
Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

Title: ADJUSTABLE SPHERICAL JOINT MEMBER

Abstract: The present invention relates to a ball joint (200), associate with a first and a second component for their connection in an adjustable position, comprising a spherical element (202), at least partially housable in a hollow housing seat (203) of said first component, an insert (204), connected to such a spherical element (202) and removably associate with such a second component, wherein the spherical element (202) comprises a substantially cylindrical central portion (202'), interposed between two substantially spherical cap shaped portions (202'1) arranged with respect to one another so that each circular base of each substantially spherical cap shaped portion (202') matches a respective base of such a substantially cylindrical portion (202').
"ADJUSTABLE SPHERICAL JOINT MEMBER"

Designated inventors: Renzo - Soffiatti, Giovanni Faccioli

TECHNICAL FIELD OF THE INVENTION

The present invention refers to a ball joint of the adjustable type, and in particular to a ball joint for stable connection of a first and second component in adjustable positions.

STATE OF THE ART

The use of a ball joint for the articulated connection between at least two components is known in various sectors such as, for example, the automobile industry, medical sector, etcetera.

Known types of ball joints comprise a housing seat that is obtained in or associated with a first component, and a spherical element that is equipped with a pin, which is associated with a second component. By introducing the spherical element in the respective seat, for example spherical, the connection between the first component and the second component is obtained.

With reference to the automobile industry, a typical application of the ball joints is provided for the connection between the suspensions arms, thereby obtaining a rotatable movable articulated connection between the members forming the suspension itself.
In other sectors, like for example the medical sector, adjustable ball joints are used, through which it is possible to vary and subsequently block the relative position between two components associated with the joint itself.

Such conventional ball joints comprise blocking means that are suitable for preventing/allowing the movement of the ball joint itself in the respective housing seat.

Such blocking means, indeed, prevent/allow the relative rotation of the spherical element, which is associated with a second component, inside the respective housing seat, obtained in or associated with a first component, thus making the first and the second component fixed/movable with respect to one another.

In one known embodiment, the blocking means comprise an element similar to a perforated cap that is associated through a threaded ring nut with the spherical seat. The hole allows the pin associated with the spherical element to pass through it. The cap has a hollow portion that is substantially spherical or the like, that is suitable for being placed in abutment against the spherical element of the joint. Therefore, by screwing the cap in the spherical seat the cap is brought in abutment against the spherical element,
thereby preventing the ball joint from moving.

If it is necessary to modify the connection position between the first and the second component it is possible to loosen the cap, disengaging it from the spherical element, and modify the assembly configuration of the ball joint itself.

In a further embodiment the spherical seat, wherein the spherical element of the joint is to be housed, comprises two shells connected to one another through removable connection means such as, for example screws, pins, threaded ring nuts or removable connection means in general.

Each of the two shells has, inside it, a substantially semi-spherical hollow portion, which matches the spherical element of the joint.

By clamping the two shells to one another, the respective hollow portions are brought into abutment against the spherical element, thus blocking the movement of the joint.

Conventional types of ball joints have a certain structural complexity in order to allow the joint itself to be blocked/released.

Moreover, conventional blocking mean provides for making hollow portions to be removably associated with respective seats so as to be able to block/allow the
rotation of the ball portion of the joint.
One drawback of such blocking means is the requirement of making seats, wherein the ball portion of the joint is to be housed, that are extremely precise so as to avoid undesired jamming during the movement of the joint itself that would, otherwise, cause the joint itself to be positioned imprecisely.

OBJECTS OF THE INVENTION

One object of the present invention is to improve the state of the art.
A further object of the present invention is to prove an adjustable ball joint, which is suitable for ensuring a connection between a first and a second component in adjustable positions, whose configuration is simple, and comprises a small number of components.
A further object of the present invention is to provide a ball joint of the adjustable type that ensures a stable and secure connection between a first and a second component.
Another object of the present invention is to provide a ball joint of the adjustable type that comprises blocking/releasing means the actuation thereof being simple and easy.
In accordance with one aspect of the present invention a ball joint of the adjustable type is provided
according to claim 1.
The dependent claims refer to preferred and advantageous embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS.

Further features and advantages of the present invention shall become clearer from the detailed description of three preferred, but not exclusive, embodiments of an adjustable ball joint, which is illustrated for indication and not limiting purposes, in the attached drawing tables, wherein:

- figure 1 is a schematic side view of the assembly of the ball joint according to a first embodiment of the present invention, in a "movable" configuration;
- figure 2 is a schematic side view of the assembly of the ball joint of figure 1 in a "blocked" configuration;
- figure 3 is a perspective view of the ball joint of figure 1;
- figure 4 is a schematic side view of a variant of the assembly of the ball joint according to a first embodiment of the present invention, in the "movable" configuration;
- figure 5 is a schematic side view of the assembly of the ball joint, according to figure 5, in the "blocked" configuration;
figure 6 is a partial side view of a medical device comprising a ball joint according to the first embodiment of the present invention;
figure 7 is a side view of a ball joint according to a second embodiment of the present invention;
figure 8 is a section view of the ball joint of Fig. 7, taken along line VIII-VIII of Fig. 7;
figure 9 is a slightly top perspective view of the ball joint of figure 7 in the "movable" configuration inserted in the respective housing seat;
figure 10 is a side view of a ball joint according to a third embodiment of the present invention;
figure 11 is a cross-section view of the ball joint of Fig. 10, taken along line XI-XI of Fig. 10;
figure 12 is a slightly top perspective view of the ball joint of figure 10 in the "movable" configuration, inserted in the respective seat of a respective component; and
figure 13 is a perspective view of the ball joint of figure 10 inserted in the respective seat of a respective component and in the "blocked" configuration.

EMBODIMENTS OF THE INVENTION

The ball joint according to the present invention is foreseen for connecting at least two components of a
medical device such as, for example, a fixator, a prosthesis, a spacer, etcetera, to one another. However, it should be understood that the ball joint can be used also in devices belonging to commodity sectors other than the medical sector, without departing for this reason from the present invention. With reference, first, to figures 1 to 4, reference numeral 1 wholly indicates a ball joint according to a first preferred embodiment of the present invention, for connecting a first component to a second component, which are not shown in the figures. The ball joint 1 is of the adjustable type, since it makes it possible to modify the position of the first and second component connected thereto, with respect to one another, and, subsequently, block them in the desired position by acting upon suitable blocking means, as better described in the rest of the description. The joint 1 comprises a substantially spherical element 2, which is suitable for being positioned inside a hollow seat 3, obtained in a first component, and an insert 4, which is partially housed inside the spherical element 2, which can be associated with a second component. The spherical element 2 has a through opening 5 along
which the insert 4 is positioned.
In particular, the insert 4, which has an elongated shape, is movable with respect to the spherical element 2 along a longitudinal axis 6.

As illustrated in figure 1 and 2, the longitudinal axis 6 is coaxial with the through opening 5 of the spherical element 2.
The insert 4 has a threaded portion 7 at least along the portion thereof, which projects outside the spherical element 2.
The threaded portion 7 allows the removable connection of the ball joint 1 to a first or to a second component.
Therefore, the ball joint 1, as illustrated in the figures, has at one end the spherical element 2 and at the opposite end a threaded portion 7 that comes out from the spherical element 2 itself.
In order to connect a first and a second component to one another through the ball joint 1, the spherical element 2 is inserted in the seat 3, obtained in the first or in the second component. The opposite end of the ball joint 1, i.e. the threaded portion 7, is connected to a corresponding threaded seat, which is not shown in the figures, of the second or first component, respectively.
In such a way, a connection of the movable type is initially obtained. Specifically, the spherical element 2 is free to rotate inside the hollow seat 3 and, therefore, it allows the orientation of the ball 1 along a substantially unlimited number of planes.

In order to partially limit or completely block the rotation of the spherical element 2 with respect to the seat 3 blocking means 8 are provided, which are suitable for obtaining a radial expansion of the spherical element 2 as is described in greater detail below.

The spherical element 2 has at least one notch 9, of the radial type, designed to allow the radial expansion of the spherical element 2 itself.

For example, two notches 9 can be provided, which are diametrically opposite to one another, so as to obtain a substantially symmetrical radial expansion of the spherical element 2 itself. The spherical element 2 can also have a different number of notches that are angularly equidistant from one another, for example 3 or 4 as illustrated in figure 3.

The blocking means 8 comprise an enlarged portion 10, which is formed at the end of the insert 4 arranged inside the spherical element 2, and at least one
locking nut 11 that can be operatively associated with the ball joint 1.
In particular, the locking nut 11 can be associated with the threaded portion 7 of the insert 4.

The advancement of the insert 4 along the through opening 5 is determined by rotating the locking nut 11.

The enlarged portion 10, for example with a substantially truncated conical shape or the like, has at least one cross-section that is greater with respect to a cross-section of the through opening 5 of the spherical element 2.

Therefore, as an example, as illustrated in figure 2, following the movement of the insert 4 inside the spherical element 2, obtained by the rotation of the at least one locking nut 11, the enlarged portion 10 penetrates inside the spherical element 2 leading to a radial expansion thereof.

Due to such a radial expansion, the outer surface of the spherical element 2 is partially or completely placed in abutment against the inner surface of the seat 3.

The amount of interference between the outer surface of the spherical element 2 itself and the inner surface of the seat 3 can be varied as a function of the amount of radial expansion of the element 2, partially limiting
or completely blocking the movement of the ball joint 1.

As can be noted, the configuration of the enlarged portion 10 of the insert is different from the configuration of the through opening 5 at such a portion 10. This is advantageous since the contact area between the insert 4 and the opening 5 is reduced and therefore the friction between them, thereby facilitating the sliding of the insert 4 inside the through opening 5 both in one way and the other. Moreover, since the radial expansion of the spherical element 2 is substantially symmetrical, the spherical element 2 abuts in a uniform manner against the seat 3, thereby ensuring a stable and secure blocking of the ball joint 1.

By acting on the at least one locking nut 11 in a reverse manner the outer diameter of the spherical element 2 is reduced restoring this way the movement of the ball joint 1.

In order to ensure an even more secure and stable blocking of the blocking means 8, it is possible to provide a counter-nut, not shown in the figures, to be placed in abutment against the locking nut 11 and avoid, in such a way, accidental loosening thereof.

Furthermore, the locking nut 11 can comprise elastic
elements of the per se known type or equivalent elements, so as to ensure the stable locking thereof along the threaded portion 7.

In the version illustrated in figures 1 and 2, in which the seat 3 is partially shown, the spherical element 2 is completely housed inside the seat 3 and the at least one locking nut 11 is positioned outside the seat 3 itself.

According to a variant of the ball joint of the first embodiment of the present invention, illustrated in figures 4 and 5, reference numeral 1' wholly indicates a ball joint comprising a spherical element 2' that is substantially identical to the spherical element 2 described above, which spherical element 2 is partially housed inside a seat 3', the remaining part being outside. According to this variant, the at least one locking nut 11' is in abutment against the spherical element 2' itself. The operation of the ball joint 1' according to this variant of the first embodiment of the present invention is the same as that described for the first variant.

The ball joint 1' can comprise a washer or a similar element, not shown in the figures, between the at least one locking nut 11' and the spherical element 2', in order to avoid possible damaging of the spherical
element 2' during the rotation of the locking nut 11'.

In order to ensure a correct centring of insert 4 along through opening 5, in order to ensure a radial expansion that is substantially symmetrical to the spherical element 2, at least one guide element 12 is provided, projecting from the insert 4 and slidingly engaged in the at least one notch 9.

Preferably, at least two guide elements 12 are provided, opposite to one another, engaged in corresponding notches 9 obtained in the spherical element 2 in diametrical position.

In one embodiment illustrated in figure 3, the guide element 12 comprises two tabs 13 projecting diametrically from the insert 4.

However, further embodiments are possible, in which the guide element 12 has the shape of a pin or the like, designed for sliding along corresponding notches 9.

Moreover, the at least one guide element 12 prevents the relative rotation of the insert 4 with respect to the spherical element 2, during rotation of the at least one locking nut 11 along threaded portion 7.

In such a way, a correct movement of the insert 4 inside the spherical element 2 is ensured without jamming.

In order to not to hinder the relative rotation of the
spherical element 2 inside the seat 3, the at least one guide element 12 is completely inside the spherical element 2.

The advancing of the insert 4 within the spherical element 2 depends upon the extension of the at least one radial notch 9 along the spherical element 2 itself.

In order to avoid cracks from forming at the closed end of the at least one notch 9, due to the expansion of the spherical element or subsequent expansion/compression cycles thereof, a shaped groove 14 can be provided.

The groove 14, moreover, acts as a stop for the at least one guide element 12 along the spherical element 2.

Figure 6, as an example and not for limiting purposes, illustrates one embodiment of the ball joint 1 according to the present invention.

In such an embodiment a ball joint 1, 1' is provided for connecting some components forming an external fixing device 15 for treating bone fractures.

Specifically, the external fixator device 15 provides for the use of a ball joint 1, 1' for the adjustable articulated connection of a first member 16 to a second member 17.
However, further uses of the ball joint 1 are possible in medical devices different from the fixator device 15 indicated above or from devices belonging to other commodity sectors without departing, for this reason, from the scope of protection of the present invention.

With reference to Figures 7 to 9, a ball joint according to a second embodiment of the present invention is indicated with the reference numeral 100 and comprises, like in the first embodiment, a substantially spherical element 102, designed to be housed in a hollow seat 103, the seat being obtained in a first component, and an insert 104 with an elongated shape, which is connected to the spherical element 102 and can be associated with a second component.

The configuration of the spherical element 102 is however different with respect to that of the first embodiment. More particularly, the spherical element comprises a substantially cylindrical central portion 102', between two substantially spherical cap shaped portions 102''.

The spherical element 102 is sized so that the circular base of each substantially spherical cap shaped portion 102'' matches a respective base of the substantially cylindrical portion 102'. The spherical element 102 can be obtained either en bloc, for example through milling.
of a portion of the outer surface of the spherical element 102, or through the assembly, in a way known to the skilled person, of many separate components.

The substantially cylindrical central portion 102' has, at its circular cross-section, a radius r shorter than the curvature radius R of each spherical cap 102'', so that the spherical element 102 has reduced overall dimensions in a plane parallel to the bases of such a cylindrical central portion 102' (Figure 8).

The spherical element 102, at the substantially cylindrical central portion 102', has a through opening 105 for housing the insert 104. Such a through opening 105 is obtained at the longitudinal axis of symmetry x-x of the spherical element 102 and the insert 104, having an elongated shape, is translatably movable in it along the same axis.

The insert 104 has at least one threaded portion 107, at least along the portion projecting outside the spherical element 102. The threaded portion 107 makes it possible the removable connection of the ball joint 100 to a second component.

For such a purpose, a threaded housing seat with a threading pitch corresponding to that of the insert 104 is specifically provided on the second component, for the screwing and blocking of one inside the other.
In order to partially limit or completely block the rotation of the spherical element 102 with respect to seat 103, blocking means 108 are provided, which are suitable for obtaining a radial expansion of the spherical element 102, as is better described below, when the spherical element is inserted in the respective housing seat 103.

The spherical element 102 has at least one notch 109 (see figures 8 and 9), of the radial type, starting from the through opening 105, designed for allowing the expansion in the radial direction.

For example, at least two notches 109 can be provided, which are diametrically opposite to one another so as to obtain a substantially symmetrical radial expansion of the spherical element 102. A different number of notches 109 can also be provided, for example, three preferably evenly angularly spaced with respect to one another around the longitudinal axis of symmetry x-x of the spherical element 102. Other positions of the notches around the spherical element are clearly possible.

The blocking means 108, designed for blocking in position the ball joint 100, once it has been inserted into the respective housing seat 103, comprise, similarly to the first embodiment of the present
invention, an enlarged portion 110, that is obtained at the end of the insert 104 inside the spherical element 102, and at least one locking nut 111 that can be operatively associated with the insert 104.

The enlarged portion 110, for example with a substantially truncated conical shape or similar, has at least one cross-section greater than a cross-section of the through opening 105 of the spherical element 2 (in the example illustrated in fig. 7 it is the section at the end of the insert 104). Particularly, the locking nut 111 can be associated, in use, with the threaded portion 107 of the insert 104. Accordingly, with such a configuration, as already described for the first embodiment, a backward movement of the insert 104 within the through opening 105, obtained by the rotation of the locking nut 111, leads to a homogeneous expansion in the radial direction of the spherical element 102 since the enlarged end portion of the insert 110, moving back in the opening 105, pushes the spherical element itself in a radial direction.

It should be noted that the spherical element 102 has its substantially spherical cap-shaped portions 102'' that are dimensioned in a manner so that once the radial expansion of the spherical element 102 has been
obtained, these are homogeneously in abutment against the inner surface of the seat 103, thereby ensuring a wide engagement surface between the spherical element 102 and the respective seat.

In other words, the spherical element 102, in its expanded configuration, has a geometrical shape, for example that of a ball, which corresponds exactly to that of the seat 103.

The amount of interference between the outer surface of the spherical element 102 itself and the inner surface of the seat 103 can be varied as a function of the amount of radial expansion of the element 102, partially limiting or completely blocking the movement of the ball joint 100.

Moreover, since the radial expansion of the spherical element 102 is substantially symmetrical, the spherical element 102 goes in abutment in a homogeneous manner against the seat 103, ensuring a stable and secure blocking of the ball joint 100.

By acting on the at least one locking nut 111 in a reverse way, the external diameter of the spherical element 102 is reduced, thereby re-establishing the movement of the ball joint 100.

As for the first embodiment, in order to ensure an even more secure and stable blocking of the blocking means
it is possible to provide for a counter-nut, not shown in the figures, to be placed in abutment against the locking nut 111 and avoid, in such a manner, accidental loosening thereof.

Furthermore, the locking nut 111 can comprise elastic elements of a per se known type or equivalent elements, so as to ensure the stable locking along the threaded portion 107.

Again, analogously to the first embodiment, in order to ensure a correct centring of the insert 104 along the through opening 105, in order to ensure a substantially symmetrical radial expansion of the spherical element 102, at least one guide element 112 is provided, which projects from the insert 104 and that can be slidingly engaged in the at least one notch 109.

Two guide elements 112 can be provided, which are opposite to one another, engaged in the corresponding notches 109 obtained in a diametrical position in the spherical element 2.

In one embodiment shown in figures 7 and 8, the guide element 112 comprises two tabs 113 radially extending from the insert 104.

However, further embodiments are possible, in which the guide element 112 has a pin shape or the like, suitable for sliding along corresponding notches 109.
In order to connect one first and one second component to one another through the ball joint 100 according to the second embodiment of the present invention, the spherical element 102 is inserted in the respective seat 103 obtained in a first component and the ball joint 100 is connected, through insert 104, to the second component.

An insert of this type is designed to be housed in a respective hollow seat 103 configured substantially like a spherical cap and, more particularly, having a radius of curvature that is slightly longer than the curvature radius R of the substantially cap-shaped portions 102'' of insert 100, and defining an inlet mouth 103' with a substantially circular configuration with a radius that is slightly longer than the radius r of the circular section of the substantially cylindrical central portion 102', but shorter than the radius of curvature R of the substantially cap-shaped portions 102''. The substantially spherical cap-shaped housing seat 103 has a volume that is at least equal to half the volume of spherical element 102.

The seat 103, moreover, in order not to interfere with the insert 104 during the insertion of the joint 100 in it, is open at the top (opening 103'''). With such a configuration the ball joint 100 can be inserted in the
respective seat 103 only with the respective spherical element 102 arranged with the bases of the substantially cylindrical portion 102' parallel to the inlet mouth 103' and the insert aligned with the opening 103'.

The spherical element 102 of the joint is configured so that, once it is inserted in its housing seat, it is free to rotate inside it ("movable" configuration) and, therefore, it makes it possible for the ball joint 100 to be oriented in the desired position.

Advantageously, with such a configuration of the housing seat 103, as soon as the ball joint 100 is moved into the seat 103 with respect to its insertion position, for example by angularly moving the insert 104 downwards, the spherical element 102 of the joint 100 is pivotally engaged in the seat itself, since the inlet mouth 103' has dimensions such as to prevent it from coming out.

The ball joint 100 is blocked in position in the respective seat as already described above.

It will be noted that the dimensions of the housing seat 103 are such that the amount of surface of the spherical element 102, brought into contact with the housing seat, is high and this promotes a secure and durable locking of the ball joint 100 in the desired
position.

With reference now to figures 10 to 13, it can be noted how a ball joint according to a third embodiment of the present invention is indicated with reference numeral 200 and comprises a substantially spherical element 202, designed in use to be positioned inside a respective hollow housing seat 203 obtained in a first component, and an insert 204, connected to the spherical element 202, as will be better described below, and associable, in use, with a second component. More particularly, the spherical element 202 comprises a substantially cylindrical central portion 202', between two substantially spherical cap shaped portions 202''. The spherical element 202 is dimensioned so that the circular base of each substantially spherical cap shaped portion 202'' matches a respective base of the substantially cylindrical portion 202'. The spherical element 202 can be obtained either enbloc, for example through milling of a portion of the outer surface of the spherical element itself, or it can be obtained through the assembly, in a manner known to the skilled person, of many separate components. The insert 204 above, has an elongated configuration and extends radially from the spherical element 202 at the side face of the substantially cylindrical portion 202'. In
the substantially cylindrical portion 202' a radial housing seat, for example a threaded one, is provided for a respective portion of the insert 204 (not illustrated in the figures), on which a threading is obtained with a corresponding pitch. In any case, the engagement between the insert 204 and the spherical element 202 can be obtained through equivalent engagement means, for example of the snap-insertion type or the like.

The substantially cylindrical central portion 202' has, at the circular cross-section thereof, a radius r shorter than the curvature radius R of each substantially spherical-cap portion 202'', so that the spherical element 202 has reduced overall dimensions in a plane parallel to the bases of such a substantially cylindrical central portion 202' (Figure 11).

The free end of the insert 204, which has for example a cylindrical configuration, is designed to be inserted, in use, inside a corresponding seat, not illustrated in the enclosed figures, which is obtained in a second component. For such a purpose, therefore, an annular recess 207 can be provided on the insert, for engagement with corresponding engagement means specifically foreseen in the second component. Other
configurations of the engagement means, known to the man skilled in the art, can, in any case, be provided. The insert 204 can, for example, comprise a threaded portion that can be screwed/unscrewed in/from a corresponding seat provided in the second component, which seat is in turn threaded with the same threading pitch.

It is of note that the configuration of the insert according to the second embodiment is very simple.

Such an insert is designed to be housed in a respective hollow housing seat 203 having a substantially spherical-cap shaped configuration and, more particularly, having a curvature radius that is slightly longer than the curvature radius R of the substantially cap-shaped portions 202'' of insert 200, and delimiting an inlet mouth 203' with a substantially circular configuration, having a radius that is slightly longer than the radius r of the circular section of the substantially cylindrical central portion 202', but shorter than the curvature radius R of the substantially cap-shaped portions 202''.

The substantially cap-shaped hollow housing seat 203 has a volume that is at least equal to half the volume of the spherical element 202.

The hollow seat 203 is open at the top (opening 203'')
so as to not interfere with the insert 204 of the ball joint 200, when it is inserted into the seat. The first component has two plates 214 of a jaw-like end 214 at such an upper opening 203'' on the opposite sides thereof, which jaw-like end is provided, as described in greater detail below, for blocking/clamping in position the spherical element 202 of joint 200 in the seat 203. Advantageously, the substantially cap-shaped housing seat 203 is dimensioned so that, once the spherical element of the joint 200 is blocked in position, the housing seat is homogeneously in abutment against the surface of the substantially cap-shaped portions 202'' of the joint, thereby ensuring that a wide engagement surface is provided between the spherical element 202 and the seat.

In other words, the housing seat 203 in its fixing configuration has a geometrical shape, which for example can be that of a spherical seat, corresponding exactly to that of the spherical element of the joint 200. With such a configuration the ball joint 200 can be inserted in the respective seat 203 only when it is arranged with the bases of the cylindrical portion 202' parallel to the inlet mouth 203' and the insert 204 is aligned with the opening 203'' between the two plates.
The ball joint 200 according to the third embodiment of the present invention comprises blocking means 211 intended, in use, to prevent the rotation of the spherical element 202 of the joint 200 once it is inserted in the respective seat 203.

Such blocking means 211 comprise, for example, locking means of the two plates of the jaw-like end 214, for example a screw 212 that can be screwed/unscrewed in/from corresponding threaded seats 213 specifically obtained in the plates referred to above.

Once the spherical element 202 of the joint is inserted in the respective seat 203 and rotated in the desired position, by screwing the screw 212 in the respective seats 213 a locking of the plates of the jaw-elements 214 and a consequent reduction of the housing seat 203, sufficient, as explained above, so as to obtain the efficient blocking of the spherical element 202 in the desired position is obtained.

Advantageously, in order to maintain the blocking means within the overall dimensions of the first component, the plate portion of the jaw-like end 214 which, in use, is in contact with the head of the screw, is provided with a smaller thickness.

Optionally, a mark on the screw 212 can be provided, intended to indicate to the operator the correct
locking of the two plates of the jaw end 214, during
the blocking of the joint 200 in the respective seat
203.
The operation of the ball joint of the present
invention is as follows.
With reference to the first embodiment, starting from
the ball joint 1, 1', in the movable configuration, in
which the spherical element 2 is not expanded, the
spherical element 2 is positioned inside a
corresponding seat 3 provided in a first component.
The opposite end of the ball joint 1, 1', in which a
threaded portion 7 is provided, is then connected
inside a corresponding threaded seat of a second
component. A hinge connection is thus obtained, that is
initially movable, between the first and the second
component.
The ball joint 1, 1' is then placed in the desired
position and, by acting upon the blocking means 8, the
expansion of the spherical element 2, 2' inside the
seat 3, 3' is obtained, indeed blocking the movement of
the ball joint 1, 1'.
In such a way the movement of the first component with
respect to the second component is prevented.
If it is desired to allow a reduced movement of the
ball joint 1, 1' in the respective seat 3, 3' it is
possible to act on the blocking means 8, by loosening the at least one locking nut 11, 11'. In such a way, there is a radial contraction of the spherical element 2, 2' that was previously expanded, thereby reducing the interference between the outer surface of the latter and the inner surface of the seat 3, 3'.

The assembly of the ball joint 1, according to the present invention, is simple to obtain. Moreover, by acting upon the blocking means 8 it is possible to modify the movement of the ball joint 1, 1' in an easy and rapid way, since adjustment locking nut 11, 11' directly associated with the ball joint 1, 1' is manipulated.

With reference to the second preferred embodiment of the present invention, for inserting the ball joint 100 inside the seat 103 obtained in a first component, the joint is positioned so that the insert 104 is aligned with the opening 103'' of the seat 103 and the substantially cylindrical central portion 102' has its circular bases arranged parallel to the inlet mouth 103' of the seat 103 (Figures 7 and 8).

The ball joint 100 is then inserted inside the seat 103 and the insert 104 of the joint is brought into the desired position. It is of note that, as soon as the ball joint 100 is moved into the seat with respect to
its insertion position, for example by angularly moving the insert 104 downwards, the spherical element 102 of the joint 100 remains engaged inside the seat, since the hollow housing seat and the inlet mouth 103' have dimensions such as to prevent it from coming out.

Once the insert 104 is brought into a desired position, the locking nut 111 is inserted and screwed on to the threaded portion 107 of the insert 104 in order to block its rotation inside the seat 103, thus obtaining a substantially homogeneous radial expansion of the spherical element 102. As mentioned above, the substantially cap-shaped portions 102'' of the spherical element will have the respective surfaces uniformly in abutment against the inner wall of the seat 103, thus obtaining an effective blocking of the insert.

Then, the insert 104 is engaged with the respective second component, thereby obtaining a connection between the first and a second component according to the desired angular directions.

If it is necessary to disconnect the ball joint 100 from the respective components the same step are carried out in opposite order.

With reference to the third preferred embodiment of the invention, as briefly mentioned above, for inserting
the ball joint 200 inside the seat 203 obtained in a first component, the joint is positioned so that the insert 204 is aligned with the upper opening 203' comprised between the plates of the jaw-like end 214 and the substantially cylindrical central portion 202' has its circular bases arranged parallel to the inlet mouth 203' of the seat 203 (Figures 10 and 11). The ball joint 200 is then inserted inside the seat 203 and the insert 204 of the joint is brought into the desired position. It will be noted that, as soon as the ball joint 200 is moved into the seat with respect to its insertion position, for example by angularly moving the insert 204 downwards, the spherical element 202 of the joint 200 remains engaged in the seat, due to the fact that the seat itself and the inlet mouth 203' are dimensioned such as to prevent it from coming out. Once the insert 204 is brought into a desired position and in order to block its rotation inside the seat 203, the screw 212 is inserted and screwed inside the threaded seats 213, thereby locking the plates of the jaw end 214 to one another. In such a way, the compression of the jaw end 214 determines a reduction of the housing seat 203, sufficient to obtain the homogeneous engagement between the substantially cap-shaped portions 202' of the
spherical element 202 and the inner surface of the seat 203, thereby ensuring that the joint is effectively blocked.

As can be noted, the dimensions of the housing seat 203 are such that the amount of surface of the spherical element 202 in contact with the housing seat is high and this promotes a secure and durable blocking of the joint 200 in the desired position.

Then the insert 204 is engaged with the respective second component, thereby obtaining a connection between the first and a second component according to the desired angular directions.

If it is necessary to disconnect the ball joint 200 from the respective components, the same steps are carried out in opposite order.

The ball joint according to the second embodiment is structurally simple and easy to apply.

The invention thus conceived can be subject to numerous modifications and variations all covered by the inventive concept.

Moreover, all the details can be replaced by other technically equivalent elements. In practice, the materials used, as well as the contingent shapes and sizes can be any, depending on the case, without departing for this reason from the scope of protection.
Of the following claims.
CLAIMS

1. Ball joint (200), associable with a first and a second component for their connection in an adjustable position, comprising a spherical element (202), at least partially housable in a hollow housing seat (203) of said first component, an insert (204), connected to said spherical element (202) and removably associable with such a second component, characterised in that the spherical element (202) comprises a substantially cylindrical central portion (202') between two substantially spherical cap shaped portions (202'') arranged with respect to one another so that each circular base of each substantially spherical cap shaped portion (202'') matches a respective base of such a substantially cylindrical portion (202').

2. Joint according to claim 1, wherein said substantially cylindrical central portion (202') of said spherical element (202) has its circular cross section with radius (r) shorter than the curvature radius (R) of each of said substantially spherical cap shaped portions (202''), so that said spherical element (202) has reduced overall dimensions in a plane parallel to said bases of said substantially cylindrical central portion (202').

3. Joint according to claims 1 or 2, wherein said
spherical element (202) is obtained enbloc.

4. Joint according to any claim 1 to 3, wherein said insert (204) radially extends from said spherical element (202) at the side face of said cylindrical portion (202').

5. Joint according to any claim 1 to 4, wherein an annular recess (207) is provided (207) at the free end of said insert (204).

6. Joint according to any claim 1 to 5, comprising blocking means (211) for said spherical element (202) in said housing seat (203).

7. Joint according to claim 6, wherein said blocking means comprise a screw (212).

8. Housing seat (203) for a ball joint (200) according to claim 2 and any claim 3 to 7 when depending upon claim 2, having a substantially spherical cap configuration with curvature radius slightly longer than the radius (R) of said substantially spherical cap shaped portions (202') and delimiting an inlet mouth (203') configured substantially circular with radius slightly longer than said radius (r) of said circular cross-section of the substantially cylindrical central portion (202'), but shorter than said curvature radius (R) of said substantially spherical cap shaped portions (202'').
9. Housing seat according to claim 8, wherein an upper opening is obtained (203") for receiving, in use, said insert (204) of said joint (200).

10. Housing seat according to claim 8 or 9, clampable around said spherical element (202) through said blocking means (211).

11. Housing seat according to any claim 8 to 10, wherein said internal surface of said seat (203) is uniformly in abutment on said substantially spherical cap shaped portions (202") of said joint, when said spherical element (202) of said joint (200) is blocked in position, thereby assuring a wide engagement surface between said spherical element (202) and the seat (203) itself.

12. Ball joint (1, 1', 100), of the adjustable type, associable with a first and second component for their connection in adjustable position, comprising a spherical element (2, 2', 102), designed to be at least partially housed in a hollow seat (3, 3', 103) of said first or said second component, an insert (4, 4', 104), of substantially elongated shape, partially inserted in said spherical element (2, 2', 102) and removably associable with said second component or said first component, means (8, 108) for blocking said ball joint (1, 1', 100) in a desired configuration, characterized
in that said blocking means (8, 108) are designed to obtaining an expansion of said spherical element (2, 2', 102).

13. Ball joint (1, 1', 100) according to claim 12, wherein said spherical element (2, 2', 102) has a through opening (5, 105) for slidably housing said insert (4, 4', 104).

14. Ball joint (1, 1', 100) according to claim 12 or 13, wherein said spherical element (2, 2', 102) has at least one radial notch (9, 109), designed for allowing the expansion in the radial direction of said spherical element (2, 2', 102).

15. Ball joint (1) according to claim 13 or 14, wherein said spherical element (2, 2', 102) comprises at least two radial notches (9, 109) diametrically opposed to one another.

16. Ball joint (1, 1', 100) according to any claim 13 to 15, wherein said insert (4, 4', 104) has a threaded portion (7, 107) for the removable connection of said ball joint (1, 1', 100) to said first or second component, at least along a portion extending from said spherical element (2, 2', 102).

17. Ball joint (1, 1', 100) according to any claim 13 to 16, wherein said blocking means (8, 108) comprise an
enlarged portion (10, 110), at the portion of said insert (4, 4', 104) arranged inside said spherical element (2, 2', 102), and at least one locking nut (11, 11', 111), associable with said threaded portion (7, 107) of said insert (4, 4', 104).

18. Ball joint (1, 1', 100) according to claim 15 or 16, wherein said insert (4, 4', 104) comprises at least one guide element (12, 112) slidably engaged in said at least one notch (9, 109).

19. Ball joint (1, 1', 100) according to claim 18, wherein said at least one guide element (12, 112) extends from said insert (4, 104).

20. Ball joint (1, 1', 100) according to claim 18, wherein said guide element (12, 112) is configured like a tab or pin or a similar element suitable for sliding into said notch (9, 109).

21. Ball joint (1, 1', 100) according to previous claim 18 or 19, wherein said spherical element (2, 2') comprises a shaped groove (14) at the closed end of said at least one notch (9, 109).

22. Ball joint (100) according to any claim 13 a 21, characterized in that said spherical element (102) comprises a substantially cylindrical central portion (102'), between between two substantially spherical cap
shaped portions (102"") arranged with respect to one another so that each circular base of each substantially spherical cap shaped portion (102"") matches a respective base of such a substantially cylindrical portion (102').

23. Joint according to claim 22, wherein wherein said substantially cylindrical central portion (102') of said spherical element (102) has its circular cross section with radius (r) shorter than the curvature radius (R) of each of said substantially spherical cap shaped portions (102'"), so that said spherical element (102) has reduced overall dimensions in a plane parallel to said bases of said substantially cylindrical central portion (102').

24. Joint according to claim 22 or 23, wherein said spherical element (102) is obtained enbloc.

25. Joint according to any claim 22 to 24, wherein said insert (104) radially extends from said spherical element (102) at the side face of said substantially cylindrical portion (102').

26. Joint according to any claim 22 to 25, wherein said surface of said substantially spherical cap shaped portions (102") is uniformly in abutment on said internal surface of said seat (103), when said spherical element (102) is blocked in position, thereby
assuring a wide engagement surface between said spherical element (102) and the seat (103) itself.

27. Housing seat (103) for a ball joint (100) according to claim 23 and any claim 24 to 26 when depending upon claim 23, having a substantially spherical cap configuration with curvature radius slightly longer than the radius \(R \) of said substantially spherical cap shaped portions (102''), and delimiting an inlet mouth (103'') configured substantially circular with radius slightly longer than said radius \(r \) of said circular cross-section of the substantially cylindrical central portion (102'), but shorter than said curvature radius \(R \) of said substantially spherical cap shaped portions (102'').

28. Housing seat according to claim 27, wherein an upper opening is obtained (103'') for receiving, in use, said insert (104) of said joint (100).
A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>Inv.</th>
<th>F16C11/10</th>
<th>F16C11/06</th>
</tr>
</thead>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

F16C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevance to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 950 374 A2 (PINE RIDGE HOLDINGS PTY LTD [AU]) 20 October 1999 (1999-10-20)</td>
<td>1-3,5-8, 10, 11,27</td>
</tr>
<tr>
<td></td>
<td>paragraph [0023] - paragraph [0027]; claims 16, 17; figures 1-3</td>
<td>4,9</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 562 737 A (GRAF HENRY [FR]) 8 October 1996 (1996-10-08)</td>
<td>22-26,28</td>
</tr>
<tr>
<td></td>
<td>col umn 5, line 31 - line 50; figures 13, 14</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 3 795 922 A (HERBERT J ET AL) 12 March 1974 (1974-03-12)</td>
<td>9,28</td>
</tr>
<tr>
<td></td>
<td>col umn 7, line 30 - line 48; figures</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>FR 2 810 873 AI (GRAF HENRY [FR]) 4 January 2002 (2002-01-04)</td>
<td>1,8,27</td>
</tr>
<tr>
<td>A</td>
<td>page 4, line 4 - line 8</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>page 7, line 6 - line 19; figures 1,5A,5B</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - **A** document defining the general state of the art which is not considered to be of particular relevance
 - **E** earlier application or patent but published on or after the international filing date
 - **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - **O** document referring to an oral disclosure, use, exhibition or other means
 - **P** document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search

18 June 2014

Date of mailing of the international search report

25/06/2014

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Martin, Christophe
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>col umn 4, line 25 - line 39; figures</td>
<td>21-26</td>
</tr>
<tr>
<td>X</td>
<td>WO 94/00066 AI (SYNTES AG [CH]; SCHLAEPFER JOHANNES FRIDOLIN [CH]; HESS MARTIN [CH]) 6 January 1994 (1994-01-06) figures</td>
<td>12-17</td>
</tr>
<tr>
<td>X</td>
<td>US 4 565 345 A (TEMPLEMAN ARTHUR R [US]) 21 January 1986 (1986-01-21) claim 1; figures</td>
<td>12-21</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB2014/058232

INTERNATIONAL SEARCH REPORT (Continuation of item 2 of first sheet)

Box No. II
Observations where certain claims were found unsearchable

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 64(a).

INTERNATIONAL SEARCH REPORT (Continuation of item 3 of first sheet)

Box No. III
Observations where unity of invention is lacking

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only the claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant's protest but the applicable protest was not received within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.

Form PCT/ISA/21 (continuation of first sheet) (2) (April 2005)
This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-11

 Ball-joint and its housing seat, the spherical element of the joint being made of a cylindrical portion between two substantially spherical cap shaped portions, the cylindrical portion enabling the insertion of the spherical element inside the housing seat, thereby allowing its free rotation inside it (see page 22, lines 6-10 of the description).

2. claims: 12-28

 Ball-joint and its housing seat, the joint including blocking means for expanding the spherical element thereof and thereby blocking the ball-joint in a desired position (see characterizing portion of claim 12).
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 69936555 T2</td>
<td>20-03-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0950374 A2</td>
<td>20-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2291008 T3</td>
<td>16-02-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6234961 Bl</td>
<td>22-05-2001</td>
</tr>
<tr>
<td>US 5562737 A</td>
<td>08-10-1996</td>
<td>AT 177305 T</td>
<td>15-03-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7892994 A</td>
<td>23-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2135838 A</td>
<td>19-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69416937 D1</td>
<td>15-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69416937 T2</td>
<td>14-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 0654249 T3</td>
<td>27-09-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0654249 A</td>
<td>24-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2130381 T3</td>
<td>01-07-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2712481 A</td>
<td>24-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2712482 A</td>
<td>24-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3586298 B2</td>
<td>10-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP HO8191840 A</td>
<td>30-07-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5562737 A</td>
<td>08-10-1996</td>
</tr>
<tr>
<td>US 3795922 A</td>
<td>12-03-1974</td>
<td>BE 793409 A</td>
<td>16-04-1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 567405 A5</td>
<td>15-10-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2300810 A</td>
<td>19-07-1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2167381 A5</td>
<td>24-08-1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1410561 A</td>
<td>15-10-1975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 978137 B</td>
<td>20-09-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S4879492 A</td>
<td>24-10-1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 66769 A</td>
<td>01-03-1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7300385 A</td>
<td>17-07-1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3795922 A</td>
<td>12-03-1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 7209104 A</td>
<td>26-09-1973</td>
</tr>
<tr>
<td>FR 2810873 A1</td>
<td>04-01-2002</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 4520983 A</td>
<td>04-06-1985</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2011245876 A</td>
<td>06-10-2011</td>
<td>US 2011245876 A</td>
<td>06-10-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014114358 A</td>
<td>24-04-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0599847 A</td>
<td>08-06-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2100348 T3</td>
<td>16-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP HO6509950 A</td>
<td>10-11-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5501684 A</td>
<td>26-03-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9400066 A</td>
<td>06-01-1994</td>
</tr>
<tr>
<td>US 4565345 A</td>
<td>21-01-1986</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>