US 20210058097A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2021/0058097 A1

WATANABE

(54)

(71)
(72)

(73)
@
(22)

(30)

Aug. 21, 2019

(1)

MEMORY SYSTEM AND METHOD FOR
CONTROLLING NON-VOLATILE MEMORY

Applicant: Kioxia Corporation, Minato-ku (JP)

Inventor: Daiki WATANABE, Yokohama (JP)

Assignee: Kioxia Corporation, Minato-ku (JP)
Appl. No.: 16/795,657

Filed: Feb. 20, 2020

Foreign Application Priority Data

(000 Y 2019-151444

Publication Classification

Int. CL.
HO3M 13729
HO3M 13/15
GO6F 11/10

(2006.01)
(2006.01)
(2006.01)

START

NO

+S201

DECODE EACH COMPONENT

HAS DECODING
SUCCEEDED?

IS DECODING ENDED?

YES S204

43) Pub. Date: Feb. 25, 2021
(52) US. CL
CPC ... HO3M 13/2927 (2013.01); HO3M 13/2918

(2013.01); GO6F 11/1068 (2013.01); HO3M
13/1515 (2013.01); HO3M 13/152 (2013.01);
HO3M 13/2981 (2013.01)

(57) ABSTRACT

A memory system of an embodiment includes a non-volatile
memory and a memory controller. The memory controller
generates an error correction code including a first and
second symbol groups. The first symbol group is a set of
symbols shared between a first component code and a third
component code and/or a fourth component code. The
second symbol group is a set of symbols shared between a
second component code and the third component code
and/or the fourth component code. The first and third
component codes have a lower correction capability than the
second and fourth component codes, respectively. The ratio
of symbols protected by the third component code is smaller
in the second symbol group than in the first symbol group.
The ratio of symbols protected by the fourth component
code is larger in the second symbol group than in the first
symbol group.

L 4 f3205

NOTIFY DECODING FAILURE

OUTPUT RESTORED DATA

END

Patent Application Publication Feb. 25,2021 Sheet 1 of 10 US 2021/0058097 A1

FIG.1

$900
MEMORY SYSTEM
5931 <941 5920 5942 5932
> o] NON-VOLATILE | .
HOST 8 » ENCODER 2, MEMORY 8, DECODER 2 » HOST
WRITE DATA ENCODED DATA ENCODED DATA READ DATA
(HAVING NO ERROR) (HAVING ERROR)

FIG.2

200

211
212
213

LAY, Il 7T
dp d+ ///pi/?p)///i?
T
2505757575

S

i e
N

221 222 223 224 225

Patent Application Publication Feb. 25,2021 Sheet 2 of 10 US 2021/0058097 A1

..

§§ do, d4 § dz, ds 3 i 5\1311
; .':;. fr~v312
§ § i-..313
Y 7 10 1%
12y M13 14 15 16: M17 y 18: 19 ¥
GIPIINSIIVINSIIIIN S IID !
V95795050
! 20, P21, 44 22, P23,/ A4r 24, P25,/ P2ss P27/,
DG INIIIIINI I IIE NI I DI
321 322 323 3é4
51
MEMORY SYSTEM
510 520
MEMORY CONTROLLER
s11 s12
CONTROL DATA
<30 UNIT BUFFER
A y
<16
NON-
A 4 ¢ A 4 VOLAglLE
MEMORY
HOST |« .| HOST ENCODING/ | |MEMORY |, | .
« " VF DECODING [I/F T
> UNIT ;
15 13
147 | DECODER [N_4g

US 2021/0058097 A1

Feb. 25,2021 Sheet 3 of 10

Patent Application Publication

FIG.5

FE=————=—=—==—===c==<=

EI e

=

| g g g g g g g g g g g g g g g g g g

v
534

v
533

Patent Application Publication

Feb. 25, 2021 Sheet 4 of 10

US 2021/0058097 A1

ci—511)

—512 |

>531

it —513)

. _..‘:,_’514 J

>532

5bit 5bit | 2bit- 2bit---:-
5bit 5bit i 2bit-o b 2bit:--
2bit 2bit abit | Abit- -
2bit 2bit abit fioe Abit- -
7777 777 - 777777]
SINGLE SINGLE g SINGLE g SINGLE
PROTECTION}TPROTECTIONTPROTECTIONTPROTECTION
y 2 y 2 yd 2 Z ?/
521 522 523 524
A\ v J AN v J
533 534

Patent Application Publication Feb. 25,2021 Sheet 5 of 10 US 2021/0058097 A1

FIG.7

(28) BITS SATISFYING CONDITION (1)

’ / / 7/ 4
'SATISFYING CONDITION~] | SATISFYING CONDITION

¢ (1) AND BEING] (1) AND BEING
4 PROTECTED BY /] PROTECTED BY 531
¥ COMPONENT CODE COMPONENT CODE

AN

’ /GROUB 533: 71/% GROUP 534: 29%

(24) BITS SATISFYING CONDITION (2)

S Y4 / /
SATISFYING CONDITION | [/8ATISEYING CONDITION
(2) AND BEING / (2) AND BEING /
PROTECTED BY ' PROTECTED BY 532
COMPONENT CODE ” COMPONENT CODE
GROUP 533: 33% ' GROUP 534: 67%

BITS SATISFYING NEITHER CONDITION (1) NOR
CONDITION (2) (SINGLE PROTECTION)

- v J A\ v J
533 534
1 0'0 E Fa
107" -
o .
m -
m -
s]
5 107 3
()] .
S]
o
= i
107 3 ®
. .l —O0— Unoptimized
. —&— Optimized
10 : :

0.90 0.95 1.00 1.05 1.10 1.15 1.20
Normalized Bit Error Rate (Higher is Better)

L3

=
=
= —| ¥JCOONT feer
S
= LINNLNdLNO | -+ ¥3000N3 |le—o
& ALlNVd " _~€28
» NOILO3HIa
= (HOUS 8- L] w3aooNa fe——
= ON SNIAVH) DN
S v1vda m,_qm_m@
- AMONIW |, 93000NS NN . NN |, 1S0H
g J1LVIOA-NON 1ndinoviva [€ NolLNariLsIa [¢
- { cegd 4 2! {
= 0z . < 108 0¢
2 ¥IAOONT [
st UNN1NdLNO | I w3coona e
2 ALIMVYd - €18
= NOILO3NIa
MOY - { M3IAOON3T e
= 218
£ 18-
[! -
g ¥IAOONI fe—r
=
=1
=W
.m V.IVA ALIYYd NOILOTHId MOY
[
[F]
= ¥3AOON3
(=9
-
g
[
=W

6°9ld

Patent Application Publication Feb. 25,2021 Sheet 7 of 10 US 2021/0058097 A1

FIG.10

START
~S101

RECEIVE INFORMATION BITS dp TO dig AND OUTPUT INFORMATION
BITS TO NON-VOLATILE MEMORY

~S102

DISTRIBUTE INFORMATION BITS dp TO dig TO ENCODERS AND
EXECUTE ENCODING PROCESS

~S103

RECEIVE PARITY BITS po TO pr AND OUTPUT PARITY BITS TO
NON-VOLATILE MEMORY

S104

DISTRIBUTE PARITY BITS po TO p; TO ENCODERS AND EXECUTE
ENCODING PROCESS

~S105

RECEIVE INFORMATION BITS dy, TO d2; AND OUTPUT INFORMATION
BITS TO NON-VOLATILE MEMORY

~S106

DISTRIBUTE INFORMATION BITS dy, TO dy; TO ENCODERS AND
EXECUTE ENCODING PROCESS

~S107

RECEIVE INFORMATION BITS d.s TO dss AND OUTPUT INFORMATION
BITS TO NON-VOLATILE MEMORY

~S108

DISTRIBUTE INFORMATION BITS dys TO d3s TO ENCODERS AND
EXECUTE ENCODING PROCESS

~S109

RECEIVE PARITY BITS pg TO pis AND OUTPUT PARITY BITS TO
NON-VOLATILE MEMORY

~S110

DISTRIBUTE PARITY BITS ps TO p1s TO ENCODERS AND EXECUTE
ENCODING PROCESS

~S111

RECEIVE PARITY BITS p4s TO pss AND OUTPUT PARITY BITS TO
NON-VOLATILE MEMORY

END

Patent Application Publication Feb. 25,2021 Sheet 8 of 10 US 2021/0058097 A1
18
DECODER
1004 1003
DECODING COMPO-
CONTROL B NENT CODE
UNIT DECODER
30 X 20
¢ 1005 v 1002 1001 !
DECODED DECOPED | | READ DATA NON-
HOST |« «“— < RECEPTION [« VOLATILE
OouTPUT STORAGE UNIT MEMORY
UNIT UNIT
RESTORED READ DATA

DATA

(HAVING ERROR)

Patent Application Publication Feb. 25,2021 Sheet 9 of 10 US 2021/0058097 A1

FIG.12

START

» ~S201

DECODE EACH COMPONENT
CODE

HAS DECODING YES

SUCCEEDED?

NO

S203
IS DECODING ENDED?

YES ~S204 ! 5205

NOTIFY DECODING FAILURE l OUTPUT RESTORED DATA I

END

US 2021/0058097 A1

Feb. 25,2021 Sheet 10 of 10

Patent Application Publication

AHOW3N
FLVITOA-NON

(4oyy3
ON ONIAVH)
v.ivda
d3qooN3

A

(

174

Vivd
LM

LINN LNdLnol. 1INN ’
viva |[€ NolLngidisia [
N x A N
Z-108
Z-€€8] <
¥IAOONT feres
— ¥3000NI jem—e
— ¥IA0ONT e
| Y¥3JAOONT e
LINN LNdLNO|, G118
AlLldvd Y¥3QOONI
,] 218
Z-1€8
— ¥3000N3 feme
— ¥300ONI jemmre
— ¥IA0ONT feme
VLVQ ALRVd
Y¥3IA0OON3
z-/17

1SCH

0¢

US 2021/0058097 Al

MEMORY SYSTEM AND METHOD FOR
CONTROLLING NON-VOLATILE MEMORY

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is based upon and claims the
benefit of priority from Japanese Patent Application No.
2019-151444, filed on Aug. 21, 2019; the entire contents of
which are incorporated herein by reference.

FIELD

[0002] Embodiments described herein relate generally to a
memory system.

BACKGROUND

[0003] In general, data after being subjected to error
correction coding is stored in memory systems in order to
protect the data to be stored. For this reason, decoding is
performed on the data after being subjected to the error
correction coding when reading data stored in the memory
system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG.1 is a diagram for explaining a general flow of
an operation of protecting data with an error correction code;

[0005] FIG. 2 is a view illustrating an example of a
product code;
[0006] FIG. 3 is a view illustrating a configuration

example of a block product code;

[0007] FIG. 4 is a block diagram illustrating a schematic
configuration example of a memory system according to a
first embodiment;

[0008] FIG. 5 is a view illustrating a configuration
example of a multi-dimensional error correction code used
in the first embodiment;

[0009] FIG. 6 is a view illustrating the number of shared
bits of each of component codes of a multi-dimensional
error correction code;

[0010] FIG. 7 is a view illustrating an example of a
relationship between each of conditions and a ratio of
symbols protected by each of the component codes in a
symbol group satisfying each of the conditions;

[0011] FIG. 8 is a graph illustrating a relationship between
a bit error rate and a frame error rate;

[0012] FIG. 9 is a block diagram illustrating a functional
configuration example of an encoder;

[0013] FIG. 10 is a flowchart illustrating an example of a
procedure for encoding a multi-dimensional error correction
code;

[0014] FIG. 11 is a block diagram illustrating a functional
configuration example of a decoder;

[0015] FIG. 12 is a flowchart illustrating an example of a
procedure for decoding a multi-dimensional error correction
code; and

[0016] FIG. 13 is a block diagram illustrating a functional
configuration example of an encoder according to a second
embodiment.

DETAILED DESCRIPTION

[0017] According to embodiments, a memory system
including a non-volatile memory and a memory controller is
provided. The memory controller generates an error correc-

Feb. 25, 2021

tion code including a first and second symbol groups. The
first symbol group is a set of symbols shared between a first
component code and a third component code and/or a fourth
component code. The second symbol group is a set of
symbols shared between a second component code and the
third component code and/or the fourth component code.
The first component code has lower capability than the
second component code, and the third component code has
a lower correction capability than the fourth component
code. The ratio of symbols protected by the third component
code is smaller in the second symbol group than in the first
symbol group. The ratio of symbols protected by the fourth
component code is larger in the second symbol group than
in the first symbol group.

[0018] Hereinafter, the memory system according to the
embodiments will be described in detail below with refer-
ence to the attached drawings. Incidentally, the present
invention is not limited to the following embodiments.

[0019] In recent years, the memory system using the
non-volatile memory such as a NAND flash memory has
been used in various places by taking advantage of its high
speed. However, data read from the non-volatile memory is
likely to have an error that is caused by a lapse of time after
being stored in the non-volatile memory, noise generated at
the time of reading and writing, or the like. Therefore, in
general, an encoding process using an error correction code
is executed on the data stored in the non-volatile memory,
and a decoding process using the error correction code is
executed at the time of reading, whereby the error included
in the read data is removed.

[0020] FIG.1is a diagram for explaining a general flow of
an operation of protecting data with the error correction
code. Incidentally, a host in the present description may be
an information processing device such as a personal com-
puter, a server device, a portable information device, or a
digital still camera.

[0021] Ahost 931 transmits data to be written (hereinafter
referred to as write data) to a memory system 900. The
memory system 900 encodes the write data received from
the host 931 using an encoder 941, and writes the encoded
data (code word) thus generated into a non-volatile memory
920. Therefore, the encoded data to be written to the
non-volatile memory 920 basically has no errors.

[0022] The encoded data stored in the non-volatile
memory 920 is read in response to a read request from a host
932, for example. Here, the read encoded data is likely to
have an error. Therefore, the original code word is restored
by executing decoding while removing the error included in
the read encoded data using a decoder 942. Thereafter, the
original code word or the restored write data before being
subjected to encoding is transmitted to the host 932. Inci-
dentally, the host 932 that has issued the read request may
be the same host as the host 931 that has issued a write
request or may be a different host.

[0023] There is a case in which a multi-dimensional error
correction code is used as the error correction code. The
multi-dimensional error correction code indicates a scheme
in which a symbol, which is at least one or more constituent
units of an error correction code, is multiply protected by a
plurality of smaller component codes. Further, one symbol
is formed of, for example, one bit (an element of a binary
field) or an element of an alphabet such as a finite field other
than the binary field.

US 2021/0058097 Al

[0024] FIG. 2 illustrates a product code as an example of
the multi-dimensional error correction code. In a product
code 200 illustrated in FIG. 2, each of information bits
(which may be symbols) d, to d;, which are constituent
units, has a structure protected by Hamming codes 211 to
215 and 221 to 225 having an information length of two bits
and a parity length of two bits in each of a row direction
(horizontal direction in the drawing) and a column direction
(vertical direction in the drawing). In such a product code
200, all the information bits d, to d; and parity bits p, to p,g
are doubly protected by the Hamming codes in the row
direction and the Hamming codes in the column direction. In
the product code illustrated in FIG. 2, all symbols are doubly
protected by component codes in the row direction (referred
to as Dimension 1) and the column direction (referred to as
Dimension 2). Incidentally, the multi-dimensional error cor-
rection code is not limited thereto, and may be a generalized
low density parity check (LDPC) code, for example. In
general multi-dimensional error correction codes including
the generalized LDPC code, the multiplicity of protection
may be different for each symbol, and further, the present
technique can be applied to such a code configuration
although it is difficult to group component codes into
Dimension 1 and Dimension 2.

[0025] FIG. 3 is a view illustrating a configuration
example of a block product code 300, which is another
example of the multi-dimensional error correction code. The
block product code 300 is a code in which information bits
(which may be symbols) d, to d;; are protected by three
Hamming codes 311, 312, and 313 having an information
length of four bits and a parity length of four bits in the row
direction and protected by four Hamming codes 321, 322,
323, and 324 having an information length of six bits and a
parity length of four bits in the column direction.

[0026] Parity bits p, to p,, are parity bits of component
codes in the row direction. Parity bits p,, to p,, are parity
bits of component codes in the column direction. The
information bits d, to d;; and the parity bits p, to p,, are
always doubly protected by the component codes in the row
direction and the component codes in the column direction.
On the other hand, the parity bits p, , to p,, are not protected
by the component codes in the row direction and are only
protected by the component codes in the column direction,
which is different from the product code 200. Therefore, the
block product code 300 includes bits different in multiplic-
ity. Meanwhile, the maximum value of the multiplicity, that
is, the number of dimensions is two even in the block
product code 300 similarly to the product code 200 of FIG.
2.

[0027] Although the number and configuration of the
component codes in the row direction and the number and
configuration of the component codes in the column direc-
tion are not uniform in the block product code 300, all the
component codes have the same number of shared bits (two
bits in the example of FIG. 3) similarly to the product code
200 illustrated in FIG. 2. The shared bit means a bit that is
commonly encoded by a plurality of component codes. As
an example, the information bits d, and d, are shared bits
shared by the Hamming codes 311 and 321 which are the
component codes.

[0028] Inthe following embodiments, not only the number
and configuration of the component codes but also the
number of shared bits is made non-uniform so as to improve
the error correction capability of the error correction code.

Feb. 25, 2021

First Embodiment

[0029] FIG. 4 is a block diagram illustrating a schematic
configuration example of a memory system according to a
first embodiment. As illustrated in FIG. 4, a memory system
1 includes a memory controller 10 and a non-volatile
memory 20. The memory system 1 is capable of being
connected with a host 30, and FIG. 4 illustrates a state where
the memory system 1 is connected with the host 30. The host
30 may be electronic equipment, for example, a personal
computer, a mobile phone, or the like.

[0030] The non-volatile memory 20 is a non-volatile
memory that stores data in a non-volatile manner, and is, for
example, a NAND flash memory (hereinafter simply
referred to as a NAND memory). Although the following
description exemplifies a case in which a NAND memory is
used as the non-volatile memory 20, a storage device other
than the NAND memory, such as a three-dimensional struc-
ture flash memory, a resistance random access memory
(ReRAM), or a ferroelectric random access memory (Fe-
RAM), may be used as the non-volatile memory 20. Further,
it is not essential that the non-volatile memory 20 be a
semiconductor memory, and the present embodiment can be
also applied to various storage media other than the semi-
conductor memory.

[0031] The memory system 1 may be a memory card or
the like in which the memory controller 10 and the non-
volatile memory 20 are configured as a single package, or
may be a solid state drive (SSD) or the like.

[0032] The memory controller 10 controls write to the
non-volatile memory 20 according to a write request from
the host 30. Further, the memory controller 10 controls read
from the non-volatile memory 20 according to a read request
from the host 30. The memory controller 10 includes a host
interface (host I/F) 15, a memory interface (memory I/F) 13,
a control unit 11, an encoding/decoding unit (codec) 14, and
a data buffer 12. The host I/F 15, the memory I/F 13, the
control unit 11, the encoding/decoding unit 14, and the data
buffer 12 are mutually connected via an internal bus 16.
[0033] The host I/F 15 executes a process according to the
interface standard with the host 30, and outputs a command,
user data to be written, and the like received from the host
30 to the internal bus 16. Further, the host I/F 15 transmits
the user data which has been read from the non-volatile
memory 20 and restored, a response from the control unit 11,
and the like to the host 30.

[0034] The memory I/F 13 performs a write process to the
non-volatile memory 20 based on an instruction of the
control unit 11. Further, the memory I/F 13 performs a read
process from the non-volatile memory 20 based on an
instruction of the control unit 11.

[0035] The data buffer 12 temporarily stores the user data
until the memory controller 10 stores the user data received
from the host 30 in the non-volatile memory 20. Further, the
data buffer 12 temporarily stores the user data read from the
non-volatile memory 20 until being transmitted to the host
30. As the data buffer 12, it is possible to use a general-
purpose memory, for example, a static random access
memory (SRAM), a dynamic random access memory
(DRAM), or the like.

[0036] The control unit 11 comprehensively controls vari-
ous components of the memory system 1. In the case of
receiving a command from the host 30 via the host I/F 15,
the control unit 11 performs control according to the com-
mand. For example, the control unit 11 instructs the memory

US 2021/0058097 Al

I/F 13 to write the user data and parity to the non-volatile
memory 20 according to the command from the host 30. For
example, the control unit 11 instructs the memory I/F 13 to
read the user data and parity from the non-volatile memory
20 according to the command from the host 30.

[0037] Further, in the case of receiving the write request of
the user data from the host 30, the control unit 11 determines
a storage area (memory area) on the non-volatile memory 20
with respect to the user data to be accumulated in the data
buffer 12. That is, the control unit 11 manages a write
destination of the user data. An association between a logical
address of the user data received from the host 30, and a
physical address that indicates the storage area on the
non-volatile memory 20 in which the user data is stored, is
stored as an address conversion table.

[0038] Further, in the case of receiving the read request
from the host 30, the control unit 11 converts the logical
address instructed by the read request into the physical
address using the above-described address conversion table,
and instructs the memory I/F 13 to perform read from the
physical address.

[0039] In the NAND memory, the write and the read are
generally performed in a data unit of a so-called page, and
erase is performed in a data unit of a so-called block. In the
embodiment, a plurality of memory cells to be connected to
the same word line are referred to as a memory cell group.
In a case in which the memory cell is a single-level cell
(SLC), one memory cell group is associated with one page.
In a case in which the memory cell is a multi-level cell
(MLC), one memory cell group is associated with a plurality
of pages. Further, each memory cell is connected not only to
the word line, but also to a bit line. Therefore, each memory
cell can be identified by an address that identifies the word
line, and an address that identifies the bit line.

[0040] The user data transmitted from the host 30 is
transferred to the internal bus 16 and temporarily stored in
the data buffer 12. The encoding/decoding unit 14 encodes
user data stored in the non-volatile memory 20 to generate
a code word. Further, the encoding/decoding unit 14 decodes
a reception word read from the non-volatile memory 20 to
restore the user data. Therefore, the encoding/decoding unit
14 includes an encoder 17 and a decoder 18. Incidentally, the
data to be encoded by the encoding/decoding unit 14 may
include control data and the like to be used in the memory
controller 10 in addition to the user data.

[0041] Next, the write process of the present embodiment
will be described. The control unit 11 instructs the encoder
17 to encode user data at the time of writing the user data to
the non-volatile memory 20. At this time, the control unit 11
determines a storage location (storage address) of a code
word in the non-volatile memory 20, and also instructs the
memory I/F 13 of the determined storage location.

[0042] Based on an instruction from the control unit 11,
the encoder 17 encodes the user data on the data buffer 12
to generate the code word. As an encoding scheme, for
example, an encoding scheme using a Bose-Chandhuri-
Hocquenghem (BCH) code or a Reed-Solomon (RS) code
can be employed. The code word generated by the encoder
17 is a multi-dimensional error correction code such as the
product code 200 exemplified with reference to FIG. 2 and
the block product code 300 exemplified with reference to
FIG. 3. The memory I/F 13 performs control to store the
code word in the storage location on the non-volatile
memory 20 instructed from the control unit 11.

Feb. 25, 2021

[0043] Next, a process at the time of reading from the
non-volatile memory 20 of the present embodiment will be
described. At the time of reading from the non-volatile
memory 20, the control unit 11 designates an address on the
non-volatile memory 20 to instruct the memory I/F 13 to
perform reading. Further, the control unit 11 instructs the
decoder 18 to start decoding. The memory I/F 13 reads a
reception word from the designated address of the non-
volatile memory 20 according to the instruction of the
control unit 11, and inputs the read reception word to the
decoder 18. The decoder 18 decodes the reception word read
from the non-volatile memory 20.

[0044] FIG. 5 is a view illustrating a configuration
example of a multi-dimensional error correction code 500
used in the first embodiment. The multi-dimensional error
correction code 500 is protected in multiple by component
codes 511 to 514 in the row direction and component codes
521 to 524 in the column direction. Each of the component
codes is classified into one of a plurality of component code
groups as follows. Further, each of the component codes is
a Hamming code having the following information length
and parity length.

[0045] Component codes 511 and 512 in the row direc-
tion: Hamming codes belonging to a component code
group 531 and having an information length of ten bits
and a parity length of four bits

[0046] Component codes 513 and 514 in the row direc-
tion: Hamming codes belonging to a component code
group 532 and having an information length of eight
bits and a parity length of four bits

[0047] Component codes 521 and 522 in the column
direction: Hamming codes belonging to a component
code group 533 and having an information length of
fourteen bits and a parity length of five bits

[0048] Component codes 523 and 524 in the column
direction: Hamming codes belonging to a component
code group 534 and having an information length of
twelve bits and a parity length of five bits

[0049] The component code group 531 is a code having a
lower error correction capability than the component code
group 532. Further, the component code group 533 is a code
having a lower error correction capability than the compo-
nent code group 534. The relatively high error correction
capability means that decoding can be successfully per-
formed for a reception word having more errors. For
example, a coding rate and a code length can be used as
indices of the error correction capability, but are not limited
to these indices, and any other index may be used. Therefore,
the relatively low error correction capability means that the
coding rate is relatively high and the code length is relatively
short, for example.

[0050] The number of component code groups is not
limited to two in each of the row direction and the column
direction, and may be three or more. The number of com-
ponent codes included in each component code group is not
limited to two, and one or three or more component codes
may be included. The component codes included in the
component code groups 531, 532, 533, and 534 correspond
to the first component code, the second component code, the
third component code, and the fourth component code,
respectively.

[0051] The multi-dimensional error correction code 500
illustrated in FIG. 5 sets the number and configuration of
component codes in the row direction and the number and

US 2021/0058097 Al

configuration of component codes in the column direction to
be non-uniform and the number of shared bits differs among
the plurality of component codes.

[0052] Further, both the component code groups 531 and
532 are groups for the component codes in the row direction
in the multi-dimensional error correction code 500 of FIG.
5, and thus, there is no symbol that is commonly encoded by
the component code group 531 and the component code
group 532. Similarly, both the component code groups 533
and 534 are groups for the component codes in the column
direction, and thus, there is no symbol that is commonly
encoded by the component code group 533 and the compo-
nent code group 534.

[0053] FIG. 6 is a view illustrating the number of shared
bits of each of the component codes of the multi-dimen-
sional error correction code 500. For example, the compo-
nent code 511 and the component code 521 have five shared
bits. The component code 511 and the component code 523
have two shared bits. Portions corresponding to the parity
bits p, to p;5 in the column direction are not protected (not
shared) by the component codes in the row direction, and
thus, are displayed as single protection.

[0054] As illustrated in FIG. 6, the multi-dimensional
error correction code 500 is designed to have the following
number of shared bits.

[0055] Number of shared bits between codes belonging
to component code group 531 and codes belonging to
component code group 533: five bits

[0056] Number of shared bits between codes belonging
to component code group 531 and codes belonging to
component code group 534: two bits

[0057] Number of shared bits between codes belonging
to component code group 532 and codes belonging to
component code group 533: two bits

[0058] Number of shared bits between codes belonging
to component code group 532 and codes belonging to
component code group 534: four bits

[0059] Here, Conditions (1) and (2) are defined as follows.
[0060] Condition (1): To be protected by the component
code group 531 and protected by at least one of the com-
ponent code groups 533 and 534.

[0061] Condition (2): To be protected by the component
code group 532 and protected by at least one of the com-
ponent code groups 533 and 534.

[0062] FIG. 7 is a view illustrating an example of a
relationship between each of conditions and a ratio of
symbols protected by component codes of each of compo-
nent code groups in a symbol group satisfying each of the
conditions. FIG. 7 illustrates an example of the ratio for the
multi-dimensional error correction code 500 illustrated in
FIG. 5. As illustrated in FIG. 7, the number of symbols
satisfying Condition (1) is 28, and the number of symbols
satisfying Condition (2) is 24.

[0063] Here, a ratio of symbols protected by the compo-
nent code group 533 in a symbol group satisfying Condition
(1) is 20/28~71%. Further, a ratio of symbols protected by
the component code group 534 in a symbol group satistying
Condition (1) is 8/28~29%.

[0064] On the other hand, a ratio of symbols protected by
the component code group 533 in the symbol group satis-
fying Condition (2) is 8/24=~33%. Further, a ratio of symbols
protected by the component code group 534 in the symbol
group satistying Condition (2) is 16/24=67%.

Feb. 25, 2021

[0065] Therefore, the multi-dimensional error correction
code 500 has properties that the probability of being pro-
tected by the component code group 533 is high if a symbol
satisfies Condition (1) (that is, protected by the component
code group 531) and the probability of being protected by
the component code group 534 is high if a symbol satisfies
Condition (2) (that is, protected by the component code
group 532).

[0066] In other words, in the multi-dimensional error
correction code 500, the ratio of symbols protected by the
component code group 534 is smaller than the ratio of
symbols protected by the component code group 533 in the
symbol group satisfying Condition (1). Further, in the multi-
dimensional error correction code 500, the ratio of symbols
protected by the component code group 534 is larger than
the ratio of symbols protected by the component code group
533 in the symbol group satistying Condition (2).

[0067] Incidentally, for example, the ratio of symbols
protected by the component code group 534 may be 0% in
the symbol group protected by the component code group
531. That is, the number of symbols included in the symbol
group protected by the component code group 531 and
protected by the component code group 534 may be zero.
Similarly, the ratio of symbols protected by the component
code group 533 in the symbol group protected by the
component code group 532 may be 0% (the number of
symbols included in the symbol group protected by the
component code group 532 and protected by the component
code group 533 may be 0).

[0068] As described above, the component code group
531 has the lower correction capability than the component
code group 532, and the component code group 533 has the
lower correction capability than the component code group
534. For this reason, it can be said that there are many shared
bits between the component code groups having the low
correction capability and between the component code
groups having the high correction capability in the multi-
dimensional error correction code 500.

[0069] In this manner, when there are “many shared bits
between the component code groups having the low correc-
tion capability and between the component code groups
having the high correction capability” and “the number of
shared bits between the component code group having the
low correction capability and the group having the high
correction capability is reduced”, there is a possibility that
the correction capability of the multi-dimensional error
correction code can be enhanced.

[0070] For example, FIG. 8 illustrates bit error rate-frame
error rate curves in a case of using a product code having a
non-uniform structure in which the distribution of the num-
ber of shared bits is appropriately designed and in a case of
using a product code having a uniform structure when
assuming a model that performs communication on an
additive white gaussian noise (AWGN) channel modulated
by binary phase-shift keying (BPSK). It is possible to read
that decoding has succeeded at a higher bit error rate, that is,
the error correction capability has been improved in Opti-
mized (the product code having the non-uniform structure)
as compared to Unoptimized (the product code having the
uniform structure).

[0071] Next, a configuration example of the encoder 17
that encodes the multi-dimensional error correction code as
described above will be described. FIG. 9 is a block diagram
illustrating a functional configuration example of the

US 2021/0058097 Al

encoder 17. The encoder 17 in FIG. 9 is an example of the
encoder that encodes a multi-dimensional error correction
code 500 having a code length of 72 bits illustrated in FIG.
5 by receiving a total of 36 information bits and adding a
total of 36 parity bits.

[0072] As illustrated in FIG. 9, the encoder 17 includes a
distribution unit 801, encoders 811 to 814, encoders 821 to
824, a row direction parity output unit 831, a column
direction parity output unit 832, and a data output unit 833
[0073] The distribution unit 801 distributes write data
received from the host 30 to the encoders 811 to 814, the
encoders 821 to 824, and the data output unit 833. Herein-
after, the write data may be referred to as information bits.
[0074] The encoders 811 to 814 perform an encoding
process using the information bits received from distribution
unit 801, and output parity bits of component codes in the
row direction. For example, the encoders 811 to 814 corre-
spond to encoders that output the component codes 511 to
514, respectively.

[0075] The encoders 821 to 824 perform an encoding
process using the information bits received from distribution
unit 801, and output parity bits of component codes in the
column direction. For example, the encoders 821 to 824
correspond to encoders that output the component codes 521
to 524, respectively.

[0076] The row direction parity output unit 831 outputs
the parity bits output from the encoders 811 to 814 to the
distribution unit 801 and the data output unit 833. The
column direction parity output unit 832 outputs the parity
bits output from the encoders 821 to 824 to the data output
unit 833.

[0077] The data output unit 833 selects any of the data
received from the distribution unit 801, the row direction
parity output unit 831 and the column direction parity output
unit 832, and outputs the selected data to the non-volatile
memory 20.

[0078] The configuration of the encoder 17 illustrated in
FIG. 9 is an example, and the invention is not limited
thereto. For example, when the error correction code 500
having a different structure from FIG. 5 is encoded, the
encoder 17 may be configured in accordance with such a
structure. For example, when the number of component
codes in the row direction (column direction) is other than
four, the encoder 17 may include the number of encoders in
the row direction (column direction) corresponding thereto,
and the encoder 17 may include one encoder used to encode
a plurality of component codes.

[0079] Next, a procedure of the encoding process per-
formed by the encoder 17 will be described. FIG. 10 is a
flowchart illustrating an example of the procedure in which
the encoder 17 encodes the multi-dimensional error correc-
tion code 500.

[0080] When receiving information bits d, to d,, from the
host 30, the distribution unit 801 outputs the received
information bits d, to d,, to the non-volatile memory 20 via
the data output unit 833 (Step S101). Further, the distribu-
tion unit 801 distributes the received information bits evenly
to the row direction encoders 811 and 812 and the column
direction encoders 821 and 822. The encoders 811, 812, 821,
and 822 execute the encoding process using the input
information bits (Step S102).

[0081] Incidentally, for example, the encoders 821 and
822 need to further receive information bits d,, to d,, in
order to output the component codes 521 and 522, respec-
tively. Since only the information bits d, to d,, are received
at the time of Step S102, the encoders 821 and 822 execute
a process using the information bits d, to d,, among the

Feb. 25, 2021

processes configured to output the component codes 521 and
522. Similarly, in the following description, each of the
encoders (811 to 814 and 821 to 824) executes an executable
process using the received information bits or parity bits.
Incidentally, each of the encoders (811 to 814 and 821 to
824) may be configured so as to execute the encoding
process when all the information bits required to output the
corresponding component code have been obtained.

[0082] The row direction parity output unit 831 outputs
parity bits p, to p, output from the row direction encoders
811 and 812 to the distribution unit 801 and the data output
unit 833. The data output unit 833 outputs the parity bits p,,
to p, to the non-volatile memory 20 (Step S103).

[0083] The distribution unit 801 distributes the input par-
ity bits p, to p, evenly to the column direction encoders 823
and 824. The encoders 823 and 824 execute the encoding
process using the input parity bits (Step S104).

[0084] When receiving information bits d,, to d,, from the
host 30, the distribution unit 801 outputs the received
information bits d, to d, to the non-volatile memory 20 via
the data output unit 833 (Step S105). Further, the distribu-
tion unit 801 distributes the received information bits evenly
to the row direction encoders 813 and 814 and the column
direction encoders 821 and 822. The encoders 813, 814, 821,
and 822 execute the encoding process using the input
information bits (Step S106).

[0085] When receiving information bits d, g to d5 from the
host 30, the distribution unit 801 outputs the received
information bits d,4 to d;5 to the non-volatile memory 20 via
the data output unit 833 (Step S107). Further, the distribu-
tion unit 801 distributes the received information bits d, to
d;s evenly to the row direction encoders 813 and 814.
Further, the distribution unit 801 distributes the received
information bits d,g to d,s to the column direction encoder
823. The encoders 813, 814, and 823 execute the encoding
process using the input information bits (Step S108).
[0086] The row direction encoders 813 and 814 output
parity bits pg to p,s by the encoding process. The row
direction parity output unit 831 outputs the parity bits pg to
P, 5 to the distribution unit 801 and the data output unit 833.
The data output unit 833 outputs the input parity bits pg to
p,5 to the non-volatile memory 20 (Step S109).

[0087] The distribution unit 801 distributes the parity bits
Ps 1o p;5 to the column direction encoder 824. The encoder
824 executes the encoding process using the input parity bits
(Step S110).

[0088] With the above processing, parity bits p, ; to p;5 are
output from the column direction encoders 821, 822, 823,
and 824. The column direction parity output unit 832 outputs
the parity bits p, s 10 p5s to the data output unit 833. The data
output unit 833 outputs the received parity bits p, s t0 pss to
the non-volatile memory 20 (Step S111).

[0089] With the above procedure, the encoder 17 can
encode the multi-dimensional error correction code 500
having the non-uniform structure illustrated in FIG. 5.
[0090] Next, a configuration example of the decoder 18
will be described. FIG. 11 is a block diagram illustrating a
functional configuration example of the decoder 18. As
illustrated in FIG. 11, the decoder 18 includes a data
reception unit 1001, a decoded data storage unit 1002, a
component code decoder 1003, a decoding control unit
1004, and a data output unit 1005.

[0091] The data reception unit 1001 receives read data
(reception word) read from the non-volatile memory 20. The
decoded data storage unit 1002 stores the received read data.
[0092] For example, in the case of decoding the multi-
dimensional error correction code 500 that has been encoded

US 2021/0058097 Al

using the encoder 17, the decoded data storage unit 1002
stores read data corresponding to 36 bits. The decoded data
storage unit 1002 is not limited to the read data, and may
store only a syndrome for each component code calculated
from the read data, for example.

[0093] The decoding control unit 1004 controls a decoding
process that decodes a multi-dimensional error correction
code in units of component codes. The component code
decoder 1003 performs the decoding process in units of
component codes according to the control from the decoding
control unit 1004. The decoded data (restored data) may be
stored in the decoded data storage unit 1002.

[0094] The data output unit 1005 outputs the restored data
to the host 30.
[0095] Next, a procedure of the decoding process per-

formed by the decoder 18 will be described. FIG. 12 is a
flowchart illustrating an example of the procedure in which
the decoder 18 decodes the multi-dimensional error correc-
tion code 500.

[0096] The component code decoder 1003 decodes each
component code according to the control of the decoding
control unit 1004 (Step S201). For example, the component
code decoder 1003 first reads information required to decode
the component code 511 from the decoded data storage unit
1002, and performs a decoding process on the component
code 511. Here, the information required to decode the
component code 511 is, for example, a symbol group
constituting the component code 511. If one or more error
symbols are detected by the decoding process of the com-
ponent code 511, the error is corrected, and then, the
corrected information is stored in the decoded data storage
unit 1002. If no error position is detected, the component
code decoder 1003 does nothing.

[0097] Similarly, the component code decoder 1003 also
performs a decoding process and an error correction process
for the component codes 512 to 514 and the component
codes 521 to 524.

[0098] The decoding control unit 1004 determines
whether or not the decoding has succeeded (Step S202). For
example, if all errors have been successfully corrected, the
decoding control unit 1004 determines that decoding has
succeeded. If the decoding has succeeded (Step S202: Yes),
the data output unit 1005 outputs the decoded data (restored
data) to the host 30 (Step S205).

[0099] 1If all the errors have not been corrected, that is, if
the decoding has not been succeeded (Step S202: No), the
decoding control unit 1004 determines whether or not to end
the decoding (Step S203). For example, the decoding control
unit 1004 determines to end the decoding when the number
of times of decoding reaches an upper-limit set in advance.
[0100] When the decoding is not to be ended (Step S203:
No), the decoding control unit 1004 returns to Step S201 and
restarts the decoding process in order from the component
code 511 again. When the decoding is to be ended (Step
S203: Yes), the data output unit 1005 notifies that the
decoding has failed (Step S204).

[0101] In this manner, the decoder 18 applies the iterative
decoding process in units of component codes with respect
to the multi-dimensional error correction code 500 having
the non-uniform structure, whereby the error correction
process can be performed efficiently.

[0102] The above embodiment can be modified as follows.
Incidentally, the following modifications can be applied
even to an embodiment to be described later.

[0103] (First Modification)

[0104] An arrangement order of information bits and
parity bits may be replaced. For example, the consecutive

Feb. 25, 2021

information bits d,, to d, are shared by the component codes
511 and 521 in FIG. 5, but non-consecutive information bits
such as information bits d,, d,, dg, d;,, and d;s may be
shared by a plurality of component codes. If the consecutive
bits are not protected by the same component code in this
manner, it is possible to improve the correction capability for
a burst error.

[0105] (Second Modification)

[0106] Although the case in which the codes encoded by
the row direction encoders 811 to 814 and the column
direction encoders 821 to 824 are all the Hamming codes has
been illustrated as an example so far, some or all of these
encoders may be encoders of other error correction codes
such as BCH codes and RS codes. The BCH codes and RS
codes are examples of algebraic codes. Algebraic codes
other than the BCH codes and RS codes may be used.
[0107] (Third Modification)

[0108] A processing order of each step in the flowchart
illustrated in FIG. 10 may be replaced. For example, the
encoder 17 may process the information bits d,, to d,, (Steps
S101 and S102) after processing the information bits d,, to
d,, (Steps S105 and S106). The encoder 17 may alternately
process bits to be processed in a plurality of steps in FIG. 10
so as to have the processing order of information bits d, d,,
d,, d,,, and so on.

[0109] (Fourth Modification)

[0110] The number of information bits and parity bits to be
processed in each step may be changed. For example, the
number of information bits received in Step S101 may be
eighteen bits instead of twenty bits. In such a case, for
example, the number of shared bits between the component
codes 511 and 521 and the between component codes 512
and 522 is five bits, and the number of shared bits between
the component codes 511 and 522 and between the compo-
nent codes 512 and 521 is four bits. As a result, an average
value of the number of shared bits between the component
code group 531 and the component code group 533 is
(545+4+4)/4=4.5 bits.

[0111] (Fifth Modification)

[0112] The multi-dimensional error correction code is not
limited to the above examples, and other multi-dimensional
error correction codes may be used. For example, some of
the row direction encoders 811 to 814 and some of the
column direction encoders 821 to 824 are not necessarily
used. That is, a multi-dimensional error correction code can
be output if at least one encoder is used in each of the row
direction and the column direction. Further, the maximum
value of multiplicity of protection of bits of the multi-
dimensional error correction code 500, that is, the number of
dimensions is two, but the maximum value of multiplicity of
protection may be a number larger than two.

[0113] (Sixth Modification)

[0114] The procedure of the process performed by the
encoder 17 may be hard-coded at the time of designing a
circuit and may be changeable from the outside through a
setting register, software, and the like. For example, the
number of symbols commonly encoded by a plurality of
component codes (such as the number of shared bits
between component codes) may be settable by a setting
register or the like. The encoder 17 distributes write data
received from the host 30 so that the set number is satisfied,
and encodes the write data using row direction and column
direction encoders.

[0115] Instead of individually setting the number of shared
bits between a plurality of component codes, a ratio of
symbols (shared bits or the like) to be commonly encoded
with other component code groups with respect to all

US 2021/0058097 Al

symbols included in each of the component code groups
may be settable. For each of the plurality of component code
groups, the encoder 17 executes an encoding process such
that the ratio of symbols (shared bits) to be commonly
encoded with other component code groups becomes the set
ratio.

[0116] When the procedure of the encoding process per-
formed by the encoder 17 can be changed from the outside
in this manner, it is possible to flexibly encode error cor-
rection codes having various configurations.

Second Embodiment

[0117] The component codes in the row direction and the
column direction are used in the first embodiment. A second
embodiment is an example using component codes that do
not distinguish the row direction from the column direction.
FIG. 13 is a block diagram illustrating a functional configu-
ration example of an encoder 17-2 according to the second
embodiment. The encoder 17-2 has substantially the same
configuration as the encoder 17 of the first embodiment, but
is different in terms that an encoder in the row direction and
an encoder in the column direction are not distinguished.
[0118] The encoder 17-2 includes a distribution unit 801-
2, encoders 811-2 to 818-2, a parity output unit 831-2, and
a data output unit 833-2.

[0119] The distribution unit 801-2 distributes write data
received from the host 30 to the encoders 811-2 to 818-2 and
the data output unit 833-2. The encoders 811-2 to 818-2
perform an encoding process using information bits received
from distribution unit 801-2, and output parity bits of the
component codes. The parity output unit 831-2 outputs the
parity bits output from the encoders 811-2 to 818-2 to the
distribution unit 801-2 and the data output unit 833-2. The
data output unit 833-2 selects any of the data received from
the distribution unit 801-2 and the parity output unit 831-2,
and outputs the selected data to the non-volatile memory 20.
[0120] In the encoder 17 of the first embodiment, there is
no shared bit between the component codes in the row
direction (for example, the component codes 511 and 512).
On the other hand, it is possible to have a shared bit among
all the component codes in the encoder 17-2 of the second
embodiment.

[0121] When adopting the configuration in which the
component code in the row direction and the component
code in the column code are not distinguished and the shared
bit can be present among all the component codes in this
manner, a more flexible code design can be performed as
compared to the encoder 17 of the first embodiment.
[0122] As an error correction code that can have the
shared bit among all the component codes, there is an error
correction code called a half product code. The half product
code is designed such that the number of shared bits among
all component codes is equal. On the other hand, the error
correction code encoded by the encoder 17-2 of the present
embodiment can be also configured such that the number of
shared bits between the respective component codes is not
equal. Therefore, it is possible to obtain a higher error
correction capability than the half product code.

[0123] A decoder that decodes the multi-dimensional error
correction code of the second embodiment can have the
same configuration as the decoder 18 of the first embodi-
ment. For example, the decoder 18 can execute a decoding
process by sequentially decoding the respective component
codes of the multi-dimensional error correction code accord-
ing to the same procedure as in FIG. 12.

[0124] While certain embodiments have been described,
these embodiments have been presented by way of example

Feb. 25, 2021

only, and are not intended to limit the scope of the inven-
tions. Indeed, the novel embodiments described herein may
be embodied in a variety of other forms; furthermore,
various omissions, substitutions and changes in the form of
the embodiments described herein may be made without
departing from the spirit of the inventions. The accompa-
nying claims and their equivalents are intended to cover
such forms or modifications as would fall within the scope
and spirit of the inventions.

What is claimed is:

1. A memory system comprising:

a non-volatile memory; and

a memory controller configured to

generate an error correction code based on user data
received from a host, the error correction code includ-
ing a first symbol group and a second symbol group, the
first symbol group being a set of symbols shared
between a first component code and at least one of a
third component code and a fourth component code, the
second symbol group being a set of symbols shared
between a second component code and at least one of
the third component code and the fourth component
code, and

store the error correction code in the non-volatile memory,

wherein the memory controller is configured to:

encode the first component code with a lower correction
capability than the second component code,

encode the third component code with a lower correction
capability than the fourth component code,

set a ratio of symbols shared between the second com-
ponent code and the third component code in the
second symbol group to be smaller than a ratio of
symbols shared between the first component code and
the third component code in the first symbol group, and

set a ratio of symbols shared between the second com-
ponent code and the fourth component code in the
second symbol group to be larger than a ratio of
symbols shared between the first component code and
the fourth component code in the first symbol group.

2. The memory system according to claim 1, wherein

the memory controller is configured to encode the error
correction code such that

a number of symbols shared between the first component
code and the third component code among the symbols
included in the first symbol group,

a number of symbols shared between the first component
code and the fourth component code among the sym-
bols included in the first symbol group,

a number of symbols shared between the second compo-
nent code and the third component code among the
symbols included in the second symbol group, and

a number of symbols shared between the second compo-
nent code and the fourth component code among the
symbols included in the second symbol group

become set numbers, respectively.

3. The memory system according to claim 1, wherein

the first component code, the second component code, the
third component code, and the fourth component code
are included in any one component code group of a
plurality of component code groups different from each
other, and

the memory controller is configured to encode the error
correction code for each of the plurality of component
code groups such that a ratio of symbols shared with
another component code group with respect to all
symbols included in the component code group
becomes a set ratio.

US 2021/0058097 Al

4. The memory system according to claim 1, wherein

there is no symbol shared between the first component
code and the second component code and no symbol
shared between the third component code and the
fourth component code.

5. The memory system according to claim 1, wherein

at least one of the first component code, the second
component code, the third component code, and the
fourth component code is an algebraic code.

6. The memory system according to claim 5, wherein

the algebraic code is a BCH code.

7. The memory system according to claim 5, wherein

the algebraic code is a Reed-Solomon code.

8. The memory system according to claim 1, wherein

the correction capability is a coding rate.

9. The memory system according to claim 1, wherein

the correction capability is a code length.

10. The memory system according to claim 1, wherein

the memory controller is configured to

read the first component code, the second component
code, the third component code, and the fourth com-
ponent code from the non-volatile memory, and

execute a decoding process on the read first component
code, second component code, third component code,
and fourth component code.

11. A method for controlling a non-volatile memory, the

method comprising:

generating an error correction code based on user data
received from a host, the error correction code includ-
ing a first symbol group and a second symbol group, the
first symbol group being a set of symbols shared
between a first component code and at least one of a
third component code and a fourth component code, the
second symbol group being a set of symbols shared
between a second component code and at least one of
the third component code and the fourth component
code; and

storing the error correction code in the non-volatile
memory,

wherein the generation of the error correction code com-
prises:

encoding the first component code with a lower correction
capability than the second component code;

encoding the third component code with a lower correc-
tion capability than the fourth component code;

setting a ratio of symbols shared between the second
component code and the third component code in the
second symbol group to be smaller than a ratio of
symbols shared between the first component code and
the third component code in the first symbol group; and

setting a ratio of symbols shared between the second
component code and the fourth component code in the
second symbol group to be larger than a ratio of
symbols shared between the first component code and
the fourth component code in the first symbol group.

Feb. 25, 2021

12. The method according to claim 11, further comprising

encoding the error correction code such that

a number of symbols shared between the first component
code and the third component code among the symbols
included in the first symbol group,

a number of symbols shared between the first component
code and the fourth component code among the sym-
bols included in the first symbol group,

a number of symbols shared between the second compo-
nent code and the third component code among the
symbols included in the second symbol group, and

a number of symbols shared between the second compo-
nent code and the fourth component code among the
symbols included in the second symbol group

become set numbers, respectively.

13. The method according to claim 11, wherein

the first component code, the second component code, the
third component code, and the fourth component code
are included in any one component code group of a
plurality of component code groups different from each
other,

the method further comprising

encoding the error correction code for each of the plural-
ity of component code groups such that a ratio of
symbols shared with another component code group
with respect to all symbols included in the component
code group becomes a set ratio.

14. The method according to claim 11, wherein

there is no symbol shared between the first component
code and the second component code and no symbol
shared between the third component code and the
fourth component code.

15. The method according to claim 11, wherein

at least one of the first component code, the second
component code, the third component code, and the
fourth component code is an algebraic code.

16. The method according to claim 15, wherein

the algebraic code is a BCH code.

17. The method according to claim 15, wherein

the algebraic code is a Reed-Solomon code.

18. The method according to claim 11, wherein

the correction capability is a coding rate.

19. The method according to claim 11, wherein

the correction capability is a code length.

20. The method according to claim 11, further compris-

ing:

reading the first component code, the second component
code, the third component code, and the fourth com-
ponent code from the non-volatile memory; and

executing a decoding process on the read first component
code, second component code, third component code,
and fourth component code.

#* #* #* #* #*

