US 20070220483A1

a9y United States

12y Patent Application Publication o) Pub. No.: US 2007/0220483 A1

Motoyama et al.

(43) Pub. Date:

Sep. 20, 2007

(54) APPROACH FOR AUTOMATICALLY Related U.S. Application Data
GENERATING PROGRAM CODE
(63) Continuation of application No. 10/652,715, filed on
(76) Inventors: Tetsuro Motoyama, Cupertino, CA Aug. 28, 2003, now Pat. No. 7,237,224
US); A F Castro Valley, CA
EUS} very TOns, Tastio vatey, Publication Classification
(51) Imt. CL
Correspondence Address: (52) IGJ086FC] Y (2006.01) 7177106
HICKMAN PALERMO TRUONG & BECKER, WS CL s
LLP (57) ABSTRACT
2055 GATEWAY PLACE Programming the creation of a software system is facilitated
SUITE 550 by automating the generation of some of the program code
SAN JOSE, CA 95110 (US) that is necessary for the software system. The generation of
program code may be automated based on a software design
specification that can be created by developers. The software
(21) Appl. No.: 11/803,915 design specification may be scanned and code may be
generated for implementing the software system based on
information obtained from scanning the software design
(22) Filed: May 15, 2007 specification.
SOFTWARE DESIGN
SPECIFICATION
10 SKELETCON
CODE PROGRAM FILE(S)
GENERATOR 140
130
DESIGN RULES
120

Patent Application Publication Sep. 20,2007 Sheet 1 of 25 US 2007/0220483 A1

SOFTWARE DESIGN
SPECIFICATION
110 SKELETON
| CODE PROGRAM FILE(S)
GENERATOR 140
130
DESIGN RULES
120

FIG. 1

Patent Application Publication Sep. 20,2007 Sheet 2 of 25

SCAN SOFTWARE DESIGN
SPECIFICATION
210

l

!

ADD CORRESPONDING FILE HEADERS
TOEACH H AND .CPP FILE
24

IDENTIFY EACH CLASS OR
STRUCTURE IN SOFTWARE
DESIGN SPECIFICATION
214

!

!

ADD FUNCTION HEADERS TO EACH
FUNCTION IN THE .CPP FILE
238

CREATE .H AND .CPP FILES FOR EACH
IDENTIFIED CLASS OR STRUCTURE
218

'

v

ADD APPROPRIATE COMMENTS TO
EACH .H AND .CPP FILE

242

ADD CORRESPONDING CLASS
DECLARATION TO EACH HFILE
222

!

l

COMPILE SKELETON CODE
246

ADD SKELETON CODE TO EACH .CPP
FILE
226

l

RECEIVE MANUALLY ENTERED CODE
TO SUPPLEMENT SKELETON CODE
220

'

IDENTIFY AND ADD APPROPRIATE
DIRECTIVES TOEACH HFILE
230

COMPILE DESIGN SPECIFICATION
CODE
284

FIG. 2

US 2007/0220483 Al

Patent Application Publication Sep. 20,2007 Sheet 3 of 25 US 2007/0220483 A1

SCAN SOFTWARE DESIGN SPECIFICATION
DIRECTORY
310

Y

PRODUCE SKELETON DIRECTORY BASED
ON DESIGN SPECIFICATION DIRECTORY

320

Y

IDENTIFY EACH CLASS/STRUCTURE
SPECIFIED IN THE DESIGN SPECIFICATION

330

¢

CREATE CLASS DECLARATION AND/OR
IMPLEMENTATION FILE(S) IN SKELETON
DIRECTORY FOR EACH IDENTIFIED CLASS

340

FIG. 3

Patent Application Publication Sep. 20,2007 Sheet 4 of 25

SCAN SOFTWARE DESIGN
SPECIFICATION
410

l

Y

IDENTIFY CLASS ATTRIBUTES
440

CREATE OUTPUT DIRECTORY THAT
REPLICATES NODE STRUCTURE CF
SOFTWARE DESIGN SPECIFICATION
DIRECTORY
415

!

IDENTIFY CLASSES THAT USE OTHER
CLASSES
445

Y

IDENTIFY FILES THAT ARE CLASS OR

STRUCTURE SPECIFICATIONS
' 420

l

!

GENERATE AND PLACE
DECLARATION FILE IN OUTPUT
DIRECTORY
450

GENERATE HASH TABLE TO MANAGE
DIRECTIVES

425

l

l

GENERATE AND PLACE FUNCTION
IMPLEMENTATION FILE IN OUTPUT
DIRECTORY
455

SCAN SOFTWARE DESIGN
SPECIFICATION AGAIN
430

l

IDENTIFY FUNCTION DECLARATIONS
435 ,

FIG. 4

US 2007/0220483 Al

504

\

Directory for
Software
Design
Specification

US 2007/0220483 Al

Patent Application Publication Sep. 20,2007 Sheet 5 of 25
5(?2
Directory Files for
e for e——— architecture
Architecture and figures .
Files for Files for
Directory specification specification
™ for acka' e of package - of package
ore £ and classes and classes
and figures and figures
Files for Files for
Directory specification Directory specification
for package = ofpackage for package — ofpackage
and classes and classes
and figures and figures
Files for Files for
. specification . specification
Directory Directory
for package of package for package of package
P g and classes p £ and classes
and figures and figures
More More
. Directories Directories

. for packages

Directory for
package

Directory for
package

More

Directories
for packages

522

for packages

Files for
specification
of package
and classes
and figures

Specification Directory

FIG. 5

Organization of Software Design

Patent Application Publication Sep. 20, 2007

610

/

Directory
for Code

Directory
for package

Directory
for package

Directory
for package

More
Directories

. for packages

Files for .h
and .cpp of
classes

Files for .h
and .cpp of
classes

Files for .h

e and .cpp of

classes

Directory for
package

Directory for
package

More
Directories

for packages

Sheet 6 of 25 US 2007/0220483 Al

Files for .h
e and .cpp of

classes
. Files for .h
Directory
f— e—— g nd .cpp of
for package
classes

Files for .h
en A0 PP Of
classes

Directory
for package

More
Directories

for packages

Files for .h

e and .cpp of

all classes

|
600

Output Directory

FIG. 6

Patent Application Publication Sep. 20,2007 Sheet 7 of 25 US 2007/0220483 A1

Skeleton Code Generation Tool
700

Software Design Specification Navigator
710

Class Identifier Module
720

File Structure Generator
730

Function Processor
740

Attribute Processor
750

Class Declaration File Generator
760

Class Skeleton Function File Generator
170

Rules.
780

FIG. 7

Patent Application Publication Sep. 20,2007 Sheet 8 of 25 US 2007/0220483 A1

SkeletonCodeMaker.pl

CID//815

File Structure
Generator Package
810

/CD

825 generateSkeletonCodeForClass()

Class Skeleton Code
Generator Package
820

FIG. 8

Class Specification
200

Class Specification Header
910

Function List
920

Class Attributes
930

Function Definitions
940

Format of Class Specification

FIG. 9

Patent Application Publication Sep. 20,2007 Sheet 9 of 25 US 2007/0220483 A1

Class Declaration File
1000

File Header
1002

Preprocessor Directives
1004

File Inclusions
1006

Class Declaration
1008

FIG. 10

Class Skeleton Function File
1100

File Header
1102

File Inclusions
1104

Function Header
1106

Skeleton Function
1108

FIG. 11

Patent Application Publication Sep. 20,2007 Sheet 10 of 25 US 2007/0220483 A1

1250
1210 ~ /

Create directory under

Obtain file from design

. it
specification l target dlrector.y if it does
not exist
l / 1260
1215 Are there Add class name and absolute target
NO nvmore files? NO directory path to the hash table
- m ! %m1_AbsTargetPathForClassStrctTable
End 1225 YES NO ¢ [1270
Is file an Add filename and class
1220 HTML file? name to the hash table
s %m1_FileClassStrctTable
YES
1230
Can class
name be obtained
rom file?,
1240

\ YES
A 4
Add class name and its relative

directory path to the hash table
%m_ClassIncludeRelativePath

FIG. 12

Patent Application Publication Sep. 20,2007 Sheet 11 of 25 US 2007/0220483 A1

1310
[

Obtain file from

T software design
specification

1315 1320

- Are there
anymore files?

NO End

YES
1330

Does
file contain a
class?

YES 1340
y 4

Create .h file and .cpp
file for class in the
target directory

l / 1350

Add the skeleton code
to the files for the class

FIG. 13

Patent Application Publication Sep. 20,2007 Sheet 12 of 25

/- 1410 l / 1460
Obtain information »
from function list of Add file header o .cpp
class specification file
& ~ 1420 l s 1470
Obtain information .
from class attributes Add #includes to .cpp
table of class file
specification
* S~ 1430 i s 1480

Add file header and
#define to .h file

¢ Va 1440

Add #includes to .h file

i ~ 1450
Add class declaration
to .h file

Obtain function definition
from class specification
and add it as function
headers to .cpp file

* ~— 1485

Add function definition
to.cpp file

* ~ 1490

Add debug functions
and return value to
function definition in
.cpp file

FIG. 14

US 2007/0220483 Al

Patent Application Publication Sep. 20,2007 Sheet 13 of 25 US 2007/0220483 A1

%m_ClassRelativelncludePath
1510

Class or Structure Name Relative Path

1512 : 1514

FIG. 15A

%m?2_ClassStructFunctionDecl

1520
1526
: !
Class or Structure Name Function Table J
Function Name |Function Declaration
1522
1527 1529
1524
%m1_AbsTargetPathForClassStrctTable
1530
Class or Structure Name Absolute Path
1532 1534

FIG. 15C

%m1_FileClassStrctTable
1540

Filename Class or Structure Name

1542 1544

FIG. 15D

Patent Application Publication Sep. 20,2007 Sheet 14 of 25

US 2007/0220483 Al

%m_ClassIncludeRelativePath

Class or Structure Name

Relative Path

CTimer
CTimerSystemRegistry
CMonitorService
SKeyValuelnfo
CMonitorManager
CDeviceFactory
CDevice
CDeviceODBC
CDeviceHistory
CDevicelnfoData
CHWaccess
CSNMPAccess
CHTTPAccess
CSNMP
CSNMPSession
CHTTP
CHTTPSession

Timer\

Timen

MonitorService\

Monitor
Monitor\MonitorManager\
MonitorDevice\
Monitor\Device\
MonitorDeviceODBC\
Monitor\DeviceODBC\
MonitonDeviceODBC\
Monitor\HWaccess\Access\
Monitor\HWaccess\Access\
Moniton\HWaccess\Access\
Monitor\HWaccess\SNMP\
Monito\HWaccess\SNMP\
Monitor\HWaccess\HTTP\
Monitor\HWaccess\HT TP\

1602
/_

FIG. 16A

US 2007/0220483 Al

Patent Application Publication Sep. 20,2007 Sheet 15 of 25

a9l Old

wysSe[DUOISSASd LLHD ul
wiysse[Dd.LLH? d.LLH —
W)Y 'SSBDUOISSAS J AINS? u.l
unyssedJNNSd dIAINS -
uny'sse[)sse90V d L LHD
U SSEOS500V dINNS? WY OJuan{RA AIMS ——
U SSB[DSSIIOY M HO ssaoy —1— ssa00e M1 —
Wy sse|DRIROUOIAIGD — 9091
unysse[)RIRCKI0ISIHMAI(D IM\
Uy SSEDDEQ0NAID — DEAO@MSG —
. WIY'SSe|)221Aa(|0
Wiy $sej)£10108 130142 (0D lll—| 201A2(] IN\ 9091
Wy sse[DIoTRURNIONUOND pfeuepionuopy — 10UUON

WY SSB[DIDNAISIONUONG —— IDIAIDSIOJIUO[A

$091 ™~ wysse|DANsISaywals o 0

CO9| —— LIUSSEIORULLY H_| iy m_.o@oo
v091 0191

uoneIyIRds usisa(atemyjos

Patent Application Publication Sep. 20,2007 Sheet 16 of 25

Obtain relative path of
class

1710
Ve

:

Replace directory
names in relative path
of class with ..

1720

'

Obtain relative path of
class to be included

:

Combined relative path
of class with relative
path of class to be
included

Y

Create include
preprocessor directive
with combined relative

path

US 2007/0220483 Al

Example:
CDevice includes CHTTP

Relative Path of CDevice:
Monitor\Device

Relative Path of CDevice:
AW

Relative Path of CHTTP:
Monitor\HWaccess\HT TP

Combined Relative Path:
<A\Monitor\AHWAccess\HTTP

#include ".\.\Monitor\HWAccess\HTTP"

FIG. 17

US 2007/0220483 Al

Patent Application Publication Sep. 20,2007 Sheet 17 of 25

V8l 'Old

(ereq@s ut Suins:pISNIXa L HALLHISS ploa
(ereqs w1 Suns: PN [TALLHI2S Suins:pis
O1xa L TWILHS~

OWa L TWLHS

X3 L TALLH198
L TNLHIE
X9 L TNLHS~

X9 TNLLHS

UOI}BIR[II(] UOLIURJ

dWEN uonduny

(TeyDd Ul IeYyd)a1RISIIRISSSad04d pioa

(aurs nour @p3uLns::pis)oedSay p Fulfies [2401 PIOA
(duis InQut 2p3uLns::pis)aced Sy m Suipeaaaowal pioa
‘(9or[days™ ut pBuInsipIs ‘Yoieass ul

pduinsiipis 9xo s InQui p3uinsiipis)ixa aoejdas proa
(anjeAS N0 RBULNS:IPIS ‘BIBISTINLH N0

91B1S TN LHH: 1089001 IX3 | TINLLHD)aN|eA PUVleISUIRIqo
ajeISUINIAY

(auis ur 2pBulns::pis)aulIas

(010882001 41%3 | TINLHD~

()10s532010I%3 L TNLLHD

3185 He1Sssa901d
aordganym Furpres aAcwal
soedganyp Suipeaasotual

121 20e[das

anje Apuyajeiguie)qo
aurmes
1085300141%d " TIN.LHD~
1088300 JIXa L TINLHD

UONJRIB[II(] UonduUnyg

JwieN Uondung

IXSLTNLHS

108S320441X3 L TINLHD

JIqe [, uondUNy

k)N 21n)2N13§ 10 SSe[D

0081
[P3uonduUN J)INIISSSe[) e,

US 2007/0220483 Al

Patent Application Publication Sep. 20,2007 Sheet 18 of 25

d8l oid

X
‘ejegs w HBuTtais::p3s
uﬂmumomlzﬂ PuTtIas: :pPas)IXSLTHLHI®S PTOA
:a3eatad
NAmumamICﬂ PuTa3s: :p3s)IXSLTHIHISD butags::pas
! () IXSLTHLHS ~
: () IXSLTALHS
cotTgnd
} IXSBLTWLHS 3Ionaas

{ {xeynd uT IEYD)S\jejgilrelgssavord proa
! (euTTs anout 3BuTIzS: p3s)seoedgslrTymbuTTTRIL2A0WST PTOA
(I r T 134 TYMbUT
! (suTTs 3noutr 3Hurxys::p3s)ssoedgesTtymburpesTsacwsax proa
(suT T T P T
:o3eatad

: (eoerdeys ut
3bUTI]S: 1 P3S ‘yoaeass ut 3BuUTIIS::pP3s ‘3IxXSOLS INOQUT FBuUTIYS::p3s)3Ixsrsoefdsax proa
! (enTeAs 3no 3ButIis: :p3s
‘93e3STWLH 3INO 39IBISTWIHI ! : TOSSOD0IJIXSLTHLHD) SN TeAPUYSIEISUTEIQO D3BISUINISYT
! (@uTIs ur FHbuTaI]S::pP3S)SBUTIIODS PTOA
I () T0Ss800IJIXSLTHILHD ~

! () TOSS®D0IdIXDL TNLHD
roTTqnd
3STT uoTloung I1'S"%°9°S
uot3eoTyToads SSBTD IOSSOD0IJIXSLTRLHD S'v'9°S

081
uonjedydIdg ssep)

US 2007/0220483 Al

Patent Application Publication Sep. 20,2007 Sheet 19 of 25

61 Old

ajqe) ysey
[P3UONUNJ)INIJSSSE]) W,
0} SUOLJEIE[IIP UonduUnj pue ‘saumieu
uondUNJ ‘e 3INJINNS PPy

—

UOIJEIE[IAP JINIS JO
SUOIBIE[IIP UOHIUN] WOIJ
sawieu uonduny WMeyqQ

Zsanquye
ssepd Jo Surumidoq
ayj aurf S|

0561

& UOTRIE[IIP
jonys jo Suruuidaq
Yy auff S|

SHA

ph6T —

aqe) ysey

[P(UONIIN JIINISSSBL) gL/,
0) SUONJRIB[IIP UoHIUNy pue

‘sameu uonduUN} ‘aweu SSep ppvy

wel —

UOIRIR[IIP SSEP JO
SUOIJRIZ[IIP UOIIUN] WO.IJ
saueu uoHAUN} UIL)qQO

ovol

{uoneredd
ssejo Jo Suruursaq
31} auly ST

NO

pe6r —

[4%

a1qe) ysey

[33@UONdUN IINIJSSSE[) MY,
0] UOIJRIB[IIP UOIUNJ pue
‘Quieu UoLdURNY ‘dWBU SSEP ppy

61—

unonesepPIp

g——] uonduUNj W0IJ JWIEY
uoluUNy WILIqO

Juoneae|dap
uopduUNy € aul|

_/

vel

(441 —/

0Z61

3SI] uonyOUNY

0161 -

wo.aj aul meyqO

Patent Application Publication Sep. 20,2007 Sheet 20 of 25 US 2007/0220483 A1

L 2010 : $ /~ 2060

Add the function Add code for the

definition of the class beginning of skeleton
specification to .cpp file function to .cpp file

as function header

+ ~ 2020 ‘ /- 2070

Determine function ' Add debug function to
name from function print out function name
definition for debug purposes

l - 2030 ¢ /~ 2080

Search the second hash
table for the function
name

l - 2040

Obtain class name and
function declaration
for function

From the return value
obtained from function
definition, add correct
return value to .cpp file

\J /‘ 2050

Determine return value
from function
declaration

FIG. 20

Patent Application Publication Sep. 20,2007 Sheet 21 of 25

%ml_AbsTargetPathForClassStrctTable

2100

Class or Structure Name

Absolute Directory Path

CTimer
CTimerSystemRegistry
CMonitorService
SKeyValuelnfo
CMonitorManager
CDeviceFactory
CDevice
CDeviceODBC
CDeviceHistory
CDevicelnfoData
CHWaccess
CSNMPAccess
CHTTPAccess
CSNMP
CSNMPSession
CHTTP
CHTTPSession

/CodeDirfTimer/

/CodeDir/Timer/
/CodeDir/MonitorService/
/CodeDir/Monitor/
/CodeDir/Monitor/MonitorManager/
/CodeDir/Monitor/Device/
/CodeDir/Monitor/Device/
/CodeDir/Monitor/DeviceODBC/
/CodeDir/Monitor/DeviceODBC/
/CodeDir/Monitor/DeviceODBC/
/CodeDir/Monitor/HWaccess/Access/
/CodeDir/Monitor/HWaccess/Access/
/CodeDir/Monitor/HWaccess/Access/
/CodeDir/Monitor/HWaccess/SNMP/
/CodeDir/Monitor/HWaccess/SNMP/
/CodeDir/Monitor/HWaccess/HT TP/
/CodeDir/Monitor/HWaccess/HTTP/

FIG. 21A

US 2007/0220483 Al

US 2007/0220483 Al

Patent Application Publication Sep. 20,2007 Sheet 22 of 25

dlLc 9ld

w)y'sse|HuoIssaSd L LH?

unysse[Dd.I.LHO H_I dLLH]
WY 'SSB[DUOISSISJINNSD u'
uny-ssejndiNNS? dINNS —
WY 'SSB[)SSIIV [LHO
uny'sse|nssaddyJAINSO Wiy ojujan{e A KOS
WY SSB[DSSI0Y M HO ssaooy —d— $S300B M H ——

wnysse[DeIeCiojujadiAd(e —m

Wy sse|DeIe(A10ISIH991A(Q0 —

wiy'sse[DDEAOPDIA([QY —— DHdA0PMd |
Wiy sSe[DANAIR
wiysse[D £10308,1a31A3(]0 ul 201A3(] _—
unysse|DIIZRUBRIAIONUOIND ——— J3FBURIAIONUOIN 1 10IUOIN]
Wy sSe[DI0IAIIGIONUOND ———— 3DIAIISIONUON
PO1C
W SSej) ANSIZaYwasLGIawi | o \
wysse[paaW 19 H_’ fowr], €1-01rd-90

[{1) ¥4
uonedyadg ugdisa(q a1emyjos

Patent Application Publication Sep. 20,2007 Sheet 23 of 25 US 2007/0220483 A1

%m]1_FileClassStrctTable
2200
Filename Class or Structure Name
cTimer.htm CTimer
¢TimerSystemRegistry.htm CTimerSystemRegistry
cMonitorService.htm CMonitorService
sKeyValuelnfo.htm SKeyValueinfo
cMonitorManager.htm CMonitorManager
cDeviceFactory.htm CDeviceFactory
cDevice.htm CDevice
¢DeviceODBC.htm CDeviceQDBC
cDeviceHistory.htm CDeviceHistory
cDevicelnfoDaia.htm CDevicelnfoData
cHWaccess.htm CHWaccess
cSNMPAccess.htm CSNMPAccess
cHTTPAccess.htm CHTTPAccess
cSNMP.htm CSNMP
cSNMPSession.htm CSNMPSession
cHTTP.htm CHTTP
¢cHTTPSession.htm CHTTPSession

FIG. 22A

US 2007/0220483 Al

Patent Application Publication Sep. 20,2007 Sheet 24 of 25

dcc 9Old

Wiy SSejUOISSaSd 1 LHO ul
unysse[Dd LLHO dLLH —
Wiy SSe[DUOISSIS JIAINSD H_ll
unysse[JNS? dANS —
uny sse|ssa0dvd [[HO
UIYSSEL)S500V d NS uny-ojuanjep Aays
WY SSB[DSSIN0Y M HO SS90V ——de ssa00e M H _—
Wiy SSB[DRIR(OJU[II1A3[D —
wgysse|DeeA101SIHo01400 —]
uny sse[DDEA0NA[Y —— DEJOPJ |
uNY'sSe[DINAIGD
wny sse|DAI1019. §30143(]0 ul 30182Q —
WY 'SSe[DITRUBAIONUOND ——— 13TRUBALONIUOIN) I01{UOIN

W)Y 'SSB[DIDIAIISIONUOAND ———— I0IAIISIONUOIN

wsse[DAnsIZoywasAgiatur§ o
W)Y SSE|DIaWI [D H_I Ry,

({1144
uoneay1adg udisa(g aaemyjog

€1-017A-90

US 2007/0220483 Al
<
N
3

1SOH
ez (- " T " - - - T - o ST e T e T
\ , 00EC — _
ANIT 7 !
“ MHOMLIN JOV4H3LNI 70 | 9l€c
S woo1 /) HOMIN NOLLYOINNAWOD ¥0S$53004d _ Mv Hmwwﬁ%%
v _ ‘ |
o _ _
3 | _
7 : _
o~ M [
= 9z€2 _ I |
« | ¢0t¢ A v ¥Iee
m | sng _ 301A3A LNdNI
: dsl _ _
m.. | |
= ['
2 1INY3LINI _ |
31 | |
= . |oTee 3052 90%¢ | —
A/
£ 4% | 30IA3Q AHOWIW |
g OEEC ! JOVHOLS WoY NIVIN ! AVIdSI
2 HIANAS _ |
[
2 Lo o L L e e = = J
= _
p | |
= €¢ 9Old
£
=
=W

US 2007/0220483 Al

APPROACH FOR AUTOMATICALLY
GENERATING PROGRAM CODE

RELATED APPLICATIONS

[0001] This patent application is a continuation of U.S.
patent application Ser. No. 10/652,715 (Attorney Docket
No. 49986-0528), filed Aug. 28, 2003, entitled “Data Struc-
ture Used for Skeleton Function of a Class in a Skeleton
Code Creation Tool,” naming Tetsuro Motoyama and Avery
Fong as inventors, the entire content of which is hereby
incorporated by reference in its entirety for all purposes.

[0002] This patent application is related to U.S. patent
application Ser. No. 10/313,158 (Attorney Docket No.
49986-0516), now issued as U.S. Pat. No. 7,171,652, filed
on Dec. 6, 2002, entitled “Software Development Environ-
ment with Design Specification Verification Tool,” naming
Tetsuro Motoyama and Avery Fong as inventors.

[0003] This patent application is related to U.S. patent
application Ser. No. 09/881,250 (Attorney Docket No.
49986-0506), now issued as U.S. Pat. No. 7,191,141, filed
on Jun. 13, 2001, entitled “Automated Management of
Development Project Files Over a Network,” naming Tet-
suro Motoyama as inventor.

[0004] This patent application is also related to U.S. patent
application Ser. No. 10/059,694 (Attorney Docket No.
49986-0509), filed on Jan. 28, 2002, entitled “Project Man-
agement Over A Network with Automated Task Schedule
Update,” naming Tetsuro Motoyama as inventor.

[0005] This patent application is also related to U.S. patent
application Ser. No. 10/652,603 (Attorney Docket No.
49986-0526), filed on Aug. 28, 2003, entitled “Technique
For Automating Code Generation In Developing Software
Systems,” naming Tetsuro Motoyama and Avery Fong as
inventors.

[0006] This patent application is also related to U.S. patent
application Ser. No. 10/652,602 (Attorney Docket No.
49986-0527), filed on Aug. 28, 2003, entitled “Data Struc-
ture Used for Directory Structure Navigation in a Skeleton
Code Creation Tool,” naming Tetsuro Motoyama and Avery
Fong as inventors.

FIELD OF THE INVENTION

[0007] The present invention relates to automatic code
generation for software systems. In particular, the present
invention relates to a system and method for automatically
generating code for a software system based on a design
specification.

BACKGROUND OF THE INVENTION

[0008] The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section.

[0009] Development of software systems is often a large
undertaking for businesses. Often, developers create docu-
ments that specify how the software system should be
developed. These documents may include explanations,

Sep. 20, 2007

figures, flow charts and other expressions of ideas regarding
requirements, implementation, execution or use of the soft-
ware system. The specification may also include documents
that specify specific programming aspects of the software
system. These program aspects include, for example, nam-
ing and defining software classes, function declarations,
relationship of software classes to one another, specific
comments that are to be placed in program files. By speci-
fying this information on the developer side, one result that
is achieved is that different portions of the overall software
system may be better interrelated with one another.

[0010] Developers often adhere to a convention or a set of
guidelines in how certain types of information are presented
in the specification for the software system. This forces
programmers to follow a convention that is understood by
all of the developers and programmers that work on the
software system.

[0011] Despite using a software design specification with
guidelines, creating code files based on the design specifi-
cation is often tedious and labor intensive. Typically, pro-
grammers manually refer to the design specification con-
tinuously while entering code. Certain programming tasks,
such as function declarations and listing class attributes,
require the programmer to go back and forth between the
specification and the program files in order to write the
correct syntax for the code that corresponds to the function
declarations and class attributes. Often, the programmer
must also structure the program files that are created accord-
ing to what is provided or otherwise specified in the design
specification. This is also a labor intensive task, as the
program files can have long directory paths that are at least
partially based on a corresponding directory path in the
software design specification.

[0012] Based on the foregoing, an approach for develop-
ing software code that does not suffer from the limitations of
prior approaches is highly desirable.

SUMMARY OF THE INVENTION

[0013] An approach is provided to facilitate the creation of
a software system by automating the generation of at least a
portion of the program code in the software system. The
generation of program code may be automated based on a
software design specification. According to one aspect of the
invention, a specification that describes how a software
system is to be designed is scanned. Certain designated
characteristics of the specification may be detected during
the scan. Based on the designated characteristics, at least a
portion of the program code for implementing the software
system is automatically generated. The approach can sig-
nificantly reduce the time required by skilled programmers
to develop the program code for the software system based
on the design specification and also reduce errors in the
software system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The present invention is depicted by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer-
als refer to similar elements and in which:

[0015] FIG. 1 is a block diagram of a system for gener-
ating code, according to an embodiment of the invention;

US 2007/0220483 Al

[0016] FIG. 2 depicts a detailed method for generating
program files manually by a developer;

[0017] FIG. 3 depicts a basic method where generated
program files are organized using an output directory,
according to one embodiment of the invention;

[0018] FIG. 4 depicts a more detailed method for gener-
ating an output directory with program files containing
skeleton code;

[0019] FIG. 5 depicts a software design specification for
use with an embodiment of the invention;

[0020] FIG. 6 is a diagram depicting the organization of an
output directory that contains different segments of code that
are generated from the design specification;

[0021] FIG. 7 depicts components of a code generator as
configured to generate skeleton code;

[0022] FIG. 8 describes a code generator, as configured to
generate skeleton code, in terms of packages and interfaces;

[0023] FIG. 9 describes the manner in which a class
specification may be provided in the design specification;

[0024] FIG. 10 depicts one format for a class declaration
file that is generated to include skeleton code;

[0025] FIG. 11 depicts one format for a class skeleton
function file that is generated to include skeleton code;

[0026] FIG. 12 provides a method for creating an output
directory based on a directory that forms a software design
specification;

[0027] FIG. 13 describes a method for generating skeleton
code for program files based on software classes that are
defined in the design specification;

[0028] FIG. 14 depicts a method for generating code with
a component of a code generator, according to an embodi-
ment of the invention;

[0029] FIGS. 15A-15D depict hash tables for use in auto-
matically generating code, according to an embodiment of
the invention;

[0030] FIG. 16A depicts another type of hash table for use
in automatically generating code, according to an embodi-
ment of the invention;

[0031] FIG. 16B depicts a software design directory that
corresponds to the hash table of FIG. 16A;

[0032] FIG. 17 depicts a method for providing skeleton
code in one class that is for enabling that class to include
another class when executed;

[0033] FIG. 18A depicts another of hash table for use in
automatically generating code, according to an embodiment
of the invention;

[0034] FIG. 18B depicts an example class specification of
the software design specification that corresponds to the
hash table of FIG. 18A;

[0035] FIG. 19 depicts a method for adding information
about functions of a class to a hash structure;

[0036] FIG. 20 describes a method for generating a class
skeleton function using information in one of the hash
tables;

Sep. 20, 2007

[0037] FIG. 21A depicts another of hash table for use in
automatically generating code, according to an embodiment
of the invention;

[0038] FIG. 21B depicts a software design directory that
corresponds to the hash table of FIG. 21A;

[0039] FIG. 22A depicts another of hash table for use in
automatically generating code, according to an embodiment
of the invention;

[0040] FIG. 22B depicts a software design directory that
corresponds to the hash table of FIG. 22A; and

[0041] FIG. 23 is a block diagram that depicts a computer
system upon which an embodiment of the invention may be
implemented.

DETAILED DESCRIPTION OF THE
INVENTION

[0042] A technique for automating code generation in
developing software systems is described. In the following
description, for the purposes of explanation, numerous spe-
cific details are set forth in order to provide a thorough
understanding of the present invention. It will be apparent,
however, that the present invention may be practiced with-
out these specific details. In other instances, well-known
structures and devices are depicted in block diagram form in
order to avoid unnecessarily obscuring the present inven-
tion.

Overview

[0043] Embodiments of the invention facilitate the cre-
ation of a software system by automating the generation of
some of the program code that is necessary for the software
system. The generation of program code may be automated
based on a software design specification. As described
herein, embodiments of the invention may significantly
reduce the time required by skilled programmers to develop
the program code for the software system based on the
design specification.

[0044] In one embodiment, a specification that describes
how a software system is to be designed is scanned. Certain
designated characteristics of the specification may be
detected during the scan. Based on the designated charac-
teristics, at least some of the program code for implementing
the software system is automatically generated.

[0045] Embodiments provided herein enable certain tasks
of programmers to be automated. These tasks may pertain to
the generation of skeleton code for software classes and
structures of the design specification. By automating the
generation of skeleton code, the amount of time required
from the skilled programmer is greatly reduced. The possi-
bility that human error will cause bugs or compilation errors
in the software system is also reduced by automating the
generation of skeleton code.

Terminology

[0046] The term “code” refers to syntax that is interpreted
as instructions when a file containing that syntax is com-
piled.

[0047] The term “skeleton code” refers to a set of code that
by itself is incomplete for purposes of performing a desired
task, even though the skeleton code may be compiled.

US 2007/0220483 Al

[0048] The term ‘“hash table” is a data structure that
contains key-value pairs.

[0049] The term “module” refers to software, hardware,
firmware, or any combination thereof, for performing a
stated function. A module may be provided as one compo-
nent or contained in one process. Alternatively, a module
may be distributed amongst multiple components and/or
processes.

[0050] The term “package” refers to a software component
that includes one or more classes working together to
perform a task.

[0051] The term “class” or “software class” refers to a set
of code that can be executed to perform a stated function.
For purposes of this application, a “structure” is assumed to
be a type of software class, unless otherwise stated.

Functional Description

[0052] FIG. 1 is a block diagram that depicts a system for
generating code, according to an embodiment of the inven-
tion. A skeleton code generator 130 is configured to generate
code that is later compiled and executed as part of a software
system. The code may be packaged into files. In one
embodiment, the code that is generated is skeleton code.
Files containing the skeleton code may require additional
code and/or edits, in order to compile and/or function

properly.

[0053] In FIG. 1, a software design specification 110
defines a software system and enables programmers to
create program files for the software system. Input for the
skeleton code generator 130 may include a software design
specification 110 and design rules 120. The output of the
code generator may include one or more program files 140.
As will be described, the program files 140 may be gener-
ated and organized according to some structure, such as in
the form of a directory. A specific output directory that can
be created according to an embodiment is described here-
inafter with reference to FIG. 6.

[0054] Once completed, the software system may com-
prise modules and software classes that are based on an
overall design and organization. The software design speci-
fication 110 is a compilation of documents that together
define and/or explain the modules and software classes. In
particular, the software design specification 110 may define
programming aspects of software classes that form the
software system. In one embodiment, the software design
specification 110 is a compilation of electronic documents.
The electronic documents may be in the form of Hypertext
Markup Language (HTML), eXtensible Markup Language
(XML), or any other format that provides tags or other
markers. It is also possible for the electronic documents to
be text files that contain detectable characters.

[0055] The design rules 120 contains a set of rules that can
be used by the skeleton code generator 130 to inspect the
software design specification 110 for aspects that define the
software classes, components thereof, or are otherwise to be
included in the software system. The set of design rules may
be provided by the developers. Thus, it is possible for the
design rules 120 to at least be partially defined by the
software design specification 110. For example, the software
design specification 110 may specify the manner in which
the software design specification 110 is to be inspected or

Sep. 20, 2007

interpreted. It is also possible for the set of design rules 120
to be at least partially integrated with the skeleton code
generator 130.

[0056] The program files 140 that are generated by the
skeleton code generator 130 form components of the soft-
ware architecture. The program files 140 may contain code
that subsequently can be executed to perform the functions
or tasks specified for the software system.

[0057] In one embodiment, the skeleton code generator
130 uses the design rules 120 to scan the software design
specification 110 to detect characteristics of elements that
are to be provided in the completed software system.
Example elements include, without limitation, classes, func-
tions, class attributes, comments, and file headers. In order
to scan the software design specification 110, the skeleton
code generator 130 is configured to detect the characteristics
in the software design specification 110 that correspond to
such elements. For example, the skeleton code generator 130
may be configured to associate certain tags or characters
with classes, class attributes, function declarations, or com-
ments. As a specific example, the skeleton code generator
130 may detect the capital letter “C” at the beginning of a
word, and interpret the character as the beginning of a
software class specification. As another example, the char-
acter “/” may denote the beginning or end of a comment for
a computer program.

[0058] In one embodiment, program files 140 that are
generated by skeleton code generator 130 contain skeleton
code. The skeleton code of program files 140 can be
compiled and executed, but will not perform the desired
function without a programmer adding additional code to
perform the desired function. The level of detail at which the
code is generated may depend on the specific implementa-
tion. In one embodiment, skeleton code generator 130
automates the creation of program files, the creation of
headers in the program files, the replication of comments
required in the software design specification 110, and the
declaration of functions and class attributes as required by
the software design specification 110. Still further, as will be
described by other embodiments detailed hereinafter, the
program files may be placed in a directory structure in a
manner specified by the software design specification 110.
An output directory where the program files are placed may
be generated by skeleton code generator 130. By creating
such coded program files 140, embodiments of the invention
can conserve resources of highly skilled programmers who
would otherwise manually create what the skeleton code
generator 130 generates automatically.

[0059] FIG. 2 depicts a more detailed method for manu-
ally generating program files that form part of a software
system.

[0060] Instep 210, the software design specification 110 is
scanned. In one embodiment, the software design specifi-
cation 110 may be scanned for characteristics that are
specified by the design rules 120. Examples of such char-
acteristics include, without limitation, tags in HTML docu-
ments, or specific characters in text or HTML documents,
that designate the location of elements such as class
attributes, functions, function declarations, and comments.
After the software design specification 110 has been
inspected for defects and then published, the code is devel-
oped. In one embodiment, the software design specification

US 2007/0220483 Al

110 will contain all, or at least most of the information
needed to generate the code for each class and structure of
the design specification. The software design specification
110 may be scanned in association with the creation of the
workspace where the code will be developed based upon the
software design specification 110. The workspace will vary
depending upon the code development tool used.
Microsoft’s Visual Studio .NET and SunSoft’s Sun Work-
shop are examples of code development tools for the C++
programming language.

[0061] Step 214 provides that the classes defined in the
software design specification 110 are identified. In addition,
if the software design specification 110 defines structures,
the structures are also identified. In one embodiment, soft-
ware classes or structures are detected by inspecting the
software design specification 110 for tags or characters that
contain “C”, because, as design rules 120 may specify, the
appearance of this character at the beginning of a word or
string is designated to delineate a class or structure.

[0062] According to one embodiment, for each detected
class, step 218 provides that two program files containing
skeleton code are created. A first program file corresponds to
a declaration file, and a second program file corresponds to
an implementation file. The declaration file contains the
declaration for that class. The implementation file contains
the function definitions of a class identified from the soft-
ware design specification 110. With embodiments such as
described, the declaration file may be identified as having a
.h extension, and the implementation file may be identified
as having a .cpp extension.

[0063] Step 222 provides that skeleton code is added to the
declaration file. In one embodiment, this skeleton code
includes at least some instructions for declaring the func-
tions and the class attributes for the class identified from the
software design specification 110. The programming syntax
may also be used for creating file headers and function
headers.

[0064] Step 226 provides that skeleton code is added to the
implementation file. This skeleton code may include instruc-
tions that, when the file is completed, are for executing
functions and for returning values when functions are
executed. With each implementation file, the skeleton code
for each function may also include statements for debugging
purposes and a statement to return a value if the function
returns a value.

[0065] In step 230, appropriate directives are added to the
declaration file created for each class that is identified from
the software design specification 110. A class may require
the use of other classes. The class that uses the other class
needs to “include” the other class (“included class™). For a
class to include other classes, the class must know the path
to the other classes (the path to the declaration file of the
other classes, more specifically). A directive can be used to
allow a class to include other classes that it uses. The
directive indicates the path to other classes. The path may
define the location of a particular file within an output
directory such as described in FIG. 6. The included classes
must be declared before a class can use it. By adding a
directive to indicate the path to the included classes, the
class will know how the included classes are declared. Thus,
in order to add directives to the declaration file, all the
classes of software design specification 110 and the location

Sep. 20, 2007

of their declaration files need to be identified so that the path
to the class may be known. The manner in which the
included classes are detected may be the same as how all
classes are identified. In one embodiment, a particular
character or tag is identified that delineates a class (e.g. “C”).

[0066] In step 234, a file header is added to each of the
program files. The file header documents the file and the
class for which the code is written. As with other syntax, the
skeleton code generator 130 may be used to automatically
generate the header for each program file.

[0067] Step 238 provides that a function header is pro-
vided to each function in the implementation file. The
function header may document and refer to a description that
the algorithm or the function performs when executed in the
particular implementation file.

[0068] Step 242 provides that non-programming syntax,
such as comments, are provided in the declaration and
implementation files. In one embodiment, comments added
to each type of programming file are replicated, or otherwise
based on sections of software design specification 110 that
are designated as being comments for subsequent program
files. Thus, step 242 may include copy and paste operations
to copy comments from the software design specification
110 to the program files.

[0069] In step 246, the skeleton code provided in the
declaration and implementation files is added to the work-
space of a code development tool and then compiled.
Compilation errors may indicate defects in the design speci-
fication. If so, the defects in the design specification are
corrected and the skeleton code is re-generated accordingly.

[0070] Once the skeleton code is compiled, additional
code may be manually added to each implementation file in
step 252. In step 254, the files are re-compiled with the
manually entered code.

[0071] The steps of the method described in FIG. 2 may be
performed automatically using the skeleton code generator
130 and the information in the design specification. Also, the
recited steps may be performed in any order since they
involve writing information into a file before the workspace
is compiled.

[0072] Among other benefits of automating the steps of
the method in FIG. 2 is reducing the time needed for
developing the code based on the contents of the software
design specification 110. Furthermore, an embodiment such
as described in FIG. 1 eliminates human error in generating
the skeleton code.

Output Directory

[0073] According to an embodiment of the invention, an
output directory is created to structure skeleton code and
related data generated from the software design specification
110. The structure of the output directory may be specified
by the directory structure of the software design specifica-
tion 110. The software design specification 110 may either
specify what the structure of the output directory should be,
or the software design specification 110 may itself be
structured into a directory. In this way, the software design
specification directory may form the basis of the output
directory’s structure.

US 2007/0220483 Al

[0074] In one application, the software design specifica-
tion directory contains electronic documents that describe
various aspects of the desired software system. The software
design specification 110 may describe and/or define modules
that form a first layer of division within the directory, and
classes that form internal layers of the modules within the
directory. Thus, the software design specification 110 may
correspond to a directory, where nodes of the directory
correspond to modules, sub-modules and classes. In one
embodiment, the program files created by the skeleton code
generator 130 are automatically structured into an output
directory. The output directory may be modeled after the
directory structure of the software design specification 110.
Thus, the output directory may contain structures of nodes
that resemble a corresponding configuration of the directory
of the software design specification 110.

[0075] FIG. 3 depicts a basic method where generated
program files are organized using an output directory,
according to one embodiment of the invention. In describing
FIG. 3 and FIG. 4, reference may be made to elements of
other figures in this application. Any such reference is made
for illustrative purposes only.

[0076] Step 310 provides that the software design speci-
fication directory is scanned one or more times. The scan of
the software design specification directory identifies the
placement of nodes and internal nodes in that directory. In
performing a method such as described in FIG. 3, an
assumption is that the developers will want the program files
created by the skeleton code generator 130 structured into an
output directory that is at least partially duplicative of the
software design specification directory. Alternatively, the
output directory is based on some other description, such as
a published guideline with the software design specification
110.

[0077] In step 320, a skeleton output directory is created
based on the software design specification directory. The
skeleton output directory contains node structures that dupli-
cate corresponding node structures in the software design
specification directory. In one embodiment, all branch nodes
except the “root node” of the software design specification
directory are duplicated with the same structure in the output
directory. A different root node is used for the output
directory in order for the output directory and the software
design specification directory to be separately addressable.

[0078] In step 330, the classes and structures that are
defined in whole or in part, or otherwise described in the
software design specification 110, are located by scanning
the software design specification 110. Whereas scanning the
software design specification directory locates and identity
the node structure of the software design specification
directory, scanning the software design specification 110
locates and identifies the classes and structures of the
software design specification 110 as well as locates and
identify the node structure of the software design specifica-
tion directory. In one embodiment, an attempt is made to
identify each class or structure that is mentioned in the
software design specification 110. This task may be per-
formed by recognizing a convention by which structures and
classes are mentioned in the software design specification
110. The convention may be defined by design rules 120,
accessible to skeleton code generator 130. For example,
skeleton code generator 130 may use rules specified from

Sep. 20, 2007

design rules 120 to identify classes and structures from the
software design specification 110.

[0079] Once such classes and structures are identified, one
embodiment provides that, in step 340, the program files are
placed within branch nodes of the output directory that
corresponds to a branch node in the software design speci-
fication directory where the class or structure was located in
the software design specification 110. In one embodiment,
for each identified class or structure, two program files are
generated and placed in the branch node of the output
directory. The two program files may correspond to a
declaration file and an implementation file.

[0080] FIG. 4 depicts a more detailed method for gener-
ating an output directory with program files containing
skeleton code, according to an embodiment. Step 410 pro-
vides that the software design specification 110 is scanned a
first time in order to obtain basic directory information, such
as described in steps 415-425.

[0081] Step 415 provides that an output directory is cre-
ated that replicates at least a portion of the node structure of
the software design specification directory. As described in
FIG. 3, one embodiment provides that all of the nodes in the
design specification directory are replicated in the output
directory except for the root node, which is different.

[0082] In step 420, electronic documents or files of the
software design specification 110 are inspected to determine
where classes or structures are specified. If the software
design specification 110 includes documents formatted with
tags or coding, such as HTML, the presence of certain tags
or coding may signify the presence of a specification for a
particular class or structure.

[0083] Step 425 provides for maintaining the location of
identified classes or structures in a data structure such as a
hash table. Embodiments of the invention employ hash
tables having a first column corresponding to a key and a
second column corresponding to a value associated with that
key. In one embodiment, each identified class or structure is
a key for a hash table, and the directory path of the class or
structure within the software design specification directory
is the value for that key. In this way, the directory path of a
class or structure identified in the previous step is recorded
in the hash table as the value of a particular class. A hash
table suitable for use with an embodiment such as described
is depicted in FIG. 15A.

[0084] Instep 430, the software design specification 110 is
scanned a second time to obtain more detailed information
for creating the program files. Steps 435-445 are performed
with the second scan of the software design specification
110. In the second scan, the function declarations are iden-
tified in step 435. Step 440 provides that class attributes are
identified in the software design specification 110. The
function declarations and class attributes may be defined
within certain electronic documents of the software design
specification 110, and specifically within portions of the
software design specification that correspond to class defi-
nitions. The specific markers that are to delineate functions
and class attributes in the software design specification may
be defined by the design rules 120.

[0085] Step 445 provides that during the second scan of
the software design specification 110, classes (“included
classes™) that are used by a class are identified, and the

US 2007/0220483 Al

directory of the included classes are recorded in the hash
table. The specification of each class or structure in the
software design specification 110 may contain or refer to
another class or structure. Only classes referred to by a class
are included classes. Classes contained within a class are
nested classes. A nested class contains the declaration of the
class within the class in which it is nested. When a class or
structure specification is identified in the scan of the soft-
ware design specification 110, it is checked to determine
whether it is nested within another class or structure. For
example, a class specification may appear as a class speci-
fication that is indented on an electronic document within
another class specification. Thus, the indent (or other
marker) may indicate that the identified class is nested in
another class specified in that same electronic document.
When a class or structure is identified in the scan of the
software design specification 110, it is checked to determine
whether it is referred within another class or structure to see
if it needs to be included by the class. For example, the class
may be identified by a tag or coding on an electronic
document within the class specification. The included
classes need to be identified for a class. Step 445 provides
that both the class and the directory path of the identified
included class are recorded in a hash table.

[0086] Steps 450 and 455 provide for generating program
files and placing the program files in nodes of the output
directory that have corresponding nodes in the directory of
the software design specification 110. In step 450, the
function declaration file is generated and placed in the
output directory. In step 455, the implementation file is
generated and placed in the output directory.

[0087] FIG. 5 depicts an example software design speci-
fication directory 502 for use with an embodiment of the
invention. The software design specification directory 502
structures and organizes files that are part of the software
design specification 110 for the software system. The soft-
ware design specification 110 includes files that are con-
tained in the software design specification directory 502.
The software design specification directory 502 contains a
first layer 512 of sub-directories. The sub-directories corre-
spond to packages of the overall software architecture.
Internal layers 522 of the first layer 512 contain files within
the software design specification directory 502. The files
may contain descriptions of the software architecture
(including figures of the design specification), packages, and
classes. The software design specification directory 502 is
identified by a root node 504 (Directory for Software Design
Specification), and this node is the top directory that con-
tains the entire software design specification 110 beneath it.

[0088] The software design specification directory 502
contains sub-directories with names corresponding to the
names of the packages or architecture. The files in the
software design specification directory 502 for the software
system contain descriptions and figures. The files in the
software design specification directory 502 for packages
contain description of the packages, description of the
classes in the packages, and/or figures describing the pack-
ages and classes. Within the software design specification
directory 502, the directory for a package may also contain
directories for other packages. It is possible for a package to
contain packages in a software design specification 110.

[0089] In one embodiment, the software design specifica-
tion 110 is published with directories that are structured

Sep. 20, 2007

according to a specific guideline or convention. In this way,
the structure of the software design specification directory
502 allows for consistency and uniformity in the software
design specification 110 when two or more individuals are
creating and integrating their part of the design specification.

[0090] In one embodiment, skeleton code generator 130
creates an output directory (see 600 in FIG. 6) based on the
structure of the software design specification directory 502.
In one embodiment, the output directory mirrors or is
substantially similar to the software design specification
directory 502. By substantially similar, it is meant that entire
sub-directories of the output directory 600 may have iden-
tical branch nodes as the software design specification
directory 502.

[0091] FIG. 6 is a diagram depicting the organization of an
output directory 600 that contains different segments of code
that are generated by skeleton code generator 130 from
software design specification 110. The segments of code
may correspond to skeleton code contained in files that may
be supplemented with additional code to perform a specified
function. The output directory 600 includes sub-directories
that correspond to the packages of the system, and to actual
program files (such as the .h and .cpp files). The root node
610 (Directory for Code) contains the entire code of the
system beneath it. The names of the directories underneath
the root node 610 correspond to the names of the packages
of'the system. The program files provided in output directory
600 contain the class declarations and function definitions of
the classes. Except for the top directory, the organization and
name of the directories of the output directory 600 mirrors
the software design specification directory 502. The orga-
nization of the code in the .h and .cpp file follows a specific
format (or code convention or rules). Among other advan-
tages, such a format will allow consistency and uniformity
in the code when two or more individuals are creating and
integrating their part of the code.

[0092] While embodiments of the invention described
above provide that the output directory 600 is structured
based on the software design specification directory 502,
alternative sources may be used to structure the output
directory 600. For example, according to one embodiment,
the software design specification 110 may contain an elec-
tronic document that specifies the structure of the output
directory 600, so that the actual directory structure of the
software design specification 110, if any, is irrelevant. In still
another embodiment, a set of rules or other guidelines may
be used to structure the output directory 600.

[0093] Appendix A depicts an example of a declaration file
that can be stored in output directory 600. Appendix B
depicts an example of an implementation file that can be
stored in output directory 600.

Skeleton Code Generator

[0094] FIG. 7 depicts components of skeleton code gen-
erator 130 when configured to generate skeleton code,
according to an embodiment of the invention. The skeleton
code generator 130 is depicted to include a software design
specification navigator 710, a class identifier module 720, a
file structure generator 730, a function processor 740, an
attribute processor 750, a class declaration file generator
760, a class skeleton function file generator 770, and a set of
rules 780. Collectively, an embodiment provides that com-

US 2007/0220483 Al

ponents of the skeleton code generator 130 may combine to
scan the software design specification 110, generate files
containing the skeleton code of a system, and organize the
files in an output directory 600 (see FIG. 6). Each compo-
nent performs a stated task of the skeleton code generator
130.

[0095] 1In one embodiment, software design specification
navigator 710 navigates through the software design speci-
fication 110, including any of its directories, to identify files
that can be used to generate skeleton code. The software
design specification navigator 710 may also navigate
through identified files to find distinct portions of the files
that are pertinent for generating applicable code.

[0096] The class identifier module 720 determines a class
associated with a file identified by the software design
specification navigator 710 for use in generating skeleton
code. In one embodiment, the software design specification
110 defines classes with a class specification, and the class
identifier module is configured to detect class specifications.
In one embodiment, the class identifier module 720 also
obtains information about the identified class from the actual
file that contained the specification of the class. The infor-
mation may be in the form of a text simulation of code, a
listing of characteristics or attributes of a class, or any other
identifiable text description. Certain text attributes, like the
detection of the capital “C”, may designate a class specifi-
cation in the design specification. Text accompanying the
class designator may be identified as part of the class
specification and/or as information pertaining to the class
associated with that class specification.

[0097] The file structure generator 730 generates the file
structure that will contain the generated skeleton code.
Specifically, the file structure generator 730 creates the
sub-directories that correspond to the packages, as well as
the program files that correspond to the classes of the
software design specification 110. Thus, file structure gen-
erator 730 creates the branch node structure of the output
directory 600, and determines the placement of .h and .cpp
files in the branch nodes of the output directory. In one
embodiment of the invention, the file structure generator 730
implements a mapping scheme that maps directory paths of
nodes in the software design specification directory 502 to
nodes of the output directory 600. The file structure genera-
tor 730 also maps the location of each class identified by the
class identifier module 720 to a corresponding node location
within the output directory 600. The node location used by
the mapping scheme for a particular identified class may be
based on a directory path of the document that specified or
otherwise defined that class.

[0098] The function processor 740 obtains information
about the functions of each class identified by class identifier
module 720. The information may be obtained from a
function list of that function’s class specification. The func-
tion processor 740 obtains information about the enumera-
tions, the structures, and the classes declared in the class
from the function list in the class specification.

[0099] The attribute processor 750 obtains information
about the attribute members of each class identified by the
class identifier module 720. This information may be
obtained from a list of attributes that are contained in the
specification for the class. The list of attributes may have a
particular format or structure that designate to skeleton code

Sep. 20, 2007

generator 130 that the accompanying text is the list of
attributes. The information obtain includes the type and
name of the attribute members.

[0100] The class declaration file generator 760 generates
code for the class declaration. As described in other embodi-
ments, this code may be contained in a .h file. The code may
be generated based on the information obtained from the
class identifier module 720, the function processor 740, and
the attribute processor 750, as well as other components of
the skeleton code generator 130.

[0101] The class skeleton function file generator 770 gen-
erates the skeleton code for each function of the class. As
described in other embodiments, this code may be contained
in the .cpp file.

[0102] FIG. 7 also depicts a set of rules 780 as being part
of' the skeleton code generator 130. The set of rules 780 may
correspond to rules that are part of the design rules 120 (FIG.
1). The set of rules 780 may be based on rules by which the
software design specification 110 are formatted and orga-
nized. Thus, the set of rules 780 can be used to access the
appropriate information from the software design specifica-
tion 110, as the set of rules 780 will be based on the same
convention/rules that were used to create the specification
for the classes and functions. Other components of the
skeleton code generator 130 can access the set of rules 780
to obtain the information it needs to generate the code.

[0103] While components of the skeleton code generator
130 have been described in the context of identifying classes
and generating code for classes, other embodiments also
provide for identifying structures and generating code for
the structures in the same manner as classes.

[0104] FIG. 8 describes skeleton code generator 130, as
configured to generate skeleton code, in terms of packages
and interfaces. In one embodiment, skeleton code generator
130 includes a file structure generator package 810 and a
class skeleton code generator package 820. Functions of the
file structure generator package 810 include creating the
directory structure for the skeleton code corresponding to
the software design specification 110, and creating the .h and
.cpp file for each class identified in the software design
specification directory 502. The file structure generator
package 810 may include logic/programming to navigate
through the software design specification directory 502 in
order to obtain information about the classes. This skeleton
code is generated based on this information.

[0105] The file structure generator package 810 maintains
information about the location of the skeleton code for the
classes within the output directory 600 (FIG. 6). A first
interface 815 (identified as SkeletonCodeMaker.pl) passes
information to the file structure generator package 810. This
information may include the location (directory path) of the
pertinent portions of the software design specification 110,
the location (directory path) of the skeleton code to be
generated, and the document number of the software design
specification 110. The class skeleton code generator package
820 generates the code for the class declaration in the
declaration file (h file) and the skeleton function in the
implementation file (.cpp file) for any particular class. The
class skeleton code generator package 820 uses information
from the specification of the particular class, as provided in
the software design specification 110, in order to generate
the skeleton code for the class.

US 2007/0220483 Al

[0106] A second interface 825, identified by the interface
function, generateSkeletonCodeForClass(), requires infor-
mation that includes the file handle for the class specification
file, the declaration (h) file, the implementation (.cpp) file,
the name of the class, the document number of the software
design specification 110, and a hash table containing infor-
mation about the relative directory path of the class within
the software design specification 110. The skeleton code
generated for each class has the format described below.

Software Design Specification Contents

[0107] FIG. 9 depicts the manner in which a class speci-
fication 900 may be provided in the software design speci-
fication 110 (see FIG. 1). In one embodiment, the class
specification 900 corresponds to a portion of an electronic
document that contains information needed to generate the
code for a particular class. The information may include
characteristics such as a class specification header 910, a
function list 920, a set of class attributes 930, and one or
more function definitions 940. The class specification header
910 contains the name of the class. The function list 920
contains a list of all the functions of the class. This may
include public, protected, and private functions. Appendix C
depicts a class specification as it may actually appear.

[0108] The function list 920 may also contain all the
enumeration declarations, structure declarations, and class
declarations declared within the class. The set of class
attributes 930 contains a list of all the attribute members of
the class. This section gives the type, the name, and the
purpose of the attribute members of the class. The function
definitions 940 describes the purpose and algorithm used by
the functions listed in the function list 920. In one embodi-
ment, the function definitions 940 may be in the form of a
comment, or in a comment format, so it may be used as the
function header of the function in the code.

[0109] Inone embodiment, the information corresponding
to the characteristics may be delineated from other infor-
mation through use of character recognition, in conjunction
with convention rules that designate certain identifiable text
as one of the characteristics of the class specification 900.
For example, set of class attributes may be delineated from
other information within a portion of the electronic docu-
ment that is identified as being a class specification by the
presence of a grid containing rows and columns.

[0110] As described with FIG. 7, class identifier module
720 may detect class specification 900. In identifying class
specification 900, class identifier module 720, or some other
component of skeleton code generator 130, may be config-
ured to ignore certain types of information contained in the
software design specification 110. For example, skeleton
code generator 130 may be configured to ignore figures and
drawings that describe certain algorithms or processes,
because such figures and drawings, as well as accompanying
text, are made for human understanding.

[0111] FIG. 10 depicts one format for a class declaration
file 1000 that is generated to include skeleton code. The class
declaration file 1000 corresponds to the .h file for a particu-
lar class specification 900, as described elsewhere in this
application, for a class of the software design specification
110. The class declaration file 1000 may include a file header
1002, a preprocessor directive 1004, one or more file inclu-
sion 1006, and a class declaration 1008. The file header 1002

Sep. 20, 2007

may provide a description of the file, class, and/or the history
of the file. The preprocessor directive 1004 contains one or
more preprocessor directives to prevent multiple inclusion
of the particular file when the system is compiled. The file
inclusions 1006 includes preprocessor directives that
include other files needed by the class. The class declaration
1008 contains the code that declares the class.

[0112] FIG. 11 depicts one format for a class skeleton
function file 1100 that is generated to include skeleton code.
The class skeleton function file 1100 contains the skeleton
code of the functions of the class. The class skeleton
function file 1100 corresponds to the .cpp that is created for
a class of the software design specification 110. In one
embodiment, class skeleton function file 1100 includes a file
header 1102, file inclusions 1104, a function header 1106,
and a skeleton function 1108.

[0113] The file header 1102 may contain a description of
the file and class, and the history of the file. The file
inclusions 1104 may contain one or more preprocessor
directives that include other files that may be needed by the
functions of the class. The function header 1106 includes a
description of the function of the class and the algorithm that
the function implements. The function header 1106 may also
include comments that document the function. These com-
ments may correspond to parts of function definitions 940
(FIG. 9). The skeleton function 1108 is the implementation
of the function containing only debug statements and a
statement to return a value if the function returns a value.
The skeleton function 1108 does not contain the code that
performs the algorithm of the function. There may exist
multiple function headers 1106 and skeleton functions 1108
for each function of the class.

Output Directory Creation

[0114] FIG. 12 depicts a method for creating output direc-
tory 600 (see FIG. 6) based on a software design specifica-
tion directory 502 (see FIG. 5). Thus, a method such as
described in FIG. 12 assumes that the software design
specification 110 is itself structured as a directory that is to
form the basis of output directory 600. Other embodiments
may use other sources or information for creating output
directory 600. For example, the structure of the output
directory 600 may be defined explicitly on one of the
electronic documents of the software design specification
110. A method such as provided by FIG. 12 may be
performed by skeleton code generator 130. In particular, file
structure generator package 810 may perform steps such as
described.

[0115] A method such as described in FIG. 12 may com-
prise steps performed by the skeleton code generator 130
while making a first pass through the software design
specification 110. In one embodiment, the skeleton code
generator 130 makes the first pass in order to create the
output directory 600. A second pass through the software
design specification 110 is subsequently performed to gen-
erate skeleton code in the output directory 600. In one
embodiment, methods such as described in FIG. 13 and/or
FIG. 14 are performed in making additional passes through
the software design specification 110 in order to add one or
more types of program files to the output directory 600 (FIG.
6). In one embodiment, a declaration file and an implemen-
tation file are created that contain code generated by the
skeleton code generator 130.

US 2007/0220483 Al

[0116] With reference to FIG. 12, step 1210 provides that
a file is obtained from the software design specification 110.
The file may correspond to an electronic document contain-
ing text, tags and other content. The file may contain data
corresponding to, for example, a description of the software
system, one of the packages for the software system, or a
class that is to be implemented in the software system.

[0117] In step 1215, a determination is made as to whether
other files exist in the software design specification 110. If
no other files exist, the method is terminated in step 1220.
Step 1220 may correspond to the creation of the output
directory 600 being completed.

[0118] If there are other files, then the file is located and
step 1225 provides that a determination is made as to
whether the file is an HTML file. Other embodiments may
make a determination as to whether the file is another
formatting type, such as XML. If the determination is that
the file is not HTML (or of the specific desired formatting
type), then the method is repeated starting at step 1210. In
one embodiment, file structure generator package 810 (see
FIG. 8) is configured to perform steps 1210, 1215, and 1220
by navigating through the software design specification
directory 502 to access all the files in the design specifica-
tion.

[0119] If the located file is HTML formatted, then a
determination is made in step 1230 as to whether a class
name can be obtained from the file. In one embodiment, the
class name is designated by a special character, such as “C”.
For example, “C” may be set aside so as to only be used as
the first character of a class name. If the determination in
step 1230 is that the class name cannot be found from the
located file, then the method is repeated starting from step
1210.

[0120] If the determination in step 1230 is that the class
name can be obtained from the file, then step 1240 provides
that the class name and the file’s relative directory path in
the software design specification 110 are added to a hash
table. The relative directory path corresponds to the path
from the top directory of the software design specification
directory 502 to the directory containing the file for the class
specification. The formatting of the data placed in the hash
table may be provided in the following example hash table:
%m_ClassIncludeRelativePath. A description of this
example hash table is provided in FIG. 15A and FIG. 16A.

[0121] Following step 1240, step 1250 provides that the
output directory 600 is created based on the structure of the
software design specification directory 502 (FIG. 5). In one
embodiment, the directory structure that contains the skel-
eton code mirrors the directory structure of the software
design specification directory 502.

[0122] Instep 1260, the class name and the absolute target
directory path are added to the hash table. The absolute
target directory path corresponds to the directory path in the
output directory 600 where the files for the skeleton code for
the class will be generated. The formatting of the data placed
in the hash table may be provided in the following example
hash table: %ml_AbsTargetPathForClassStrctTable. A
description of this example hash table is provided in FIGS.
15C and 21A.

[0123] Step 1270 provides that the filename and the class
name are added to the hash table. The formatting of the data

Sep. 20, 2007

placed in the hash table may be provided in the following
example hash table: %m1l_FileClassStrctTable. A descrip-
tion of this example hash table is provided in FIG. 15D and
FIG. 22A. Many reasons exist for maintaining the absolute
directory path, file name and class name in the hash tables.
One such reason is that maintaining such data structures
together in one hash table enables look-up mechanisms
where code can be generated to account for one class being
included by another class.

[0124] FIG. 13 describes a method for generating skeleton
code for program files based on software classes that are
defined in the software design specification 110. In one
embodiment, the file structure generator package 810 (FIG.
8) of the skeleton code generator 130 substantially performs
the steps described in FIG. 13. A method such as described
in FIG. 13 may correspond to the file structure generator
package 810 of the skeleton code generator 130 making the
second pass through the software design specification 110.
In one embodiment, skeleton code is generated as the file
structure generator package 810 (FIG. 8) accesses all the
files corresponding to the class specification.

[0125] In step 1310, a file from the software design
specification 110 is identified. If a determination in step
1315 is made that no files can be identified, then step 1320
provides that the generation of the skeleton code for all the
classes is complete. Otherwise, if another file can be iden-
tified, then step 1330 makes a determination to see if the file
contains a class specification (see 900 in FIG. 9). In one
embodiment, a hash table created by the file structure
generator package 810 (e.g. %ml_FileClassStrctTable) is
used to determine if the file corresponds to the class speci-
fication.

[0126] Ifthe determination in step 1330 is that the file does
not contain the class specification, then the method is
repeated beginning at step 1310. If the determination in step
1330 is that the file does contain a class, then step 1340
provides for creating the program files in output directory
600. As explained, these program files may correspond to
the declaration file (the .h file) and the implementation file
(.cpp file). The location within output directory 600 where
the skeleton code for the class is created may be determined
using the absolute directory path stored in the hash table
%m1_AbsTargetPathForClassStrctTable (see FIG. 12).

[0127] In step 1350, the skeleton code is added to the
individual program files created for the class. The skeleton
code may adhere to a specific convention or format, such as
depicted in Appendix A and Appendix B. Following step
1350, step 1310 is repeated until the method ends in step
1320. In one embodiment, the file structure generator pack-
age 810 interacts with the class skeleton code generator
package 820 to perform one or more steps recited above. In
particular, the file structure generator package 810 interacts
with the class skeleton code generator package 820 in order
to generate the skeleton code for the class.

Skeleton Code Generation

[0128] FIG. 14 depicts a method for generating skeleton
code according to an embodiment of the invention. As with
FIG. 13, a method such as described in FIG. 14 may be
performed once the output directory 600 has been created.
This may correspond to a second or additional pass of the
software design specification 110. In one embodiment, a

US 2007/0220483 Al

method such as described in FIG. 14 is performed by file
structure generator package 810 providing the class skeleton
code generator package 820 access to a particular file that
contains a class specification in order for the class skeleton
code generator package to obtain information necessary for
generating the skeleton code for program files of the output
directory 600. For purpose of explanation, it is assumed that
a method described with FIG. 14 provides for the generation
of two program files, an implementation file and a declara-
tion file, for each class that is identified from the software
design specification 110, although the method may be modi-
fied for use with more or fewer program files.

[0129] Step 1410 provides that information from the func-
tion list is obtained from the software design specification
110. In one embodiment, this information is provided in the
class specification (see component 900 in FIG. 9). This
information may include the function declarations of the
class associated with the class specification, as well as the
enumerations, structures, and class declarations within the
class.

[0130] In step 1420, information from class attributes
specified in the class specification is obtained. This infor-
mation may be obtained from, for example, a class attributes
table of the class specification, although the particular for-
mat of how class attributes are provided may be set by
conventions of the software design specification 110. Any
characteristic, such as special characters or tags, may be
included in the convention for providing class attributes, and
class skeleton code generator package 820 may be config-
ured to notice anyone of the these characteristics. In one
embodiment, the information from the class attributes may
include the type and name of the class attributes.

[0131] Step 1430 provides that the file header and one or
more preprocessor directives for preventing multiple inclu-
sions (#define statement) are identified and added to .h
program file created for the class.

[0132] Instep 1440, the preprocessor directives (#include)
are added to the .h file so that the file can access other files
that are to be used by the particular class associated with the
identified class specification.

[0133] Step 1450 provides that the class declaration is
added to the .h file to complete the class declaration file. The
information obtained from the function list and the class
attributes table of the class specification are in the class
declaration.

[0134] Steps 1460-1485 perform steps for generating the
skeleton code for the .cpp file. In step 1460, the file header
is added to the .cpp file created for the identified class
specification.

[0135] Instep 1470, the preprocessor directives for includ-
ing other files used by the class (#include) are added to the
.cpp file. When the .cpp file is completed and executed, these
directives enable the .cpp file to access other files (which
may contain functions or other classes) as required by the
class specification used to create that file.

[0136] In step 1480, the function definition of the class
specification is obtained and added to the .cpp file of the
class. The function definition serves as the function header.

[0137] Step 1485 provides that the skeleton code for the
function definition is generated and added to the .cpp file.

Sep. 20, 2007

This step may be performed by the skeleton code generator
130 mapping the identified information obtained from the
software design specification 110 to specific syntax com-
prising the skeleton code.

[0138] In step 1490, certain specific functions are added to
the .cpp program file. These functions may include functions
for debugging the program file, and for printing out the
function name. A statement may also be added for returning
a value to the function definition in the .cpp file. In one
embodiment, steps 1480 through 1490 are repeated for each
function of the class to complete the class skeleton function
file.

[0139] FIG. 14 depicts a method for generating a second
portion of a skeleton code for program files generated by the
skeleton code generator 130. While a method such as
described by FIG. 14 is executed to append code to a method
such as described in FIG. 13, embodiments of the invention
may generate skeleton code using a method such as
described in either FIG. 13 or FIG. 14 independently.

Hash Tables

[0140] As described above, embodiments of the invention
use hash tables to store data that is subsequently used to
track code generation. FIGS. 15A-15D depict four hash
tables that may be used to automatically generate skeleton
code. For example, the hash tables depicted by FIG. 15A-
15D can be used by the skeleton code generator 130 to
generate the skeleton code. The hash tables represent simple
data structures that can be used to implement look-up
schemes or mapping functions. Data structures other than
hash tables may be used by other embodiments of the
invention.

[0141] A first hash table 1510, depicted in FIG. 15A
(entitled %m_ClassRelativelncludePath), is for maintaining
for reference the relative path of identified classes. The first
hash table 1510 may be used by the file structure generator
package 810 and class skeleton code generator package 820.
The key 1512 of the first hash table 1510 is the name of a
particular class. The value 1514 is the relative path of the
class. In one embodiment, the relative path of the class
corresponds to the directory path of the file in the software
design specification directory 502 (FIG. 5) where the class
specification 900 (see FIG. 9) was located, excluding the
root node of the software design specification 110. The value
1514 will also correspond to the directory path where the
skeleton code for the identified class is located in the output
directory 600 (see FIG. 6). The first hash table 1510 is
populated with class name and relative path for identified
class specifications as the file structure generator package
810 navigates through the software design specification 110.
This may happen during a first pass through that specifica-
tion. In one embodiment, the first hash table 1510 is used to
determine the directory path for when a file is included in a
class in the .h file. This is how the preprocessor directives
(#include) are provided. The first hash table 1510 may be
populated using information obtained from performing a
method such as described in FIG. 12.

[0142] A second hash table 1520, depicted in FIG. 15B
(entitled %m?2_ClassStructFunctionDecl), is for use in ref-
erencing the function declarations of a class and nested
classes and structures within a class. The second hash table
1520 may be used by the class skeleton code generator

US 2007/0220483 Al

package 820. The key 1522 of the second hash table 1520 is
the name of a class, and the name of the classes and
structures within another class. The value 1524 is another
internal hash table 1526 containing information about the
functions declared in the class and in the classes and
structures within a class. The key 1527 of the internal hash
table 1526 is the name of the function. The value 1529 of the
internal hash table 1526 is the function declaration. The
second hash table 1520 may be populated with information
from the function list of the class specification 900 (See FIG.
9). In one embodiment, this hash table is used to add the
skeleton code for each function in a corresponding imple-
mentation file (e.g. the .cpp file).

[0143] A third hash table 1530, depicted in FIG. 15C
(entitled %m1_AbsTargetPathForClassStrctTable), is for
use in tracking where code for a particular class identified
from the software design specification 110 is to be gener-
ated. The third hash table 1530 may be used by the file
structure generator package 810 of the skeleton code gen-
erator 130. A key 1532 of the third hash table 1530 is the
name of the class. A value 1534 is the absolute directory path
where the code for the class is to be generated. The absolute
directory path is the combination of the absolute directory
path of the top directory of the source code (or target
directory), such as Directory of Code 610 described in FIG.
6, plus the relative directory path of the class determined
from the software design specification 110. The third hash
table 1530 may be populated when performing steps of a
method such as recited in FIG. 12. FIG. 13 depicts how
information from the third hash table 1530 may be used.

[0144] A fourth hash table 1540, depicted in FIG. 15D
(entitled %m1_FileClassStrctTable), is for use in matching
a file containing a class specification with a corresponding
class name. The fourth hash table 1540 may be used by the
file structure generator package 810. A key 1542 of the
fourth hash table 1540 is the name of the file containing the
class specification 900 (see FIG. 9). The value 1544 is a class
associated with the file containing the class specification.
FIG. 12 depicts how the fourth hash table 1540 may be
populated with information. FIG. 13 depicts how informa-
tion from the fourth hash table 1540 may be used.

[0145] FIG. 16A depicts an example of first hash table
1602 used by skeleton code generator 130. FIG. 16B depicts
an example of a software design specification 1604. The first
hash table 1602 applies to software design specification
1604. In the example provided, the software design speci-
fication 1604 includes HTML files corresponding to a plu-
rality of class specifications. The software design specifica-
tion 1604 may include branch nodes 1606. Branch nodes
1606 include nodes that provide access to more than one file
or sub-directory structure. The skeleton code generator 130
may be configured to structure program files within output
directory 600 to have a substantially similar directory struc-
ture as the software design specification 1604. The substan-
tially similar directory structure may correspond to replica-
tion most or all of the branch nodes 1606.

[0146] In one embodiment, each class specification 1605
in the software design specification 1604 is to be provided
a declaration file and an implementation file (corresponding
to .h and .cpp file). The first hash table 1602 is populated
with information obtained from the software design speci-
fication 1604. This information may correspond to the name

Sep. 20, 2007

of the class and its relative directory path from a top node
1610 of the software design specification 1604, where the
top node 1610 is excluded from the relative path. As an
example, the relative path of the class CSNMP is
Monitor\HWaccess\SNMP\. The first hash table 1602 can be
used to determine the location of files for the preprocessor
directives (#include) that are added to the program and
implementation files for each class.

Class Dependencies

[0147] Tt is not uncommon for one class in a software
design to require the use of another class. In such scenarios,
a first class is said to be dependent on a second class and may
need to include the second class. The second class may be
referred to or contained in the first class, so that the first class
will need code that can execute the second class in order to
itself execute properly. According to one embodiment of the
invention, skeleton code generator 130 is configured to
generate skeleton code that provides for dependent classes.
Dependent classes includes classes that it uses.

[0148] FIG. 17 depicts a method for providing skeleton
code in one class that enables that class to include another
class when executed. Consider an example where a class
named CDevice uses a class named CHTTP. In this situa-
tion, code generated for the CDevice class should know
about the code for the CHTTP class. The CHTTP class will
need to be declared in order for the CDevice class to use it.

[0149] 1In FIG. 17, step 1710 provides that a relative
directory path of the class for which the code in the
declaration file is generated, is obtained from the first hash
table 1602. In the example this may correspond to obtaining
the relative directory path for CDevice. In one embodiment,
the relative directory path of CDevice may be obtained from
directory path of the file in the software design specification
1604 (FIG. 16B) that contains a class specification for
CDevice, excluding the root node 1610. In the example
provided, the relative path of CDevice is “Monitor\Device.”

[0150] In step 1720, the directory path obtained in step
1710 is modified by replacing each directory name in the
relative directory path with code that instructs the software
to move up one node in the path name. In one implemen-
tation, this coding is represented by the following syntax:
“.”. Once this step is performed in the example provided,
the relative path of CDevice is modified to “.\..”

[0151] Step 1730 provides that the relative directory path
for the class to be used by the first class is obtained from the
first hash table 1602. In the example provided, the relative
path of the CHTTP class is “Monitor\HWaccess\HTTP.”

[0152] Step 1740 provides that the relative directory path
of the class CDevice, determined in step 1710, is combined
with the relative directory path of the class CHTTP, obtained
in step 1730. The combination is made by tagging the
directory path of the class to be included to the right of the
modified path from step 1720. For example, the modified
directory path from step 1720 is “.\.\”. For the example
given, the combined directory path resulting from this step
is “.\..\Monitor\HWaccess\HTTP”. The compiler uses this
information to find the location of the file to include. In the
example provided, for CDevice to include CHTTP, the
compiler goes up two nodes in the directory path from
CDevice and then down three nodes to access the CHTTP
file.

US 2007/0220483 Al

[0153] Step 1750 provides that the preprocessor directive
(#include) is combined with the directory path generated and
added to the declaration file of the class that is dependent on
the other class (CHTTP). In the example provided, the
resulting preprocessor directive is
#include“.\.\Monitor\HWAccess\HTTP”.

[0154] FIG. 18A depicts an example of the second hash
table 1800 (%m2_ClassStructFunctionDecl). As described
previously, the second hash table 1800 may be used in
skeleton code generator 130 to generate a class skeleton
function for each function of the class or each function
declared within the classes or structs nested in a class. For
reference, FIG. 18B is an example of the class specification
1802 of the software design specification 110. The class
specification 1802 may correspond to an HTML file con-
taining information about a class, such as provided in the
example of FIG. 9. For purpose of explanation, only the
class specification header (see 910 in FIG. 9) and the
function list (920) are depicted and described for class
specification 1802. The second hash table 1800 contains
information found in the function list. The second hash table
1800 also contains all the functions declared for the class
“CHTMLTextProcessor” and for the structure “SHTML-
Text”.

[0155] FIG. 19 depicts a method for adding information
about functions of a class to the second hash table 1520 (See
FIG. 15B). Such a method may be used to add the skeleton
code for each function of an identified class to one or more
program files for the class. In particular, a method such as
described may be used to add skeleton code to the imple-
mentation file (the .cpp file).

[0156] In step 1910, a line is obtained from the function
list of the class specification. It is assumed that the conven-
tion of the software design specification 110 is to correlate
the presence of some lines with certain declarations within
documents that form the software design specification 110.
In other embodiments, other characters, combination of
characters, images, or other markers may be used as the
convention for indicating certain declarations in the speci-
fication.

[0157] In step 1920, the line obtained is checked to see if
it is a function declaration. If the line is a function decla-
ration, then step 1922 provides that the function name is
obtained from the function declaration. Step 1924 provide
that the class name, function name, and function declaration
are added to the second hash table 1520 (see FIG. 15B). The
method is then repeated beginning in step 1910.

[0158] If the determination in step 1920 is that the line is
not a function declaration, then step 1930 provides that a
determination is made as to whether the line is the beginning
of a class declaration. If the determination is that the line is
a class declaration, then step 1932 provides that the function
names are obtained from the function declarations of the
class declaration. Next, step 1934 provides that the class
name, function names, and function declarations are added
to the second hash table 1520. In steps 1932 and 1934, the
lines of the class declaration are obtained to get all the
function declarations of the class declaration. Following
steps 1932 and 1934, the method is then repeated beginning
in step 1910.

[0159] 1If the line is not the beginning of the class decla-
ration in step 1930, then in step 1940, the line is checked to

Sep. 20, 2007

see if it is the beginning of a structure declaration within the
class. If the line is the beginning of a structure declaration,
then step 1942 provides that the function names are obtained
from the function declarations of the structure declaration.
Step 1944 provides that the structure name, function names,
and function declarations are added to the second hash table
1520. The method is repeated beginning with step 1910. In
steps 1942 and 1944, the lines of the structure declaration
are obtained to get all the function declarations of the
structure declaration.

[0160] If the line is not the beginning of the structure
declaration in step 1940, then the line is checked to see if it
is the beginning of a class attribute in step 1950. If the line
is the beginning of the class attribute, then the second hash
table 1520 is complete. Otherwise, the next line of the
function list is obtained in step 1910.

[0161] FIG. 20 depicts a method for generating a class
skeleton function using information from the second hash
table 1520 (see FIG. 15B). While specific reference is made
to a particular hash structure, a method such as described
may be modified to generate the class skeleton function
using another type of hash structure.

[0162] With reference to FIG. 20, step 2010 provides that
the function definition provided in the class specification of
the software design specification 1604 (FIG. 16B) is added
to the implementation file for a given class specification. The
function definition serves as the function header to docu-
ment the function in the skeleton code.

[0163] In step 2020, the function name is obtained from
the function definition. The format of the function definition
allows the function name to be easily obtained.

[0164] In step 2030, the second hash table 1520 is
searched to find the function name.

[0165] Step 2040 provides that the class name and the
function declaration associated with the function name are
obtained from the second hash table 1520.

[0166] Step 2050 determines the return value of the func-
tion from the function declaration.

[0167] From the return value, class name, and function
declaration, step 2060 provides that the beginning of the
skeleton function is added to the implementation file.

[0168] Step 2070 provides that a debug function is added
to the implementation file in order to print out the function
name for debug purposes.

[0169] Instep 2080, the statement to return a value accord-
ing to the return value of the function declaration is added
to the implementation file. The process of this flowchart is
repeated for each function definition of the given class
specification.

[0170] FIG. 21A depicts an example of a hash table 2100
that depicts how the absolute directory path for program files
of a class may be identified. The absolute directory path of
any file corresponds to the directory path that locates that file
in the output directory 600 (see FIG. 6). The hash table 2100
corresponds to the third hash table 1530 in FIG. 15C, except
the hash table is depicted in FIG. 21A as being populated
with the absolute directory paths for program files contain-
ing skeleton code in the output directory 600. FIG. 21B
depicts a software design specification 2102 that is refer-

US 2007/0220483 Al

enced by the hash table 2100. Class specifications in the
directory structure are provided by one or more electronic
documents, which may be formatted in HTML or XML. For
brevity, other files that may be included in the software
design specification 2102 are not depicted, such as text
documents or files with figures.

[0171] The skeleton code generator 130 may be config-
ured to generate skeleton code and place program files in the
output directory 600 (FIG. 6), where the output directory has
a directory structure that is substantially similar to the
directory structure of the software design specification 2102.
The hash table 2100 is used to maintain the location of the
skeleton code of all the classes specified in the software
design specification 110. The location of the program files
for each class in the software design specification 2102 are
added to the hash table 2100. In the example provided, each
program file is added with its absolute target path for where
the code for the class is to be provided in the output directory
600.

[0172] In an embodiment, the absolute target path is
determined from two components. One component used in
determining the absolute target path is the absolute directory
path of the top directory of where the skeleton code is
located. In FIG. 21A, “/CodeDir/” is the absolute path of the
top directory. Another component used in determining the
absolute target path is the relative directory path of the class
from a top directory 2104 of the design specification
(labeled “Q6-DJ10-13”). In the example depicted in FIG.
21A and FIG. 21B, the relative directory path of CHWaccess
is “Monitor/HWaccess/Access/.” The absolute target path is
determined by combining both the absolute path of the top
directory of the skeleton code and relative path of the class
from the top directory 2104 of the class specification. In the
example depicted in FIGS. 21A and 21B, the absolute
directory path where the code is created for CHWaccess is
“/CodeDir/Monitor/HWaccess/Access/.”

[0173] To provide context with other embodiments, FIG.
12 depicts example steps performed by file structure gen-
erator package 810 when file structure generator package
810 goes through the files of the software design specifica-
tion 2102 the first time. As the file structure generator
package 810 encounters a file for the class specification, it
determines the absolute directory path for the class and adds
the class name and absolute directory path to the hash table
2100. Similarly, FIG. 13 depicts a method where the file
structure generator package 810 goes through the files of the
software design specification 2102 a second time. As the file
structure generator package 810 encounters a file for the
class specification, it obtains the absolute directory path of
the class from the hash table 2100. The absolute directory
path is used to create the declaration and implementation
files (the .h file and the .cpp files respectively).

[0174] FIG. 22A depicts an example of a hash table 2200
used by the skeleton code generator 130. The hash table
2200 may correspond to fourth hash table 1540
(%m1_FileClassStrctTable in FIG. 15D). FIG. 22B depicts
a software design specification 2202 referenced by the hash
table 2200. The software design specification 2202 includes
directory structure where electronic documents are struc-
tured according to a class specification. As with the example
above, files in the software design specification 2202 that are
not class specification are not depicted. The skeleton code

Sep. 20, 2007

generator 130 is configured to generate skeleton code in
program files having the same directory structure as the
software design specification 2202. The hash table 2200 is
used to maintain information about the class associated with
the files for all class specification provided in the software
design specification 2202.

[0175] Inrelation to what is described in FIG. 22, FIG. 12
depicts a method that, according to one embodiment, cor-
responds to file structure generator package 810 scanning
through the files of software design specification 2202 for
the first time. As the file structure generator package 810
encounters a file for the class specification, it adds the
filename and class name to the hash table 2200. To deter-
mine if a file contains a class specification, the file must be
opened and read to obtain the class name. FIG. 13 depicts a
method where the file structure generator package 810 goes
through the files of the software design specification 2202
the second time. As the file structure generator package 810
encounters a file, it determines the class name associated
with the file from the hash table 2200. This eliminates the
need to open each file of the design specification to deter-
mine the class name associated with the file.

Hardware Overview

[0176] FIG. 23 is a block diagram that depicts a computer
system 2300 upon which an embodiment of the invention
may be implemented. Computer system 2300 includes a bus
2302 or other communication mechanism for communicat-
ing information, and a processor 2304 coupled with bus
2302 for processing information. Computer system 2300
also includes a main memory 2306, such as a random access
memory (RAM) or other dynamic storage device, coupled to
bus 2302 for storing information and instructions to be
executed by processor 2304. Main memory 2306 also may
be used for storing temporary variables or other intermediate
information during execution of instructions to be executed
by processor 2304. Computer system 2300 further includes
a read only memory (ROM) 2308 or other static storage
device coupled to bus 2302 for storing static information and
instructions for processor 2304. A storage device 2310, such
as a magnetic disk or optical disk, is provided and coupled
to bus 2302 for storing information and instructions.

[0177] Computer system 2300 may be coupled via bus
2302 to a display 2312, such as a cathode ray tube (CRT),
for displaying information to a computer user. An input
device 2314, including alphanumeric and other keys, is
coupled to bus 2302 for communicating information and
command selections to processor 2304. Another type of user
input device is cursor control 2316, such as a mouse, a
trackball, or cursor direction keys for communicating direc-
tion information and command selections to processor 2304
and for controlling cursor movement on display 2312. This
input device typically has two degrees of freedom in two
axes, a first axis (e.g., x) and a second axis (e.g., y), that
allows the device to specify positions in a plane.

[0178] The invention is related to the use of computer
system 2300 for implementing the techniques described
herein. According to one embodiment of the invention, those
techniques are performed by computer system 2300 in
response to processor 2304 executing one or more sequences
of'one or more instructions contained in main memory 2306.
Such instructions may be read into main memory 2306 from

US 2007/0220483 Al

another computer-readable medium, such as storage device
2310. Execution of the sequences of instructions contained
in main memory 2306 causes processor 2304 to perform the
process steps described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in combi-
nation with software instructions to implement the inven-
tion. Thus, embodiments of the invention are not limited to
any specific combination of hardware circuitry and software.

[0179] The term “computer-readable medium” as used
herein refers to any medium that participates in providing
instructions to processor 2304 for execution. Such a medium
may take many forms, including but not limited to, non-
volatile media and volatile media. Non-volatile media
includes, for example, optical or magnetic disks, such as
storage device 2310. Volatile media includes dynamic
memory, such as main memory 2306. Common forms of
computer-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, or any other
magnetic medium, a CD-ROM, any other optical medium,
punchcards, papertape, any other physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM, any other memory chip or cartridge, or any other
medium from which a computer can read.

[0180] Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 2304 for execution. For example,
the instructions may initially be carried on a magnetic disk
of a remote computer. The remote computer can load the
instructions into its dynamic memory and send the instruc-
tions over a telephone line using a modem. A modem local
to computer system 2300 can receive the data on the
telephone line and use an infra-red transmitter to convert the
data to an infra-red signal. An infra-red detector can receive
the data carried in the infra-red signal and appropriate
circuitry can place the data on bus 2302. Bus 2302 carries
the data to main memory 2306, from which processor 2304
retrieves and executes the instructions. The instructions
received by main memory 2306 may optionally be stored on
storage device 2310 either before or after execution by
processor 2304.

[0181] Computer system 2300 also includes a communi-
cation interface 2318 coupled to bus 2302. Communication
interface 2318 provides a two-way data communication
coupling to a network link 2320 that is connected to a local
network 2322. For example, communication interface 2318
may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to
a corresponding type of telephone line. As another example,
communication interface 2318 may be a local area network
(LAN) card to provide a data communication connection to
a compatible LAN. Wireless links may also be implemented.
In any such implementation, communication interface 2318
sends and receives electrical, electromagnetic or optical
signals that carry digital data streams representing various
types of information.

[0182] Network link 2320 typically provides data com-
munication through one or more networks to other data
devices. For example, network link 2320 may provide a
connection through local network 2322 to a host computer
2324 or to data equipment operated by an Internet Service
Provider (ISP) 2326. ISP 2326 in turn provides data com-
munication services through the world wide packet data

Sep. 20, 2007

communication network now commonly referred to as the
“Internet”2328. Local network 2322 and Internet 2328 both
use electrical, electromagnetic or optical signals that carry
digital data streams. The signals through the various net-
works and the signals on network link 2320 and through
communication interface 2318, which carry the digital data
to and from computer system 2300, are exemplary forms of
carrier waves transporting the information.

[0183] Computer system 2300 can send messages and
receive data, including program code, through the net-
work(s), network link 2320 and communication interface
2318. In the Internet example, a server 2330 might transmit
arequested code for an application program through Internet
2328, ISP 2326, local network 2322 and communication
interface 2318.

[0184] The received code may be executed by processor
2304 as it is received, and/or stored in storage device 2310,
or other non-volatile storage for later execution. In this
manner, computer system 2300 may obtain application code
in the form of a carrier wave.

[0185] In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. Thus, the sole and exclusive indicator of what is
the invention, and is intended by the applicants to be the
invention, is the set of claims that issue from this applica-
tion, in the specific form in which such claims issue,
including any subsequent correction. Any definitions
expressly set forth herein for terms contained in such claims
shall govern the meaning of such terms as used in the claims.
Hence, no limitation, element, property, feature, advantage
or attribute that is not expressly recited in a claim should
limit the scope of such claim in any way. The specification
and drawings are, accordingly, to be regarded in an illus-
trative rather than a restrictive sense.

What is claimed is:
1. A method for automatically generating program code,
the method comprising the computer-implemented steps of:

while scanning a directory comprising a plurality of
electronic documents that form a software design speci-
fication that defines software routines, function decla-
rations, and relationships among software routines,
automatically identifying a section of the software
design specification that corresponds to a definition of
a particular software routine, and

maintaining a location of the section of the software
design specification within the directory using a data
structure mapping (a) the particular software routine
to (b) a path, within the directory, of the section of
the software design specification that corresponds to
the definition of the particular software routine;

programmatically generating skeleton code of at least a
first program file and of a second program file based on
the definition of the particular software routine;

wherein the skeleton code of the first program file corre-
sponds to code for declaring one or more functions of
the particular software routine;

wherein the skeleton code of the second program file
corresponds to code for implementing the particular
software routine;

US 2007/0220483 Al

automatically creating, based at least in part on the
location of the section of the software design specifi-
cation within the directory of the software design
specification, an output directory for locating the first
program file and the second program file.

2. The method of claim 1, further comprising the com-
puter-implemented step of locating the first program file and
the second program file at a first node, wherein the first node
has a corresponding node in the software design specifica-
tion where the definition of the software routine is located.

3. The method of claim 1, wherein creating an output
directory for locating the first program file and the second
program file includes providing that at least a portion of the
output directory is to have a node structure that is substan-
tially similar to a portion of the directory of the software
design specification.

4. The method of claim 3, wherein the output directory
has the node structure that is substantially similar to the
portion of the directory of the software design specification,
but that a root node of the output directory is different than
a root node of the directory of the software design specifi-
cation.

5. The method of claim 1, wherein the skeleton code of the
second program file includes skeleton code corresponding to
one or more functions of the particular software routine.

6. The method of claim 5, wherein the skeleton code
corresponding to one or more functions of the particular
software routine includes default return values correspond-
ing to at least one of the one or more functions.

7. The method of claim 5, wherein the skeleton code
corresponding to one or more functions of the particular
software routine includes code for debugging at least one of
the one or more functions.

8. The method of claim 5, wherein the skeleton code
corresponding to one or more functions of the particular
software routine includes function header comments that
describe at least one of the one or more functions, wherein
the function header comments describe an algorithm corre-
sponding to the at least one function.

9. A computer-readable medium for automatically gener-
ating program code, the computer-readable medium carry-
ing instructions which, when processed by one or more
processors, cause:

while scanning a directory comprising a plurality of
electronic documents that form a software design speci-
fication that defines software routines, function decla-
rations, and relationships among software routines,
automatically identifying a section of the software
design specification that corresponds to a definition of
a particular software routine, and

maintaining a location of the section of the software
design specification within the directory using a data
structure mapping (a) the particular software routine
to (b) a path, within the directory, of the section of
the software design specification that corresponds to
the definition of the particular software routine;

programmatically generating skeleton code of at least a
first program file and of a second program file based on
the definition of the particular software routine;

wherein the skeleton code of the first program file corre-
sponds to code for declaring one or more functions of
the particular software routine;

15

Sep. 20, 2007

wherein the skeleton code of the second program file
corresponds to code for implementing the particular
software routine;

automatically creating, based at least in part on the
location of the section of the software design specifi-
cation within the directory of the software design
specification, an output directory for locating the first
program file and the second program file.

10. The computer-readable medium of claim 9, further
comprising one or more additional instructions which, when
processed by the one or more processors, causes locating the
first program file and the second program file at a first node,
wherein the first node has a corresponding node in the
software design specification where the definition of the
software routine is located.

11. The computer-readable medium of claim 9, wherein
creating an output directory for locating the first program file
and the second program file includes providing that at least
a portion of the output directory is to have a node structure
that is substantially similar to a portion of the directory of
the software design specification.

12. The computer-readable medium of claim 11, wherein
the output directory has the node structure that is substan-
tially similar to the portion of the directory of the software
design specification, but that a root node of the output
directory is different than a root node of the directory of the
software design specification.

13. The computer-readable medium of claim 9, wherein
the skeleton code of the second program file includes
skeleton code corresponding to one or more functions of the
particular software routine.

14. The computer-readable medium of claim 13, wherein
the skeleton code corresponding to one or more functions of
the particular software routine includes default return values
corresponding to at least one of the one or more functions.

15. The computer-readable medium of claim 13, wherein
the skeleton code corresponding to one or more functions of
the particular software routine includes code for debugging
at least one of the one or more functions.

16. The computer-readable medium of claim 13, wherein
the skeleton code corresponding to one or more functions of
the particular software routine includes function header
comments that describe at least one of the one or more
functions, wherein the function header comments describe
an algorithm corresponding to the at least one function.

17. An apparatus for automatically generating program
code, the apparatus comprising a memory storing instruc-
tions which, when processed by one or more processors,
cause:

while scanning a directory comprising a plurality of
electronic documents that form a software design speci-
fication that defines software routines, function decla-
rations, and relationships among software routines,
automatically identifying a section of the software
design specification that corresponds to a definition of
a particular software routine, and

maintaining a location of the section of the software
design specification within the directory using a data
structure mapping (a) the particular software routine
to (b) a path, within the directory, of the section of
the software design specification that corresponds to
the definition of the particular software routine;

US 2007/0220483 Al

programmatically generating skeleton code of at least a
first program file and of a second program file based on
the definition of the particular software routine;

wherein the skeleton code of the first program file corre-
sponds to code for declaring one or more functions of
the particular software routine;

wherein the skeleton code of the second program file
corresponds to code for implementing the particular
software routine;

automatically creating, based at least in part on the
location of the section of the software design specifi-
cation within the directory of the software design
specification, an output directory for locating the first
program file and the second program file.

18. The apparatus of claim 17, wherein the memory
further stores one or more additional instructions which,
when processed by the one or more processors, causes
locating the first program file and the second program file at
a first node, wherein the first node has a corresponding node
in the software design specification where the definition of
the software routine is located.

19. The apparatus of claim 17, wherein creating an output
directory for locating the first program file and the second
program file includes providing that at least a portion of the
output directory is to have a node structure that is substan-
tially similar to a portion of the directory of the software
design specification.

Sep. 20, 2007

20. The apparatus of claim 19, wherein the output direc-
tory has the node structure that is substantially similar to the
portion of the directory of the software design specification,
but that a root node of the output directory is different than
a root node of the directory of the software design specifi-
cation.

21. The apparatus of claim 17, wherein the skeleton code
of the second program file includes skeleton code corre-
sponding to one or more functions of the particular software
routine.

22. The apparatus of claim 21, wherein the skeleton code
corresponding to one or more functions of the particular
software routine includes default return values correspond-
ing to at least one of the one or more functions.

23. The apparatus of claim 21, wherein the skeleton code
corresponding to one or more functions of the particular
software routine includes code for debugging at least one of
the one or more functions.

24. The apparatus of claim 21, wherein the skeleton code
corresponding to one or more functions of the particular
software routine includes function header comments that
describe at least one of the one or more functions, wherein
the function header comments describe an algorithm corre-
sponding to the at least one function.

