F. CHAMNESS.

RAILWAY SWITCH,
APPLIOATION FILED FEB. $8,1911$. RENEWED MAR. 22, 1912.
1,025,369.
Patented May 7, 1912.

UNITED STATES PATENT OFFICE.

FR.ANK CHAMNESS, OF HUNTINGTON, INDIANA.

RAILWAY-SWITCH.

$1,025,369$.

Specification of Letters Patent.
PatentedMay $7,1912$.
Application filed February 9, 1911. Serial No. 607,501. Renewed March 22, 1912. Serial No. 685,416.

To all whom it may concern:

Be it known that I, Franic Chamness, a citizen of the United States, residing at Huntington, in the county of Huntington, 5 State of Indiana, have invented certain new and useful Improvements in RailwaySwitches; and I do hereby declare the following to be a full, clear, and exact description of the invention, such as will enable tains to make and use the same.
This invention relates to railway switches.
The object of the invention resides in the provision of an improved construction of railway switch which will increase the efficiency and safety of devices of this character.

With these and other objects in view, the invention consists in the details of conof and arrangement and combination of parts to be hereinafter more fully described and particularly pointed out in the appended claim.
In describing the invention in detail, refdrawings wherein to the accompanying drawings wherein like characters of reference denote corresponding parts in the several views; and in which,
Figure 1 is a plan view of a railway
may be moved selectively into engagement with the switch rails 14 and 15 . When the frog 17 is in engagement with the switch rail 14, it will be apparent that said switch rail, frog and rail 13 will form a continuous rail line and serve to properly direct a train which has been previously switched, in a manner to be hereinafter described, into the siding B. It will likewise be apparent that When the free end of the frog 17 is disposed in engagement with the switch 15 , said switch rail, frog and rail 11 will constitute a continuous rail line. The frog 17 is provided with a laterally projecting ear 18 to which is connected one end of a link 19. The other end of this link 19 is operatively connected to an actuating mechanism D disposed at one side of the track 12. This actuating mechanism is so constructed that same may be actuated to effect the selective movement of the frog 17 into engagement with either the switch rail 14 or switch rail 15 . The free end of the frog 17 has its lower side cut away as at 20 and depending from the upper wall of this cut away portion 20 is a stud 21. Pivotally mounted upon the plate 16 adjacent the free end of the frog 17 is an angle lever comprising arms 22 and 23, the latter of which is connected at its free end to the stud 21 so that the movement of the frog 17 on its pivot will also effect a movement of said angle lever. The arm 22 of the angle lever extends through a slot 24 in the web of the end of the switch rail 14 adjacent the frog 17. This switch rail 14 is also provided in the web of its opposite end with a slot 25 , said last named end of the switch rail 14 being scarfed as at 26 to form an inclined end face directed toward the rail 10 of the main track, the recess 25 extending through this scarfed portion of said switch rail.

Projecting from the inclined face 26 of the switch rail 14 on opposite sides of the recess 25 respectively are pins 27 and 28 which extend through openings 29 and 30 respectively in a switch point 31 . This switch point 31 is provided with a laterally extending ear 32 disposed between the open-65
\qquad ings 29 and 30 and projecting through the recess 25 in the switch rail 14. The pins 27 and 28 are provided with enlarged heads at their outer ends so as to secure the switch point 31 from disengagement with the switch rail 14. From this construction, it will be apparent that the switch point 31 is capable
of a sliding movement longitudinally of the switch rail 14 and this movement of said switch point in one direction will position the latter so as to open the switch, while the
5 movement thereof in the opposite direction will serve to close the switch. In order to effect the sliding movement of the switch point 21 simultaneously with the pivotal movement of the frog 17 the ear 32 is conmeans of a link 33 so that when the pivoted frog is moved into engagement with the switch rail 14, the switch point 31 will be slid longitudinally of said switch rail to a position for closing the switch, while the opposite movement of said frog will shift the switch point to a position that will effect the opening of the switch.

What is claimed is:-
In a railway switch, a main track, a siding, switch rails directed respectively to one of the rails of the siding and one of the rails of the main track, a frog pivotally mounted between the ends of the switch rail and ends 25 of the siding and main track to which said
switch rails are directed and adapted to be moved into engagement selectively at its free end with said switch rails to form continuous rail lines, means for moving said frog on its pivot, a switch point slidably mounted on the switch rail directed to the siding for movement longitudinally of said switch rail and controlling entrance to the siding from the main track, connections between said switch point and frog whereby the movement of the free end of the latter into engagement with the switch rail directed to the siding will move said switch point to open the switch and the movement of the free end of said frog into engagement with the switch rail directed to the main track will move said switch point to close the switch.

In testimony whereof, I affix my signature, in presence of two witnesses.

FRANK CHAMNESS.
Witnesses:
Z. T. Dungan, Blanche Cain.

