发明名称：溶析结晶从混合二氯苯中分离对氯苯的方法

摘要
本发明公开了一种溶析结晶制取对氯苯的方法。所述的方法首先将混合二氯苯溶解于一种对对氯苯、邻二氯苯及其他杂质有较强的选择性溶解能力的有机溶剂中，然后加入与有机溶剂完全互溶的、而与混合二氯苯完全不溶的溶析剂，使对氯苯从有机溶剂中析出。通过常规的精制方法，即可获得纯度高于99.5%的对氯苯。所述的方法对原料的浓度有很强的适应性，操作方便简单，无环境污染，产品能广泛用于民用的防蚊防虫药品和杀虫消毒剂的生产。
权利要求书

1. 一种溶析结晶制取对二氯苯的方法，其特征在于主要依次包括如下步骤：
 (1) 混合二氯苯与有机溶剂的混合溶解，有机溶剂与混合二氯苯的比例为
 1 : 1 ～ 4.0 : 1，重量比，所述的有机溶剂为乙醇、乙睛或丙酮中的一种或一种以上；
 (2) 将溶解了混合二氯苯的有机溶剂的温度降至 -5 ℃～15 ℃，加入溶析剂，保持混合溶液的温度，使对二氯苯晶析出来，所述的溶析剂为水，其加入量为：
 溶析剂：有机溶剂 = 1 : 1 ～ 1 : 4（重量比）；
 (3) 从含有对二氯苯晶体的混合物中，采用常规的方法收集对二氯苯。

2. 如权利要求 1 所述的方法，其特征在于：将混合二氯苯先行熔融，然后再与
 有机溶剂相混合，混合二氯苯的熔融温度为 50 ℃～70 ℃。

3. 如权利要求 1 或 2 所述的方法，其特征在于：优选的有机溶剂为乙醇。

4. 如权利要求 1 或 2 所述的方法，其特征在于：有机溶剂与混合二氯苯的比例
 为 1.5 : 1 ～ 2.5 : 1，重量比。

5. 如权利要求 1 或 2 所述的方法，其特征在于：将溶解了混合二氯苯的有机溶
 剂的温度降至 0 ℃～10 ℃，然后再加入溶析剂。

6. 如权利要求 1 或 2 所述的方法，其特征在于：溶析剂的加入量为：
 溶析剂：有机溶剂=1 : 2 ～ 1 : 3，重量比。
说明书

溶析结晶从混合二氯苯中分离对二氯苯的方法

本发明属于分离工程技术领域，涉及一种从混合二氯苯中分离对二氯苯的方法，尤其涉及一种从混合二氯苯制备纯度高于99.5%的对二氯苯的方法。

对二氯苯是一种重要的精细化工产品，广泛用于民用的防蛀防霉产品和杀虫消毒剂的生产。由于民用市场对安全、卫生和健康的严格控制，要求对二氯苯产品的纯度必须达到99.5%以上。因此，开发高纯度对二氯苯的制备技术不仅具有明确的市场背景，而且具有显著的经济与社会效益。

工业上制取对二氯苯的原料主要有二个来源，一是氯苯生产中副产的二氯苯，其中对二氯苯的含量约64%左右，二是由苯经氯化工艺直接生产的二氯苯，其中，因催化工艺不同，对二氯苯含量在77%～90%间变化。无论采用何种方法获得的二氯苯，都主要是由邻、对位二氯苯构成，间位异构体或三氯苯的量极少。为了获得高纯度的对二氯苯，必须对混合二氯苯进行分离。

目前工业上分离二氯苯的方法主要有三种：熔融结晶法（包括多级分步结晶和发汗结晶）、减压精馏法、吸附法。

美国专利U.S. 3,847,755和日本专利特开昭54-160，322公开的减压精馏法是利用组分间相对挥发度的差异进行分离的。由于邻位和对位二氯苯的沸点相近（邻二氯苯：174.1℃，对位二氯苯：180℃），挥发度的差异很小（α=1.1），所以，采用精馏法分离非常困难，要求很高的塔板数，设备投资大，分离效果不理想。很难获得99.5%以上的高纯度产品。

美国专利U.S. 4,864,070和日本专利特开昭52-62,229，特开昭53-105,434提出以MIP-5和各种分子筛吸附分离二氯苯的方法，该吸附法虽能有效的提纯对二氯苯，但由于吸附剂容量有限，原料中邻二氯苯含量不能太高，故该法的适用性不强，只能用于对二氯苯粗品的精制。而且，由于吸附剂再生比较困难，产品质量难以稳定。

熔融结晶分离法是基于邻位和对位二氯苯在熔点上的差异（邻二氯苯：53
℃，对位二氯苯：-17.6 ℃），通过冷冻降温，使对二氯苯析出来。但是，在结晶过程中，由于邻二氯苯在对二氯苯晶体中粘附和裹挟，很难获得高纯度的产品。为了解决这一问题，人们曾在结晶工艺和结晶设备上进行过许多改进；

特公，昭 57-26570 公开了多槽串联重结晶装置，根据发汗结晶的原理，使各槽在不同温度下操作，经 5 级逆流结晶，可由邻二氯苯含量为 77% 的原料，得到纯度大于 99.5% 的对二氯苯产品；

《氯碱工业》，（12），38-42（1990）介绍了单级熔融结晶—溶剂重结晶联合操作的分离方法，即先在-20 ℃左右将二氯苯熔体冷冻结晶，然后，将得到的粗结晶溶于一种溶剂中，再降温结晶。此法虽能得到纯度大于 99.5% 的产品，但产品收率较低，仅 60% 左右。

本发明的目的在于公开一种在含有混合二氯苯的有机溶剂中加入溶析剂，使混合二氯苯进行分离而制取纯度高于 99.5% 的对二氯苯的溶析结晶分离方法，以克服现有技术的上述缺陷。

本发明的构思是这样的：

首先选择一种对对二氯苯、邻二氯苯及其他杂质有较强的选择性溶解能力的、且溶解度对温度变化不敏感的有机溶剂，如乙醇、乙晴、丙酮等，将混合二氯苯溶于该有机溶剂中，然后降低温度，并加入与有机溶剂完全互溶的、而与混合二氯苯完全不溶的溶析剂，由于对二氯苯和邻二氯苯在所说的有机溶剂中具有不同的溶解度，因此，加入所说的溶析剂后，对二氯苯首先从有机溶剂析出，通过常规的精制方法，即可获得高纯度的对二氯苯。

本发明既利用了有机溶剂的洗涤与萃取作用，确保了晶体产品的纯度，又利用溶析剂只溶解于有机溶剂而不溶解于混合二氯苯的特点，使溶解于有机溶剂中
的对二氯苯从有机溶剂中最大限度地析出，确保了晶体产品的收率，不仅可以有效的解决杂质在晶体中的粘附和裹挟问题，获得高纯度的对二氯苯产品，而且对结晶设备无特殊要求，可充分利用现有的分步结晶装置实现高纯度对二氯苯的生产。

本发明所说的方法主要依次如下步骤：

（1）混合对二氯苯与有机溶剂的混合溶解，这是一个简单的混合溶解过程，在常温下即可进行，如将混合对二氯苯先行熔融，然后再与有机溶剂相混合，则可以加快混合对二氯苯的溶解速度，有机溶剂与混合对二氯苯的比例为：

有机溶剂：混合对二氯苯 = 1 ： 1 ∼ 4.0 ： 1（重量比），而以：

有机溶剂：混合对二氯苯 = 1.5 ： 1 ∼ 2.5 ： 1（重量比）为佳；

混合对二氯苯的熔融温度一般为 50 ℃ ∼ 70 ℃，所说的有机溶剂为乙醇、乙酸或丙酮等中的一种或一种以上，优选的有机溶剂为乙醇；

（2）将溶解了混合对二氯苯的有机溶剂的温度降至－5 ℃ ∼ 15 ℃，最好降至 0 ℃ ∼ 10 ℃，加入溶剂剂，保持混合溶液的温度，使对二氯苯析出，所说的溶剂剂为水，其加入量为：

溶剂剂：有机溶剂 = 1 ： 1 ∼ 1 ： 4（重量比）；

最好为：

溶剂剂：有机溶剂 = 1 ： 2 ∼ 1 ： 3（重量比）；

（3）从含有对二氯苯晶体的混合物中，采用常规的方法收集对二氯苯，其纯度可达 99.5% 以上。通常，可以采用如下的方法进行收集：对含有对二氯苯晶体的混合物进行过滤，获得对二氯苯的粗晶，然后将粗晶加热至熔融，分相，取出下层对二氯苯的熔融体，即可获得纯度为 99.5% 以上的对二氯苯。固液分离后的滤液，经精馏分离并回收有机溶剂、溶剂剂，以及对二氯苯残液。

按本发明的方法提纯对二氯苯，对原料的浓度有很强的适应性，只要对二氯苯含量不低于 77% 即可，也就是说，可直接用定向氯化法的生产的二氯苯为原料。也可将氯苯生产副产的二氯苯，经单级熔融结晶提浓至要求的原料浓度以上。还可用各种其他结晶法获得的对二氯苯粗产品作为原料。所说的方法操作方便简单，无环境污染，产品纯度可达 99.5% 以上。
下面将通过实施例对本发明的有关细节作进一步的说明。

实施例 1

将 100 克对二氯苯含量为 77%的对氯苯于 50 ℃熔融后，导入 280 克 95%的乙醇溶液中，在 25 ℃下充分混合后，将料液降温至 5 ℃。然后，边搅拌边向料液中滴加 100 克水，恒温搅拌 10 分钟。真空抽滤，得到粗晶，将粗晶熔融，分相后，将下层融体取出，冷却固化，得对二氯苯固体 66.4 克，纯度为 99.72%，收率为 86.2%。

实施例 2

将 100 克对二氯苯含量为 85%的二氯苯于 60 ℃熔融后，导入 240 克 95%的乙醇溶液中，在 25 ℃下充分混合后，将料液降温至 15 ℃。然后，边搅拌边向料液中滴加 85 克水，恒温搅拌 20 分钟。真空抽滤，得到粗晶，将粗晶熔融，分相后，将下层融体取出，冷却固化，得对二氯苯固体 76.7 克，纯度为 99.8%，收率为 90.2%。

实施例 3

将 100 克对二氯苯含量为 95%的的二氯苯于 60 ℃熔融后，导入 180 克 95%的乙醇溶液中，在 25 ℃下充分混合后，将料液降温至－5 ℃。然后，边搅拌边向料液中滴加 70 克水，恒温搅拌 120 分钟。真空抽滤，得到粗晶，将粗晶熔融，分相后，将下层融体取出，冷却固化，得对二氯苯固体 89.7 克，纯度为 99.87%，收率为 94.4%。

实施例 4
将 100 克对二氯苯含量为 95%的的二氯苯于 60 ℃熔融后，导入 180 克 95%的乙腈溶液中，在 25 ℃下充分混合后，将料液降温至 5 ℃。然后，边搅拌边向料液中滴加 70 克水，恒温搅拌 120 分钟。真空抽滤，得到粗晶，将粗晶熔融，分相后，将下层融体取出，冷却固化，得对二氯苯固体 89.7 克，纯度为 99.77%，收率为 94.3%。

实施例 5

将 100 克对二氯苯含量为 95%的的二氯苯于 60 ℃熔融后，导入 180 克 95%的丙酮和乙醇的混合溶液中（1：1，重量），在 25 ℃下充分混合后，将料液降温至 10 ℃。然后，边搅拌边向料液中滴加 70 克水，恒温搅拌 50 分钟。真空抽滤，得到粗晶，将粗晶熔融，分相后，将下层融体取出，冷却固化，得对二氯苯固体 89.7 克，纯度为 99.67%，收率为 94.2%。