FOWL DRINKING FOUNTAIN

Filed April 15, 1947
UNITED STATES PATENT OFFICE

2,584,383

FOUL DRINKING FOUNTAIN

John Franz Feck, Norwood, Ohio

Application April 15, 1947, Serial No. 741,593

2 Claims. (Cl. 119—77)

This invention relates to improvements in fowl drinking fountains of the type that operates on the barometric principle.

An object of the present invention is the provision of a fowl drinking fountain that is extremely simple in construction and economical to produce.

Another object of this invention is the provision of a fowl drinking fountain that is formed of flexible material whereby, in cold weather, it can be readily separated from ice before refilling and without the necessity of first melting or thawing the ice.

Another object of the present invention is the provision of a fowl drinking fountain that discourages chicks and the like from setting thereon and thereby contaminating the same and the drinking water supplied thereby.

It is also an object of this invention to provide a fowl drinking fountain that remains upright in the desired operative position and is not readily upset thereby spilling the drinking water.

Other objects and advantages of the present invention should be readily apparent by reference to the following specification considered in conjunction with the accompanying drawings forming a part thereof, and it is to be understood that any modifications may be made in the exact structural details there shown and described within the scope of the appended claims, without departing from or exceeding the spirit of the invention.

In the drawings:

Fig. 1 is a top plan view of a fowl drinking fountain embodying the principles of the present invention.

Fig. 2 is an elevational view of the drinking fountain of Fig. 1.

Fig. 3 is a vertical central sectional view of a fowl drinking fountain of Fig. 1, as seen from line 3—3 on said Fig. 1.

Fig. 4 is a vertical sectional view of a fowl drinking fountain similar to Fig. 3 but illustrating a slight modification in the construction.

Fig. 5 is a top plan view of one half of the drinking fountain of Fig. 4 the other half being substantially identical in plan but left off of the drawing to save space.

Fig. 6 is a vertical sectional view through a fowl drinking fountain similar to Fig. 3 but illustrating a slight further modification in the construction.

Fig. 7 is a bottom plan view of one half of the drinking fountain of Fig. 6 the other half being substantially identical in plan but left off of the drawing to save space.

Throughout the several views of the drawings similar reference characters are employed to denote the same or similar parts.

Chick or fowl drinking fountains operating on the barometric principle are old but those heretofore used had inherent drawbacks which have been eliminated by the construction of the present invention and as will become clear.

The chick or fowl drinking fountain of the present invention comprises a container 10 and a base 11 in the form of a dish or saucer. The container 10 is formed, in general, of conical contour having a main portion 12 of frustro-conical construction and a top 13 of a true conical construction. The top portion 13 terminates at its upper end in a substantially sharp point 14. The container 10 is hollow and has comparatively thin walls with the lower ends of the frustro-cone or main portion 12 open.

The base 11 is provided with a flat body portion 15 having its upper surface 16 relatively flat and smooth. At the periphery of the body portion 15 is an upwardly outwardly extending flange 17. The upper end 18 of the flange 17 is spaced from the wall of the frustro-cone 12 thereby providing a trough 19 for water for access by the chicks or fowls.

In practice the frustro-cone body portion 12 of the container has the free end 20 of its wall in contact with the upper surface 16 of the saucer or dish disk-like body portion 15. Furthermore at one point the frustro-cone body portion 12 is provided with a hole or aperture 21 that communicates with the trough 19. It should be noted that the upper end of the aperture or hole 21 is always below the free end 18 of the saucer or dish flange 17.

In order to place the chick or fowl drinking fountain in condition for use the container 10 is removed from the base 11 and filled through the open end thereof. The base 11 is then inverted in position on the open end of the container 10 with the normally upper flat face 16 of the saucer or dish body member 15 in face contact with the free end 20 of the frustro-conical portion 12 of the container, whereupon the fountain is inverted and placed on a suitable support, the floor, ground or other support in the brooder or chicken house. The water within the container 10 flows through the hole or aperture 21 into the trough 19 until the water level 22, within said trough, rises to a point to seal off the said hole or aperture 21 whereupon
3 further flow from the container 10 is stopped.
This operation is in accordance with the well known barometric principle.

By forming the body portion 12 as a frusto-cone and the top as a true cone the capacity of the container rapidly decreases per unit of length from the open end to the point 14. Upon placing the container in position for use the water is to a large extent all positioned near the open end of the container 10 and thereby providing a comparatively large air space 23 in the container 10 beneath its top 13 and the smaller end of the frusto-conical body portion 12 and thereby providing considerable weight to the bottom or support end of the fountain. By this construction it will be readily seen that a considerable weight is disposed at the base of the drinking fountain and a considerable force would be required to get the same.

It has further been found that by forming the container 10 as well as the dish or saucer 11 of flexible material, rubber for example, a sufficient seal is obtained at the open end of the container by merely placing the free end 20 of the container body portion wall on the surface 18 of the base body portion 15 to prevent leakage or seepage between said engaging faces. Furthermore by forming the container 10 and the dish or saucer 11 of flexible material, such as rubber, and should the water within the container and dish or saucer freeze the said dish or saucer 11 can be stripped from the ice in much the same manner as the ice cube forming tray in a mechanical refrigerator is stripped from the ice cubes after being formed or frozen. The ring of ice left at the end of the container 10 can be broken away whereupon the container 10 is stripped from the ice within the container.

The upsetting of chick or fowl fountains is frequently and generally caused by the chicks or fowl tending to set or roost on the top of the fountain. As is well known chicks and fowl tend to follow one another and perch adjacent to one another and it is the operation of their wings in alighting and taking off that they upset the equilibrium of the fountain. By forming the container top 13 as a comparatively sharp point 14 the chicks are discouraged from setting or roosting and should one balance itself on the point 14 no other would attempt to perch alongside since there would be nothing but sharply inclined walls to perch on. In this way and due to the fact of the weighted base, effected by the water in the fountain, the chick or fowl drinking fountain is prevented from being upset and displaced.

It may be desirable to effect a more permanent connection of the container 10 and the base or dish or saucer 11 and any suitable or desirable means may be employed to effect this. As illustrated in Figs. 4 and 5 a more permanent connection of these parts is effected by forming in the dish or saucer body portion 18 a groove 24 of a width to snugly receive the free end 25 of the container wall. It is to be understood that this connection will not prevent the stripping of the dish or saucer 11 from ice should same form in the trough 19 and that the container 10 is stripped from any ice that may form therein in the same manner as above described.

It may further be desirable to provide some means to anchor the chick or fowl drinking fountain against bodily displacement along the floor, ground or other support, and for this purpose, and as illustrated in Figs. 6 and 7, the bottom of the dish or saucer body portion 15 is relieved as at 25 thereby providing a rim 26 downwardly projecting from the periphery of the said dish or saucer body portion 15 and forming in effect a suction cup 27 below the dish or saucer 11.

It is believed the operation of the modification in Figs. 6 and 7 is obvious since a downward pressure on the chick or fowl drinking fountain assembly will dislodge air from the suction cup 27 and thereby cause a frictional connection between the chick or fowl drinking fountain and its support.

The modification of Figs. 6 and 7, similar to those above described, is preferably formed of rubber or other flexible material to incorporate therein the advantages of the constructions above described.

In view of the foregoing it is believed now evident that there has been provided a chick or fowl drinking fountain that overcomes the objections to prior structures and accomplishes the objects initially set forth.

What is claimed is:

1. A deformable poultry drinking fountain of the barometric type, comprising a dish-shaped base having a substantially flat body portion and an upwardly extending flange, and an inverted open-ended container having a lateral water discharge hole adjacent its open end resting on said flat body portion peripherally adjacent said flange and cooperating therewith to form a drinking trough between said container and said flange, said container and base being formed of elastic, rubber-like form-retaining material, the elastic qualities of said material permitting said container and base to be deformed by application of manual tension, whereby said container and base may be separated and stripped from each other and from ice resulting from water freezing in said container and trough.

2. A deformable poultry drinking fountain as defined in claim 1 wherein said flexible base has an imperforate inwardly recessed bottom to provide suction engagement with a generally plane supporting surface so that said fountain is not easily upset.

JOHN FRANZ FECK.

REFERENCES CITED

The following references are of record in the file of this patent:

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>69,351</td>
<td>Lomax</td>
<td>Oct. 1, 1867</td>
</tr>
<tr>
<td>509,755</td>
<td>Chapin</td>
<td>Aug. 23, 1898</td>
</tr>
<tr>
<td>1,299,001</td>
<td>Wygal</td>
<td>Apr. 1, 1919</td>
</tr>
<tr>
<td>1,836,689</td>
<td>Whitman</td>
<td>May 5, 1932</td>
</tr>
<tr>
<td>1,729,912</td>
<td>Tolley</td>
<td>Oct. 1, 1929</td>
</tr>
<tr>
<td>1,783,921</td>
<td>Thompson et al.</td>
<td>Dec. 23, 1930</td>
</tr>
<tr>
<td>1,805,772</td>
<td>Lamarre</td>
<td>May 19, 1931</td>
</tr>
<tr>
<td>1,634,516</td>
<td>Dalna</td>
<td>Dec. 1, 1931</td>
</tr>
<tr>
<td>2,139,605</td>
<td>Sengbusch</td>
<td>Feb. 6, 1940</td>
</tr>
<tr>
<td>2,215,630</td>
<td>Wright et al.</td>
<td>Sept. 24, 1940</td>
</tr>
</tbody>
</table>