
(19) United States
US 20070220483A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0220483 A1
Motoyama et al. (43) Pub. Date: Sep. 20, 2007

(54) APPROACH FOR AUTOMATICALLY
GENERATING PROGRAM CODE

(76) Inventors: Tetsuro Motoyama, Cupertino, CA
(US): Avery Fong, Castro Valley, CA
(US)

Correspondence Address:
HICKMAN PALERMO TRUONG & BECKER,
LLP
2OSS GATEWAY PLACE
SUTE 550

SAN JOSE, CA 95110 (US)

(21) Appl. No.: 11/803,915

(22) Filed: May 15, 2007

SOFTWARE DESIGN
SPECIFICATION

110

DESIGN RULES
120

SKELETON
CODE

GENERATOR
130

Related U.S. Application Data

(63) Continuation of application No. 10/652,715, filed on
Aug. 28, 2003, now Pat. No. 7,237,224.

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl. .. 717/106
(57) ABSTRACT
Programming the creation of a software system is facilitated
by automating the generation of Some of the program code
that is necessary for the Software system. The generation of
program code may be automated based on a Software design
specification that can be created by developers. The software
design specification may be scanned and code may be
generated for implementing the Software system based on
information obtained from Scanning the Software design
specification.

PROGRAM FILE(S)
140

Patent Application Publication Sep. 20, 2007 Sheet 1 of 25 US 2007/0220483 A1

SOFTWARE DESIGN
SPECIFICATION

110 SKELETON
CODE PROGRAM FILE(S)

GENERATOR 140
130

DESIGN RULES
120

FIG. 1

Patent Application Publication Sep. 20, 2007

SCAN SOFTWARE DESIGN
SPECIFICATION

210

IDENTIFYEACH CLASS OR
STRUCTURE IN SOFTWARE
DESIGN SPECIFICATION

214

CREATE HAND CPPFILES FOREACH
DENTIFIED CLASS OR STRUCTURE

218

ADD CORRESPONDING CLASS
DECARATION TO EACH H FLE

222

ADD SKELETON CODE TO EACH CPP
FILE
226

IDENTIFY ANDADDAPPROPRIATE
DIRECTIVES TO EACHHFILE

230

Sheet 2 of 25

ADD CORRESPONDING FILE HEADERS
TO EACH H AND CPPFILE

234.

ADD FUNCTION HEADERS TO EACH
FUNCTION IN THE CPP FILE

238

ADD APPROPRIATE COMMENTS TO
EACH H AND CPPFILE

242

COMPLE SKELETON CODE
246

RECEIVE MANUALLY ENTERED CODE
TO SUPPLEMENT SKELETON CODE

250

COMPLE DESIGN SPECIFICATION
CODE
254

FIG. 2

US 2007/0220483 A1

Patent Application Publication Sep. 20, 2007 Sheet 3 of 25 US 2007/0220483 A1

SCAN SOFTWARE DESIGN SPECIFICATION
DRECTORY

310

PRODUCE SKELETON DIRECTORY BASED
ONDESIGN SPECIFICATION DIRECTORY

320

IDENTIFYEACH CLASSISTRUCTURE
SPECIFIED IN THE DESIGN SPECIFICATION

330

CREATE CLASS DECLARATION AND/OR

IMPLEMENTATIONFILE(S) INSKELETON
DIRECTORY FOREACH IDENTIFIED CLASS

340

FIG 3

Patent Application Publication Sep. 20, 2007

SCAN SOFTWARE DESIGN
SPECIFICATION

410

CREATE OUTPUT DIRECTORY THAT
REPLICATES NODE STRUCTURE OF
SOFTWARE DESIGN SPECIFICATION

DIRECTORY
415

IDENTIFYFILES THAT ARE CLASS OR
STRUCTURE SPECIFICATIONS

420

GENERATE HASH.TABLE TOMANAGE
DIRECTIVES

425

SCAN SOFTWARE DESIGN
SPECIFICATIONAGAIN

430

IDENTIFY FUNCTION DECLARATIONS
435 -

Sheet 4 of 25

IDENTIFY CLASSATTRIBUTES
440

IDENTIFY CLASSES THAT USE OTHER
CLASSES

445

GENERATE AND PLACE
DECLARATION FILE IN OUTPUT

DIRECTORY
450

GENERATE AND PLACE FUNCTION
IMPLEMENTATION FILE IN OUTPUT

DIRECTORY
455

FIG. 4

US 2007/0220483 A1

Patent Application Publication Sep. 20, 2007 Sheet 5 of 25 US 2007/0220483 A1

502

Directory Files for
for ams architecture

Architecture and figures -

504 Files for Files for
\ Directory specification specification

of package of package
Directory for for package and classes and classes
Software and figures and figures
Design

Specification Files for Files for
Directory specification Directory specification

for package T of package for package T of package
p g and classes p g and classes

and figures and figures

Files for Files for

Directory specification Directory specification
for package of package for package of package

p 2 and classes p g and classes
and figures and figures

More More
, Directories Directory for Directories
for packages package for packages

Files for
512 specification

Directory for of package
k package and classes

and figures

More
Directories
for packages

522

Organization of Software Design
Specification Directory

FIG. 5

Patent Application Publication Sep. 20, 2007 Sheet 6 of 25 US 2007/0220483 A1

610 Directory Files for h Files for .h
m- and cpp. of and .cpp of / for package classes classes

Directory
for Code

Directory Files for .h Directory Files for .h
for package and .cpp of for package and .cpp. of

classes classes

Directory Files for .h Directory Files for .h
for package and .cpp of for package H and cpp. of

classes classes

More More
Directories Directory for Directories
for packages package for packages

Files for .h
- and cpp. of

all classes

Directory for
package

More
Directories
for packages

600

Output Directory

F.G. 6

Patent Application Publication Sep. 20, 2007 Sheet 7 of 25 US 2007/0220483 A1

Skeleton Code Generation Tool
700

Software Design Specification Navigator
710

Class Identifier Module
720

File Structure Generator
730

Function Processor
740

Attribute Processor
750

Class Declaration File Generator
760

Class Skeleton Function File Generator
770

Rules
780

FIG. 7

Patent Application Publication Sep. 20, 2007 Sheet 8 of 25 US 2007/0220483 A1

Skeleton CodeMaker.pl
815

File Structure
Generator Package

810

generateSkeleton CodeForClass0

Class Skeleton Code
Generator Package

820

FIG. 8

Class Specification
900

Class Specification Header
910

Function List
920

Class Attributes
930

Function Definitions
940

Format of Class Specification
FIG. 9

Patent Application Publication Sep. 20, 2007 Sheet 9 of 25 US 2007/0220483 A1

Class Declaration File
1000

File Header
1002

Preprocessor Directives
1004

File Inclusions
1006

Class Declaration
1008

FIG 10

Class Skeleton Function File
1100

File Header
1102

File Inclusions
1104

Function Header
1106

Skeleton Function
1108

1 FIG 11

Patent Application Publication Sep. 20, 2007 Sheet 10 of 25 US 2007/0220483 A1

Ga)
1250

1210

Create directory under
Obtain file from design target directory if it does

not exist specification

1260

1215
Add class name and absolute target

directory path to the hash table Are there NO
o NO nymore files %m1 AbsTargetPathForClassStrctTable

End NO 1270

Add filename and class
1220 Is file an name to the hash table p

HTML file %m1 FileClassStrictTable

1230
Can class

name be obtained

Add class name and its relative
directory path to the hash table
%m ClassIncludeRelativePath

F.G. 12

Patent Application Publication Sep. 20, 2007 Sheet 11 of 25 US 2007/0220483 A1

1310

Obtain file from
software design
specification

1315 1320

Are there
anymore files NO NO End

1330
Does

file contain a
class?

YES 1340

Create.h file and .cpp
file for class in the
target directory

1350

Add the skeleton code
to the files for the class

F.G. 13

Patent Application Publication Sep. 20, 2007 Sheet 12 of 25 US 2007/0220483 A1

1410 1460

Obtain information Add file header to .cpp
from function list of

d file
class specification

1420 1470

Obtain information
from class attributes

table of class
specification

Add includes to .cpp
file

1430 1480
Obtain function definition
from class specification
and add it as function
headers to .cpp file

Add file header and
#define to .h file

1440 1485

Add function definition
Add includes to.h file to.cpp file

1450 1490

Add debug functions
Add class declaration and return value to

to.h file function definition in
.cpp file

FIG. 14

Patent Application Publication Sep. 20, 2007 Sheet 13 of 25 US 2007/0220483 A1

%m ClassRelative.ncludePath
1510

Class or Structure Name Relative Path

1512 1514

FIG. 15A
%m2 ClassStructFunctionDecl

1520

Class or Structure Name Function Table J

Function Declaration

FIG. 15B

%m1 AbsTargetPathForClassStrctTable

Class or Structure Name Absolute Path

532

%m1 FileClassStrctTable
1540

Class or Structure Name

1542 1544

FIG. 15D

Patent Application Publication Sep. 20, 2007 Sheet 14 of 25 US 2007/0220483 A1

%m ClassIncludeRelativePath

Class or Structure Name Relative Path
CTimer Timer
CTimerSystemRegistry Timer
CMonitorService MonitorService\
SKeyValueinfo Monitor
CMonitorManager MonitorMonitorManager
CDeviceFactory Monitor Device\
CDevice Monitor Device\
CDevice ODBC Monitor DeviceODBC\
CDevice History MonitorDeviceODBCW
CDeviceInfoData Monitor DeviceODBCW
CHWaccess Monitor HWaccessWaccess.\
CSNMPAccess MonitorWHWaccessWCCess\
CHTTPACCeSS MonitorWacCeSSWCCeSS\
CSNMP MonitorWaccessWSNMPV
CSNMPSession MonitorWaccessWSNMPV
CHTTP Monitor HWaccess\HTTPV
CHTTPSession MonitorWaccessNHTPV

1602

FIG. 16A

US 2007/0220483 A1 Patent Application Publication Sep. 20, 2007 Sheet 15 of 25

Patent Application Publication Sep. 20, 2007 Sheet 16 of 25 US 2007/0220483 A1

Example:
CDevice includes CHTTP

Obtain relative path of 1710 Relative Path of CDevice:
class Monitor\Device

Replace directory
0 1720 Relative Path of CDevice:

names in relative path \
of class with .. W

Obtain relative path of 1730 Relative Path of CHTTP:
class to be included MonitorWHWaccessWHTTP

1740
Combined relative path
of class with relative Combined Relative Path:

..V.VMonitorVHVWAccessWHTTP path of class to be
included

Create include 1750

preprocessor directive include '.V.V.MonitorWHWAccessWHTTP"
with combined relative

path

FIG. 17

US 2007/0220483 A1

008I 103(Iuo?oun Hyonu)SsseIOTzuu 94,

Patent Application Publication Sep. 20, 2007 Sheet 17 of 25

} q xe ITVNI, HS q ona 3 s

US 2007/0220483 A1 Patent Application Publication Sep. 20, 2007 Sheet 18 of 25

US 2007/0220483 A1 Patent Application Publication Sep. 20, 2007 Sheet 19 of 25

NO

Patent Application Publication Sep. 20, 2007 Sheet 20 of 25 US 2007/0220483 A1

2010

Add the function
definition of the class

specification to .cpp file
as function header

2020

Determine function
name from function

definition

2030

Search the second hash
table for the function

2e

2040

Obtain class name and
function declaration

for function

2050

Determine return value
from function
declaration

2060

Add code for the
beginning of skeleton
function to .cpp file

2070

Add debug function to
print out function name

for debug purposes

2080

From the return value
obtained from function
definition, add correct
return value to .cpp file

FIG. 20

Patent Application Publication Sep. 20, 2007 Sheet 21 of 25 US 2007/0220483 A1

%m1 AbsTargetPathForClassStrctTable
2100

Class or Structure Name Absolute Directory Path
CTimer |CodeCirl Timer?
CTimerSystemRegistry |CodeCirl Timeri
CMonitorService |Code.DirtMonitorServicef
SKeyValuelinfo |CodeCirMonitoff
CMonitorManager /Codediri Monitor/MonitorManagerl
CDeviceFactory |Code.Diri Monitori Deviced
CDevice |CodeirMonitor/Deviced
CDeviceODBC CodeCirl Monitor/DeviceODBC.
CDeviceHistory |Code.Diri Monitori DeviceODBC,
CDeviceInfoData CodeCiri Monitor DeviceODBC/
CHWaccess |CodeCirl Monitor/HWaccess ACCess!
CSNMPACcess |CodeCirl Monitor/HWaccess/ACCessl
CHTTPAccess |CodeCirl Monitor/HWaccess/Access,
CSNMP |CodeCirfMonitor/HWaccess/SNMPf
CSNMPSession |CodeCirfMonitor/HWaccess/SNMP
CHTTP |CodeCi/Monitor/HWaccessfHTTP
CHTTPSession CodeCirl Monitor, HWaccess/HTTP/

FIG 21A

US 2007/0220483 A1 Patent Application Publication Sep. 20, 2007 Sheet 22 of 25

Patent Application Publication Sep. 20, 2007 Sheet 23 of 25 US 2007/0220483 A1

%m1 FileClassStrictTable
2200

Class or Structure Name
CTimer.htm Cimer
cTimerSystem Registry.htm CTimerSystem Registry
CMonitorService.htm CMonitorService
skeyValueInfo.htm SKeyValueinfo
cMonitorManager.htm CMonitorManager
cDeviceFactory.htm CDeviceFactory
CDevice.htm CDevice
CDeviceODBC.htm CDeviceODBC
cDeviceHistory.htm CDevicehistory
cDeviceInfoData.htm CDeviceInfoData
CHWaccess.htm CHWaccess
CSNMPACCess.htm CSNMPACCess
cHTTPACCess.htm CHTTPACCeSS
CSNMP.htm CSNMP
cSNMPSession.htm CSNMPSession
CHTTP.htm CHTTP
CHTTPSeSSion.htm CHTTP Session

FIG. 22A

EZZ "SD|-||

US 2007/0220483 A1 Patent Application Publication Sep. 20, 2007 Sheet 24 of 25

US 2007/0220483 A1 Patent Application Publication Sep. 20, 2007 Sheet 25 of 25

}|}}ONALEN TWOOT

HOSSE OO}}d ÅHOWEW NIWW

£Z "SDI

US 2007/0220483 A1

APPROACH FOR AUTOMATICALLY
GENERATING PROGRAM CODE

RELATED APPLICATIONS

0001. This patent application is a continuation of U.S.
patent application Ser. No. 10/652,715 (Attorney Docket
No. 49986-0528), filed Aug. 28, 2003, entitled “Data Struc
ture Used for Skeleton Function of a Class in a Skeleton
Code Creation Tool.” naming Tetsuro Motoyama and Avery
Fong as inventors, the entire content of which is hereby
incorporated by reference in its entirety for all purposes.
0002 This patent application is related to U.S. patent
application Ser. No. 10/313,158 (Attorney Docket No.
49986-0516), now issued as U.S. Pat. No. 7,171,652, filed
on Dec. 6, 2002, entitled “Software Development Environ
ment with Design Specification Verification Tool, naming
Tetsuro Motoyama and Avery Fong as inventors.
0003. This patent application is related to U.S. patent
application Ser. No. 09/881,250 (Attorney Docket No.
49986-0506), now issued as U.S. Pat. No. 7,191,141, filed
on Jun. 13, 2001, entitled “Automated Management of
Development Project Files Over a Network,” naming Tet
Suro Motoyama as inventor.
0004. This patent application is also related to U.S. patent
application Ser. No. 10/059,694 (Attorney Docket No.
49986-0509), filed on Jan. 28, 2002, entitled “Project Man
agement Over A Network with Automated Task Schedule
Update.” naming Tetsuro Motoyama as inventor.
0005. This patent application is also related to U.S. patent
application Ser. No. 10/652,603 (Attorney Docket No.
49986-0526), filed on Aug. 28, 2003, entitled “Technique
For Automating Code Generation. In Developing Software
Systems.” naming Tetsuro Motoyama and Avery Fong as
inventors.

0006. This patent application is also related to U.S. patent
application Ser. No. 10/652,602 (Attorney Docket No.
49986-0527), filed on Aug. 28, 2003, entitled “Data Struc
ture Used for Directory Structure Navigation in a Skeleton
Code Creation Tool.” naming Tetsuro Motoyama and Avery
Fong as inventors.

FIELD OF THE INVENTION

0007. The present invention relates to automatic code
generation for Software systems. In particular, the present
invention relates to a system and method for automatically
generating code for a software system based on a design
specification.

BACKGROUND OF THE INVENTION

0008. The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section.

0009. Development of software systems is often a large
undertaking for businesses. Often, developers create docu
ments that specify how the software system should be
developed. These documents may include explanations,

Sep. 20, 2007

figures, flow charts and other expressions of ideas regarding
requirements, implementation, execution or use of the Soft
ware system. The specification may also include documents
that specify specific programming aspects of the software
system. These program aspects include, for example, nam
ing and defining Software classes, function declarations,
relationship of Software classes to one another, specific
comments that are to be placed in program files. By speci
fying this information on the developer side, one result that
is achieved is that different portions of the overall software
system may be better interrelated with one another.
0010 Developers often adhere to a convention or a set of
guidelines in how certain types of information are presented
in the specification for the software system. This forces
programmers to follow a convention that is understood by
all of the developers and programmers that work on the
Software system.
0011. Despite using a software design specification with
guidelines, creating code files based on the design specifi
cation is often tedious and labor intensive. Typically, pro
grammers manually refer to the design specification con
tinuously while entering code. Certain programming tasks,
Such as function declarations and listing class attributes,
require the programmer to go back and forth between the
specification and the program files in order to write the
correct syntax for the code that corresponds to the function
declarations and class attributes. Often, the programmer
must also structure the program files that are created accord
ing to what is provided or otherwise specified in the design
specification. This is also a labor intensive task, as the
program files can have long directory paths that are at least
partially based on a corresponding directory path in the
Software design specification.
0012 Based on the foregoing, an approach for develop
ing software code that does not suffer from the limitations of
prior approaches is highly desirable.

SUMMARY OF THE INVENTION

0013 An approach is provided to facilitate the creation of
a software system by automating the generation of at least a
portion of the program code in the software system. The
generation of program code may be automated based on a
Software design specification. According to one aspect of the
invention, a specification that describes how a software
system is to be designed is scanned. Certain designated
characteristics of the specification may be detected during
the scan. Based on the designated characteristics, at least a
portion of the program code for implementing the software
system is automatically generated. The approach can sig
nificantly reduce the time required by skilled programmers
to develop the program code for the software system based
on the design specification and also reduce errors in the
Software system.

BRIEF DESCRIPTION OF THE DRAWINGS

0014. The present invention is depicted by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer
als refer to similar elements and in which:

0015 FIG. 1 is a block diagram of a system for gener
ating code, according to an embodiment of the invention;

US 2007/0220483 A1

0016 FIG. 2 depicts a detailed method for generating
program files manually by a developer;
0017 FIG. 3 depicts a basic method where generated
program files are organized using an output directory,
according to one embodiment of the invention;
0018 FIG. 4 depicts a more detailed method for gener
ating an output directory with program files containing
skeleton code;
0.019 FIG. 5 depicts a software design specification for
use with an embodiment of the invention;
0020 FIG. 6 is a diagram depicting the organization of an
output directory that contains different segments of code that
are generated from the design specification;
0021 FIG. 7 depicts components of a code generator as
configured to generate skeleton code;
0022 FIG. 8 describes a code generator, as configured to
generate skeleton code, in terms of packages and interfaces:
0023 FIG. 9 describes the manner in which a class
specification may be provided in the design specification;

0024 FIG. 10 depicts one format for a class declaration
file that is generated to include skeleton code;
0.025 FIG. 11 depicts one format for a class skeleton
function file that is generated to include skeleton code;
0026 FIG. 12 provides a method for creating an output
directory based on a directory that forms a software design
specification;

0027 FIG. 13 describes a method for generating skeleton
code for program files based on Software classes that are
defined in the design specification;
0028 FIG. 14 depicts a method for generating code with
a component of a code generator, according to an embodi
ment of the invention;

0029 FIGS. 15A-15D depict hash tables for use in auto
matically generating code, according to an embodiment of
the invention;

0030 FIG. 16A depicts another type of hash table for use
in automatically generating code, according to an embodi
ment of the invention;
0031 FIG. 16B depicts a software design directory that
corresponds to the hash table of FIG. 16A:
0032 FIG. 17 depicts a method for providing skeleton
code in one class that is for enabling that class to include
another class when executed;

0033 FIG. 18A depicts another of hash table for use in
automatically generating code, according to an embodiment
of the invention;
0034 FIG. 18B depicts an example class specification of
the Software design specification that corresponds to the
hash table of FIG. 18A:

0035 FIG. 19 depicts a method for adding information
about functions of a class to a hash structure;

0.036 FIG. 20 describes a method for generating a class
skeleton function using information in one of the hash
tables;

Sep. 20, 2007

0037 FIG. 21A depicts another of hash table for use in
automatically generating code, according to an embodiment
of the invention;
0038 FIG. 21B depicts a software design directory that
corresponds to the hash table of FIG. 21A:
0.039 FIG. 22A depicts another of hash table for use in
automatically generating code, according to an embodiment
of the invention;
0040 FIG. 22B depicts a software design directory that
corresponds to the hash table of FIG. 22A; and
0041 FIG. 23 is a block diagram that depicts a computer
system upon which an embodiment of the invention may be
implemented.

DETAILED DESCRIPTION OF THE
INVENTION

0042. A technique for automating code generation in
developing software systems is described. In the following
description, for the purposes of explanation, numerous spe
cific details are set forth in order to provide a thorough
understanding of the present invention. It will be apparent,
however, that the present invention may be practiced with
out these specific details. In other instances, well-known
structures and devices are depicted in block diagram form in
order to avoid unnecessarily obscuring the present inven
tion.

Overview

0043 Embodiments of the invention facilitate the cre
ation of a Software system by automating the generation of
Some of the program code that is necessary for the software
system. The generation of program code may be automated
based on a Software design specification. As described
herein, embodiments of the invention may significantly
reduce the time required by skilled programmers to develop
the program code for the Software system based on the
design specification.

0044) In one embodiment, a specification that describes
how a software system is to be designed is scanned. Certain
designated characteristics of the specification may be
detected during the scan. Based on the designated charac
teristics, at least some of the program code for implementing
the Software system is automatically generated.
0045 Embodiments provided herein enable certain tasks
of programmers to be automated. These tasks may pertain to
the generation of skeleton code for Software classes and
structures of the design specification. By automating the
generation of skeleton code, the amount of time required
from the skilled programmer is greatly reduced. The possi
bility that human error will cause bugs or compilation errors
in the Software system is also reduced by automating the
generation of skeleton code.

Terminology
0046) The term “code” refers to syntax that is interpreted
as instructions when a file containing that syntax is com
piled.

0047. The term “skeleton code” refers to a set of code that
by itself is incomplete for purposes of performing a desired
task, even though the skeleton code may be compiled.

US 2007/0220483 A1

0.048. The term “hash table' is a data structure that
contains key-value pairs.

0049. The term “module” refers to software, hardware,
firmware, or any combination thereof, for performing a
stated function. A module may be provided as one compo
nent or contained in one process. Alternatively, a module
may be distributed amongst multiple components and/or
processes.

0050. The term “package” refers to a software component
that includes one or more classes working together to
perform a task.
0051) The term “class” or “software class” refers to a set
of code that can be executed to perform a stated function.
For purposes of this application, a 'structure' is assumed to
be a type of Software class, unless otherwise stated.

Functional Description
0.052 FIG. 1 is a block diagram that depicts a system for
generating code, according to an embodiment of the inven
tion. A skeleton code generator 130 is configured to generate
code that is later compiled and executed as part of a Software
system. The code may be packaged into files. In one
embodiment, the code that is generated is skeleton code.
Files containing the skeleton code may require additional
code and/or edits, in order to compile and/or function
properly.

0053. In FIG. 1, a software design specification 110
defines a software system and enables programmers to
create program files for the software system. Input for the
skeleton code generator 130 may include a Software design
specification 110 and design rules 120. The output of the
code generator may include one or more program files 140.
As will be described, the program files 140 may be gener
ated and organized according to some structure, such as in
the form of a directory. A specific output directory that can
be created according to an embodiment is described here
inafter with reference to FIG. 6.

0054) Once completed, the software system may com
prise modules and Software classes that are based on an
overall design and organization. The Software design speci
fication 110 is a compilation of documents that together
define and/or explain the modules and Software classes. In
particular, the Software design specification 110 may define
programming aspects of Software classes that form the
Software system. In one embodiment, the Software design
specification 110 is a compilation of electronic documents.
The electronic documents may be in the form of Hypertext
Markup Language (HTML), eXtensible Markup Language
(XML), or any other format that provides tags or other
markers. It is also possible for the electronic documents to
be text files that contain detectable characters.

0.055 The design rules 120 contains a set of rules that can
be used by the skeleton code generator 130 to inspect the
software design specification 110 for aspects that define the
Software classes, components thereof, or are otherwise to be
included in the software system. The set of design rules may
be provided by the developers. Thus, it is possible for the
design rules 120 to at least be partially defined by the
software design specification 110. For example, the software
design specification 110 may specify the manner in which
the software design specification 110 is to be inspected or

Sep. 20, 2007

interpreted. It is also possible for the set of design rules 120
to be at least partially integrated with the skeleton code
generator 130.
0056. The program files 140 that are generated by the
skeleton code generator 130 form components of the soft
ware architecture. The program files 140 may contain code
that Subsequently can be executed to perform the functions
or tasks specified for the software system.
0057. In one embodiment, the skeleton code generator
130 uses the design rules 120 to scan the software design
specification 110 to detect characteristics of elements that
are to be provided in the completed software system.
Example elements include, without limitation, classes, func
tions, class attributes, comments, and file headers. In order
to scan the software design specification 110, the skeleton
code generator 130 is configured to detect the characteristics
in the software design specification 110 that correspond to
such elements. For example, the skeleton code generator 130
may be configured to associate certain tags or characters
with classes, class attributes, function declarations, or com
ments. As a specific example, the skeleton code generator
130 may detect the capital letter “C” at the beginning of a
word, and interpret the character as the beginning of a
Software class specification. As another example, the char
acter'? may denote the beginning or end of a comment for
a computer program.

0058. In one embodiment, program files 140 that are
generated by skeleton code generator 130 contain skeleton
code. The skeleton code of program files 140 can be
compiled and executed, but will not perform the desired
function without a programmer adding additional code to
perform the desired function. The level of detail at which the
code is generated may depend on the specific implementa
tion. In one embodiment, skeleton code generator 130
automates the creation of program files, the creation of
headers in the program files, the replication of comments
required in the software design specification 110, and the
declaration of functions and class attributes as required by
the software design specification 110. Still further, as will be
described by other embodiments detailed hereinafter, the
program files may be placed in a directory structure in a
manner specified by the software design specification 110.
An output directory where the program files are placed may
be generated by skeleton code generator 130. By creating
such coded program files 140, embodiments of the invention
can conserve resources of highly skilled programmers who
would otherwise manually create what the skeleton code
generator 130 generates automatically.

0059 FIG. 2 depicts a more detailed method for manu
ally generating program files that form part of a software
system.

0060. In step 210, the software design specification 110 is
scanned. In one embodiment, the Software design specifi
cation 110 may be scanned for characteristics that are
specified by the design rules 120. Examples of such char
acteristics include, without limitation, tags in HTML docu
ments, or specific characters in text or HTML documents,
that designate the location of elements such as class
attributes, functions, function declarations, and comments.
After the software design specification 110 has been
inspected for defects and then published, the code is devel
oped. In one embodiment, the Software design specification

US 2007/0220483 A1

110 will contain all, or at least most of the information
needed to generate the code for each class and structure of
the design specification. The Software design specification
110 may be scanned in association with the creation of the
workspace where the code will be developed based upon the
software design specification 110. The workspace will vary
depending upon the code development tool used.
Microsoft's Visual Studio .NET and SunSoft's Sun Work
shop are examples of code development tools for the C++
programming language.
0061 Step 214 provides that the classes defined in the
software design specification 110 are identified. In addition,
if the software design specification 110 defines structures,
the structures are also identified. In one embodiment, soft
ware classes or structures are detected by inspecting the
Software design specification 110 for tags or characters that
contain 'C', because, as design rules 120 may specify, the
appearance of this character at the beginning of a word or
string is designated to delineate a class or structure.
0062 According to one embodiment, for each detected
class, step 218 provides that two program files containing
skeleton code are created. A first program file corresponds to
a declaration file, and a second program file corresponds to
an implementation file. The declaration file contains the
declaration for that class. The implementation file contains
the function definitions of a class identified from the soft
ware design specification 110. With embodiments such as
described, the declaration file may be identified as having a
.h extension, and the implementation file may be identified
as having a .cpp extension.
0063 Step 222 provides that skeleton code is added to the
declaration file. In one embodiment, this skeleton code
includes at least some instructions for declaring the func
tions and the class attributes for the class identified from the
Software design specification 110. The programming syntax
may also be used for creating file headers and function
headers.

0064 Step 226 provides that skeleton code is added to the
implementation file. This skeleton code may include instruc
tions that, when the file is completed, are for executing
functions and for returning values when functions are
executed. With each implementation file, the skeleton code
for each function may also include statements for debugging
purposes and a statement to return a value if the function
returns a value.

0065. In step 230, appropriate directives are added to the
declaration file created for each class that is identified from
the software design specification 110. A class may require
the use of other classes. The class that uses the other class
needs to “include the other class (“included class'). For a
class to include other classes, the class must know the path
to the other classes (the path to the declaration file of the
other classes, more specifically). A directive can be used to
allow a class to include other classes that it uses. The
directive indicates the path to other classes. The path may
define the location of a particular file within an output
directory such as described in FIG. 6. The included classes
must be declared before a class can use it. By adding a
directive to indicate the path to the included classes, the
class will know how the included classes are declared. Thus,
in order to add directives to the declaration file, all the
classes of software design specification 110 and the location

Sep. 20, 2007

of their declaration files need to be identified so that the path
to the class may be known. The manner in which the
included classes are detected may be the same as how all
classes are identified. In one embodiment, a particular
character or tag is identified that delineates a class (e.g. “C”).

0066. In step 234, a file header is added to each of the
program files. The file header documents the file and the
class for which the code is written. As with other syntax, the
skeleton code generator 130 may be used to automatically
generate the header for each program file.

0067 Step 238 provides that a function header is pro
vided to each function in the implementation file. The
function header may document and refer to a description that
the algorithm or the function performs when executed in the
particular implementation file.

0068 Step 242 provides that non-programming syntax,
Such as comments, are provided in the declaration and
implementation files. In one embodiment, comments added
to each type of programming file are replicated, or otherwise
based on sections of software design specification 110 that
are designated as being comments for Subsequent program
files. Thus, step 242 may include copy and paste operations
to copy comments from the Software design specification
110 to the program files.

0069. In step 246, the skeleton code provided in the
declaration and implementation files is added to the work
space of a code development tool and then compiled.
Compilation errors may indicate defects in the design speci
fication. If so, the defects in the design specification are
corrected and the skeleton code is re-generated accordingly.

0070. Once the skeleton code is compiled, additional
code may be manually added to each implementation file in
step 252. In step 254, the files are re-compiled with the
manually entered code.

0.071) The steps of the method described in FIG.2 may be
performed automatically using the skeleton code generator
130 and the information in the design specification. Also, the
recited steps may be performed in any order since they
involve writing information into a file before the workspace
is compiled.

0072 Among other benefits of automating the steps of
the method in FIG. 2 is reducing the time needed for
developing the code based on the contents of the software
design specification 110. Furthermore, an embodiment such
as described in FIG. 1 eliminates human error in generating
the skeleton code.

Output Directory

0073. According to an embodiment of the invention, an
output directory is created to structure skeleton code and
related data generated from the Software design specification
110. The structure of the output directory may be specified
by the directory structure of the software design specifica
tion 110. The software design specification 110 may either
specify what the structure of the output directory should be,
or the software design specification 110 may itself be
structured into a directory. In this way, the Software design
specification directory may form the basis of the output
directory's structure.

US 2007/0220483 A1

0074. In one application, the software design specifica
tion directory contains electronic documents that describe
various aspects of the desired software system. The software
design specification 110 may describe and/or define modules
that form a first layer of division within the directory, and
classes that form internal layers of the modules within the
directory. Thus, the software design specification 110 may
correspond to a directory, where nodes of the directory
correspond to modules, Sub-modules and classes. In one
embodiment, the program files created by the skeleton code
generator 130 are automatically structured into an output
directory. The output directory may be modeled after the
directory structure of the software design specification 110.
Thus, the output directory may contain structures of nodes
that resemble a corresponding configuration of the directory
of the software design specification 110.

0075 FIG. 3 depicts a basic method where generated
program files are organized using an output directory,
according to one embodiment of the invention. In describing
FIG. 3 and FIG. 4, reference may be made to elements of
other figures in this application. Any such reference is made
for illustrative purposes only.

0.076 Step 310 provides that the software design speci
fication directory is scanned one or more times. The scan of
the software design specification directory identifies the
placement of nodes and internal nodes in that directory. In
performing a method such as described in FIG. 3, an
assumption is that the developers will want the program files
created by the skeleton code generator 130 structured into an
output directory that is at least partially duplicative of the
Software design specification directory. Alternatively, the
output directory is based on Some other description, Such as
a published guideline with the Software design specification
110.

0077. In step 320, a skeleton output directory is created
based on the Software design specification directory. The
skeleton output directory contains node structures that dupli
cate corresponding node structures in the Software design
specification directory. In one embodiment, all branch nodes
except the “root node of the software design specification
directory are duplicated with the same structure in the output
directory. A different root node is used for the output
directory in order for the output directory and the software
design specification directory to be separately addressable.

0078. In step 330, the classes and structures that are
defined in whole or in part, or otherwise described in the
Software design specification 110, are located by Scanning
the software design specification 110. Whereas scanning the
Software design specification directory locates and identify
the node structure of the Software design specification
directory, Scanning the Software design specification 110
locates and identifies the classes and structures of the
Software design specification 110 as well as locates and
identify the node structure of the software design specifica
tion directory. In one embodiment, an attempt is made to
identify each class or structure that is mentioned in the
software design specification 110. This task may be per
formed by recognizing a convention by which structures and
classes are mentioned in the Software design specification
110. The convention may be defined by design rules 120,
accessible to skeleton code generator 130. For example,
skeleton code generator 130 may use rules specified from

Sep. 20, 2007

design rules 120 to identify classes and structures from the
software design specification 110.
0079. Once such classes and structures are identified, one
embodiment provides that, in step 340, the program files are
placed within branch nodes of the output directory that
corresponds to a branch node in the Software design speci
fication directory where the class or structure was located in
the software design specification 110. In one embodiment,
for each identified class or structure, two program files are
generated and placed in the branch node of the output
directory. The two program files may correspond to a
declaration file and an implementation file.
0080 FIG. 4 depicts a more detailed method for gener
ating an output directory with program files containing
skeleton code, according to an embodiment. Step 410 pro
vides that the software design specification 110 is scanned a
first time in order to obtain basic directory information, such
as described in steps 415-425.
0081 Step 415 provides that an output directory is cre
ated that replicates at least a portion of the node structure of
the Software design specification directory. As described in
FIG. 3, one embodiment provides that all of the nodes in the
design specification directory are replicated in the output
directory except for the root node, which is different.
0082 In step 420, electronic documents or files of the
software design specification 110 are inspected to determine
where classes or structures are specified. If the software
design specification 110 includes documents formatted with
tags or coding. Such as HTML, the presence of certain tags
or coding may signify the presence of a specification for a
particular class or structure.
0083 Step 425 provides for maintaining the location of
identified classes or structures in a data structure Such as a
hash table. Embodiments of the invention employ hash
tables having a first column corresponding to a key and a
second column corresponding to a value associated with that
key. In one embodiment, each identified class or structure is
a key for a hash table, and the directory path of the class or
structure within the Software design specification directory
is the value for that key. In this way, the directory path of a
class or structure identified in the previous step is recorded
in the hash table as the value of a particular class. A hash
table suitable for use with an embodiment such as described
is depicted in FIG. 15A.
0084. In step 430, the software design specification 110 is
scanned a second time to obtain more detailed information
for creating the program files. Steps 435-445 are performed
with the second scan of the Software design specification
110. In the second scan, the function declarations are iden
tified in step 435. Step 440 provides that class attributes are
identified in the software design specification 110. The
function declarations and class attributes may be defined
within certain electronic documents of the software design
specification 110, and specifically within portions of the
Software design specification that correspond to class defi
nitions. The specific markers that are to delineate functions
and class attributes in the Software design specification may
be defined by the design rules 120.
0085 Step 445 provides that during the second scan of
the software design specification 110, classes (included
classes') that are used by a class are identified, and the

US 2007/0220483 A1

directory of the included classes are recorded in the hash
table. The specification of each class or structure in the
Software design specification 110 may contain or refer to
another class or structure. Only classes referred to by a class
are included classes. Classes contained within a class are
nested classes. A nested class contains the declaration of the
class within the class in which it is nested. When a class or
structure specification is identified in the scan of the soft
ware design specification 110, it is checked to determine
whether it is nested within another class or structure. For
example, a class specification may appear as a class speci
fication that is indented on an electronic document within
another class specification. Thus, the indent (or other
marker) may indicate that the identified class is nested in
another class specified in that same electronic document.
When a class or structure is identified in the scan of the
software design specification 110, it is checked to determine
whether it is referred within another class or structure to see
if it needs to be included by the class. For example, the class
may be identified by a tag or coding on an electronic
document within the class specification. The included
classes need to be identified for a class. Step 445 provides
that both the class and the directory path of the identified
included class are recorded in a hash table.

0.086 Steps 450 and 455 provide for generating program
files and placing the program files in nodes of the output
directory that have corresponding nodes in the directory of
the software design specification 110. In step 450, the
function declaration file is generated and placed in the
output directory. In step 455, the implementation file is
generated and placed in the output directory.
0087 FIG. 5 depicts an example software design speci
fication directory 502 for use with an embodiment of the
invention. The software design specification directory 502
structures and organizes files that are part of the Software
design specification 110 for the software system. The soft
ware design specification 110 includes files that are con
tained in the software design specification directory 502.
The software design specification directory 502 contains a
first layer 512 of sub-directories. The sub-directories corre
spond to packages of the overall software architecture.
Internal layers 522 of the first layer 512 contain files within
the software design specification directory 502. The files
may contain descriptions of the software architecture
(including figures of the design specification), packages, and
classes. The software design specification directory 502 is
identified by a root node 504 (Directory for Software Design
Specification), and this node is the top directory that con
tains the entire software design specification 110 beneath it.
0088. The software design specification directory 502
contains sub-directories with names corresponding to the
names of the packages or architecture. The files in the
software design specification directory 502 for the software
system contain descriptions and figures. The files in the
Software design specification directory 502 for packages
contain description of the packages, description of the
classes in the packages, and/or figures describing the pack
ages and classes. Within the Software design specification
directory 502, the directory for a package may also contain
directories for other packages. It is possible for a package to
contain packages in a Software design specification 110.
0089. In one embodiment, the software design specifica
tion 110 is published with directories that are structured

Sep. 20, 2007

according to a specific guideline or convention. In this way,
the structure of the software design specification directory
502 allows for consistency and uniformity in the software
design specification 110 when two or more individuals are
creating and integrating their part of the design specification.
0090. In one embodiment, skeleton code generator 130
creates an output directory (see 600 in FIG. 6) based on the
structure of the software design specification directory 502.
In one embodiment, the output directory mirrors or is
Substantially similar to the Software design specification
directory 502. By substantially similar, it is meant that entire
sub-directories of the output directory 600 may have iden
tical branch nodes as the Software design specification
directory 502.
0091 FIG. 6 is a diagram depicting the organization of an
output directory 600 that contains different segments of code
that are generated by skeleton code generator 130 from
Software design specification 110. The segments of code
may correspond to skeleton code contained in files that may
be supplemented with additional code to perform a specified
function. The output directory 600 includes sub-directories
that correspond to the packages of the system, and to actual
program files (such as the .h and .cpp files). The root node
610 (Directory for Code) contains the entire code of the
system beneath it. The names of the directories underneath
the root node 610 correspond to the names of the packages
of the system. The program files provided in output directory
600 contain the class declarations and function definitions of
the classes. Except for the top directory, the organization and
name of the directories of the output directory 600 mirrors
the software design specification directory 502. The orga
nization of the code in the hand.cpp file follows a specific
format (or code convention or rules). Among other advan
tages, such a format will allow consistency and uniformity
in the code when two or more individuals are creating and
integrating their part of the code.
0092. While embodiments of the invention described
above provide that the output directory 600 is structured
based on the software design specification directory 502,
alternative sources may be used to structure the output
directory 600. For example, according to one embodiment,
the Software design specification 110 may contain an elec
tronic document that specifies the structure of the output
directory 600, so that the actual directory structure of the
software design specification 110, if any, is irrelevant. In still
another embodiment, a set of rules or other guidelines may
be used to structure the output directory 600.
0093. Appendix A depicts an example of a declaration file
that can be stored in output directory 600. Appendix B
depicts an example of an implementation file that can be
stored in output directory 600.

Skeleton Code Generator

0094 FIG. 7 depicts components of skeleton code gen
erator 130 when configured to generate skeleton code,
according to an embodiment of the invention. The skeleton
code generator 130 is depicted to include a software design
specification navigator 710, a class identifier module 720, a
file structure generator 730, a function processor 740, an
attribute processor 750, a class declaration file generator
760, a class skeleton function file generator 770, and a set of
rules 780. Collectively, an embodiment provides that com

US 2007/0220483 A1

ponents of the skeleton code generator 130 may combine to
scan the Software design specification 110, generate files
containing the skeleton code of a system, and organize the
files in an output directory 600 (see FIG. 6). Each compo
nent performs a stated task of the skeleton code generator
130.

0.095. In one embodiment, software design specification
navigator 710 navigates through the Software design speci
fication 110, including any of its directories, to identify files
that can be used to generate skeleton code. The software
design specification navigator 710 may also navigate
through identified files to find distinct portions of the files
that are pertinent for generating applicable code.

0096. The class identifier module 720 determines a class
associated with a file identified by the software design
specification navigator 710 for use in generating skeleton
code. In one embodiment, the Software design specification
110 defines classes with a class specification, and the class
identifier module is configured to detect class specifications.
In one embodiment, the class identifier module 720 also
obtains information about the identified class from the actual
file that contained the specification of the class. The infor
mation may be in the form of a text simulation of code, a
listing of characteristics or attributes of a class, or any other
identifiable text description. Certain text attributes, like the
detection of the capital 'C', may designate a class specifi
cation in the design specification. Text accompanying the
class designator may be identified as part of the class
specification and/or as information pertaining to the class
associated with that class specification.
0097. The file structure generator 730 generates the file
structure that will contain the generated skeleton code.
Specifically, the file structure generator 730 creates the
Sub-directories that correspond to the packages, as well as
the program files that correspond to the classes of the
Software design specification 110. Thus, file structure gen
erator 730 creates the branch node structure of the output
directory 600, and determines the placement of h and .cpp
files in the branch nodes of the output directory. In one
embodiment of the invention, the file structure generator 730
implements a mapping scheme that maps directory paths of
nodes in the software design specification directory 502 to
nodes of the output directory 600. The file structure genera
tor 730 also maps the location of each class identified by the
class identifier module 720 to a corresponding node location
within the output directory 600. The node location used by
the mapping scheme for a particular identified class may be
based on a directory path of the document that specified or
otherwise defined that class.

0098. The function processor 740 obtains information
about the functions of each class identified by class identifier
module 720. The information may be obtained from a
function list of that functions class specification. The func
tion processor 740 obtains information about the enumera
tions, the structures, and the classes declared in the class
from the function list in the class specification.
0099] The attribute processor 750 obtains information
about the attribute members of each class identified by the
class identifier module 720. This information may be
obtained from a list of attributes that are contained in the
specification for the class. The list of attributes may have a
particular format or structure that designate to skeleton code

Sep. 20, 2007

generator 130 that the accompanying text is the list of
attributes. The information obtain includes the type and
name of the attribute members.

0.100 The class declaration file generator 760 generates
code for the class declaration. As described in other embodi
ments, this code may be contained in a h file. The code may
be generated based on the information obtained from the
class identifier module 720, the function processor 740, and
the attribute processor 750, as well as other components of
the skeleton code generator 130.
0101 The class skeleton function file generator 770 gen
erates the skeleton code for each function of the class. As
described in other embodiments, this code may be contained
in the .cpp file.
0102 FIG. 7 also depicts a set of rules 780 as being part
of the skeleton code generator 130. The set of rules 780 may
correspond to rules that are part of the design rules 120 (FIG.
1). The set of rules 780 may be based on rules by which the
Software design specification 110 are formatted and orga
nized. Thus, the set of rules 780 can be used to access the
appropriate information from the Software design specifica
tion 110, as the set of rules 780 will be based on the same
convention/rules that were used to create the specification
for the classes and functions. Other components of the
skeleton code generator 130 can access the set of rules 780
to obtain the information it needs to generate the code.
0103) While components of the skeleton code generator
130 have been described in the context of identifying classes
and generating code for classes, other embodiments also
provide for identifying structures and generating code for
the structures in the same manner as classes.

0.104 FIG. 8 describes skeleton code generator 130, as
configured to generate skeleton code, in terms of packages
and interfaces. In one embodiment, skeleton code generator
130 includes a file structure generator package 810 and a
class skeleton code generator package 820. Functions of the
file structure generator package 810 include creating the
directory structure for the skeleton code corresponding to
the Software design specification 110, and creating the hand
.cpp file for each class identified in the software design
specification directory 502. The file structure generator
package 810 may include logic/programming to navigate
through the software design specification directory 502 in
order to obtain information about the classes. This skeleton
code is generated based on this information.
0105 The file structure generator package 810 maintains
information about the location of the skeleton code for the
classes within the output directory 600 (FIG. 6). A first
interface 815 (identified as SkeletonCodeMaker-pl) passes
information to the file structure generator package 810. This
information may include the location (directory path) of the
pertinent portions of the software design specification 110.
the location (directory path) of the skeleton code to be
generated, and the document number of the Software design
specification 110. The class skeleton code generator package
820 generates the code for the class declaration in the
declaration file (h file) and the skeleton function in the
implementation file (.cpp file) for any particular class. The
class skeleton code generator package 820 uses information
from the specification of the particular class, as provided in
the software design specification 110, in order to generate
the skeleton code for the class.

US 2007/0220483 A1

0106) A second interface 825, identified by the interface
function, generateSkeletonCodeForClass(), requires infor
mation that includes the file handle for the class specification
file, the declaration (h) file, the implementation (cpp) file,
the name of the class, the document number of the software
design specification 110, and a hash table containing infor
mation about the relative directory path of the class within
the software design specification 110. The skeleton code
generated for each class has the format described below.

Software Design Specification Contents

0107 FIG. 9 depicts the manner in which a class speci
fication 900 may be provided in the software design speci
fication 110 (see FIG. 1). In one embodiment, the class
specification 900 corresponds to a portion of an electronic
document that contains information needed to generate the
code for a particular class. The information may include
characteristics Such as a class specification header 910, a
function list 920, a set of class attributes 930, and one or
more function definitions 940. The class specification header
910 contains the name of the class. The function list 920
contains a list of all the functions of the class. This may
include public, protected, and private functions. Appendix C
depicts a class specification as it may actually appear.
0108. The function list 920 may also contain all the
enumeration declarations, structure declarations, and class
declarations declared within the class. The set of class
attributes 930 contains a list of all the attribute members of
the class. This section gives the type, the name, and the
purpose of the attribute members of the class. The function
definitions 940 describes the purpose and algorithm used by
the functions listed in the function list 920. In one embodi
ment, the function definitions 94.0 may be in the form of a
comment, or in a comment format, so it may be used as the
function header of the function in the code.

0109. In one embodiment, the information corresponding
to the characteristics may be delineated from other infor
mation through use of character recognition, in conjunction
with convention rules that designate certain identifiable text
as one of the characteristics of the class specification 900.
For example, set of class attributes may be delineated from
other information within a portion of the electronic docu
ment that is identified as being a class specification by the
presence of a grid containing rows and columns.
0110. As described with FIG. 7, class identifier module
720 may detect class specification 900. In identifying class
specification 900, class identifier module 720, or some other
component of skeleton code generator 130, may be config
ured to ignore certain types of information contained in the
software design specification 110. For example, skeleton
code generator 130 may be configured to ignore figures and
drawings that describe certain algorithms or processes,
because Such figures and drawings, as well as accompanying
text, are made for human understanding.
0111 FIG. 10 depicts one format for a class declaration

file 1000 that is generated to include skeleton code. The class
declaration file 1000 corresponds to the .h file for a particu
lar class specification 900, as described elsewhere in this
application, for a class of the software design specification
110. The class declaration file 1000 may include a file header
1002, a preprocessor directive 1004, one or more file inclu
sion 1006, and a class declaration 1008. The file header 1002

Sep. 20, 2007

may provide a description of the file, class, and/or the history
of the file. The preprocessor directive 1004 contains one or
more preprocessor directives to prevent multiple inclusion
of the particular file when the system is compiled. The file
inclusions 1006 includes preprocessor directives that
include other files needed by the class. The class declaration
1008 contains the code that declares the class.

0112 FIG. 11 depicts one format for a class skeleton
function file 1100 that is generated to include skeleton code.
The class skeleton function file 1100 contains the skeleton
code of the functions of the class. The class skeleton
function file 1100 corresponds to the .cpp that is created for
a class of the software design specification 110. In one
embodiment, class skeleton function file 1100 includes a file
header 1102, file inclusions 1104, a function header 1106,
and a skeleton function 1108.

0113. The file header 1102 may contain a description of
the file and class, and the history of the file. The file
inclusions 1104 may contain one or more preprocessor
directives that include other files that may be needed by the
functions of the class. The function header 1106 includes a
description of the function of the class and the algorithm that
the function implements. The function header 1106 may also
include comments that document the function. These com
ments may correspond to parts of function definitions 940
(FIG. 9). The skeleton function 1108 is the implementation
of the function containing only debug statements and a
statement to return a value if the function returns a value.
The skeleton function 1108 does not contain the code that
performs the algorithm of the function. There may exist
multiple function headers 1106 and skeleton functions 1108
for each function of the class.

Output Directory Creation
0114 FIG. 12 depicts a method for creating output direc
tory 600 (see FIG. 6) based on a software design specifica
tion directory 502 (see FIG. 5). Thus, a method such as
described in FIG. 12 assumes that the software design
specification 110 is itself structured as a directory that is to
form the basis of output directory 600. Other embodiments
may use other sources or information for creating output
directory 600. For example, the structure of the output
directory 600 may be defined explicitly on one of the
electronic documents of the Software design specification
110. A method such as provided by FIG. 12 may be
performed by skeleton code generator 130. In particular, file
structure generator package 810 may perform steps such as
described.

0.115. A method such as described in FIG. 12 may com
prise steps performed by the skeleton code generator 130
while making a first pass through the Software design
specification 110. In one embodiment, the skeleton code
generator 130 makes the first pass in order to create the
output directory 600. A second pass through the software
design specification 110 is Subsequently performed to gen
erate skeleton code in the output directory 600. In one
embodiment, methods such as described in FIG. 13 and/or
FIG. 14 are performed in making additional passes through
the software design specification 110 in order to add one or
more types of program files to the output directory 600 (FIG.
6). In one embodiment, a declaration file and an implemen
tation file are created that contain code generated by the
skeleton code generator 130.

US 2007/0220483 A1

0116. With reference to FIG. 12, step 1210 provides that
a file is obtained from the software design specification 110.
The file may correspond to an electronic document contain
ing text, tags and other content. The file may contain data
corresponding to, for example, a description of the software
system, one of the packages for the software system, or a
class that is to be implemented in the Software system.
0117. In step 1215, a determination is made as to whether
other files exist in the software design specification 110. If
no other files exist, the method is terminated in step 1220.
Step 1220 may correspond to the creation of the output
directory 600 being completed.

0118) If there are other files, then the file is located and
step 1225 provides that a determination is made as to
whether the file is an HTML file. Other embodiments may
make a determination as to whether the file is another
formatting type, such as XML. If the determination is that
the file is not HTML (or of the specific desired formatting
type), then the method is repeated starting at step 1210. In
one embodiment, file structure generator package 810 (see
FIG. 8) is configured to perform steps 1210, 1215, and 1220
by navigating through the Software design specification
directory 502 to access all the files in the design specifica
tion.

0119). If the located file is HTML formatted, then a
determination is made in step 1230 as to whether a class
name can be obtained from the file. In one embodiment, the
class name is designated by a special character, such as “C”.
For example, “C” may be set aside so as to only be used as
the first character of a class name. If the determination in
step 1230 is that the class name cannot be found from the
located file, then the method is repeated Starting from step
1210.

0120) If the determination in step 1230 is that the class
name can be obtained from the file, then step 1240 provides
that the class name and the file’s relative directory path in
the software design specification 110 are added to a hash
table. The relative directory path corresponds to the path
from the top directory of the software design specification
directory 502 to the directory containing the file for the class
specification. The formatting of the data placed in the hash
table may be provided in the following example hash table:
%m ClassIncludeRelativePath. A description of this
example hash table is provided in FIG. 15A and FIG. 16A.
0121 Following step 1240, step 1250 provides that the
output directory 600 is created based on the structure of the
software design specification directory 502 (FIG. 5). In one
embodiment, the directory structure that contains the skel
eton code mirrors the directory structure of the software
design specification directory 502.

0122) In step 1260, the class name and the absolute target
directory path are added to the hash table. The absolute
target directory path corresponds to the directory path in the
output directory 600 where the files for the skeleton code for
the class will be generated. The formatting of the data placed
in the hash table may be provided in the following example
hash table: %m1 AbsTargetPathForClassStrctTable. A
description of this example hash table is provided in FIGS.
15C and 21 A.

0123 Step 1270 provides that the filename and the class
name are added to the hash table. The formatting of the data

Sep. 20, 2007

placed in the hash table may be provided in the following
example hash table: %m 1 FileClassStrctTable. A descrip
tion of this example hash table is provided in FIG. 15D and
FIG. 22A. Many reasons exist for maintaining the absolute
directory path, file name and class name in the hash tables.
One such reason is that maintaining Such data structures
together in one hash table enables look-up mechanisms
where code can be generated to account for one class being
included by another class.
0.124 FIG. 13 describes a method for generating skeleton
code for program files based on Software classes that are
defined in the software design specification 110. In one
embodiment, the file structure generator package 810 (FIG.
8) of the skeleton code generator 130 substantially performs
the steps described in FIG. 13. A method such as described
in FIG. 13 may correspond to the file structure generator
package 810 of the skeleton code generator 130 making the
second pass through the Software design specification 110.
In one embodiment, skeleton code is generated as the file
structure generator package 810 (FIG. 8) accesses all the
files corresponding to the class specification.
0.125. In step 1310, a file from the software design
specification 110 is identified. If a determination in step
1315 is made that no files can be identified, then step 1320
provides that the generation of the skeleton code for all the
classes is complete. Otherwise, if another file can be iden
tified, then step 1330 makes a determination to see if the file
contains a class specification (see 900 in FIG. 9). In one
embodiment, a hash table created by the file structure
generator package 810 (e.g. "%m1 FileClassStrctTable) is
used to determine if the file corresponds to the class speci
fication.

0126. If the determination in step 1330 is that the file does
not contain the class specification, then the method is
repeated beginning at step 1310. If the determination in step
1330 is that the file does contain a class, then step 1340
provides for creating the program files in output directory
600. As explained, these program files may correspond to
the declaration file (the h file) and the implementation file
(.cpp file). The location within output directory 600 where
the skeleton code for the class is created may be determined
using the absolute directory path stored in the hash table
%m1 AbsTargetPathForClassStrctTable (see FIG. 12).
0127. In step 1350, the skeleton code is added to the
individual program files created for the class. The skeleton
code may adhere to a specific convention or format. Such as
depicted in Appendix A and Appendix B. Following step
1350, step 1310 is repeated until the method ends in step
1320. In one embodiment, the file structure generator pack
age 810 interacts with the class skeleton code generator
package 820 to perform one or more steps recited above. In
particular, the file structure generator package 810 interacts
with the class skeleton code generator package 820 in order
to generate the skeleton code for the class.

Skeleton Code Generation

0.128 FIG. 14 depicts a method for generating skeleton
code according to an embodiment of the invention. As with
FIG. 13, a method such as described in FIG. 14 may be
performed once the output directory 600 has been created.
This may correspond to a second or additional pass of the
Software design specification 110. In one embodiment, a

US 2007/0220483 A1

method such as described in FIG. 14 is performed by file
structure generator package 810 providing the class skeleton
code generator package 820 access to a particular file that
contains a class specification in order for the class skeleton
code generator package to obtain information necessary for
generating the skeleton code for program files of the output
directory 600. For purpose of explanation, it is assumed that
a method described with FIG. 14 provides for the generation
of two program files, an implementation file and a declara
tion file, for each class that is identified from the software
design specification 110, although the method may be modi
fied for use with more or fewer program files.
0129. Step 1410 provides that information from the func
tion list is obtained from the Software design specification
110. In one embodiment, this information is provided in the
class specification (see component 900 in FIG. 9). This
information may include the function declarations of the
class associated with the class specification, as well as the
enumerations, structures, and class declarations within the
class.

0130. In step 1420, information from class attributes
specified in the class specification is obtained. This infor
mation may be obtained from, for example, a class attributes
table of the class specification, although the particular for
mat of how class attributes are provided may be set by
conventions of the software design specification 110. Any
characteristic, such as special characters or tags, may be
included in the convention for providing class attributes, and
class skeleton code generator package 820 may be config
ured to notice anyone of the these characteristics. In one
embodiment, the information from the class attributes may
include the type and name of the class attributes.
0131 Step 1430 provides that the file header and one or
more preprocessor directives for preventing multiple inclu
sions (#define statement) are identified and added to .h
program file created for the class.
0132) In step 1440, the preprocessor directives (Hinclude)
are added to the h file so that the file can access other files
that are to be used by the particular class associated with the
identified class specification.
0.133 Step 1450 provides that the class declaration is
added to the h file to complete the class declaration file. The
information obtained from the function list and the class
attributes table of the class specification are in the class
declaration.

0134 Steps 1460-1485 perform steps for generating the
skeleton code for the .cpp file. In step 1460, the file header
is added to the .cpp file created for the identified class
specification.
0135) In step 1470, the preprocessor directives for includ
ing other files used by the class (include) are added to the
.cpp file. When the .cpp file is completed and executed, these
directives enable the .cpp file to access other files (which
may contain functions or other classes) as required by the
class specification used to create that file.
0136. In step 1480, the function definition of the class
specification is obtained and added to the .cpp file of the
class. The function definition serves as the function header.

0137 Step 1485 provides that the skeleton code for the
function definition is generated and added to the .cpp file.

Sep. 20, 2007

This step may be performed by the skeleton code generator
130 mapping the identified information obtained from the
Software design specification 110 to specific syntax com
prising the skeleton code.
0.138. In step 1490, certain specific functions are added to
the .cpp program file. These functions may include functions
for debugging the program file, and for printing out the
function name. A statement may also be added for returning
a value to the function definition in the .cpp file. In one
embodiment, steps 1480 through 1490 are repeated for each
function of the class to complete the class skeleton function
file.

0.139 FIG. 14 depicts a method for generating a second
portion of a skeleton code for program files generated by the
skeleton code generator 130. While a method such as
described by FIG. 14 is executed to append code to a method
such as described in FIG. 13, embodiments of the invention
may generate skeleton code using a method such as
described in either FIG. 13 or FIG. 14 independently.

Hash Tables

0140. As described above, embodiments of the invention
use hash tables to store data that is Subsequently used to
track code generation. FIGS. 15A-15D depict four hash
tables that may be used to automatically generate skeleton
code. For example, the hash tables depicted by FIG. 15A
15D can be used by the skeleton code generator 130 to
generate the skeleton code. The hash tables represent simple
data structures that can be used to implement look-up
schemes or mapping functions. Data structures other than
hash tables may be used by other embodiments of the
invention.

0141. A first hash table 1510, depicted in FIG. 15A
(entitled '%m ClassRelativelncludePath), is for maintaining
for reference the relative path of identified classes. The first
hash table 1510 may be used by the file structure generator
package 810 and class skeleton code generator package 820.
The key 1512 of the first hash table 1510 is the name of a
particular class. The value 1514 is the relative path of the
class. In one embodiment, the relative path of the class
corresponds to the directory path of the file in the software
design specification directory 502 (FIG. 5) where the class
specification 900 (see FIG. 9) was located, excluding the
root node of the software design specification 110. The value
1514 will also correspond to the directory path where the
skeleton code for the identified class is located in the output
directory 600 (see FIG. 6). The first hash table 1510 is
populated with class name and relative path for identified
class specifications as the file structure generator package
810 navigates through the software design specification 110.
This may happen during a first pass through that specifica
tion. In one embodiment, the first hash table 1510 is used to
determine the directory path for when a file is included in a
class in the h file. This is how the preprocessor directives
(iinclude) are provided. The first hash table 1510 may be
populated using information obtained from performing a
method such as described in FIG. 12.

0142. A second hash table 1520, depicted in FIG. 15B
(entitled '%m2 ClassStructFunctionDecl), is for use in ref
erencing the function declarations of a class and nested
classes and structures within a class. The second hash table
1520 may be used by the class skeleton code generator

US 2007/0220483 A1

package 820. The key 1522 of the second hash table 1520 is
the name of a class, and the name of the classes and
structures within another class. The value 1524 is another
internal hash table 1526 containing information about the
functions declared in the class and in the classes and
structures within a class. The key 1527 of the internal hash
table 1526 is the name of the function. The value 1529 of the
internal hash table 1526 is the function declaration. The
second hash table 1520 may be populated with information
from the function list of the class specification 900 (See FIG.
9). In one embodiment, this hash table is used to add the
skeleton code for each function in a corresponding imple
mentation file (e.g. the .cpp file).

0143 A third hash table 1530, depicted in FIG. 15C
(entitled '%m1 AbsTargetPathForClassStrctTable), is for
use in tracking where code for a particular class identified
from the software design specification 110 is to be gener
ated. The third hash table 1530 may be used by the file
structure generator package 810 of the skeleton code gen
erator 130. A key 1532 of the third hash table 1530 is the
name of the class. A value 1534 is the absolute directory path
where the code for the class is to be generated. The absolute
directory path is the combination of the absolute directory
path of the top directory of the source code (or target
directory), such as Directory of Code 610 described in FIG.
6, plus the relative directory path of the class determined
from the software design specification 110. The third hash
table 1530 may be populated when performing steps of a
method such as recited in FIG. 12. FIG. 13 depicts how
information from the third hash table 1530 may be used.

0144) A fourth hash table 1540, depicted in FIG. 15D
(entitled '%m 1 FileClassStrctTable), is for use in matching
a file containing a class specification with a corresponding
class name. The fourth hash table 1540 may be used by the
file structure generator package 810. A key 1542 of the
fourth hash table 1540 is the name of the file containing the
class specification 900 (see FIG.9). The value 1544 is a class
associated with the file containing the class specification.
FIG. 12 depicts how the fourth hash table 1540 may be
populated with information. FIG. 13 depicts how informa
tion from the fourth hash table 1540 may be used.
0145 FIG. 16A depicts an example of first hash table
1602 used by skeleton code generator 130. FIG. 16B depicts
an example of a software design specification 1604. The first
hash table 1602 applies to software design specification
1604. In the example provided, the software design speci
fication 1604 includes HTML files corresponding to a plu
rality of class specifications. The Software design specifica
tion 1604 may include branch nodes 1606. Branch nodes
1606 include nodes that provide access to more than one file
or sub-directory structure. The skeleton code generator 130
may be configured to structure program files within output
directory 600 to have a substantially similar directory struc
ture as the software design specification 1604. The substan
tially similar directory structure may correspond to replica
tion most or all of the branch nodes 1606.

0146 In one embodiment, each class specification 1605
in the software design specification 1604 is to be provided
a declaration file and an implementation file (corresponding
to h and cpp file). The first hash table 1602 is populated
with information obtained from the software design speci
fication 1604. This information may correspond to the name

Sep. 20, 2007

of the class and its relative directory path from a top node
1610 of the software design specification 1604, where the
top node 1610 is excluded from the relative path. As an
example, the relative path of the class CSNMP is
MonitorWHWaccess\SNMPV. The first hash table 1602 can be
used to determine the location of files for the preprocessor
directives (Hinclude) that are added to the program and
implementation files for each class.

Class Dependencies
0.147. It is not uncommon for one class in a software
design to require the use of another class. In such scenarios,
a first class is said to be dependent on a second class and may
need to include the second class. The second class may be
referred to or contained in the first class, so that the first class
will need code that can execute the second class in order to
itself execute properly. According to one embodiment of the
invention, skeleton code generator 130 is configured to
generate skeleton code that provides for dependent classes.
Dependent classes includes classes that it uses.
0.148 FIG. 17 depicts a method for providing skeleton
code in one class that enables that class to include another
class when executed. Consider an example where a class
named CDevice uses a class named CHTTP. In this situa
tion, code generated for the CDevice class should know
about the code for the CHTTP class. The CHTTP class will
need to be declared in order for the CDevice class to use it.

0149. In FIG. 17, step 1710 provides that a relative
directory path of the class for which the code in the
declaration file is generated, is obtained from the first hash
table 1602. In the example this may correspond to obtaining
the relative directory path for CDevice. In one embodiment,
the relative directory path of CDevice may be obtained from
directory path of the file in the software design specification
1604 (FIG. 16B) that contains a class specification for
CDevice, excluding the root node 1610. In the example
provided, the relative path of CDevice is “Monitor\Device.”
0150. In step 1720, the directory path obtained in step
1710 is modified by replacing each directory name in the
relative directory path with code that instructs the software
to move up one node in the path name. In one implemen
tation, this coding is represented by the following syntax:
“...”. Once this step is performed in the example provided,
the relative path of CDevice is modified to “..\.
0151 Step 1730 provides that the relative directory path
for the class to be used by the first class is obtained from the
first hash table 1602. In the example provided, the relative
path of the CHTTP class is “Monitor\HWaccess\HTTP.”
0152 Step 1740 provides that the relative directory path
of the class CDevice, determined in step 1710, is combined
with the relative directory path of the class CHTTP, obtained
in step 1730. The combination is made by tagging the
directory path of the class to be included to the right of the
modified path from step 1720. For example, the modified
directory path from step 1720 is “..\.\'. For the example
given, the combined directory path resulting from this step
is “..\.\Monitor\HWaccess\HTTP. The compiler uses this
information to find the location of the file to include. In the
example provided, for CDevice to include CHTTP, the
compiler goes up two nodes in the directory path from
CDevice and then down three nodes to access the CHTTP
file.

US 2007/0220483 A1

0153 Step 1750 provides that the preprocessor directive
(#include) is combined with the directory path generated and
added to the declaration file of the class that is dependent on
the other class (CHTTP). In the example provided, the
resulting preprocessor directive is
Hinclude".V.\Monitor,HWAccess\HTTP.

0154 FIG. 18A depicts an example of the second hash
table 1800 (%m2 ClassStructFunctionDecl). As described
previously, the second hash table 1800 may be used in
skeleton code generator 130 to generate a class skeleton
function for each function of the class or each function
declared within the classes or structs nested in a class. For
reference, FIG. 18B is an example of the class specification
1802 of the software design specification 110. The class
specification 1802 may correspond to an HTML file con
taining information about a class, such as provided in the
example of FIG. 9. For purpose of explanation, only the
class specification header (see 910 in FIG. 9) and the
function list (920) are depicted and described for class
specification 1802. The second hash table 1800 contains
information found in the function list. The second hash table
1800 also contains all the functions declared for the class
“CHTMLTextProcessor and for the structure “SHTML
Text.

0155 FIG. 19 depicts a method for adding information
about functions of a class to the second hash table 1520 (See
FIG. 15B). Such a method may be used to add the skeleton
code for each function of an identified class to one or more
program files for the class. In particular, a method Such as
described may be used to add skeleton code to the imple
mentation file (the .cpp file).
0156. In step 1910, a line is obtained from the function

list of the class specification. It is assumed that the conven
tion of the software design specification 110 is to correlate
the presence of some lines with certain declarations within
documents that form the software design specification 110.
In other embodiments, other characters, combination of
characters, images, or other markers may be used as the
convention for indicating certain declarations in the speci
fication.

0157. In step 1920, the line obtained is checked to see if
it is a function declaration. If the line is a function decla
ration, then step 1922 provides that the function name is
obtained from the function declaration. Step 1924 provide
that the class name, function name, and function declaration
are added to the second hash table 1520 (see FIG. 15B). The
method is then repeated beginning in step 1910.
0158 If the determination in step 1920 is that the line is
not a function declaration, then step 1930 provides that a
determination is made as to whether the line is the beginning
of a class declaration. If the determination is that the line is
a class declaration, then step 1932 provides that the function
names are obtained from the function declarations of the
class declaration. Next, step 1934 provides that the class
name, function names, and function declarations are added
to the second hash table 1520. In steps 1932 and 1934, the
lines of the class declaration are obtained to get all the
function declarations of the class declaration. Following
steps 1932 and 1934, the method is then repeated beginning
in step 1910.
0159. If the line is not the beginning of the class decla
ration in step 1930, then in step 1940, the line is checked to

Sep. 20, 2007

see if it is the beginning of a structure declaration within the
class. If the line is the beginning of a structure declaration,
then step 1942 provides that the function names are obtained
from the function declarations of the structure declaration.
Step 1944 provides that the structure name, function names,
and function declarations are added to the second hash table
1520. The method is repeated beginning with step 1910. In
steps 1942 and 1944, the lines of the structure declaration
are obtained to get all the function declarations of the
structure declaration.

0.160) If the line is not the beginning of the structure
declaration in step 1940, then the line is checked to see if it
is the beginning of a class attribute in step 1950. If the line
is the beginning of the class attribute, then the second hash
table 1520 is complete. Otherwise, the next line of the
function list is obtained in step 1910.
0.161 FIG. 20 depicts a method for generating a class
skeleton function using information from the second hash
table 1520 (see FIG. 15B). While specific reference is made
to a particular hash structure, a method such as described
may be modified to generate the class skeleton function
using another type of hash structure.
0162. With reference to FIG. 20, step 2010 provides that
the function definition provided in the class specification of
the software design specification 1604 (FIG. 16B) is added
to the implementation file for a given class specification. The
function definition serves as the function header to docu
ment the function in the skeleton code.

0163. In step 2020, the function name is obtained from
the function definition. The format of the function definition
allows the function name to be easily obtained.
0164. In step 2030, the second hash table 1520 is
searched to find the function name.

0.165 Step 2040 provides that the class name and the
function declaration associated with the function name are
obtained from the second hash table 1520.

0166 Step 2050 determines the return value of the func
tion from the function declaration.

0.167 From the return value, class name, and function
declaration, step 2060 provides that the beginning of the
skeleton function is added to the implementation file.
0168 Step 2070 provides that a debug function is added
to the implementation file in order to print out the function
name for debug purposes.

0169. In step 2080, the statement to return a value accord
ing to the return value of the function declaration is added
to the implementation file. The process of this flowchart is
repeated for each function definition of the given class
specification.

0170 FIG. 21A depicts an example of a hash table 2100
that depicts how the absolute directory path for program files
of a class may be identified. The absolute directory path of
any file corresponds to the directory path that locates that file
in the output directory 600 (see FIG. 6). The hash table 2100
corresponds to the third hash table 1530 in FIG. 15C, except
the hash table is depicted in FIG. 21A as being populated
with the absolute directory paths for program files contain
ing skeleton code in the output directory 600. FIG. 21B
depicts a software design specification 2102 that is refer

US 2007/0220483 A1

enced by the hash table 2100. Class specifications in the
directory structure are provided by one or more electronic
documents, which may be formatted in HTML or XML. For
brevity, other files that may be included in the software
design specification 2102 are not depicted. Such as text
documents or files with figures.
0171 The skeleton code generator 130 may be config
ured to generate skeleton code and place program files in the
output directory 600 (FIG. 6), where the output directory has
a directory structure that is substantially similar to the
directory structure of the software design specification 2102.
The hash table 2100 is used to maintain the location of the
skeleton code of all the classes specified in the software
design specification 110. The location of the program files
for each class in the software design specification 2102 are
added to the hash table 2100. In the example provided, each
program file is added with its absolute target path for where
the code for the class is to be provided in the output directory
600.

0172 In an embodiment, the absolute target path is
determined from two components. One component used in
determining the absolute target path is the absolute directory
path of the top directory of where the skeleton code is
located. In FIG. 21A, “/CodeIDirf” is the absolute path of the
top directory. Another component used in determining the
absolute target path is the relative directory path of the class
from a top directory 2104 of the design specification
(labeled “Q6-DJ10-13). In the example depicted in FIG.
21A and FIG.21B, the relative directory path of CHWaccess
is “Monitor/HWaccess/Access/. The absolute target path is
determined by combining both the absolute path of the top
directory of the skeleton code and relative path of the class
from the top directory 2104 of the class specification. In the
example depicted in FIGS. 21A and 21B, the absolute
directory path where the code is created for CHWaccess is
“/CodeIDir/Monitor/HWaccess/Accessf.

0173 To provide context with other embodiments, FIG.
12 depicts example steps performed by file structure gen
erator package 810 when file structure generator package
810 goes through the files of the software design specifica
tion 2102 the first time. As the file structure generator
package 810 encounters a file for the class specification, it
determines the absolute directory path for the class and adds
the class name and absolute directory path to the hash table
2100. Similarly, FIG. 13 depicts a method where the file
structure generator package 810 goes through the files of the
software design specification 2102 a second time. As the file
structure generator package 810 encounters a file for the
class specification, it obtains the absolute directory path of
the class from the hash table 2100. The absolute directory
path is used to create the declaration and implementation
files (the h file and the .cpp files respectively).

0.174 FIG. 22A depicts an example of a hash table 2200
used by the skeleton code generator 130. The hash table
2200 may correspond to fourth hash table 1540
(%m1 FileClassStrctTable in FIG. 15D). FIG. 22B depicts
a software design specification 2202 referenced by the hash
table 2200. The software design specification 2202 includes
directory structure where electronic documents are struc
tured according to a class specification. As with the example
above, files in the software design specification 2202 that are
not class specification are not depicted. The skeleton code

Sep. 20, 2007

generator 130 is configured to generate skeleton code in
program files having the same directory structure as the
software design specification 2202. The hash table 2200 is
used to maintain information about the class associated with
the files for all class specification provided in the software
design specification 2202.

0.175. In relation to what is described in FIG. 22, FIG. 12
depicts a method that, according to one embodiment, cor
responds to file structure generator package 810 scanning
through the files of software design specification 2202 for
the first time. As the file structure generator package 810
encounters a file for the class specification, it adds the
filename and class name to the hash table 2200. To deter
mine if a file contains a class specification, the file must be
opened and read to obtain the class name. FIG. 13 depicts a
method where the file structure generator package 810 goes
through the files of the software design specification 2202
the second time. As the file structure generator package 810
encounters a file, it determines the class name associated
with the file from the hash table 2200. This eliminates the
need to open each file of the design specification to deter
mine the class name associated with the file.

Hardware Overview

0176 FIG. 23 is a block diagram that depicts a computer
system 2300 upon which an embodiment of the invention
may be implemented. Computer system 2300 includes a bus
2302 or other communication mechanism for communicat
ing information, and a processor 2304 coupled with bus
2302 for processing information. Computer system 2300
also includes a main memory 2306, Such as a random access
memory (RAM) or other dynamic storage device, coupled to
bus 2302 for storing information and instructions to be
executed by processor 2304. Main memory 2306 also may
be used for storing temporary variables or other intermediate
information during execution of instructions to be executed
by processor 2304. Computer system 2300 further includes
a read only memory (ROM) 2308 or other static storage
device coupled to bus 2302 for storing static information and
instructions for processor 2304. A storage device 2310, such
as a magnetic disk or optical disk, is provided and coupled
to bus 2302 for storing information and instructions.
0177) Computer system 2300 may be coupled via bus
2302 to a display 2312, such as a cathode ray tube (CRT),
for displaying information to a computer user. An input
device 2314, including alphanumeric and other keys, is
coupled to bus 2302 for communicating information and
command selections to processor 2304. Another type of user
input device is cursor control 2316. Such as a mouse, a
trackball, or cursor direction keys for communicating direc
tion information and command selections to processor 2304
and for controlling cursor movement on display 2312. This
input device typically has two degrees of freedom in two
axes, a first axis (e.g., X) and a second axis (e.g., y), that
allows the device to specify positions in a plane.

0.178 The invention is related to the use of computer
system 2300 for implementing the techniques described
herein. According to one embodiment of the invention, those
techniques are performed by computer system 2300 in
response to processor 2304 executing one or more sequences
of one or more instructions contained in main memory 2306.
Such instructions may be read into main memory 2306 from

US 2007/0220483 A1

another computer-readable medium, Such as storage device
2310. Execution of the sequences of instructions contained
in main memory 2306 causes processor 2304 to perform the
process steps described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in combi
nation with Software instructions to implement the inven
tion. Thus, embodiments of the invention are not limited to
any specific combination of hardware circuitry and software.
0179 The term “computer-readable medium' as used
herein refers to any medium that participates in providing
instructions to processor 2304 for execution. Such a medium
may take many forms, including but not limited to, non
volatile media and volatile media. Non-volatile media
includes, for example, optical or magnetic disks, such as
storage device 2310. Volatile media includes dynamic
memory, such as main memory 2306. Common forms of
computer-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, or any other
magnetic medium, a CD-ROM, any other optical medium,
punchcards, papertape, any other physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH
EPROM, any other memory chip or cartridge, or any other
medium from which a computer can read.

0180 Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 2304 for execution. For example,
the instructions may initially be carried on a magnetic disk
of a remote computer. The remote computer can load the
instructions into its dynamic memory and send the instruc
tions over a telephone line using a modem. A modem local
to computer system 2300 can receive the data on the
telephone line and use an infra-red transmitter to convert the
data to an infra-red signal. An infra-red detector can receive
the data carried in the infra-red signal and appropriate
circuitry can place the data on bus 2302. Bus 2302 carries
the data to main memory 2306, from which processor 2304
retrieves and executes the instructions. The instructions
received by main memory 2306 may optionally be stored on
storage device 2310 either before or after execution by
processor 2304.

0181 Computer system 2300 also includes a communi
cation interface 2318 coupled to bus 2302. Communication
interface 2318 provides a two-way data communication
coupling to a network link 2320 that is connected to a local
network 2322. For example, communication interface 2318
may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to
a corresponding type of telephone line. As another example,
communication interface 2318 may be a local area network
(LAN) card to provide a data communication connection to
a compatible LAN. Wireless links may also be implemented.
In any Such implementation, communication interface 2318
sends and receives electrical, electromagnetic or optical
signals that carry digital data streams representing various
types of information.
0182 Network link 2320 typically provides data com
munication through one or more networks to other data
devices. For example, network link 2320 may provide a
connection through local network 2322 to a host computer
2324 or to data equipment operated by an Internet Service
Provider (ISP) 2326. ISP 2326 in turn provides data com
munication services through the world wide packet data

Sep. 20, 2007

communication network now commonly referred to as the
“Internet2328. Local network 2322 and Internet 2328 both
use electrical, electromagnetic or optical signals that carry
digital data streams. The signals through the various net
works and the signals on network link 2320 and through
communication interface 2318, which carry the digital data
to and from computer system 2300, are exemplary forms of
carrier waves transporting the information.
0183 Computer system 2300 can send messages and
receive data, including program code, through the net
work(s), network link 2320 and communication interface
2318. In the Internet example, a server 2330 might transmit
a requested code for an application program through Internet
2328, ISP 2326, local network 2322 and communication
interface 2318.

0.184 The received code may be executed by processor
2304 as it is received, and/or stored in storage device 2310,
or other non-volatile storage for later execution. In this
manner, computer system 2300 may obtain application code
in the form of a carrier wave.

0185. In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple
mentation. Thus, the sole and exclusive indicator of what is
the invention, and is intended by the applicants to be the
invention, is the set of claims that issue from this applica
tion, in the specific form in which Such claims issue,
including any subsequent correction. Any definitions
expressly set forth herein for terms contained in Such claims
shall govern the meaning of such terms as used in the claims.
Hence, no limitation, element, property, feature, advantage
or attribute that is not expressly recited in a claim should
limit the scope of Such claim in any way. The specification
and drawings are, accordingly, to be regarded in an illus
trative rather than a restrictive sense.

What is claimed is:
1. A method for automatically generating program code,

the method comprising the computer-implemented steps of
while Scanning a directory comprising a plurality of

electronic documents that form a software design speci
fication that defines software routines, function decla
rations, and relationships among software routines,
automatically identifying a section of the Software
design specification that corresponds to a definition of
a particular Software routine, and
maintaining a location of the section of the Software

design specification within the directory using a data
structure mapping (a) the particular Software routine
to (b) a path, within the directory, of the section of
the Software design specification that corresponds to
the definition of the particular software routine;

programmatically generating skeleton code of at least a
first program file and of a second program file based on
the definition of the particular software routine;

wherein the skeleton code of the first program file corre
sponds to code for declaring one or more functions of
the particular software routine;

wherein the skeleton code of the second program file
corresponds to code for implementing the particular
software routine;

US 2007/0220483 A1

automatically creating, based at least in part on the
location of the section of the software design specifi
cation within the directory of the software design
specification, an output directory for locating the first
program file and the second program file.

2. The method of claim 1, further comprising the com
puter-implemented step of locating the first program file and
the second program file at a first node, wherein the first node
has a corresponding node in the Software design specifica
tion where the definition of the software routine is located.

3. The method of claim 1, wherein creating an output
directory for locating the first program file and the second
program file includes providing that at least a portion of the
output directory is to have a node structure that is Substan
tially similar to a portion of the directory of the software
design specification.

4. The method of claim 3, wherein the output directory
has the node structure that is substantially similar to the
portion of the directory of the Software design specification,
but that a root node of the output directory is different than
a root node of the directory of the software design specifi
cation.

5. The method of claim 1, wherein the skeleton code of the
second program file includes skeleton code corresponding to
one or more functions of the particular Software routine.

6. The method of claim 5, wherein the skeleton code
corresponding to one or more functions of the particular
software routine includes default return values correspond
ing to at least one of the one or more functions.

7. The method of claim 5, wherein the skeleton code
corresponding to one or more functions of the particular
Software routine includes code for debugging at least one of
the one or more functions.

8. The method of claim 5, wherein the skeleton code
corresponding to one or more functions of the particular
Software routine includes function header comments that
describe at least one of the one or more functions, wherein
the function header comments describe an algorithm corre
sponding to the at least one function.

9. A computer-readable medium for automatically gener
ating program code, the computer-readable medium carry
ing instructions which, when processed by one or more
processors, cause:

while scanning a directory comprising a plurality of
electronic documents that form a software design speci
fication that defines software routines, function decla
rations, and relationships among software routines,
automatically identifying a section of the Software
design specification that corresponds to a definition of
a particular Software routine, and
maintaining a location of the section of the Software

design specification within the directory using a data
structure mapping (a) the particular Software routine
to (b) a path, within the directory, of the section of
the Software design specification that corresponds to
the definition of the particular software routine;

programmatically generating skeleton code of at least a
first program file and of a second program file based on
the definition of the particular software routine;

wherein the skeleton code of the first program file corre
sponds to code for declaring one or more functions of
the particular software routine;

15
Sep. 20, 2007

wherein the skeleton code of the second program file
corresponds to code for implementing the particular
software routine;

automatically creating, based at least in part on the
location of the section of the Software design specifi
cation within the directory of the software design
specification, an output directory for locating the first
program file and the second program file.

10. The computer-readable medium of claim 9, further
comprising one or more additional instructions which, when
processed by the one or more processors, causes locating the
first program file and the second program file at a first node,
wherein the first node has a corresponding node in the
software design specification where the definition of the
software routine is located.

11. The computer-readable medium of claim 9, wherein
creating an output directory for locating the first program file
and the second program file includes providing that at least
a portion of the output directory is to have a node structure
that is substantially similar to a portion of the directory of
the Software design specification.

12. The computer-readable medium of claim 11, wherein
the output directory has the node structure that is substan
tially similar to the portion of the directory of the software
design specification, but that a root node of the output
directory is different than a root node of the directory of the
Software design specification.

13. The computer-readable medium of claim 9, wherein
the skeleton code of the second program file includes
skeleton code corresponding to one or more functions of the
particular Software routine.

14. The computer-readable medium of claim 13, wherein
the skeleton code corresponding to one or more functions of
the particular software routine includes default return values
corresponding to at least one of the one or more functions.

15. The computer-readable medium of claim 13, wherein
the skeleton code corresponding to one or more functions of
the particular software routine includes code for debugging
at least one of the one or more functions.

16. The computer-readable medium of claim 13, wherein
the skeleton code corresponding to one or more functions of
the particular software routine includes function header
comments that describe at least one of the one or more
functions, wherein the function header comments describe
an algorithm corresponding to the at least one function.

17. An apparatus for automatically generating program
code, the apparatus comprising a memory storing instruc
tions which, when processed by one or more processors,
CalSC.

while Scanning a directory comprising a plurality of
electronic documents that form a software design speci
fication that defines software routines, function decla
rations, and relationships among software routines,
automatically identifying a section of the Software
design specification that corresponds to a definition of
a particular Software routine, and
maintaining a location of the section of the Software

design specification within the directory using a data
structure mapping (a) the particular Software routine
to (b) a path, within the directory, of the section of
the Software design specification that corresponds to
the definition of the particular software routine;

US 2007/0220483 A1

programmatically generating skeleton code of at least a
first program file and of a second program file based on
the definition of the particular software routine;

wherein the skeleton code of the first program file corre
sponds to code for declaring one or more functions of
the particular software routine;

wherein the skeleton code of the second program file
corresponds to code for implementing the particular
software routine;

automatically creating, based at least in part on the
location of the section of the software design specifi
cation within the directory of the software design
specification, an output directory for locating the first
program file and the second program file.

18. The apparatus of claim 17, wherein the memory
further stores one or more additional instructions which,
when processed by the one or more processors, causes
locating the first program file and the second program file at
a first node, wherein the first node has a corresponding node
in the software design specification where the definition of
the software routine is located.

19. The apparatus of claim 17, wherein creating an output
directory for locating the first program file and the second
program file includes providing that at least a portion of the
output directory is to have a node structure that is Substan
tially similar to a portion of the directory of the software
design specification.

16
Sep. 20, 2007

20. The apparatus of claim 19, wherein the output direc
tory has the node structure that is substantially similar to the
portion of the directory of the Software design specification,
but that a root node of the output directory is different than
a root node of the directory of the software design specifi
cation.

21. The apparatus of claim 17, wherein the skeleton code
of the second program file includes skeleton code corre
sponding to one or more functions of the particular software
routine.

22. The apparatus of claim 21, wherein the skeleton code
corresponding to one or more functions of the particular
software routine includes default return values correspond
ing to at least one of the one or more functions.

23. The apparatus of claim 21, wherein the skeleton code
corresponding to one or more functions of the particular
Software routine includes code for debugging at least one of
the one or more functions.

24. The apparatus of claim 21, wherein the skeleton code
corresponding to one or more functions of the particular
Software routine includes function header comments that
describe at least one of the one or more functions, wherein
the function header comments describe an algorithm corre
sponding to the at least one function.

