(54) 发明名称
测量光学参数的调整电路、方法及光学测量系统

(57) 摘要
本发明公开了一种测量光学参数的调整电路、方法及光学测量系统，其中所述调整电路包括：光感测模块，用于检测光信号，并将检测到的所述光信号转换为电压信号；放大模块，用于放大所述电压信号；A/D转换模块，用于将放大后的所述电压信号转换为数字信号；控制模块，用于分析所述数字信号，以生成分析结果；信号产生模块，用于根据分析结果，输出相应的频率调波信号；调节模块，用于根据所述频率调波信号调整所述放大模块的放大倍数。本发明可以实现光学测量系统测量结果放大倍数的连续变化，提高了测量精度。相对于现有技术来说，本发明的电路更为简单，从而节约了成本；且本发明还能实现自动化测量。
1. 一种测量光学参数的调整电路，其特征在于，所述调整电路包括：
光感测模块，用于检测光信号，并将检测到的所述光信号转换为电压信号；
放大模块，用于放大所述电压信号；
A/D转换模块，用于将放大后的所述电压信号转换为数字信号；
控制模块，用于分析所述数字信号，以生成分析结果；
信号产生模块，用于根据分析结果，输出相应的频率方波信号；以及
调节模块，用于根据所述频率方波信号调整所述放大模块的放大倍数，包括：
调节电阻，所述调节电阻的第一端接地，所述调节电阻的第二端与所述放大模块的第二输入端连接；
调节电容，所述调节电容的第一端与所述调节电阻的第二端连接；以及
控制开关，所述控制开关的第一端与所述调节电容的第二端连接，所述控制开关的第一端分别与所述A/D转换模块的第一端和所述放大模块的输出端连接；所述控制开关的第二端与所述信号产生模块的第二端连接。
2. 根据权利要求1所述的测量光学参数的调整电路，其特征在于，
所述放大模块的第一输入端与所述光感测模块连接；
所述调节模块的第一端接地，所述调节模块的第二端与所述放大模块的第二输入端连接；
所述A/D转换模块的第一端与所述放大模块的输出端连接；且所述A/D转换模块的第一端还与所述调节模块的第三端连接；
所述控制模块与所述A/D转换模块的第二端连接；以及
所述信号产生模块的第一端与所述控制模块连接，所述信号产生模块的第二端与所述调节模块的第四端连接。
3. 根据权利要求1或2所述的测量光学参数的调整电路，其特征在于，所述信号产生模块输出相应的频率方波信号，控制所述控制开关的导通或断开；根据所述频率方波信号调整所述调节电容的阻抗值；根据所述阻抗值及所述调节电阻值，调整所述放大模块的放大倍数。
4. 根据权利要求1或2所述的测量光学参数的调整电路，其特征在于，所述调节模块包括：
调节电阻，所述调节电阻的第一端接地，所述调节电阻的第二端与所述放大模块的第二输入端连接；
调节电感，所述调节电感的第一端与所述调节电阻的第二端连接；以及
控制开关，所述控制开关的第一端与所述调节电感的第二端连接，所述控制开关的第一端分别与所述A/D转换模块的第一端和所述放大模块的输出端连接，所述控制开关的第二端与所述信号产生模块的第二端连接。
5. 根据权利要求4所述的测量光学参数的调整电路，其特征在于，所述信号产生模块输出相应的频率方波信号，控制所述控制开关的导通或断开；根据所述频率方波信号调整所述调节电感的阻抗值；根据所述阻抗值及所述调节电阻值，调整所述放大模块的放大倍数。
6. 一种测量光学参数的调整方法，其特征在于，所述调整方法包括：
检测光信号，并将检测到的所述光信号转换为电压信号；
放大所述电压信号；
将放大后的所述电压信号转换为数字信号；
分析所述数字信号，以生成分析结果；
根据分析结果，输出相应的频率方波信号；以及
根据所述频率方波信号调整放大模块的放大倍数；
其中所述根据所述频率方波信号调整放大模块的放大倍数的步骤包括：
根据所述频率方波信号，控制控制开关的导通或断开；
根据所述频率方波信号调整调节电容的阻抗值；以及
根据所述阻抗值及调节电阻值，调整所述放大模块的放大倍数。
7. 根据权利要求6所述的测量光学参数的调整方法，其特征在于，所述根据所述频率方波信号调整放大模块的放大倍数的步骤包括：
根据所述频率方波信号，控制控制开关的导通或断开；
根据所述频率方波信号调整调节电容的阻抗值；以及
根据所述阻抗值及调节电阻值，调整所述放大模块的放大倍数。
8. 一种包括权利要求1至5任一项所述的测量光学参数的调整电路的光学测量系统。
测量光学参数的调整电路、方法及光学测量系统

【技术领域】
[0001] 本发明涉及光学参数测量技术领域，特别涉及一种测量光学参数的调整电路、方法及光学测量系统。

【背景技术】
[0002] 光学测量系统被广泛应用在平板显示领域，其主要可以实现对光学参数的测量，其中最常见的是对亮度值的测量。在实际使用中，由于测量的亮度范围变化很大，单量程无法满足实际需要，因此光学测量系统需要有多个量程。

[0003] 现有技术中调整放大模块的放大倍数可以实现多量程测量，如图1所示，光学测量系统包括，光感测模块11、放大模块12、A/D转换模块13、控制模块14以及调节模块15；其中，所述调节模块15包括一个第一电阻R0，多个调节电阻R1，⋯，Rn以及多个开关K1，⋯，Kn；通过一个调节电阻串联一个开关，且所述调节电阻与调节电阻之间是并联。图1是通过人工来控制开关的导通或断开，通过多个开关K1，⋯，Kn的切换实现放大倍数的切换，但是，这种方法只能设定固定个数的量测档位，不能实现量测的连续变化；另外，随着档位的增加，电路也会变得复杂，不利于电路的精简；再者，由于通过人工来控制开关的导通或断开，其不具自动化测量。

[0004] 故，有必要提出一种新的技术方案，以解决上述技术问题。

【发明内容】
[0005] 本发明的目的在于提供一种测量光学参数的调整电路、方法及光学测量系统，旨在解决现有技术中存在的通过多个开关的切换实现放大倍数的切换，其只能设定固定个数的量测档位，不能实现量测的连续变化；且随着档位的增加，电路也会变得复杂，不利于电路的精简；及由于通过人工来控制开关的导通或断开，其不具自动化测量的问题。

[0006] 为解决上述问题，本发明的技术方案如下：
[0007] 本发明提供了一种测量光学参数的调整电路，所述调整电路包括：
[0008] 光感测模块，用于检测光信号，并将检测到的所述光信号转换为电压信号；
[0009] 放大模块，用于放大所述电压信号；
[0010] A/D转换模块，用于将放大的所述电压信号转换为数字信号；
[0011] 控制模块，用于分析所述数字信号，以生成分析结果；
[0012] 信号产生模块，用于根据分析结果，输出相应的频率方波信号；以及
[0013] 调节模块，用于根据所述频率方波信号调整所述放大模块的放大倍数。
[0014] 优选地，
[0015] 所述放大模块的第一输入端与所述光感测模块连接；
[0016] 所述调节模块的第一端接地，所述调节模块的第二端与所述放大模块的第二输入端连接；
[0017] 所述A/D转换模块的第一端与所述放大模块的输出端连接，所述A/D转换模块的
第一端还与所述调节模块的第三端连接；
[0018] 所述控制模块与所述A/D转换模块的第二端连接；以及
[0019] 所述信号产生模块的第一端与所述控制模块连接，所述信号产生模块的第二端与所述调节模块的第四端连接。
[0020] 优选地，所述调节模块包括：
[0021] 调节电阻，所述调节电阻的第一端接地，所述调节电阻的第二端与所述放大模块的第二输入端连接；
[0022] 调节电容，所述调节电容的第一端与所述调节电阻的第二端连接；以及
[0023] 控制开关，所述控制开关的第一端与所述调节电容的第二端连接，所述控制开关的第二端分别与所述A/D转换模块的第一端和所述放大模块的输出端连接，所述控制开关的第三端与所述信号产生模块的第二端连接。
[0024] 优选地，所述调节模块包括：
[0025] 调节电阻，所述调节电阻的第一端接地，所述调节电阻的第二端与所述放大器的第二输入端连接；
[0026] 调节电感，所述调节电感的第一端与所述调节电阻的第二端连接；以及
[0027] 控制开关，所述控制开关的第一端与所述调节电感的第二端连接，所述控制开关的第二端分别与所述A/D转换模块的第一端和所述放大模块的输出端连接，所述控制开关的第三端与所述信号产生模块的第二端连接。
[0028] 优选地，所述信号产生模块输出相应的频率方波信号，控制所述控制开关的通断或断开；根据所述频率方波信号调整所述调节电容的阻抗值；根据所述阻抗值及所述调节电容值，调整所述放大模块的放大倍数。
[0029] 优选地，所述信号产生模块输出相应的频率方波信号，控制所述控制开关的通断或断开；根据所述频率方波信号调整所述调节电感的阻抗值；根据所述阻抗值及所述调节电感值，调整所述放大模块的放大倍数。
[0030] 本发明还提供了一种测量光学参数的方法，所述方法包括：
[0031] 检测光信号，并将检测到的所述光信号转换为电压信号；
[0032] 放大所述电压信号；
[0033] 将放大后的所述电压信号转换为数字信号；
[0034] 分析所述数字信号，以生成分析结果；
[0035] 根据分析结果，输出相应的频率方波信号；以及
[0036] 根据所述频率方波信号调整放大模块的放大倍数。
[0037] 优选地，根据所述频率方波信号调整放大模块的放大倍数的步骤包括：
[0038] 根据所述频率方波信号，控制所述开关的通断或断开；
[0039] 根据所述频率方波信号调整调节电容的阻抗值；以及
[0040] 根据所述阻抗值及所述电阻值，调整所述放大模块的放大倍数。
[0041] 优选地，根据所述频率方波信号调整放大模块的放大倍数的步骤包括：
[0042] 根据所述频率方波信号，控制所述开关的通断或断开；
[0043] 根据所述频率方波信号调整调节电感的阻抗值；以及
[0044] 根据所述阻抗值及所述电阻值，调整所述放大模块的放大倍数。
【附图说明】
0048 图1为现有技术提供的测量光学参数的调整电路的结构示意图；
0049 图2为本发明实施例一提供的测量光学参数的调整电路的结构示意图；
0050 图3为本发明实施例二提供的测量光学参数的调整电路的结构示意图；
0051 图4为本发明实施例三提供的测量光学参数的调整电路的结构示意图；
0052 图5为本发明实施例提供的测量光学参数的调整方法的实现流程示意图；
0053 图6为本发明实施例提供的调整放大模块的放大倍数的实现流程示意图；
0054 图7为本发明另一实施例提供的调整放大模块的放大倍数的实现流程示意图。

【具体实施方式】
0055 本说明书所使用的词语“实施例”指用作示例、示例或例证。此外，本说明书和所附权利要求中所使用的冠词“一”一般地可以被解释为意指“一个或多个”，除非另外指定或从上下文清楚地单数形式。
0056 本发明的显示面板可以是诸如TFT-LCD(Thin Film Transistor Liquid Crystal Display，薄膜晶体管液晶显示面板)、AMOLED(Active Matrix Organic Light Emitting Diode，有源矩阵有机发光二极管面板)等显示面板。
0057 实施例一
0058 请参阅图2，为本发明实施例一提供的测量光学参数的调整电路的结构示意图。为了解说说明，仅示出了与本发明实施例相关的部分。
0059 所述的测量光学参数的调整电路，包括：
0060 光感测模块101；
0061 放大模块102，所述放大模块102的第一输入端与所述光感测模块101连接；
0062 调节模块103，所述调节模块103的第一输入端与所述放大模块102的第一输入端连接，所述调节模块103的第二端与所述放大模块102的第二输入端连接；
0063 A/D转换模块104，所述A/D转换模块104的第一端与所述放大模块102的输出端连接，所述A/D转换模块104的第二端与所述调节模块103的输出端连接；
0064 控制模块105，所述控制模块105与所述A/D转换模块104的第二端连接；以及
0065 信号产生模块106，所述信号产生模块106的第一端与所述控制模块105的连接，所述
信号产生模块106的第二端与所述调节模块103的第四端连接；
[0066] 其中，所述光感测模块101将检测到的光信号转换为电压信号，并将所述电压信号输入至所述放大模块102，所述放大模块102对所述电压信号进行放大，并将放大后的所述电压信号输出至所述A/D转换模块104，所述A/D转换模块104将放大后的所述电压信号转换为数字信号，所述控制模块105对所述A/D转换模块104传输的所述数字信号进行分析，以生成分析结果，并根据分析结果，控制所述信号产生模块106输出相应的频率方波信号，所述调节模块103根据所述频率方波信号调整所述放大模块102的放大倍数。
[0067] 在本发明实施例中，所述控制模块105对所述A/D转换模块104传输的所述数字信号进行分析，判断当前放大倍数是否为最佳倍数，如果判断出所述当前放大倍数不是最佳倍数，则控制所述信号产生模块106输出相应的频率方波信号，以控制所述调节模块103根据所述频率方波信号调整所述放大模块102的放大倍数；调整放大模块102的放大倍数后，所述控制模块105进一步判断调整后的放大倍数是否为最佳倍数，如果判断出调整后的放大倍数不是最佳倍数，则进一步控制所述信号产生模块106输出相应的频率方波信号，以控制所述调节模块103根据所述频率方波信号调整所述放大模块102的放大倍数；以此类推，直到所述控制模块105判断出当前放大倍数为最佳倍数后，便输出。
[0068] 然而，可以理解的是，所述光感测模块101可以为光电传感器，所述控制模块105可以为MCU(Micro Control Unit，微控制单元)，所述放大模块102和所述调节模块103可以内置于放大器中，所述放大器可以是运算放大器，所述A/D转换模块104可以为所述A/D转换器；所述A/D转换模块104也可以集成在所述控制模块105中。
[0069] 由上述可知，本实施例提供的测量光学参数的调整电路，通过控制模块判断当前放大倍数是否为最佳倍数，如果判断出所述当前放大倍数不是最佳倍数，则控制信号产生模块输出相应的频率方波信号，以控制所述调节模块将所述放大模块的放大倍数调整至最佳倍数。因此，本实施例可以实现光学测量系统量程或放大倍数的连续变化，提高了测量精度，相对于现有技术来说，本实施例的电路更为简单，从而节约了成本；且本实施例还能实现自动化测量。
[0070] 实施例二
[0071] 请参阅图3，为本发明实施例二提供的测量光学参数的调整电路的结构示意图。为了便于说明，仅示出了与本发明实施例相关的部分。
[0072] 所述的测量光学参数的调整电路，包括：
[0073] 光感测模块201；
[0074] 放大模块202，所述放大模块202的第一输入端与所述光感测模块201连接；
[0075] 调节模块203，所述调节模块203包括调节电阻Ro，调节电容C以及控制开关Q；所述调节电阻Ro的第一端接地，所述调节电阻Ro的第二端与所述放大模块202的第二输入端连接；所述调节电容C的第一端与所述调节电阻Ro的第二端连接；以及所述控制开关Q的第一端与所述调节电容C的第二端连接；且所述控制开关Q的第二端与所述放大模块202的输出端连接；
[0076] 所述A/D转换模块204，所述A/D转换模块204的第一端与所述放大模块202的输出端连接；且所述控制开关Q的第二端与所述A/D转换模块204的第一端连接；
[0077] 控制模块205，所述控制模块205与所述A/D转换模块204的第二端连接；以及
信号产生模块206，所述信号产生模块206的第一端与所述控制模块205连接，所述控制开关Q的第三端与所述信号产生模块206的第二端连接。

其中，所述光感测模块201将检测到的光信号转换为电压信号，并将所述电压信号输入至所述放大模块202，所述放大模块202对所述电压信号进行放大，并将放大后的所述电压信号输出至所述A/D转换模块204，所述A/D转换模块204将放大后的所述电压信号转换为数字信号，所述控制模块205对所述A/D转换模块204传输的所述数字信号进行分析，以生成分析结果，并根据分析结果，控制所述信号产生模块206输出相应的频率方波信号，以控制所述控制开关Q的通导或断开；根据所述频率方波信号调整所述调节电容C的阻抗值；根据所述阻抗值及调节电阻值Ro，调整所述放大模块202的放大倍数。

在本发明实施例中，所述控制模块205对所述A/D转换模块204传输的所述数字信号进行分析，判断当前放大倍数是否为最佳倍数，如果判断出所述当前放大倍数不是最佳倍数，则控制所述信号产生模块206输出相应的频率方波信号，以控制所述控制开关Q导通；从而根据所述频率方波信号调整所述调节电容C的阻抗值；根据所述阻抗值及调节电阻值Ro，调整所述放大模块202的放大倍数。调整放大模块202的放大倍数后，所述控制模块205进一步判断调整后的放大倍数是否为最佳倍数，如果判断出调整后的放大倍数不是最佳倍数，则进一步控制所述信号产生模块206输出相应的频率方波信号，以控制所述控制开关Q导通；根据所述频率方波信号调整所述调节电容C的阻抗值；根据所述阻抗值及调节电阻值Ro，调整所述放大模块202的放大倍数；以此类推，直到所述控制模块205判断出当前放大倍数为最佳倍数后，便输出，并控制所述信号产生模块206输出相应的频率方波信号，以控制所述控制开关断开。

由上述可知，本实施例提供的测量光学参数的调整电路，通过控制模块205判断当前放大倍数是否为最佳倍数，如果判断出所述当前放大倍数不是最佳倍数，则控制信号产生模块206输出相应的频率方波信号，以控制所述控制开关Q导通；根据所述频率方波信号调整所述调节电容的阻抗值；根据所述阻抗值及调节电阻值，将所述放大模块202的放大倍数调整至最佳倍数；如果判断出所述当前放大倍数为最佳倍数，则控制信号产生模块206输出相应的频率方波信号，以控制所述控制开关断开。因此，本实施例将容抗原理应用到放大倍数的调整上，可以实现光学测量系统量程或放大倍数的连续变化，提高了测量精度，相对于现有技术来说，本实施例的电路更为简单，从而节约了成本；且本实施例还能实现自动化测量。

实施例三

参阅图4，为本发明实施例三提供的测量光学参数的调整电路的结构示意图，为了便于说明，仅示出了与本发明实施例相关的部分。所述的测量光学参数的调整电路，包括：

光感测模块301；

放大模块302，所述放大模块302的第一输入端与所述光感测模块301连接；

调节模块303，所述调节模块303包括调节电阻R1、调节电感L以及控制开关Q1；所述调节电阻R1的第一端接地，所述调节电阻R1的第二端与所述放大模块302的第二输入端连接；所述调节电感L的第一端与所述调节电阻R1的第二端连接；所述控制开关Q1的第一端与所述调节电感L的第二端连接；所述控制开关Q1的第二端与所述放大模块302的输
出端连接；

【0088】所述A/D转换模块304,所述A/D转换模块304的第一端与所述放大模块302的输出端连接；且所述控制开关Q1的第二端与所述A/D转换模块304的第一端连接；

【0089】控制模块305,所述控制模块305与所述A/D转换模块304的第二端连接；以及

【0090】信号产生模块306,所述信号产生模块306的第一端与所述控制模块305连接,所述控制开关Q1的第一端与所述信号产生模块306的第二端连接。

【0091】其中，所述光敏元件301检测到的光信号输入至所述放大模块302,所述放大模块302对所述电压信号进行放大,并将放大后的所述电压信号输出至所述A/D转换模块304,所述A/D转换模块304将放大后的所述电压信号转换为数字信号,所述控制模块305对所述A/D转换模块304输入的所述数字信号进行分析,以生成分析结果,并根据分析结果,控制所述信号产生模块306输出相应的频率方波信号,以控制所述控制开关Q1的导通或断开；根据所述频率方波信号对所述电感L的阻抗值,根据所述阻抗值及调节电阻值R1,调整所述放大模块302的放大倍数。[0092]在本发明实施例中,所述控制模块305对所述A/D转换模块304传输的所述数字信号进行分析,判断当前放大倍数是否为最佳倍数,如果判断出所述当前放大倍数不是最佳倍数,则控制所述信号产生模块306输出对应的频率方波信号,以控制所述控制开关导通；根据所述频率方波信号调整所述调节电感L的电阻值；根据所述阻抗值及调节电阻值,调整所述放大模块302的放大倍数。调整放大模块302的放大倍数后,所述控制模块305进一步判断调整后的放大倍数是否为最佳倍数,如果判断出调整后的放大倍数不是最佳倍数,则进一步控制所述信号产生模块306输出对应的频率方波信号,以控制所述控制开关Q1导通；根据所述频率方波信号调整所述调节电感L的电阻值；根据所述阻抗值及调节电阻值R1,调整所述放大模块302的放大倍数；以此类推,直到所述控制模块305判断出当前放大倍数为最佳倍数后,便输出,并控制所述信号产生模块306输出对应的频率方波信号,以控制所述控制开关导通。

【0093】由上述可知,本实施例提供的测量光学参数的调整电路,通过控制模块305判断当前放大倍数是否为最佳倍数,如果判断出所述当前放大倍数不是最佳倍数,则控制信号产生模块306输出对应的频率方波信号,以控制所述控制开关Q1导通；根据所述频率方波信号调整所述调节电感L的电阻值；根据所述阻抗值及调节电阻值R1,将所述放大模块302的放大倍数调整至最佳倍数；如果判断出所述当前放大倍数为最佳倍数,则控制信号产生模块306输出对应的频率方波信号,以控制所述控制开关Q1断开。因此,本实施例将感光原理应用到放大倍数的调整上,可以实现光学测量系统量程或放大倍数的连续变化,提高了测量精度,相对于现有技术来说,本实施例的电路更为简单,从而节约了成本；且本实施例还能实现自动化测量。

【0094】请参阅图5,为本发明实施例提供的测量光学参数的调整方法的流程示意图。[0095]所述测量光学参数的调整方法,包括:步骤S101,检测光信号,并将检测到的所述光信号转换为电压信号；步骤S102,放大所述电压信号；步骤S103,将放大后的所述电压信号转换为数字信号；步骤S104,分析所述数字信号,以生成分析结果；
[0100] 在本发明实施例中，控制模块（MCU）用于分析所述数字信号，且在所述控制模块中存储有亮度值与最佳放大倍数阈值的关系表。所述控制模块对所述数字信号进行分析，根据上述关系表判断当前亮度的放大倍数是否达到最佳放大倍数阈值。如果判断出所述当前亮度的放大倍数没有达到最佳放大倍数阈值，则控制输出相应的频率方波信号。根据所述频率方波信号调整所述放大模块的放大倍数。调整放大模块的放大倍数后，所述控制模块进一步判断调整后的放大倍数是否达到最佳放大倍数阈值。如果判断出调整后的放大倍数没有达到最佳放大倍数阈值，则进一步控制输出相应的频率方波信号。根据所述频率方波信号调整所述放大模块的放大倍数。如此类推，直到所述控制模块判断出当前放大倍数达到最佳放大倍数阈值后，便输出。

[0101] 在步骤S105中，根据分析结果，输出相应的频率方波信号。

[0102] 在步骤S106中，根据所述频率方波信号调整放大模块的放大倍数。

[0103] 请参阅图6，作为本发明一实施例，步骤S106包括：

[0104] 步骤S1061，根据所述频率方波信号，控制控制开关的导通或断开；

[0105] 步骤S1062，根据所述频率方波信号调整调节电容的阻抗值；

[0106] 在本发明实施例中，所述调节电容的阻抗值的计算公式为：

\[X_c = \frac{1}{(2\pi fC)} \]

[0107] 其中，\(X_c \)为调节电容的阻抗值，单位是欧姆，\(f \)为方波信号频率值，单位是赫兹，\(C \)为容值，单位是法拉；

[0108] 步骤S1063，根据所述阻抗值及调节电阻值，调整所述放大模块的放大倍数。

[0109] 在本发明实施例中，所述放大倍数的计算公式为：

\[A = 1 + X_c/R_0 \]

[0110] 其中，所述A为放大倍数，\(X_c \)为调节电容的阻抗值，单位是欧姆，\(R_0 \)为调节电阻的电阻值，单位是欧姆。

[0111] 请参阅图7，作为本发明另一实施例，步骤S106包括：

[0112] 步骤S61，根据所述频率方波信号，控制控制开关的导通或断开；

[0113] 步骤S62，根据所述频率方波信号调整调节电感的阻抗值；

[0114] 在本发明实施例中，所述调节电感的阻抗值的计算公式为：

\[X_l = 2\pi fL \]

[0115] 其中，\(X_l \)为调节电感的阻抗值，单位是欧姆，\(f \)为方波信号频率值，单位是赫兹，\(L \)为调节电感的电感值，单位是亨利；

[0116] 步骤S63，根据所述阻抗值及调节电阻值，调整所述放大模块的放大倍数。

[0117] 在本发明实施例中，所述放大倍数的计算公式为：

\[A = 1 + X_l/R_1 \]

[0118] 其中，所述A为放大倍数，\(X_l \)为调节电感的阻抗值，单位是欧姆，\(R_1 \)为调节电阻的电阻值，单位是欧姆。

[0119] 由上述可知，本实施例提供的测量光学参数的调整方法，通过判断当前放大倍数是否为最佳倍数，如果判断出所述当前放大倍数不是最佳倍数，则控制输出相应的频率方波信号，以将所述放大模块的放大倍数调整至最佳倍数。因此，本实施例可以实现光学测量系统量程或放大倍数的连续变化，以及对不同亮度环境的自适应调整，提高了测量精度，相
对于现有技术来说，本实施例能实现自动化测量。

【0124】本发明实施例还提供了一种光学测量系统，所述光学测量系统包括上述所述的测量光学参数的调整电路，上述已详细描述了测量光学参数的调整电路的结构，因此，在此不再赘述。

【0125】综上所述，本实施例提供的测量光学参数的调整电路、方法及光学测量系统，通过控制模块判断当前放大倍数是否为最佳倍数，如果判断出当前放大倍数不是最佳倍数，则控制信号产生模块输出相应的电压方波信号，以控制所述控制开关的导通或断开；根据所述电压方波信号调整调节电容或调节电阻的阻抗值；根据所述阻抗值及调节电阻值，将所述放大模块的放大倍数调整至最佳倍数。因此，本发明将阻抗原理应用到放大倍数的调整上，可以实现光学测量系统参数或放大倍数的连续变化，提高了测量精度，相对于现有技术来说，本发明的电路更为简单，从而节约了成本，且本发明还能实现自动化测量。

【0126】尽管已经相对于一个或多个实现方式示出并描述了本发明，但是本领域技术人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。本发明包括所有这样的修改和变型，并且仅由所附权利要求的范围限制。特别地关于由上述组件执行的各种功能，用于描述这样的组件的术语旨在对应于执行所述组件的指定功能的（例如其在功能上是等价的）任意组件（除非另外指示），即使在结构上与执行本文所述的本说明书的示范性实现方式中的功能的公开结构不相同。此外，尽管本说明书的特定特征已经相对于若干实现方式中的一个被公开，但是这种特征可以与如可以对给定或特定应用而言是期望和有利的其他实现方式的一个或多个其他特征组合。而且，术语“包括”、“具有”、“含有”或者其变形被用在具体实施方式或权利要求中而言，这些术语旨在以与术语“包含”相似的方式包括。

【0127】综上所述，虽然本发明已以优选实施例揭示如上，但上述优选实施例并不能用以限制本发明，本领域的普通技术人员，在不脱离本发明的精神和范围内，均可作各种更动与润饰，因此本发明的保护范围以权利要求界定的范围为准。
检测光信号，并将检测到的所述光信号转换为电压信号

放大所述电压信号

将放大后的所述电压信号转换为数字信号

分析所述数字信号，以生成分析结果

根据分析结果，输出相应的频率方波信号

根据所述频率方波信号调整放大模块的放大倍数
根据所述频率方波信号，控制控制开关的导通或断开

根据所述频率方波信号调整调节电容的阻抗值

根据所述阻抗值及调节电阻值，调整所述放大模块的放大倍数

图6

根据所述频率方波信号，控制控制开关的导通或断开

根据所述频率方波信号调整调节电感的阻抗值

根据所述阻抗值及调节电阻值，调整所述放大模块的放大倍数

图7