Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 020 460 A2

EUROPEAN PATENT APPLICATION

(43) Date of publication: 19.07.2000 Bulletin 2000/29 (51) Int. Cl.7: **C07D 401/12**, A61K 31/44

(21) Application number: 00108479.7

(22) Date of filing: 27.05.1994

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL

PT SE

Designated Extension States:

SI

(30) Priority: 28.05.1993 SE 9301830

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 94917244.9 / 0 652 872

(71) Applicant: AstraZeneca AB 151 85 Södertäije (SE)

(72) Inventors:

 Lindberg, Per Lennart 431 51 Mölndal (SE) Von Unge, Svenker 430 33 Fjäras (SE)

(74) Representative:

Dost, Wolfgang, Dr.rer.nat., Dipl.-Chem. et al Patent- und Rechtsanwälte Bardehle . Pagenberg . Dost . Altenburg . Geissler . Isenbruck Galileiplatz 1 81679 München (DE)

Remarks:

This application was filed on 18 - 04 - 2000 as a divisional application to the application mentioned under INID code 62.

- (54) The sodium salt of the (-)-enantiomer of omegrazole
- (57) The sodium salt of (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridingyl)methyl]sulfinyl]-1H-benz-imidazole, a process for its preparation, and pharmaceutical preparations containing same as active ingredient.

Description

10

Field of the invention

[0001] The present invention is directed to new compounds with high optical purity, their use in medicine, a process for their preparation and their use in the manufacture of pharmaceutical preparation. The invention also relates to novel intermediates in the preparation of the compounds of the invention.

Background of the invention

[0002] The compound 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole, having the generic name omeprazole, and therapeutically acceptable alkaline salts thereof are described in EP 5129 and EP 124 495, respectively. Omeprazole and its alkaline salts are effective gastric acid secretion inhibitors, and are useful as antiulcer agents. The compounds, being sulfoxides, have an asymmetric center in the sulfur atom, i.e. exist as two optical isomers (enantiomers). It is desirable to obtain compounds with improved pharmacokinetic and metabolic properties which will give an improved therapeutic profile such as a lower degree of interindividual variation. The present invention provides such compounds, which are novel salts of single enantiomers of omeprazole.

[0003] The separation of the enantiomers of omeprazole in analytical scale is described in e.g. J. Chromatography, 532 (1990), 305-19 and in a preparative scale in DE 4035455. The latter has been done by using a diastereomeric ether which is separated and thereafter hydrolysed in an acidic solution. Under the acidic conditions needed for hydrolysis of the attached group, omeprazole is quite sensitive and the acid has to be quickly neutralized with a base to avoid degradation of the acid-sensitive compound. In the above mentioned application this is done by adding the reaction mixture containing concentrated sulfuric acid to a concentrated solution of NaOH. This is disadvantageous because there is a great risk of locally reaching pH values between 1-6, which would be devastating for the substance. Moreover, instantaneous neutralisation will create heat which will be difficult to handle in large scale production.

[0004] The present invention in a further aspect provides a novel method for preparing the novel compounds of the invention in large scale. This novel method can also be used in large scale to obtain single enantiomers of omeprazole in neutral form.

[0005] There is no example known in the prior art of any isolated or characterized salt of optically pure omeprazole, i.e. single enantiomers of omeprazole neither of any isolated or characterized salt of any optically pure omeprazole analogue.

Detailed description of the invention

35 [0006] The present invention refers to the new Na⁺, Mg²⁺, Li⁺, K⁺, Ca²⁺ and N⁺(R)₄ salts of the single enantiomers of omeprazole, where R is an alkyl with 1-4 carbon atoms, i.e. Na⁺, Mg²⁺, Li⁺, K⁺, Ca²⁺ and N⁺(R)₄ salts of (+)-5-meth-oxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole, where R is an alkyl with 1-4 carbon atoms.

[0007] Particularly preferred salts according to the invention are the Na⁺, Ca²⁺ and Mg²⁺ salts, i.e (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole sodium salt, (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl] sulfinyl]-1<u>H</u>-benzimidazole magnesium salt, (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole magnesium salt, (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole calcium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole calcium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole calcium salt.

[0008] Most preferred salts according to the invention are the optically pure Na⁺ salts of omeprazole according to compounds la and lb

50

Ia (+)-enantiomer

Ib (-)-enantiomer

and the optically pure magnesium salts of omeprazole according to compounds Ila and Ilb

Ila (+)-enantiomer

IIb (-)-enantiomer

45

40

5

10

15

20

[0009] With the expression "optically pure Na* salts of omeprazole" is meant the (+)-enantiomer of omeprazole Nasalt essentially free of the (-)-enantiomer of omeprazole Nasalt and the (-)-enantiomer essentially free of the (+)-enantiomer, respectively. Single enantiomers of omeprazole have hitherto only been obtained as syrups and not as crystalline products. By means of the novel specific method according to one aspect of the invention of preparing the single enantiomers of omeprazole, the salts defined by the present invention are easy to obtain. In addition, the salts, however not the neutral forms, are obtained as crystalline products. Because it is possible to purify optically impure salts of the enantiomers of omeprazole by crystallisation, they can be obtained in very high optical purity, namely ≥99.8% enantiomeric excess (e.e.) even from an optically contaminated preparation. Moreover, the optically pure salts are stable towards racemization both in neutral pH and basic pH, which was surprising since the known deprotonation at the carbon atom between the pyridine ring and the chiral sulphur atom was expected to cause racemization under alkaline conditions. This high stability towards racemization makes it possible to use a single enantiomeric salt of the invention in therapy.

[0010] The specific method of preparation of the single enantiomers of omeprazole is a further aspect of the invention as mentioned above and it can be used to obtain the single enantiomers of omeprazole in neutral from as well as the salts thereof.

[0011] The compounds according to the invention may be used for inhibiting gastric acid secretion in mammals and man. In a more general sense, the compounds of the invention may be used for the treatment of gastric acid-related diseases and gastrointestinal inflammatory diseases in mammals and man, such as gastric ulcer, duodenal ulcer, reflux esophagitis, and gastritis. Furthermore, the compounds may be used for treatment of other gastrointestinal disorders where gastric antisecretory effect is desirable e.g. in patients on NSAID therapy, in patients with gastrinomas, and in patients with accute upper gastrointestinal bleeding. They may also be used in patients in intensive care situations, and pre- and postoperatively to prevent acid aspiration and stress ulceration. The compound of the invention may also be used for treatment or prophylaxis of inflammatory conditions in mammals, including man, especially those involving lysozymal enzymes. Conditions that may be specifically mentioned are rheumatoid arthritis and gout. The compound of the invention may also be useful in the treatment of psoriasis as well as in the treatment of Helicobacter infections.

[0012] Yet a further aspect of the invention is the compound III, which is an intermediate used in the specific method of preparation.

$$H_3C$$
 CH_3
 CH_2
 CH_2
 OCH_3
 CH_2
 OCH_3
 CH_2
 OCH_3
 OC

<u>Preparation</u>

20

25

30

35

40

45

50

55

[0013] The optically pure compounds of the invention, i.e. the single enantiomers, are prepared by separating the two stercoisomers of a diastereomeric mixture of the following type, 5- or 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1-[acyloxymethyl]-1-[H-benzimidazole, formula IV

10

15

wherein the methoxy substituent in the benzimidazole moiety is in position 5 or 6, and wherein the Acyl radical is as defined below, followed by a solvolysis of each separated diastereomer in an alkaline solution. The formed single enantiomers of omeprazole are then isolated by neutralizing aqueous solutions of the salts of the single enantiomers of omeprazole with a neutralizing agent which can be an acid or an ester such as methyl formate.

[0014] The Acyl moiety in the diastereomeric ester may be a chiral acyl group such as mandeloyl, and the asymmetric center in the chiral acyl group can have either R or S configuration.

[0015] The diastereomeric esters can be separated either by chromatography or fractional crystallization.

[0016] The solvolysis usually takes place together with a base in a protic solvent such as alcohols or water, but the acyl group may also be hydrolysed off by a base in an aprotic solvent such as dimethylsulfoxide or dimethylformamide. The reacting base may be OH or R¹O where R¹ can be any alkyl or aryl group.

[0017] To obtain the optically pure Na $^+$ salts of the invention, i.e. the single enantiomers of omeprazole Na $^+$ salts, the resulting compound is treated with a base, such as NaOH, in an aqueous or nonaquous medium, or with NaOR 2 wherein R 2 is an alkyl group containing 1-4 carbon atoms, or with NaNH $_2$. Also alkaline salts wherein the cation is Li $^+$ or K $^+$ may be prepared using lithium or potassium salts of the above mentioned bases. In order to obtain the crystalline form of the Na $^+$ salt, addition of NaOH in a non-aqueous medium such as a mixture of 2-butanone and toluene, is preferred.

[0018] To obtain the optically pure Mg^{2+} salts of the invention, optically pure Na^+ salts are treated with an aqueous solution of an inorganic magnesium salt such as $MgCl_2$, whereupon the Mg^{2+} salts are precipitated. The optically pure Mg^{2+} salts may also be prepared by treating single enantiomers of omeprazole with a base, such as $Mg(OR^3)_2$, wherein R^3 is an alkyl group containing 1-4 carbon atoms, in a non-aqueous solvent such as alcohol (only for alcoholates), e.g. ROH, or in an ether such as tetrahydrofuran. In an analogous way, also alkaline salts wherein the cation is Ca^{2+} can be prepared, using an aqueous solution of an inorganic calcium salt such as $CaCl_2$.

[0019] Alkaline salts of the single enantiomers of the invention are, as mentioned above, beside the sodium salts (compounds la and lb) and the magnesium salts (compound lla and llb), exemplified by their salts with Li⁺, K⁺, Ca²⁺ and N⁺(R)₄, where R is an alkyl with 1-4 C-atoms.

[0020] For clinical use the single enantiomers, i.e. the optically pure compounds, of the invention are formulated into pharmaceutical formulations for oral, rectal, parenteral or other modes of administrations. The pharmaceutical formulations contain the single enantiomers of the invention normally in combination with a pharmaceutically acceptable carrier. The carrier may be in form of a solid, semisolid or liquid diluent, or capsule. These pharmaceutical preparations are a further object of the invention. Usually the amount of active compound is between 0.1-95% by weight of the preparation, between 0.2-20% by weight in preparations for parenteral use and between 1-50% by weight in preparations for oral administration.

In the preparation of pharmaceutical formulations in form of dosage units for oral administration the optically pure compound may be mixed with a solid, powdered carrier, such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose derivates, gelatin or another suitable carrier, stabilizing substances such as alkaline compounds e.g. carbonates, hydroxides and oxides of sodium, potassium, calcium, magnesium and the like as well as with lubricating agents such as magnesium stearate, calcium stearate, sodium stearyl fumarate and polyethylenglycol waxes. The mixture is then processed into granules or pressed into tablets. Granules and tablets may be coated with an enteric coating which protects the active compound from acid catalysed degradation as long as the dosage form remains in the stomach. The enteric coating is chosen among pharmaceutically acceptable enteric-coating materials e.g. beeswax, shellac or anionic film-forming polymers and the like, if preferred in combination with a suitable plasticizer. To the coating various dyes may be added in order to distinguish among tablets or granules with different amounts of the active

compound present.

[0022] Soft gelatine capsules may be prepared with capsules containing a mixture of the active compound, vegetable oil, fat, or other suitable vehicle for soft gelatine capsules. Soft gelatine capsules may also be enteric-coated as described above.

[0023] Hard gelatine capsules may contain granules or enteric-coated granules of the active compound. Hard gelatine capsules may also contain the active compound in combination with a solid powdered carrier such as lactose, saccharose, sorbitol, mannitol, potato starch, amylopectin, cellulose derivates or gelatin. The capsules may be entericcoated as described above.

[0024] Dosage units for rectal administration may be prepared in the form of suppositories which contain the active substance mixed with a neutral fat base, or they may be prepared in the form of a gelatine rectal capsule which contains the active substance in a mixture with a vegetable oil, paraffin oil or other suitable vehicle for gelatine rectal capsules, or they may be prepared in the form of a ready-made micro enema, or they may be prepared in the form of a dry micro enema formulation to be reconstituted in a suitable solvent just prior to administration.

[0025] Liquid preparation for oral administration may be prepared in the form of syrups or suspensions, e.g. solutions or suspensions containing from 0.2% to 20% by weight of the active ingredient and the remainder consisting of sugar or sugar alcohols and a mixture of ethanol, water, glycerol, propylene glycol and/or polyethylene glycol. If desired, such liquid preparations may contain colouring agents, flavouring agents, saccharine and carboxymethyl cellulose or other thickening agents. Liquid preparations for oral administration may also be prepared in the form of dry powder to be reconstituted with a suitable solvent prior to use.

[0026] Solutions for parenteral administrations may be prepared as solutions of the optically pure compounds of the invention in pharmaceutically acceptable solvents, preferably in a concentration from 0.1 to 10% by weight. These soultions may also contain stabilizing agents and/or buffering agents and may be manufactured in different unit dose ampoules or vials. Solutions for parenteral administration may also be prepared as dry preparations to be reconstituted with a suitable solvent extemporaneously before use.

[0027] The typical daily dose of the active compound will depend on various factors such as for example the individual requirement of each patient, the route of administration and the disease. In general, oral and parenteral dosages will be in the range of 5 to 500 mg per day of active substance.

[0028] The invention is illustrated by the following examples.

Example 1. Preparation of (+)-5-methoxy-2-[[(4-methoxy-3.5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole sodium salt

[0029] 100 mg (0.3 mmol) of (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1<u>H</u>-benzimida-zole (contaminated with 3% of the (+)-isomer) was dissolved in 1 ml of 2-butanone with stirring. 60 μl of an aqueous solution of 5.0 M sodium hydroxide and 2 ml of toluene were added. The resultant mixture was non-homogeneous. In order to obtain a clear solution, more 2-butanone was added (ca 1 ml) and the mixture was stirred at ambient temperature over night. The formed precipitate was filtered off and washed with ether. There was obtained 51 mg (46%) of the tide compound as white crystals m.p. (decomposition) 246-248°C. The optical purity (e.e.) which was analyzed by chiral column chromatography was ≥99.8%. [α] $_{0}^{20} = +42.8^{\circ}$ (c=0.5%, water).

[0030] NMR data are given below.

Example 2. Preparation of (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole sodium salt

100 mg (0.3 mmol) of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1<u>H</u>-benzimidazole (contaminated with 3% of the (-)-isomer) was dissolved in 1 ml of 2-butanone with stirring. 60 μl of an aqueous solution of 5.0 M sodium hydroxide and 2 ml of toluene were added. The resultant mixture was non-homogeneous. In order to obtain a clear solution, more 2-butanone was added (ca 1 ml) and the mixture was stirred at ambient temperature over night. The formed precipitate was filtered off and washed with ether. There was obtained 56 mg (51%) of the tide compound as white crystals m.p. (decomposition) 247-249°C. The optical purity (e.e.) which was analyzed by chiral column chromatography was ≥99.8%. [α] ²⁰/_D = -44.1° (c=0.5%, water).

[0032] NMR data are given below.

Example 3. Preparation of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole magnesium salt

[0033] 2.9 ml of a 0.1 M solution of NaOH was added to 0.10 g (0.29 mmol) (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole. To this mixture 2 ml methylene chloride was added, and after

mixing in a separatory funnel the aqueous solution was separated off. A solution of 14 mg (0.145 mmol) MgCl₂ in water was added dropwise. The formed precipitate was isolated by centrifugation, and 52 mg (50%) of the product was isolated as an amorphous powder. The optical purity (e.e.) was 98%, and thus the same as the starring material. The optical purity was determined by chromatography on an analytical chiral column. $[\alpha]_D^{20} = +101.2^{\circ}$ (c=1%, methanol). The Mg content of the sample was found to be 3.0%, shown by atomic absorption spectroscopy.

Example 4. Preparation of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole magnesium salt

(-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole sodium salt (0.500 [0034] g, 1.36 mmol) was dissolved in water (10 ml). To this mixture 10 ml of an aqueous solution of MgCl₂xH₂O (138 mg, 0.68 mmol) was added dropwise and the formed precipitate was isolated by centrifugation. There was obtained 418 mg (86%) of the product as a white powder. The optical purity (ee) of the product was 99.8% which was the same as the optical purity of the starring material. The optical purity was determined by chromatography on an analytical chiral column. $[\alpha]_D^{20} = +129.9^{\circ} (c=1\%, methanoi).$ 15

Example 5. Preparation of (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole magnesium salt

(+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl)-1H-benzimidazole [0035] (0.165 g, 0.45 mmol) was dissolved in water (3 ml). To this mixture 2 ml of an aqueous solution of MgCl₂xH₂O (46 mg, 0.23 mmol) was added dropwise and the formed precipitate was isolated by centrifugation. There was obtained 85 mg (51%) of the product as a white powder. The optical purity (ee) of the product was 99.9% which was the same or better as the optical purity of the starting material. The optical purity was determined by chromatography on an analytical chiral column. $[\alpha]_{D}^{20} = -128.2^{\circ} \text{ (c=1\%, methanol)}.$

Table 1

20	Ex.	Solvent ,	NMR data δ ppm
30	1.	DMSO-d ₆ 500 MHz	2.20 (s, 3H), 2.22 (s, 3H), 3.69 (s, 3H), 3.72 (s, 3H), 4.37 (d, 1H), 4.75 (d, 1H), 6.54 (dd, 1H), 6.96 (d, 1H) 7.30 (d, 1H), 8.21 (s, 1H).
35	2.	DMSO-d ₆ 500 MHz	2.20 (s, 3H), 2.22 (s, 3H), 3.69 (s, 3H), 3.72 (s, 3H), 4.38 (d, 1H), 4.73 (d, 1H), 6.54 (dd, 1H), 6.96 (d, 1H), 7.31 (d, 1H), 8.21 (s, 1H).

[0036] Preparation of the synthetic intermediates according to the invention will be described in the following examples.

Example 6. Preparation of 6-methoxy-2-[[(4-methoxy-3.5-dimethyl-2-pyridinyl)methyl]-(R/S)-sulfinyl]-1-[(R)-mandeloyloxymethyl]-1H-benzimidazole

[0037] A solution of 3.4 g sodium hydroxide in 40 ml water was added to a mixture of 14.4 g (42 mmol) tetrabutylammonium hydrogen sulphate and 6.4 g (42 mmol) (R)-(-)-mandelic acid. The mixture was extracted wit 400 ml chloroform. After separation, the organic extract was heated to reflux wit 16.6 g (42 mmol) of the racemate of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl]-1-[chloromethyl]-1H-benzimidazole. Evaporation of the solvent was followed by dilution with 100 ml dichloromethane and 700 ml ethyl acetate. The mixture was washed with 3 x 200 ml water and the organic solution was dried over MgSO₄ and then evaporated. The crude material was purified by recrystallization from 100 ml acetonitrile, giving 8.1 g of the title compound (38%) as a diastereomeric mixture.

[0038] NMR data are given below.

Example 7. Separation of the more hydrophilic diastereomer of 6-methoxy-2-[[(4-methoxy-3.5-dimethyl-2-pyridinyl)methyl]-(R/S)-sulfinyl]-1-[(R)-mandeloyloxymethyl]-1H-benzimidazole

The diastereomers of the title compound in Example 6 were separated using reversed phase chromatography (HPLC). Approximately 300 mg of the diastereomeric mixture was dissolved in 10 ml hot acetonitrile which was diluted with 10 ml of a mixture of aqueous 0.1 M ammonium acetate and acetonitrile (70/30). The solution was injected to the column and the compounds were eluted with a mixture of aqueous 0.1 M ammoniumacetate and acetonitrile

(70/30). The more hydrophilic isomer was easier to obtain pure than the less hydrophilic one. The work up procedure for the fraction which contained pure isomer was as follows; extraction with dichlorometane, washing the organic solution with aqueous 5 % sodium hydrogen carbonate solution, drying over Na₂SO₄ and evaporation of the solvent on a rotavapor (at the end of the evaporation the removal of acetonitrile was facilitated by adding more dichloromethane). Using 1.2 g of the diastereomeric mixture with the above mentioned technique, the more hydrophilic isomer, 410 mg, was obtained in a pure state as a colourless syrup.

[0040] NMR data are given below.

Example 8. Preparation of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-(R/S)-sulfinyl]-1-[(S)-mandeloy-loxymethyl]-1H-benzimidazole

[0041] The product was obtained from 8.1 g (202 mmol) sodium hydroxide in 100 ml water, 34.4 g (101 mmol) tetrabutylammonium hydrogen sulfate, 15.4 g (101 mmol) (S)-(+)-mandeic acid and 39.9 g (101 mmol) of the racemate of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-1-[chloromethyl]-1-[chloromethyl]-1-henzimidazole using the same procedure as in Example 6. Recrystallization from 100 ml acetonitrile yielded 21.3 g. i.e. 41% of the title compound as a diastereomeric mixture.

[0042] NMR data are given below.

Example 9. Separation of the more hydrophilic diastereomer of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-(R/S)-sulfinyl]-1-[(S)-mandeloyloxymethyl]-1H-benzimidazole

[0043] The diastereomers of the title compound in Example 8 were separated using reversed phase chromatography (HPLC) in the same way as in Example 7, but using the diasteromeric mixture of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-(R/S)-sulfinyl]-1-[(S)-mandeloloxymethyl]-1\(\frac{1}{2}\)-benzimidazole instead of the (R)-mandelic ester used in Example 7. Using 2.1 g of the diastereomeric mixture, the more hydrophilic isomer, 760 mg, was obtained in a pure state as a colourless syrup.

[0044] NMR data are given below.

Example 10. Preparation of (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl]-1H-benzimidazole

[0045] 0.23 g (0.45 mmol) of the more hydrophilic diastereomer of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1-[(R)-mandeloyloxymethyl]-1 $\underline{\text{H}}$ -benzimidazole was dissolved in 15 ml methanol. A solution of 36 mg (0.9 mmol) sodium hydroxid in 0.45 ml water was added, and after 10 minutes the mixture was evaporated on a rotavapor. The residue was partitioned between 15 ml water and 15 ml dichloromethane. The organic solution was extracted with 15 ml water and to the combined aqueous solutions was added 85 μ l (1.4 mmol) methyl formate. After 15 minutes the mixture was extracted with 3x10 ml dichloromethane. The organic solution was dried over Na₂SO₄ and then evaporated. There was obtained 0.12 g (77%) of the title compound as a colourless syrup. The optical purity (e.e.) which was analyzed by chiral column chromatography was 94%. [α] $\frac{20}{20}$ = -155° (c=0.5%, chloroform).

[0046] NMR data are given below

Example 11. Preparation of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl]-1H-benzimidazole

[0047] 0.76 g (1.5 mmol) of the more hydrophilic diastereomer of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1-[(S)-mandeloyloxymethyl]-1 \underline{H} -benzimidazole was dissolved in 50 ml methanol. A solution of 0.12 mg (3.0 mmol) sodium hydroxid in 1.5 ml water was added, and after 10 minutes the mixture was evaporated on a rotavapor. The residue was partitioned between 25 ml water and 25 ml dichloromethane. The organic solution was extracted with 25 ml water and to the combined aqueous solutions was added 200 μ l (3.2 mmol) methyl formate. After 15 minutes the mixture was extracted with 3x25 ml dichloromethane. The organic solution was dried over Na₂SO₄ and then evaporated. There was obtained 0.42 g (81%) of the title compound as a colourless syrup. The optical purity (e.e.) which was analyzed by chiral column chromatography was 98%. [α] $_{0}^{20}$ = +157° (c=0.5%, chloroform).

[0048] NMR data are given below

55

30

Table 2

	Ex.	Solvent	NMR data δ ppm
5	6.	CDCl ₃ 500 MHz	2.18 (s, 3H), 2.20 (s, 3H), 2.36 (s, 3H), 2.39 (s, 3H), 3.77 (s, 3H), 3.78 (s, 3H), 3.82 (s, 3H), 3.87 (s, 3H), 4.80 (d, 1H), 4.88 (d, 1H), 5.0 (m, 2H), 5.34 (s, 2H), 6.43 (d, 1H), 6.54 (d, 1H), 6.6-6.7 (m, 2H), 6.90 (d, 1H), 6.95-6.98 (m, 2H), 7.01 (d, 1H), 7.2-7.3 (m, 6H), 7.37 (m, 2H), 7.44 (m, 2H), 7.58 (d, 1H), 7.62 (d, 1H), 7.95 (s, 1H), 7.97 (s, 1H).
10	7.	CDCl ₃ 500 MHz	2.20 (s, 3H), 2.36 (s, 3H), 3.78 (s, 3H), 3.82 (s, 3H), 4.80 (d, 1H), 5.00 (d, 1H), 5.35 (d, 1H), 6.43 (d, 1H), 6.63 (d, 1H), 6.90 (d, 1H), 6.97 (dd, 1H), 7.2-7.3 (m, 3H), 7.37 (m, 2H), 7.62 (d, 1H), 7.97 (s, 1H).
15	8.	ÇDCl₃ 500 MHz	2.19 (s, 3H), 2.20 (s, 3H), 2.36 (s, 3H), 2.39 (s, 3H), 3.77 (s, 3H), 3.78 (s, 3H), 3.83 (s, 3H), 3.87 (s, 3H), 4.80 (d, 1H), 4.88 (d, 1H), 5.0 (m, 2H), 5.34 (s, 2H), 6.43 (d, 1H), 6.54 (d, 1H), 6.6-6.7 (m, 2H), 6.90 (d, 1H), 6.96-6.98 (m, 2H), 7.01 (d, 1H), 7.2-7.3 (m, 6H), 7.37 (m, 2H), 7.44 (m, 2H), 7.58 (d, 1H), 7.62 (d, 1H), 7.95 (s, 1H), 7.97 (s, 1H).
20	9.	CDCI ₃ 500 MHz	2.20 (s, 3H), 2.36 (s, 3H), 3.78 (s, 3H), 3.82 (s, 3H), 4.80 (d, 1H), 5.00 (d, 1H), 5.35 (d, 1H), 6.43 (d, 1H), 6.63 (d, 1H), 6.90 (d, 1H), 6.97 (dd, 1H), 7.2-7.3 (m, 3H), 7.37 (m, 2H), 7.62 (d, 1H), 7.97 (s, 1H).
	10.	CDCl ₃ 300 MHz	2.18, (s, 3H), 2.22 (s, 3H), 3.68 (s, 3H), 3.83 (s, 3H), 4.77 (m, 2H), 6.93 (dd, 1H), ~7.0 (b, 1H), ~7.5 (b, 1H), 8.19 (s, 1H).
25	11.	CDCl₃	2.21 (s, 3H), 2.23 (s, 3H), 3.69 (s, 3H), 3.84 (s, 3H), 4.76 (m, 2H), 6.94 (dd, 1H), ≈7.0 (b, 1H), ≈7.5 (b, 1H), 8.20 (s, 1H).

[0049] The best mode of carrying out the invention known at present is to use the sodium salts of the optically pure compounds of the invention, thus the compounds described in Example 1 and Example 2.

[0050] Pharmaceutical preparations containing the compounds of the invention as active ingredient are illustrated in the following formulations.

Syrup

[0051] A syrup containing 1% (weight per volume) of active substance was prepared from the following ingredients:

40	Compound according to Example 2	1.0 g
40	Sugar, powder	30.0 g
	Saccharine	0.6 g
	Glycerol	5.0 g
45	Flavouring agent	0.05 g
	Ethanol 96%	5.0 g
	Distilled water q.s. to a final volume of	100 ml

[0052] Sugar and saccharine were dissolved in 60 g of warm water. After cooling the active compound was added to the sugar solution and glycerol and a solution of flavouring agents dissolved in ethanol were added. The mixture was diluted with water to a final volume of 100 ml.

55 Enteric-coated tablets

50

[0053] An enteric coated tablet containing 50 mg of active compound was prepared from the following ingredients:

		Compound according to Example 3 as Mg salt	500 g
5		Lactose	700 g
		Methyl cellulose	6 g
		Polyvinylpyrrolidone cross-linked	50 g
10		Magnesium stearate	15 g
		Sodium carbonate	6 g
	}	Distilled water	q.s.
**	11	Cellulose acetate phthalate	200 g
15		Cetyl alcohol	15 g
		Isopropanol	2000 g
]	Methylene chloride	2000 g

I Compound according to Example 3, powder, was mixed with lactose and granulated with a water solution [0054] of methyl cellulose and sodium carbonate. The wet mass was forced through a sieve and the granulate dried in an oven. After drying the granulate was mixed with polyvinylpyrrolidone and magnesium stearate. The dry mixture was pressed into tablet cores (10 000 tablets), each tablet containing 50 mg of active substance, in a tabletting machine using 7 mm diameter punches.

II A solution of cellulose acetate phthalate and cetyl alcolhol in isopropanol/methylene chloride was sprayed [0055] onto the tablets I in an Accela Cota^R, Manesty coating equipment. A final tablet weight of 110 mg was obtained.

Solution for intravenous administration

[0056] A parenteral formulation for intravenous use, containing 4 mg of active compound per ml, was prepared from the following ingredients:

Compound according to Example 2	4 g
Sterile water to a final volume of	1000 ml

The active compound was dissolved in water to a final volume of 1000 ml. The solution was filtered through a 0.22 µm filter and immediately dispensed into 10 ml sterile ampoules. The ampoules were sealed.

Capsules

20

30

35

[0058]Capsules containing 30 mg of active compound were prepared from the following ingredients:

	Compound according to Example 1	300 g
50	Lactose	700 g
	Microcrystalline cellulose	40 g
	Hydroxypropyl cellulose low-substituted	62 g
55	Disodium hydrogen phosphate	2 g
	Purified water	q.s.
	·	. 1

[0059] The active compound was mixed with the dry ingredients and granulated with a solution of disodium hydrogen phosphate. The wet mass was forced through an extruder and spheronized and dried in a fluidized bed dryer.

[0060] 500 g of the pellets above were first coated with a solution of hydroxypropyl methylcellulose, 30 g, in water, 750 g, using a fluidized bed coater. After drying, the pellets were coated with a second coating as given below:

Coating solution:

[0061]

10

15

20

Hydroxypropyl methylcellulose phthalate	70 g
Cetyl alcohol	4 g
Acetone	200 g
Ethanol	600 g

[0062] The final coated pellets were filled into capsules.

<u>Suppositories</u>

[0063] Suppositories were prepared from the following ingredients using a welding procedure. Each suppository contained 40 mg of active compound.

25

30

55

Compound according to Example 2	4 g
Witepsol H-15	180 g

[0064] The active compound was homogenously mixed with Witepsol H-15 at a temperature of 41° C. The molten mass was volume filled into pre-fabricated suppository packages to a net weight of 1.84 g. After cooling the packages were heat sealed. Each suppository contained 40 mg of active compound.

Stability towards racemization at different pH:es

[0065] The stability of the optically pure compounds of the invention towards racemization has been measured at low concentrations in refrigerator in aqueous buffer solutions at pH 8, 9.3, 10 and 11.2. The stereochemical stability was measured by comparing the optical purity for the (-)-isomer of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole in buffer solution immediately after dissolving and after several days. The measurement was performed by chromatography on an analytical chiral column. The surprising high stereochemical stability in alkaline conditions for the compounds of invention is exemplified by the fact that no racemization for the test compound was obtained at pH 11.2 even after 21 days. At pH 8, 9.3 and 10, the chemical degradation of the compound is more apparent which makes the racemization measurement more difficult to perform, however at none of these pH values a detectable racemization was obtained after 16 days.

[0066] In another racemization experiment with the optically pure compounds of the invention, an aqueous phosphate buffer solution (pH=11) of the (+)-isomer of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl)sulfinyl]-1H-benzimidazole (c= 10^{-5} M) was warmed for 26 hours at 37°C without any racemization at all being observed.

[0067] The following pages 22 - 26 of the description relate to preferred embodiments of the invention, wherein "embt. / embts." means embodiment / embodiments.

- 1. Optically pure compounds **characterized** in that the compounds are Na⁺, Mg²⁺, Li⁺, K⁺, Ca²⁺ and N⁺(R)₄ salts of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1 \underline{H} -benzimidazole and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1 \underline{H} -benzimidazole, wherein R is an alkyl with 1-4 carbon atoms.
- 2. Compounds according to embt. 1 characterized in that the compounds are (+)-5-methoxy-2-[[(4-methoxy-3,5-

dimethyl-2-pyridinyl)methyl]sulfinyl]-1 \underline{H} -benzimidazole sodium salt, (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1 \underline{H} -benzimidazole sodium salt, (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1 \underline{H} -benzimidazole magnesium salt, (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1 \underline{H} -benzimidazole calcium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1 \underline{H} -benzimidazole calcium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1 \underline{H} -benzimidazole calcium salt.

5

10

15

20

25

30

35

40

45

50

55

- 3. Compounds according to embts. 1 and 2 **characterized** in that the compounds are (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl] sulfinyl]-1<u>H</u>-benzimidazole sodium salt, (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole sodium salt, (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole magnesium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl] sulfinyl]-1<u>H</u>-benzimidazole magnesium salt.
- 4. Compounds according to embts. 1 and 2 **characterized** in that the compounds are (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl-1<u>H</u>-benzimidazole sodium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl] sulfinyl-1<u>H</u>-benzimidazole sodium salt in their crystalline forms.
- 5. Compounds according to embts. 1 and 2 **characterized** in that the compound is (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl-1<u>H</u>-benzimidazole sodium salt in its crystalline form.
- 6. Compounds according to embts. 1 and 2 **characterized** in that the compound is (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl-1<u>H</u>-benzimidazole sodium salt in its crystalline form.
- 7. Process for the preparation of a compound according to embt. 1 **characterized** in that a diastereomeric ester of formula IV

$$H_3C$$
 CH_3
 CH_2
 CH_2
 OCH_3
 CH_2
 OCH_3
 CH_2
 $OACY!$
 CH_3

wherein Acyl designates a chiral acyl group such as mandeloyl, having either R or S configuration, is separated, and each of the separated diastereomers is dissolved in an alkaline solution where the acyloxymethyl group is hydrolyzed to give the optically pure compound.

- 8. Process according to embt. 7 characterized in that the diastereomers are separated by chromatography or fractional crystallization.
- 9. Process according to embt. 7 **characterized** in that the solvolysis is performed in alkaline solution consisting of a base in a protic solvent, such as alcohols or water; or a base in an aprotic solvent, such as dimethylsulfoxide or dimethylformamide.
- 10. Process for the preparation of a compound according to embt. 1 in crystalline form **characterized** in that a product from the process in embt. 7 is neutralized with a neutralizing agent which can be an acid or an ester such as methyl formate, followed by treatment with a base in non-aqueous solution.
- 11. Process for preparation of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl-1<u>H</u>-benzimidazole sodium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl-1<u>H</u>-benzimidazole

sodium salt in their crystalline forms **characterized** in that (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl]methyl]-sulfinyl]-1<u>H</u>-benzimidazole sodium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl-1<u>H</u>-benzimidazole sodium salt crude product respectively is neutralized followed by treatment with NaOH in a non-aqueous medium.

12. Process for the preparation of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl] sulfinyl]-1<u>H</u>-benz-imidazole and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole **character-ized** in that a diastereomeric ester of formula IV

5

10

15

20

25

30

35

40

45

50

55

$$H_3C$$
 CH_3
 CH_2
 CH_2
 OCH_3
 CH_2
 OCH_3
 CH_2
 OCH_3
 OC

wherein Acyl designates a chiral acyl group such as mandeloyl, having either R or S configuration, is separated, and each of the separated diastereomers is dissolved in an alkaline solution where the acyloxymethyl group is hydrolyzed off to give the optically pure compound after neutralization with a neutralizing agent which can be an acid or an ester.

- 13. Process according to embt. 12 **characterized** in that the diastereomers are separated by chromatography or fractional crystallization.
- 14. Process according to embt. 12 **characterized** in that the solvolysis is performed in alkaline solution consisting of a base in a protic solvent, such as alcohols or water; or a base in an aprotic solvent, such as dimethylsulfoxide or dimethylformamide.
- 15. The compound (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl]-1<u>H</u>-benzimidazole obtained by the process defined in embt. 12.
- 16. The compound (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl]-1<u>H</u>-benzimidazole obtained by the process defined in embt. 12.
- 17. Pharmaceutical preparation containing an optically pure compound according to any of embts. 1-6 as active ingredient.
- 18. Optically pure compounds according to any of embts. 1-6 for use in therapy.
- 19. Use of an optically pure compound according to any of embts. 1-6 in the preparation of a pharmaceutical formulation for inhibiting gastric acid secretion.
- 20. Use of an optically pure compound according to any of embts. 1-6 for the preparation of a pharmaceutical formulation for the treatment of gastrointestinal inflammatory diseases.
- 21. A method for inhibiting gastric acid secretion comprising administration to a mammal including man in need of such treatment an effective amount of an optically pure compound according to any of embts. 1-6.
 - 22. A method for the treatment of gastrointestinal inflammatory diseases comprising administration to a mammal

including man in need of such treatment an effective amount of an optically pure compound according to any of embts. 1-6.

23. The compound 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]-1-[mandeloyloxymethyl]-1<u>H</u>-benz-imidazole.

Claims

5

10

15

20

25

30

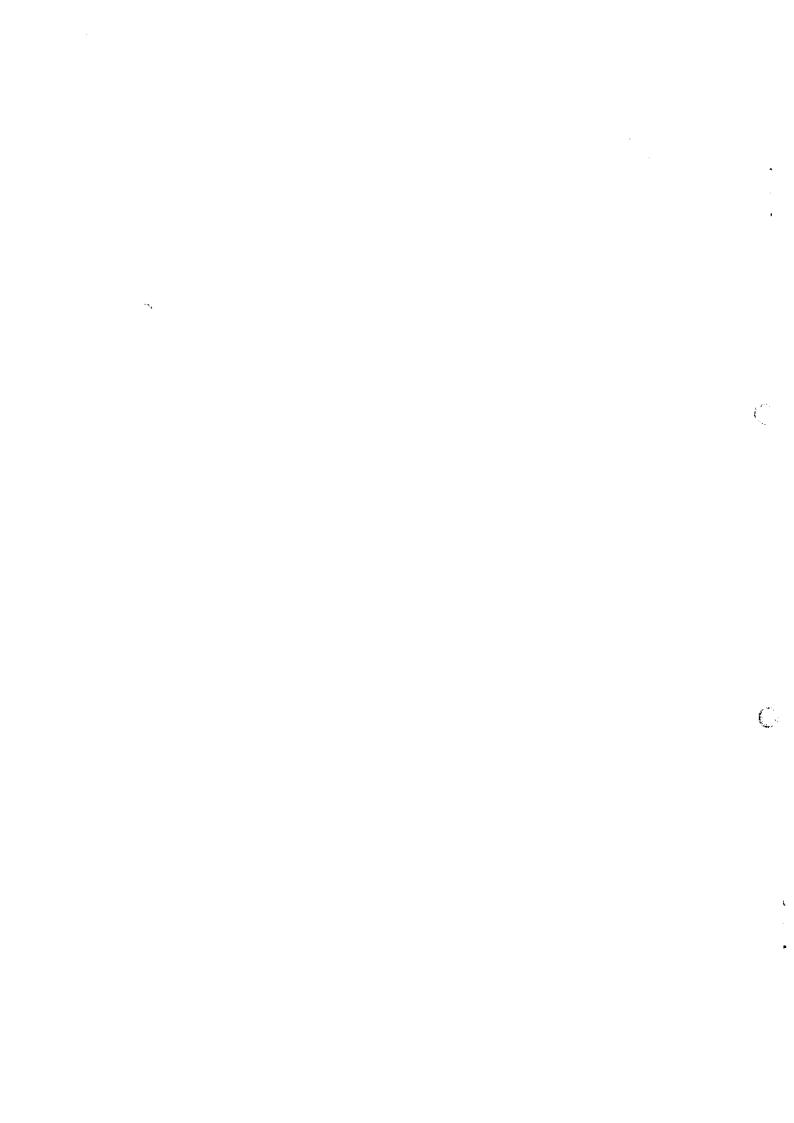
35

40

50

55

- 1. The sodium salt of (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole (Nasalt of the (-)-enantiomer of omeprazole).
- 2. The Na-salt of the (-)-enantiomer of omeprazole in its crystalline form.
- 3. A process for the preparation of the Na-salt of the (-)-enantiomer of omeprazole characterized in that a diastereomeric mixture of an ester of formula III


$$H_3$$
CH₂CH₃
 CH_2 CH₃
 CH_2 CH₄
 CH_2 CH₄

wherein Acyl designates a chiral acyl group having either R or S configuration, is separated, to obtain the separated diastereomers whereafter the diastereomer comprising the acyloxymethyl derivative of the (-)-enantiomer of ome-prazole is dissolved in an alkaline solution wherein the acyloxymethyl group is hydrolyzed off to give the (-)-enantiomer of ome-prazole which is optionally convened to the sodium salt.

- 4. The process of claim 3 characterized in that the chiral acyl group is mandeloyl.
- The process of claim 3 characterized in that the diastereomers are separated by chromatography or fractional crystallization.
- 6. The process of claim 3 characterized in that the solvolysis is performed in alkaline solution consisting of a base in a protic solvent, such as alcohols or water; or a base in an aprotic solvent, such as dimethylsulfoxide or dimethylformamide.
- 7. The process of claim 3 characterized in that said sodium salt is obtained by treatment of the (-)-enantiomer of ome-prazole with a base comprising sodium in non-aqueous solution.
 - 8. A pharmaceutical preparation containing the Na-salt of the (-)-enantiomer of omeprazole together with a pharmaceutically acceptable carrier.
 - 9. The Na-salt of the (-)-enantiomer of omeprazole for use in therapy.
 - 10. The use of the Na-salt of the (-)-enantiomer of omeprazole for the manufacture of a pharmaceutical formulation for the treatment of gastric acid-related diseases by inhibition of gastric acid secretion.
 - 11. The use of the Na-salt of the (-)-enantiomer of omeprazole for the manufacture of a pharmaceutical formulation for the treatment of gastrointestinal inflammatory diseases.

- 12. The use of the Na-salt of the (-)-enantiomer of omeprazole for the manufacture of a pharmaceutical formulation for the treatment of reflux esophagitis.
- 13. The use of the Na-salt of the (-)-enantiomer of omeprazole for the manufacture of a pharmaceutical formulation having improved pharmacokinetic and metabolic properties.

- 14. The use of the Na-salt of the (-)-enantiomer of omeprazole for the manufacture of a pharmaceutical formulation with a lower degree of interindividual variation in plasma levels when treating gastric acid related diseases.
- 15. The use of the Na-salt of the (-)-enantiomer of omeprazole for the manufacture of a pharmaceutical formulation with an improved therapeutic profile when treating gastric acid related diseases.

Ia (+)-enantiomer

Ib (-)-enantiomer

and the optically pure magnesium salts of omeprazole according to compounds lia and lib

Ila (+)-enantiomer

IIb (-)-enantiomer

45

40

15

[0009] With the expression "optically pure Na* salts of omeprazole" is meant the (+)-enantiomer of omeprazole Nasalt essentially free of the (-)-enantiomer of omeprazole Nasalt and the (-)-enantiomer essentially free of the (+)-enantiomer, respectively. Single enantiomers of omeprazole have hitherto only been obtained as syrups and not as crystalline products. By means of the novel specific method according to one aspect of the invention of preparing the single enantiomers of omeprazole, the salts defined by the present invention are easy to obtain. In addition, the salts, however not the neutral forms, are obtained as crystalline products. Because it is possible to purify optically impure salts of the enantiomers of omeprazole by crystallisation, they can be obtained in very high optical purity, namely ≥99.8% enantiomeric excess (e.e.) even from an optically contaminated preparation. Moreover, the optically pure salts are stable towards racemization both in neutral pH and basic pH, which was surprising since the known deprotonation at the carbon atom between the pyridine ring and the chiral sulphur atom was expected to cause racemization under alkaline conditions. This high stability towards racemization makes it possible to use a single enantiomeric salt of the invention in therapy.

Description

10

Field of the invention

[0001] The present invention is directed to new compounds with high optical purity, their use in medicine, a process for their preparation and their use in the manufacture of pharmaceutical preparation. The invention also relates to novel intermediates in the preparation of the compounds of the invention.

Background of the invention

[0002] The compound 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole, having the generic name omeprazole, and therapeutically acceptable alkaline salts thereof are described in EP 5129 and EP 124 495, respectively. Omeprazole and its alkaline salts are effective gastric acid secretion inhibitors, and are useful as antiulcer agents. The compounds, being sulfoxides, have an asymmetric center in the sulfur atom, i.e. exist as two optical isomers (enantiomers). It is desirable to obtain compounds with improved pharmacokinetic and metabolic properties which will give an improved therapeutic profile such as a lower degree of interindividual variation. The present invention provides such compounds, which are novel salts of single enantiomers of omeprazole.

[0003] The separation of the enantiomers of omeprazole in analytical scale is described in e.g. J. Chromatography, 532 (1990), 305-19 and in a preparative scale in DE 4035455. The latter has been done by using a diastereomeric ether which is separated and thereafter hydrolysed in an acidic solution. Under the acidic conditions needed for hydrolysis of the attached group, omeprazole is quite sensitive and the acid has to be quickly neutralized with a base to avoid degradation of the acid-sensitive compound. In the above mentioned application this is done by adding the reaction mixture containing concentrated sulfuric acid to a concentrated solution of NaOH. This is disadvantageous because there is a great risk of locally reaching pH values between 1-6, which would be devastating for the substance. Moreover, instantaneous neutralisation will create heat which will be difficult to handle in large scale production.

[0004] The present invention in a further aspect provides a novel method for preparing the novel compounds of the invention in large scale. This novel method can also be used in large scale to obtain single enantiomers of omeprazole in neutral form.

[0005] There is no example known in the prior art of any isolated or characterized salt of optically pure omeprazole, i.e. single enantiomers of omeprazole neither of any isolated or characterized salt of any optically pure omeprazole analogue.

Detailed description of the invention

The present invention refers to the new Na⁺, Mg²⁺, Li⁺, K⁺, Ca²⁺ and N⁺(R)₄ salts of the single enantiomers of omeprazole, where R is an alkyl with 1-4 carbon atoms, i.e. Na⁺, Mg²⁺, Li⁺, K⁺, Ca²⁺ and N⁺(R)₄ salts of (+)-5-meth-oxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole, where R is an alkyl with 1-4 carbon atoms.

[0007] Particularly preferred salts according to the invention are the Na⁺, Ca²⁺ and Mg²⁺ salts, i.e (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole sodium salt, (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl] sulfinyl]-1<u>H</u>-benzimidazole sodium salt, (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl] sulfinyl]-1<u>H</u>-benzimidazole magnesium salt, (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole calcium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole calcium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole calcium salt.

[0008] Most preferred salts according to the invention are the optically pure Na⁺ salts of omeprazole according to compounds la and lb

50

$$H_3C$$
 CH_3
 CH_2
 CH_2
 OCH_3
 CH_2
 OCH_3
 O

15

5

10

wherein the methoxy substituent in the benzimidazole moiety is in position 5 or 6, and wherein the Acyl radical is as defined below, followed by a solvolysis of each separated diastereomer in an alkaline solution. The formed single enantiomers of omeprazole are then isolated by neutralizing aqueous solutions of the salts of the single enantiomers of omeprazole with a neutralizing agent which can be an acid or an ester such as methyl formate.

[0014] The Acyl moiety in the diastereomeric ester may be a chiral acyl group such as mandeloyl, and the asymmetric center in the chiral acyl group can have either R or S configuration.

[0015] The diastereomeric esters can be separated either by chromatography or fractional crystallization.

[0016] The solvolysis usually takes place together with a base in a protic solvent such as alcohols or water, but the acyl group may also be hydrolysed off by a base in an aprotic solvent such as dimethylsulfoxide or dimethylformamide. The reacting base may be OH* or R*10* where R*1 can be any alkyl or aryl group.

[0017] To obtain the optically pure Na $^+$ salts of the invention, i.e. the single enantiomers of omeprazole Na $^+$ salts, the resulting compound is treated with a base, such as NaOH, in an aqueous or nonaquous medium, or with NaOR 2 wherein R 2 is an alkyl group containing 1-4 carbon atoms, or with NaNH $_2$. Also alkaline salts wherein the cation is Li $^+$ or K $^+$ may be prepared using lithium or potassium salts of the above mentioned bases. In order to obtain the crystalline form of the Na $^+$ salt, addition of NaOH in a non-aqueous medium such as a mixture of 2-butanone and toluene, is preferred.

[0018] To obtain the optically pure Mg^{2+} salts of the invention, optically pure Na^+ salts are treated with an aqueous solution of an inorganic magnesium salt such as $MgCl_2$, whereupon the Mg^{2+} salts are precipitated. The optically pure Mg^{2+} salts may also be prepared by treating single enantiomers of omeprazole with a base, such as $Mg(OR^3)_2$, wherein R^3 is an alkyl group containing 1-4 carbon atoms, in a non-aqueous solvent such as alcohol (only for alcoholates), e.g. ROH, or in an ether such as tetrahydrofuran. In an analogous way, also alkaline salts wherein the cation is Ca^{2+} can be prepared, using an aqueous solution of an inorganic calcium salt such as $CaCl_2$.

[0019] Alkaline salts of the single enantiomers of the invention are, as mentioned above, beside the sodium salts (compounds Ia and Ib) and the magnesium salts (compound IIa and IIb), exemplified by their salts with Li⁺, K⁺, Ca²⁺ and N⁺(R)₄, where R is an alkyl with 1-4 C-atoms.

[0020] For clinical use the single enantiomers, i.e. the optically pure compounds, of the invention are formulated into pharmaceutical formulations for oral, rectal, parenteral or other modes of administrations. The pharmaceutical formulations contain the single enantiomers of the invention normally in combination with a pharmaceutically acceptable carrier. The carrier may be in form of a solid, semisolid or liquid diluent, or capsule. These pharmaceutical preparations are a further object of the invention. Usually the amount of active compound is between 0.1-95% by weight of the preparation, between 0.2-20% by weight in preparations for parenteral use and between 1-50% by weight in preparations for oral administration.

[0021] In the preparation of pharmaceutical formulations in form of dosage units for oral administration the optically pure compound may be mixed with a solid, powdered carrier, such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose derivates, gelatin or another suitable carrier, stabilizing substances such as alkaline compounds e.g. carbonates, hydroxides and oxides of sodium, potassium, calcium, magnesium and the like as well as with lubricating agents such as magnesium stearate, calcium stearate, sodium stearyl fumarate and polyethylenglycol waxes. The mixture is then processed into granules or pressed into tablets. Granules and tablets may be coated with an enteric coating which protects the active compound from acid catalysed degradation as long as the dosage form remains in the stomach. The enteric coating is chosen among pharmaceutically acceptable enteric-coating materials e.g. beeswax, shellac or anionic film-forming polymers and the like, if preferred in combination with a suitable plasticizer. To the coating various dyes may be added in order to distinguish among tablets or granules with different amounts of the active

compound present.

[0022] Soft gelatine capsules may be prepared with capsules containing a mixture of the active compound, vegetable oil, fat, or other suitable vehicle for soft gelatine capsules. Soft gelatine capsules may also be enteric-coated as described above.

[0023] Hard gelatine capsules may contain granules or enteric-coated granules of the active compound. Hard gelatine capsules may also contain the active compound in combination with a solid powdered carrier such as lactose, saccharose, sorbitol, mannitol, potato starch, amylopectin, cellulose derivates or gelatin. The capsules may be enteric-coated as described above.

[0024] Dosage units for rectal administration may be prepared in the form of suppositories which contain the active substance mixed with a neutral fat base, or they may be prepared in the form of a gelatine rectal capsule which contains the active substance in a mixture with a vegetable oil, paraffin oil or other suitable vehicle for gelatine rectal capsules, or they may be prepared in the form of a ready-made micro enema, or they may be prepared in the form of a dry micro enema formulation to be reconstituted in a suitable solvent just prior to administration.

[0025] Liquid preparation for oral administration may be prepared in the form of syrups or suspensions, e.g. solutions or suspensions containing from 0.2% to 20% by weight of the active ingredient and the remainder consisting of sugar or sugar alcohols and a mixture of ethanol, water, glycerol, propylene glycol and/or polyethylene glycol. If desired, such liquid preparations may contain colouring agents, flavouring agents, saccharine and carboxymethyl cellulose or other thickening agents. Liquid preparations for oral administration may also be prepared in the form of dry powder to be reconstituted with a suitable solvent prior to use.

[0026] Solutions for parenteral administrations may be prepared as solutions of the optically pure compounds of the invention in pharmaceutically acceptable solvents, preferably in a concentration from 0.1 to 10% by weight. These soultions may also contain stabilizing agents and/or buffering agents and may be manufactured in different unit dose ampoules or vials. Solutions for parenteral administration may also be prepared as dry preparations to be reconstituted with a suitable solvent extemporaneously before use.

[0027] The typical daily dose of the active compound will depend on various factors such as for example the individual requirement of each patient, the route of administration and the disease. In general, oral and parenteral dosages will be in the range of 5 to 500 mg per day of active substance.

[0028] The invention is illustrated by the following examples.

Example 1. Preparation of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole sodium salt

[0029] 100 mg (0.3 mmol) of (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1<u>H</u>-benzimidazole (contaminated with 3% of the (+)-isomer) was dissolved in 1 ml of 2-butanone with stirring. 60 μ l of an aqueous solution of 5.0 M sodium hydroxide and 2 ml of toluene were added. The resultant mixture was non-homogeneous. In order to obtain a clear solution, more 2-butanone was added (ca 1 ml) and the mixture was stirred at ambient temperature over night. The formed precipitate was filtered off and washed with ether. There was obtained 51 mg (46%) of the tide compound as white crystals m.p. (decomposition) 246-248°C. The optical purity (e.e.) which was analyzed by chiral column chromatography was \geq 99.8%. [α] $_{\rm D}^{20}$ = +42.8° (c=0.5%, water).

[0030] NMR data are given below.

Example 2. Preparation of (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole sodium salt

45 [0031] 100 mg (0.3 mmol) of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1<u>H</u>-benzimidazole (contaminated with 3% of the (-)-isomer) was dissolved in 1 ml of 2-butanone with stirring. 60 μl of an aqueous solution of 5.0 M sodium hydroxide and 2 ml of toluene were added. The resultant mixture was non-homogeneous. In order to obtain a clear solution, more 2-butanone was added (ca 1 ml) and the mixture was stirred at ambient temperature over night. The formed precipitate was filtered off and washed with ether. There was obtained 56 mg (51%) of the tide compound as white crystals m.p. (decomposition) 247-249°C. The optical purity (e.e.) which was analyzed by chiral column chromatography was ≥99.8%. [α] ²⁰_D = -44.1° (c=0.5%, water).

[0032] NMR data are given below.

Example 3. Preparation of (+)-5-methoxy-2-[[(4-methoxy-3.5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole magnesium salt

[0033] 2.9 ml of a 0.1 M solution of NaOH was added to 0.10 g (0.29 mmol) (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole. To this mixture 2 ml methylene chloride was added, and after

mixing in a separatory funnel the aqueous solution was separated off. A solution of 14 mg (0.145 mmol) MgCl₂ in water was added dropwise. The formed precipitate was isolated by centrifugation, and 52 mg (50%) of the product was isolated as an amorphous powder. The optical purity (e.e.) was 98%, and thus the same as the starring material. The optical purity was determined by chromatography on an analytical chiral column. [α] = +101.2° (c=1%, methanol). The Mg content of the sample was found to be 3.0%, shown by atomic absorption spectroscopy.

Example 4. Preparation of (+)-5-methoxy-2-[[(4-methoxy-3.5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole magnesium salt

[0034] (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1 \underline{H} -benzimidazole sodium salt (0.500 g, 1.36 mmol) was dissolved in water (10 ml). To this mixture 10 ml of an aqueous solution of MgCl₂xH₂O (138 mg, 0.68 mmol) was added dropwise and the formed precipitate was isolated by centrifugation. There was obtained 418 mg (86%) of the product as a white powder. The optical purity (\underline{e}) of the product was 99.8% which was the same as the optical purity of the starring material. The optical purity was determined by chromatography on an analytical chiral column. [α] $^{20}_{D}$ = +129.9° (c=1%, methanol).

Example 5. Preparation of (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole magnesium salt

[0035] (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl)-1<u>H</u>-benzimidazole sodium salt (0.165 g, 0.45 mmol) was dissolved in water (3 ml). To this mixture 2 ml of an aqueous solution of MgCl₂xH₂O (46 mg, 0.23 mmol) was added dropwise and the formed precipitate was isolated by centrifugation. There was obtained 85 mg (51%) of the product as a white powder. The optical purity (<u>ee</u>) of the product was 99.9% which was the same or better as the optical purity of the starting material. The optical purity was determined by chromatography on an analytical chiral column. [α] ²⁰_D = -128.2° (c=1%, methanol).

Table 1

30 35	Ex.	Solvent	NMR data δ ppm
	1,	DMSO-d ₆ 500 MHz	2.20 (s, 3H), 2.22 (s, 3H), 3.69 (s, 3H), 3.72 (s, 3H), 4.37 (d, 1H), 4.75 (d, 1H), 6.54 (dd, 1H), 6.96 (d, 1H) 7.30 (d, 1H), 8.21 (s, 1H).
	2.	DMSO-d ₆ 500 MHz	2.20 (s, 3H), 2.22 (s, 3H), 3.69 (s, 3H), 3.72 (s, 3H), 4.38 (d, 1H), 4.73 (d, 1H), 6.54 (dd, 1H), 6.96 (d, 1H), 7.31 (d, 1H), 8.21 (s, 1H).

[0036] Preparation of the synthetic intermediates according to the invention will be described in the following examples.

Example 6. Preparation of 6-methoxy-2-[[(4-methoxy-3.5-dimethyl-2-pyridinyl)methyl]-(R/S)-sulfinyl]-1-[(R)-mandeloy-loxymethyl]-1H-benzimidazole

[0037] A solution of 3.4 g sodium hydroxide in 40 ml water was added to a mixture of 14.4 g (42 mmol) tetrabuty-lammonium hydrogen sulphate and 6.4 g (42 mmol) (R)-(-)-mandelic acid. The mixture was extracted wit 400 ml chloroform. After separation, the organic extract was heated to reflux wit 16.6 g (42 mmol) of the racemate of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl]-1-[chloromethyl]-1H-benzimidazole. Evaporation of the solvent was followed by dilution with 100 ml dichloromethane and 700 ml ethyl acetate. The mixture was washed with 3 x 200 ml water and the organic solution was dried over MgSO₄ and then evaporated. The crude material was purified by recrystallization from 100 ml acetonitrile, giving 8.1 g of the title compound (38%) as a diastereomeric mixture. [0038] NMR data are given below.

Example 7. Separation of the more hydrophilic diastereomer of 6-methoxy-2-[[(4-methoxy-3.5-dimethyl-2-pyridinyl)methyl]-[R/S)-sulfinyl]-1-[(R)-mandeloyloxymethyl]-1H-benzimidazole

50

[0039] The diastereomers of the title compound in Example 6 were separated using reversed phase chromatography (HPLC). Approximately 300 mg of the diastereomeric mixture was dissolved in 10 ml hot acetonitrile which was diluted with 10 ml of a mixture of aqueous 0.1 M ammoniumacetate and acetonitrile (70/30). The solution was injected to the column and the compounds were eluted with a mixture of aqueous 0.1 M ammoniumacetate and acetonitrile

(70/30). The more hydrophilic isomer was easier to obtain pure than the less hydrophilic one. The work up procedure for the fraction which contained pure isomer was as follows; extraction with dichlorometane, washing the organic solution with aqueous 5 % sodium hydrogen carbonate solution, drying over Na₂SO₄ and evaporation of the solvent on a rotavapor (at the end of the evaporation the removal of acetonitrile was facilitated by adding more dichloromethane). Using 1.2 g of the diastereomeric mixture with the above mentioned technique, the more hydrophilic isomer, 410 mg, was obtained in a pure state as a colourless syrup.

NMR data are given below. [0040]

Example 8. Preparation of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-(R/S)-sulfinyl]-1-[(S)-mandeloyloxymethyl]-1H-benzimidazole

[0041] The product was obtained from 8.1 g (202 mmol) sodium hydroxide in 100 ml water, 34.4 g (101 mmol) tetrabutylammonium hydrogen sulfate, 15.4 g (101 mmol) (S)-(+)-mandeic acid and 39.9 g (101 mmol) of the racemate of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl]-1-[chloromethyl]-1H_benzimidazole using the same procedure as in Example 6. Recrystallization from 100 ml acetonitrile yielded 21.3 g. i.e. 41% of the title compound as a diastereomeric mixture.

[0042] NMR data are given below.

Example 9. Separation of the more hydrophilic diastereomer of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-(R/S)-sulfinyl]-1-[(S)-mandeloyloxymethyl]-1H-benzimidazole

[0043] The diastereomers of the title compound in Example 8 were separated using reversed phase chromatography (HPLC) in the same way as in Example 7, but using the diasteromeric mixture of 6-methoxy-2-[[(4-methoxy-3,5dimethyl-2-pyridinyl)methyl]-(R/S)-sulfinyl]-1-[(S)-mandeloloxymethyl]-1H-benzimidazole instead of the (R)-mandelic ester used in Example 7. Using 2.1 g of the diastereomeric mixture, the more hydrophilic isomer, 760 mg, was obtained in a pure state as a colourless syrup.

[0044] NMR data are given below.

Example 10. Preparation of (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl]-1H-benzimidazole

0.23 g (0.45 mmol) of the more hydrophilic diastereomer of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1-[(R)-mandeloyloxymethyl]-1H-benzimidazole was dissolved in 15 ml methanol. A solution of 36 mg (0.9 mmol) sodium hydroxid in 0.45 ml water was added, and after 10 minutes the mixture was evaporated on a rotavapor. The residue was partitioned between 15 ml water and 15 ml dichloromethane. The organic solution was extracted with 15 ml water and to the combined aqueous solutions was added 85 µl (1.4 mmol) methyl formate. After 15 minutes the mixture was extracted with 3x10 ml dichloromethane. The organic solution was dried over Na₂SO₄ and then evaporated. There was obtained 0.12 g (77%) of the title compound as a colourless syrup. The optical purity (e.e.) which was analyzed by chiral column chromatography was 94%. [α] $_{\rm D}^{20}$ = -155° (c=0.5%, chloroform).

[0046] NMR data are given below

Example 11. Preparation of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl]-1H-benzimidazole

0.76 g (1.5 mmol) of the more hydrophilic diastereomer of 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridi-[0047] nyl)methyl]sulfinyl]-1-[(S)-mandeloyloxymethyl]-1H-benzimidazole was dissolved in 50 ml methanol. A solution of 0.12 mg (3.0 mmol) sodium hydroxid in 1.5 ml water was added, and after 10 minutes the mixture was evaporated on a rotavapor. The residue was partitioned between 25 ml water and 25 ml dichloromethane. The organic solution was extracted with 25 ml water and to the combined aqueous solutions was added 200 µl (3.2 mmol) methyl formate. After 15 minutes the mixture was extracted with 3x25 ml dichloromethane. The organic solution was dried over Na₂SO₄ and then evaporated. There was obtained 0.42 g (81%) of the title compound as a colourless syrup. The optical purity (e.e.) which was analyzed by chiral column chromatography was 98%. [α] $_{\rm D}^{20} \approx +157^{\circ}$ (c=0.5%, chloroform). NMR data are given below

55

50

[0048]

Table 2

	Ex.	Solvent	NMR data δ ppm
5	6.	CDCl ₃ 500 MHz	2.18 (s, 3H), 2.20 (s, 3H), 2.36 (s, 3H), 2.39 (s, 3H), 3.77 (s, 3H), 3.78 (s, 3H), 3.82 (s, 3H), 3.87 (s, 3H), 4.80 (d, 1H), 4.88 (d, 1H), 5.0 (m, 2H), 5.34 (s, 2H), 6.43 (d, 1H), 6.54 (d, 1H), 6.6-6.7 (m, 2H), 6.90 (d, 1H), 6.95-6.98 (m, 2H), 7.01 (d, 1H), 7.2-7.3 (m, 6H), 7.37 (m, 2H), 7.44 (m, 2H), 7.58 (d, 1H), 7.62 (d, 1H), 7.95 (s, 1H), 7.97 (s, 1H).
10	7.	CDCl ₃ 500 MHz	2.20 (s, 3H), 2.36 (s, 3H), 3.78 (s, 3H), 3.82 (s, 3H), 4.80 (d, 1H), 5.00 (d, 1H), 5.35 (d, 1H), 6.43 (d, 1H), 6.63 (d, 1H), 6.90 (d, 1H), 6.97 (dd, 1H), 7.2-7.3 (m, 3H), 7.37 (m, 2H), 7.62 (d, 1H), 7.97 (s, 1H).
15	8.	ÇDCl₃ 500 MHz	2.19 (s, 3H), 2.20 (s, 3H), 2.36 (s, 3H), 2.39 (s, 3H), 3.77 (s, 3H), 3.78 (s, 3H), 3.83 (s, 3H), 3.87 (s, 3H), 4.80 (d, 1H), 4.88 (d, 1H), 5.0 (m, 2H), 5.34 (s, 2H), 6.43 (d, 1H), 6.54 (d, 1H), 6.6-6.7 (m, 2H), 6.90 (d, 1H), 6.96-6.98 (m, 2H), 7.01 (d, 1H), 7.2-7.3 (m, 6H), 7.37 (m, 2H), 7.44 (m, 2H), 7.58 (d, 1H), 7.62 (d, 1H), 7.95 (s, 1H), 7.97 (s, 1H).
20	9.	CDCl ₃ 500 MHz	2.20 (s, 3H), 2.36 (s, 3H), 3.78 (s, 3H), 3.82 (s, 3H), 4.80 (d, 1H), 5.00 (d, 1H), 5.35 (d, 1H), 6.43 (d, 1H), 6.63 (d, 1H), 6.90 (d, 1H), 6.97 (dd, 1H), 7.2-7.3 (m, 3H), 7.37 (m, 2H), 7.62 (d, 1H), 7.97 (s, 1H).
	10.	CDCl ₃ 300 MHz	2.18, (s, 3H), 2.22 (s, 3H), 3.68 (s, 3H), 3.83 (s, 3H), 4.77 (m, 2H), 6.93 (dd, 1H), ~7.0 (b, 1H), ~7.5 (b, 1H), 8.19 (s, 1H).
25	11.	CDCI ₃	2.21 (s, 3H), 2.23 (s, 3H), 3.69 (s, 3H), 3.84 (s, 3H), 4.76 (m, 2H), 6.94 (dd, 1H), ≈7.0 (b, 1H), ≈7.5 (b, 1H), 8.20 (s, 1H).

[0049] The best mode of carrying out the invention known at present is to use the sodium salts of the optically pure compounds of the invention, thus the compounds described in Example 1 and Example 2.

[0050] Pharmaceutical preparations containing the compounds of the invention as active ingredient are illustrated in the following formulations.

Syrup

30

40

45

50

35 [0051] A syrup containing 1% (weight per volume) of active substance was prepared from the following ingredients:

Compound according to Example 2	1.0 g
Sugar, powder	30.0 g
Saccharine	0.6 g
Glycerol	5.0 g
Flavouring agent	0.05 g
Ethanol 96%	5.0 g
Distilled water q.s. to a final volume of	100 ml

[0052] Sugar and saccharine were dissolved in 60 g of warm water. After cooling the active compound was added to the sugar solution and glycerol and a solution of flavouring agents dissolved in ethanol were added. The mixture was diluted with water to a final volume of 100 ml.

55 Enteric-coated tablets

[0053] An enteric coated tablet containing 50 mg of active compound was prepared from the following ingredients:

	1	Compound according to Example 3 as Mg salt	500 g
5		Lactose	700 g
		Methyl cellulose	6 g
		Polyvinylpyrrolidone cross-linked	50 g
10	ĺ	Magnesium stearate	15 g
		Sodium carbonate	6 g
	ļ	Distilled water	q.s.
" * ***	11	Cellulose acetate phthalate	200 g
15		Cetyl alcohol	15 g
		Isopropanol	2000 g
			į.

Methylene chloride

20

5

[0054] I Compound according to Example 3, powder, was mixed with lactose and granulated with a water solution of methyl cellulose and sodium carbonate. The wet mass was forced through a sieve and the granulate dried in an oven. After drying the granulate was mixed with polyvinylpyrrolidone and magnesium stearate. The dry mixture was pressed into tablet cores (10 000 tablets), each tablet containing 50 mg of active substance, in a tabletting machine using 7 mm diameter punches.

2000 g

[0055] II A solution of cellulose acetate phthaiate and cetyl alcolhol in isopropanol/methylene chloride was sprayed onto the tablets I in an Accela Cota^R, Manesty coating equipment. A final tablet weight of 110 mg was obtained.

Solution for intravenous administration

30

[0056] A parenteral formulation for intravenous use, containing 4 mg of active compound per ml, was prepared from the following ingredients:

35

Compound according to Example 2	4 g
Sterile water to a final volume of	1000 ml

The active compound was dissolved in water to a final volume of 1000 ml. The solution was filtered through a 0.22 µm filter and immediately dispensed into 10 ml sterile ampoules. The ampoules were sealed.

Capsules

[0058]Capsules containing 30 mg of active compound were prepared from the following ingredients:

50

55

Compound according to Example 1	300 g
Lactose	700 g
Microcrystalline cellulose	40 g
Hydroxypropyl cellulose low-substituted	62 g
Disodium hydrogen phosphate	2 g
Purified water	q.s.

[0059] The active compound was mixed with the dry ingredients and granulated with a solution of disodium hydrogen phosphate. The wet mass was forced through an extruder and spheronized and dried in a fluidized bed dryer.

[0060] 500 g of the pellets above were first coated with a solution of hydroxypropyl methylcellulose, 30 g, in water, 750 g, using a fluidized bed coater. After drying, the pellets were coated with a second coating as given below:

Coating solution:

[0061]

10

15

20

5

Hydroxypropyl methylcellulose phthalate 70 g
Cetyl alcohol 4 g
Acetone 200 g
Ethanol 600 g

[0062] The final coated pellets were filled into capsules.

Suppositories

[0063] Suppositories were prepared from the following ingredients using a welding procedure. Each suppository contained 40 mg of active compound.

25

30

35

55

Compound according to Example 2	4 g
Witepsol H-15	180 g

[0064] The active compound was homogenously mixed with Witepsol H-15 at a temperature of 41° C. The molten mass was volume filled into pre-fabricated suppository packages to a net weight of 1.84 g. After cooling the packages were heat sealed. Each suppository contained 40 mg of active compound.

Stability towards racemization at different pH:es

[0065] The stability of the optically pure compounds of the invention towards racemization has been measured at low concentrations in refrigerator in aqueous buffer solutions at pH 8, 9.3, 10 and 11.2. The stereochemical stability was measured by comparing the optical purity for the (-)-isomer of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole in buffer solution immediately after dissolving and after several days. The measurement was performed by chromatography on an analytical chiral column. The surprising high stereochemical stability in alkaline conditions for the compounds of invention is exemplified by the fact that no racemization for the test compound was obtained at pH 11.2 even after 21 days. At pH 8, 9.3 and 10, the chemical degradation of the compound is more apparent which makes the racemization measurement more difficult to perform, however at none of these pH values a detectable racemization was obtained after 16 days.

[0066] In another racemization experiment with the optically pure compounds of the invention, an aqueous phosphate buffer solution (pH=11) of the (+)-isomer of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl)sulfinyl]-1H-benzimidazole (c=10⁻⁵M) was warmed for 26 hours at 37°C without any racemization at all being observed.

[0067] The following pages 22 - 26 of the description relate to preferred embodiments of the invention, wherein "embt. / embts." means embodiment / embodiments.

- 1. Optically pure compounds **characterized** in that the compounds are Na⁺, Mg²⁺, Li⁺, K⁺, Ca²⁺ and N⁺(R)₄ salts of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1 \underline{H} -benzimidazole and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1 \underline{H} -benzimidazole, wherein R is an alkyl with 1-4 carbon atoms.
- 2. Compounds according to embt. 1 characterized in that the compounds are (+)-5-methoxy-2-[[(4-methoxy-3,5-

5

10

15

20

25

30

35

40

45

50

55

- 3. Compounds according to embts. 1 and 2 **characterized** in that the compounds are (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl] sulfinyl]-1<u>H</u>-benzimidazole sodium salt, (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole sodium salt, (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole magnesium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl] sulfinyl]-1<u>H</u>-benzimidazole magnesium salt.
- 4. Compounds according to embts. 1 and 2 **characterized** in that the compounds are (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl-1<u>H</u>-benzimidazole sodium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl] sulfinyl-1<u>H</u>-benzimidazole sodium salt in their crystalline forms.
- 5. Compounds according to embts. 1 and 2 **characterized** in that the compound is (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl-1<u>H</u>-benzimidazole sodium salt in its crystalline form.
- 6. Compounds according to embts. 1 and 2 **characterized** in that the compound is (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl-1<u>H</u>-benzimidazole sodium salt in its crystalline form.
- 7. Process for the preparation of a compound according to embt. 1 **characterized** in that a diastereomeric ester of formula IV

$$H_3C$$
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_3

wherein Acyl designates a chiral acyl group such as mandeloyl, having either R or S configuration, is separated, and each of the separated diastereomers is dissolved in an alkaline solution where the acyloxymethyl group is hydrolyzed to give the optically pure compound.

- 8. Process according to embt. 7 characterized in that the diastereomers are separated by chromatography or fractional crystallization.
- 9. Process according to embt. 7 **characterized** in that the solvolysis is performed in alkaline solution consisting of a base in a protic solvent, such as alcohols or water; or a base in an aprotic solvent, such as dimethylsulfoxide or dimethylformamide.
- 10. Process for the preparation of a compound according to embt. 1 in crystalline form **characterized** in that a product from the process in embt. 7 is neutralized with a neutralizing agent which can be an acid or an ester such as methyl formate, followed by treatment with a base in non-aqueous solution.
- 11. Process for preparation of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl-1<u>H</u>-benzimidazole sodium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl-1<u>H</u>-benzimidazole

sodium salt in their crystalline forms **characterized** in that (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl]-1<u>H</u>-benzimidazole sodium salt and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl-1<u>H</u>-benzimidazole sodium salt crude product respectively is neutralized followed by treatment with NaOH in a non-aqueous medium.

12. Process for the preparation of (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl] sulfinyl]-1<u>H</u>-benzimidazole and (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole **characterized** in that a diastereomeric ester of formula IV

5

10

15

20

25

30

35

40

45

50

55

$$H_3C$$
 CH_3
 CH_2
 CH_2

wherein Acyl designates a chiral acyl group such as mandeloyl, having either R or S configuration, is separated, and each of the separated diastereomers is dissolved in an alkaline solution where the acyloxymethyl group is hydrolyzed off to give the optically pure compound after neutralization with a neutralizing agent which can be an acid or an ester.

- 13. Process according to embt. 12 **characterized** in that the diastereomers are separated by chromatography or fractional crystallization.
- 14. Process according to embt. 12 **characterized** in that the solvolysis is performed in alkaline solution consisting of a base in a protic solvent, such as alcohols or water; or a base in an aprotic solvent, such as dimethylsulfoxide or dimethylformamide.
- 15. The compound (+)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl]-1<u>H</u>-benzimidazole obtained by the process defined in embt. 12.
- 16. The compound (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]-sulfinyl]-1<u>H</u>-benzimidazole obtained by the process defined in embt. 12.
- 17. Pharmaceutical preparation containing an optically pure compound according to any of embts. 1-6 as active ingredient.
- 18. Optically pure compounds according to any of embts. 1-6 for use in therapy.
- 19. Use of an optically pure compound according to any of embts. 1-6 in the preparation of a pharmaceutical formulation for inhibiting gastric acid secretion.
- 20. Use of an optically pure compound according to any of embts. 1-6 for the preparation of a pharmaceutical formulation for the treatment of gastrointestinal inflammatory diseases.
- 21. A method for inhibiting gastric acid secretion comprising administration to a mammal including man in need of such treatment an effective amount of an optically pure compound according to any of embts. 1-6.
 - 22. A method for the treatment of gastrointestinal inflammatory diseases comprising administration to a mammal

including man in need of such treatment an effective amount of an optically pure compound according to any of embts. 1-6.

23. The compound 6-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]-1-[mandeloyloxymethyl]-1<u>H</u>-benz-imidazole.

Claims

5

10

15

20

25

30

35

40

50

55

- 1. The sodium salt of (-)-5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1<u>H</u>-benzimidazole (Nasalt of the (-)-enantiomer of omeprazole).
- 2. The Na-salt of the (-)-enantiomer of omeprazole in its crystalline form.
- A process for the preparation of the Na-salt of the (-)-enantiomer of omeprazole characterized in that a diastereomeric mixture of an ester of formula III

$$H_3C$$
 CH_3
 CH_2
 CH_2
 OCH_3
 CH_2
 OCH_3
 CH_2
 OCH_3
 OC

wherein Acyl designates a chiral acyl group having either R or S configuration, is separated, to obtain the separated diastereomers whereafter the diastereomer comprising the acyloxymethyl derivative of the (-)-enantiomer of ome-prazole is dissolved in an alkaline solution wherein the acyloxymethyl group is hydrolyzed off to give the (-)-enantiomer of ome-prazole which is optionally convened to the sodium salt.

- 4. The process of claim 3 characterized in that the chiral acyl group is mandeloyl.
- The process of claim 3 characterized in that the diastereomers are separated by chromatography or fractional crystallization.
- 6. The process of claim 3 characterized in that the solvolysis is performed in alkaline solution consisting of a base in a protic solvent, such as alcohols or water; or a base in an aprotic solvent, such as dimethylsulfoxide or dimethylformamide.
- 7. The process of claim 3 characterized in that said sodium salt is obtained by treatment of the (-)-enantiomer of ome-prazole with a base comprising sodium in non-aqueous solution.
 - 8. A pharmaceutical preparation containing the Na-salt of the (-)-enantiomer of omeprazole together with a pharmaceutically acceptable carrier.
 - 9. The Na-salt of the (-)-enantiomer of omeprazole for use in therapy.
 - 10. The use of the Na-salt of the (-)-enantiomer of omeprazole for the manufacture of a pharmaceutical formulation for the treatment of gastric acid-related diseases by inhibition of gastric acid secretion.
 - 11. The use of the Na-salt of the (-)-enantiomer of omeprazole for the manufacture of a pharmaceutical formulation for the treatment of gastrointestinal inflammatory diseases.

- 12. The use of the Na-salt of the (-)-enantiomer of omeprazole for the manufacture of a pharmaceutical formulation for the treatment of reflux esophagitis.
- 13. The use of the Na-salt of the (-)-enantiomer of omeprazole for the manufacture of a pharmaceutical formulation having improved pharmacokinetic and metabolic properties.

- 14. The use of the Na-salt of the (-)-enantiomer of omeprazole for the manufacture of a pharmaceutical formulation with a lower degree of interindividual variation in plasma levels when treating gastric acid related diseases.
- 15. The use of the Na-salt of the (-)-enantiomer of omeprazole for the manufacture of a pharmaceutical formulation with an improved therapeutic profile when treating gastric acid related diseases.

٠-, (_____

奥美拉唑(-)-对映体的钠盐

公开(-)-5-甲氧基-2-[[(4-甲氧基-3,5-二甲基-2-吡啶基)甲基]亚磺酰基]-1H-苯并咪唑、其制备方法以及含有该化合物作为活性组分的药用制剂。