The reflective drywall panel to reduce radiant heat transfer is a drywall panel constructed with a reflective surface on one side thereof. The reflective surface functions to reflect radiant heat waves into a space during heating season or away from the space during cooling season. The reflective surface is fabricated from a plastic-metal sheet having a shiny surface. The sheet is attached to the back side (stud side) of a drywall or ceiling panel.
REFLECTIVE DRYWALL PANEL TO REDUCE RADIANT HEAT TRANSFER

CROSS-REFERENCE TO RELATED APPLICATION

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention
[0003] The present invention generally relates to building construction, and particularly to a drywall panel having a reflective surface that reduces radiant heat loss or gain.

[0004] 2. Description of the Related Art
[0005] The warnings from many scientists about the effects of global warming caused by the greenhouse effect, and the rising costs of fossil fuels and electric power production, encourage the reduction of energy use in homes and offices. It has been estimated that radiant heat flow accounts for up to seventy percent of the heat loss or gain through the outer walls and ceilings of buildings structures. This phenomenon increases the need to burn fuels for heating or to utilize electrical energy for cooling. A wall or ceiling panel that would effectively diminish radiant heat loss or gain would thus lead to a reduction in the use of fossil fuels and/or electric energy. In addition to the monetary savings involved, the lowered production of carbon dioxide gases would greatly abate the cause of the greenhouse effect. Thus, a reflective drywall panel to reduce radiant heat transfer solving the aforementioned problems is desired.

SUMMARY OF THE INVENTION

[0006] The reflective drywall panel to reduce radiant heat transfer is a drywall panel constructed with a reflective surface on one side thereof. The reflective surface functions to reflect radiant heat waves into a space during heating season or away from the space and into the ambient air during cooling season. This function allows a user to reduce the amount of energy needed to heat or cool the space. The reflective surface is fabricated from a metallicized plastic sheet having a shiny surface. The sheet is attached to the backside (stud side) of a drywall or ceiling panel.

[0007] Accordingly, the invention presents a panel that alleviates the effects of heat flow caused by radiant waves. The invention provides for improved elements thereof in an arrangement for the purposes described that are inexpensive, dependable and fully effective in accomplishing their intended purposes.

[0008] These and other features of the present invention will become readily apparent upon further review of the following specifications and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is an environmental, perspective view of a reflective drywall panel to reduce radiant heat transfer according to the present invention.
[0010] FIG. 2 is a perspective view of a reflective drywall panel to reduce radiant heat transfer according to the present invention.

[0011] Similar reference characters denote corresponding features consistently throughout the attached drawings.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0012] Referring to FIGS. 1 and 2, the reflective drywall panel to reduce radiant heat transfer (gain or loss) is generally indicated at 10. The reflective panel 10 comprises a conventional drywall panel 12 having a flexible, reflective sheet 14 mounted thereto. The reflective sheet 14 is mounted on the backside or stud side of drywall panel 12. The reflective sheet 14 is fabricated from a metallicized plastic material that presents a shiny surface, e.g., Mylar® (Mylar is a registered trademark of DuPont Teijin Films Limited Partnership of Wilmington, Del., referring to a polyester film developed by E.I. DuPont de Nemours). The sheet 14 is preferably attached to drywall 12 with conventional adhesive. However, other means (screws, staples, tape, etc.) may be employed if deemed suitable. The sheet 14 is provided with a plurality of apertures 16 therethrough for venting and to reduce electrical conductivity.

[0013] In use, as indicated above, reflective sheet 14 is attached to the back side of a drywall panel 12. The composite drywall panel is then secured to wall framing or ceiling studs in a manner that is conventional in the construction industry. This arrangement allows the reflective panel to assume a position to reflect radiant heat waves emanating from either inside or outside the building structure.

[0014] It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.

We claim:

1. A reflective drywall panel adapted to reduce radiant heat transfer, comprising:
 a drywall panel having a front side and a back side; and
 a sheet having a reflective outer surface attached to the drywall panel, the sheet having a plurality of apertures extending through the sheet.

2. The reflective drywall panel to reduce radiant heat transfer according to claim 1, wherein said sheet is attached to the back side of said drywall panel.

3. The reflective drywall panel to reduce radiant heat transfer according to claim 1, wherein said sheet is adhesively attached to said drywall panel.

4. The reflective drywall panel to reduce radiant heat transfer according to claim 1, wherein said sheet is fabricated from a metallicized plastic material.

5. A reflective drywall panel adapted to reduce radiant heat transfer, comprising:
 a drywall panel having a front side and a stud side; and
 a flexible sheet adhesively attached to the drywall panel, the sheet being fabricated from a metallicized plastic material having a reflective outer surface, the sheet having a plurality of apertures disposed through the sheet.

6. The reflective drywall panel to reduce radiant heat transfer according to claim 5, wherein said sheet is attached to the stud side of said drywall panel.

* * * * *