(54) 发明名称
一种钙钛矿型化合物的制备方法

(57) 摘要
本发明涉及一种钙钛矿型化合物的制备方法，包括 CsSnX3(Cs₂SnX₆) 的合成、CsSnX₃(Sn) 的合成、CsSnX₃(Sn) 中锡的去除、高纯 CsSnX₃ 的制备。另外还提出了一种三卤锡铯 CsSnX₃ 液体的制备及密封方法。本发明解决目前三卤锡铯 CsSnX₃ 制备方法存在原料价格昂贵、工艺条件苛刻问题，产品不纯且难以分离问题，无需利用高纯的原料和苛刻的纯化工艺，就可以得到高质量的产品，且工艺简单，不仅可以用于实验室制备，也适合用于工业化批量生产。
1. 一种钙钛矿型化合物的制备方法，其特征在于，该方法采用以下步骤：
 (1) 将 SnX₃ 和 CsX 按照摩尔量混合，置于带开关的加热管中，抽真空下 30～60 分钟，除去管里的湿气和空气，在 450～550℃温度反应 30～60 分钟时间，然后控制温度在 3～6 小时内慢慢降温到室温，得到黑色固体物质，该物质为 CsSnX₃ 和 Cs₂SnX₅ 的混合物；
 (2) 将上述混合物加入少量的 Sn 粒或 Sn 粉，Sn 粒或 Sn 粉的加入量为 SnX₃ 摩尔当量的 10～50％，在真空加热管中于 450～550℃反应 30～60 分钟，然后在 3～6 小时内慢慢降温到室温，得到黑色固体，该黑色固体为 CsSnX₃ 及过量的 Sn；
 (3) 将得到的 CsSnX₃ 和 Sn 的混合固体溶于极性溶剂中，然后用微孔过滤膜过滤除去过量的 Sn，得到了 CsSnX₃ 的黄色透明液体；
 (4) 将 CsSnX₃ 的黄色透明液体经过减压蒸馏除去溶剂或者在惰性气体保护下加热蒸干溶剂，得到高纯 CsSnX₃ 固体，即为产品。
2. 根据权利要求 1 所述的一种钙钛矿型化合物的制备方法，其特征在于，其中的 X 为 Cl、Br 或 I。
3. 根据权利要求 1 所述的一种钙钛矿型化合物的制备方法，其特征在于，步骤 (1) 中 SnX₃ 的纯度为大于 98wt％，抽真空后加热管中的真空度小于 10⁻⁵Pa。
4. 根据权利要求 1 所述的一种钙钛矿型化合物的制备方法，其特征在于，步骤 (2) 中加热管中的真空度小于 10⁻⁵Pa。
5. 根据权利要求 1 所述的一种钙钛矿型化合物的制备方法，其特征在于，步骤 (3) 中，所述的极性溶剂选自 N，N- 二甲基亚砜、N，N- 二甲基甲酰胺、N，N- 二甲基乙酰胺或乙腈中的一种或几种；
 所述的微孔过滤膜为有有机系的微孔过滤膜，孔径范围为 0.1 微米～1 微米，利用微孔过滤膜对溶解有 CsSnX₃ 和 Sn 的混合固体的极性溶剂至少过滤 1 次；
 制备得到的黄色透明液体在室温下避光密封保存。
6. 根据权利要求 5 所述的一种钙钛矿型化合物的制备方法，其特征在于，
 所述的极性溶剂为经过干燥剂干燥或者重新蒸馏的无水溶剂，采用的干燥剂为无水硫酸镁或分子筛；
 所述的微孔过滤膜孔径范围 0.0 微米～1.0 微米，对溶解有 CsSnX₃ 和 Sn 的混合固体的溶液或悬浮液过滤两次；
 制备得到的黄色透明液体在在干燥的惰性气体保护下保存。
7. 根据权利要求 1 所述的一种钙钛矿型化合物的制备方法，其特征在于，步骤 (4) 中的减压蒸馏方法和惰性气体下蒸发方法单独或联用进行。
8. 根据权利要求 1 所述的一种钙钛矿型化合物的制备方法，其特征在于，制备得到的高纯 CsSnX₃ 固体在室温低于 20％的干燥环境下溶解于溶剂中，超声波至完全溶解，并采用多重密封技术进行密封。
9. 根据权利要求 8 所述的一种钙钛矿型化合物的制备方法，其特征在于，
 溶解高纯 CsSnX₃ 固体时在空气或氮气、氩气的保护范围下进行；
 采用的溶剂为极性溶剂，选自 N，N- 二甲基亚砜、N，N- 二甲基甲酰胺、N，N- 二甲基乙酰胺或乙腈中的一种或几种，经过干燥剂干燥或者经过重新蒸馏；
 所述的多重密封技术通过一个多重密封装置或容器实现，包含一个多重密封盖和一个
容器瓶，所述的多重密封盖结构主要包括第一层密封垫、第二层密封垫和第三层密封盖，其中，第一层密封垫位于密封盖的底部，且三者连为一体，所述的容器瓶中充入惰性气体、液体或固体对盛装的高纯 CsSnX₃ 溶液进行密封保护。

10. 根据权利要求 9 所述的一种钙钛矿型化合物的制备方法，其特征在于，第一层密封垫位于密封盖最下方，其材质为对溶剂惰性的高分子材料，优选的材料有特富龙聚合物、聚烯烃聚合物、聚酯聚合物；第二层密封垫位于第一层密封垫上，其材质为对溶剂惰性的高分子材料，优选的材料有特富龙聚合物、聚烯烃聚合物、聚酯聚合物；第三层密封盖位于第二层密封垫上并于外界空气接触，其材质为金属或者塑料，优选的为聚烯烃聚合物、聚酯聚合物，第三层密封盖的盖上带有一圆孔，该圆孔下方与第二层密封垫接触。
一种钙钛矿型化合物的制备方法

技术领域
[0001] 本发明属于光电材料领域，尤其是涉及一种钙钛矿型化合物的制备方法，具体是公开制备三卤锡铯的方法。

背景技术
[0002] 最早发现的钙钛矿是一类陶瓷氧化物，其分子通式为 AB03，呈立方体或八面体晶形。此类氧化物存在于钙钛矿石中的钛酸钙 CaTi03 化合物，因此而得名。由于这类化合物结构上有许多特性，在凝聚态物理方面应用及研究甚广。

[0003] 三卤锡铯是一类钙钛矿型的无机化合物，它是三碘锡铯 (CsSnI3) 及其类似物的统称，三氟锡铯 CsSnF3 类似物主要为三溴锡碘 CsSnBr3、三氯锡碘 CsSnCl3 以及混合型的三卤锡碘 (CsSnBr2I、CsSnBr2Cl、CsSnI2Br 等)。研究表明，三卤锡铯 CsSnX3 (X 代表 Cl、Br 或 I) 不仅具有新颖的相变性质，而且也具有十分独特的光电性质和用途，尤其在半导体、光致发光以及新型太阳能电池上具有十分广阔的应用前景。

[0004] 三卤锡铯在新型太阳能电池上的研究和应用主要是以三碘锡铯 CsSnI3 为主。近年来的研究表明，三氟锡铯 CsSnF3 不仅是一类新颖的相变材料，而且也是一类优良的光电化合物 [J. Am. Chem. Soc. 2012, 134, 8579–8587]。它共有 4 个晶相，即 Bρα 相、Bρβ 相、Bργ 相以及 γ 相，其中，在室温下，有 2 个晶相能够稳定存在，即 γ 相和 Bργ 相。γ 相的 CsSnI3 是黄色的，Bργ 相的 CsSnF3 是黑色的。CsSnI3 的 γ 相和 Bργ 相在一定的条件下可以实现互变，即黑色的 Bργ 相可以通过黄色的 γ 相加热到 450K 左右经过相变得到的，黄色的 γ 相可以通过黑色的 Bργ 相暴露在空气中 1 小时得到的。CsSnI3 的 Bργ 相化合物不仅具有全光谱吸收的能力，高的电导率和空穴迁移率，而且具有非常适合太阳能电池所需要的能量带 1.3eV–1.4eV，另外，这类化合物还具有在有机溶剂中具有高的溶解能力，其薄膜可以通过溶液法采用低成本的旋涂或浸泡工艺制得。正因为如此，三氟锡铯 CsSnF3 及其类似物在新型全固态太阳能电池上，表现出十分优异的性能，在全固态电池结构下其光电转换效率高达 10%，并且发展态势十分看好。

[0005] 目前三卤锡铯 CsSnX3 (X 代表 Cl、Br 或 I) 的合成方法有固相法和液相法，其中固相法是采用 SnX2 (X 代表 Cl、Br 或 I) 固体和 CsX (X 代表 Cl、Br 或 I) 固体按照等当量比例混合并在高真空下 450 度或 550 度下反应 30–60 分钟，液相法是采用 Sn 固体和 CsX (X 代表 Cl、Br 或 I) 固体于新蒸馏的氢卤酸 (HCl、HBr 或 HI) 中并在氢气保护下回流得到的 [Journal of Solid State Chemistry, 1974, 9, 308–314]。然而，无论是固相法还是液相法，都容易产生出一种四价锡的杂质化合物 Cs2SnX6 (X 代表 Cl、Br 或 I) [J. Am. Chem. Soc. 2012, 134, 8579–8587]。由于 Cs2SnX6 (X 代表 Cl、Br 或 I) 不具有优良的光电和相变性质，因此在 CsSnX3 (X 代表 Cl、Br 或 I) 的制备与纯化过程中必须设法避免或去除该物质的生成。产生 Cs2SnX6 的原因主要是由于反应体系中的 SnX4 (X 代表 Cl、Br 或 I) 与 CsX 反应生成而来的，而 SnX4 的来源主要是由于；许多商品化原料中 SnX2 未经高纯处理，含有少量的 SnX4；在液相法反应中，SnX2 与反应溶剂 (HX 酸) 经过长时间的回流产生成量的 X2 反应生成了
SnX4。为了避免 SnX4 的生成，固相法的制备方法一般是采用高纯的 SnX2 作为原料，并且在反应前对 SnX2 进行重复数次的高温真空熔融纯化处理，以达到完全去除 SnX4 的目的。显然这种做法不仅材料成本较高，而且十分费时，大大增加了材料和生产成本。而对于液相法的制备方法而言，即使采用高纯 SnX2 而不可避免地产生 SnX4（由于 SnX2 与反应过程中产生的少量 X2 反应生成了 SnX4），因此，在 CsSnX3 的液相法制备方法中，目前尚未见到有效地避免生成 Cs2SnX6（X 代表 Cl, Br 或 I）的制备方法或者去除 Cs2SnX6（X 代表 Cl, Br 或 I）的纯化方法的文献报道。

发明内容

为了解决目前三卤锡铯 CsSnX3（X 代表 Cl, Br 或 I）制备方法存在着原料价格昂贵、工艺条件苛刻问题、产品不纯且难以分离问题，本发明的第一个目的在于提出了一种“四步法”的制备方法。该方法无需利用高纯的原料和苛刻的纯化工艺，就可以得到高质量的产品，且工艺简单，不仅可以适用于实验室制备，也适合用于工业化批量生产。另外，本发明的第二个目的在于，由于本发明涉及的三卤锡铯 CsSnX3（X 代表 Cl, Br 或 I）对空气的湿气比较敏感，而且它的用途主要是以溶液的形式，因此本发明还提出了一种三卤锡铯 CsSnX3（X 代表 Cl, Br 或 I）液体的制备和密封保存方法。

本发明的目的可以通过以下技术方案来实现：

首先将 SnX2（X 代表 Cl, Br 或 I）和 CsX（X 代表 Cl, Br 或 I）按照摩尔量混合并真空下一定温度下反应制得 CsSnX3（X 代表 Cl, Br 或 I）和 Cs2SnX6（X 代表 Cl, Br 或 I）的混合物，然后加入少量的锡，并继续在真空下一定温度下反应制得 CsSnX3（X 代表 Cl, Br 或 I）和锡的混合物，接着加入极性溶剂制得液体，过滤除去过量的不溶物锡，最后得到过滤溶液，在惰性气体保护下直接加热蒸发溶剂或者减压蒸馏除去溶剂后得到目标高纯固体，工艺流程如下：

\[
\begin{align*}
\text{SnX}_2 (\text{SnX}_4) & \xrightarrow{(1) \text{ + CsX}} \text{CsSnX}_3 (\text{Cs}_2\text{SnX}_6) \\
\text{温度，真空} & \xrightarrow{(2) \text{ + Sn}} \\
\text{CsSnX}_3 (\text{Sn}) & \xrightarrow{(3) \text{- Sn}} \\
\text{温度，真空} & \xrightarrow{(4) \text{溶解，过滤，干燥}} \\
\end{align*}
\]

以下是钙钛矿化物制备方法的详细步骤：

（1）将 SnX2 和 CsX 按照等摩尔量混合，置于带开关的加热管中，抽真空下 30~60 分钟，除去管里的湿气和空气。在 450~550°C 温度反应 30~60 分钟。时间后，控制温度在 3~6 小时内慢慢降温到室温，得到黑色固体物质，该物质为 CsSnX3 和 Cs2SnX6 的混合物。

\[
\text{SnX}_2 + \text{CsX} \rightarrow \text{CsSnX}_3 (\text{I})
\]

\[
\text{SnX}_4 (\text{少量}) + 2\text{CsX} \rightarrow \text{Cs}_2\text{SnX}_6 (\text{少量}) (\text{II})
\]

式 I 和 II，X 代表 Cl, Br 或 I。
[0015] (2) 将上述混合物加入少量的 Sn 粉或 Sn 粉，Sn 粉或 Sn 粉的加入量为 SnX3 的摩尔
当量的 10~50%。在真空的加热管中于 450~550°C 反应 30~60 分钟，然后在 3~6 小时内慢慢
降温至室温，得到黑色固体，该黑色固体为 CsSnX3 及过量的 Sn；
[0016] CsSnX3+Sn(过量) —— 不反应 （III）
[0017] Cs2SnX6(少量)+Sn(过量) ——2CsSnX3+Sn(过量) （IV）
[0018] 式 III 和 IV 中的 X 代表 Cl、Br 或 I。
[0019] (3) 将得到的 CsSnX3 和 Sn 的混合固体溶于极性溶剂中，然后用微孔过滤膜过滤除去
过量的 Sn，得到了 CsSnX3 的黄色透明液体；
[0020] (4) 将 CsSnX3 的黄色透明液体经过减压蒸馏除去溶剂或者在惰性气体保护下加热
蒸干溶剂，得到高纯 CsSnX3 固体，即为产品。
[0021] 其中的 X 为 Cl、Br 或 I。
[0022] 步骤 (1) 中 SnX3 的纯度为大于 98wt%，抽真空后加热管中的真空度小于 10^{-3}Pa。
[0023] 步骤 (2) 中加热管中的真空度小于 10^{-3}Pa。
[0024] 步骤 (3) 中，极性溶剂选自 N,N- 二甲基亚砜、N,N- 二甲基甲酰胺、N,N- 二甲基乙
酰胺或乙烯中的一种或几种；微孔过滤膜为有机系的微孔过滤膜，孔径范围为 0.1 微米 -1
微米，利用微孔过滤膜对溶解有 CsSnX3 和 Sn 的混合固体的极性溶剂至少过滤 1 次；制备得
到的黄色透明液体在室温下避光密封保存。
[0025] 作为优选的实施方式，极性溶剂为经过干燥剂干燥或者重新蒸馏的无水溶剂，采
用的干燥剂为无水硫酸镁或分子筛；微孔过滤膜孔径范围 0.0 微米 -1.0 微米，对溶解有
CsSnX3 和 Sn 的混合固体的溶液或悬浮液过滤两次，制备得到的黄色透明液体在在干燥的
惰性气体保护下保存。
[0026] 步骤 (4) 中减压蒸馏方法和惰性气体下蒸干方法，既可以单独进行，也可以联用
进行，即先进行减压蒸馏，后再在惰性气体中加热进行，两者的顺序可以对调，但优选的方
法为先减压蒸馏；所述的溶剂蒸干，应结合检验方法为 HNMR 分析，确保固体中无任何溶剂
残余；所述的目标产物为固体，颜色与产物有关，CsSn1.5 的颜色为黑色，CsSnBr3 的颜色为黑色，
CsSnCl3 的颜色为黄色；所述的产物的结构和组成可以通过 XRD 分析来确定。
[0027] 制备得到的高纯 CsSnX3 固体在湿度低于 20% 的干燥环境下溶解于溶剂中，超声直
至完全溶解，溶液浓度为质量分数 10% ~50%，并采用多重密封技术进行密封。
[0028] 溶解高纯 CsSnX3 固体时在空气或氮气、氩气的保护范围下进行；
[0029] 采用的溶剂为极性溶剂，选自 N,N- 二甲基亚砜、N,N- 二甲基甲酰胺、N,N- 二甲基
乙酰胺或乙烯中的一种或几种；经过干燥剂干燥或者经过重新蒸馏；
[0030] 所述的多重密封技术通过一个多重密封装置或容器实现，包含一个多密封盖和
一个容器瓶，所述的多重密封盖结构主要包括第一层密封垫、第二层密封垫和第三层密封
盖，其中，第一层密封垫位于密封盖的底部，且三者连为一体，所述的容器瓶中充入惰性气
体，液体或固体对盛装的高纯 CsSnX3 溶液进行密封保护。
[0031] 第一层密封垫位于密封盖最下方，其材质为对溶剂惰性的高分子材料，优选的材
料有特富龙聚合物、聚烯烃聚合物、聚酯聚合物；第二层密封垫位于第一层密封垫上，其材
质为对溶剂惰性的高分子材料，优选的材料有特富龙聚合物、聚烯烃聚合物、聚酯聚合物；
第三层密封盖位于第二层密封垫上，并于外界空气接触，其材质为金属或者塑料，优选的为
聚烯烃聚合物、聚酯聚合物、第三层密封盖的盖上带有一圆孔，该圆孔下方与第二层密封垫接触。

0032 多层密封盖的周端内壁上带有螺纹结构，所述的容器瓶主要为玻璃瓶和塑料瓶，优选的为玻璃瓶。所述的容器瓶的上端外壁上带有外螺纹结构。所述的容器瓶的外螺纹和密封盖的内螺纹相互匹配，且能锁紧固定。

0033 所述的多重密封瓶即可以充入惰性气体，也可以充入溶剂及液体样品。所述的充入方法是通过第三层密封盖的圆孔，通过针头注射器注入的。所述的多重密封瓶的液体或溶剂取用，可以通过针头注射器取出，无需打开瓶盖。

0034 所述的多重密封瓶可以实现对空气敏感的溶剂或液体的密封和保护，可以用在空气中长期保存。所述的多重密封瓶可以用于液体的密封，也可以用于固体的密封。优选的为液体的密封。所述的多重密封瓶也可用于运输或流通过程中的保存，且不受空气中湿气的影响。

0035 本发明的产品用途主要用于太阳能电池介质上，既可以用在电解液、光吸收层，也可以作为电解液、太阳能电池电解液，也可以作为全固态太阳能电池 P 型固态电解质。

0036 与现有技术相比，本发明具有如下技术优势：

0037 1. 该制备方法无需高纯原料，通过本发明采用的制备路径，即使原料存在钛（IV）化合物杂质，也可以通过路径中的锡的反应和去除方法予以纯化，从而得到高纯度产品，且产品纯度可控，合成产率高；

0038 2. 原料来源方便，价格便宜，合成工艺简单，操作简便，对设备要求低，生产成本低，不仅适合用于实验室制备，也适合用于工业化的批量生产；

0039 3. 制备过程无任何废气、废液和废渣产生，溶剂可以回收利用，对环境友好；

0040 4. 采用的多重密封技术非常适合用于液体的密封，且液体取用和密封过程无需开盖，操作方便；

0041 5. 不仅可以用于空气湿度敏感的液体在空气中长期保存，而且也可以用于运输或流通过程中的保存，且不受空气中湿气的影响。

0042 6. 制备得到的产品通过溶解在特定的溶剂中，可以用于太阳能电池领域，实现低成本的涂层法制备薄膜，工艺简单和生产成本得到大大降低。

附图说明

0043 图 1 为本发明制备方法流程图；

0044 图 2 为多重密封装置的结构示意图；

0045 图 3 为 Y 型 CsSn13 及 Cs2Sn16 的 XRD 分析图；

0046 图 4 为 Y 型 CsSn13 经过多重密封 6 个月后的 XRD 谱图变化情况。

具体实施方式

0047 下面结合附图和具体实施例对本发明进行详细说明。

0048 实施例 1

0049 钙钛矿型化合物的制备方法，具体来说是制备三卤锡铯的方法，其工艺流程如图 1
所示，具体采用以下步骤：

0050 高纯 CsSnI3 固体的制备
0051 1. CsSnI3(Cs2SnI6) 的合成：
0052 1) 反应式：
0053 SnI2+CsI———→CsSnI3
0054 SnI4(少量)+2CsI———→Cs2SnI6(少量)
0055 2) 具体方法
0056 首先将商品化的 SnI2(0.01 摩尔，3.725 克) 和 CsI(0.01 摩尔，2.598 克) 按照等摩尔量混合，并置于带开关的加热管中，抽真空下 40 分钟，除去管里的湿气和空气，在 500 度温度下反应 45 分钟时间，然后控制温度在 5 小时内慢慢降温到室温，得到了黑色固体物质。该物质未经处理，直接可用于下一步制备。产率 100%。经 XRD 分析得知，该物质是由 CsSnI3 和 Cs2SnI6 组成。
0057 2. CsSnI3(Sn) 的合成：
0058 1) 反应式：
0059 CsSnI3+Sn(过量)———→不反应
0060 Cs2SnI6(少量)+Sn(过量)——→2CsSnI3+Sn(过量)
0061 2) 具体方法：
0062 往上述得到的 CsSnI3(Cs2SnI6) 的混合体 (6.5 克)，加入少量的 Sn 粒 (0.1 克)。并一同置于加热管中，在真空下 450 度反应 30 分钟，然后在 3 小时内慢慢降温到室温，得到了黑色固体。该物质未经处理，即可用于下一步制备。产率 100%。
0063 3. CsSnI3(Sn) 中锡的去除：
0064 1) 过量锡去除方法：
0065 CsSnI3(Sn) 固体 - 溶剂溶解 - 薄膜过滤 -CsSnI3 溶液
0066 2) 具体方法：
0067 将上述得到的 CsSnI3 和 Sn 的混合体 (6.6 克)，溶于 50 毫升的 DMF 极性溶剂中，然后用微孔过滤膜过滤除去不溶物 Sn，重复 1-2 次，得到了 CsSnI3 黄色透明液体。
0068 4. 高纯 CsSnI3 的制备
0069 1) 溶剂去除方法：
0070 CsSnI3 黄色透明溶液 - 溶剂挥发 -CsSnI3 固体
0071 2) 具体方法：
0072 将上述得到的 50 毫升 CsSnI3 的黄色透明液体，经过 50 度下减压蒸馏除去溶剂或者在惰性气体保护下 120 度下干燥蒸干溶剂，直至无溶剂残留，得到高纯的目标产物 CsSnI3 固体 (6.0 克)。产率 95%。该固体为黄色固体，图 3 为 Y 型 CsSnI3 及 Cs2SnI6 的 XRD 分析谱图，其中 1: 标准 CsSnI3-Y; 2: 标准 Cs2SnI6; 3: 制备的 CsSnI3 和 Cs2SnI6 混合体; 4: 处理后的高纯 CsSnI3-Y，图 4 为 Y 型 CsSnI3 经过多重密封 6 个月前后的 XRD 谱图变化情况，其中 CsSnI3-1: 新制的样品 XRD 谱图; CsSnI3-2: 多重密封 6 个月后的样品 XRD 谱图。经 XRD 分析得知，该体为高纯的 Y 型的 CsSnI3。
0073 实施例 2
0074 高纯 CsSnBr3 的制备
1. **CsSnBr3 (Cs2SnBr6) 的合成**

 1) 反应式：

 \[
 \text{SnBr}_2 + \text{CsBr} \rightarrow \text{CsSnBr}_3
 \]

 2) 反应式：

 \[
 \text{SnBr}_4 \text{(少量)} + 2\text{CsBr} \rightarrow \text{Cs}_2\text{SnBr}_6 \text{(少量)}
 \]

2. **具体方法**

3. 类似实施例 1 的步骤 1 (2)。不同的是反应物 SnBr2 代替了 SnI2, CsBr 替代了 CsI, 其中, 商品化的 SnBr2 用量为 0.01 摩尔, 2.785 克, CsBr 的用量为 0.01 摩尔, 2.128 克。

4. **CsSnBr3 (Sn) 的合成**

 1) 反应式：

 \[
 \text{CsSnBr}_3 + \text{Sn(过量)} \rightarrow \text{CsSnBr}_3 \text{+Sn(过量)}
 \]

 2) 反应式：

 \[
 \text{Cs}_2\text{SnBr}_6 \text{(少量)} + \text{Sn(过量)} \rightarrow 2\text{CsSnBr}_3 + \text{Sn(过量)}
 \]

5. **具体方法**

 将上述得到的 CsSnBr3 (Cs2SnBr6) 的混合体（5.0 克），加入少量的 Sn 粉（0.1 克）并同置于加热管中，在真空下 450 度反应 30 分钟，然后在 3 小时内慢慢降温到室温，得到了黑色固体。该物质未经处理，即可用于下一步制备。产率 100％。

6. **CsSnBr3 (Sn) 中锡的去除**

 1) 过量锡去除方法：

 \[
 \text{CsSnBr}_3 \text{(Sn) 固体 - 溶剂溶解 - 薄膜过滤} \rightarrow \text{CsSnBr}_3 \text{溶液}
 \]

 2) 具体方法：

 将上述得到的 CsSnBr3 和 Sn 的混合体, 溶于 40 毫升的无水 DMF 极性溶剂中, 然后用微孔过滤膜过滤除去不溶物 Sn, 重复 1~2 次, 得到 CsSnBr3 黄色透明液体。

7. **高纯 CsSnBr3 的制备**

 1) 溶剂去除方法：

 \[
 \text{CsSnBr}_3 \text{黄色透明溶液 - 溶剂挥发} \rightarrow \text{CsSnBr}_3 \text{固体}
 \]

 2) 具体方法：

 将上述得到的 40 毫升 CsSnBr3 的黄色透明液体, 经过 50 度下减压蒸馏除去溶剂或者在惰性气体保护下 120 度下加热蒸干溶剂, 无溶剂残留, 得到高纯的目标产物 CsSnBr3 固体 4.5 克。产率 92％。该固体为黑色固体, 经 XRD 分析得知, 该固体为高纯的 Y 型的 CsSnBr3。

8. **实施例 3**

 高纯 CsSnCl3 的制备

 1) CsSnCl3 (Cs2SnCl6) 的合成：

 \[
 \text{SnCl}_2 + \text{CsCl} \rightarrow \text{CsSnCl}_3
 \]

 2) CsSnCl3 (Cs2SnCl6) 的合成：

 \[
 \text{SnCl}_4 \text{(少量)} + 2\text{CsCl} \rightarrow \text{Cs}_2\text{SnCl}_6 \text{(少量)}
 \]

 3) 具体方法

 首先将商品化的 SnCl2 (0.01 摩尔, 1.896 克) 和 CsCl (0.01 摩尔, 1.684 克) 按照等摩尔量混合, 并置于带开关的加热管中, 抽真空下 30 分钟, 除去管里的湿气和空气, 在 550 度温度反应 60 分钟时间, 然后控制温度在 4 小时内慢慢降温到室温, 得到了黑色固体
物质。该物质未经处理，即可用于下一步制备。产率 100%。经 XRD 分析得知，该物质是由 CsSnC13 和 Cs2SnC16 组成。

2. CsSnC13(Sn) 的合成：

1) 反应式：

CsSnC13+Sn（过量）——不反应

Cs2SnC16（少量）+Sn（过量）——2CsSnC13+Sn（过量）

2) 具体方法：

将上述得到的 CsSnC13(Cs2SnC16) 的混合体 3.58 克，加入少量的 Sn 粉 (0.1 克)，并一同置于加热管中，真空下 450 度反应 45 分钟，然后在 5 小时内慢慢降温到室温，得到了黄色固体。该物质未经处理，即可用于下一步制备。产率 100%。经 XRD 分析得知，该黄色固体为 CsSnC13 和 Sn 的混合体。

3. CsSnC13(Sn) 中锡的去除：

1) 过量锡去除方法：

CsSnC13(Sn) 固体 - 溶剂溶解 - 薄膜过滤 - CsSnC13 溶液

2) 具体方法：

将上述得到的 CsSnC13 和 Sn 的混合体 3.5 克，溶于 50 毫升无水 DMF 极性溶剂中，然后用微孔过滤膜过滤除去不溶物 Sn，得到了 CsSnC13 淡黄色透明液体。

4. 高纯 CsSnC13 的制备

1) 溶剂去除方法：

CsSnC13 黄色透明溶液 - 溶剂挥发 - CsSnC13 固体

2) 具体方法：

将上述得到的 CsSnC13 的黄色透明液体，经过 50 度下减压蒸馏除去溶剂或者在惰性气体保护下 120 度下加热蒸干溶剂，得到高纯的目标产物 CsSnC13 固体 3.2 克。产率 90%。该固体为白色固体，经 XRD 分析得知，该固体为高纯的 4 型的 CsSnC13。

实施例 4

三卤铯锡溶液的配制与多重密封

1) 三卤铯锡溶液的配制

在湿度为 10% 的干燥环境下，分别称量一定量的上述 CsSnX3(X 代表 Cl, Br 或 I)的固体，溶解于一定量的溶剂中，超声直至完全溶解，即可得到 CsSnX3(X 代表 Cl, Br 或 I)液体。

2) 三卤铯锡溶液的配制保存

首先取多重密封瓶，用针头注入 N2 排除瓶中空气和湿气，然后用注射器分别吸取一定量的 CsSnX3(X 代表 Cl, Br 或 I) 液体，并注入多重密封瓶中。表 1 为不同浓度的 CsSnX3(X 代表 Cl, Br 或 I) 液体及其配制比例。

3) XRD 分析

经过多重密封的 CsSnI3 的乙醇溶液，保存 6 个月后，将溶液置于 N2 保护下 80 度加热 2 小时，使乙醇完全挥发。结果发现，6 个月前后的样品 XRD 谱图基本无差别，这表明了多重密封技术用于液体样品的密封保存是有效的。

多重密封技术通过一个多重密封装置或容器实现，如图 2 所示，包含一个多重密
封盖和一个容器瓶1,多重密封盖结构主要包括第一层密封垫2,第二层密封垫3和第三层密封盖4,其中,第一层密封垫2位于密封盖的底部,且三者连为一体,容器瓶1中充入惰性气体、液体或固体对装装的高纯CsSnX₃溶液进行密封保护。

[0130] 第一层密封垫2位于密封盖最下方,其材质为对溶剂惰性的高分子材料,优选的材料有特富龙聚合物、聚硅烷聚合物、聚酯聚合物;第二层密封垫3位于第一层密封垫1上,其材质为对溶剂惰性的高分子材料,优选的材料有特富龙聚合物、聚硅烷聚合物、聚酯聚合物;第三层密封盖4位于第二层密封垫3上,并与外界空气接触,其材质为金属或者塑料,优选的为聚硅烷聚合物、聚酯聚合物,第三层密封盖的盖上有一圆孔,该圆孔下方与第二层密封垫接触。

[0131] 多重密封盖的周围内壁上带有螺纹结构,容器瓶1主要为玻璃瓶和塑料瓶,最好是玻璃瓶,容器瓶的上端外壁上带有螺纹结构。容器瓶的外螺纹和密封盖的内螺纹相互匹配,且能锁紧固定。多重密封瓶即可以充入惰性气体,也可以充入溶剂及液体样品。充入方法是通过第三层密封盖4的圆孔,通过针头或注射器注入的。多重密封瓶的液体或溶剂取用,可以通过针头或注射器取出,无需打开瓶盖。多重密封瓶可以实现对气体敏感的溶剂或液体的密封和保护,可以实现在空气中长期保存。所述的多重密封瓶既可以用于液体的密封,也可以用于固体的密封,优选的为液体的密封。所述的多重密封瓶也可以用于运输或流通过程中的保存,且不受空气中湿气的影响。

[0132] 实施例5

[0133] 三碘铯锡溶液的光电转换效率测试

[0134] 1) 电池组装

[0135] 首先取商品化的TiO₂薄膜(FTO玻璃10mm*15mm, TiO₂膜层面积0.16cm²,厚度15微米)电极浸泡在质量百分含量为10% CsSnI₃的DMF溶液中3小时,取出后吹干,然后将商品化的钯层电极(FTO玻璃10mm*15mm,含钯层)和上述浸泡过CsSnI₃溶液的TiO₂电极面对面对合在一起,接着往两片电极间滴入碘基电解液(I₃⁻/-,乙酸乙酯溶剂),电池组装完成。

[0136] 2) 光电转换效率测试

[0137] 将两个电极的正负极分别用导电夹子夹住,并置于太阳能V/1测试系统中,在1个标准太阳(AM1.5)下进行测试,结果表明, CsSnI₃敏化的太阳能电池的光电转换效率可以达到2.58%。见表1。

[0138] 表1 CsSnI₃的光电转换效率

[0139]

<table>
<thead>
<tr>
<th>电池</th>
<th>敏化层材料</th>
<th>电解液</th>
<th>TiO₂膜</th>
<th>Voc/V</th>
<th>Jsc/μAcm²</th>
<th>FF/%</th>
<th>Effi./%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CsSnI₃</td>
<td>I₃⁻/-</td>
<td>~15um</td>
<td>0.67</td>
<td>6.01</td>
<td>63.76</td>
<td>2.58</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0.68</td>
<td>4.38</td>
<td>62.61</td>
<td>1.87</td>
</tr>
</tbody>
</table>
SnX2 (SnX4) + CsX \rightarrow CsSnX3 (Cs2SnX6) \rightarrow Sn

温度，真空

CsSnX3 (Sn) - Sn \rightarrow CsSnX3 (X: Cl, Br, I)

溶解，过滤，干燥

图 1

图 2