

1 576 835

(21) Application No. 7899/77 (22) Filed 24 Feb. 1977 (19)
 (31) Convention Application No. 7 602 890 (32) Filed 27 Feb. 1976 in
 (33) Sweden (SE)
 (44) Complete Specification published 15 Oct. 1980
 (51) INT. CL. E02D 19/00 E04C 2/26
 (52) Index at acceptance

E1A 26X

(54) A METHOD OF PROVIDING A MOISTURE-PROOF OR MOISTURE-
 RESISTANT FOUNDATION INSULATION FOR BUILDINGS

(71) I, TORE GEORG PALMAER, a Swedish Citizen of Smultronvagen 28, S-331 00 VARNAMO, Sweden, do hereby declare the invention, for which I pray that a patent 5 may be granted to me, and the method by which it is to be performed, to be particularly described in and by the following statement:— The present invention relates to a method 10 of providing a moisture-proof or moisture-resistant foundation insulation for buildings and to insulation material for use in the method.

In the construction of buildings with basement foundations, pressure bearings are provided at a frostproof depth at the same time as a relatively deeply laid subsoil water drainage system is laid. Basement space is provided which will be useful to some extent if sufficient heat insulation from adjacent 20 ground is provided.

Constructions without basements use a so-called base-slab of which the edges are utilised as a bearing for the building and accordingly dimensioned. In order to avoid 25 an ingress of frost underneath the slab, an insulation layer is applied immediately under the ground surface, just above the subsoil water drainage, said layer extending for 0.5 to 1 meter from the building.

30 However, there is a considerable heat transfer from the building above ground by reason of passing air and rain water, and under ground by reason of ground water. Accordingly, if it were possible to prevent 35 subsoil water from coming near the bottom face of the house or the base-slab, it would be possible in a simple manner to reduce the need for ground insulation under the floor, which will be costly in one-storey buildings, 40 and moreover, the ground under the house from about one meter above the foundation insulation level could be dried-out and form a mass acting somewhat as a heat sink for example between winter and summer.

45 It is understood that these difficulties could be solved by digging down to a sufficient depth and casting water-impermeable, vertical concrete walls. Such a method is, however, very costly and accordingly impractical.

In one aspect the present invention provides 50 a method of providing a moisture proof or moisture resistant foundation insulation for buildings, wherein a narrow ditch is dug around the body of the building, a water impermeable heat insulating foil is provided 55 to extend down in the ditch, drainage material is provided in the bottom of the ditch and the ditch is filled in.

Because only a narrow ditch is dug, and 60 because it is not filled with concrete, the invention offers a simple and labour saving solution to the problem of providing a volume of ground beneath a building which is insulated from moisture.

In a preferred form, the method of the 65 invention involves applying the foil onto the surface of the ditch nearer the centre body of the building; attaching the foil to the outer edge of the body of the building to form a water-insulating layer; filling in drainage material in the form of tubes and gravel into the bottom of the ditch, and finally refilling the ditch. Higher located drainage is also 70 possible.

75 As a result, a ground zone beneath the building will be dry at all times, so that no frost heaving can arise beneath the edges of the foundations of the building, and the primary cause of heat transfer, with ground 80 water, is eliminated. This gives a substantial thermal insulation of the floor while the dry ground forms a substantial heat stabilising factor, which in case the body of the building includes a swimming pool or similar heat 85 accumulating devices can absorb heat therefrom. An example of such heat accumulating devices is a hot water accumulator situated in the middle of the building, which can easily be supplied with heat from conventional heating apparatuses as well as wind or sun 90 energy.

95 For carrying out the method according to the invention it is preferred to use a foundation insulation consisting of a moisture-proof or moisture-resistant foil being at least on one side thereof provided with a layer of expanded material. It is also preferred for the foil to have bar-like reinforcements, and

as a result, the insulation can be delivered in the form of a rolled up mat.

The invention will be more clearly understood from the following description which is given by way of example only with reference to the accompanying drawings, in which:

Figure 1 shows a sectional view of a foundation insulation formed by the method of this invention;

10 Figures 2 to 4 show three different embodiments of insulation material for use with the method; and

Figure 5 shows a view of the insulation material in a rolled-up condition.

15 Figure 1 shows a foil 1 of, for instance, plastics, which is provided with spaced reinforcement bars 2 extending over its width. This is provided on the left hand side of a ditch 3, i.e. on that side of the ditch 3 nearer the foundation 4 of the building. In the bottom of the ditch 3 drainage tubes 5 are provided.

20 The method proposed according to the invention involves first digging the ditch 3, for example to a depth of 2—2.5 meters, around the body of the building, and subsequently depositing the foil 1 into the ditch, making it extend substantially down to the bottom of the ditch 3, with the reinforcement bars 2 provided on the foil extending down into the ditch at least one meter from the ground surface. The drainage tubes 5 are then placed into the bottom of the ditch 3 which is then refilled so that there is a minimum of manual labour.

25 35 In Figure 2 a plastics foil 1 is shown, which is provided alternately on its sides with suitable reinforcement bars 2.

40 Figures 3 and 4 show a plastics foil 1 one face (Fig. 3) or both faces (Fig. 4) of which is provided with a layer 6 of expanded elastic plastics material. This layer 6, which can be integral with the plastics foil, will suitably be shaped with spaces 7, so that the foil is capable of being rolled up. The layer can also have transverse spaces for the formation of a pattern divided in two directions. The expanded layer is easily achieved in a known manner and contains gas-filled pores, and forms, on the one hand, a mechanical cover for the plastics foil giving protection against sharp stones or the like and on the other a thermal insulation. It is understood that in these embodiments vertical reinforcement bars can also be used, to give stability when laying the insulation, and to give a good hold in the foundation of the building.

45 55 As is seen from Figure 1 the upper end of the foil can be attached to the foundation of the building, and it is also feasible to attach

the lower end of the foil to the drainage material.

60 The reinforcement bars 2 shown in Figure 2 can be arranged in different ways, crosswise to the longitudinal direction of the foil, on one face of the foil or both faces of the foil.

65 The foils can be joined in a simple and efficient manner at their respective end portions. Thus, a further advantage of the foundation insulation proposed according to the invention is the provision of a mat of a limited depth but of a great length, and which can be applied into the ditch in a simple manner concomitantly with the drainage material. The deposition can be made with an excavator having a sliding form, attention being necessary to the slide angle of the ditch.

70 75 It is to be understood that the invention is not limited to the embodiments shown in the drawing but can be modified in many ways within the scope of the appended claims.

80 The foil described above is also described and claimed in my copending Patent Application No. 7905466 (Serial No. 1576836).

WHAT I CLAIM IS:—

85 1. A method of providing a moisture-proof or moisture-resistant foundation insulation for buildings, wherein an arrow ditch is dug around the body of the building, a water impermeable heat insulating foil is provided to extend down in the ditch, drainage material is provided in the bottom of the ditch and the ditch is filled in.

90 95 2. A method according to claim 1 wherein the foil is located on the surface of the ditch near the body of the building and is attached to the body of the building.

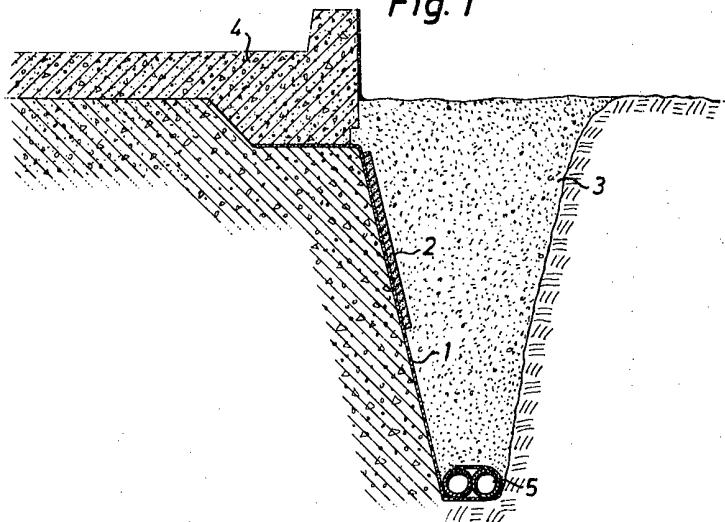
100 3. A method according to claim 1 or 2 wherein the foil is attached to the bottom of the ditch.

4. A method according to claim 1, 2 or 3 comprising providing, during filling in of the ditch, additional drainage material in the ditch at a level higher than its floor.

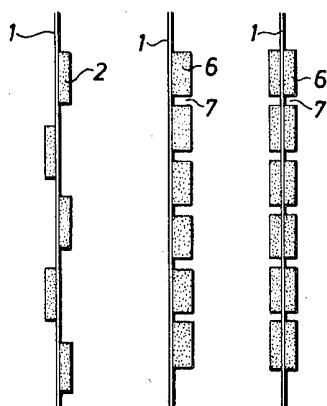
105 5. A method of providing a moisture-proof or moisture-resistant foundation insulation for buildings substantially as hereinbefore described with reference to and as illustrated in Figure 1 of the accompanying drawings.

110 6. A building having a moisture-proof or moisture-resistant foundation insulation provided by the method of any one of claims 1 to 5.

J. A. KEMP & CO.,
Chartered Patent Agents,
14, South Square,
Gray's Inn,
London, WC1.


1576835

COMPLETE SPECIFICATION


1 SHEET

*This drawing is a reproduction of
the Original on a reduced scale*

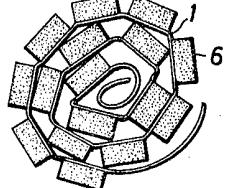

Fig. 1

Fig. 2 Fig. 3 Fig. 4

Fig. 5

