
transmitting the search request by the first logical search object to the data
provider via the communications link;
receiving by the first logical search object from the data provider via the
communications link a data set in response to the search request; and
generating by the first logical search object a knowledge instance from the

data set using the ontology description.

24. The data processing system of claim 23, wherein the first communications link

communicates with a database server.

25. The data processing system of claim 23, wherein the first communications link

communicates with a FTP server.

-34-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

26. The data processing system of claim 23, wherein the first communications link

communicates with a Web server.

27. The data processing system of claim 23, wherein the first communications link

communicates with a file system.

28. The data processing system of claim 23, wherein the first communications link

communicates with a human data provider.

29. The data processing system of claim 23, wherein the first communications link

communicates with a communications protocol proprietary to the data provider.

30. The data processing system of claim 23, wherein the data service request is
included in a XML document.

31. The data pfocessing system of claim 23, the program instructions further

including:
operably coupling a first workflow to the logical search object; and
transmitting by the first logical search object to the first workflow the knowledge
instance.

32. The data processing system of claim 31, the program instructions further
including:

operably coupling a second logical search object to the first workflow; and

encapsulating by the first window the ontological relationship between the first and

second logical search objects.

33. The data processing system of claim 31, the program instructions further
including:

operably coupling by an application server a data client to the first workflow via
a second communications link; and

receiving by the application server from the data client via the second
communications link a data service request message, the data service request message
including the data service request;

transmitting by the application server to the first workflow the data service

request message; and

-35-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

transmitting by the first workflow to the logical search object the data service

request message.

34, The data processing system of claim 32, wherein the second communications link

communicates using SMTP.

35. Thedataprocessing system of claim 32, wherein the second communications link

communicates using JMS.

36. Thedataprocessing system of claim 32, wherein the second communications link

communicates using HTTP.

37. Thedataprocessing system of claim 32, wherein the second communications link

communicates using RMI.

38. The data processing system of claim 32, wherein the logical search object is
specified by the first workflow.

39. ' The data processing system of claim 33, wherein the first workflow is specified

by the application server using the service request message.

40. The data processing system of claim 32, the program instructions further
including:
providing a formatter; and
formatting by the formatter the data set encapsulated in the knowledge instance

into a format requested by the data client.

41. Thedataprocessing system of claim 31, the program instructions further including
operably coﬁpling a second workflow to the first workflow. ’
42. A dataprocessing system adaptéd to access a data provider via acommunications
link, comprising:
a processor; and
a memory operably coupled to the processor and having program instructions
stored therein, the processor being operable to execute the program instructions, the

program instructions including:

-36-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

receiving by a software object a search request message document;

generating by the software object a data request for the data provider from
the search request message document;

transmitting by the software object to the data provider the data request
via the communications link;

receiving by the software object from the data provider a data set via the
communications link; and

generating by the software object a semantic object from the data set.

43. The data processing system of claim 42, wherein the program instructions for
generating by the software object a semantic object from the data set further include:

operably coupling a parser adaptor to the software object;

providing a parser semantic description of the data set for use by the parser
adaptor;

providing a semantic object semantic description;

generating by the parser adaptor extracted data from the data set using the parser
semantic description; and

generating by the parser adaptor the semantic obJect using the extracted data

accordmg to the semantic object semantic description.

44. The data processing system of claim 42, wherein the program instructions for -
generating by the software object a data request for the data provider from the search request
further include:

operably coupling a request builder to the software object;

operably coupling a native object to the request builder;

encapsulating by the native object implementation details of a datarequest for the
data provider;

providing a native semantic description including ontology information describing
a data structure used by the request builder to build the data request for the data provider;

transmitting by the request builder to the native object the search request; and

generating by the native object the data request from the search request using the

native semantic description.

45. A computer readable media embodying program instructions for execution by a
computer the computer program instructions adapting a computer to fulfill a data service request,

the program instructions comprising:

-37-

10

15

20

25

30

35 -

WO 02/077904 PCT/US02/09528

providing an ontology description of a data service;

operably coupling a first logical search object to a data provider via a first
communications link;

generating a search request by the first logical search object from the data service
request;

transmitting the search request by the first logical search object to the data
provider via the communications link;

receiving by the first logical search object from the data provider via the
communications link a data set in response to the search request; and

generating by the first logical search object a knowledge instance from the data

set using the ontology description.

46. The computer readable media of claim 45, wherein the first communications link

communicates with a database server.

47. The computer readable media of claim 45, wherein the first communicétions link

communicates with a FTP server.

48. The computer readable media of claim 45, wherein the first communications link

communicates with a Web server.

49. The computer readable media of claim 45, wherein the first communications link

communicates with a file system.

50. The computer readable media of claim 45, wherein the first communications link

communicates with a human data provider.

51. The computer readable media of claim 45, wherein the first communications link

communicates with a communications protocol proprietary to the data provider.

52. The computer readable media of claim 45, wherein the data service request is

included in a XML document.

-38-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

53. The computer readable media of claim 45, the program instructions further

comprising:
operably coupling a first workflow to the logical search object; and
transmitting by the first logical search object to the first workflow the knowledge
instance.

54. The computer readable media of claim 53, the program instructions further
comprising:
operably coupling a second logical search object to the first workflow; and
encapsulating by the first workflow the ontological relationship between the first

and second logical search objects.

55. . The computer readable media of claim 53, the program instructions further
comprising:

operably coupling by an application server a data client to the first workflow via
a second communications link, and

receiving by the application server from the data client via the second
communications link a data service request message, the data service request message
including the data service request;

transmitting by the application server to the first workflow the data service
request message; and

transmitting by the first workflow to the logical search object the data service

request message.

56. The computer readable media of claim 54, wherein the second communications

link communicates using SMTP.

57. The computer readable media of claim 54, wherein the second communications

link communicates using JMS.

58. The computer readable media of claim 54, wherein the second communications

link communicates using HTTP.

59. The computer readable media of claim 54, wherein the second communications

link communicates using RMI.

-39-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

60. The computer readable media of claim 54, wherein the logical search object is
specified by the first workflow.

61. Thecomputer readable media of claim 54, wherein the first workflow is specified

by the application server using the service request message.

62. The computer readable media of claim 54, the program instructions further
comprising:
providing a formatter; and
formatting by the formatter the data set encapsulated in the knowledge instance

into a format requested by the data client.

63. The computer readable media of claim 53, the program instructions further
comprising operably coupling a second workflow to the first workflow.

64. A computer readable media embodying program instructions for execution by a
computer, the computer program instructions adapting a computer to access adata provider via
a communications link, the program instructions comprising: .

receiving by a software object a search request message document;

generating by the software object a data request for the data provider from the
search request message document;

transmitting by the software object to the data provider the data request via the
communications link;

receiving by the software object from the data provider a data set via the
communications link; and

generating by the software object a semantic object from the data set.

65. The data processing system of claim 64 wherein the program instructions for
generating by the software object a semantic object from the data set further comprise:
operably coupling a parser adaptor to the software object;
providing a parser semantic description of the data set for use by the parser
adaptor;
providing a semantic object semantic description;
generating by the parser adaptor extracted data from the data set using the parser

semantic description; and

-40-

10

15

20

25

30

35

WO 02/077904 PCT/US02/09528

generating by the parser adaptor the semantic object using the extracted data

according to the semantic object semantic description.

66. The data processing system of claim 64 wherein the program instructions for
generating by the software object a data request for the data provider from the search request
further comprise:

operably coupling a request builder to the software object;

operably coupling a native object to the request builder;

encapsulating by the native object implementation details of a data request for the
data provider; A

providing a native semantic description including ontology information describing
a data structure used by the request builder to build the datarequest for the data provider;

transmitting by the request builder to the native object the search request; and

generating by the native object the data request from the search request using the

native semantic description.

A41-

WO 02/077904

1/18

/—10

Communications

I

Intelligent Data
Assimilation
Host

Network

/\

/-20

PCT/US02/09528

29
Query
31

Data Set

27
Service
Request
Message 33
Data Result
26
Y
/— 18
Client Host \’
16

Data Provider Host

FIG. 1

l

Data
Provider
Database

2

N

PCT/US02/09528

WO 02/077904

2/18

¢ DId

\. See

sng wWosAS
S SN Pt f
1T [0QU0D) 20BN O/] [eIydLed \ 4
QoppouL U \— |
w1
sng 18007 O/I H H
03¢ S6¢ — 07¢
T A T Rl R e ey [
S10[S [onuo) UreN
uoisuedxy] [oRu0) 10500 108109 03r101S H ﬂ
: JIo0MION | [preoghe] 09PIA
O71 . AS1a | ore
A N A S S w7
SUOT}ONLISU]T
OIA IOJTUOIAL
maouwoawmaoo preoqhazt 09PIA o3e1018 JSIA 10889001dOIDIIN
~— 00¢€

// 96€

/ cce ove

WO 02/077904 PCT/US02/09528

3/18

—1

ﬁ@/ ®, _I@/ e

Consumer/B2B¢
Trust Services eMarket 100

128
CRM System

Fornatted
Output

Darwin Request

Mana ‘
Style
Sheets

122

Product
Development
Tools

Data Mapping

Tools
{Semantic
Intelligence)

104

Data Providers

/ John[Doe310 555-1212]Los AngelesiCA /-

FIG. 3

PCT/US02/09528

WO 02/077904

4/18

v Old

jonpoid

Ofuf P31

091 v

-

91003 A HP8ID

Hpald
OSINISIY

861

ssalppy
¥ uosiod

uosiad 19ad 2S5t
~

~

~
~

~ sweN -

oGl ¥ U0sJad

0G1

[oAeT Jonpoid

/(44

[oAST OUEWSS

Zrl k

[leaQ 1paid
91098 Upaid
- SIBaA JO ON

_/
8rl A 9l 11p8aiD

|eloos
diz ‘aye18 ‘MU0
- Z 8ur ssaippy
T~~~ | aulssaippy
- }ul SIPPIN
P awe jsen
sweN isid

X 9ji4 Uosiad

ovL —

(joreT oliO}Y) Ejeq Mmey

vl |\

WO 02/077904 PCT/US02/09528

5/18

200

Legal Entity

202

Person Corporation

218 204

220

206
212

WO 02/077904 PCT/US02/09528

6/18
Yo 224
Ao “ Product2
T 200 "Where Can
/— 222 / ABC Corp.
Be Served?"
Product1 Legal
"Where ‘\\‘ Entlty .\\ /
does John "
Doe Live?" “

~
.......
hS

5
<
> 202
.
3
“ -
K .
K .
K .
K .
K .
Y .
K .
K .
\
\
\

Person : Corporation

L /— 204

Address

220 v

Domicile

= X ."5206
o T

Street City e State
214
\“ \ \)
“'. Y N—210 ~ 208
Method [Method| 7T
1 4 2

— 216

WO 02/077904 PCT/US02/09528

7/18

/— 400

SemanticObjecti(PFERSON)
402

SO(AD sS) AtomicObject(FIRST NAME) AO(LAST NAME)

AO(CITY) AO(STATE) AO(ZIPCODE) AO (STREET)

406 — 408 — A 410
SO — SemanticObject AO — AtomicObject

FIG. 7a
416
SemanticDescnptor(PERSON) sequence ~1
418

SD(ADDRESS) sequence=-1 GD(FIRST NAME) sequence—O length=20

WAME) sequence=1, length=20

GD(CITY) : sequence=2, length=TONGD(STATE) : sequence=3, length=2

424 426
GD(ZIPCODE) : sequence=4, length=20 GD (STREET) : sequence=5, length=50

SD — SemanticDescriptor GD — GenericDescriptor

FIG. 7b

WO 02/077904

PCT/US02/09528

8/18

siapinold

929

Z11=T 0 B
ced jeusaxe 4
. aa 89
89ld < ,
v
palqo
synsal yoless | 919
yosess abisw |ediBo) ajni uoIsioap
uopewoUI 0} sseooud m“ sjuawalnbal
)) : Joslqo
ulep9o }
1nho 3do ued __._thww_ 219
1By} 8|nJ UoIsIoap 029 :

wLwindoQg
sjinsay

abessap
1senbay

CRIINEN
L oos J

juswalinbai

14%°

, MOIDIOAA
soeuaiu :
mojppom ybnoiuy 009
paulep MOIIOM

PCT/US02/09528

WO 02/077904

9/18

6Old

<pus INVNMOTIMEOMENS/>
<Xajuodoljuewas/> <IXSJUODIRUBWSS>
A..m._.ml_._n__)_OO._umEEm
uuu=Qjdim pue INYNMOTSMNIOMENS>

~—2sL

T~—~—~0_

~—

<HE}IsTIWYNMOTINHOMENS/>

mopiIomans 1dIN
i ——06.

. A\...._mumEm._mn_v
i <,UUU, =0l

<PUs IWVYNMOIIHOMENS/> UL, =qfeuuswiIn
<. =ebessapIons A IV4,=snels UEISTINYNMOTHINOMENS>

uuu=Qldim Pus”INVYNMOTIHHOMENS> ~—g¥/.

8GL —

N§|/\/

Q3137dNOD=SNels 38s

X8juoo
onuewss abisy

uondaoxs
\ — vl
\

! 4°7A
pusim os1
g \lem pue M 11D A .

13piAold Eled

<IXSJUODONUBLIBS/> " <IXSJUOJONUBLISS> _

— 29.L / Ve 8¢.L 8¢.L
s
ov.L “m%ﬂow_w uopdaoxa rad) +
7 <IXOIUODONUBWISS/> ** <IXSUODONUBWISS>
1oUION / s - 1 OS11ED ~—
umieq / -~ - 179
P P <~ uondsoxe
a3 yogy=snies } - puz
h / P B _ - - -~ oLL -
0cL - - <UOqY />
Phd <,Uuu,=qlauIBuswWiiYIng
7 | — Hoqydm>
— Moqe
Jajpuey uondeox — —uopdaoxe = ./
uondaoxs S22 1A WA L 2 Lw_ucmxa
YAYA ™~ \ ONISSIO0Hd=SNIES Jos SeNDYIGotEd
y

094 ~/

Q34 =smeis
37A

o_‘mL 804

80UB)SUI MO|IOM UIBI |dTTM 90L

v

{ueaq uoissss
Jeje)s)
I5|NSIBISMOIPIOA

8LL—\

v0L —
GOL =

-

<pejs INVNMOTINHOMW>

<sisjewered/>

<sisjewered>

</ w=QldiM U, =qiaurpuauiiing
HEIS INYNMOTIHEOM>

\

J8|pueH
jsenbay

souejsuImoyNIopSNIBIS Stepdn J— c0L
1257 N) . _ Mo jeaID)

JWXaInSal ajepdn »

20L -

LIS ET

004

WO 02/077904 PCT/US02/09528

512

10/18
Service Request
Service Request Object
Object
Product
Produ.ct Selection
Selection iy
n
Collection of Cgllectio? of
Qeocta i emantic
Semantic Sgr&:ré’gz 5
iGobi Atomic Objects
Atomic Objects :
E Task & Rule
i | Brecuton Next Search
502 H Status Object

508 § 514
: Objects

500 — | Acquisition ; 510
H Adapter :
Java s
: RecordSet;

: . 518
516 B¢ DN
506 - |4

520
522

External
Data
Provider

521

FIG. 10

PCT/US02/09528

WO 02/077904

11/18

210]S eled S [c03
u B
LYS ax3 yotesg
uetnH 9P T~ 19MI9S .
waysAg ofid Jsziumdo 108 lspinoid
R 1843 9| uoneoyddy S log . Mymn_
\ (4 2°] uooOBUU0YD leulsixg
12S ;
19M198 d1d JanIeS oM 19N epelp |/
IE| - ,
di-dO.L e
~
pieogAo) ade] | Addo|4 dnieig €15 aui paxi4 716 AjAOaUUL0D
/ usalos \Il ¥€S
¢ jndu) eyeqg =TT _ 1, joo0j0id)
755 TES dlI-dOLi— s [one MO _—1—2€5
susaiosed | | | WRISAS Sl did dLLH N aoEis |00 L ey
65 1€5 4 61S 605 R Ao LUOROBULOD
uoedjjddy Ol a4 uogosuuoD TN ||} UOBEBULOD di LH H}UOKIBUL0D OBAF | uopejusLus|dw] _ oc
.M..m .WN'@. MNm Nrm N. m _OOO«O._n_ N>N_J — Omm @
i lsrjensnp ; Oovaaid ovadid ili ovddiiH ovaod s)00lq0 — 825
i Geg i 728 128 515 503 $5900Y Ee(sedepy
\ 1eddel Joddel uonisinboy
1addeipp gra Jaddeipy ar3 Jaddeipp gr3 taddeip arg BIM Era m_,m_>bl 9zZS b0S 7
lojejsuel) Jojejsuels |
\ e JOJEISUBL / /X o
syse| 20s
[siseL moppop/ os— _—
~— s S - pslao
2rs g —vzs orees et 11Ol

PCT/US02/09528

WO 02/077904

12/18

¢l Old

ﬁlw_‘o_‘

C

00}

| A A A |
| ﬁ _
_ _
wueng _L—> I
toneg | I
elous |
% 9 l ——]Sonbay |
_ [
9101 _
| ZLol I
! _
" swnoog ™ “
TNX 8sied 800!
_ /) |
| B obessa |
] 6001 | «—— 1senbey — _
I TNX]
i o _
' obessa
}sanbay
" TAX —_—
10enX3
_ R
| _
_ [
| rIoyersuelL 108590014 Jopenxg | |
" JueA3 1senbay M,mwwhw "
0} }1senbay
| ool _/ _
_ !
_ |

0001 l\

88“
_/

| sBessepy oyi0adg

[09030.d

SO eed

200l |\

PCT/US02/09528

WO 02/077904

13/18

8¢6

o ¢l 'old

I9PIACId lapinoid 0z6
Ejeq eleqg Japinold
dllH . ogar ele(l[enuely
_|» ¥Z6 \II e 0¢6
916

210)S Bled

)
L i I
9¢6 MOIPHOM ysel ‘ _ B__m_r__umc_mz %0 _ _
ﬁl,_MMu.%mu_Ur eH $06 —
abia | JO / pue ﬂ' A.L. ‘_MMM_WM \ _
SUETE! _ L_m.mm_ﬂﬁ.c Jejjonuod _ _
yosees _ S e noS -t _V _
al01g Bleq
synsay i _ _
G06 _ _ _
| X e |
[44] _
|

/ oL FENN
0¥6 BETNELS _mc_mmmoo._n_
—
206 0001
06—

WO 02/077904

PCT/US02/09528
14/18
. 1100
Sample Service Request Message 1101
<?xml version="1.0" encoding="UTF-8"7>
<message type="ServiceRequest" source-id="com.searchco">
<service-request message-id="11001100"> 1106

<service-item sku="CSRASearch" item="1"> ,__11 08

<parameter name=1"firstname1" value="John" />
<parameter name=1"lastname1" value="Smith" />~
1112

1110

<notification type="email">
<parameter name="address"
value="John.Smith@company.com" />
<format style="email" />

< /notification>

1114

<result-format>
<format style="csra-results" />

</ result-format>

1116
<results>
</ results>
</ service-item>
</ service-request>
</ data>
</ message>

FIG. 14

WO 02/077904 PCT/US02/09528

15/18
Sample Status Messages
<7xml version="1.0" encoding="UTF-8"?> 1118
<message type="Status" source-id="com.searchco" >
<data>/\/1100\1119 1122
<status message-id="1010010101">
<status-request item "1" IDAS-id="394" /> 1124

<status-request item "2" IDAS-1d="488" />
<status-request item "3" IDAS-id="506" />
<status-request item "4" IDAS-id="13892192312" />
< /status>
</data>
< /message>

FIG. 15

WO 02/077904 PCT/US02/09528

16/18
Sample Cancel Messages
<?xml version="1.0"?> ___ 1127 1126
<message type="Cancel" source-id="com.searchco" >
<data>—~-1128 1130

<cancel message-id="1234567890" > 1132
<cancel-request item "1" IDAS-id="1234567890" />
<cancel-request item "2" IDAS-id="2345678901" />

< /cancel>
< /data>
< /message>

FIG. 16

WO 02/077904 PCT/US02/09528

17/18

Sample Output Request Messages
<?xml version="1.0"?>
<message type="OutputRequest" source-id="com.searchco" >
<data>~_ - 1136 1138
<output message-id="1234567890" > —140
<output-request item="1" IDAS-id="1234567890" />
5y <format style="pﬂ> ~_ 1142 S 4141
output-request> 1144
<output-request item "2" IDAS-id=" 2345678901" />
<format style=" html" />
</ output-request>
< /output>
< /data>
< /message>

FIG. 17

WO 02/077904 PCT/US02/09528

18/18

Sample Response Messages
Sample of a message return when a service request has been
accepted.
<?xml version="1.0"?>
<message type="Response” source-id="IDAS" >
<data>
<service-response message-id="1010010101" >
<response item= "1 " result=" Success”
request="Order" IDAS-1d="345234234" >
<response-value>Workflow started at 01:23pm
September 4™ </ response-value >
</ response >
<response item "2" result=" Success”
request="Order"” IDAS-id="345234234" >
September 4™ 2001 </ response-value >
</ response >
< /service-response>
</data>
</IDAS-message>

FIG. 18

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

