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The invention features a chimeric diphtheria toxin molecule

an antibody is inserted into a loop region of the Diphtheria toxin receptor binding-domain,

wherein all or part of a complementarity determining region of
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NOVEL DIPHTHERIA TOXIN-BASED MOLECULES
Background of the Invention

The field of the invention is chimeric molecules.

Hybrid molecules in which all or part of an
antibody is fused to another molecule have been suggested
as a means for targeting molecules to particular sites.
Diphtheria toxin (DT) is an extremely potent cytotoxin
which is secreted by Corynebacterium diphtheriae that has
been lysogenized by a bacteriophage carrying the
Diphtheria toxin gene. Naturally occurring Diphtheria
toxin is a single polypeptide chain of 535 residues. Mild
trypsinization and reduction of Diphtheria toxin in vitro
generates two fragments, Fragment A (amino-terminal,
~21K) and Fragment B (carboxy-terminal, ~37K), as a
result of cleavage at residue 190, 192, or 193. A
similar proteolytic cleavage (’nicking’) occurs in vivo
before or soon after the toxin binds to a sensitive cell.
Fragment B of the toxin binds the protein to receptors on
the cell surface and promotes transfer of the Fragment A
to the cytoplasm. Fragment A in the cytoplasm catalyzes
the transfer of the ADP-ribosyl group of NAD' to
elongation factor 2 (EF-2). This inactivates EF-2,
stopping protein synthesis and killing the target cell.
Introduction of a single molecule of Fragment A into the
cytoplasm can kill a cell. While the exact mechanism by
which Diphtheria toxin enters a cell is not completely
understood, it is known that Diphtheria toxin binds a
receptor and is endocytosed and delivered to endosomes
where it encounters acidic conditions. At a threshold pH
of ~5.0 the toxin undergoes a conformational change,
which promotes insertion and formation of an ion-
selective channel in the membrane, and Fragment A is
translocated and released into the cytoplasm.
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Summarg'of the Invention ,

In general, the invention features a chimeric
diphtheria toxin molecule wherein all or part of a
complementarity determining region (CDR) of an antlbody
is inserted into a loop region of the Diphtheria toxin
receptor binding-domain. By'“loop region" is meant any
of the portions of the Diphtheria toxin receptor binding
domain lying between g strands as delimited herein. - The

~term encompasses single amino acids. By "Diphtheria

toxin receptor binding ‘domain" is meant the portion of

Diphtheria toxin lying from amino acids 386 to amino acid

535, inclusive. By "CDR" is meant a portion of a

complementarity'determining region of an antibody as

defined by sequence heterpgeneity; e.g., according to

Kabat et al (in Sequences of Proteins of Immunological

Interest, U.S. Dept. of Health and Huhan SerVices, U.s.

Government Printing Office, 1987). In a preferred

embodiment, the antibody is capable of specifically

binding a cell surface antigen eXpressed on a-cell, the

chimeric diphtheria toxin molecule is capable of

specifically binding the same cell;surface antigen and is

substantially incapabie of binding to the diphtheria

toxin receptor. By Fceli’surface ahtigen"'is meant any

cell surface marker, e.g., a prbtein or a carbohydrate.

By “specifically bindiﬁg" is meaht does not'substantially'

bind to other molecules.- By "diphtherla toxin receptor"

is meant the receptor for naturally-occurrlng Diphtheria

toxin. 1In a more preferred -embodiment, the molecule is

capable of decreasing the viability’of'the cell. In an

even more preferred embodiment the molecule kills the

cell. R | S e
-In another preferred embodiment, all or part of a

first CDR is 1nserted 1nto a first loop region, all or i

- part of a second CDR is 1nserted into a second loop

region, and the first and the second CDR are of a single



o

.
.

WO 93/22450

10

15

20

25

30

_3_

antibody chain. By "of a single antibody chain" is meant
CDR sequences found within a single heavy or light chain.
In a preferred embodiment, the molecule lacks diphtheria
toxin catalytic activity. By "diphtheria toxin catalytic
activity" is meant the ability to inhibit translation.

In a yet more preferred embodiment, the molecule lacks
all or part of the catalytic domain of diphtheria toxin.

In other preferred embodiments, the loop region is
RL3 and the CDR is a CDR1; and the loop region is RL9 and
the CDR is a CDR3.

In a related aspect, the invention features a
hybrid molecule which includes a first and a second
portion joined together covalently, the first portion
includes a chimeric diphtheria toxin molecule wherein all
or part of a CDR of an antibody is inserted into a loop
region of the receptor binding-domain of diphtheria
toxin, the antibody being capable of specifically binding
a cell surface antigen expressed on a cell, the chimeric
diphtheria toxin molecule being capable of specifically
binding the cell surface antigen, being substantially
incapable of binding to the diphtheria toxin receptor,
and lacking Diphtheria toxin catalytic activity; and the
second portion includes a molecule to be delivered to the
cell. 1In various preferred embodiments, the molecule to
be delivered to the cell is a protein; is an enzyme; is a
protein which modulates transcription; is a nucleic acid
binding protein; is a nucleic acid-binding protein
capable of binding a single-stranded nucleic acid; and is
a nucleic acid.

In a related aspect, the invention features a
hybrid molecule which includes a first and a second
portion joined together covalently, the first portion
includes a chimeric diphtheria toxin molecule wherein all
or part of a CDR of an antibody is inserted into a loop

PCT/US93/04335



WO 93/22450 ' o ’ ' PCT/US93/04335

10

15

20

25

30

35

- -
region of a first diphthéria_toxin receptor binding-
domain, the antibody being capable of,specifically '
binding a cell surface antigen expressed on a cell, the
chimeric diphtheria toxin molecule being capable of

w

specifically blndlng'the same cell surface antlgen and
being substantially 1ncapable of binding to the 7 7
diphtheria toxin receptor, wherein the amino-terminus of

a second diphtheria toxin receptor-binding domain is
connected to the carboxy-terminus of the first diphtheria
toxin réceptor—bindingrdomain,,the second diphtheria '
toxin receptor-binding domain being sﬁbStantially
incapable of'binding to the diphtheria toxin receptor.

In preferred embodiments, the carboxy terminus is
connected to the amino termlnus through a polypeptlde
chain; and all or part of a CDR of an antibody is '
inserted into a loop region of the second diphtheria

toxin receptor-binding domain. vBy "connected" is meant

linked via one or a series'of,COValent bonds, e.g., by a

polypeptide chain. In a more preferred embodiment, all
or part of a first the CDR is inserted into a first loop
region of the first diphtheria tox1n receptor-blndlng
domain and all or part of a second the CDR is inserted
into a second the loop reglon of the first dlphtherla ,
toxin receptor—bindihg domain. In an even more préferred
embodiment, all or part of a thlrd CDR is 1nserted into a
first loop region of the second diphtheria tox1n
receptor-binding domaln and all or part of a fourth,CDR
is inserted into a second the loop region of the second
diphtheria toxin receptor-blndlng domain. In a yet more
preferred embodlment the f;rstrand the second'CDR are of
a first antibody chain,andrthe third and the fourth the
CDR are of a second antibody'chain.r'In still more

"

~;

preferred embodiments, the first and the second antibody
chains are from antlbodles recognlzlng the same antigen;
the first and second antlbody chains are from the ‘same
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antibody molecule; and the first antibody chain is the
light chain of an antibody and the second antibody chain
is the heavy chain of the same antibody.

In a related aspect, the invention features a
chimeric diphtheria toxin molecule wherein all or part of
a CDR-like sequence of a ligand binding protein having an
antibody variable domain-like ligand binding-domain is
inserted into a loop region of the receptor binding
domain of diphtheria toxin. By "CDR-like sequence" is
meant a sequence which is responsible for ligand binding
and which has the same relationship to overall structure
of a protein as does the CDR of an antibody variable
domain. By "an antibody variable domain-like ligand
binding domain" is meant a ligand binding domain which
has structural homology to an immunoglobulin variable
domain. For example tumor necrosis factor includes an
antibody variable domain-like ligand binding domain.

The chimeric molecules of the invention bind
specifically to the same epitope (antigen) as the
antibody from which the inserted CDR sequences are
derived. Thus it is possible to generate a molecule
targeted to any antigen. Because these chimeric
molecules can enter cells to whihc they bind, they can be
used to introduce any molecule into a specific class of
cells.

Other features and advantages of the invention
will be apparent from the following description of the
preferred embodiments thereof, and from the claims.

Detailed Description

The drawings are first briefly described.

Figure 1 is a schematic drawing of Diphtheria
toxin in which each secondary structural segment is
identified. The first letter denotes the domain: C for
catalytic, T for transmembrane, and R for receptor-
binding domains. The second letter denotes the secondary
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structure class: H for helix, B for B etrand 'L for loop.
The third symbol is the sequentlal number of each B
secondary segment from the N-terminus of each domain.

The residue numbers in each segment are as follOWS‘
CH1:2-7, CB1:11-14, CB2: 16-24, CH2:28-34, CB3:52- =57,

CH3: 58~ -66, CB4: 76 -86, CB5: 88-96 CH4:99-106, CH5: 120- 126,
CB6: 130-136 CB7:147-152, CBB.159-166, CH6:168-173,
CH7:176-186; TH1:205-221, TH2:225-231, TH3:238-257,
TH4:258-269,'TH5:274-288,7TH6§297-307, TH7:310-315,

‘TH8:326-346, TH9:356-378; RB1:386-390, RB2:393-399,

RB3:412-424, RB4'428—438 RBS'447-453 - RB6:455-465,
RB7:467-480, RBS: 483-495 RB9:513-520, and RB10:525- -534.

Flgure 2 is a representatlon of the Ca skeleton of
Diphtheria toxin from the same viewpoint as that of Fig.
1. An ApUp molecule occuples the active site of
Diphtheria toxin. )

Figure 3 is a stereo palr representation of the
electron density maps. calculated at 2.5% from (2Fgp=F,)
and the refined model phases. Maps are superimposed on
the corresponding region of the refined model.

Figure 4 is a representation of the Diphtheria
toxin dimer'observed within the'Form4 crystal. The two
monomers are related by a crystallographic_z-fold
rotation axis, which is vertical. The molecule at the
left (in thlck 11ne) has the same orlentatlon as that in
Fig. 1. ' ' _ -

Figure 5 is a stereo pair representation of the
Ca skeleton of the C domain. The entrance to the ective
site is at the lower right. ' The four loops, CL1 to cL4,
are highlighted. Notice- that they form a hinge which may
permit the C domain to form a more elongated structure.

Figure 6 is a stereo pair representation of the Ca
skeleton of the T domain, with the direction of view from
the right side of Diphtheria toxin in Fig. 1. Helix TH1
lies in back, starting at residue 205. Helix TH2 runs to

L7
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the left at the bottom, followed by a turn and helix TH3
running to the right. In front center is THS (running to
the left) and above it are helices TH6 and TH7. Behind
these pairs of antiparallel helices is another pair of
antiparallel helices, TH8 and TH9, with THO running
upwards and ending at residue 378. The Asp and Glu side
chains are shown. Notice the tips of two helix layers,
TL3 and TL5 contain a total of six acidic groups (on the
left).

Figure 7 is a stereo pair representation of the T
domain as in Fig. 6 except that the Lys, Arg and His side
chains are shown. Notice the positive charge asymmetry,
with all charges at the bottom and back of the domain,
with an exception Lyspgg9 near the loop TL3 between TH5 and
TH6.

Figure 8 is a schematic representation of the R
domain of Diphtheria toxin (panel A), an Ig variable
domain (panel B) and tumor necrosis factor (panel C). R
domain is viewed in the direction from the back side of
Diphtheria toxin in Fig. 1. Numbers from 2 to 10 of the
R domain represent the strands RB2 through RB10 of
Diphtheria toxin. Notice that strands 2, 3, 4, 8, 9, and
10 of the R domain correspond well to strands A, B, C, E,
F, and G of the Ig variable domain. Also strands 3, 4,
5, 6, 7, 8, and 9 correspond well to strands C, b, E, F,
G, H, and I of tumor necrosis factor, a classical
jellyroll.

Figure 9 is a schematic drawing of a rearranged
Diphtheria toxin receptor-binding domain. Each
structural segment is identified.

Figure 10, panel A is a schematic representation
of the receptor-binding domain of diphtheria toxin with
each B strand labeled (RB1-RB10) and each loop region
labeled (RL1-RL9). The amino acid end points refer to
the B sheets, e.g., RB3 consists of residues 412-424
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1nclu51ve and RL3 cons1sts of re51dues 425 =427 1nclu51ve.
Panel B is a schematlc,representatlon of a Diphtheria
toxin molecule which has undergone segment rearrangement.
The notation for the regidns is a iﬁ panel A except that
447, 483, 467, and 455 indicate the amino acid residues
of 1mmed1ately adjacent to residues 407, 455 445 and
483 respectively. o
Chimeric Diphtheria Toxin Molecules

Described below is the structure of diphtheria
toxin as determined by x-ray crystallography. As will be
dlscussed,more fully below, the receptor-binding domain
of diphtheria toxin has a structure similar to the -
variable domain of an antibody. Because of this
similarity, Diphtheria toxin can be modified so that
certain portions of its receptcr—binding domain are
replaced by, or modified to include, antlgen-blndlng
portions (complementarlty determlnlng reglons) of an
antibody of choice. Such modification results in the
creation of a chimeric diphtheria molecule which
recognizes and binds the same antigenfas the selected
antibody. If a chimeric molecule is modified so as to
substantially eliminate binding to the- dlphtherla toxin
receptor, it will selectively bind only to cells bearing
the antigen recognized by the antibody from which the -
complementarity determining’regions were derived.

7 Chimeric molecules of the type described above can
be targeted to selected cell types. For example,
portions of an antibody dlrected against the interleukin-
2 (IL-Z) receptor can be used to make ‘a chimeric
diphtheria toxin molecule which binds to cells bearing
the IL-2 receptor. If the chimeric molecule is designed
so as to retain the translocation and catalytic functions
normally associated with: dlphtherla toxin, the chlmerlc
molecule will enter and. klll cells bearing the IL-2
receptor. If in the course of creating this chlmerlc

.,

W
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diphtheria toxin molecules the receptor binding domain is
altered so that the chimeric molecule does not bind to
the diphtheria toxin receptor, this chimeric molecule
will bind and kill cells bearing the IL-2 receptor while
leaving all other cells unharmed.

Alternatively, chimeric diphtheria toxin molecules
can be used to introduce any molecule into a selected
group of cells. For example, if a chimeric diphtheria
toxin molecule capable of binding to cells bearing the
IL-2 receptor is modified so that the catalytic domain of
diphtheria toxin is replaced by an enzyme, that enzyme
can be selectively introduced into cells bearing the IL-2
receptor. Similar modifications would permit an
antisense RNA molecule capable of blocking translation of
selected RNA to be introduced into cells bearing the IL-2
receptor. Alternatively, the catalytic domain may be
substantially inactivated by mutation rather than
deletion.

The approaches used to create chimeric diphtheria
toxin molecules are completely general. Once the target
antigen, e.g., a cell surface protein or carbohydrate,
has been selected, a chimeric diphtheria toxin molecule
is created by: (1) generating (or selecting) an antibody
which recognizes the antigen; (2) cloning and sequencing
at least the variable domain of a heavy or light chain of
the antibody; (3) identifying the complementarity
determining regions within the antibody variable domain;
(4) modifying diphtheria toxin to insert all or part of a
complementarity determining region(s) into a loop
region(s) of the diphtheria toxin receptor binding
domain; and (5) testing the ability of the chimeric
molecule to bind to the selected antigen.

The molecules of the invention can be more
completely understood by first detailing the structure of
Diphtheria toxin itself. Accordingly, the overall
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structure of Diphtheria toxin is discussed below followed
by a detailed discussion of the.structure of its
receptor-binding domain. The relationship between the
diphtheria toxin receptor-binding domain and an antibody
variable domain is then described. This is. followed by a
discussion of methods for generating and screenlng
chimeric molecules., This discussion is followed by a
description of the structure of other parts of D1phther1a
toxin including the catalytlc domain, the translocation
domain and the domain junctions. Lastly, details of the
structure determlnatlon are presented.
Structure of Diphtheria toxin ,

Diphtheria toxin consists of three-abutting
domains that are;cohnected by interdomain linkers. The
amino-terminal domain (residues 1-193) is'the‘catalytic
(C) domain. The middle domain (residues 205-378) is the
transmembrane (T) domain, and the cérboxy-terminal domain
(residues 386-535) is the reoeptor binding (R) domain.
Schematically, Diphtheria toxin is Y-shaped with the base
formed by the T domain, one arm of the Y formed by the C
domain, and the other arm formed by the R domain. The Y
is about 904 high, soA across the top of the Y, but only
304 thick (Figure 1).

Each of the three domains has a distincfive fold.
The C domain is a mixed structure of eight B strands
(CB1-CB8) and seven a-helices (CH1-CH7). The eight f
strands form two B eheets cf '3 and 5 strands each, These
B sheets form a core that is surrounded by 7 short |
helices. The overall folding of the C domain is similar
to that of Pseudomonas aeruginosa exotoxin A (ETA)

‘especially near‘the active site,(Allured et al., Proc.

Natl. Acad. Sci USA 83:1320, 1986), a result that had

been foreshadowed by a weak similarity in amino acid

sequences (Carroll etral,;rMol.rMicrobiol. 2:293, 1988;
Brandhuber et al., Proteins 3:146, 1988). Sixma et al.

LAl
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(Nature 351:371, 1991) recently demonr. rated that the
folding of the active site region of E. coli heat labile
enterotoxin also closely resembles that of ETA. The T
domain contains nine helices (TH1-TH9) that are folded
into three helix layers, each of which is formed by two
or more antiparallel helices. A similar feature was
observed in the structure of the channel-forming domain
of colicin A (Parker et al., Nature 337:93, 1989). The R
domain contains ten B strands (RB1-RB10), nine of which
(RB2-RB10) build two B sheets. These two B sheets form a
B sandwich with a topology similar to a jellyroll fold
(Richardson, Adv. Protein Chem. 34:167, 1981). The
three-domain organization of Diphtheria toxin is shared
by two other bacterial toxins, ETA and §-endotoxin from
Bacillus thuringiensis (Carroll, et al., Nature 353:815,
1991). The catalytic domains of Diphtheria toxin and ETA
are the closest among all these domains in their
structures and functions.
Receptor-binding domain

Referring to Fig. 8 (panel A) and Fig. 10 (panel
A), the receptor-binding (R) domain is formed from two I}
sheets. g strands RB2 (residues 393-399), RB3 (residues
412-424), RB5 (residues 445-453), and RBS (residues 483~
495) form a four-stranded B sheet that faces a five-
stranded g sheet containing f strands RB4 (residues 428-
438), RB6 (residues 455-465), RB7 (residues 467-480), RB9
(residues 513-520), and RB10 (residues 525-534). RB6
interacts with both B sheets through hydrogen bonds. The
connection of the strands is such that the R domain is
similar to the jellyroll topology found in many proteins
that are exclusivély formed from antiparallel B strands
(Richardson, J. Adv. Protein Chem. 34:167, 1981).
Jellyroll domains include viral coat proteins, tumor
necrosis factor, and the receptor-binding domain of ETA.
The R domain differs somewhat from a strict jellyroll



WO 93/22450 T - PCP/US93/04335

10

15

20

25

30

35

_12_

topology (Fig. 9) in hav1ng strand 2 1n the "front"
sheet and having a strand 10 in the "back". 7

The R domain is also similar in structure to an
immunoglobulin (Ig) variable'domain (Fig. 9, panel B),
but differs from the Ig fold in having an "insert" of
strands 5 and 6 between 4 and 7, and also in lacking two
short strands (C’ and C" in Fig. 9, panel B) between 4
and 5. The portion of the R domain that resembles a
strict jellyroll in.topology is the right side as viewed
in Fig. 9; and the portion that resembles the'Ig variable
domain is the left s1de, the side that is away from the
rest of the Dlphtherla toxin monomer.'

Chimeric Diphtheria Toxin Molecules

In chimeric diphtheria toxin molecules all or part

of one or more complementarlty determining regions

derlved from an antlbody are inserted into one or more
loop regions of the Diphtheria toxin receptor-binding
domain. Generally, only ohe CDR sequence'is inserted
into each loop and the insertion'may or may not be
accompanied by. deletlon,of all or a portlon of the loop
region. ' ‘

The deSLgn of chimeric dlphtherla toxin molecules
can be more readily understood by first cons1der1ng '
certain aspects of antibody structure. ‘An antibody
consists of two identical light chains (L) and two

identical heavy'chalns (H) Each llght chain is attached

to a heavy chain by one or more,dlsulflde bonds.
Likewise, the two heavy chains are attached to_each other
by one or more disulfide bonds. Overall, a single
antibody forms a "Y" shaped structure in which the
carboxy-terminal portioh of the heavy chains forms the
base of the Y.and the amino-terminal,portionrof a single
heavy chain and the amino-terminal portion of arsingle
light chain together form each arm. Each chain, heavy or
light, is composed-of structurally similar domains. The

Y

*y
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domains are referred to as constant or Vvariable based on
sequence heterogeneity. Proceeding from the carboxy-
terminus, a heavy chain is composed of the CH; constant
domain, the CH, constant domain, the CH, constant domain,
and the Vy variable domain. Proceeding from the carboxy-
terminus, a light chain is composed of a C;, constant
domain followed by a V; variable domain.

The variable domains (V; and Vy) are of particular
interest since together they form the antigen binding
site. Each variable domain is approximately 110 amino
acids long and is composed of three hypervariable or
complementarity-determining regions (CDR1, CDR2, and
CDR3) interspersed with four less-variable framework
regions (FR1, FR2, FR3, and FR4). The complementarity-
determining regions (collectively, CDR’s) are responsible
for antigen recognition.

Structurally, each variable domain consists of two
B sheets which together form a structural motif often
referred to as the immunoglobulin fold. (Constant
regions, with a slight variation, also form an
immunoglobulin fold.) One B sheet is composed of four B
strands (A, B, D and E) the other sheet is composéd of
five B strands (C, C¢’, C", F and G). There are loops
between each B strand. Three of these loops, to a first
approximation, correspond roughly to the three CDR’s.
However, as will be discussed below, the identification
of a CDR or a framework region is based primarily on
sequence heterogeneity rather than secondary structure.
Thus, the identification of these regions within a given
antibody molecule requires analysis of the amino acid
sequence of the antibody;. This caveat notwithstanding,
the loop between B and C often includes all or part of
CDR1; the loop between C’ and C" often includes all or
part of CDR2; and the loop between F and G often includes
all or part of CDR3.

PCT/US93/04335
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A COmparison between.the structure of the receptor

binding domain of Diphtheria toxin and immunoglobulin V

domain illustrates the structural similarities (Fig. 9).
There is a correspondence; not identify; between the g
strands of the Diphtheria toxin receptor domain
(described above) and the B strands of an immunoglobulin
variable domain as follows: RB2 = A, RB3 = B, RB4 = C,
RB5 = D, RB6 E'C", RB7 = C’, RB8 = E, RB9 = F, RB10 =
Two of the Diphtheria toxin receptor ‘binding domain
loops, RL3 and RL9 thus correspond to CDR1, and CDR3,
respectlvely .

Given this understanding, it can be seen that the
receptor domain can be engineered to more closely
resemblera variable domain. In partlcular,.CDR seqnences
can be inserted into RL3 and RL9 in a process referred to
herein as ‘loop grafting’ to yield a chimeric molecule
which includes a CDR1 sequence or a CDR3 sequence or
both. In the course of grafting all or part of either or
both loop regions may be deieted Further the region of
Diphtherla toxin from.RB5 to RB8 can be rearranged so
that it more closely resembles the region of a variable
domain extending from strand C through strand E.  This
process, referred to herein as 'segment rearrangement',
can provide a framework for the grafting of a CDR2
sequence into Diphtheria toxin. In combination, these
two approaches can be used to create a chimeric molecule
into which three CDR’sr(CDRl,*CDRS, CDR3). have been
introduced. It may—alsorbe posSible to insert a CDR2
sequence into RLS without _Segment rearrangement.

Loop Grafting o - ' ,

Loop grafting is similar to CDR grafting in which
the CDR of a first antibody are exchanged for those of a
second antibody, and the techniques employed in CDR
graftlng will, in general be useful for loop graftlng.
Jones et al. (Nature 321: 522 1986), Riechmann et al.

L7
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(Nature 322:323, 1988), Winter et al. (PCT/GB89/00113),
Winter (EPA 0 239 400), and Clackson et al. (Nucl. Acids
Res. 17:10163, 1989) describe CDR grafting techniques
which can be applied to loop grafting.

It should be understood that the precise limits of
the regions to be grafted are a matter of experimental
choice. All or part of RL3 (residues 425-427) could be
replaced by all or part of the CDR1 of an antibody heavy
or light chain of choice. All or part of RL9 (residues
521-524) could be replaced by all or part of the CDR2 of
the same antibody heavy or light chain (or, less
preferably, an antibody heavy or light chain of an
antibody recognizing the same epitope). Of course, the
above boundaries of RL3 and RL9, while precise in terms
of structure, represent only approximate limits to the
region which might be replaced by all or part of a CDR.
Further insertion of a CDR can take place without the
deletion of any loop region sequence. Thus, a CDR may
replace a few residues of RB3 and a few residues of RB4
as well as all of RL3 (e.g., residues 422-429).
ALternatively, a CDR might replace only a part of RL3
(e.g., residues 426 and 427). Alternatively, no residues
are deleted.

In identifying a CDR to graft into Diphtheria
toxin, it should be.understood that CDR’s are identified
by sequence hypervariability (Kabat et al., in Sequences
of Proteins of Immunological Interest, U.S. Dept. of
Health and Human Services, U.S. Government Printing
Office, 1987) and/or structural hypervariability (Chothia
et al. J. Mol. Biol. 196:901, 1987) rather than by
secondary structure (e.g., a loop). Thus, a CDR so-
defined may include only a portion of the loop between
two Bg-strands and likewise may include part or all of one
or both f-strands flanking the loop. Nevertheless, it
should be understood that in many antibodies CDR’s are
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found at similar positions. Thus, within a variable
domain CDR1 is commonly located near amino acid 30, CDR2
is commonly located near amino acid 50 and CDR3 is
commonly located near amino acid 95 (Roittret—al.,
Immunology Gower Mediéaernblishing, London, 1985).
Useful CDR's.mey,be derived from either
immunoglobulin H or L chains. Further, antibodies
derived from any species may be used as a source of

 CDR’s. Because CDR’s appear not to contain species
10

specific motifs, CDR’s from a first species can be used
without’substantialiy’inereasing the immunogenicity of
the chimeric molecule in a second species.

Segment Rearrangement

-Segment rearrangement essentiallY‘consists.of
reorganizing the portionrbf'Diphtheria toxin from the
beginning of'RBS to the end of’RL?. Thls reorganization
results in the formation of a. rearranged R domain which -
more closely resembles an antibody variable domain than
does the native R domain,j This rearrangement'in
combination with loop grafting of all or part of RL3

‘and/or RL9 can provide a molecule with improved antigen

binding characteristics'compared'to a molecule which has
undergone grafting of the same loops but has not
undergone segment rearrangement. Domain rearrangement
can also provide a location, between rearranged RB7 and
rearranged RB6, for the addltlon of a CDR2.

In detail domain rearrangement entalls
constructlng a molecule in which the R domaln has the
following sequence of elements (beglnnlng at its amino-
terminus): 1—RLl-RB2—RL2—RB3-RL3-RB4-RL4-RB7-RL7-RBG-
RL6-RB5—RL5-RB8-RL8—RBQ-RL9-RB10 (Fig. 10, panel B). All
or part of a CDR2 sequence can be 1ntroduced by replacing

A

all, part, or none of RL7 (in the rearranged molecule

A\l

located between RB7 and . RB6) . Referrlng to Fig. 9, panel

‘A, this rearranged receptor—blnding domain more closely



3

WO 93/22450

10

15

20

25

30

- 17 -

resembles an immunoglobulin variable domain (Fi.. 9,
panel B) than does the naturally occurring Diphtheria
toxin receptor-binding domain (Fig. 8, panel A).
Eliminating Binding to the Diphtheria Toxin Receptor

The diphtheria toxin receptor binding ability of
Diphtheria toxin receptor domain must be substantially
reduced in chimeric molecules compared to native
Diphtheria toxin so that the chimeric molecules do not
substantially bind to or enter non-targeted cells (i.e.,
cells not bearing the antigen recognized by the CDR’s).
This can be accomplished by incorporating into the
chimeric molecules certain mutations which reduce binding
of Diphtheria toxin to its natural receptor. CRM9 (Hu et
al., Biochim. Biophys. Acta 902:24, 1987) CRM107 and
CRM103 (Greenfield et al., Science 238:536, 1987) are
mutant Diphtheria toxin molecules with reduced receptor
binding. The sequences changes in these mutants can be
incorporated into chimeric diphtheria toxin molecules.

It should also be recognized that replacing all or part
of RL3 and/or all or part of RL9 with a CDR may
essentially eliminate binding of the chimeric molecule to
the diphtheria toxin receptor. Further, the insertion of
a CDR sequence into a loop of the R domain in the absence
of any deletion may, in and of itself, substantially
eliminate binding to the diphtheria toxin receptor.

While the diphtheria toxin receptor has not been
positively identified (Naglich et al., Proc. Nat’l Acad.
Sci. USA. 89:2170, 1992), the diphtheria toxin receptor-
binding ability of chimeric diphtheria toxin molecules
can be assessed by standard techniques (Middlebrook et
al., Can. J. Microbiol. 23:183, 1978; Middlebrook et al.,
J. Biol. Chem. 253:7325, 1978) using Vero cells or other
cell lines.

Chimeric Diphtheria Toxin Molecules Having Two R Domains

PCT/US93/04335
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In naturally'occurrlng antlbodles the antigen
blndlng site is formed by a Vy domain and a Vi domain, and
structural studles suggest that antigen binding is
mediated by contacts w1th both domains. Fv fragments,
which are non-covalently associated heterodimers of Vg
and V; domains, have been developed to prov1de small,
englneered molecules with antlgen blndlng‘act1v1ty
similar to the intact antibody from which the domains
were derived (Glockshuber et al., Biochemistry 29:1362,

1990). Because Fv moleoules are prone to dissociation,

51ngle—cha1n Fv molecules (sFv) have been developed by
linking the domains with a flexible hydrophlllc

polypeptide (Bird et al., Sc1ence 423:423, 1988 Huston
et al., Proc. Nat’l. Acad. Sci. USA 85:5879, 1988). As

-an alternative, the domains can be linked by disulfide

bonds (Glockshuber et al., Blochemlstry 29: 1362 1990).

In a similar fashion it is possible to generate chimeric
dlphtherla toxin molecules hav1ng two R domains. When
properly constructed the R domalns of such molecules
resemble a 51ngle-cha1n Fv fragment Loops w1th1n,one or
both.R.domalns can be modified to include CDR sequences.
These changes, in comblnatlon.w1th modifications which

~ prevent either receptor binding domain from recognizing

the diphtheria toxin receptor, result in the creation of
a molecule which will speCifically recognize,the same
antigen as the antlbody from whlch the CDR sequences were
derlved. )

To generate chlmerlc dlphtherla toxin molecules

“having two R domains, the carboxy—termlnus of RB10 of a

diphtheria toxin moleculerls fused to the amlno-termlnus
of RB1 or RB2 of an R domain portion of diphtheria toxin.

R

CDR sequences can be introduced into these molecules in

manner described above by modifying the loop regions of B s
one or both of the R domains. The result is a molecule

which has a domain'(R+R’)'resembling an sFv molecule
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fused to the diphtheria toxin translocation and catalytic
domains. In certain circumstances it may be possible to
generate antigen binding molecules by introducing CDR
sequences into only one of the two R domains. This is
because the mere existence of an unmodified R domain may
improve contacts between the CDR sequences in the other
modified R domain and the antigen. 1In any case, if the
chimeric molecule is to be specifically targeted, both
receptor binding domains must be modified to essentially
eliminate recognition of the diphtheria toxin receptor.
If both R domains have been engineered to introduce CDR
sequences, it is preferred all of the CDR sequences be
derived from the same antibody (or at least antibodies
recognizing the same epitope), and that the CDR sequences
of one R domain be derived from a Vy domain, and the that
the CDR sequences of the other R domain be derived from a
V;, domain. This creates a molecule which more closely
resembles an Fv ffagment.

In general, methods used for the generation of
sFv molecules (Bird et al., Science 423:423, 1988; Huston
et al., Proc. Nat’l. Acad. Sci. USA 85:5879, 1988) can be
used to generate chimeric diphtheria toxin molecules
having two R domains. 1In designing chimeric diphtheria
toxin molecules in which the two R domains are linked by
a polypeptide chain it is important that the linking
polypeptide chain be selected so as to hold the two R
domains in a configuration that resembles an Fv molecule.
Lardner et al. (Us Patent 4,946,778 and US Patent
4,704,692) describe techniques for selecting polypeptides
to link Vy and V; domains to form sFv. The same
techniques can be used to generate chimeric diphtheria
toxin molecules having two R domains. As an alternative,
the two domains can be linked by disulfide bonds as
described by Glockshuber et al. (Biochemistry 29:1362,
1990) for single-chain Fv molecules.
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~ As discussed above for simple chimeric diphtheria
toxin ‘molecules, chimeric diphtheria toxin molecules
hav1ng two R domains and CDR sequences can be modified to
act as delivery vehicles rather than cytotox1ns. This is
accompllshed by replacing the catalytlc domaln with a
molecule to be 1ntroduced,1nto cells thus creating a

'hybrld.molecule. The R domains will then. target the

hybrld molecule to a selected class of cells and the
translocation domain will mediate entry.
Generation of Antlbodles and Identlflcatlon of CDR’s

In order to create a chimeric diphtheria toxin
molecule dlrected against a selected antlgen, it is first
necessary to identify an antlbodyrdlrected against that
antigen. In many instances appropriate antibodies will
already be available (see Kabat et al., supra; catalogue

of cell Lines and,Hybridomas, American Type Culture

Collection, Rockville, MD). Alternatlvely, antlbodles
(polyclonal or monoclonal) directed against the selected
antigen can be generated and screened by standard methods
(Current Protocdls in Immunology, Wiley-Interscience, New
York, 1991). Once a hybridoma secretlng'an antibody Wlth
the desired spe01f1c1ty has been isolated there are
several approaches’ whlch can be used to sequence the

'varlable domain for the purpose of 1dent1fy1ng CDR

sequences. The heavy and/or llght chains can be cloned

-and sequenced. Alternatlvely, var;ablerdomalns can be

amplified for cloning using the polymerase chain reaction
and oligonucleotide primefs which'recognize conserved
sequences at each end of the heavy'or 1light chain
varlable region (Orlandl et al., Proc. Nat’l Acad. Sci.
USA 86:3833, 1989; Larrick et al., Biochemn. Blophys. Res.

~Comm. 160:1250, 1989; Sastry et al., Proc. Nat’l Acad.

Sci. USA 86:5728, 1989). This approach allows the
cloning of the variable regions of human antibody genes

oy
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from unstable human-mouse hybridomas as well as the
cloning of variable regions from other unstable
hybridomas, single hybridoma cells, and single B
lymphocytes. These techniques permit the expression of
antibody fragments in bacteria (Skerra et al., Science
240:1038, 1988; Better et al., Science 240:1041, 1988) or
on the surface of phage (McCafferty et al., Nature
348:552, 1990). Expression in one or another of these
systems permits the use of a number of efficient
screening methods (Skerra et al., Analytical Biochem.
196:151, 1991; Huse et al., Science 246:1275, 1989) which
can be used to identify antibodies fragments that bind
the selected antigen with the desired affinity.

In addition various non-immunization techniques
(Marks et al., J. Mol. Biol. 222:581, 1991; Persson et
al., Proc. Nat’l Acad. Sci. USA 88:2432, 1991. Huse et
al., supra) can be used to generate antibodies which can
serve as a source of CDR sequences.

Once the variable regions are sequenced CDR’s are
identified according to Kabat et al. (supra) .
Generation and Screening of Chimeric Diphtheria Toxin
Molecules

The chimeric molecules are generated using the
standard techniques of molecular biology (Current
Protocols in Molecular Biology, Wiley-Interscience, New
York, 1991). The primary approach involves the
generation of nucleic acids encoding the chimeric
molecules. The chimeric molecules themselves can be
produces in bacterial cells, mammalian cells, or insect
cells by standard techniques. 1In designing chimeric
molecules the techniqgues of computer-based molecular
modeling may be useful. The coordinates of the solved
diphtheria toxin structure are included (appendix) to aid
in this process. It should be understood that changes in

PCT/US93/04335
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the amino acid sequence ﬁay be introduced at any position
to generate more stable molecules or molecules w1th
hlgher binding specificity. , '

Once the chlmerlc molecules have been produced
they can be screened for antlgen‘blndlng ability using
any of the approaches described above forrantlbodles and
antibody fragments. The binding specificity of a
cytotoxic chimeric molecules targeted to a partlcular
antigen can be determlned by comparing the toxicity of
the molecule toward cells bearing the antigen to its
tox101ty towards cells not bearlng the antlgen. For non-
toxic chimeric molecules,ra detectable label may be
covalently linked to the chimeric molecule to facilitate
comparison of bindingrto antigen-bearing“cells and cells
not bearing antigen. =
Examples

A chimeric diphtheria toxin molecule capeble of
recognizing cells bearing the Campath-1 antigen can be
constructed by'replaCing all of RL3 with the CDR1
sequence identified by Waldman et al. (PCT/GBSQ/00113,
hereby incorporated by reference) and replacing all of
RLO with the CDR3 seqﬁence identified by Waldman et al.
(supra) ' ' ' '

A chimeric diphtheria toxin molecule capable of
recognizing cells bearing the 1nterleuk1n—1 receptor can
be constructed by replacing all of RL3 with residues 26-
33 of the anti-tac antibody‘lightrchain'and replacing all
of RL9 with residues 99-107 of the anti-tac antibody
light chain. (supra). . '

Structure determination ,

The structure is based on analyses of Formi,
Form3, and Form4 cryetals. Forml crystals of Diphtheria
toxin,complexed with adenylyl-3’/,5’-uridine monophosphate .
(ApUp) belong to triclinic space group P1 with unit cell

wy
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dimensions of a=70.44, b=70.64, c=65.44, 0=94.9°,
B=91.0°, and y=99.6° with two chains per asymmetric unit.
This dimeric asymmetric unit is consistent with the fact
that a dimeric form of Diphtheria toxin is sometimes
found in crude or urified preparations of the protein
(Collier et al., J. Biol. Chenm. 257:5283, 1982). Dimeric
Diphtheria toxin itself is not toxic, presumably because
it does not bind to receptors, but it slowly dissociates
to fully toxic monomers (Carroll et al., Biochem.
25:2425, 1986). The dimer may represent a
conformationally altered form of the biologically active
monomeric toxin. Irreproducible crystallization
conditions for obtaining Forml crystals hampered
crystallographic studies of structure determination until
three new crystal forms were obtained (Fujii et al., J.
Mol. Biol. 222:861, 1991). Form3 and Form4 belong to
monoclinic space group C2 with unit cell dimensions for
Form3 of a=107.34, b=91.74, c=66.34, and p=94.7°, and for
Form4 of a=108.34, b=92.34, c=66.14, and f=90.4°. 1In
both of these forms there is one Diphtheria toxin chain
per asymmetric unit and pairs of Diphtheria toxin chains
are related by a 2-fold rotation axis.

The initial model was based on the structure
determination of Form4 crystals at 3.024 resolution, using
the multiple isomorphous replacement (MIR) method
followed by solvent flattening (Wang, Methods in Enzymol.
115:90, 1985). With the initial model, the structures of
Forml and Form3 were readily solved by molecular
replacement (Briinger, Acta Cryst., A47:195, 1991; Rossman
et al., Acta Cryst., 15:24, 1962). Single isomorphous
replacement (SIR) pPhases were also obtained for Form3.
Native data were then collected to 2.5A3 resolution, and
the model was rebuilt into 2.54 maps with Form3 (SIR) and
Form4 (MIR) after the phases had been extended and
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modified by the.method of Zhang et al. Acta Cryst

A46:377, 1991. Thls,was followed byrreal-space'density
averaging between two forms. - Sequence fitting was

receptor-binding or R domain) where the most ambiguous

‘regions were near residues 408 and 510. Some of the

useful markers in the densitY'maps Werelwgo, Wis3, Wagi:s
Wygg, @ 5-residue segment of Mjsg, Yj49, Ejgq, Y181, Migar @
4-re51due segment of F355, Y358, H395: Y395, a cluster of
Y514s Fs30:r Fg3p1, with big slde,qhalns near the carboxy
terminus (Fig. 3), and two disulfide bonds between.clas
and C,,, and Cge1 and Cy7;. An initial improper fitting in
the R domain was detected by profile window plots (Liithy
et,ai., Nature 355:xxx, 1992) and then corrected.
Iterative cycles of refinement were carried out
independently at 2.5& for each data set.r The atomic
model for each form is essentielly identical except for
crystal packing. Assessﬁenf of the'accuracy of the model
rests on the fit of the model to the MIR and den51ty-
modified maps, crystallographic R-factors, real-space
R-factors, (Jones et al., Acta Cryst. A47:110, 1991), the
free R-value (Briinger Nature 355:472, 1992), which is
only 4% higher than the crystallographic R factor, and
profile window plots (Liithy, supra). At the'present
stage of refinement, the agreement of the atomic models
to crystallographic data is characterized by R factors of
21.1, 21.6 and 21'9° respectlvely, for Forml, Form3, and
Form4 for all observed data having Fob greater than 1o
(Fop) between 6 and 2.5& resolution.

The flnal model con51sts of 4137 non-hydrogen

)y

model also includes ApUp in the active site cleft of the
catalytlc (C) domain, but no solvent atoms. There are *
poorly-defined regions 1nrthe electron density maps where
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main chain densities for residues 170-172, 190-195, 389-
390, 500-503, are not well defined. Residues 190-195 are
part of the protease-sensitive region of the first
disulfide loop, where nicking occurs; this region may be
intrinsically flexible. So may be the loop between the
transmembrane (T) and R domains, which includes residues
389-390. Aspects of data collection, phase determination
and refinement are presented below and in Table 1.
Data Collection, Phase Determination and Refinement
Statistics for X-ray data collection, phase determination
and refinement. Crystal Forms, 1, 3 and 4 were used for
the current study (Fuji, supra). Diffraction data were
collected on a Rigaku AFC-6 diffractometer operating at
8.5 kW, equipped with a two-panel area detector of Xuong-
Hamlin design (San Diego Multiwire Systems). Images were
recorded as 0.1° oscillation frames, integrated and
merged into batches of 50 frames (5°). Integrated
intensities were scaled and merged for FOURIER scaling
method (Weissman, Thesis, Univ. California, LA, 1979).
Form4 native and derivative data were later collected to
2.5 °A with a RAXIS imaging plate system.
Heavy atom derivatives

KOS: K,0s0,, soaked for 3 days at the
concentration saturated in artificial mother liquor (12%
PEG8000, 0.43M NaCl, 43mM Tris-HCl, pH 7.8); CNP: 4-
chloro-2-nitro-mercury phenol, soaked for 5 days at the
concentration saturated in artificial mother liquor; KNP:
1 to 1 mixture of KOS and CNP; CAP, trans-dichlorodiamine
Platinum (II), soaked for 3 days at 2 mg/ml in artificial
mother liquor; KAP: 1 to 1 mixture of KOS and CAP; GCL,
HgCl,, soaked for 3 days at 2 mg/ml in a:-.ificial mother
liquor.

PCT/US93/04335
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Heavy Atom Parameters

Heavy atom.parameters were refined and MIR.phases
calculated using the program HEAVY (Terwilliger et al.,
Acta Cryst. A43:1, 1987). We initially obtained the Os
derivative for Form3 crystals. From electron density

o

maps based on the single isomorphous replacement (SIR)
phases after solvent flattening at 3. 5& resolution, the
shape of the molecule was interpreted to have three
domains. However, secondary structures were not easily
interpretable and the course of the polypeptide chain was
difficult to determine. A search for additional heavy
atom derivatives was hampered by the lack of good quality
crystals of Form3. We, therefore, shifted oﬁr efforts to
Form4 crystals. MIR'phases for Form4 were obtained from
six heavy atom derlvatlves using 1somorphous differences
and anomalous differences. The Os and Pt derlvatlves
were solved by 1somorphous dlfference Patterson
functions, and the Hg derlvatlve by a difference Foﬁrier
synthesis. Os derivatives of Form4 and Form3rhave the
same single site'binding;
Solvent Flattening 7

Initial electron'denaity maps of Form4 were
calculated at 3.0°A resolution, with phases modified
using an iterative solvent flattening procedure (Wang,
Methods in Ehzymbl.rilS:QO, 1985) including phases
extended to 3.0& from 3.2& by the Wang phase extension

‘algorithm (Wang, supra)."A.solvent volume of 45% was

used to ensure-that'ailrprotein density was included in

the protein mask, somewhat smaller than the 57% estimated

from the molecular weight. ‘From these maps, all

secondary structures were identified and an initial model z
was bullt.u31ng a polyalanlne chain.

i
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Model Building
Model building was expedited with the program

FRODO (Jones Methods in Enzymol. 115:157, 1985) and the
fragment-fitting routines of the program 0 (Jones, Acta
Cryst. A47:110, 1991). Starting with a carbon
coordinates that were manually built, main chain atoms
were added using the database of 34 well-refined protein
structures. Then side chains were added using the
rotamer database (Ponder, J. Mol. Biol. 193:775, 1987).
Refinement

This initial model was adjusted by visual
inspection of density maps before it was refined by the
simulated annealing protocol of the program XPLOR
(Briinger et al. Acta Cryst. A46:585, 1990). The relative
orientations of Diphtheria toxin in Forms 1, 3, and 4
were determined by a Patterson-space rotation and
translation search of the refined Form4 model against
Forml and Form3 data. Two top solutions (90) for Forml
data correspond to two Diphtheria toxin chains related by
a noncrystallographic symmetry in asymmetric unit. The
transformation from Form4 to Forml is essentially a
change of coordinate system from C2 to Pl, where the
crystallographic rotation axis of C2 becomes a
noncrystallographic rotation symmetry axis of P1 that is
nearly parallel with (110) axis of Pl1. One top solution
(70) for Form3 corresponds to a rotation of less than
0.5° in any direction. The transformation from Form4 to
Form3 is essentially'a 58 translation along the a axis.
This result is consistent with the observation that the
average absolute difference of the amplitudes of
structure factors of Okl reflections between Form3 and
Form4 is 15%, whereas those between hOl1 or hkO
reflections between Form3 and Form4 are almost random
(R=48%). Also, when the model was superimposed on the

PCT/US93/04335
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‘solvent-flattened electron density maps of Form3 based on

the SIR phases, most of the secondary structures were
recognized with the model as a guide. Real-space '
averaging of densities between Form4 and Form3 with MIR
and SIR phases at 3.0A improved the density maps at this
stage. Subsequently;rexperiméntal phases were extended
to 2.53 by'the algorithm based on sélvent flattening,
histogram matching, and_Sayré's equation (Briinger, supra)
for Form3 and Form4. Form3 maps at 2.5 were again
skewed and averaged with Form4 maps. These were the most
interpretable maps. 1Refinement of the atomic model was
carried out independently for Forml, Form3, and Form4
with all observed data having F‘(,b greater than 1o (F,)
between 6 and 2.5R. -
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Native
Data
Formé Total

Unique
(% complete)
Formé(new) Total
Unique

(% complete)
6529(72)
Form3 Total
Unique
7396(82)

(% complete)

Total
Unique

Forml

4574(35)
(% complete)

Derivatives

Formé

KOS Unique(Rt
R} (fh/e§

§cale)

CNP Unique (Rt )
Rc(fh/e§) scale

KNP Unique (Rt )

(R} (fh/e§

CAP Unique (Rt
R (fh/ed)

KAP Unique (Rt
R#c(fh/e§)

§cale

)

scale

scale

GCL Unigque (Rt
R (fh/ed)

Form3

scale)

KOS Unique (Rt

(RE (fh/es32'®

Overal L (R}

scale’
36758(11.9)

10875(¢83)
35897¢6.1)
18665(84)

61009(7.6)
19912(90)

66464(7.5)
25854(68)

Overall

11765 (9.16)
0.66(¢1.23)

12255 (12.0)
0.70¢1.06)

8164(8.32)
0.71¢1.00)

7552(15.3)
0.71(1.28)

) 10152 (12.26)

0.81(1.26)

6595 (11.90)
0.70¢1.10)

11435 (13.57)

0.54(1.10)

- 29 -
TABLE 1

10-4.0 4.0-3.0

26897 4977
5190(99) 2414(92)
5195(99) 2673(98)
21984 15368
5231(100) 2682(98)
22245 21118
6523(96) 7665(92)
10-4.6 4.6-3.6
0.66(1.29) 0.62(1.18)
0.68(1.33) 0.72(0.93)
0.72(0.87) 0.67(1.18)
0.70(1.54) 0.72¢1.12)
0.81(1.43) 0.71¢1.19)
0.69(1.13) 0.66(1.09)
0.56¢1.32) 0.60¢0.74)

PCT/US93/04335
3.5-3.0 3.0-2.54
4884
3271(63
4268(82)
105573 13084
4603(88)
15277 7824
7102(76)
3.6-3.0 3.0-2.8k
0.75(1.28)  0.80(1.06)
0.72¢0.97)  0.66(1.11)
0.75(1.33)
0.88(1.20)
0.75(0.89)
0.50(1.05)
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Refinement Form1 ' Form3 Formé
R factorf(6-2.54  0.211 0216 - o219
r.m;s. bond (4) - 0.021 7 -0.021 0,021
r.m.s. angle (°) . 4.54 4.40 7 4.48

r.ns. dihedral (°) 26.4 25.9 261

TRscale 2([1 - 1. I)IE(I ) where X and I; are the ith and jth measurements of the equivalent
reflections (Helssman Thests Umv Callforma LA, 1979). R, is Cullis R factor for centric

reflections. §fh/e is the phasing power, fh, the mean amplitude of heavy atom structure factors
divided by e, the r.m.s. lack-of-closure error. R factor=Z(| F - F. [3/2(F ) where Fop and
F. are the structure factors observed and calculated from the model, respectively. The R-

factors for all forms increased by about 1.9% when a single temperature factor was used for atl

' atoms.

Catalytic domain ,
The C domain is formed from two B sheet

subdomains, which subtend the active site cleft
(Fig. 5). These B sheets are oriented'roughlyr_
perpendicular to each other and form the core of the
domain. One subdomain con51sts of B strands CB2,
CB4, and CB8, surrounded by a-helices, CH2, CH3,
CH6, and CH7. The other subdomain consists of g
strands CB1, CB3, CB5, CB6, and CB7 surrounded by
helices, CH1 CH4, and CH5. The two subdomains are
connected by extended loops, CL1 through'CL4, which
link the two subdeains{ These four loops appear to
suggest potential for flexibility or even extension
to a longer and narroﬁer‘shape, cbnceivabiy the C
domain can assume this partlally’unfolded structure
during membrane translocation.

The active site cleft of the C domain,
identified by the binding of the dinucleotide ApUp,
is formed primarily bi-ﬁ stréhds, CBZ CB3, CH3, CB7
and the loop, CL2 and 1s also bounded by B strand
RB6 of the R domain. Located within the active site
cleft are the follow1ng reSLdues;,G1u148 which is
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believed to play a key role in catalysis (Carroll et
al., Proc. Natl. Acad. Sci USA 81:3307, 1984), His,;
(Papini et al., J. Biol. Chem. 264:12385, 1989) and
Tyres (Papini et al., J. Biol. Chem. 266:2494, 1991),
both of which have been implicated in NAD* binding,
and various other residues suggested to be at or
near the active site (Glygs, (Carroll, supra and
Giannini et al., Nuc. Acid Res. 12:4063, 1984), Trpgg
(Collins et al., Biochim. Biophys. Acta 828:138,
1985), Lys,y4 (Proia, J. Biol. Chem. 255:12025,
1980) . Least squares superposition of the a carbon
coordinates of the C domains of Diphtheria toxin and
ETA yields an r.m.s. difference of 1.444 between 85
residues (16-33, 34-38, 49-66, 75-90, 91-96, 131-
136, 147-164 of Diphtheria toxin and 437-452, 454-
458, 465-482, 493-508, 511-516, 540-545, 552-569 of
ETA).

The approximate position of the substance NaD*
in the active site can be inferred, because the
dinucleotide, ApUp, binds competitively with NAD'.
The high affinity of ApUp (~0.3nM as compared with
~8-16uM for NAD'; (Carroll et al., Biochem. 25:2425,
1986) may be a consequence of multiple contacts with
the C domain and of salt bridges between the 3/-
terminal phosphate of ApUp and the side chains of
Thr,, and Arg,sg, the latter of which is a residue of
the R domain. Although the structure of bound ApUp
resembles thatrof NAD® and ApUp to make difficult
the prediction of the conformation of NAD* in the
cleft. Hdwever, assuming that the adenine phosphate
portion of NAD® binds in the same conformation as
that of ApUp, the nicotinamide ring will be

positioned close to the site of the uridine ring.

PCT/US93/04335°
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This places the nicotinamide ring'adjaceht to side
chains of Hisy;, Tyrgs, and Glu,,s.
Domain junctions ' o

" One of the two intramolecular disulfide bonds
of Diphtheria toxin bridges a handle-like loop TL1
on the molecular surface (Fig. 1); This 14 residue
loop (1874200) connects Fragment A to Frégment B;Vit
is rich in Arg and known to be:eésily nicked by
proteaées (Moskaug*et'al.} J. Biol. Chem. 264:15709,
1989; Collier, J. Biol. Chem. 246:1496, 1971). Once
this loop is nickéd Fragmént A.and'Fragmént B are
covalently linked only by the disulfide bond. There
is evidence that,nlcklng plays a role 1n the
cytotoxic action of" Dlphtherla tox1n (4), and it is
generally believéd that nicked Diphtheria toxin
separates into free Fragmént_A and Fragment B when
this disulfide bond is exposed to the reducing

‘environment of the cytoplasm during membrane -

translocation of the toxin. The second disulfide
bond makes a 9 résidue7loép between residues 461 and -
471 within Fragment B. Residues near this loop
(456, 458, 460, 472, 474) are also rich in positive
charges and face the active site cleft, probably
forming the so-called phosphate-binding or P-site
(Lory et al., Proc. Natl. ‘Acad. Sci. USA 77: 267
1980) . S o
- The structure suggests why;whole Diphtheria
toxin is inactive in'catalyzing the ADP-ribosylation
of EF-2 until the C domain dissociates, in the form
of FragmentrA,,from'Fragment B. As shown in Fig. 2,
the active site is shielded by the 18-residue loop
CL2 and the R domain. - Thus, in'whole-Diphtheria
toxin, the approach of EF-2 (M ~100K) to the actlve
site is blocked The active- 51te of whole

PCT/US93/04335
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Diphtheria toxin remains accessible to NAD*, however
and catalyzes the NAD-glycohydrolysis (a slow side
reaction that is probably physiologically
insignificant). The lack of secondary structural
elements within loop CL2 may allow a substantial
movement of main chain atoms of the loop, permitting
substrate entry to the active site.
Transmembrane domain

The structure of the T domain exhibits two
features that suggest how it might experience pH-
triggered insertion into the membrane. The first is
that the T domain is entirely e-helical, similar to
the known and proposed transmembrane proteins, and
that some of the helices have hydrophobic
characteristics more typical of transmembrane
helices than of globular proteins (Rees, Science
245:510, 1989). The nine helices are arranged more
or less in three layers, each layer consisting of an
antiparallel pair of helices. The two long, carboxy
terminal helices, TH8 and TH9, are unusually apolar
and constitute the central core layer. One flanking
layer, made up of helices TH5-TH7, also contains
hydrophobic helices, TH6 and TH7. The other layer
made up of helices TH1-TH3, is, in contrast, very
hydrophilic even compared to globular proteins. The
second noteworthy feature of the T domain is the
acidic composition of the loops that connect pairs
of these helices. Both loop TL3 between helices THS5
and TH6, and loop TL5 between hydrophobic helices
TH8 and TH9 contain a total of six Asp and Glu
residues (Fig. 6). At neutral pH, these loops are
highly charged and water soluble. But at acidic PH,
these residues would be at least partially
protonated, and hence more nearly neutral and
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membrane-soluble, especially’neér the surface of the
membrane that has even higherrconcéntration'of
protons due to the surface potential (MCLaughlln,
curr. Topics Memb. Transport 9:71, ~1977) . Thus, the

_ lower pH 1ns;de the endosome would tend to render

these tip-shaped loops into membrane-soluble
"daggers" that would lead‘the two apolar hellx pairs
into the membrane. o

Other structural characteristics'of the T
domain suggest that it has the capacity to insert
into the membrane and can assist the translocation
of the C domain. The first is that the nearly
parallel packing of the three helix layers would
permit spreading on the membrane surface of the
first helix layer (TH1-TH3) if other layers were
inserted. This insertion would require local
conformational changes in loops, but no alteration
of the helices themselves. Also the pronounced
hydrophoblc asymmetry is compatible w1th the
proposed rearrangement: 15 of 16 Lys and Arg
residues and all 6 His residues of the T domain are
located on the oppoSiteVSide'from’the "dagger" tips
(Fig. 8), making the whole domain a hydrophobic
dipole, once the Asp and Glu residues are

'neutralized It is p0551ble that the halrpln loop

TL5 and probably TL3 cross the membrane, where the
Asp and Glu residues will once again be charqed in
the neutral PH of the cytoplasm._
The Diphtheria toxin dimer

Two monomers associate tightlyrto form a dimer
with an interface bétween RB1/RB2 of one Diphtheria
toxin molecule and.RBZ/RBl of the other Diphtheria
toxin molecule related by 2-fold rotation symmetry
(Fig. 4). This interface is one of three major
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protein-protein contacts in crystal packing and
involves 3 hydrogen bonds per monomer. These
hydrogen bonds are well defined since they are
formed between main chain N and C atoms of RB1 and
RB2. The other interfaces are not common among
three different crystal forms. The inability of the
dimer to bind to the Diphtheria toxin receptor
(Carroll et al., Biochem. 25:2425, 1986) suggests
that the dimer interaction sterically blocks the
receptor binding domains of each monomer from the
receptors on the surface of a target cell. The
conformational differences between the monomer
within the dimer and the native monomeric Diphtheria
toxin remain uncertain, but biochemical evidence
suggests they are not large. Binding data show that
the affinity constant of the dimer for ApUp is the
same as that of the monomer, and that the dimer
binds 2 ApUp’s (Carroll, supra). In addition,
comparable specific activities of NAD-glucohydrolase
activity and affinities for NAD' were found in the
monomer and dimer. Further, the specific ADP-
ribosyltransferase activity of Fragment A released
from the dimer after reduction was the same as that
from the monomer (Carroll, supra). These findings
show that the conformations of the C domain, and of
the portion of the R domain interfacing the C
domain, are relatively unperturbed in the dimer.
, , Use |

The chimeric molecules of the invention can be
used, for'example, to kill particular classes of
cells. As one example a chimeric diphtheria toxin
molecule which binds specifically to cells bearing
the interleukin-2 receptor can be used in treatment
of various autoimmune diseases, e.g., arthritis.
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Non—cytotox1c hybrld molecules in which a chlmerlc
diphtheria tox1n.molecule is llnked to a second

‘molecule can be used to introduce the second

molecule into selected cells, e.g., to correct an
enzyme deficiency caused by a genetic disease. For
example Tay-Sachs may be treated by introducing

hexosaminidase A into appropriate cells.

Other Embodiments -

The diphtheria'toxin catalytic domain of
chimeric diphtheria toxin molecules can be repleced
byrthe catalytic domain of -other toxin molecules to
generate other targeted cytotexins. Peptide toxins
are preferred but others are also useful. Many -
peptide toxins have a generallzed eukaryotlc
receptor binding domain; in these instances the ,
toxin must be modified to prevent intoxication of
non-targeted cells.  Any such modifications must be
made in a manner which preserves the cytotoxic
functions of the molecule. Potentially useful

~ toxins include, but are not limited to: cholera
'toxin, ricin, 0-Shiga-like toxin (SLT-I, SLT-II, SLT

IIy), LT toxin,: c3 tox1n, Shiga toxin, pertussis
toxin, tetanus tox1n, Pseudomonas exotox1n, alorin,
saporin, modeccin, aﬁd'gelanin.

If the catalytic domain is to be removed for

- the purpose of creating a’hybridrmolecule which

includes a molecule to be introduced into a selected
class of cells, it is preferred that the'molecule to
be introduced be fused to the ehimeric diphtheria
toxin molecule just to the amino-terminal side of
the junction of Fragment A andrFragment B, i.e., to
the amino-terminal side of residue 190.

What is claimed is: '
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