2007/074408 A2 I} 0 00 0 D01 OO A

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 July 2007 (05.07.2007)

PO 0O

(10) International Publication Number

WO 2007/074408 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/IB2006/004062

(22) International Filing Date: 14 July 2006 (14.07.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/699,935 14 July 2005 (14.07.2005) US

(71) Applicant (for all designated States except US): YOTTA
YOTTA, INC. [CA/CA]; 6020 104th Street, Edmonton,
Alberta T6H 584 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BROMLING, Steve
[CA/CA]; 10907 120th Street, Edmonton, Alberta T6G
1X5 (CA). HAGGLUND, Dale [CA/CA]; 10184 88th
Street, Edmonton, Alberta TSH 1P3 (CA). HAYWARD,
Geoff [CA/CA]; 9711 87th Avenue, Edmonton, Alberta
T6E 2N3 (CA). VAN DER GOOT, Roel [CA/CA]; 10610

(74)

(81)

(34)

83rd Avenue, Edmonton, Alberta T6E 2E2 (CA). KAR-
POFF, Wayne [CA/CA]; 678 Estate Drive, Sherwood
Park, Alberta T8B 1M4 (CA).

Agent: FETHERSTONHAUGH & CO.; Box 11560,
Vancouver Centre, 650 W. Georgia St, Suite 2200, Van-
couver, British Columbia V6B 4N8 (CA).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,

[Continued on next page]

(54) Title: MAINTAINING WRITE ORDER FIDELITY ON A MULTI-WRITER SYSTEM

Site A
(202)
D2 1
(300) | oo
S S S
wi (\3:}9\?3) w4 .<—>
DI L W2, w3,
(210) 302

206

Sile A Leg
of DRI

Site B
{204)

210d)
Wi, W2, w3, w4

Site B Leg
of DR1

208

(57) Abstract: ABSTRACT OF THE DISCLOSURE Write order fidelity (WOF) is maintained for totally-active implementations
wherein a plurality of access nodes at geographically separated sites can concurrently read and/or write data in a "totally active"
fashion on a distributed data system. From the hosts’ perspective at diverse geographic locations, a synchronous, cache-coherent
view of data is provided. Data transfer is asynchronous. A time ordered data image is created and maintained so operations can be
restarted after a partial system failure that causes loss of data not yet asynchronously transferred across the network, but that has been
write-acknowledged to the originating host. Time ordered asynchronous data transfer is implemented as a pipeline of changes that
reflect contributions from all nodes. WOF also improves network performance and lowers bandwidth consumption. Extensions can
provide, in a totally-active context, features such as point-in-time snapshots, time firewalls, on-demand backend storage allocation,
synchronous / asynchronous distribution of data, and continuous data protection.

WO 2007/074408 A2 | NI DA 00 0T 0000 00000 O 0 O

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, For two-letter codes and other abbreviations, refer to the "Guid-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.
— without international search report and to be republished
upon receipt of that report

WO 2007/074408 PCT/IB2006/004062

MAINTAINING WRITE ORDER FIDELITY
ON A MULTI-WRITER SYSTEM

CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] The present application is a Non-provisional application and claims priority to U.S.
Provisional Application No. 60/699,935, filed on July 14, 2005 (Atty. Docket No.: 019417-
008700US), the entire contents of which are herein incorporated by reference for all

purposes.

COPYRIGHT NOTICE
[0062] A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in the
U.S. Patent and Trademark Office patent file or records, but otherwise reserves all copyright

rights whatsoever.

BACKGROUND OF THE INVENTION
[0003] The present invention relates generally to systems and methods for providing
recovery of the contents of a data storage system after a failure or other potential source of
data loss or corruption, and more specifically to systems and methods for providing write
order fidelity for a storage system having data writers operating concurrently in multiple

locations across a distributed data storage network.

[0004] In current storage networks, and in particular storage networks including
geographically separated access nodes and storage resources interconnected by a network,
write performance can be severely hampered as distance between nodes increases if writes
must be replicated or transmitted synchronously. Additionally, minimizing required
bandwidth between locations is highly desirable. Thus, methods of asynchronously
transmitting data are used where the write is acknowledged before the data is transferred to

nodes at remote sites.

[0005] It is also desirable that data access be localized, in part to improve access speed to

blocks of data requested by host devices. Caching blocks at access nodes provides

WO 2007/074408 PCT/IB2006/004062

localization, however, the cached data must be kept coherent with respect to modifications at

other access nodes that may be caching the same data.

[0006] Further, such complex storage applications need to withstand the failure of their
backing storage systems, of local storage networks, of the network interconnecting nodes,
and of the access nodes. Should a failure occur, asynchronous data transmission implies the
potential for the loss of data held at the failed site. A consistent data image, from the
perspective of the application, needs to be constructed from the surviving storage contents.
An application must make some assumptions about which writes, or pieces of data to be
written, to the storage system have survived the storage system failure; specifically, that for
all writes acknowledged by the storage system as having been completed, that the ordering of
writes is maintained such that if a modification due to a write to a given block is lost, then all

subsequent writes to blocks in the volume or related volumes of blocks is also lost.

[0007] The term write order fidelity ("WOF") as used herein refers to a group of related
properties, each of which describes the contents of a storage system after recovery from some
type of failure. That is, after the storage system recovers from a failure, properties that the
application can assume about the contents of the storage system. Write Order Fidelity
(WOF) introduces a guarantee that, after recovery from a failure, surviving data will be
consistent. Complex applications such as file systems or databases rely on this consistency
property to recover after a failure of the storage system. Even simpler applications that are
not explicitly written to recover from their own failure or the failure of backend storage

should benefit from these post-failure guarantees.

[0008] When implementing WOF in a strict sense, an application will generate a stream of
writes {W;] #>1}to the storage system supporting that application. The underlying storage
system exhibits strict write order fidelity if, after any failure of the storage system, the state
of the storage system upon recovery reflects some prefix of the write sequence from the
application. In other words, there exists some >0 such that all of writes {#¥}] j<i} have been

committed to storage, and none of writes {#¥;|>i}have been committed to storage.

[0009] Strict WOF assumes that writes can be totally ordered, which is straightforward for
a single controller or for a set of tightly-coupled storage controllers communicating through
shared memory. The costs of generating such a total order on writes, however, become

significant for controllers communicating via messages passing even within a site. The

WO 2007/074408 PCT/IB2006/004062

ordering costs become unacceptable as inter-controller latencies reach even a few

milliseconds.

[0010] Traditionally, an “active-passive” approach is used for asynchronous transmission
of data between sites such that only one writer, or host processor, has read-write access to a
given volume of blocks, and other processors only have read access. An environment which
is “totally-active”, where read and writes to a given volume of blocks can occur randomly
from any node is highly desirable, but requires changes in the approach to WOF and how

WOF interacts with caching at all access nodes in the system.

BRIEF SUMMARY OF THE INVENTION
[0011] Embodiments in accordance with the present invention provide write order fidelity
(WOF) in distributed storage systems where storage access nodes, commonly referred to as
- storage controllers, and storage systems are interconnected with a network. Clearly, any
network allowing communication between nodes can be used. While various embodiments
allow for totally-active operation, where writes and/or reads to any given data volume may be
initiated from any node in the system, clearly the same systems can also be used in a

traditional active-passive mode.

[0012] WOF is obtained in some aspects by utilizing delta sets distributed or fragmented
across various sites and/or nodes utilizing a cache coherency layer. Various embodiments
can provide WOF to totally-active sites without unacceptable performance cost by using
distributed cache coherency to ensure the most recent write to any given node is immediately
reflected in subsequent reads by any site and thus provides a coherent application view. This
also can insure that data blocks written to any given delta set distributed across distributed
nodes are coherent, reflecting the most recent write, with corresponding partial deltas housed

at the various nodes in the system.

[0013] In one embodiment, one or more host-visible volumes of data are managed as WOF
groups. Even though multiple data volumes compose a WOF group, WOF is ensured for all
blocks from all data volumes within the WOF groups as if all blocks were within a single

volume.

[0014] In one embodiment, a multi stage pipeline of delta sets is used to collect newly

written block images, to exchange block images between nodes and to commit block images

WO 2007/074408 PCT/IB2006/004062

to back-end storage. A system-wide barrier mechanism insures that the pipeline of delta sets
advances simultaneously on all nodes in the system. Clearly, the barrier does not have to be
system-wide if not all nodes are participating in the management of a given WOF group. New
writes to any of the multiple data volumes making up a WOF group are stored in cache for an
“open delta” for that WOF group. Upon some triggering or other event, the current open
delta should be closed. A message to close the open delta is broadcast to that WOF group so
that any outstanding writes can be completed and the delta can be closed. A new delta is
opened to receive new writes. The recently closed delta, which can exist as unique fragments
on different WOF groups, undergoes an “exchange phase” so that each site obtains a |
complete copy of the closed delta. After all modified blocks have been exchanged between
nodes and the next barrier occurs demarking the next advancement of the pipeline, the
complete closed deltas enter the “commit phase” and can be made persistent by writing to

stable storage.

[0015] These and other embodiments of the present invention, as well as its advantages and

features, are described in more detail in conjunction with the text below and attached figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] Various embodiments in accordance with the present invention will be described

with reference to the drawings, in which:

[0017] FIG. 1 illustrates a distributed storage system that can be used in accordance with

one embodiment of the present invention;

[0018] FIG. 2 illustrates a process step for use with multi-site storage system in accordance

with one embodiment of the present invention;

[0019] FIG. 3 illustrates a process step for use with multi-site storage system in accordance

with one embodiment of the present invention;

[0020] FIG. 4 illustrates a process step for use with multi-site storage system in accordance

with one embodiment of the present invention;

[0021] FIG. 5 illustrates steps of a method for storing data in accordance with one

embodiment of the present invention;

WO 2007/074408 PCT/IB2006/004062

[0022] FIG. 6 illustrates a process step for use with multi-site storage system in accordance

with one embodiment of the present invention;

[0023] FIG. 7 illustrates a process step for use with multi-site storage system in accordance

with one embodiment of the present invention;

[0024] FIG. 8 illustrates a process step for use with multi-site storage system in accordance

with one embodiment of the present invention;

[0025] FIG. 9 illustrates a process step for use with multi-site storage system in accordance

with one embodiment of the present invention;

[0026] FIG. 10 illustrates a geographically separated, distributed storage system that can be

used in accordance with one embodiment of the present invention;

[0027] FIG. 11 illustrates a distributed storage system including a nesting group that can be

used in accordance with one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION
[0028] Systems and methods in accordance with various embodiments overcome the
aforementioned and other deficiencies in existing data storage systems by providing various
totally-active implementations, wherein multiple sites each can read and/or write data
concurrently while maintaining write order fidelity (WOF), as opposed to existing
active/passive implementations wherein a single writer typically pushes data across a network
to a passive site. These and other objects can be achieved in one aspect by combining an
improved delta set approach to write order fidelity with approaches for providing distributed
cache coherence.
[0029] In one aspect, a time ordered image of data is created and maintained so that
operations can be restarted after a storage system failure without having corrupt file systems,
data bases, or other application inconsistent views of data. Existing systems typically send
data in blocks, as known in the art to be a basic unit of data transfer, and must preserve the
order of those blocks. This creates a significant number of short transactions, which can
cause a slow down in network and/or system performance as the latency increases. One way
to reduce the number of transactions is to group blocks into deltas, or delta sets. Using delta
sets can increase the granularity of data transfers across a network thus increasing the

efficiency network transfer, and eliminating multiple transfers of an individual block written

WO 2007/074408 PCT/IB2006/004062

to multiple times within the time interval captured by a delta set, so that if an individual block
is written many times that block will only be written once using a delta. The boundaries
between deltas provide write-order consistent images of data.

[0030] Delta sets are described, for example, in U.S. Patent No. 6,823,336, issued
November 23, 2004, which is hereby incorporated herein by reference. Other descriptions of
deltas and methods for remote data mirroring are described, for example, in U.S. Patent No.
7,055,059, issued May 30, 2006, and "Seneca: remote mirroring done write," by Minwen Ji et
al, proceedings of USENIX Technical Conference, pages 253-256, June 2003, each of which
is hereby incorporated herein by reference.

[0031] Prior to this invention, delta set based WOF implementations supported only active-
passive data access. In this scenario, implementing WOF is substantially simpler because the
“active’ site can completely control the transition between WOF images. A simple active-
passive implementation of WOF involves maintaining only two delta sets with a memory
region allocated for each of the two partial deltas at the active and passive sites. After a
decision was made at the active node to advance the delta image, new writes are simply
accepted into the alternate buffer. A message is sent to the passive site indicating the switch
and transferring the data from the newly closed delta. Once the ‘push’ of data to the passive
site is complete, both sites can commit the now exchanged data to disk. Having completed
this, the active site can again toggle between delta set buffers closing the current deltas.
Extensions to the traditional delta set based WOF implementation include maintaining more
delta sets, typically maintained as a rotating set of buffers, allowing the exchange of closed
buffers to lag behind due to short-term network bandwidth saturation. Further details of basic
use of delta sets are described in U.S. Patent No. 6,823,336, incorporated by reference above,
and will not be discussed in further detail herein.

[0032] Introducing the possibility of multiple nodes at, potentially, multiple sites writing to
commeon data volumes requires a more sophisticated approach. In one embodiment,
distributed cache coherence mechanisms, such as those taught in U.S. Patent Application No.
11/177,924, filed July 7, 2005, entitled "Systems and Methods for Providing Distributed
Cache Coherence," and Provisional Application No. 60/586,364, filed July 7, 2004, all
incorporated herein by reference. These methods provide a mechanism where by cache
maintained in a plurality of nodes both local and network separated, with the potential for
read/write access from all nodes, is kept coherent, that is, provides the ordering of dispensing

data images as a system where all hosts are accessing a single disk drive. Utilizing

6

WO 2007/074408 PCT/IB2006/004062

distributed cache coherency with delta sets allows for a synchronous image of the data even
though actual data motion is asynchronous. The data motion maintains write order fidelity
across geography, so the system can be restarted at any consistent point in time.

[0033] In one aspect, a Directory Manager module ("DMG") can be used to provide cache
coherence mechanisms for shared data across a distributed set of data access nodes. A set of
nodes used to cache data from a shared data volume is referred to as a share group. In
general, a DMG module includes software executing on a processor or other intelligence
module (e.g., ASIC) in a node. A DMG module can be implemented in a single node or
distributed across multiple intercommunicating nodes. In certain aspects, an access node is
embodied as a controller device, or node, communicably coupled to a storage network, such
as a storage area network (SAN), that allows access to data stored on the storage network.
However, it will be appreciated that an access node can also be embodied as an intelligent
fabric switch or other network device such as a hub adapter. Further, any networked node can
be configured to operate as an access node with DMG functionality (e.g., a DMG can be run
on a desktop computer with a network connection). U.S. Patent No. 6,148,414, which is
hereby incorporated herein by reference, discloses controller devices and nodes for which

implementation of aspects of the present invention are particularly useful.

[0034] For one embodiment of the invention, FIG. 1 shows a basic network configuration
100 including a plurality of network clients 102(a)-102(IN) that are communicably coupled
with a plurality of access node devices 104(a)-104(N). Each access node device includes a
processor component 106 such as a microprocessor or other intelligence module, a cache 108
(e.g., RAM cache) and/or other local storage, communication ports (not shown), and an
instance of a DMG module 110. In general, “N” is used herein to indicate an indefinite
plurality, so that the number “N” when referring to one component does not necessarily equal
the number “N” of a different component. Each client 102 can be communicably coupled to
one or more of the access nodes 104 over a local network connection 112, for speed and other
reasons, or can be communicably coupled with nodes 104 over any of a number of
connection schemes as required for the specific application and geographical location,
including, for example, a direct wired or wireless connection, an Internet connection, any
local area network (LAN) type connection, any metropolitan area network (MAN)
connection, any wide area network (WAN) type connection, a VLAN, any proprietary
network connection, etc. Each node 104 also typically includes, or is communicably coupled
with, one or more other nodes, and is communicably coupled with one or multiple storage

7

WO 2007/074408 PCT/IB2006/004062

resources 114, each including one or more disk drives, over one or more networks 116, such
as a storage area network (SAN), LAN, WAN, MAN, high speed networks such as
Infiniband, etc. In one aspect it is preferable that a node 104 be coupled to one or more
storage resources 114 over a local network connection. The nodes may be located in close
physical proximity to each other, or at least one may be remotely located, e.g., geographically
remote, from other nodes. Access nodes are also able to intercommunicate with other nodes
over the network 116 and/or over other communication networks or mediums such as over a
PCI bus or backbone or a Fibre channel network, or over the same network 112 the client

devices 102 use to communicate with the access nodes 104.

[0035] Distributed cache coherence helps to reduce bandwidth requirements between
geographically separated access nodes by allowing localized (cached) access to remote data.
Data access generally cannot be localized unless the data can be locally cached, yet it is
unsafe to locally cache the data unless the cached data can be kept coherent with respect to
modifications at remote access nodes. Embodiments of the DMG can satisfy the correctness
requirements of cache coherence, and can have low enough overhead to make localized cache
access practical and beneficial. While the embodiment described in Figure 1 shows a single
DMG Directory 110, the methods for distributed cache coherence taught in the above patents
manage coherency on a peer-to-peer basis and are scalable to both many nodes and to great
distances between nodes. The distributed cache coherence can be combined with the use of

delta sets to provide for write order fidelity (WOF).

[0036] For one embodiment, write order fidelity (WOF) and “dependent WOF” can be
more formally defined as follows. An application can utilize an update operation to update its
persistent state, where the update operation consists of two update write operations: a
metadata update 17 (e.g., writing an entry to a database recovery log) and a data update W,
(e.g., writing modified data to the database). For proper failure recovery, either of the
application itself or of the storage, the application will wait until the metadata update W, has
completed before issuing the data update . The timing relationship between these two
writes will be denoted herein as W} 2> W, where W, is said to be “dependent” on Wi, and W,
is said to be “necessary” for W,. Using such an approach allows W, to record information
without which 1%, cannot be correctly interpreted. In such a storage system, dependent writes
can be observed by noting that the start time of 17; is after the completion time of .

[0037] Such a storage system can be said to exhibit “dependent” write order fidelity if,

after recovering from any failure, for any two writes #; = W, exactly one of the following
8

WO 2007/074408 PCT/IB2006/004062

cases holds: (a) neither /¥, nor , has been applied to storage, (b) both #; and W have been
applied to storage, or (c) only #; has been applied to storage.

[0038] Dependent WOF defines a partial, rather than a total, order on write operations. In
some embodiments this can utilize a globally synchronized notion of time, while other
embodiments avoid this issue. Further, writes which are not ordered by dependent WOF are
exactly those writes which are executed concurrently by the application. According to one
aspect, dependent write order fidelity is an appropriate definition of consistency for a network
controller such as the NetStorager product. U.S. Patent No. 6,148,414, which is hereby

incorporated by reference, discloses aspects of useful network controllers.

[0039] In one aspect, the storage system determines that a pair of writes ; and W, are
dependent from the point of view of the application. This is not straightforward for the
storage device to determine these dependencies, as the storage device can only observe that
W, arrives after 71 has been completed. It may be the case that there is no dependent
relationship between these two writes, and the apparent ordering is just a coincidence.
Without help from the application, which is not assumed, the storage system typically cannot
distinguish between coincidental and genuine dependent write pairs. To be safe, the storage
system can assume that any case in which W, arrives after W, completes indicates a true
dependent write. This creates a stronger partial order than necessary, but the true write

dependencies will be a subset of this stronger ordering.

[0040] In one aspect, an environment with multiple active, cache-coherent initiators utilizes
a global notion of time in order to provide dependent WOF. A naive interpretation of such a
use implies an absolute global ordering of writes. The per-write overhead of the naive
approach is too expensive to merit serious consideration, especially for geographically
separated situations. One alternative involves grouping batches of writes into deltas so that

the boundaries between the deltas obey dependent write-order fidelity as defined above.

[0041] Within a delta used to represent system changes as discussed above, writes can be
reordered providing for some level of optimization. When a delta is closed, all the writes
contained in the delta are dependent upon writes in the same delta or in a previous delta. Ifa
necessary write were deferred until a later delta, WOF would no longer be preserved across
the delta boundary. The delta close operation therefore should be coordinated across all

participating nodes.

WO 2007/074408 PCT/IB2006/004062

[0042] A delta is global across all nodes at all sites participating in a WOF group in one
embodiment. Each node collects a fragment of the delta written locaily. Each site requires a
complete copy to commit to local storage, so the sites exchange the fragments to assemble a
complete copy. In one aspect, these partial deltas are exchanged between sites before being
applied locally. After the exchange, each site can locally commit the delta to the underlying
storage. The local commit is done atomically and in the correct order with respect to other
deltas. The need for atomicity means that deltas are made persistent before they are applied.
Varying the degree of persistence can affect the strength of the WOF consistency guarantee.
For example, placing the deltas in stable storage is safer than copying the deltas to the

volatile memory on a redundant device.

[0043] With a WOF solution, underlying storage can be seen as moving atomically through
a sequence of consistent states. If each site gathers an entire global delta before applying the
delta Jocally to storage, an inter-site link failure cannot leave storage in an inconsistent state.

The delta is either applied in its entirety or not at all.

[0044] In one aspect, a network administrator groups front-end volumes that need to be
inter-consistent into WOF groups. For example, all data and log volumes of a database can
be placed into the same WOF group. Each WOF group in one embodiment is managed by
some subset of nodes and sites in the overall system. New writes to a WOF group are
collected in the cache for the current open delta, 4;, and the back end of the cache generates

the deltas.

[0045] With a WOF solution, underlying storage can be seen as moving atomically through
a sequence of consistent states. If each site gathers an entire global delta before applying the
delta locally to storage, an inter-site link failure cannot leave storage in an inconsistent state.
The delta is either applied in its entirety or not at all. Thus, because of the implied time
ordering imposed by a complete delta, atomic writes of deltas to underlying storage, whether

or not completed, can preserve the properties of WOF.

[0046] In one aspect, new writes to a WOF group are collected in the cache for the current
WOF delta, 4;, and the backend of the cache generates the deltas. A delta collecting new
writes is said to be “open”. In one aspect, the decision to close the open delta, that is to stop
accepting new writes and to advance the delta pipeline, is made periodically based on some
time or space constraint. The decision to cl'ose a delta can also be made by an external trigger

or as part of recovery from an system error condition. Closing deltas, opening new deltas,
10

WO 2007/074408 PCT/IB2006/004062

a
and, géhé'réliy,ﬁadvancing the delta pipeline is referred to as a “delta roll-over.” In one aspect,
a node that makes the decision to close a delta can transmit or broadcast a notification to the
WOF group. As each node receives the notification, that node begins to delay
acknowledgements to new write operations. This ensures that all write order depeﬁdencies
go from 4; to 4;+; or are contained within 4;. Once all the writes that were outstanding at the
time the notification was received are completed, 4; is closed. 4;4+; is now open and begins
collecting new writes while 4; moves on to the exchange phase. To ensure that the
application does not perceive a disruption in VO, it is important to minimize the time for
which writes to the wof group are delayed. If a general ordered broadcast service imposes too
high an overhead for these broadcasts, a lighter-weight two-phase commit protocol can be

used that minimizes the nodes involved in the commit protocol.

[0047] A delta pipeline role-over operation implies a periodic performance impact. Since
the WOF consistency guarantees may only be needed in severe failure scenarios, an alternate
implementation may choose to recover delta boundaries during error recovery and thereby

remove the need for global barriers during normal operation.

[0048] A recently closed delta will exist as fragments in the caches on the access nodes in
the WOF group. In one aspect, a cache coherency protocol guarantees that each fragment
contains unique, non-overlapping "dirty" data. Each site assembles a complete copy of the
delta by exchanging blocks contained in these fragments, or partial deltas. In oné aspect, the
atomic commit phase can be simplified if the copy of 4; for a site is on a single node.
However, this can impose strict constraints on the global size of a delta, making the exchange
phase and the decision to close a delta more complicated. In another aspect, the writes within
the collected delta can be reordered to take advantage of over-writes or adjacent write

segments.

[0049] Before 4; can be committed, in one aspect, the delta is made persistent. The
persistence operation can be overlapped with the exchange phase. For a strong consistency
guarantee, the data and associated metadata describing the delta can be written to stable
storage. A less strong guarantee can be provided by copying the data one or more times to
other node(s) at the same site thus providing “protection copies™. Such a protection approach
can be faster, but can impose further memory constraints. An even weaker guarantee would
require no persistence. Without persistence, there is no protection against multiple failures,

but data consistency can still be maintained in the case of a site disaster.

11

WO 2007/074408 PCT/1B2006/004062
]
[00%0] After A,};as been eﬁch%mgéd and made persistent, the sites in one aspect coordinate
and begin to apply 4; to backend storage. This cannot be done in a truly atomic manner, and
may be interrupted by a failure. The persistent copies protect from these failures, as long as
some node can redo the commit. Once the commit of the delta has started, an interruption to 7

the inter-site link has no effect, as the operation is purely local to the site.

[0051] The introduction of WOF in one aspect only affects the order in which dirty data
moves out the backend of the cache, and has no effect on the cache coherency protocol. Read
requests to any node will always return the most recent copy of the data. Cache write hits in
a closed delta cannot invalidate the previous copy, but instead create a new copy in the open
delta. This new copy shadows any previous version of the block, including the persistent

copy stored on underlying storage, for cache coherency purposes.

Exemplary Dependent WOF Implementation

[0052] In one aspect, an exemplary WOF implementation has dependent-write ordering and
is totally-active across and within a number of sites. Such an implementation supports full
totally-active WOF, both across sites and across nodes within a site. The implementation
also can be delta-based, where each delta contains a batch of consistent writes. The system is
collecting a delta as an application writes to the network controller nodes. At intervals on the
order of about 5-30s, for example, the system synchronizes the closing of the current delta
both locally and globally. A new delta is immediately opened to begin collecting new writes.
The closed delta is then atomically written to the backend storage. The most recently

committed delta defines the restoration point in case of failure.

[0053] Such an implementation also can provide support for WOF consistency groups.
Databases, journaled file systems, and other similar applications often separate their data
volumes from their metadata and log volumes. The administrator must be able to group these

volumes so that WOF is provided across them as a set, not just individually.

[0054] This section gives a more concrete example of the WOF implementation. Fig. 2
shows an exemplary two site system 200, including site A 202 and site B 204, with one leg
206 of a distributed RAID 1 (DR1) at site A and one leg 208 at site B. Initially, each site
collects writes into the currently open delta D1 210, shown schematically by the open box
(210a, 210Db) at the top of each site. The writes (W1, W2, W3, W4) are collected locally at

each node at a site, subject to the usual cache coherency protocols. U.S. Patent application

12

WO 2007/074408 PCT/IB2006/004062

and methods.

[0055] Eventually the system can decide to close the current delta for any of several
different reasons. For example, a user-configurable timer may have expired. The
administrator could use such a configurable timer to bound the amount of data that will be
lost in the event of a failure. Another potential reason is that an external API is invoked by
an application. The application can use this invoke to indicate times at which the data is fully
consistent from its point of view. Still another potential reason is that the system is running
out of resources on one or more nodes. One of the nodes collecting the delta may decide that

3

the node needs to close the delta early.

[0056] The system in one aspect synchronizes the closing of the current delta across the
sites so that the boundary of the delta respects dependent write ordering consistency. In other
words, the edge of each delta can define a consistent view of storage. Once the current delta
is closed, as shown in Fig. 3, anew delta D2 300 can be immediately opened to collect new
writes from the application. The system then can exchange the partial deltas collected at each
site across the inter-site link 302 so that sites A and B each have a complete copy of the

closed delta (210c and 2104, respectively).

[0057] The closed, complete deltas 210¢, 210d can be applied via an appropriate link 400
to each leg 206, 208 of the DR1, as shown in Fig. 4. This apply process is not necessarily an
atomic operation, meaning that the operation can be interrupted by various types of failure.
Depending on the type of failure, it may be necessary to restart the process of applying the
delta.

[0058] Fig. S is a flowchart showing steps of an exemplary method 500 following such an
approach. In this method, front-end volumes are grouped into WOF groups, each
implemented by a subset of nodes and sites in the overall data system 502. New writes to any
of the WOF groups are stored in a cache for an open delta for that WOF group 504. At some
triggering event, the current open delta is to be closed 506. A close delta message is
broadcast to the WOF group so that any outstanding writes can be completed and the delta
can be closed 508. A new delta is then opened to receive new writes 510. The recently
closed delta, which exists as unique fragments on different WOF groups, undergoes an

exchange phase so that each site obtains a complete copy of the closed delta 512. The

13

WO 2007/074408 PCT/IB2006/004062

complete closed deltas are made péréﬁétent by writing to stable storage 514. After the closed

deltas are persisted, the sites apply the closed deltas to backend storage for each site 516.

[0059] The situation 600 of Fig. 6 shows the processes described above proceeding
concurrently when a link failure happens. As writes are being collected for open delta D3, a
closed delta D2 is being exchanged, and a committed delta D1 is being applied to disk, in this
case to legs of the distributed RAID 1 system for each of sites A and B. If the link 602 for
exchanging write data between the sites fails, front-end /O will be suspended, so no more
writes are collected into D3. Fragments of D2 cannot continue to be exchanged, and each site
will continue to hold "dirty" data for that delta until the link heals or the administrator
declares that one site must resume operation before the link heals. However, the committed
delta D1 can continue being applied to the legs, as shown in the situation 700 of Fig. 7, as D1
no longer depends on the link being active. The legs of the DR1 will be identical after this

completes, even if the link is down.

[0060] If the link failure is temporary, then normal operation resumes when the link heals.
In the case where dirty data has been lost because site B holds the only copies of some writes
that the system has acknowledged, sites A and B can discard the contents of deltas D2 and D3
and resume servicing application I/O. The contents of storage, as seen from site A, are
consistent as of the last successfully exchanged and committed delta D1. While writing only
to the local leg of the DR1, site A can update the bitmap logs so that the two legs of the DR1
can be synchronized when the link heals.

Performance Impact of WOF

[0061] A WOF implementation can be a substantial change to the flow of host writes from
the front-end through to back-end physical storage. Several aspects of the implementation

can affect the net performance of the system as perceived by the host.

[0062] For example, all nodes servicing a WOF group in one aspect must synchronize to
close the current delta. This has obvious performance implications, especially for multi-site
configurations. However, it should be noted that during this synchronization interval, reads
will carry on normally, and incoming writes will receive data from the host, but will not be
acknowledged until the delta closure is complete. Further, by collecting changes into a delta,
these changes can be streamed across the inter-site link more efficiently than the smaller

individual write operations.

14

WO 2007/074408 PCT/IB2006/004062

[0063] Since applying a committed delta to storage is not an atomic operation, as discussed
above, the operation is vulnerable to failures. A decision can be made as to the failures
against which committed deltas not yet applied to storage are protected. This is equivalent to
choosing how strong to make the consistency guarantee. There are several implementation

options in this area, each with different performance tradeoffs.

Delta Collection Phase

[0064] In one aspect a first stage in the WOF pipeline is the collection of new writes into

the open global delta. As a result of coherence protocols at the entrance to the cache, there

are not two dirty copies of the same block. Therefore the intersection of partial deltas from

different nodes or different sites is the empty set. The full global delta is the union of all the
partial deltas.

[0065] As dirty blocks are added to an open delta, those blocks need to be linked to the
open delta so that the blocks will move forward with the rest of the delta through the pipeline
in a consistent write order. To accomplish this in accordance with one embodiment, two
pieces of metadata can be added to the cache block data structure, used only for dirty data. A
first piece of metadata is a delta identifier that stores the delta number to which this block
belongs. This identification is immutable. The delta number is a system—widé global number
that is incremented each time a new delta is opened when the pipeline advances. A second
piece of metadata that can be added is a delta list that allows the cache block to be stored with

its peers from the same delta. A singly linked list can be sufficient for this purpose.

[0066] Both metadata fields can be assigned as soon as a new write enters an open delta.
Furthermore, when an incoming write is copied to another access node to protect against
node failure, the delta id can be added to the metadata stored with the protection copy so that

it can be recovered if the node that received the write fails.

[0067] When a new write arrives for a block that is already dirty in the cache somewhere in
the system, one of at least two actions can be taken. If the dirty block is in the open delia, the
dirty block can simply be invalidated. However, if the dirty block is in an older delta,
invalidating the dirty block would violate dependent write consistency. In this case for at
least one embodiment, the new write must be entered into the open delta, and must then

shadow the old contents of the block for cache coherency purposes.

15

WO 2007/074408 PCT/IB2006/004062

[0068] When a new write arrives for a block that is already dirty in cache somewhere in the
system and that write modifies only a part of the block instead of overwriting it entirely,
special treatment beyond that described above can be necessary. The data for the entire block
being modified can be transferred to the node processing the write in such a way that the
previous contents of the block cannot be lost due to node failure. One simple technique is for
the node holding the current dirty contents of the block is to flush the block to storage before
transmitting it to the node processing the new write, but this technique is not suitable for
WOF because it violates dependent write consistency. Instead, the cache protection
mechanisms described above can be extended, for example, as follows: (1) The old contents
of the block are transferred to the node processing the write, which creates a protection copy
as described above. (2) The original holder of the block invalidates its copy of the block and
the corresponding protection copies. (3) The node processing the write applies the data from
the application to the block, and updates its protection copy. However, this node must follow
the constraints listed in the previous paragraph with respect to only deleting the old write and
its protection copies if it is in the open delta. (4) Finally, the application write is

acknowledged.

[0069] In one aspect, all write requests need to be sent with the requester's delta id in the
DMG. This can be accomplished in a DMG/Cache API, such as by using the following

example:

/* Add a deltald argument to the dmg_writeRequest and dmg_updateRequest
* functions , and the registered calls into the cache for invalidate and
* invalShare requests.
void
dmg_writeRequest(void *ctx, void *cookie, u64_t pageStart, int pageCount,
void **tickets, DataVector_t **dva, u8_t deltald
void
dmg_updateRequest (void *ctx, veid *cookie, u64_t page, void **tickets,
DataVector_t **dva, u8-t deltald);
void*
(dmgInvalRequest_t)(Partition]D-t lun, w64 _t pageStart, int pageCount,
u8-t deltald);
void*
(dmgInvalShareRequest-t)(PartitionID-t lun., u64_t page, void **tickets,
DataVector_t **dva, u8_t deltald);

[0070] In one aspect, the requester could protect the dirty copy of the block as soon as it is
received from the directory, and then begin the distributed completion of the write prior to
accepting any new data from the host. This approach has the advantage that the DMG lock
and the remote invalidation on the sharer are completed as soon as possible, thereby being

less likely to hold up later distributed operations on the same page. A potential disadvantage
16

WO 2007/074408 PCT/IB2006/004062

of this approacl{is that it rééuires that the writer perform two protection operations prior to
completing the write to the initiator - one before the host write transfer and one after.
Alternatively, the requester could allow the write to continue and complete to the host prior to
kicking off the distributed completion of the write. Such an approach avoids the double

protection operation.

Collection During Closure Transition

[0071] When the open delta is closed, a new delta is opened to collect the next batch of
new writes. Since the delta closure pipeline transition is not an instantaneous operation, there
is a period of transition during which new writes are treated differently. Specifically, write
data is accepted into the cacﬁe normally, but the acknowledgments of write completion to the

host are delayed until the transition period is over.

[0072] Delta closure is the state transition that moves a delta in the WOF pipeline from the
open state to the exchanging state. Events that can trigger a delta closure operation include a
regular timer with a tunable interval, node memory constraints, an external trigger API and
recovery from a system error condition. Any node is allowed to be the source of a closure
trigger, although timer triggers should only come from a single designated node. Since
multiple nodes can independently and asynchronously decide to trigger a delta closure, the
closure barrier mechanism should be tolerant of redundant triggers. The triggering of a delta

closure is described in more detail elsewhere herein.

[0073} Delta closure can be synchronized in one aspect with a distributed barrier
mechanism such as a two-phase commit protocol. A barrier mechanism in accordance with
one embodiment includes a number of stages. One such stage is a barrier enter stage in
which a message is broadcast to all nodes in the WOF group. The message can be initiated
on any node, which then becomes the leader for the rest of the barrier round. If there is a race
condition and multiple nodes broadcast the barrier enter notification, the first one is the

winner (using an ordered broadcast service such as virtual synchrony).

[0074] Another stage is a barrier acknowledge stage wherein a point-to-point message is
sent by each member of the WOF group, when that member has reached the barrier, to the
leader of the current round. A barrier acknowledge message can carry a data payload, so that
information related to the barrier can be shared without unnecessary extra communication

overhead.

17

WO 2007/074408 PCT/IB2006/004062

[0075] Still another stage is a barrier exit stage wherein the round leader sends a broadcast
message once the leader has gathered all the outstanding barrier acknowledge messages. A
barrier exit message can contain the coalesced data from the barrier acknowledge messages,

if any.
Barrier Use

[0076] In one aspect, a WOF implementation has a strict pipeline that advances in a lock-
step manner, so there only is a single barrier to control the pipeline advancement for each
WOF group. The barrier can be initiated on any node by the delta closure trigger, and that
node becomes the barrier leader for the upcoming round by broadcasting a barrier entry
message to all nodes. Once each node receives this broadcast, the node can increment the
global delta id, so that all new write requests are pushed into the next delta. The node can

hold off on acknowledging completion of new write requests to the host.

[0077] The node can wait until all ongoing write requests in the recently opened delta have
completed, and can wait for the completion of the current exchange and commit stages, if
necessary. The node then can notify the barrier leader that this node is ready to proceed by

sending a message.

[0078] The exchange phase may be made more efficient by including information in the
barrier acknowledge message, such as the partial delta size. However, since the barrier can
affect the host application by holding up write completions, the duration can be minimized.
Once the barrier leader has collected all the barrier acknowledge messages, it can broadcast
an exit barrier message. As each affected node receives this notification, those nodes can
acknowledge all the otherwise completed writes in the new open delta to the host, and allow
future writes to complete normally. The nodes can kick off the exchange protocol for the
previously open delta and start the commit protocol for the previously exchanged delta, as

discussed later herein.

Exchange Phase

[0079] In one aspect, two things happen when a delta is in the exchange state. First, the
partial deltas at each site are transferred to all of the other participating sites so that each site
has a complete copy of the delta. Second, each site makes its respective copy persistent, or

safe, before starting the commit to back-end storage.

18

WO 2007/074408 PCT/IB2006/004062

!

[0080] The degree of safety can ral;ée from unprotected deltas vulnerable to any failure to a
mirrored on-disk journal. A journal not only protects against node and site failures, but also
means that data can be evicted safely from the cache. However, evicting a safely exchanged
block from the cache incurs the performance penalty of reading it back from the journal
during the commit phase. Due to this performance penalty, an implementation that keeps the
entire commit delta in memory until it has been committed to storage is preferred in at least
one embodiment. In such an implementation, the journal is write-only unless it is needed for

failure recovery purposes.

[0081] One approach to addressing the question of degree of safety question is to take the
middle ground with n-way protection. Pfoblems with this approach, however, include the
high memory consumption of the replication approach. Every site would need not only
enough memory to store the partial open delta and two complete deltas in the exchanging and
commifting states, but also » replicated Copies of everything. Fuﬂher; in a system where sites
have a mismatched number of nodes, the smaller sites have a smaller memory pool to use for
the WOF pipeline, so larger sites will need to leave a portion of their WOF-usable memory
unused. This issue arises in any in-memory solution, but is exacerbated by the extra memory

usage in the protection solution.

[0082] In one aspect, if the node receiving the write cannot allocate protection space for the
block being written, a simple approach to processing the write is to force the written block
through to disk immediately, that is, process this individual write in write-through. However,
that approach violates dependent write ordering, and so protection space must be reserved in
advance. After a node failure, one either has to acquire more protection space and re-protect
the unsafe data, or remain in degraded mode while the pipeline is flushed. The protection
approach provides no safety guarantee for single node sites, and loses data consistency after
site failures or certain #-node failures. In the journaling approach, data consistency is never

lost.

[0083] For these and other reasons, journaling is preferred for delta safety in at least some
embodiments. Every node can use a small amount of protection space to keep its partial open
delta safe from node failure. Once a block has been made safe in the journal at all sites
during the exchange phase, the protection copy is no longer needed and can be invalidated
and reused. Simple node failures are handled by re-protecting unsafe data, reading the safe

delta from the journal, and restarting the exchange phase. More serious failures that lose all

19

WO 2007/074408 PCT/IB2006/004062

copies of a non-journaled block will nece;ééaﬁly be treated like a link failure, in that all sites
will continue to atomically write out their commit delta, but the open and exchanging data
will be discarded and the host application may need to be restarted. Failure handling is

discussed in detail later herein.

Memory Provisioning

[0084] In one aspect, each node at each site with a leg of a distributed RAID 1("DR1")
implementation, participating in a WOF group can have memory provisioned for an entire
WOF pipeline. The cumulative site-wide memory usage for a WOF group as described
herein has a total memory usage M and a memory W assigned to the WOF group.

R = Protection space
P =oPen

M = R+W, where E = Exchanging 4.1
W = P+ E+ C,where .
C = Committing

[0085] In one aspect, when creating the WOF group, the administrator specifies ¥, which
applies to all participating sites. If the requested value for ¥ cannot be allocated because
other WOF groups have already consumed the available space, or for any other reason, the
WOF group creation may fail, and other previously-created WOF groups will continue
operations normally. Alternatively, the WOF group may be created with insufficient
resources, but begin to reclaim resources from other uses. When enough resources have been
acquired, the new WOF group can begin operation. The storage system may provide to the
administrator the option to cancel WOF group creation if it is unable to collect sufficient

resources after an extended period of time.

[0086] In an n-node site, M will be distributed evenly across the participating nodes, as
each node, 7, will be limited to p; = P/n for its partial open delta. Further, the exchange

protocol will distribute £/n of the complete delta onto each node and the RMG will most
likely put replicas on the neighbor nodes, meaning that approximately R/» will end up on

each node.

[0087] From the value provided for 7, the maximum size for P can be calculated, while
accounting for the number of sites in the WOF group, s. The more sites there are, the greater
the proportion of 7 will be used by fully exchanged deltas. If the same upper limit is used

for P at every site, one can define the size of a fully exchanged delta as follows:

20

WO 2007/074408 PCT/IB2006/004062

E=C=sP
W =P+ (sP)+ (sP) = P(1 +2s)
and therefore the maximum size for an open delta can be defined as follows:

W
1+ 2s

{0088] .This value is the theoretical maximum for P. Replication target constraints can
further limit the open delta. Each node at a site, 7, is responsible for collecting p; of the open
delta. That data can be replicated until it has been made safe on the journal. The site-wide
replication requirements for a WOF group can be defined by the sum of the replication needs

for each node at the site:
R=n+tmrnt+t.+r+..+r,

[0089] Each node will replicate not only the content of the currently open delta, but also the

most recently closed delta until it has been made safe at the end of the exchange phase:
¥ = 2p,

[0090] The replication space for a WOF group can be pre-allocated and readily available so
that replication requests do not fail. However, the ideal allocation may not always be
possible. Before I/O commences on a WOF partition, the RMG will be asked to reserve 7,
and if it cannot reserve all that has been requested, p; can be decreased accordingly. The

modified values of p; then can be used as the space constraint for the delta closure trigger.

Memory Reservation

{0091] In one implementation, the memory for a WOF pipeline, including that for
associated protection copies, is reserved in advance so that normal WOF operation does not
have to handle temporary memory shortages. In alternate implementations, it would be

possible to allocate memory to the WOF pipeline.

Exchange Protocol

[0092] An exchange protocol can ensure that all sites have local copies of the full
exchanging delta. During the delta closure protocol, each node can construct a descriptor for
the data in its partial delta and a second descriptor for the associated metadata, each of which

will be sent in the barrier acknowledge to the round leader. The round leader will then
21

WO 2007/074408 PCT/IB2006/004062

distribute these descriptors in the barrier exit broadcast to all nodes participating in the WOF
group. The nodes at each participating site then use these descriptors to fetch the delta
fragments missing from that site. In one implementation, these descriptors are realized as

keys for Remote Direct Memory Access (RDMA) regions.

[0093] Two tokens, one for exchanging and another for safety (e.g. journaling), can be
circulated through the nodes at the site. One at a time, the nodes can acquire the exchange
token and fetch data from other sites using the descriptors communicated earlier until the
node exchange area is full. All nodes will have received the same descriptors in the barrier
exit broadcast, and each node can simply start where the previous node left off and continue
in-order through the regions. Since the node exchange area may become full after only
partially transferring a remote region, the fetching node can ensure that it stops the transfer on
a block boundary. As the data is received, the data can be split into blocks, which are

assigned the appropriate delta id and attached to the correct delta list as described above.

[0094] After finishing its portion of the exchange, a node passes the exchange token on to
its neighbor. The safety token follows the exchange token. Nodes may make their
exchanged data (as well as their local partial delta) safe in chunks, as there is no need to wait
until the entire node exchange area is full. The safety token may only be used for safety
protocols that need to be serialized, like a disk journal. After making its portion of the
exchange safe, a node passes the safety token on to its neighbor. When the last node releases
the safety token, the exchange phase is done and the pipeline can be advanced. When the
next barrier entry broadcast is received, the descriptors for the previous exchange round can

be destroyed, and new descriptors created for the upcoming exchange.

Safety Protocol

[0095] In one aspect, a safety protocol is responsible for ensuring exchanged data is safe
before the commit phase. If journaling is used to achieve this end, the administrator can
provide local disk space for journaling when a WOF group is created. It is sensible to use
mirrored disks to lower the likelihood of journal failure. Very little space is needed for the
journal. For example, two fully exchanged deltas can be sufficient. Once a delta has been

committed, the journaled version is no longer necessary.

[0096] The following diagram summarizes the format of the on-disk journal, J:

22

WO 2007/074408 PCT/IB2006/004062

JM
[45
CS
C, ={DATA
4 = CE
J =4 4
CZ
Cn
AZ
oL AE
L 4,

[0097] Each named element of the journal starts at a block boundary and occupies an
integral number of blocks. The contents of exemplary named journal segments are as

follows:

JM (Journal Metadata): identifies the associated WOF group, and the start of the current

commit delta, as follows:

wofGroupld Metadata that describes the associated WOF group.

commit Delta Offset The journal block offset at which the current commit delta
starts. See Section 4.3.1 for more details on when this field is
updated.

commitDeltald The delta-id of the current commit delia.

A; (Delta): encompasses all the data and metadata required to define a delta.

AS (Delta Start Metadata): the marker at the beginning of a journaled delta contains the
following fields':

23

WO 2007/074408

PCT/IB2006/004062

DS MAGIC A unique pattern identifying this disk block as a delta start marker.
deltald The delta_id of this delta.
deltaBlocks The size of the data in this delta in blocks.
thisOffset The block offset of this delta start marker.
timestamp The time at which this delta start marker was generated.
partitionMappings | To save space in CM, this is a list of indices for the partitions in the

WOF group. Each list entry has the following format:

groupIndex | Contains the tuple (amfld, partition, blockSize).

AE (Delta End Metadata): the marker at the end of an on-disk delta contains the following

fields:
DE MAGIC A unique pattern identifying this disk block as a delta end marker.
deltald The delta_id of this delta.
deltaStartOffset The offset of associated delia start marker.
thisOffset The offset of this delta end marker.

C; (Delta Chunk): represents a subset of data in the delta, and the metadata necessary to

recover the chunk from the journal after a failure.

CS (Chunk Metadata Header): marks the beginning of a delta chunk, and contains the

following fields:
CS_MAGIC A unique pattern identifying this as a chunk metadata header.
deltald The delta_id of this delta.
deltaStartOffset The offset of the associated delta start marker.
endMarkerOffset | The offset of this chunk's metadata trailer.

DATA (Chunk Data): the block data corresponding to this chunk, in the same order as the
chunkBlocks metadata.

CE (Chunk Metadata Trailer): marks the end of a delta chunk, and contains the following

fields:

24

WO 2007/074408 PCT/IB2006/004062

CE_MAGIC A unique pattern identifying this as a chunk metadata trailer.
deltald The delta_id of this delta.

deltaStartOffset The offset of the associated delta start marker.
startMarkerOffset | The offset of this chunk's metadata header.

chunkBlocks An ordered list of blocks contained in the DATA portion of this
chunk. Each list entry has the following format:

blockMetadata | Contains the tuple (groupIndex,
blockNumber).

Journal Advance

[0098] The journal can be written during the exchange phase. When the WOF pipeline
advances, the journal performs a delta changeover as well. As each node receives the barrier
exit broadcast, it can update the commitDeltaOffset and commitDeltald fields in JM to point
to the most recently journaled delta, as a persistent indication of global pipeline advancement.
All sites write this indication at the same time, so all nodes at each site perform the write as
they exit the barrier. With such a requirement, the write can only be interrupted by a
complete site failure. In that case, all surviving sites should protect the writes in their current

commit deltas by using the bitmap log.

[0099] Since the purpose of the exchange phase is to create duplicate copies of partial
deltas, a simple failure handling mechanism involves simply restarting the exchange phase.
If a delta has been made safe, but is not fully committed, the data can be read back into

memory from the journal.

[0100] A failure of the journal disk should be rare, since it is supposed to be mirrored. If
the journal disk does fail, a temporary degraded mode occurs. The WOF guarantee is lost
only if a node or site failure happens before the situation is corrected. Degraded mode can be
exited in at least two ways. First, if the administrator can rectify the problem that caused the
disk failure, journaling can resume. Alternatively, the WOF pipeline is gradually flushed by
decreasing the maximum size for the open delta, then switching into write-through (or write-

back, depending on the administrator's preference) until the journal disk is healthy.
Flow control

[0101] While a network connecting sites clearly should provide enough bandwidth to
accommodate the average write throughput rate, a system in accordance with one
embodiment is extended to tolerate bursts of I/O traffic. At least two strategies can be used,

either independently or together.
25

WO 2007/074408 PCT/IB2006/004062

[0102] In a first exemplary strategy, the system caﬁ maintain a queue of closed but not yet
exchanged, or “pre-exchange,” deltas. Should either the exchange of blocks during the
exchange phase not complete before the next barrier triggering a pipeline advance or should
the memory allocated for the delta céllection phase prove inadequate causing a pipeline
advance, then a new open delta can be opened to accept new writes. The recently closed delta
can be held in a First-In First-Out (FIFO) queue of “pre-exchange delta sets”. As an exchange
phase completes, the next oldest pre-exchange delta can be advanced into the exchange
phase. Thus, the system can provide a buffer for short-term bursts of write traffic that overrun

the capacity of the network.

[0103] This concept can be extended in one aspect by combining two or more pre-exchange
delta'sets, should the queue of pre-exchange deltas become long. Combining pre-exchange
deltas in this embodiment is done in the same way on all nodes in the system so that the
resulting larger delta set represents a time range of writes that is consistent across the system.
When combining two or more deltas, the union of all written blocks can be used. If an
individual block has been written to more than once at a given node, resulting in incarnations
in more than one delta set, then the most recent incarnation (block image in youngest pre-
exchange delta set) can be used. Combining delta sets has an advantage of reducing the
number of times a commonly written block is transmitted, creating a larger stream of transfer
during the exchange phase resulting in potentially higher network efficiency, and amortizing
cost of barrier operations over a larger time interval and data volume. A potential
disadvantage is that there is a coordination cost of triggering and managing the combining of
pre-exchange delta sets, and this extension can slightly increase the amount of data that
would potentially be lost should a node be lost if operation had to be restarted from an earlier
“post-exchange” delta image. Therefore, it can advantageously be used as a recovery

mechanism when the system falls behind with a long queue of pre-exchange delta sets.

[0104] In asecond exemplary strategy, the rate at which write data is accepted from the
host into the WOF group is reduced, or “throttled.” In this method, delays are inserted before
acknowledging writes back to the host. The delays are increased or decreased to reflect the
amount the system falls behind in exchanging delta sets. Slowing down individual writes will
have the tendency of averaging out the write performance to bring the delivered performance

back in line with the current network capacity.

26

WO 2007/074408 PCT/IB2006/004062

|0105] Using both methods can provide a solution in accordance with one embodiment that
can tolerate short term bursts without loss of system performance, while allowing a
mechanism for a sustained overrun of writes without causing applications with short write

time-outs to fail.

[0106] Another solution essentially treats the boxes as a DR1 through every stage of the
dependent WOF protocol except the commit. At the commit phase, the nodes do nothing, but
rather than allowing the data to be evicted, the data is kept around until the data is replicated
to the passive site. Then if there is a site disaster at the active site, the host's view of stérage
at the passive site, as seen through the front-end of the nodes, will be consistent. At that
point, the stored deltas can be written to the back-end storage. One potential disadvantage of
this approach is that dirty data can be transferred twice over the inter-site links: once to
exchange the partial deltas, and once when the active SRDF site pushes a batch to the passive

site.

WOF Sub-components

[0107] A WOF component in one aspect consists of a number of separafe subcomponents.
One such subcomponent is referred to herein as a "wofserver.” While a simple version of the
wofserver can be used, the wofserver also can be responsible for group changes and failure
handling, or can simply provide an NMG broadcast mechanism. Messages sent through this
service can be processed on all nodes, where the "wofclient" code can determine group
membership on the fly and act accordingly. The wofclient can provide a way for the local
cache to register an AMF partition and get a WOF group handle. An API such as the

following will suffice:

/* Registers the given AMF partition and closure trigger callback with the WOF
* component, allowing it to provide an abstract bandle to the group.
*/

WofGroup_t*

wof_registerPartition(AmfPartition_t *part, WofTriggerClosure_t *triggerCb);

[0108] Another sub-component is a separate, generic barrier mechanism using both COM
and the NMG, as discussed later herein. This barrier is used only within the WOF
component. Still another sub-component is a Delta Id Generator. A global delta id generator

can support rollover and delta age comparisons. It can exports an API such as the following

to the Cache:

27

WO 2007/074408 PCT/IB2006/004062

/* Generates and returns the next delta id for the given WOF group.

*

ud t

wof_advanceDeltald (WofGroup_t *wg) ;

/* Returns the current open delta id for the given WOF group.

ud_t

wof _deltald(WofGroup_t *wg);

/* Compares the two delta ids, returning TRUE iff the second is newer.
*bool t

wof_isDeltaldNewer (u8_t baseld, u8_i testld) ;

3

[0109] In order to keep the trigger mechanism separate from the Cache, the WOF
component can be responsible for all trigger decisions, dependent on a periodic timer,
memory constraints, or a user command (WOF trigger). The memory constraints in the first
milestone can be arbitrarily selected, since no space needs to be reserved for exchanged

partial deltas in a single site. This means that an API such as the following can be used:

/* When a new write enters the cache, it calls this function to let the WOF
* know how much memory is about to be consumed in the open delta.
¥/
void
wof addToOpenDelta(WofGroup_t *wg, u32_t writeBlocklets);
/* When a write (local or remote) overwrites a block in this cache's open delta,
* it calls this function to let the VOF know how much space has effectively
* been freed up.
*/
void ‘
wof_subtractFromOpenDelta(WofGroup_t *wg, u32_t overlapBlocklets);
/* When the trigger mechanism determines that it is time to close the currently
* open delta, it calls this function to notify the cache. This can happen
* within the context of a wof_addToOpenDelta call. The cache is responsible
* for calling the triggerponeCb once it is ready for the closure to continue
* (i e. all ongoing writes have finished). The triggerDoneCb can be called
* within the context of the call to WofTriggerClosure_t. WOF will call this
* function on each node at a site, and wait for all responses to arrive
* before proceeding with the closure.
*/
typedef void
(WofTriggerClosure_t)(WofGroup_t *wg, veid (*triggerDoneCb)(WofGroup_t *wg));
/* The cache calls this function on each node at a site to notify the WOF
* when it has completed writing the current commit delta to disk. WOF must
* wait for this call on all nodes before proceeding with the closure.
*/
void
wof doneCommit(WofGroup_t *wg, u32_t commitDeltald);

[0110] The last function is used in the strict pipeline so the WOF can wait until the
appropriate moment to step through the closure barrier. In later milestones where there is an
exchange protocol, a similar function call can be used to notify upon the completion of

exchanges.

AMF Abstraction

28

WO 2007/074408 PCT/IB2006/004062

[0111] An abstraction layer can be used above the AMF for delta writes. This can allow
the WOF to differentiate between local AMFs and DR1s, and can handle bitmap logging as
necessary. An API addition such as the following can be used , to be called in the place of

amf write by the cache:

/* To commit deltas to disk, the cache calls this function to let the WOF
* deal with the underlying AMF.
*f
AmfBrrors t
wof write (WofGroup_t *wg, u64_t blockNum, u32_t blockCount, void *param,
void **tickets, DataVector_t **dv, AmfloCallback_t *callback);

Extensions to the Delta Set Concept

[0112] The following sections extend technology such as is disclosed in the following
patents and patent appliéations on clustered controllers, geographic storage, cache coherency,
and virtualization, which are hereby incorporated herein by reference in their entirety:
6,148,414; 6,912,668; 6,857,059; 5,875,456; 60/586,364; US-2003-0188655-A1; US-2001-
0049740-A1; and US 2005-0071545 Al.

Active Passive Support

[0113] As discussed above, a dependent WOF implementation allows active access to data
at one or more sites, whereby any site can actively read or write data that is asynchronously
distributed between sites. One approach to extending the delta set concept recognizes that for
any given volume at any given point in time, there may actually only be one node actively
writing to a given WOF group out of many possible writers. Multiple nodes reading, one
node writing during a period of time is an equivalent case. If this situation can be detected
dynamically, the storage system can be optimized to lower the cost for the broadcast of deltas

and to minimize the amount of data lost due to a system restart at an earlier delta.

[0114] If only one site is writing (momentary primary site), then the WOF solution can
behave like traditional WOF solutions. In one example, the momentary primary site A 802
can survive then site B 804 fails in the situation 800 of Fig. 8. Site A can continue to process
data without interruption or data loss. A major improvement over traditional WOF solutions
is that other sites can continue to read the active data with assurance of data coherence. This
concept incorporates and extends the notion of coherence between nodes, both within a site

and across geography.

29

WO 2007/074408 PCT/IB2006/004062

[0115] Another advantage is that the definition of which site is primary can be very
dynamic. A site can be a momentary primary site if it is the only site that has written to any
unsynchronized delta sets (open or closed). The implementation of this can require sites to
broadcast that their partial delta set is dirty on the occurrence of their first write to the néw
delta set. The write making the partial delta set dirty can be held until all sites have
acknowledged the notice. Thus, a surviving site will know how many delta set levels must be
backed down, if any, to ensure data consistency. If none, then processing can continue
without application restart or data loss. Even if the surviving site cannot be declared as a
momentary primary site, data loss can be minimized by backing down only to the last delta

set for which the site could be considered the momentary primary site.

Participating nodes without a local leg of aDRI1

[0122] Embodiments above generally discuss participating notes at various sites where
each site has a local leg of a DR1. The totally-active WOF concept does not actually require
all nodes to have local back-end data storage (local legs of DR1 ’s). This is particularly useful
when satellite sites desire to access data in a read/write fashion without the cost of keeping a

full copy of the data volume locally mirrored.

[0122] One embodiment allows such “satellite nodes” to participate in the WOF group. In
this instance, the satellite nodes would create open deltas and manage incoming writes in
exactly the same manner nodes in a site with a local DR1 leg. The satellite node would
participate in the barrier operation in exactly manner as other nodes. However, during the
exchange phase it is necessary for satellite sites to only half participate in that it is not
necessary to copy changes from other participating nodes to a satellite. Similarly, it is not

necessary for satellite nodes to participate in the commit phase.

[0122] Note that a given node can participate the satellite behaviour (without a DR1 leg)
for some WOF groups managed by the node, and still maintain a DR1 for others.

Explicit Passive Sites

[0116] Another extension involves dynamically determining that a site is not writing then
making that site a passive site until a first write is detected from that site. Upon a write from
a set "passive" site, a message can be broadcast to all of the sites so those sites know that this
formerly passive site is now an active participant. In one aspect, the system can wait until a

few partitions pass, such as three to five delta rollovers, to determine that a site that has not

30

WO 2007/074408 PCT/IB2006/004062

written over that period should be determined a passive site until doing a subsequent write. A
cost to such an approach involves the need for the broadcast when the site again becomes
active, so it is desirable to only set a site as passive if it is likely to remain passive for at least

a period of time.

[0117] Operationally, it may be useful to explicitly determine a site to be passive via a
configuration or operator command. This can remove the requirement to be included in the
first-write broadcast. Aside.from operational benefits, this reduces the latency of the first

write into a partition.

[0118] A hybrid scenario exists of sites explicitly declared as passive with, potentially,
multiple sites that are not. Thus, the notification between non-explicitly-passive would be
done to determine momentary primary sites as per the description in the previous section.

Sites could also be declared as ‘explicitly active’ which an equivalent effect.

Partial Delta Set Synchronization After a Failure

[0119] One implication of maintaining the ‘dirty delta set’ bits described above is that it
can be quickly determined whether synchronizing partial delta sets (i.e. unsynchronized delta

sets) would minimize data loss and possibly establish momentary primary site status.

[0120] As shown in the situation 900 of Fig. 9, the loss of site C 906 does not imply either
loss of data or application backup, as synchronizing deltas D2 and D3 between sites A 902
and B 904 allows both A & B to be momentary primary sites. If a passive writer fails, there

is no need to lose any data and the system can simply continue.

Synchronous Delta Sets

[0121] WOF as described herein can handle asynchronous data transfer as well as
synchronous data transfer. WOF also can handle a combination of synchronous and
asynchronous data transfer. For example, if the transfer distance to a data center is about
100km, the speed-of-light latency is not that great. Since it is desired to have two protected
copies of a data image at any given time, when the system writes to a host the write can be
immediately inserted into a synchronous delta set. If there are two sites that are
synchronously participating, and a third site half way across the continent that is
asynchronously participating, a write can be done from a host, and the blocks are
immediately inserted not only into the local delta set but also into the synchronous partner.

The system then returns and acknowledges the write, which is an indication of the safety of
31

WO 2007/074408 PCT/IB2006/004062

the data that was written. If replicating data by virtue of a synchronous delta 100 km away,
upon completing the contract and acknowledging the write, the system is indicating that the
data not only exists on the local site, in a cache form, but also exists in a cache form 100 km
away. The asynchronous image going across the country will happen at some later time.
From that perspective, if all data storage on the west coast is lost, for example, the data is
vulnerable, but if only one area is lost, then the copy in another area is safe. Every write is
synchronously mirrored between those two sites, so one site can be lost but the other site
having a copy of the data still can be used to asynchronously push the data across the country.
[0122] In some cases, it would be convenient to declare groupings of synchronous delta
sets whereby a write to any open partial delta set is synchronously written to other partial
delta sets that resides within a common delza set synchronization group. In one aspect, write
replication can be implemented in a way that is consistent with the delta set concept. For the
purpose of this discussion, write replication refers to placing write dirty data in two or more
independent pools of cacﬁe memory before returning ‘write complete’ to a host in order to
protect that data from loss due to the failure of any given node. In another aspect, delta set
syﬂchronization groups implemented across geographic groupings can become a convenient
method for increasing site failure tolerance. For example, two sites in relative close
proximity could be declared as members of a synchronous delta set group while others in
another geographic region would have their own grouping. This way any one site could be
lost without data loss or operation interruption. At the same time, the effect of latency

between regions is minimized.

[0123] In the diagram 1000 of Fig. 10, two sites 1002, 1004 on the west coast are declared
as members of a first delta set synchronization group 1010. Similarly, two sites 1006, 1008
on the east coast are declared to be part of a second delta set synchronization group 1012.
Writes into any given partial delta set are synchronously replicated (i.e. replication completes
before write returns as complete) with other partial delta sets within the delta set
synchronization group. Data is distributed across continent using the normal post-closing
delta set data push operations. That this could also benefit from the persistent views of delta
sets described below. Like other delta set behavior, Delta Set Synchronization Groups can be

defined on a virtual volume by virtual volume basis.

32

WO 2007/074408 PCT/IB2006/004062

Cascadingﬁvﬂcﬁrahb{ls Délta Set Replication

[0124] Because a delta set receiving a write ‘pushes’ the data out to other delta sets the
relationship does not have to be symmetric. For example, box ‘A’ could be required to
synchronously replicate to box ‘B’, but ‘B’ could have no requirement to replicate to ‘A’
other than through the exchanges of partial delta information as part of the normal post-close

operation.

[0125] This also allows for cascaded operations. For example: A writes into partial delta
‘A’ causes a synchronous write into ‘B’ and ‘C’ which causes a synchronous write from ‘B’
to ‘D’ and ‘E” and from ‘C’ to ‘F’ and *G’. An example of where this is useful is fanning out

writes first between multiple nodes within a site and then across multiple sites.

Making Closed Delta Sets Cache Safe

[0126] As discussed above, completing a contract for a write is an indication that the data
can operationally considered to be safe. In traditional single site storage systems,
administrators make conscious choices that balance performance with data safety. In
particular, they choose between write-through, write-back, and cache replicated write back.
Cache replicated write-back can be extended with the potential for n-way replication of
writes for additional protection.

[0127] The delta set structure allows for a similar level of operational flexibility in trading
off when a delta set is safe. A lineage might include that the notion of a delta set is considered

“safe” when any of the following are met:

e all dirty data has[been written to all disk resident mirror images

e dirty data is written to the local disk and to cache at a remote site

» dirty data is replicated between partial delta sets on 1 caches at the local site
and m caches at each of p sites.

e dirty data is replicated to n caches at the local site.

o the delta set is considered safe as soon as it is closed.

[0128] In the above the concept of replicating to 1 caches means exchanging between
partial delta sets located on each of n caches. There is no requirement that the delta set be
host exported on all of these nodes. Some instantiations of partial delta sets can be used

purely to protect dirty data from a node failure.

33

WO 2007/074408 PCT/IB2006/004062

Integratinf.LSnaDshotsiéﬁd Delta Sets

[0129] As discussed elsewhere herein, a snapshot refers to a logical point-in-time image of
a live data set. A snapshot can be used for such functions as maintaining backup windows.
.When doing backups, for example, it is undesirable to shut down the storage system for an
extended period of time to backup the data. What is desired is a point in time image of all the

data so the data is consistent all the way across the backup tape.

[0130] A snapshot is desired to be time consistent, so the snapshot should reflect a point in
time. Further, in some applications such as databases that point in time should correspond to
a point that is application-safe. For example, a database can do commits after a series of
reads and writes to flush out and commit the data to the database. In this case the snapshot
can correspond to a commit point. A commit can be done when an acknowledgement comes
back from the storage system that the last of the writes has been done for that commit point.
Agents or other triggering events can be used to trigger a snapshot as known in the art. A

snapshot today is typically implemented at the storage system layer.

[0131] These snapshots can advantageously be combined with delta sets. Even though
storage is distributed across geography, a point in time image for the data still needs to be
WOF consistent. In one aspect, a snapshot can be triggered by an agent or a timer, for
example, which corresponds to a point in time. As soon as the snapshot is received, a
rollover of the delta set can be triggered so that there is a domain-wide point-in-time image
that corresponds to the point of the desired snapshot. The system can start with new /O's,
allowing that delta set to get all the way through the commit point. When the commit point is
reached, and the write has been done to that open delta, the delta goes through the delta set
pipeline. When all the writes have completed, the system can trigger the snapshot image
ourselves. In one aspect, a snapshot can be triggered to an underlying storage device, which
actually does a physical snapshot based on what is on the disk. In another aspect, a delta set

can be kept relative to that point in time.

[0132] Each completed Delta Set is a representation of a volume of data at a consistent
point in time. Logical snapshots (a point-in-time logical image of a volume) can be
implemented simply by providing indices into earlier delta sets and allowing exported

volumes that are based on the consistent data image at the close of the delta set.

34

WO 2007/074408 PCT/IB2006/004062

[0133] It is important to allow Snapshots to be triggered by external sources, such as
applications. For this reason, an interface for closing of Delta Sets can be provided, such as

is discussed below.

[0134] A snapshot can also be exported read/write. From a delta set perspective, this
causes family trees of delta sets to be created, each depicting a lineage evolving from an
ancestry of delta sets. From the perspective of a user, the result appears exactly like the

lineage of traditional logical snapshots.

[0135] An image that starts as a logical snapshot but through background copying creates a
physical (rather than logical) copy of the data can also be implanted. This can be done by
first creating a logical snap shot as described above and then, in the background, ‘cloning’ the

physical embodiment of the ancestor delta sets onto separate media.

Extending Delta Sets onto the Disk Image

[0136] As discussed elsewhere herein, a system in one aspect can have three delta sets that
are open at any given time, with each of the delta sets representing a different point in time.
One delta set represents a point in time as the data is finally committed to the disk, one
represents a point in time as the data is about to be committed to the disk, and one represents
a point in time at the beginning of the exchange. There also can be a number of open deltas
throughout the system. Instead of creating a single, large base image collapsing all these
deltas, a system can keep many open deltas and can have many views of the data at various
points in time. In such a system, ifit is desired to back up to an appropriate point in time, the
system can simply back up to the appropriate delta by indicating the point in time ¢ and the
appropriate image.

[0137] In one aspect, an implementation can take advantage of a technology such as
continuous data protection (CDP). Many delta seta can be created that each represent a péint
in time, such that reading any given delta and the deltas behind that delta in time can present
a picture of the data as it was at that point in time, such that CDP can be implemented. Delta
sets are associative in the sense that as delta sets get older, the need for a fine granularity of
points in time diminishes. As such, the delta sets can be collapsed in an associative fashion,
combining delta sets in a courser fashion over time to reduce the amount of overall storage
being used.

[0138] The concept of snapshots can be extended into CDP, then delta sets can be used to

begin merging the granularity of delta sets over time. To do this, the deltas can be retrieved
35

WO 2007/074408 PCT/IB2006/004062

from cache and written to disk. Delta sets therefore can be created that are stored in cache
plus disk, basically extending delta set storage onto disk. In doing so, the system can
implement both snapshots and a CDP type of functionality. Both Delta sets and partial delta
sets can be housed on either random access memory or on disk (or, for that matter, any
media).

Merging Delta Sets (Using the associatively of Delta Sets)

[0139] If delta sets are considered as a series of point-in-time images of the data
(snapshots), the lineage of delta sets is associative. Older delta sets can be combined without

changing the view exported by younger delta sets.

[0140] This allows the creation of a lineage of point-in-time images that represent
relatively fine increments of time in more recent points of time. As delta sets ‘age’, delta sets
can be merged together to create courser increments in time and reduce the overheads

associated with maintaining point-in-time images.

[0141] The process of “merging” delta sets would be apparent to one of ordinary skill in the
art in light of the teachings and suggestions contained herein. It can be a “Union” operation
except where a change to a given block exists in multiple delta sets, then the most recent

change can be used.

Remote Importers

[0142] Sites that remotely import WOF storage but do not have a local DR1 leg can have
special behavior. Like any full-fledged participating site, these sites contribute to s for the
purpose of calculating P. In one aspect, both P and R are calculated normally, but since there
is no local storage to which to write, £ = C = (. Nodes at the importing site do not participate
in the exchange or commit phases beyond supplying their RDMA keys in the acknowledge

barrier message during delta closure.

Integrating YottaDisks and Delta Sets

[0143] As referred to herein, and as disclosed in U.S. Patent No. 6,857,059, issued
February 15, 2005, entitled "Storage virtualization system and methods," a Yotta Disk is a
demand mapped virtual disk image of up to an arbitrarily large size (for example, 10** bytes)
that is presented to a host, e.g., the end-customer. In one embodiment, for example, the
virtual disk image is used to produce a mapping from the virtual disk image to back-end

physical storage which is done dynamically as a result of an /O operation, e. g., write
36

WO 2007/074408 PCT/IB2006/004062

operation, performed on the physical storage. Remapping the storage allows the back-end
storage to be managed without consumer impact and multiple back-end partitions to be
combined to provide a single virtual image. The disk image presents potentially a very large
image to the consumer to isolate the consumer from volume resizing issues and to allow easy
consumption. This image may be supported by a management system that provides the ability
to control consumption and growth rates as well as maintain core system processes such as

creating, deleting, and mounting other candidate disks.

[0144] Yotta disks can also be implemented with delta sets using similar mechanisms.
Since storage can need to be allocated dynamically, a back-end storage allocator can be used
for both processes, allowing Yotta disks and delta sets to be implemented at approximatély
the same time. Delta sets can use mechanisms described in U.S. Patent No. 6,857,059,
incorporated by reference above, for example, to represent a sparse disk image that is
demand-mapped and freed based on block references. A difference is the lineage of time
representations provided by delta sets.

Dynamically Closing Delta Sets

[0145] Several mechanisms can be provided to close delta sets and, thus, open a new delta

set. Such mechanisms include, for example:

¢ Timed intervals

¢ Intervals based on the number of transactions

* Intervals based on the number of changes (writes) in a delta set or partial
delta

* Application triggers

* Operator induced triggers

* Triggers induced by other subsystems

* Triggers induced by error conditions

¢ Hybrids of the above.

[0146] In the case of timed intervals, the size of the interval can be adjusted to account for
change conditions. For example, an overloaded network may be grounds for increasing the
duration of a delta set in order to lower impact on the network. A period of ‘hei ghtened alert’
may trigger much finer delta sets to lower the likelihood of data loss during periods of high

data-dependency.

37

WO 2007/074408 PCT/IB2006/004062

[0147] Given that any node could, pof;ntiélly, trigger the turn-over of a delta set, these

triggers do not have to be consistent across various nodes.

Time Firewalls

[0148] "Seneca: remote mirroring done write," by Minwen Ji et al, proceedings of USENIX
Technical Conference, pages 253-256, June 2003, proposed a concept of Time Firewalls. One
embodiment described herein extends on such a concept to include both time delayed read-
only perspectives of a data volume as well as multi-writer, totally active geographically
distributed access to the current data view. In other aspects, the various WOF optimizations

are integrated with the concept.

[0149] One of the concerns of interconnecting multiple sites is that logical errors (as
opposed to physical failures) can quickly propagate across sites. For example, a virus
inserted at one site quickly infects all sites sharing the data image. The point-in-time/delta set
concept described above can provide an efficient mechanism for providing “safe” windows

into the evolution of data.

[0150] Sites operating in an active/passive manner can provide a read-only portal into the
data that is based on point-in-time images (delta sets) that lag behind the active data. The
read-only image can automatically advance in the delta sets maintaining to a pre-determined
‘safe’ interval. This way, normal processes can continue to run on ‘live’ data that would
detect a logical failure or corruption of data. Should such an event be detected, the

advancement of the ‘safe’ read only image can be suspended until the problem was rectified.

[0151] A ‘remote’ site (or any site) can have open both a current delta set image, which
behaves like any other multi-writer delta set, and a ‘safe’ window into an earlier delta set

open at the same time.

[0152] In a specific example, two entities might want to collaborate and share data freely,
but want to avoid the situation where a virus is inserted in one data for one entity and then is
spread to the other entity. Therefore, in this example it is preferred to not simply have a
single, large data repository. A solution in accordance with one embodiment allows one of
the entities to write only partitions, then export the data to the other agency such that each
entity will have a different viewpoint into the data. One viewpoint is a synchronous image of
the data, as if there were simply two normal WOF sites. At some time delay point, there is a

second volume that is a period of time (such as half an hour) behind that is considered to be a

38

WO 2007/074408 PCT/IB2006/004062

safe view ot that data. If something happens to one entity, the system can simply stop
advancing the save pointer until the problem is rectified and the virus is taken out. There can
be both a real time image of the data and an image that is at least a half hour time delayed.
The delayed image can update itself with delta set closures, etc., to maintain itself roughly
one half hour behind, and can continue to advance in time unless something or someone
indicates that there is a problem and the updating should stop. The delayed image then can
stay at the safe point until instructed to do otherwise.

Nested Delta Sets

[0153] If there are two sites that are relatively close compared to other sites, a finer grain
transfer of data can be made between those close sites, such as for synchronous replication,
etc. The delta sets can be nested so that the pair of close sites can make frequent exchanges,
but at a "meta"-delta set closure. This meta-delta set exchange can be more granular than a
typical delta-set exchange. Exchanging more often can provide for more frequent updates at

arelatively low cost due to the proximity of the sites.

[0154] Nesting the delta sets allows subsets of nodes to turn-over sub delta sets, so that
nodes with close geography can synchronize with a finer grained delta set than would be used
at larger distance. For example, the situation 1100 of Fig. 11 shows the grouping of two sites
that are geographically close into a nesting group 1102. This can help to minimize the
likelihood of data loss and maximize the opportunity for momentary primary sites after a

failure.

RAID across Delta Sets

[0155] A Delta Set implementation can exchange elements of partial delta sets between all
nodes after closing the delta sets, effectively mirroring the changes between all nodes.
Making the changes “safe” by replicating them between nodes does not have to imply simple
mirroring. For example, any RAID pattern of placing could be used. In this case the ‘D’

does not refer to disk images, but node instances, whether in cache or on disk.

[0156] The “Safe” placement should also be aware of physical realities. For example,
multiple nodes within a site may need only one copy between them with mirrors, or other

redundant copies being storied at other sites.

[0157] For example, if there are five sites doing delta set exchanges across geography, rather

than doing RAID 1 mirrors between all five sites, a type of RAID 5 implementation can be

39

WO 2007/074408 PCT/IB2006/004062

done to put data in some subsets. this allows any site to be lost while still having access to
the data. Asknown in the art, RAID 5 includes features such as data striping and parity
checking, so no site may have a full set of the data. The exchange portion for the delta sets
can be implemented as a RAID write. It is not necessary to send each block to every other
host, but instead can route blocks based on RAID striping. At any given time the data might
only be at two sites or three sites, or one site plus a checksum. This cuts down on the need
for a full broadcast of all data.

Redefining Storage Primitives using Delta Sets.

[0158] The traditional layering of storage includes, in order: cache, cache replication,
virtualization, traditional RAID. This can be replaced with a different layering that includes a
coherence layer, a delta set layer, and then a physical resource allocator that indicates where
everything is placed. Combining what is described above, it is possible to redefine storage
archives in terms of primitives surrounding delta sets. So instead of a traditional layering of:

e (Cache

e Cache replication

e Virtualization

e Traditional RAID
these primates can present a new layering approach such as:

e Coherence Layer

* Delta Sets with properties and ancestry

* A physical resource allocater that maps delta sets to physical devices.
[0159] Functionality of various embodiments can be implemented through any appropriate
combination of hardware and software as known in the art. For example, software and logic
can be stored in an information storage medium, contained internally or externally to the
various components, accessories, and/or devices, as a plurality of instructions or program
code. Storage media and computer readable media for containing the code, or portions
thereof, can include any appropriate media known or used in the art, including various
storage media and communication media, such as but not limited to volatile and non-volatile,
removable and non-removable media implemented in any method or technology for storage
and/or transmission of information such as computer readable instructions, data structures,
program modules, or other data, including EEPROM, flash memory or other memory
technology, CD-ROM, ROM, RAM, digital versatile disk (DVD) or other optical storage,

magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices,
40

WO 2007/074408 PCT/IB2006/004062

data signals, data transmissions, or any other medium which can be used to store or transmit
the desired information and which can be accessed by the computer. Based on the disclosure
and teachings provided herein, a person of ordinary skill in the art will appreciate other ways

and/or methods to implement aspects of the various embodiments.

[0160] The specification and drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense. It will, however, be evident that various modifications and
changes may be made thereunto without departing from the broader spirit and scope of the

invention as set forth in the claims.

41

O 0 3 & v B W N

T e T o St
W N = O

WO 2007/074408 PCT/IB2006/004062

WHAT IS CLAIMED 18S:

1. A method of providing write order fidelity in a distributed set of data
access nodes in a network, comprising the steps of:

storing a write request to a first cache for an open delta, the first cache
corresponding to a first node receiving the write request;

transmitting a message, in response to a triggering event, to each node in the
set of data access nodes to close the open delta;

for each node having a write request for the open delta, completing any
pending write requests for the open delta and closing the open delta;

exchanging write request information among nodes so that each node is
associated with a complete copy of the write request information for the closed delta;

writing each complete copy to persistent storage; and

storing each complete copy of the closed delta to back-end storage for each

node.

2. A method according to claim 1, further comprising:
grouping front-end volumes into write-order fidelity (WOF) groups, each

WOF group including at least one site across the network.

3. A method according to claim 2, wherein:
each site includes at least one of said nodes, wherein all nodes are operable to

read and write concurrently.

4, A method according to claim 2, wherein:

storing writes for each WOF group in a cache for the open delta for that WOF
group.

5. A method according to claim 1, further comprising:

executing the triggering event.

6. A method according to claim 1, further comprising:

opening a new delta to receive new writes upon closing the open delta.

7. A method according to claim 1, further comprising:

42

[S L L R

[O R N

AN W A WD

WO 2007/074408 PCT/IB2006/004062

providing localized cached access to remote data for geographically separated

nodes.

8. A method according to claim 1, wherein:
writing each complete copy to persistent storage includes writing a metadata
update entry to a recovery log, when writing a data update to a database when the metadata

update entry writing is completed.

9. A method according to claim 1, further comprising:

reordering write requests in an open delta before closing the delta.

10. A method according to claim 1, further comprising:

triggering a data snapshot corresponding to the closing of the open delta.

11. A method according to claim 1, further comprising:

generating the triggering event using a mechanism selected from the group
consisting of: timed intervals, intervals based on the number of transactions, intervals based
on the number of changes/writes in a delta set or partial delta, application triggers, operator
induced triggers, triggers induced by other subsystems, triggers induced by error conditions,

and combinations of the above.

12. A method according to claim 1, wherein:

the network is selected from the group consisting of a storage area network
(SAN), a local area network (LAN), a wide are network (WAN), and a metropolitan area
network (MAN).

13. A method according to claim 1, wherein:
transmitting a message includes broadcasting the message to each node in the

set of data access nodes.

14. A system for providing write order fidelity in a distributed set of data
access nodes in a network, comprising:

a storage system for storing data; and

a plurality of access nodes configured to access data in the storage system,

wherein each node in the plurality of access nodes is operable to store a write

request to a cache for an open delta, the cache corresponding to the node receiving the write

43

AW N =

[O S

ot

WO 2007/074408 PCT/IB2006/004062

request, each node being further operable to transmit a message, in response to a triggering
event, to said plurality of access nodes in the data storage network to complete any write
requests and close the open delta, each node being further operable to exchange write request
information so that each node is associated with a complete copy of the write request
information for the closed delta, each node being further operable to write each complete
copy to persistent storage then apply each persistent copy of the closed delta to back-end

storage for that node.

15. A system according to claim 14, wherein:

at least one of the nodes is geographically remote from the other nodes.

16. A system according to claim 14, wherein:

at least one of the access nodes is operable to mirror data to a remote location.

17. A system according to claim 14, further comprising:

a plurality of sites, each site including at least one of said nodes.

18. A system according to claim 17, wherein:
the storage system is further operable to determine when only one site is
writing data to the storage system, whereby exchanging write request information is

suspended until multiple sites are writing to the storage system.

19. A system according to claim 14, wherein:
the storage system is further operable to determine when one of the sites is not
writing data to the storage system, and operable to set that site as a passive site until that

passive site need to write.

20. A system according to claim 19, wherein:
the storage system is further operable to broadcast a message to the other sites

indicating the status of the passive site.

21. A system according to claim 14, wherein:
the storage system is operable to execute asynchronous and synchronous data

transfer.

22. A system according to claim 14, wherein:

44

I S I

—t

[| N Y S R - Rk W

B S R

fum—y

WO 2007/074408 PCT/IB2006/004062

eacn node 1s further operable to exchange write request information by
exchanging write request information with a first subset of the plurality of access nodes,
whereby the first subset of nodes exchanges the write request information with a second

subset of the plurality of access nodes.

23. A system according to claim 14, wherein:

each node is operable to replicate writes to a plurality of caches.

24. A system according to claim 14, wherein:
the data storage system maintains three deltas, each delta representing one of a
point in time that data is finally committed to the disk, a point in time that data is about to be

committed to the disk, and a point in time at the beginning of the exchange.

25. A system according to claim 14, wherein:

the storage system is further operable to merge deltas over time.

26. A system according to claim 14, wherein:
the storage system is further operable to create a snapshot of any open deltas at

any point in time.

27. A system according to claim 14, wherein:

the storage system is further operable to close delta seta using a mechanism
selected from the group consisting of: timed intervals, intervals based on a number of
transactions, intervals based on a number of writes in a delta set or partial delta, application
triggers, operator induced triggers, triggers induced by other subsystems, triggers induced by

error conditions, and combinations thereof.

28. A system according to claim 14, wherein:

the network is selected from the group consisting of a storage area network
(SAN), a Jocal area network (LAN), a wide are network (WAN), and a metropolitan area
network (MAN).

20. A system according to claim 14, wherein:
each node is further operable to transmit a message to said plurality of access

nodes by broadcasting the message to each node in the set of data access nodes.

45

O 00 N N B W N e

VI U
AN L W N = O

W N e DW=

BOW N

WO 2007/074408 PCT/IB2006/004062

30. A computer program product embedded in a computer readable
medium for providing write order fidelity in a distributed set of data access nodes in a
network, comprising:

computer program code for storing a write request to a first cache for an open
delta, the first cache corresponding to a first node receiving the write request;

computer program code for transmitting a message, in response to a triggering
event, to each node in the set of data access nodes to close the open delta;

computer program code for completing any pending write requests for the
open delta and closing the open delta for each node having a write request for the open delta;

computer program code for exchanging write request information among
nodes so that each node is associated with a complete copy of the write request information
for the closed delta;

computer program code for writing each complete copy to persistent storage;
and

computer program code for storing each complete copy of the closed delta to

back-end storage for each node.

31. A computer program product according to claim 30, further
comprising:
computer program code for grouping front-end volumes into write-order

fidelity (WOF) groups, each WOF group including at least one site across the network.

32. A computer program product according to claim 30, further
comprising:
computer program code for storing writes for each WOF group in a cache for

the open delta for that WOF group.

33. A computer program product according to claim 30, further
comprising:
computer program code for providing localized cached access to remote data

for geographically separated nodes.

34. A method of providing write order fidelity in a distributed set of data

access nodes in a network, comprising the steps of:

46

O o0 39 O Ut bW

e
- QO

O R N

—

= 0O 0 X N N W =

et et

WO 2007/074408 PCT/IB2006/004062

providing a plurality of write-order fidelity (WOF) groups, each WOF group
including at least one of said data access nodes;

storing a write request to a first cache corresponding to a first node in a first
WOF group receiving the write request;

in response to a triggering event, exchanging write request information among
the nodes in the first WOF group so that each node is associated with a complete copy of the
write request information;

writing each complete copy to persistent storage; and

storing each complete copy to back-end storage for each node.

35. A method acéording to claim 34, further comprising:
providing localized cached access to remote data for geo graphically separated

nodes.

36. A method according to claim 34, wherein:
writing each complete copy to persistent storage includes writing a metadata
update entry to a recovery log, when writing a data update to a database when the metadata

update entry writing is completed.

37. A method according to claim 34, further comprising:
triggering a data snapshot corresponding to a state of the cached write requests
for the first WOF group.

38. A method of providing write order fidelity in a distributed set of data
access nodes in a network, comprising the steps of:

providing a plurality of write-order fidelity (WOF) groups, each WOF group
including at least one of said data access nodes;

storing a write request to a cache corresponding to one of the plurality of WOF
groups, each WOF group associated with a cache and operable to receive write requests from
a plurality of request writers having access to at least one node in the WOF group;

in response to a triggering event for a WOF group, exchanging write request
information among the nodes in the WOF group so that each node is associated with a
complete copy of the write request information; and

storing each complete copy to persistent storage.

47

W &0 3 O i A W N -

[S S G Y
N = O

WO 2007/074408 PCT/IB2006/004062

39. A computer program product embedded in a computer readable
medium for providing write order fidelity in a distributed set of data access nodes in a
network, comprising:

computer program code for providing a plurality of write-order fidelity (WOF)
groups, each WOF group including at least one of said data access nodes;

storing a write request to a cache corresponding to one of the plurality of WOF
groups, each WOF group associated with a cache and operable to receive write requests from
a plurality of request writers each having access to at least one node in the WOF group;

in response to a triggering event for a WOF group, exchanging write request
information among the nodes in the WOF group so that each node is associated with a
complete copy of the write request information; and

storing each complete copy to persistent storage.

48

PCT/IB2006/004062

WO 2007/074408

1/7

vk

4%

00 T%

abelolg

9L

9t}

NVM
NVS

L "OId

N
1400 ongll ¢

0Ll 901-780L~
N ®UOZ ww®00<

NSy

AN

[
1
)
]
]
[
'
[
‘
]
]
]
[}
!
1
]
‘
]
]
'
1
H

Ro-----smsaiiiiii:

N

Nzo F\

q
140} ONG 1 @

0L 9017 80K
Z OPON $S800Y

POk lowal| o | |8

ONd

0]y =

041 907 80+
Ll ®PON ww®00<

o o

%201

lle \

ZLi
S80JAB(]

welo

WO 2007/074408 PCT/IB2006/004062

2/7
Site A Site B
200
(202) (204)
Currently A 2109) B 106)
Open Delta o1 W1. W2, W4 l w3
(210)

206 208
Site A Leg Site B Leg
of DR1 of DR1

FIG. 2
Site A Site B
(202) (204)
D2
(300) | oo e
wi (\51221(\)\?3) w4 - | Wi (\521%93) w4
DI . W2, W3, . W2, W3,
(210) 302

206 208

Site A Leg Site BLeg
of DRI of DR1

FIG. 3

WO 2007/074408 PCT/IB2006/004062

3/7
Site A Site B
L (202) o (204)
D3
D2 oo ;
DI W1, W2, W3, W4 W1, W2, W3, W4
l400 400
206 208

Site A Leg Site B Leg
of DR1 of DR1

FIG. 4

WO 2007/074408 PCT/IB2006/004062

417
500

Group partitions into WOF groups each
consisting of a subset of blades and sites

(43

02

Store new writes to a WOF group to a cache for
an open delta for that WOF group

(42}

04

Designate an open delta to be closed in
response to a triggering event

i

Broadcast a close delta message to the
WOF group to complete outstanding writes
and close delta 508

L

Open a new delta to receive new writes to each
WOF group

Gy
o]
{e7]

|

O

10

Execute an exchange phase so that each site
obtains a complete copy of the closed delta

($2]
N

1

ale

Make closed deltas persistent by writing

to stable storage 1

EN

Apply persistent closed deltas to backend
storage for each site

16

————

FIG. 5

WO 2007/074408 PCT/IB2006/004062

5/7
600\/N
A B
D3 Wiz W9, W10, W1l
602
D2 W5, Wé W7, W8
Dl W1, W2. W3, W4 Wi, W2. W3, W4
Site A Leg Site B Leg
of DRI of DR1
700
\/N A B

15} W1, W2, W3, W4 Wi, W2 W3, w4l

of DRI of DR1
FIG. 7

WO 2007/074408 PCT/IB2006/004062

802
800 A
_/N

D3 wi2

Restart Delta D2 W5, W6

—

W1 W2, W3, w4

Site A Leg
of DR1

FIG. 8
900
Ny
902 904 906
. L T
D3 W9

b2 W5, W6 <> W7, W8

D1

WI, W2, W3, W4 W1, W2, W3, w4 W1, W2, W3, W4

Site A Leg

Site C Leg
of DR1

of DR1

Site B Leg
of DRI

FIG. 9

WO 2007/074408 PCT/IB2006/004062

7/7

X -llll...
" '.
..

Asynchrono

Delta Set -
Synchronizati
on .. ~Delta Set

Synchromzatl
- gn

FIG. 10
1100
p22f | i |) F o

D2

Nesting Group
(1102)

FIG. 11

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings

