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(57) Abstract

For correcting measured spectral data of n samples for data due to the measurement process itself, e.g. due to spectral
baseline variations and/or water vapor and carbon dioxide present in the atmosphere of the spectrometer used to make the spec-
tral measurements, the spectral data being quantified = * discrete frequencies to produce a matrix X (of dimension f by n) of cali-
bration data, matrix X is orthogonalized with respect to a correction matrix Uy, of dimension f by m comprising m quantified
correction spectra, at the discrete frequencies f, which simulate data arising from the measurement process itself. The correc-
tion method is preferably included in a method of estimating unknown property and/or composition data of a sample un-
der consideration, in which the n samples are calibration samples and a predictive model is developed interrelating known
property and composition data of the calibration samples to their spectral data corrected for the data due to the measure-
ment process itself. Then, the unknown property and/or composition data of the sample under consideration is estimated
from the predictive model on the basis of its measured spectrum,
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SPECTRAL DATA MEASUREMENT AND CORRECTION

BACKGROUND OF THE INVENTION

This invention relates, in its broadest aspect, to correcting
measured spectral data of a number of samples for the effects of data
arising from the measurement process itself (rather than from the sample
components). However, it finds particular application to a method of
estimating unknown property and/or composition data of a sample,
incorporating steps to provide correction for such measurement process
spectral data. Examples of property and composition data are chemical
composition measurements (such as the concentration of individual
chemical components as, for example, benzene, toluene, xylene, or the
concentrations of a class of compounds as, for example, paraffin), physical
property measurements (such as density, index of refraction, hardness,
viscosity, flash point, pour point, vapor pressure), performance property
measurement (such as octane number, cetane number, combustibility),
and perception (smell/odor, color).

The infrared (12500 — 400 cm-t) spectrum of a substance
contains absorption features due to the molecular vibrations of the
constituent molecules. The absorptions arise from both fundamentals
(single quantum transitions occurring in the mid—infrared region from
4000 — 400 cm-!) and combination bands and overtones (multiple quanta
transitions occurring in the mid— and the near—infrared region from
12500 — 4000 cm-t). The position (frequency or wavelength) of these
absorptions contain information as to the types of molecular structures
that are present in the material, and the intensity of the absorptions
contains information about the amounts of the molecular types that are
present. To use the information in the spectra for the purpose of
identifying and quantifying either components or properties requires that
a calibration be performed to establish the relationship between the the
absorbances and the component or property that is to be estimated. For
complex mixtures, where considerable overlap between the absorptions of
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individual constituents occurs, such calibrations must be accomplished
using multivariate data analysis methods.

In complex mixtures, each constituent generally gives rise to
multiple absorption features corresponding to different vibrational
motions. The intensities of these absorptions will all vary together in a
linear fashion as the concentration of the constituent varies. Such
features are said to have intensities which are correlated in the frequency
(or wavelength) domain. This correlation allows these absorptions to be
mathematically distinguished from random spectral measurement noise
which shows no such correlation. The linear algebra computations which
separate the correlated absorbance signals from the spectral noise form
the basis for techniques such as Principal Components Regression (PCR)
and Partial Least Squares (PLS). As is well known, PCR is essentially
the analytical mathematical procedure of Principal Components Analysis
(PCA), followed by regression analysis. Reference is directed to "An
Introduction to Multivariate Calibration and Analysis", Analytical
Chemistry Vol. 59, No. 17, September, 1987, pages 1007 to 1017, for an
introduction to Multiple Linear Regression (MLR), PCR, and PLS

PCR and PLS have been used to estimate elemental and
chemical compositions and to a lesser extent physical or thermodynamic
properties of solids and liquids based on their mid— or near—infrared
spectra.  These methods involve: [1] the collection of mid— or
near—infrared spectra of a set of representative samples; [2] mathematical
treatment of the spectral data to extract the Principal Components or
latent variables (e.g. the correlated absorbance signals described above);
and [3] regression of these spectral variables against composition and/or
property data to build a multivariate model. The analysis of new
samples then involves the collection of their spectra, the decomposition of
the spectra in terms of the spectral variables, and the application of the
regression equation to calculate the composition/properties.

The mathematical/statistical treatment of spectral data using
PCR or PLS does not differentiate among possible sources of signals
which are correlated in the frequency domain. In particular, PCR and
PLS do not differentiate between signals arising from variations in sample
components and signals arising from variations in the spectral
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measurement process. For mid— and near—infrared spectra, common
measurement process signals include, but are not limited to, variations in
the spectral baseline due to changes in instrument performance or changes
in cell window transmittance, and signals due to water vapor and/or
carbon dioxide in the spectrometer light path. These measurement
process signals can contribute to the Principal Components or latent
variables obtained by PCR or PLS, and may be correlated to the
composition/property data during the regression. The resultant
regression model will then be sensitive to variations in these measurement
process variables, and measured compositions or properties can be in
€Iror.

In addition to semsitivity to measurement process signals,
methods based on PCR or PLS do not correct for variations in the overall
scaling of the spectral data. Such scaling variations can result from a
variety of factors including variations in cell pathlength due to
positioning of the cell in the spectrometer, and expansion or contraction
of the cell during use. For situations where the sample flows through the
cell during the measurement, variations in flow can also cause variations
in the scaling of the spectral data which are equivalent in effect to
variations in pathlength. PCR and PLS models require that spectral data
be scaled to a specified pathlength prior to analysis, thus requiring that
the pathlength be separately measured. The separate measurement of the
cell pathlength prior to the use of the cell in collection of the sample
spectrum is not convenient or in some cases (e.g. for an on—line flow cell)
not possible, nor does such separate measurement necessarily account for
the sources of variation mentioned above. Errors in the measured
pathlength produce proportional errors in the composition/property data
estimated by PCR and PLS models.

SUMMARY OF THE INVENTION

The present invention addresses in particular the problem of how
to correct the measured spectral data of the calibration samples so that
the data is substantially insensitive to measurement process signals. In
general, the invention also seeks to provide a generally improved method
which estimates unknown property and/or compositional data of a sample
under consideration but which is essentially insensitive to spectral data
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due to the measurement process itself. It also addresses the problem’ of
scaling variations, referred to in the preceding paragraph.

Therefore, the invention relates, in its broadest aspect, to a
method of correcting spectral data of a number of samples for the effects
of data arising from the measurement process itself (rather than from the
sample components), but it finds particular application to estimating
unknown property and/or composition data of a sample where the
estimation includes steps to effect the aforesaid correction for the
measurement process spectral data. The spectral data for n calibration
samples is quantified at f discrete frequencies to produce a matrix X (of
dimension f by n) of calibration data. The first step in the method
_involves producing a correction matrix Uy of dimension f by m
comprising m digitized correction spectra at the discrete frequencies f, the
correction spectra simulating data arising from the measurement process
itself. The other step involves orthoganalizing X with respect to Uy to
produce a corrected spectra matrix X, whose spectra are orthogonal to all
the spectra in Uy. Due to this orthogonality, the spectra in matrix X
are statistically independent of spectra arising from the measurement
process itself. If (as would normally be the case) the samples are
calibration samples used to build a predictive model interrelating known
property and composition data of the n samples and their measured
spectra so that the model can be used to estimate unknown property
and/or composition data of a sample under consideration from its
measured spectrum, the estimated property and/or composition data will
be unaffected by the measurement process itself. In particular, neither
baseline variations nor spectra due for example to water vapor or carbon
dioxide vapor in the atmosphere of the spectrometer will introduce any
error into the estimates. Although the samples used to produce the
spectral data forming the matrix X will usually be calibration samples
and the description of the preferred embodiment relates to correcting
spectral data of calibration samples for the effects of data arising from
the measurement process itself for developing a predictive model, the
steps of the data correction method could be used on spectra for a
spectral library, with the objective of performing spectral library
searching for sample identification using the corrected spectra as reference
spectra. It is also remarked that the spectra can be absorption spectra
and the preferred embodiments described below all involve measuring

PCT/US91/07578
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absorption spectra. However, this is to be considered as exemplary and
not limiting on the scope of the invention as defined by the appended
claims, since the method disclosed herein can be applied to other types of
spectra such as reflection spectra and scattering spectra (such as Raman
scattering). Although the description given herein and with reference to
the drawings relate to NIR (near—infrared) and MIR (mid—infrared),
nevertheless, it will be understood that the method finds applications in
other spectral measurement wavelength ranges including, for example,
ultraviolet, visible spectroscopy and Nuclear Magnetic Resonance (NMR)
spectroscopy.

Generally, the data arising from the measurement process itself
are due to two effects. The first is due to baseline variations in the
spectra. The baseline variations arise from a number of causes such as
light source temperature variations during the measurement, reflectance,
scattering or absorption by the cell windows, and changes in the
temperature (and thus the sensitivity) of the instrument detector. These
baseline variations generally exhibit spectral features which are broad
(correlate over a wide frequency range). The second type of measurement
process signal is due to ex—sample chemical compounds present during
the measurement process, which give rise to sharper line features in the
spectrum. For current applications, this type of correction generally
includes absorptions due to water vapor and/or carbon dioxide in the
atmosphere in the spectrometer. Absorptions due to hydroxyl groups in
optical fibers could also be treated in this fashion. Corrections for
contaminants present in the samples can also be made, but generally only
in cases where the concentration of the contaminant is sufficiently low as
to not significantly dilute the concentrations of the sample components,
and where no significant interactions between the contaminant and
sample component occurs. It is important to recognize that these
corrections are for signals that are not due to components in the sample.
In this context, "sample" refers to that material upon which property
and/or component concentration measurements are conducted for the
purpose of providing data for the model development. By "contaminant,"
we refer to any material which is physically added to the sample after the
property/component measurement but before or during the spectral
measurement.
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The present inventive method can be applied to correct only for
the effect of baseline variations, in which case these variations can be
modeled by a set of preferably orthogonal, frequency (or wavelength)
dependent polynomials which form the matrix U, of dimension f by m
where m is the order of the polynomials and the columns of U, are
preferably orthogonal polynomials, such as Legendre polynomials.
Alternatively the inventive method can be applied to correct only for the
effect of ex—sample chemical compounds (e.g. due to the presence in the
atmosphere of carbon dioxide and/or water vapor). In this case, the
spectra that form the columns of U, are preferably orthogonal vectors
that are representative of the spectral interferences produced by such
chemical compounds. It is preferred, however, that both baseline
variations and ex—sample chemical compounds are modeled in the
manner described to form two correction matrices Up of dimension fby p
and X, respectively. These matrices are then combined into the single
matrix Us, whose columns are the columns of Up and X; arranged
side—by—side.

In a preferred way of performing the invention, in addition to
matrix X of spectral data being orthogonalized relative to the correction
matrix Uy, the spectra or columns of U, are all mutually orthogonal.
The production of the matrix U, having mutually orthogonal spectra or
columns can be achieved by firstly modeling the baseline variations by a
set of orthogonal frequency (or wavelength) dependent polynomials which
are computer generated simulations of the baseline variations and form
the matrix Up, and then at least one, and usually a plurality, of spectra
of ex—sample chemical compounds (e.g. carbon dioxide and water vapor)
which are actual spectra collected on the instrument, are supplied to form
the matrix X5 Next the columns of X, are orthogonalized with respect
to Up to form a new matrix Xg’. This removes baseline effects from
ex—sample chemical compound corrections. Then, the columns of Xg’ are
orthogonalized with respect to one another to form a new matrix Us, and
lastly Up and Us are combined to form the correction matrix Ua, whose
columns are the columns of Up, and Uy arranged side—by—side. It would
be possible to change the order of the steps such that firstly the columns
of Xy are orthogonalized to form a new matrix of vectors and then the
(mutually orthogonal) polynomials forming the matrix Up are
orthogonalized relative to these vectors and then combined with them to
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form the correction matrix Us. However, this is less preferred because it
defeats the advantage of generating the polynomials as being orthogonal
in the first place, and it will also mix the baseline variations in with the
spectral variations due to ex—sample chemical compounds and make them
less useful as diagnostics of instrument performance.

In a real situation, the sample spectral data in the matrix X will
include not only spectral data due to the measurement process itself but
also data due to noise. Therefore, once the matrix X (dimension f by n)
has been orthogonalized with respect to the correction matrix U
(dimension f by m), the resulting corrected spectral matrix X will still
contain noise data. This can be removed in the following way. Firstly, a
singular value decomposition is performed on matrix X, in the form X =
UXVt, where U is a matrix of dimension fby n and contains the principal
component spectra as columns, ¥ is a diagonal matrix of dimension n by
n and contains the singular values, and V is a matrix of dimension n by n
and contains the principal component scores, V¢ being the transpose of V.
In general, the principal components that correspond to noise in the
spectral measurements in the original n samples will have singular values
which are small in magnitude relative to those due to the wanted spectral
data, and can therefore be distinguished from the principal components
due to real sample components. Accordingly, the next step in the
method involves removing from U, ¥ and V the k+1 through n principal
components that correspond to the noise, to form the new matrices U,
Y%’ and V’ of dimensions fby %, k by k and n by £, respectively. When
these matrices are multiplied together, the resulting matrix, corresponding
with the earlier corrected spectra matrix X, is free of spectral data due
to noise.

For the selection of the number (k) of principal components to
keep in the model, a variety of statistical tests suggested in the literature
could be used but the following steps have been found to give the best
results. Generally, the spectral noise level is known from experience with
the instrument. From a visual inspection of the eigenspectra (the
columns of matrix U resulting from the singular value decomposition), a
trained spectroscopist can generally recognize when the signal levels in
the eigenspectra are comparable with the noise level. By visual
inspection of the eigenspectra, an approximate number of terms, k, to
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retain can be selected. Models can then be built with, for example, k2,
k=1, k k+1, k+2 terms in them and the standard errors and PRESS
(Predictive Residual Error Sum of Squares) values are inspected. The
smallest number of terms needed to obtain the desired precision in the
model or the number of terms that give the minimum PRESS value is
then selected. This choice is made by the spectroscopist, and is not
automated. A Predicted Residual Error Sum of Squares is calculated by
applying a predictive model for the estimation of property and/or
component values for a test set of samples which were not used in the
calibration but for which the true value of the property or component
concentration is known. The difference between the estimated and true
values is squared, and summed for all the samples in the test set (the
square root of the quotient of the sum of squares and the number of test
samples is sometimes calculated to express the PRESS value on a per
sample basis). A PRESS value can be calculated using a cross validation
procedure in which one or more of the calibration samples are left out of
the data matrix during the calibration, and then analyzed with the
resultant model, and the procedure is repeated until each sample has been
left out once.

The polynomials that are used to model background variations
are merely one type of correction spectrum. The difference between the
polynomials and the other "correction spectra" modeling ex—sample
chemical compounds is twofold. First, the polynomials may conveniently
be computer—generated simulations of the background (although this is
not essential and they could instead be simple mathematical expressions
or even actual spectra of background variations) and can be generated by
the computer to be orthogonal. The polynomials may be Legendre
polynomials which are used in the actual implementation of the correction
method since they save computation time. There is a well-known
recursive algorithm to genmerate the Legendre polynomials (see, for
example, G. Arfken, Mathematical Methods for Physicists, Academic
Press, New York, N.Y., 1971, Chapter 12). Generally, each row of the
Up matrix corresponds to a given frequency (or wavelength) in the
spectrum. The columns of the Up matrix will be related to this
frequency. The elements of the first column would be a constant, the
elements of the second column would depend linearly on the frequency,
the elements of the third column would depend on the square of the
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frequency, etc. The exact relationship is somewhat more complicated
than that if the columns are to be orthogonal. The Legendre polynomials
are generated to be orthonormal, so that it is not necessary to effect a
singular value decomposition or a Gram—Schmidt orthogonalization to
make them orthogonal. Alternatively, any set of suitable polynomial
terms could be used, which are then orthogonalized using singular value
decomposition or a Gram—Schmidt orthogonalization.  Alternatively,
actual spectra collected on the instrument to simulate background
variation can be used and orthogonalized via one of these procedures.
The other "correction spectra" are usually actual spectra collected on the
instrument to simulate interferences due to ex—sample chemical
compounds, e.g. the spectrum of water vapor, the spectrum of carbon
dioxide vapor, or the spectrum of the optical fiber of the instrument.
Computer generated spectra could be used here if the spectra of water
vapor, carbon dioxide, etc. can be simulated. The other difference for the
implementation of the correction method is that these "correction
spectra" are not orthogonal initially, and therefore it is preferred that
they be orthogonalized as part of the procedure. The polynomials and
the ex—sample chemical compound "correction spectra" could be
combined into one matrix, and orthogonalized in one step to produce the
correction vectors. In practice, however, this is not the best procedure,
since the results would be sensitive to the scaling of the polynomials
relative to the ex—sample chemical compound "correction spectra". If
the ex—sample chemical compound "correction spectra" are collected
spectra, they will include some noise. If the scaling on the polynomials is
too small, the contribution of the noise in these "correction spectra" to
the total variance in the correction matrix U, would be larger than that
of the polynomials, and noise vectors would end up being included in the
ex—sample chemical compound correction vectors. To avoid this,
preferably the polynomials are generated first, the ex—sample chemical
compound "correction spectra" are orthogonalized to the polynomials, and
then the correction vectors are generated by performing a singular value
decomposition (described below) on the orthogonalized "correction
spectra".

As indicated above, a preferred way of performing the correction
for measurement process spectral data is firstly to generate the orthogonal
set¢ of polynomials which model background wvariations, then to
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orthoganalize any "correction spectra" due to ex—sample chemical
compounds (e.g. carbon dioxide and/or water vapor) to this set to
produce a set of "correction vectors", and finally to orthogonalize the
resultant "correction vectors" among themselves using singular value
decomposition. If multiple examples of "correction spectra", e.g. several
spectra of water vapor, are used, the final number of "correction vectors"
will be less than the number of initial "correction spectra". The ones
eliminated correspond with the measurement noise. Essentially, principal
components analysis (PCA) is being performed on the orthogonalized
"correction spectra" to separate the real measurement process data being
modeled from the random measurement noise.

It is remarked that the columns of the correction matrix Ug do
not have to be mutually orthogonal for the correction method to work, as
long as the columns of the data matrix X are orthogonalized to those of
the correction matrix Us,. However, the steps for generating the Uy
matrix to have orthogonal columns is performed to simplify the
computations required in the orthogonalization of the spectral data X of
the samples relative to the correction matrix U, and to provide a set of
statistically independent correction terms that can be used to monitor the
measurement process. By initially orthogonalizing the correction spectra
Xs due to ex—sample chemical compounds to Up which models
background variations, any background contribution to the resulting
correction spectra is removed prior to the orthogonalization of these
correction spectra among themselves. This procedure effectively achieves
a separation of the effects of background variations from those of
ex—sample chemical compound variations, allowing these corrections to be
used as quality control features in monitoring the performance of an
instrument during the measurement of spectra of unknown materials, as
will be discussed hereinbelow.

When applying the technique for correcting for the effects of
measurement process spectral data in the development of a method of
estimating unknown property and/or composition data of a sample under
consideration, the following steps are performed. Firstly, respective
spectra of 7 calibration samples are collected, the spectra being quantified
at f discrete frequencies (or wavelengths) and forming a matrix X of
dimension f by n. Then, in the manner described above, a correction
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matrix Un of dimension f by m is produced. This matrix comprises m
digitized correction spectra at the discrete frequencies f the correction
spectra simulating data arising from the measurement process itself. The
next step is to orthogonalize X with respect to Ua to produce a corrected
spectra matrix X. whose spectra are each orthogonal to all the spectra in
Ua. The method further requires that ¢ property and/or composition
data are collected for each of the n calibration samples to form a matrix
Y of dimension 7 by ¢ (¢ > 1). Then, a predictive model is determined
correlating the elements of matrix Y to matrix X Different predictive
models can be used, as will be explained below. The property and/or
composition estimating method further requires measuring the spectrum
of the sample under consideration at the f discrete frequencies to form a
~ matrix of dimension fby 1. The unknown property and/or composition
data of the samples is then estimated from its measured spectrum using
the predictive model. Generally, each property and/or component is
treated separately for building models and produces a separate f by 1
prediction vector. The prediction is just the dot product of the unknown
spectrum and the prediction vector. By combining all the prediction
vectors into a matrix P of dimension f by ¢, the prediction involves
multiplying the spectrum matrix (a vector of dimension f can be '
considered as a 1 by fmatrix) by the prediction matrix to produce a 1 by
¢ vector of predictions for the ¢ properties and components.

As mentioned in the preceding paragraph, various forms of
predictive model are possible. The predictive model can be determined
from a mathematical solution to the equation Y = XtP + E, where X} is
the transpose of the corrected spectra matrix X, P is the predictive
matrix of dimension fby ¢, and E is a matrix of residual errors from the
model and is of dimension n by ¢. The validity of the equation Y = X{P
+ E follows from the inverse statement of Beer’s law, which itself can be
expressed in the form that the radiation—absorbance of a sample is
proportional to the optical pathlength through the sample and the
concentration of the radiation—absorbing species in that sample. Then,
for determining the vector y, of dimension 1 by c¢ containing the
estimates of the ¢ property and/or composition data for the sample under
consideration, the spectrum x, of the sample under consideration, xy
being of dimension f by 1, is measured and yy is determined from the
relationship yy = x{P, x} being the transpose of matrix xy.
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Although, in a preferred implementation of this invention, the
equation Y = XtP + E is solved to determine the predictive model, the
invention could also be used in developing models where the equation is
represented (by essentially the statement of Beer's law) as X = AYt +
E, where A is an fby c matrix. In this case, the matrix A would first be
estimated as A = X Y(YtY)t. The estimation of the vector yy of
dimension 1 by ¢ containing the ¢ property and/or composition data for
the sample under consideration from the spectrum x, of the sample under
consideration would then involve using the relationship y, = xzA(AtA)-L
This calculation, which is a constrained form of the K—matrix method, is
more restricted in application, since the required inversion of YtY
requires that Y contain concentration values for all sample components,
and not contain property data.

The mathematical solution to the equation Y = XtP + E (or X,
= AYt + E) can be obtaired by any one of a number of mathematical
techniques which are known per se, such as linear least squares regression,
sometimes otherwise known as multiple linear regression (MLR), principal
components analysis/regression (PCA/PCR) and partial least squares
(PLS). As mentioned above, an introduction to these mathematical
techniques is given in "An Introduction to Multivariate Calibration and
Analysis", Analytical Chemistry, Vol. 59, No. 17, September 1, 1987,
Pages 1007 to 1017.

The purpose of generating correction matrix Us and in
orthogonalizing the spectral data matrix X to U, is twofold: Firstly,
predictive models based on the resultant corrected data matrix X are
insensitive to the effects of background variations and ex—sample
chemical components modeled in U,, as explained above. Secondly, the
dot (scalar) products generated between the columns of U, and those of
X contain information about the magnitude of the background and
ex—sample chemical component interferences that are present in the
calibration spectra, and as such, provide a measure of the range of values
for the magnitude of these interferences that were present during the
collection of the calibration spectral data. During the analysis of a
spectrum of a material having unknown properties and/or composition,
similar dot products can be formed between the unknown spectrum, xy,
and the columns of U, and these values can be compared with those
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obtained during the calibration as a means of checking that the
measurement process has not changed significantly between the time the
calibration is accomplished and the time the productive model is applied
for the estimation of properties and components for the sample under
test. These dot products thus provide a means of performing a quality
control assessment on the measurement process.

The dot products of the columns of U, with those of the spectral
data matrix X contain information about the degree to which the
measurement process data contribute to the individual calibration spectra.
This information is generally mixed with information about the
calibration sample components. For example, the dot product of a
constant vector (a first order polynomial) with a spectrum, will contain
information about the total spectral integral, which is the sum of the
integral of the sample absorptions, and the integral of the background.
The information about calibration sample components is, however, also
contained in the eigenspectra produced by the singular value
decomposition of X¢. It is therefore possible to remove that portion of
the information which is correlated to the sample components from the
dot products so as to recover values that are uncorrelated to the sample
components, i.e. values that represent the true magnitude of the
contributions of the measurement process signals to the calibration
spectra. This is accomplished by the following steps:

(1) A matrix Vu of dimension n by m is formed as the product of
XtUy, the individual elements of V, being the dot products of
the columns of X with those of Uy;

(2) The corrected data matrix X¢ is formed, and its singular value
decomposition is computed as ULV

(3) A regression of the form Vu = VZ + R is calculated to establish
the correlation between the dot products and the scores of the
principal components: VZ represents the portion of the dot
products which is correlated to the sample components and the
regression residuals R represent the portion of the dot products
that are uncorrelated to the sample components, which are in
fact the measurement process signals for the calibration samples;

(4) In the analysis of a sample under test, the dot products of the
unknown spectrum with each of the correction spectra (columns
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of Uy) are calculated to form a vector va, the corrected spectrum
xc is calculated, the scores for the corrected spectrum are
calculated as v = xtUX, and the uncorrelated measurement
process signal values are calculated as r = va — v4. The
magnitude of these values is then compared to the ramge of
values in R as a means of comparing the measurement process
during the analysis of the unknown to that during the
calibration.

It will be appreciated that the performance of the above disclosed
correction method and method of estimating the unknown property
and/or composition data of the sample under consideration involves
extensive mathematical computations to be performed. In practice, such
computations would be made by computer means comprising a computer
or computers, which would be connected to the instrument in a
measurement mode so as to receive the measured output spectrum of the
calibration sample, ex—sample chemical compound or test sample. In a
correction mode in conjunction with the operator, the computer means
stores the calibration spectra to form the matrix X, calculates the
correction matrix Uy, and orthogonalizes X with respect to the correction
matrix Uy. In addition, the computers means operates in a storing mode
to store the ¢ known property and/or composition data for the n
calibration samples to form the matrix Y of dimension n by ¢ (¢ 2 1). In
a model building mode, the computer means determines, in conjunction
with the operator, a predictive model correlating the elements of matrix
Y to those of matrix X;. Lastly, the computer means is arranged to
operate in a prediction mode in which it estimates the unknown property
and/or compositional data of the sample under consideration from its
measured spectrum using the determined predictive model correlating the
elements of matrix Y to those of matrix X.

In more detail, the steps involved according to a preferred way of
making a prediction of property and/or composition data of a sample
under consideration can be set out as follows. Firstly, a selection of
samples for the calibrating is made by the operator or a laboratory
technician. Then, in either order, the spectra and properties/composition
of these samples need to be measured, collected and stored in the
computer means by the operator 'a.nd/or laboratory technician, together
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with spectra of ex—sample chemical compounds to be used as corrections.
In addition, the operator selects the computer—generated polynomial
correction used to model baseline variations. The computer means
generates the correction matrix U, and then orthogonalizes the
calibration sample spectra (matrix X) to produce the corrected spectra
matrix X¢ and, if PCR is used, performs the singular value decomposition
on matrix Xc. The operator has to select (in PCR) how many of the
principal components to retain as correlated data and how many to
discard as representative of (uncorrelated) noise. Alternatively, if the
PLS technique is employed, the operator has to select the number of
latent variables to use. If MLR is used to determine the correlation
between the corrected spectra matrix X and the measured property
and/or composition data Y, then a selection of frequencies needs to be
made such that the number of frequencies at which the measured spectra
are quantized is less than the number of calibration samples. Whichever
technique is used to determine the correlation (i.e. the predictive model)
interrelating X; and Y, having completed the calibration, the laboratory
technician measures the spectrum of the sample under consideration
which is used by the computer means to compute predicted property
and/or composition data based on the predictive model.

These and other features and advantages of the invention will
now be described, by way of example, with reference to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1 to 5 are scattergrams of different property and
composition data when determined by conventional techniques plotted
against the same data determined by the spectroscopic method disclosed
herein;

Figures 6 to 10 show various graphical depictions and spectra
relating to binary blends of isooctane and heptane;

Figures 11 to 17 show various graphical depictions and
eigenspectra relating to the analysis of a 5—component additive package
and to a comparison with the K Matrix Method;
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Figures 18 to 21 relate to an example demonstrating how
constrained spectral analysis can be used to remove measurement process
signals in a real application.

Figures 22 and 23 illustrate the effect of correction for water
vapor and chioroform, respectively, for isooctane/heptane spectra and for
the additive package of Example 9, respectively.

An algorithm, termed The Constrained Principal Spectra
Analysis (CPSA), is described hereinbelow, and it’s application to
multivariate, spectral analysis is demonstrated. @ CPSA is a novel
modification of Principal Components Analysis (PCA) which allows the
spectroscopist to input his knowledge of the spectral measurement process
into the development of spectral based multivariate models so as to
maximize the stability and robustness of these models for the subsequent
measurement of property and composition data for unknowns. CPSA
allows signals in the calibration spectra which are due to the spectral
measurement process rather than the sample components to be modeled
such that the resultant predictive models can be constrained to be
insensitive to these measurement process signals. The measurement
process variables for which constraints are developed also server as
quality control variables for monitoring the status of the measurement
process during the subsequent application of the model for measurement
of unknowns.

A corresponding modification can also be made to the PLS and
MLR techniques, which, as explained above, are alternatives to PCA (or
PCR). The respective modifications will be referred to herein as
Consirained Partial Least Squares (CPLS), and Constrained Multiple
Linear Regression (CMLS). Generically, CPSA, CPLS and CMLR will be
referred to as Constrained Spectral Analysis (CSA).

The mid— and near—infrared spectra of a molecule consist of
numerous absorption bands corresponding to different types of molecular
vibrations. In a complex mixture, the absorptions due to a specific
molecular type will all vary together in intensity as the concentration of
the species changes. The fact that the intensities of these multiple
absorptions are correlated in the frequency (wavelength) domain allows
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them to be distinguished for random noise that is uncorrelated in the
frequency domain. Multivariate data analysis methods such as Principal
Components Analysis or Partial Least Squares are used to identify and
isolate the frequency correlated signals among a series of calibration
spectra. These spectral variables can be regressed against properties and
component concentration data for the calibration samples to develop a
predictive model. During the analysis of unknowns, the spectra are
decomposed in terms of these same spectral variables, and regression
relationships are used to predict the property/composition of the new
samples.

In all real spectral measurements, the variation in sample
component concentrations is generally not the only source of frequency
correlated signal. Signals arising from the measurement process (e.g. the
instrument, the cell, etc.) are superimposed on the absorptions due to the
sample components. To the mathematics, these measurement process
signals are indistinguishable from the sample component absorptions, and
are thus extracted as spectral variables. If these measurement process
variables are correlated to the property/concentration (or errors in these
values) during the regression, predictions based on the resultant model
will be dependent on variations in the measurement process. CPSA
allows the spectroscopist to model potential sources of measurement
process signals and remove them as spectral variables prior to the
regression.  The resultant predictive models are constrained to be
insensitive to the measurement process signals, and are thus more stable
and robust to variations in the spectral data collection.

Examples included in this report demonstrate the use of CPSA
for developing predictive models, and compare the CPSA results to those
obtained via other multivariate methods.

Introduction

Principal Components Regression and Partial Least Squares
multivariate data analyses are used to correlate the molecular information
inherent to spectral data to property and compositional variables. Both
PCR and PLS are most often applied to under—determined calibrations,
i.e. to calibrations where the number of data points per spectrum exceeds
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the number of calibration samples. Therefore, both methods require a
variable reduction which reduces the dimensionality of the spectral data.
While the algorithms used to extract the Principal Components and PLS
latent variables differ in computational methodology, both are based on
an assumption that there are only two sources of variance in the spectral
data. Real components are assumed to give rise to multiple signals whose
intensities are linearly correlated in the frequency (or wavelength)
domain. Random spectral noise is assumed to be uncorrelated in the
frequency domain. The algorithms are designed to isolate the signals that
are correlated from the random noise so as to produce spectral variables
that can be regressed against concentration and/or property data to
produce a predictive model. If the signals due to sample components
were the only source of frequency correlated signal in the spectral data,
both computational methods would yield stable, robust predictive models
which could be used for the subsequent analysis of unknown materials.
Unfortunately, in all real spectral measurements, there are additional
sources of signals whose intensities are linearly correlated in the frequency
domain, which contribute to the total spectral variance, and which are
associated with the measurement process rather than the samples. For
mid—infrared spectroscopy, examples of the measurement process signals
would include reflectance/scattering loses from cell windows, and spectral
interferences due to trace water and carbon dioxide in the spectrometer
purge gas. If these measurement related signals were constant, they
would have no effect on the predictive models. However, since these
measurement process signals are themselves subject to variation among
real spectra, they are, to the mathematics, indistinguishable from the
sample component signals, they can be extracted along with the sample
component variations during the variable reduction, and they may be
correlated to the properties or component concentrations (or to errors in
these dependent values) in the generation of the predictive model. The
resultant model will then not be stable and robust with respect to
changes in the measurement process related signals.

Spectral preprocessing is used to minimize the effect of

measurement related variance on multivariate models. Baseline
correction algorithms are an example of commonly employed
preprocessing. Data points at which minimal sample component

intensity is expected are selected and fit to a "baseline function" (a
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constant offset, or frequency dependent polynomial). The "baseline" is
subtracted from the spectrum prior to the multivariate calibration or
analysis.  Spectral subtraction algorithms are also be employed in
preprocessing, for the removal of some types of spectral interferences (e.g.
water vapor). The objective of the preprocessing is to remove the
measurement process related signals from the spectral data prior to the
variable reduction. There are several disadvantages to the preprocessing
methods that are typically employed for spectral analysis.

(1) The calculations used in preprocessing the spectral data are
generally based on a selected subset of the spectral data (e.g. a
single point offset correction, or a two point linear baseline
correction), and are sensitive t0 the noise characteristics of the
points used for the correction. Depending on the relative
magnitudes of the noise and the signal being removed, the
preprocessing may be ineffective in removing the measurement
process signals, or may only substitute one source of variation
(correlatzd to the spectral noise) for another (the signal being
subtracted).

(2) For some types of signals (e.g. spectral interferences which are
not well resolved from sample signals, or higher order background
terms), effective, reproducible preprocessing algorithms are
difficult to develop.

(3) The spectral variables which are removed by the preprocessing
step are not orthogonal to the variables (Principal Components)
defined by the multivariate analysis. The lack of orthogonality
makes it difficult to statistically define the effects of the
preprocessing on the resultant model.

(4) Since by definition, the preprocessing is applied before the
multivariate analysis, the preprocessing algorithms are not
generally included as an integral part of most multivariate
programs. The user is thus left with the job of developing and
implementing his own preprocessing algorithms and integrating
them with the multivariate analysis programs. Since different
algorithms can be required to handle different types of
measurement process signals, and since the variables that are
removed by each algorithm are not orthogonal, the ultimate
effect of the preprocessing on the stability and robustness of the
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predictive model become increasingly difficult to determine.

The purpose of this description is to describe an algorithm which
is designed to incorporate preprocessing as an integral part of the
multivariate analysis. The Constrained Principal Spectra Analysis
(CPSA) algorithm allows the user to model (e.g. provide an example
spectrum of) potential sources of measurement related signals. The
algorithm generates a set of orthonormal correction variables (spectra)
which are removed from the spectral data prior to the multivariate
variable reduction. The multivariate predictive model generated in this
manner is constrained so as to be insensitive (orthogonal) to the presence
of these measurement process signals in the spectral data. Since the
algorithm uses the entire spectral range in generating the constraints, it is
relatively insensitive to spectral noise. The algorithm can correct for
polynomial backgrounds as well as poorly resolved spectral interferences.
Since the "preprocessing” is an integral part of the algorithm, the effects
of including corrections on the resultant predictive model can be readily
tested. Finally, the correction variables defined by the CPSA algorithm
serve a useful quality control variables for monitoring the measurement
process during analysis of unknowns.

Although the Constraint algorithm described here is specifically
applied as a variation of a Principal Components Analysis, the same
methodology could be used to develop a constrained version of the Partial
Least Squares analysis.

Mathematical Basis for CPSA

The object of Principal Components Analysis (PCA) is to isolate
the true number of independent variables in the spectral data so as to
allow for a regression of these variables against the dependent
property/composition variables. The spectral data matrix, X, contains
the spectra of the n samples to be used in the calibration as columns of
length f where f is the number of data points (frequencies or
wavelengths) per spectrum. The object of PCA is to decompose the fby
n X matrix into the product of several matrices. This decomposition can
be accomplished via a Singular Value Decomposition:
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X = UV (1)

where U (the left eigenvector matrix) is of dimension f by n, ¥ (the
diagonal matrix containing the singular values o) is of dimension n by 7,
and Vt is the transpose of V (the right eigenvector matrix) which is of
dimension n by n. Since some versions of PCA perform the Singular
Value Decomposition on the transpose of the data matrix, Xt and
decompose it as VEUY, the use of the terms left and right eigenvectors is
somewhat arbitrary. To avoid confusion, U will be referred to as the
eigenspectrum matrix since the individual column—vectors of U (the
eigenspectra) are of the same length, f as the original calibration spectra.
The term eigenvectors will only be used to refer to the V matrix. The
matrices in the singular value decomposition have the following

properties:
UtU =1, (2)
VVit=VtV = I, (3)
XtX = VAVt and XXt = UAUt (4)

where Iy is the n by 7 identify matrix, and A is the matrix containing
the eigenvalues, A (the squares of the singular values), on the diagonal
and zeros off the diagonal. Note that the product UUt does not yield an
identity matrix for n less than f Equations 2 and 3 imply that both the
eigenspectra and eigenvectors are orthonormal. In some version of PCA,
the U and ¥ are matrices are combined into a single matrix. In this case,
the eigenspectra are orthogonal but are normalized to the singular values.

The object of the variable reduction is to provide a set of
independent variables (the Principal Components) against which the
dependent variables (the properties or compositions) can be regressed.
The basic regression equation for direct calibration is

Y = XtP (5)

where Y is the n by ¢ matrix containing the property/composition data
for the n samples and ¢ properties/components, and P is the f by ¢
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matrix of regression coefficients which relate the property/composition
data to the spectral data. We will refer to the ¢ columns of P as
prediction vectors, since during the analysis of a spectrum x (dimension f
by 1), the prediction of the properties/components (y of dimension 1 by
¢) for the sample is obtained by

y=xP (6)

Note that for a single property/component, the prediction is obtained as
the dot product of the spectrum of the unknown and the prediction
vector. The solution to equation 5 is

[X{-1Y = [XY-XtP = P (7)

where [Xt]-t is the inverse of the Xt matrix. The matrix Xt is of course
non—square and rank deficient (f>=z), and cannot be directly inverted.
Using the singular value decompositions, however, the inverse can be
approximated as

[XY]-t = UB-1Vt (8)

where X1 is the inverse of the square singular value matrix and contains
1/o on the diagonal. Using equations 7 and 8, the prediction vector
matrix becomes

P = USIVtY (9)

As was noted previously, the objective of the PCA is to separate
systematic (frequency correlated) signal from random noise.  The
eigenspectra corresponding to the larger singular values represent the
systematic signal, while those corresponding to the smaller singular values
represent the noise. In general, in developing a stable model, these noise
components will be eliminated from the analysis before the prediction
vectors are calculated. If the first k<n eigenspectra are retained, the
matrices in equation 1 become U’ (dimension fby k), ¥’ (dimension & by
k) and V’ (dimension 7 by k).

X=USV't+E (10)
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where E is an f by n error matrix. Ideally, if all the variations in the
data due to sample components are accounted for in the first &
eigenspectra, E contains only random noise. It should be noted that the
product V/V“¢ no longer yields an identity matrix. To simplify notation
the / will be dropped, and U,Y and V will henceforth refer to the rank
reduced matrices. The choice of k, the number of eigenspectra to be used
in the calibration, is based on statistical tests and some prior knowledge
of the spectral noise level.

Although the prediction of a property/component requires only a
single prediction vector, the calculation of uncertainties on the prediction
require the full rank reduced V matrix. In practice, a two step, indirect
calibration method is employed in which the singular value decomposition
of the X matrix is calculated (equation 1), and then the
properties/compositions are separately regressed against the eigenvectors

Y=VB+E (11)
B = Vty (12)

During the analysis, the eigenvector for the unknown spectrum is
obtained

v = xtU¥-t (13)
and the predictions are made as
y=vB (14)

The indirect method is mathematically equivalent to the direct method of
equation 10, but readily provides the values needed for estimating
uncertainties on the prediction.

Equation 6 shows how the prediction vector, P, is used in the
analysis of an unknmown spectrum. We assume that the unknown
spectrum can be separated as the sum of two terms, the spectrum due to
the components in the unknown, x;, and the measurement process related
signals for which we want to develop constraints, xs, The prediction then
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becomes

y = xtP = x;tP 4+ x5tP (15)

If the prediction is to be insensitive to the measurement process signals,
the second term in equation 15 must be zero. This implies that the
prediction vector must be orthogonal to the measurement process signal
spectra. From equation 10, the prediction vector is a linear combination
of the eigenspectra, which in turn are themselves linear combination of
the original calibration spectra (U = XV¥-t). If the original calibration
spectra are all orthogonalized to a specific measurement process signal,
the resulting prediction vector will also be orthogonal, and the prediction
will be insensitive to the measurement process signal. This
orthogonalization procedure serves as the basis for the Constrained
Principal Spectra Analysis algorithm.

In the Constrained Principal Spectra Analysis (CPSA) program,
two types of measurement process signals are considered. The program
internally generates a set of orthonormal, frequency dependent
polynomials, Up. Up is a matrix of dimension f by p where p is the
maximum order (degree minus one) of the polynomials, and it contains
columns which are orthonormal Legendre polynomials defined over the
spectral range used in the analysis. @ The polynomials are intended to
provide constraints for spectral baseline effects. In addition, the user
may supply spectra representative of other measurement process signals
(e.g. water vapor spectra). These correction spectra (a matrix Xs of
dimension fby s where s is the number of correction spectra) which may
include multiple examples of a specific type of measurement process
signal, are first orthogonalized relative to the polynomials via a
Gram—Schmidt orthogonalization procedure

XS’ = Xs - Up(Uths) (16)

A Singular Value Decomposition of the resultant correction spectra is
then performed,

Xg’ = UZeVit (17)
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to generate a set of orthonormal correction eigenspectra, Us. The user
selects the first s’ terms corresponding to the number of measurement
related signals being modeled, and generates the full set of correction
terms, Ua, which includes both the polynomials and selected correction
eigenspectra.  These correction terms are then removed from the
calibration data, again wusing a Gram—Schmidt orthogonalization
procedure

X; = X — Un(UatX) (17)

The Principal Components Analysis of the corrected spectra, Xc, then
proceeds via the Singular Value Decomposition

Xe = UVt (18)
and the predictive model is developed using the regression

Y=VB (19)
The resultant prediction vector

Pe = UglctVtY (20)

is orthogonal to the polynomial and correction eigenspectra, Up. The
resulting predictive model is thus insensitive to the modeled measurement
process signals. In the analysis of an unknown, the contributions of the
measurement process signals to the spectrum can be calculated as

Va = Y TUutx (21)

and these values can be compared against the values for the calibration,
Va, to provide diagnostic as to whether the measurement process has
changed relative to the calibration.

The results of the procedure described above are mathematically
equivalent to including the polynomial and correction terms as spectra in
the data matrix, and using a constrained least square regression to
calculate the B matrix in equation 12. The co:strained least square



WO 92/07275 PCT/US91/07578

26
procedure is more sensitive to the scaling of the correction spectra since
they must account for sufficient variance in the data matrix to be sorted
into the k eigemspectra that are retained in the regression step. By
orthogonalizing the calibration spectra to the correction spectra before
calculating the singular value decomposition, we eliminate the scaling
sensitivity.

The Constrained Principal Spectra Analysis method allows
measurement process signals which are present in the spectra of the
calibration samples, or might be present in the spectra of samples which
are latter analyzed, to be modeled and removed from the data (via a
Gram—Schmidt orthogonalization procedure) prior to the extraction of
the spectral variables which is performed via a Singular Value
Decomposition (16). The spectral variables thus obtained are first
regressed against the pathlengths for the calibration spectra to develop a
model for independent estimation of pathlength. The spectral variables
are rescaled to a common pathlength based on the results of the
regression and then further regressed against the composition/property
data to build the empirical models for the estimation of these parameters.
During the analysis of new samples, the spectra are collected and
decomposed into the constrained spectral variables, the pathlength is
calculated and the data is scaled to the appropriate pathlength, and then
the regression models are applied to calculate the composition/property
data for the new materials. The orthogonalization procedure ensures that
the resultant measurements are constrained so as to be insensitive
(orthogonal) to the modeled measurement process signals. The internal
pathlength calculation and renormalization automatically corrects for
pathlength or flow variations, thus minimizing errors due to data scaling.

The development of the empirical model consists of the following steps:

(1.1) The properties and/or component concentrations for which empirical
models are to be developed are independently determined for a set of
representative samples, e.g the calibration set.  The independent
measurements are made by standard analytical tests including, but not
limited to: elemental compositional analysis (combustion analysis, X—ray
fluorescence, broad line NMR); component analysis (gas chromatography,
mass spectroscopy); other spectral measurements (IR, UV/visible, NMR,
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color); physical property measurements (API or specific gravity, refractive
index, viscosity or viscosity index); and performance property
measurements (octane number, cetane number, combustibility). For
chemicals applications where the number of sample components is limited,
the compositional data may reflect weights or volumes used in preparing
calibration blends.
(1.2) Absorption spectra of the calibration samples are collected over a
region or regions of the infrared, the data being digitized at discrete
frequencies (or wavelengths) whose separation is less than the width of
the absorption features exhibited by the samples.
(2.0)The Constrained Principal Spectra Analysis (CPSA) algorithm is
applied to generate the empirical model. The algorithm consists of the
following 12 steps:
(2.1) The infrared spectral data for the calibration spectra is loaded into
the columns of a matrix X, which is of dimension f by n where fis the
number of frequencies or wavelengths in the spectra, and n is the number
of calibration samples.
(2.2) Frequency dependent polynomials, Uy, (a matrix whose columns are
orthonormal Legendre polynomials having dimension fby p where p is the
maximum order of the polynomials) are generated to model possible -
variations in the spectral baseline over the spectral range used in the
analysis.
(2.3) Spectra representative of a other types of measurement process
signals (e.g. water vapor specira, carbon dioxide, etc.) are loaded into a
matrix X of dimension fby s where s is the number of correction spectra
used.
(2.4) The correction spectra are orthogonalized relative to the
polynomials via a Gram—Schmidt orthogonalization procedure

XS’ = XS - Up(Upth) (2.4)

(2.5) A Singular Value Decomposition of the correction spectra is then
performed,

Xy’ = UVt (2.5)

to generate a set of orthonormal correction eigenspectra, Us. X5 are the
corresponding singular values, and Vg are the corresponding right
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eigenvectors, t indicating the matrix transpose.
(2.6) The full set of correction terms, Uy = Up+Us, which includes both
the polynomials and correction eigenspectra are then removed from the
calibration data, again using a Gram—Schmidt orthogonalization
procedure

Xe = X — Un(UatX) (2.6)

(2.7) The Singular Value Decomposition of the corrected spectra, X, is
then performed

X = Uc):cht (2-7)
(2.8) The eigenspectra from step (2.7) are examined and the a subset of
the first k eigenspectra which correspond to the larger singular values in

Z; are retained. The k+1 through 7 eigenspectra which correspond to
spectral noise are discarded.

Xe = Ul Vit + By (2.8)

(2.9) The k right eigenvectors from the singular value decomposition, Vi,
are regressed against the pathlength values for the calibration spectra,Yp
(an = by 1 row vector),

where Ep is the regression error. The regression coefficients, Bp, are
calculated as

(2.10) An estimation of the pathlengths for the calibration spectra is
calculated as

Y, = ViB, (2.10)

A n by n diagonal matrix N is then formed, the ith diagonal element of N




WO 92/07275 PCT/US91/07578

29

being the ratio of the average pathlength for the calibration spectra,rip,
divided by the estimated pathlength values for the itk calibration sample

(the ith element of {{p).
(2.11) The right eigenvector matrix is then renormalized as
Vi’ = NVy (2.11)

(2.12) The renormalized matrix is regressed against the properties and or
concentrations, Y (Y, a » by ¢ matrix containing the values for the =
calibration samples and the c¢ property/concentrations) to obtain the
regression coefficients for the models,

Y=Vi'B+E (2.12a)
B = (Vi'tVy') Vi’ Y (2.12b)

(3.0) The analysis of a new sample with unknown properties/components
proceeds by the following steps:

(3.1) The absorption spectrum of the unknown is obtained under the
same conditions used in the collection of the calibration spectra.

(3.2) The absorption spectrum, xy, is decomposed into the conmstrained

variables,
Xy = Uplivyt (3.2a)
Yy = E-IUktXu (3.2b)

(3.3) The pathlength for the unknown spectrum is estimated as

a~

yp = Vqu (3.3)

(3.4) The eigenvector for the unknown is rescaled as

v’ = vu(Tp/7p) (3.4)
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where yyp is the average pathlength for the calibration spectra in (2.10):
(8.5) The properties/concentrations are estimated as

Yu=Vu'B (3.5)

(4.1) The spectral region used in the calibration and analysis may be
limited to subregions so as to avoid intense absorptions which may be
outside the linear response range of the spectrometer, or to avoid regions
of low signal content and high noise.

(5.1) The samples used in the calibration may be restricted by excluding
any samples which are identified as multivariate outliers by statistical
testing.

(6.1) The regression in steps (2.9) and (2.12) may be accomplished via a
step—wise regression (see, for example, W.J. Kennedy and J.E. Gentle,
Statistical Computing, Marcel Dekker, New York, 1980) or PRESS based
variable selection (see, for example, D.M. Allen, Technical Report
Number 23, University of Kentucky Department of Statistics, August
1971), so as to limit the number of variables retained in the empirical
model to a subset of the first k variables, thereby eliminating variables
which do not show statistically significant correlation to the parameters
being estimated.

(7.1) The Mahalanobis statistic for the unknown, Dy2, given by

:Du2 = v“' (Vk’ th')-lv“'t (7.1)

can be used to determine if the estimation is based on an interpolation or
extrapolation of the model by comparing the value for the unknown to
the average of similar values calculated for the calibration samples.

(7.2) The uncertainty on the estimated value can also be estimated based
on the standard error from the regression in (2.12) and the Mahalanobis
statistic calculated for the unknown.

(8.1) In the analysis of an unknown with spectrum xy, the contributions
of the measurement process signals to the spectrum can be calculated as

va = ZaUglxy, (8.1)

These values can be compared against the values for the calibration, Vy,
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to provide diagnostics as to whether the measurement process has
changed relative to the calibration.

EXAMPLES

Examples of the use of the CPSA method described above for the
generation of empirical models are provided for cases illustrating the use
of different portions of the infrared region, and the estimation of
compositions as well as physical and performance properties. These
examples are identified as Examples 1 to 5 below and the results are
illustrated in Figures 1 to 5 respectively. These figures demonstrate the
validity of the present method of estimating property and composition
data.
Example 1 — Estimation of a Component Concentration using
Mid—Infrared:

Parameter estimated

Sample types

Calibration samples measured by
Spectrometer used

Average Pathlength Calibration set
Spectral range used

Excluded subregions

Constraints used

Regression method used

Number of calibration spectra

# eigenspectra used in regressions (k)
# retained in pathlength regression
Standard Error Pathlength Regression
# retained in composition regression
Standard Error composition regression

Weight percent benzene
Powerformates

Gas Chromatography
Mattson Polaris/Icon
500 microns

5000 — 1645 cm™!
3150-2240 cm -t

3 polynomial terms
(quadratic)

Water vapor spectrum
PRESS

7

5

4

1.272 microns

5

0.063 weight percent

A Constrained Principal Components model was constructed for

the estimation of benzene content of powerformates. The spectra of 77
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reference powerformates were collected over the 5000 to 1645 cm-1 regi‘on
using a Mattson Polaris/Icon FT—IR spectrometer operating at 2 cm!
resolution and employing 100 scans for signal averaging. 500 micron
calcium floride cells were employed. To avoid ranges where the sample
absorption was beyond the linear response range of the spectrometer, and
to avoid the need for adding a carbon dioxide correction term to the
model, the data in the 3150—2240 cm-! region were excluded during the
model generation. Benzene contents for the reference samples used in the
calibration were obtained via gas chromatographic analysis. A CPSA
model was developed using 3 polynomial correction terms to account for
possible background variations, and a water vapor correction spectrum to
account for possible purge variations. @A PRESS based step—wise

- regression (see, for example, the above mentioned D.M. Allen reference)
was employed for developing both a pathlength estimation model, and the
benzene content. Of the 5 Constrained Principal Component variable
input into the PRESS regression, 4 were retained for the pathlength
estimation, and all 5 were retained for the benzene estimation. The
standard error for the estimation of the cell pathlength was 1.272
microns, and the standard error for the estimation of the benzene content
was 0.063 weight percent. A plot of the infrared estimated benzene
content versus that measured by GC for the 77 reference samples is
shown in Figure 1.

Example 2 — Physical Property Estimation by Mid—Infrared:

Parameter estimated API Gravity

Sample types Petroleum mid-distillates
Calibration samples measured by ASTM D1298
Spectrometer used Mattson Polaris/Icon
Average Pathlength Calibration set 29.57 microns

Spectral range used ‘ 3650 — 500 cm "t

Excluded subregions 2989-2800 cm Y,

2400-2300 cm -,

1474~1407 cm-t
Constraints used 3 polynomial terms

(quadratic)

Water vapor spectrum
Regression method used PRESS
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Number of calibration spectra 91

# eigenspectra used in regressions (k) 24

# retained for pathlength regression 21

Standard Error Pathlength Regression 0.159 microns

# retained in composition regression 21

Standard Error composition regression 0.660 degrees API

A Constrained Principal Components model was constructed for
the estimation of API Gravity for petroleumm mid—distillates. The
spectra of 91 reference mid—distillates were collected over the 3650 to 500
cm-! region using a Mattson Polaris/Icon FT—IR spectrometer operating
at 2 cm"! resolution and employing 100 scans for signal averaging. 30
micron potassium bromide cells were employed. To avoid ranges where
the sample absorption was beyond the linear response range of the
spectrometer, and to avoid the need for adding a carbon dioxide
correction term to the model, the data in the 2989—2800 cm-!, 2400—2300
cm-! and 1474—1407 cm-! regions was excluded during the model
generation.  API Gravities for the reference samples used in the
calibration were obtained via ASTM D1298. A CPSA model was
developed using 3 polynomial correction terms to account for possible
background variations, and a water vapor correction spectrum to account
for possible purge variations. A PRESS based step—wise regression (see,
for example, the above mentioned D.M. Allen reference) was employed for
developing both a pathlength estimation model, and the API Gravity
model. Of the 24 Constrained Principal Component variable input into
the PRESS regression, 19 were retained for the pathlength estimation,
and 21 were retained for the API Gravity estimation. The standard error
for the estimation of the cell pathlength was 0.159 microns, and the
standard error for the estimation of the API Gravity was 0.660 degrees
API. A plot of the infrared estimated API Gravity versus that measured
by ASTM D1298 for the 91 reference samples is shown in Figure 2.

Example 3 — Estimation of a Performance Property using Near—Infrared:
Parameter estimated Cetane number

Sample types Petroleum mid—distillates
Calibration samples measured by ASTM D-613
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Spectrometer used

Average Pathlength Calibration set
Spectral range used

Excluded subregions

Constraints used

Regression method used

Number of calibration spectra

# eigenspectra used in regressions (k)
# retained for pathlength regression
Standard Error Pathlength Regression
# retained in composition regression
Standard Error composition regression

PCT/US91/07578

Mattson Sirius 100
519.3 microns
10000 — 3800 cm -t
none

3 polynomial terms
(quadratic)

PRESS

93

13

11

1.535 microns

10

1.258 cetane number

A Constrained Principal Components model was constructed for
the estimation of Cetane Number for petroleum mid—distillates. The
spectra of 91 reference mid—distillates were collected over the 10000 to
3800 cm-! region using a Mattson Sirius 100 FT—IR spectrometer
operating at 2 cm-! resolution and employing 100 scans for signal
averaging. 500 micron calcium floride cells were employed. Cetane
numbers for the reference samples used in the calibration were obtained
via ASTM D—613. A CPSA model was developed using 3 polynomial
correction terms to account for possible background variations. A PRESS
based step—wise regression (see, for example, the above mentioned D.M.
Allen reference) was employed for developing both a pathlength
estimation model, and the cetane number model. Of the 13 Constrained
Principal Component variable input into the PRESS regression, 11 were
retained for the pathlength estimation, and 10 were retained for the
cetane number estimation. The standard error for the estimation of the
cell pathlength was 1.535 microns, and the standard error for the
estimation of the cetane number was 1.258 cetane numbers. A plot of the
infrared estimated cetane number versus that measured by ASTM D—613
for the 91 reference samples is shown in Figure 3.

Example 4 — Elemental Composition Esimation by Mid—Infrared:

Parameter estimated Weight percent hydrogen



WO 92/07275

35

Sample types

Calibration samples measured by
Spectrometer used

Average Pathlength Calibration set
Spectral range used

Excluded subregions

Constraints used

Regression method used

Number of calibration spectra

# eigenspectra used in regressions (k)
# retained for pathlength regression
Standard Error Pathlength Regression
# retained in composition regression
Standard Error composition regression

PCT/US91/07578

Petroleum mid—distillates
Broad line NMR
Mattson Polaris/Icon
29.57 microns

3650 ~ 500 cm-t
2989-2800 cm 1,
2400-2300 cm Y,
1474-1407 cm-t

3 polynomial terms
(quadratic)

Water vapor spectrum
PRESS

91

24

19

0.159 microns

21

0.0551 weight percent

A Constrained Principal Components model was constructed for
the estimation of hydrogen content for petroleum mid—distillates. The
spectra of 91 reference mid—distillates were collected over the 3650 to 500
cm-! region using a Mattson Polaris/Icon FT—IR spectrometer operating
at 2 cm-! resolution and employing 100 scans for signal averaging. 30
micron potassium bromide cells were employed. To avoid ranges where
the sample absorption was beyond the linear response range of the
spectrometer, and to avoid the need for adding a carbon dioxide
correction term to the model, the data in the 2986—2800 cmt, 2400—2300
cm-! and 1474—1407 cm-! regions was excluded during the model
generation. Hydrogen contents for the reference samples used in the
calibration were obtained via Broad line NMR. A CPSA model was
developed using 3 polynomial correction terms to account for possible
background variations, and a water vapor correction spectrum to account
for possible purge variations. A PRESS based step—wise regression (see,
for example, the above mentioned D.M. Allen reference) was employed for
developing both a pathlength estimation model, and the hydrogen content
model. Of the 24 Constrained Principal Component variable input into
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the PRESS regression, 19 were retained for the pathlength estimati‘on,
and 21 were retained for the hydrogen content estimation. The standard
error for the estimation of the cell pathlength was 0.159 microns, and the
standard error for the estimation of the hydrogen cotent was 0.0551
weight percent hydrogen. A plot of the infrared estimated hydrogen
content versus that measured by broad line NMR for the 91 reference
samples is shown in Figure 4.

Example 5 — Chemical Composition Estimation by Mid—Infrared:

Parameter estimated Weight percent ZDDP
Sample types Lubricant additive package
Calibration samples measured by Weight % in blends
Spectrometer used Digilab FTS-20C

Average Pathlength Calibration set 62.0 microns

Spectral range used 1800 — 490 cm !

Excluded subregions 1475 - 1435 cm !

Constraints used

Regression method used

Number of calibration spectra

# eigenspectra used in regressions (k)
# retained for pathlength regression
Standard Error Pathlength Regression
# retained in composition regression
Standard Error composition regression

3 polynomial terms
(quadratic)

Water vapor spectrum
Step—wise

30

7

7

0.17 microns

7

0.16 weight percent

A Constrained Principal Components model was constructed for
the estimation of the zinc dialkyl dithiophosphate (ZDDP) content for
lubricant additive packages. 30 reference blends of an additive package
containing a polyisobutenyl polyamine dipersant, a overbased magnesium
sulfonate detergant, a sulfurized nonyl phenol, ZDDP and diluent oil were
prepared for the calibration. The additive concentrations in the reference
blends were varied at +/— 8 to 12 percent of the target concentrations.
Solutions containing 50% additive package in cyclohexane were prepared
and spectra were collected over the 3650 to 400 cm"! region using a
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Digilab FTS—20C FT—IR spectrometer operating at 2 cm-! resolut{on.
100 scans were employed for signal averaging. 62 micron potassium
bromide cells were employed. The CPSA model was developed using
spectra data in the 18001475 and 1435—490 cm-! regions. A CPCR
model was developed using 3 polynomial correction terms to account for
possible background variations, and a water vapor correction spectrum to
account for possible purge variations. A step—wise regression (see, for
example, the above mentioned W.J. Kennedy and J.E. Gentle reference)
was employed for developing both a pathlength estimation model, and the
ZDDP content. Of the 7 Constrained Principal Component variable
input into the PRESS regression, 7 were retained for the pathlength
estimation, and 7 were retained for the ZDDP content estimation. The
standard error for the estimation of the cell pathlength was 0.17 microns,
and the standard error for the estimation of the ZDDP cotent was 0.16-
weight percent. A plot of the infrared estimated ZDDP content versus
that used in preparing the 30 blends is shown in Figure 5.

Further examples will now be given.
Example 6 — Binary Blends of Isooctane and Heptane

The first example demonstrates how a Constrained Principal
Components Analysis can be used to develop a model that is robust
relative to variations in signals arising from the spectral measurement
process. Mid—infrared (4000400 cm-1) spectra of 22 binary mixtures of
isooctane (2,2,4—trimethyl pentane) and n—heptane were collected on a
Mattson Polaris/Icon FT—IR spectrometer at 2 cm! resolution, using 100
scans for signal averaging and a 25 micron potassium bromide fixed
pathlength cell. The single beam sample spectra were ratioed against
empty beam background spectra for the caiculation of the absorbance
spectra.  Principal Components Ana:rsis and Constrained Principal
Components Analysis were both used to generate models for the
estimation of the isooctane and heptane contents of the binary mixtures.
To avoid absorbances that might be outside the linear response range of
the spectrometer, only the data in the 2000—690 cm-! spectral range were
used in the models. The spectra of 11 of the binary mixtures were used
in developing the models, and the spectra of the remaining 11 mixtures
were used to test the models. The concentrations of the mixtures used
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for generating and testing the models are given in Table 1.

Figure 6 shows the statistics for the Principal Components
Analysis (PCA) of the blend spectra. As is typical with real systems, the
various statistical tests do not unambiguously indicate the true number of
spectral variables. The plot of the logarithm of the eigenvalues versus
number of Principal Components decreases relatively smoothly, showing
only minor breaks at 3 and 6 Principal Components. The indicator
function goes through a minimum at 5 variables, the cumulative variance
appear to level off after 3 Principal Components, and the eigenvalue
ratios have maxima at 1 and 3 Principal Components. Nome of the
statistics indicates the true number of real components in the binary
blends. Examination of the average and standard deviation spectra for
the calibration spectra (Figure 7) suggests the sources of these additional
spectral variables. There is clearly a frequency dependent variation in
the spectral baseline as well as absorptions due to water vapor due to
incomplete spectrometer purge. Examination of the -eigenspectra
produced by the PCA analysis (Figure 8) demonstrates how these
additional measurement related variations are extracted as Principal
Components. Eigenspectrum 1 shows the absorptions due to the two real
components, but is clearly offset relative to the zero absorption.
Eigenspectrum 2 shows only slight differentiation between the isooctane
and heptane absorptions, and is dominated by an offset. Eigenspectra 3
and 4 differentiate between the two real components, but also show a
frequency dependent variation in the spectral background. Eigenspectrum
5 is clearly that of water vapor. Eigenspectrum 6 is largely measurment
noise. Note that the measurement process related signals are not cleanly
extracted into single Principal Components, but are mixed among all the
spectral variables. The offset is clearly present in both Eigenspectra 1
and 2. Water vapor absorptions are observed in Eigenspectra 1,2,4 and 5,

and the frequency dependent background is present in Eigenspectra 3 and
4.

A CPSA model was developed for the same data set, using a
second order (constant plus linear) polynomial background correction and
water vapor correction spectra as constraints. Figure 9 shows the three
correction spectra used, as well as the first three eigenspectra generated
by the CPSA analysis. The eigenspectra are now orthogonal to an offset,
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a linear frequency dependent background and the water vapor correctlion
spectra. The third eigenspectra consists almost exclusively of noise,
indicating that the isooctane and heptane spectral variation has been
successfully extracted into two spectral variables.

Table 2 shows the Standard Errors for the PCA and CPSA
models. As would be expected from the eigenspectra, the PCA model
requires 4 variables to account for the variation in the isooctane and
heptane concentrations. Inclusion of the fifth Principal Component in the
PCA model appears to produce a slight improvement in the Standard
Error of Estimate from the calibration, but actually produces a slight
degradation of the predictive model. The CPSA model based on two
variables has predictive power comparable to the PCA model with 4
variables, but is more robust with respect to the measurement process
signals which are present in the spectral data. Figure 10 demonstrates
this improved robustness. The variability in the background among the
calibration samples was estimated by fitting a linear baseline to the
standard deviation spectrum in Figure 7 (calculating the slope and
intercept of the line connecting the two endpoints at 2000 and 690 cm™t).
Multiples of this estimated background were then added to the spectrum
of the sample containing 89% isooctane, and the generated spectra were
analyzed using the 4 variable PCA model and the 2 variable CPSA
model. For the PCA model, the predicted isooctane content clearly
depends on the background. Over the range of backgrounds present in
the spectral data, variations on the order of 0.05% are observed. If, in
the analysis of an unknown, a larger difference in background was present
in the spectra, errors on the order of 0.1% could easily be obtained. The
CPSA model is independent of the variation in background and produces
the same results regardless of the change in background. CPSA thus
provides a more robust and stable predictive model.

The major source of error for both the PCR and CPCR analyses
is the fact that the sum of the two components does not equal 100%. As
is shown in Table 2, if the estimated isooctane and n—heptane
concentrations are renormalized to 100%, the SEEs and SEPs are
significanlty reduced. Even after renormalization, 4 variables are required
to produce a PCR model comparable to the 2 variable CPCR model. It
should be noted that, as is shown in Table 2, if the pathlength correction
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is used in developing the PCR and CPCR models, the renormalization of
the estimated isooctane and n—heptane concentrations results
automatically from the constraint that the sample components must sum
to 100%.

Example 7 — Analysis of a 5 Component Additive Package
Comparison to the K Matrix Method

We have previously demonstrated the use of the K Matrix
method for the quality control analysis of a oil additive package. In the
K Matrix analysis, the calibration fby n spectral matrix, X, is expressed
as the product of two matrices, K and C.

X =KC

C is a ¢ by n matrix containing the concentrations of the ¢ real
components for the n calibration samples. The f by ¢ K matrix is
obtained as

K = XC{CCY-t

K contains the spectra of the real components as they exist in the
calibration mixture, i.e. including any intercomponent interactions. The
K matrix obtained in the calibration can be used in the analysis of a
unknown, x, to obtain the component concentrations, ¢

¢ = (KtK)-Ktx

Unlike the Principal Component methods, the use of the K Matrix
method requires that the concentrations of all the components in the
mixtures be known such that the C matrix which must be inverted
completely specifies the calibration mixtures.

To further demonstrate how CPSA can be used to develop a
calibration for a real multicomponent analysis, a more detailed
description of the analysis presented in Example 5 will be given to to
demonstrate how a predictive model was developed using the same
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spectral data which had been used for the K Matrix analysis. The
additive package in question contains five components: a dispersant
(49%), a nonyl phenol (NPS, 16%) , a zinc dialkyl—dithiophosphate
(ZDDP, 15%) a magnesium overbased sulfonate (12%) and a diluent oil
(8%). For the quality control applications, the calibration was developed
over a relatively narrow concentration range bracketing the target
product composition. 30 blends were prepared by blending the 4
additives at levels corresponding to 88%, 92%, 100%, 108% or 112% of
the target concentrations, and adjusting the diluent oil level to achieve
the appropriate total weight. The levels for additives in the individual
blends were chosen randomly subject to the constraints that the number
of times each additive level was represented should be roughly equal, and
that all the components vary independently. Spectra of 50% solutions of
the blends in cyclohexane were obtained at 2 cm™! resolution using a 0.05-
millimeter KBr cell on a Digilab FTS—20C FT—IR spectrometer using
500 scans for signal averaging. 15 of the 30 blends which spanned the
additive concentration ranges were chosen for development of the models
and the remaining 15 were analyzed to test the models. Figure 11 shows
the average and standard deviation spectra for the 30 blends. Spectral
data in the range from 1800 to 490 c¢m-! was used in the analysis. To
avoid absorbances that are too strong to accurately measure, the data in
the range from 1475 to 1435 cm-! was excluded from the analysis.

To evaluate what possible measurement process signals might be
present in the spectral data of the calibration blends, a Principal
Components Analysis was conducted on the 15 spectra. Figure 12 shows
the statistics for the PCA calculation. The various statistical tests do
not clearly indicate or agree on the number of variables present in the
spectral data, although most of the tests suggest that there are more
variables than real components. Figures 13 and 14 show the first 10
eigenspectra obtained for the PCA calculation. Clearly, at least the first
9 eigenspectra contain recognizable absorption bands which are well above
the spectral noise level. Examination of the eigenspectra and the
standard deviation spectrum indicate the sources of the additional
spectral variables. Eigenspectra 8 shows negative bands at 1215 and 761
cm which are due to chloroform contamination of the solutions,
chloroform having been used to rinse the cell between samples. The
standard deviation spectrum (Figure 11) shows a strongly curved
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background, suggesting that background variations may also be
contributing the spectral variance.  Unlike previous examples, the
contributions of the background to the spectral variables are not as
obvious from the eigenspectra, but are mixed with the variations due to
the real component absorptions. Together, the chloroform and the
background could account for two of the nine spectral variables.
Eigenspectra 5 and 9 both show features due to the cyclohexane solvent.
In eigenspectrum 5, the bands have a dispersive shape suggestive of a
variation in bandwidth among the calibration spectra. Close examination
of the calibration spectra indicates that the cyclohexane absorptions do
vary slightly in bandwidth, presumably because of variations in the
strength of interactions with the additives. Eigenspectrum 9, on the
other hand, shows normally shaped features corresponding to the solvent.
If the solutions had all been prepared to exactly the same concentration,
and if no solvent/additive interactions were present, the spectral features
due to the cyclohexane would have been constant among all the blends,
would have been observed exclusively in eigenspectrum 1, and would not
have been detected as a separate spectral variable. In reality, the solvent
contributes two spectral variables, eigenspectrum 5 arising from variations
in the solute/solvent interactions, and eigenspectrum 8 arising from
variations in the solute/solvent concentrations. To verify that this is the
case, a second PCA analysis was conducted using the 15 calibration
blends plus 3 spectra of cyclohexane obtained under the same conditions.
Figure 15 shows some of the eigenspectra obtained from this analysis. In
the PCA calculation using only the blend spectra, the variation in the
solvent concentration was small, and showed up only as the 9tb most
important spectral variable (Figure 14). Adding the spectra of the
solvent to the reference set dramatically increases the range of variation
in the solvent absorptions, making it the 2nd most important spectral
variable. Aside from the noise level, eigenspectrum 2 in Figure 15 very
closely resembles- the eigenspectrum 9 in Figure 14. If solvent
concentration variation was not a spectral variable in the original 15
calibration spectra, then the inclusion of the solvent spectra would have
added an additional variable to the data. Comparison of Figures 13 and
14 to Figure 15 clearly indicates that this is not the case. The inclusion
of the solvent spectra has reordered the 9 variables (e.g. eigenspectrum 2
in Figure 13 becomes eigenspectrum 3 in Figure 14), but the 10th
eigenspectrum in both cases shows minimal absorption features above the
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spectral noise level.

The above analysis indicates that 7 of the 9 spectral variables
correspond to sample variations, 5 due to additive package components, 1
due to variations in the cyclohexane solvent concentration, and 1 due to
variations in the solvent/solute interactions. The remaining 2 variables
are due to the measurement process, and correspond to background
fluctuations and chloroform contamination. Using this information, a
CPSA model can be constructed. Since the solvent concentration
variation is a variable in the spectra of the blends, the solvent spectra
were included in the reference set for the generation of the CPSA model
so as to ensure that the solvent variation could be properly modeled.
Figures 16 and 17 show the various correction spectra which are used, as
well as the resulting eigenspectra. A 3 term (quadratic) correction is
used to account for the possible background variation. Although the
chloroform is actually in the sample, it is at a low enough level so as not
to cause significant dilution of the sample absorptions, and thus can be
treated as a measurement process variable rather than a sample
component.  Since the chloroform absorptions observed in PCA
eigenspectra 8 are shifted slightly from those observed for neat
chloroform, a synthetic chloroform spectrum was generated for use as a
correction spectrum by fitting the observed absorptions to Lorenztian
bands. CPSA eigenspectrum 7 (Figure 16) appears to be roughly
equivalent to PCA eigenspectrum 10 (Figures 14 and 15) in terms of the
signal to noise of the residual absorption features. By including the 4
constraints, the CPSA model allows the spectral variance to be accounted
for in 7 variables rather than the 9 required by the PCA analysis.

Table 3 shows the Standard Errors for the K Matrix, PCA and
CPSA models. Since there are only 6 components (5 add pack
components plus cyclohexane) in the samples, the K Matrix method can
only extract 6 variables. The K Matrix model cannot account for the
solute/solvent interactions and thus produces a poorer predictive model
than the Principal Component methods which allow this interaction to be
modeled as a separate variable. The Standard Error of Estimate is lower
for the PCA model based on 9 variables than the CPSA model based on
7, because the two extra variable that correspond to measurement process
signals are being correlated to the dependent variable. If, for instance,




WO 92/07275 PCT/US91/07578

44

we use the PCA model to analyze the 4 constraint spectra used for the
CPSA model (the first 4 spectra in Figure 16), we see (Table 4) that
predictions made with the PCA model will depend on background and
chloroform contamination, and will not be robust relative to these
measurement process signals. When the PCA and CPSA models are used
to analyze the 15 test blends (Table 3, bottom), it can be seen that the
predictive capability of the more robust CPSA model based on 7 variables
actually exceeds that of the PCA model based on 9 variables.

For simplicity, since no water vapor absorptions were observed in
the standard deviation spectra or the PCA eigenspectra, a water vapor
constraint was not added in the development of the above CPSA model.
If this model was to be used in actual quality control applications, a
water vapor constraint would be added to insure that the results were not
affected by the instrument purge. As is seen in Table 3, the addition of
water vapor correction spectra to the model so as to improve its stability
and robustness does not effect the accuracy of the predictions for the 15
test spectra which showed no water vapor absorptions.

Example 8:

Example 8 is intended to demonstrate how a Constrained
Spectral Analysis can be employed to remove a signal arising from the
measurement process in a real application. A CPCR model was
developed to estimate the research octane number (RON) of
powerformate samples. Laboratory data was collected over the 870 to
1600 namometer range for 186 reference powerformate samples using a
LTI Industries Quantum 1200 Near—Infrared Analyzer. RON values for
the powerformate reference samples were obtained via ASTM—2699. A
CPCR model was developed using 3 polynomial correction spectra
(constant, linear and quadratic polynomials), and 5 Constrained Principal
Component variables. The Standard Error of Estimate for the model was
0.30 research octane numbers.

In testing the wviability of using Near—Infrared for the
measurement of on—line research octane number, the laboratory analyzer
was equiped with a flow cell, and connected to a fast sampling loop from
a powerforming unit. Spectra of the powerforming product were collected
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at approximately 6 minute intervals using the same conditions as were
used for the collection of the reference spectra. The resultant estimate of
the research octane number (Figure 18) showed a periodic oscillation at a
frequency which was much more rapid than expected changes in the
product composition. By subtracting successive spectra (Figure 19), it
was established that the oscillation was due to a periodic variation in the
absorption the range of 1400 nanometers. The absorption was identified
as being due to atmospheric water vapor (Figure 20) which was present
in the instrument light path, and the oscillation was tracked to the cycle
time of an air conditioning unit present in the instrument shake where
the analyzer was located. From Figure 19, it is clear that the for short
time periods (<40 minutes), there were only minor changes in the
powerformate product composition, and the periodic changes in the
estimated RON where due soley to the variations in the humidity in the
instrument. Difference spectra generated over longer time intervals (e.g.
93—135 minutes) demonstrated that the magnitude of the water vapor
absorption was comparable to the differences in absorption due to actual
compositional changes. From Figure 20, it can be seen that the water
vapor absorption falls within the same spectral range as absorptions due
to the powerformat hydrocarbons.

To minimize the effect of humidity variations on the estimation
of research octane number, a water vapor correction was added to the
model. A "water vapor" spectrum was generated by subtracting
successive spectra from the on—line data over periods when the
composition was expected to show minimal variation. A CPCR model
was constructed using the 3 polynomial background corrections, the water
vapor correction, and using 5 Constrained Principal Components in the
regression. The resultant model was then used to reanalyze the same
on—line data (Figure 21). The inclusion of the water vapor correction
eliminated the periodic oscillation by producing a model that was
insensitive to variations in the humidity.

Example 9: Measurement Process Quality Control

CPSA allows the spectral variables which are associated with the
measurement process to be modeled so that the predictive models can be
constrained to be insensitive to these variables. The contribution of these
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constraint variables to any real spectrum represents the status of‘the
measurement process during the collection of the spectral data. Since the
constraint variables are orthogonal among themselves and to the
eigenspectra, the relative contributions of the constraint variables to a
spectrum are obtained merely by taking the dot product of the constraint
vector with the spectrum. The range of values obtained for the
calibration spectra represent the range of measurement process variation
during the collection of the reference spectra, and can be used to identify
reference spectra which are outliers with respect to the measurement
process. In building the predictive model it may be desirable to recollect
the spectral data for these outliers so as to optimize the model.
Similarly, the values of the constraint variables for an unknown spectrum
being analyzed serve as an indication of measurement process during the
analysis, and can provide a warning if the measurement process has
changed significantly relative to the calibration. CPSA thus provide a
means of performing quality control on the measurement process,
indicating conditions under which changes in the measurement process
rather than changes in the sample might be affecting the predicted
results.

Figures 22 and 23 show examples of how the constraint variables
can be used to monitor the spectral measurement process. In the
isooctane/heptane example above (Example 6), the spectra were collected
in a rapid fashion without allowing sufficient time for the spectrometer to
be fully purged. As a result, absorptions due to water vapor are
superimposed on the component spectra, and are isolated as a Principal
Component (eigenspectrum 5 in Figure 8) by a PCA calculation. In
developing the CPSA model, water vapor correction spectra were used to
generate a constraint. Figure 18 shows a plot of the dot product of the
reference and test spectra with the water vapor constraint. The value of
the constraint variable clearly identifies spectra which are outliers with
respect to the water vapor level, in this case spectra which show a
significantly lower water vapor level than the average. Figure 23 shows
similar data for the chloroform constraint used in the additive package
example (Example 7). Chloroform was used to rinse the cell between
samples, tends to penetrate into small openings between the spacer and
the windows, and is not always completely removed even when a vacuum
is pulled on the cell. The value of the chloroform constraint variable
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clearly indicates spectra for which an above (sample 4) or below (sample
6) average amount of chloroform contamination was present. Note that
since the peaks in the chloroform constraint spectrum (Figure 16) are
negative, lower values of the dot product imply higher levels of
chloroform.

It will be appreciated that various modifications and changes may
be made to the methods and apparatus disclosed herein within the scope
of the invention as defined by the appended claims. Such modifications
and changes will be obvious to the skilled addressee and will not be
further described herein.
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Table 1
Binary Isooctane/Heptane Samples

Isooctane Heptane
Volume % Volume %
Calibration Samples
2 78 22
4 82 18
6 84 16
8 86 14
10 88 12
12 90 10
14 92 8
16 94 6
18 96 4
20 98 2
22 100 0
Test Samples
1 76 24
3 80 20
5 83 17
7 85 15
9 87 13
1 89 11
13 91 9
15 93 7
17 95 5
19 97 3
21 99 1
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Table 2
Standard Errors for Heptane/Isooctane Binary Mixtures
Type of #of Isooctane Heptane

Model PC SEE SEP SEE SEP

Models based on 11 reference spectra without pathlength correction:

PCR 2 2.715 3.396 6.736 8.198
3 0.263 0.551 0.466 1.081
4 0.197 0.187 0.035 0.077
5 0.118 0.213 0.035 0.085 i
6 0.129 0.218 0.030 0.062
CPCR 2 0.196 0.248 0.045 0.056

Results renormalized so heptane plus isooctane equals 100%:

PCR 4 0.040 0.077 0.040 0.077
5 0.028 0.094 0.028 0.094
CPCR 2 0.056 0.071 0.056 0.071

Results for models employing pathlength correction:

PCR 2 6.394 6.986 6.394 6.986
3 0.445 0.977 0.445 0.977
4 0.045 0.072 0.045 0.072
5 0.034 0.091 0.034 0.091
CPCR 2 0.056 0.071 0.056 0.071

SEE = Standard Error of Estimate for Calibration
SEP = Standard Error of Prediction for Test Set



WO 92/07275 PCT/US91/07578

50

Table 3
Comparison of K Matrix, PCA and CPSA Resulis for Add
Pack Analysis

Models based on 15 blend spectra plus cyclohexane
Results renormalized so 5 add pack components add to 100%

Model # of Standard Error of Estimate
Var. Disp NPS ZDDP MgSulf Qil

K Matrix 6 0.369 0.363  0.150  0.164 0.704
PCA 9 0.148 0.217 0.106 0.088 0.126
CPSA 7 0.291 0.271 0.143 0.128 0.220
CPSA * 7 0.209 0.273 0.144  0.127 0.229
Model #of Standard Error of Prediction
Var. Disp NPS ZDDP MgSulf Oil

K Matrix 6 0.412 0.398 0.132 0.300 0.612
PCA 9 0.429 0.285  0.147  0.300 0.367
CPSA 7 0.410 0.267 0.098 0.314 0.378
CPSA * 7 0.402 0.263 0.099 0.313 0.375

# of Var. = Number of variables in model

Disp = Dispersant, NPS = Nonyl Phenol, ZDDP = Zinc
Dialkyl-Dithiophosphate, MgSulf = Magnesium Sulfonate
* CPSA model including water vapor constraint
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Table 4

PCA Analysis of CPSA Constraints

Constraint Disp NPS ZDDP MgSuli Oil

Polynomial 1 (constant)
0.902 2.094 1.342 1.436 2.521
Polynomial 2 (linear)
-5.500 2.099 1.149 -0.843 12.110
Polynomail 3 (square)
-1.321 -5.889 -1.147 1.009 1.060
Correction 1 (CHCL3)
-0.221 -0.34 0.213 -0.105 0.230
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The Constrained Principal Spectra Analysis method allows the
spectroscopist to input his knowledge of the spectral measurements so as
to define and model possible spectral variations which are due to the
measurement process, and to develop multivariate predictive models
which are constrained to be insensitive to the measurement process
signals. The constraints developed in this fashion serve as quality control
variables for the measurement process, allowing for the optimization of
the calibration and subsequent monitoring of the spectral measurement.
The CPSA algorithm provides advantage over spectral preprocessing
techniques in that: (1) it uses all available spectral data to derive and
remove the measurement process variables and as such is less sensitive to
spectral noise than methods based on limited ranges of the data, (2) it
uses a single calculation method to remove all types of measurement
process variations including variables for which preprocessing algorithms
would be difficult or impossible to develop (e.g highly overlapping
interferences or higher order background variations), (3) it provides
measurement process variables which are orthogonal to the spectral
Principal Components thereby insuring maximum stability of the
predictive model, and (4) it incorporates the modeling and removal of
measurement process variables as an integral part of the analysis thereby
removing the necessity for the development of separate preprocessing
methods and algorithms.

It will be appreciated that various modifications and changes may
be made to the methods and apparatus disclosed herein within the scope
of the invention as defined by the appended claims. Such modifications
and changes will be obvious to the skilled addressee and will not be
further described herein.
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CLAIMS

1. A method for correcting spectral data of n samples for the
effects of data arising from the spectral measurement process itself (rather
than from the sample components), said spectral data being quantified at
f discrete frequencies to produce a matrix X (of dimension f by n) of
calibration data, said method comprising:—

(i) producing a correction matrix Ua of dimension f by m
comprising m digitised correction spectra at said discrete frequencies ],
said correction spectra simulating data arising from the measurement
process itself; and

(ii) orthogonalising X with respect to Uy to produce a
corrected spectra matrix X; whose spectra are each orthogonal to all of
the spectra in U,.

2. A method as claimed in claim 1 for which matrix X is to be
corrected only for the effect of baseline variations, wherein said baseline
variations are modelled by a set of orthogonal frequency (or wavelength)
dependent polynomials which form said matrix Uy of dimension fboy m
where m is the order of the polynomials and the columns of U, are
orthogonal polynomials.

3. A method as claimed in claim 2, wherein said orthogonal
polynomials are Legendre polynomials.

4. A method as claimed in claim 1 for which matrix X is to be
corrected only for the effect of ex—sample chemical compounds, wherein
the spectra that form the columns of U, are orthogonal vectors that are
representative of those ex—sample chemical compounds.

5. A method as claimed in claim 1, wherein step (i) comprises:—
(i)  modelling baseline variations by a set of orthonormal

frequency (or wavelength) dependent polynomials which form the columns
of a matrix Up of dimension f by p where p is the order of the

PCT/US91/07578
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polynomials and the columns of Uj are orthonormal polynomials;

| (ib)  supplying at least one ex—sample spectrum which is
representative of an anticipated spectral interference due to an ex—sample
chemical compound, this ex—sample spectrum or these ex—sample spectra
forming the column(s) of a matrix X of dimension fby s where s (> 1) is
the number of such ex—sample spectra and is greater than or equal to the
number of such ex—sample spectral interferences s’;

(ic)  orthogonalising the column(s) of X5 with respect to Up to
form a new matrix Xg’;

(id)  orthogonalising the column(s) of X5’ among themselves
to form a new matrix Ug;

(ie) combining matrices Up and Us to form a matrix Uy
whose columns are the columns of Up and Us arranged side—by—side.

6. A method as claimed in claim 5, wherein step (ic) is
performed by a Gram—Schmidt orthogonalization procedure.

7. A method as claimed in claim 5, wherein the ex—sample
spectrum is that of water vapor and/or carbon dioxide vapor.

8. A method as claimed in any one of claims 5 to 7, wherein in
step (id), a singular value decomposition of matrix X’ is used to
generate the orthogonal correction spectra Us, the first s/ terms of which
correspond to the number of different types of ex—sample spectral
interferences being modelled are retained while any remaining terms are
eliminated, and the resulting matrix Us is combined with matrix Up in
step (ie) to form matrix U,

9. A method as claimed in any preceding claim, comprising the
further steps of: —

(iii) performing, on matrix X, the singular value
decomposition Xc = UXVt, where U is a matrix of dimension f by n and
contains the principal component spectra as columns, X is a diagonal

2
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matrix of dimension n by n and contains the singular values, and V is a
matrix of dimension n by n and contains the principal component scores,
V* being the transpose of V;

(iv)  removing from U, ¥ and V the k£ + 1 through n principal
components that correspond to noise in the spectral measurements on the
n calibration samples, to form the matrices U, ¥’ and V’ which are of
dimensions f by &, k by k and n by k, respectively; and

(v) multiplying these matrices U/, ¥ and V‘ together to
form another matrix whose columns of spectral data substantially exclude
spectral data due to noise.

10. A method of estimating unknown property and/or
composition data of a sample, comprising:—

(i) collecting respective spectra of n calibration samples, the
spectra being quantified at f discrete frequencies (or wavelengths) and
forming a matrix X of dimension f by =;

(ii) producing a correction matrix U, of dimension f by m
comprising m digitised correction spectra at said discrete frequencies f
said correction spectra simulating data arising from the measurement
process itself;

(iii) orthogonalising X with respect to Ua to produce a
corrected spectra matrix X whose spectra are each orthogonal to all the
spectra in Uly;

(iv)  collecting ¢ property and/or composition data for each of
the n calibration samples to form a matrix Y of dimension n by ¢ (¢ >

1);

(v) determining a predictive model correlating the elements
of matrix Y to those of matrix X¢;

(vi) measuring the spectrum of the sample under
consideration at said f discrete frequencies to form a matrix of dimension



WO 92/07275 PCT/US91/07578

56
fby 1; and

(vii) estimating the unknown property and/or composition
data of the sample under consideration from its measured spectrum using
the predictive model.

11. A method as claimed in claim 10, wherein the predictive
model is determined in step (v) using a mathematical technique to solve
the equation Y = X!P + E, where Xt is the transpose of X, P is a
prediction matrix of dimension fby ¢, and E is a matrix of residual errors
from the model and is of dimension n by ¢ and wherein, for determining
the vector yy of dimension 1 by ¢ containing the estimates of the ¢
property and/or composition data for the sample under consideration, the
spectrum x, of the sample under consideration, x, being of dimension f
by 1, is measured and yy is determined from the relationship y, = xtP,
x} being the transpose of spectrum vector xy.

12. A method as claimed in claim 11, wherein said mathematical
technique is principal components regression.

13. A method as claimed in any one of claims 10 to 12, wherein
the m spectra forming the columns of matrix Us are all mutually
orthogonal.

14. A method as claimed in any ome of claims 10 to 12, wherein
* step (ii) comprises:—

(iia) modelling baseline variations by a set of orthonormal
frequency (or wavelength) dependent polynomials which form the columns
of a matrix Up of dimension f by p where p is the order of the
polynomials and the columns of Up are orthonormal polynomials;

(iib) supplying at least one ex—sample spectrum which is
representative of an anticipated spectral interference due to an ex—sample
chemical compound, this ex—sample spectrum or these ex—sample spectra
forming the column(s) of a matrix Xg of dimension f by s where s (> 1)
is the number of such ex—sample spectra and is greater than or equal to
the number of such ex—sample spectral interferences s;



WO 92/07275

57
(iic)  orthogonalising the column(s) of Xg with respect to Up to
form a new matrix X;’;

(iid) orthogonalising the column(s) of X5’ among themselves to
form a new matrix Ug;

(iie) combining matrices Up and Us to form a matrix Uy whose
columns are the columns of Up and Us arranged side—by—side.

15. A method according to any one of claims 10 to 14, wherein,
for determining any significant change in the measurement process data
between the times steps (i) and (vi) were performed, the following steps

are carried out:

(a) a matrix Vy of dimension n by m is formed as the dot
product XtUy, where Xt is the transpose of matrix X;

(b) the corrected data matrix X is formed and its singular
value decomposition computed as UEVt, where U is a matrix of dimension
fby n and contains the principal component spectra as columns, ¥ is a
diagonal matrix of dimension n by n and contains the singular values,
and V is a matrix of dimension n by n and contains the principal
component scores, V¢ being the transpose of V;

(c) a regression of the form Vy = VZ + R is determined;
(d) a vector vy is formed as the dot product of the measured
spectrum of the sample under consideration, x,, with each of the columns

of the correction matrix Ua, va = x{Up;

(e) a corrected spectrum x; is formed as a result of
orthogonalising xy with respect to Un, xc = xy — Uav;

(f) the scores for the corrected spectrum are calculated as
v = x{UX"1 where x{ is the transpose of xg;

(g) the measurement process signals are calculated as
I = va — VvZ; and

PCT/US91/07578
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(k) the magnitude of the elements of r are compared with
the range of values of R, whereby a significant difference indicates a
significant change in the measurement process data.

16. Apparatus for estimating unknown property and/or
compositional data of a sample, comprising:—

— a spectrometer for generating the spectrum of a plurality
of calibration samples n having known properties and/or composition c,
and the spectrum of a sample under consideration having unknown
property and/or composition data which is to be estimated; and

- computer means arranged to receive the measured

spectrum data from the spectrometer and operable )

: (i) in a data correction mode to perform, in
conjunction with an operator, steps (i) to (iii) of claim 10;

(ii) in a storing mode to store the ¢ property and/or
compositional data for each of the 7n calibration samples to form the
matrix Y of dimension n by ¢ (¢ > 1);

(iii) in a model building mode to determine, in
conjunction with the operator, a predictive model according to step (v) of
claim 10;

(iv)  in a measurement mode to perform step (vi) of
claim 10; and

(v) in a prediction mode to perform step (vii) of
claim 10, in order to estimate the unknown property and/or composition
data of the sample under consideration according to the determined
predictive model correlating the elements of matrix Y to the corrected
spectra matrix X resulting from the orthogonalization of matrix X with
respect to the correction matrix U,.

PCT/US91/07578
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FIGURE 1
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FIGURE 2
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FIGURE 3
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FIGURE 4
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FIGURE 14
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FIGURE 15
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