

WO 2010/118520 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2010/118520 A1

(51) International Patent Classification:
C12Q 1/68 (2006.01) *G06F 19/00* (2006.01)
C40B 30/00 (2006.01) *C40B 40/06* (2006.01)
C40B 30/02 (2006.01) *G01N 33/68* (2006.01)

(21) International Application Number:
PCT/CA2010/000565

(22) International Filing Date:
16 April 2010 (16.04.2010)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
61/202,881 16 April 2009 (16.04.2009) US

(71) Applicant (for all designated States except US): NATIONAL RESEARCH COUNCIL OF CANADA [CA/CA]; 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **WANG, Edwin** [CA/CA]; 918 Des Amarantes, Laval, Quebec H7Y 2G9 (CA). **Ji, Jie** [CN/CA]; 1585 Egan Street, Montreal, Quebec H4Z 2J6 (CA). **DENG, Yinghai** [CA/CA]; 17-180 Dorval Ave., Dorval, Quebec H9S 3G9 (CA). **LENFERINK, Anne EG** [NL/CA]; 20 Place de Gerardmer, Lorraine, Quebec J6Z 4S6 (CA). **O'CONNOR-MC-COURT, Maureen, D.** [CA/CA]; 186 Sherbrook Street, Beaconsfield, Quebec H9W 1P2 (CA). **PURISMA, Enrico** [CA/CA]; 4910 Genevieve, Pierrefonds, Quebec H9J 1S5 (CA).

(74) Agents: MCKAY, Margaret et al.; National Research Council of Canada, 1200 Montreal Road, Bldg. M-58 Room EG-12, Ottawa, Ontario K1A 0R6 (CA).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BI, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, IN, IIR, IIU, ID, IL, IN, IS, JP, KT, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(i))
- of inventorship (Rule 4.17(iv))

Published:

- with international search report (Art. 21(3))

(54) Title: PROCESS FOR TUMOUR CHARACTERISTIC AND MARKER SET IDENTIFICATION, TUMOUR CLASSIFICATION AND MARKER SETS FOR CANCER

(57) Abstract: A process to identify tumour characteristics involves obtaining three different marker sets each predictive of a characteristic of interest, obtaining a sample gene expression signals from tumour cells, adding a reporter to affect a change in the sample permitting assessment of a gene expression signal of interest in the tumour, combining the gene expression signals with the reporter, correlating the extracted gene expression signals to the three different marker sets, assigning a designation to the extracted gene expression signals according to the following rankings: if the correlation of all three predictive gene expression signal sets predict it to have characteristics of concern, it is designated a bad tumour; if the correlation of all three predictive gene expression signal sets predict it to lack characteristics of concern it is designated a good tumour; and, if the correlation of all three predictive gene expression signal sets do not provide the same predicted clinical outcome, the tumour is designated as "intermediate"; and, outputting said designation.

PROCESS FOR TUMOUR CHARACTERISTIC AND MARKER SET IDENTIFICATION, TUMOUR CLASSIFICATION AND MARKER SETS FOR CANCER

5 **Field of the Invention**

The invention relates to the field of cancer biomarkers, and a process for their identification and use.

Background to the Invention

10

The more one knows about a cancer, the more effectively it can be treated. For example, most cancer patients have surgery. However, additional benefits may be possible with additional treatment for some patients. There is not currently a satisfactory approach to determine which patients with cancer would benefit from

15 extra therapy (such as chemotherapy) after surgery. The identification of genes and proteins specific to cancer cells that can be used for prognostic purposes would be helpful in this regard. These genes/proteins which identify tumours associated with a poor prognosis for recovery if treated only by surgery followed by typical standard of care are called poor prognostic biomarkers. These biomarkers can be used as
20 valuable tools for predicting survival after a diagnosis of cancer, for identifying patients for whom the risk of recurrence is sufficiently low that the patient is likely to progress as well or better in the absence of post-surgery chemotherapy and/or radiation treatment or with only typical standard of care treatment post-surgery, and for guiding how oncologists should treat the cancer to obtain the best outcome.

25

Similarly, there are genes expressed in cancers which play a role in drug response. It would be useful to have information on predicted drug response when making clinical decisions.

30 To provide a screening tool with sufficient precision to be of clinical interest, it should preferably consider multiple markers for a type of cancer. A single gene

marker does not provide a sufficient level of specificity and sensitivity. By way of example, microarray technology, which can measure more than 25,000 genes at the same time provides a useful tool to find multi-markers.

- 5 It is an object of the invention to provide sets of markers for use in identifying tumour characteristics of interest and a process for their identification and use.

Summary of the Invention

- 10 The present invention in one embodiment teaches the usage of gene expression profiles to distinguish 'good' and 'bad' tumours based on groups of genes. As used herein when referring to predictors and patient survival, the term "good tumour" refers to a tumour which is likely to be cured by surgery and only typical standard of care, without chemotherapy or radiation treatment (even if this is part of the typical standard of care). As used herein, the term "bad tumour" refers to a tumour which is not likely to be cured by surgery and only typical standard of care including chemotherapy or radiation treatment. As used herein, a tumour is "cured" if the patient has not experienced a recurrence of the tumour (or a metastasis of it) within 5 or 10 years of surgery.
- 15
- 20

It is possible to identify sets of genes whose expression profiles are able to distinguish 'good' and 'bad' tumours. The prior art discloses five such gene expression signal sets and these have been developed as biomarkers for breast cancer samples. Each gene expression signal set was derived from a set of breast tumour samples. However, these five biomarker sets can't be cross-used. Specifically, the prior art so-called "breast cancer biomarkers" have not been found to be consistently predictive of prognosis when used in another set of breast tumour samples. Biomarkers for other types of cancers have the same problem. Cancer is highly heterogeneous. Frequently for a type of cancer several subtypes can be

found. Previously disclosed marker sets are not universal enough for these subtypes.

5 To overcome these problems and the limitation of dataset (sample) availability, a new approach to finding and using sets of biomarkers was developed.

10 In one embodiment of the invention, random training datasets were generated from a published cancer dataset, in which gene expression profiles and clinical information of the patients had been included, to find robust sets of biomarkers'. Gene expression profiles of the random training dataset were correlated with patient survival status and to screening biomarkers.

15 In one embodiment of the invention there is provided a method of identifying biomarkers, said method comprising:

- Generating a random training dataset from currently available datasets (tumour microarray profiling + clinical information of cancer patients)
- Screening gene expression signal sets against the random training dataset to 20 identify gene expression signal sets having predictive power for prognosis
- Ranking genes based on the frequencies they appeared in the gene expression signal sets which have good predictive power (via screening, last step) and thereby building biomarker sets
- Combinatory use of use 3-6 biomarker sets for prediction (i.e., Sample A is 25 predicted by all three biomarker sets as “good tumour”, we will say Sample A is a “good tumour” (low-risk), If all say it is “bad”, we will say it is “bad” (high-risk), otherwise, we say it is intermediate-risk)
- Validating the markers using other independent datasets

A "gene expression signal" is a tangible indicator of expression of a gene, such as mRNA or protein.

- 5 In an embodiment of the invention there is provided a process to identify tumour characteristics, said process comprising the following steps:
 - 1) obtaining three different marker sets each predictive of a characteristic of interest;
 - 10 2) extracting gene expression signals from tumour cells;
 - 3) correlating the extracted gene expression signals to the three different marker sets;
 - 4) assigning a value to the extracted gene expression signals according to the following rankings:
 - 15 a. if the correlation of all three predictive gene expression signal sets predict it to have characteristics of concern, it is designated a bad tumour;
 - b. if the correlation of all three predictive gene expression signal sets predict it to lack characteristics of concern it is designated a good tumour;
 - 20 c. if the correlation of all three predictive gene expression signal sets do not provide the same predicted clinical outcome, the tumour is designated as "intermediate."
- 25 In some cases, the characteristic of concern relates to one or more of: metastasis, inflammation, cell cycle, immunological response genes, drug resistance genes, and multi-drug resistance genes. In some cases the tumour characteristic is responsible to a particular treatment or combination of treatments.

In some cases the tumour characteristic is a tendency to lead to poor patient survival post-surgery.

5 In some cases, the tumour characteristic is related to patient survival and step 4 of the process above comprises assigning a value to the extracted gene expression signals according to the following rankings:

- a. if the correlation of all three predictive gene expression signal sets predict it to be a bad tumour, it is designated a bad tumour and more aggressive treatment beyond the typical standard of care would be recommended;
- b. if the correlation of all three predictive gene expression signal sets predict it to be a good tumour, no treatment beyond the standard of care would be recommended and no post-surgery chemotherapy or radiation treatment would be recommended;
- c. if the correlation of all three predictive gene expression signal sets do not provide the same prognosis, the tumour is designated as "intermediate" and the full typical standard of care treatment, including chemotherapy and/or radiation treatment would be recommended.

15 In cases where the cancer has more than one subtype, it may be desirable to include the preliminary steps of :

- a) identifying the tumour subtype to be examined;
- b) selecting marker sets specific to that subtype of tumour.

20 In some cases, the tumour characteristic of interest is the tendency of the tumour to respond to particular treatments, such as chemotherapeutic agents or radiation. In such a case, the gene expression signals are correlated with tumour drug response in the process of developing the training sets. It will be understood that a "good"

5 tumour response to a particular drug would be below-average tumour survival following treatment and a "bad" response would be above-average tumour survival following treatment. Using this approach, and depending on the detail available in the original tumour and clinical data used in developing the training sets, it is possible to develop markers not only for response to individual drugs or treatments, but to combinations of treatments (where there is sufficient data in the original source to permit this).

10 In an embodiment of the invention there is provided a process for determining predictive gene expression signal sets of the type useful in the processes described above comprising the following steps:

- 1) obtaining gene expression signal information and patient clinical information for a characteristic of interest for a known tumour population for a cancer of interest;
- 15 2) correlating the gene expression signals with clinical patient information regarding the characteristic of interest to identify which genes have predictive power for clinical outcome;
- 3) creating at least 30 random training datasets from step 1;
- 4) comparing identified gene expression signals of step 3 to a list of known 20 genes active in cancer;
- 5) selecting identified gene expression signals which correspond to those on the list of known cancer genes;
- 6) grouping the selected identified gene expression signals according to their role in biological processes;
- 25 7) generating random gene expression signal sets of at least 25 genes from a selected gene expression signals group of step 6;
- 8) correlating the random gene expression signal sets to the random training datasets of step 3;
- 9) obtaining a P value for a survival screening from the correlation for each 30 gene expression signal set of step 7;

- 10) if the P value for a gene expression signal set is less than 0.05 for more than 90% of the random training datasets, keeping the gene expression signal set;
- 11) ranking the random gene expression signal sets kept in step 10 based on frequency of gene appearances in the set;
- 12) selecting the top at least 26 genes as potential candidate markers;
- 13) repeating steps 7 to 12 and producing another, independent, rank set of at least 26 genes;
- 14) comparing the top genes from step 12 and step 13;
- 15) if more than 25 of the genes are the same, the top genes are kept as marker sets;
- 16) twice repeating steps 7 to 15 to obtain three different marker sets;

In one embodiment of the invention there is provided a process of identifying patients in need of more or less aggressive treatment than the typical standard of care, said process comprising:

- A “gene expression signal” is a tangible indicator of expression of a gene, such as mRNA (in theory, could one measure protein expression instead if it was technically feasible to do so? Anything else?).

20

1. An information source comprising tumour and clinical patient information is studied individually. All reported gene expression signals in cells are correlated with patient survival (5 and 10 yrs) in order to identify which genes have predictive power for prognosis within that individual information source. Those gene expression signals found to correlate significantly with patient survival are identified for further examination.

25

2. Gene expression signals identified in step 1 are compared to a list of known cancer genes and those gene expression signals corresponding to known genes known to have a role in cancer are selected for further analysis. (this

will generally give rise to a list of a few hundred to a few thousand gene expression signals)

3. At least 30 (typically between 30 and 40) random training datasets are produced from the information source of step 1. The same individual gene expression signal may appear in multiple random training datasets.

4. Gene expression signals selected in step 2 are grouped according to their role in biological processes (e.g. cell cycle genes, cell death genes, immunological response genes, inflammation genes and so on Go analysis

5. Random gene expression signal sets (typically about a million) are generated, each containing approximately 30 genes randomly selected from a single group produced in step 3.

15 6. A P value for a survival screening of each random gene expression signal sets of step 4 against each random training datasets is obtained Can you please describe this correlation a bit more?

20 7. If the P value is less than 0.05 for more than 90% of the random datasets, the random gene set is kept

8. The kept random gene expression signal sets from step 7 are ranked based on the frequencies of the genes appearing in them

25 9. The top 30 genes (ranked in Step 8) having the highest predictive value as determined in step 8 are selected as potential candidates.

10. Steps 5-9 are repeated, starting from the generation of random gene expression signal sets from each group formed in step 3, and producing

30

another, independent, ranked set of the top 30 genes which are potential candidates.

11. The top 30 genes produced in step 10 are compared to the top 30 genes from step 9. If 25 or more of the 30 are the same, it is called a "stable signature" and is useful in screening patient samples. If fewer than 25/30 are the same, the data is discarded (from both sets of potential candidates). (At least 25 are needed, thus either the first or the second set of potential candidates may be used.

10

12. Steps 5-11 are repeated twice more for two other groups (of step 3) of gene expression signals. Thus, there will be three sets of stable signatures, each relating to a different group from step 3.

13. Cancer cells from the patient are examined to assess their gene expression activity and its correlation to the gene expression signals in the three stable signatures. Typically, a stable signature will be an indication of likelihood of metastasis and therefore high patient expression matching that signature will indicate a "bad" tumour. However it is possible that a stable signature might indicate protective genes being expressed, such as apoptosis genes, in which case, for that signature, high patient expression of those gene expression signatures would indicate a "good" tumour. In either case, each stable signature is compared to the patient sample and a prediction of "good" or "bad" tumour is made by each stable signature individually. What is the threshold for an indication of "bad" or "good" from a single stable signature? Eg. Is it "bad" if over 50% of the genes found in the signature are expressed in the sample? Is it "bad" if over 50% of the genes found in the signature are expressed above normal basal levels in the corresponding non-cancerous tissue?

25
30

14. Combining of the predictions of each of the three sets of gene expression signals as regards the patient sample and assigning a value to the tumour as follows: (a) if all three gene expression signal sets (signatures) predict it to be a bad tumour, it is designated a bad tumour and the patient should be provided more aggressive treatment beyond the typical standard of care; (b) if all three data sets predict it to be a good tumour the patient should receive no treatment beyond the standard of care and should not be subjected to post-surgery chemotherapy or radiation treatment; (c) if all three sets of gene expression products do not provide the same prognosis, the tumour is designated as "intermediate" and the patient should receive the full typical standard of care treatment, including chemotherapy and/or radiation treatment.

15. In some cases, for this process it will be desirable to group the selected identified gene expression signals according to their role in biological process using Gene Ontology analysis.

Preferably between 30 and 50 random training sets are created. More preferably, between 30 and 40 training sets are created.

20

It will sometimes be desirable to select the genes known to be active in cancer from the groups of genes responsible for metastasis, cell proliferation, tumour vascularisation, and drug response.

25 In some embodiments of the invention involving the process described above, in step 7, between about 750,000 and 1,250,000, or between about 900,000 and 1,100,000 or about a million random gene expression signal sets are generated. In some embodiments of the invention as described in the process above, in step 7, the random gene expression signal sets generated contain between about 25 and 30 30 50, or 28-32 or about 30 genes.

10 In an embodiment of the invention as described in the process above, in step 12
the top 26-50, or 28-32 or about 30 genes are selected.

15 In some cases when considering tumour characteristics relating to patient survival, it will be desirable to employ at least one cancer biomarker set selected from the list consisting essentially of NRC-1, NRC-2, NRC-3, NRC-4, NRC-5, NRC-6, NRC-7, NRC-8, and NRC-9.

20 In an embodiment of the invention there is provided a kit comprising at least three marker sets and instructions to carry out the process described above in order to identify a tumour characteristic of interest. In some cases, the kit will comprise at least 10 gene expression signals listed in Table 1A or 1B. In some cases, the kit will comprise at least 30 nucleic acid biomarkers identified according to the process 15 described above..

25 In an embodiment of the invention there is provided the use of any of the gene expression signals in Table 1A or 1B in identifying one or more tumour characteristics of interest. In some cases, at least different three markers sets are used in some cases at least 1, 2, or 3 of the marker sets including at least 1, 5, 10, 20, or 25 of the gene expression signals found in Table 1A or 1B. In some cases each marker set contains at least 1, 5, 10, 20 or 25 of the gene expression signals found in Table 1A or 1B.

30 In an embodiment of the invention, the cancer biomarkers are breast cancer biomarkers and the first subtype of sample is an ER+ sample.

35 In an embodiment of the invention, in the process described above, the random training sets are generated by randomly picking samples while maintaining the

same ratio of "good" and "bad" tumours as that in the set from which they are chosen.

In some cases, the tumour characteristic(s) of interest will relate to patient survival (for example, following surgery and typical standard of care) and in such cases, the method may be used to identify patients in need of more or less aggressive treatment than the typical standard of care. (Chemotherapy and radiation treatment are, in themselves, hazardous. Thus, it is best to avoid providing such treatment to patients who do not need them.)

10

In some cases, it will be desirable to study tumour tissue for a patient by extracting gene expression signals (e.g. mRNA, protein) and assaying the presence (and in some cases level) of gene expression signals of interest using a reporter specific for the gene expression signal of interest. This may be done in a micro-array format permitting examination of multiple gene expression signals essentially simultaneously. A reporter may be a probe which binds to a nucleic acid sequence of interest, an antibody specific to a protein of interest, or any other such material (many such reporters are known in the art and used routinely). The reporter effects a change in the sample permitting assessment of the gene expression signal of interest. In some cases the change effected may be a change in an optical aspect of the sample, in other cases the change may be a change in another assayable aspect of the sample such as its radioactive or fluorescent properties.

In situations where a particular type of cancer has more than one subtype (eg. ER+ and ER- breast cancers), it will be preferable to classify the patient's cancer by subtype initially, and then use markers developed in relation to that subtype.

In some cases, the tumour characteristic(s) of interest will relate to tumour response to particular treatment(s) and in such cases, the method may be used to

identify promising treatment approaches (one or more chemotherapeutics or combinations of treatments) for the patient having the tumour.

As used herein "tumour" includes any cancer cell which it is desirable to destroy or neutralize in a patient. For example, it may include cancer cells found in solid tumours, myelomas, lymphomas and leukemias.

Tumours will generally be mammalian or bird tumours and may be tumours of: human, ape, cat, dog, pig, cattle, sheep, goat, rabbit, mouse, rat, guinea pig, hamster, gerbil, chicken, duck, or goose.

It will be apparent that the combinatorial use of three independent sets of gene expression signals is not limited to gene expression signals produced according to the approach described herein, but may also be applied to cancer biomarker datasets sold commercially or reported in the literature. (Although the reliability of the final screening result will depend to some extent on the robustness of the sets used and therefore it is recommended to use cancer biomarker datasets which are robust). In some instances it will be desirable to select cancer biomarker datasets comprising genes involved in different biological processes (E.g. one dataset might relate to inflammation, another to cell cycle and the third to metastasis.)

The process is general and may be applied to any type of cancer. For example it is useful in relation to those cancer types listed in Table 4.

25

In an embodiment of the invention, the process is applied to determine how aggressively a breast cancer patient should be treated post-surgery. One embodiment of the process is provided below, in parallel with a description of Example 1:

30

- Step 1: developing an automatic survival screening method using cancer cell gene microarray data and survival information of the tumour patients. (By way of non-limiting example, surface and secreted proteins were identified from the microarray data of JM01 cell line (mouse breast cancer cell line, in-house cell line and data), to screen a public breast cancer dataset (295 samples, Chang et al., PNAS 102:3738, 2005). The term "survival screening" is defined as examination of the statistical significance of the correlation between each single gene expression value and patient survival status ("good" or "bad") by performed Kaplan-Meier analysis by implementing the Cox-Mantel log-rank test (Cui et al., Molecular Systems Biology, 3:152, 2007). From this screening, seven proteins were obtained, which can individually distinguish 'good' and 'bad' tumours. By way of example, in a portion of Example 1, the protein (MMP9) was selected to be validated experimentally in the original cell line. When applying MMP9 antibody to the cell line, the epithelial to mesenchymal transition in cancer progression was blocked. This result indicates that the method is suitable to find metastasis related genes.

- Step 2 conducting a genome-wide survival screening of genes whose expression values are correlated with breast cancer patient survivals was conducted. (In Example 1, two training datasets, defined as Dataset 1 (78 samples, van't Veer et al., Nature, 2002), and Dataset 2 (286 samples, Wang et al., Lancet, 365:671, 2005), were used.) The resulting gene expression signal lists are called S1, and S2, respectively. The total genes of these two lists are called St gene expression signal list ($St = S1 + S2$).

- Step 3: Where the cancer of interest has more than one sub-type, markers for a first sub-type are generated. (For example, in Example 1, ER+ and ER- markers were generated.) In Example 1, ER+ tumour markers were generated by extracting all the ER+ samples from above datasets and defined as S1-ER+ (extracted from Dataset 1) and S2-ER+ sets (extracted from Dataset 2), respectively. 35 random-training-sets are generated by randomly picking up N samples (N= 60) from S2-ER+ sets. The ratio of "good" and "bad" tumours is

preserved essentially the same as that in S2-ER+ sets. 36 training-sets are obtained by adding S1-ER+ to the 35 random-training-sets mentioned above.

- Step 4: obtaining a gene expression signal list (in Example 1, St-ER+ gene expression signal list) by genome-wide survival screening, which involves repeating Step 2 but using subsets for the first tumour subtype, eg. datasets, S1-ER+ and S2-ER+ sets in Example 1. Using the St-ER+ gene expression signal list, Gene Ontology (GO) analysis (using GO annotation software, David, <http://david.abcc.ncifcrf.gov/>) is performed, only the genes which belong to GO terms that are known to be associated with cancer, such as cell cycle, cell death and so on are used for further marker screening.

- Step 5: 1 million distinct random-gene-sets (each random-gene-set contains 30 genes) are generated from each selected GO term annotated genes (normally around 60-80 genes per GO term by randomly picking up 30 genes from one GO term annotated genes.

-Steps 6 and 7: Further survival screening is conducted, preferably using 1 million random-gene-sets against all the first tumour subtype training sets (eg. In Example 1, 36 ER+ training sets) (generated in Step 3). For each training set, the statistical significance of the correlation between the expression values of each random-gene-set (30 genes) and patient survival status ("good" or "bad") is examined, for example by performed Kaplan-Meier analysis by implementing the Cox-Mantel log-rank test. If the P value is less than 0.05 for a survival screening using one random-gene-set against one training set, it is said that that random-gene-set passed that training set.

Step 7: When all the first subtype (eg. 36 ER+) training sets have more than 2,000 random-gene-sets passed, or a P value of more than 0.05 has been obtained

for more than 90% of the random training datasets, these passed random-gene-sets are kept.

Step 8: The genes in the kept random-gene-sets of claim 7 are ranked based on the frequencies appearance in the passed random-gene-sets.

Step 9: The top 30 genes (defined as potential marker set) are chosen as a potential-marker-set . It should be noted that, while 30 genes are preferred, between 20 and 40 may be used, more preferably between 25 and 35 or more preferably 27-33. In some instances, 25-30 individual gene expression signals are desired in each set used for screening purposes, thus various input numbers may be used to produce this output.

Step 10: Step 5 is repeated using the same GO term used initially in Step 5 and another 1 million distinct random-gene-sets are generated, which are used to repeat Steps 6 and 7.

Step 11: If the gene members for the top 30 are substantially the same as those in the potential-marker-set (step 9), it means the potential-marker-set is stable and can be used as a real cancer biomarker set. This potential-marker-set is designated as a marker set (this one can be used for patients now). If the gene expression signals for the two potential marker sets are not substantially the same it is an indication that these GO term genes are unsuitable for finding a biomarker set and the potential marker sets are dropped from further analysis. In some cases it will be desirable to have at least 25 of the 30 gene expression signals the same in the two potential marker sets before designating it as a marker set. In some cases it will be desirable to have 26, 27, 28, 29, or 30 of the gene expression signals the same in the two potential marker sets.

Step 12: Steps 5-11 are repeated twice more for two other groups (of step 3) of gene expression signals. Thus, there will be three sets of stable signatures, each relating to a different group from step 3.

5

In example 1, 3 sets of markers (called NRC-1, -2 and -3, respectively, each set contains 30 genes, see Table 1) were obtained and tested in ER+ training sets (S1-ER+ and S2-ER+). The testing process is illustrated. The samples in each training set can be divided into three groups: low-risk, intermediate-risk and high-risk groups.

10

Optional step 12 b: as an optional step, which was carried out in Example 1, it can be useful to further analyze biomarker sets to further stratify the high-risk group. This step involves taking the samples from high-risk group (which in Example 1 was stratified by NRC-1, -2 and -3, of the training set, S2-ER+) and repeating Steps 3, 4, 5, 6, 7, and 8.

15

In Example 1, another 3 sets of markers (called NRC-4, -5 and -6, respectively) were obtained. Each set contained 30 genes (see Table 1). These sets were targeted for the high-risk group which was stratified by NRC-1, -2 and -3.

20

25

30

- Step 12 c: as an optional step, conducted in Experiment 1, to get biomarkers for a second sub-type of tumours (in example 1, ER-tumours) all second subtype samples in datasets 1 and 2 are extracted (eg. the ER- samples from Datasets 1 and 2, respectively, and defined as S1-ER- (extracted from Dataset 1) and S2-ER- (extracted from Dataset 2) sets, respectively). 35 random-training-sets are generated by randomly picking up N samples (N= 40) from dataset 2, subtype two sets (eg. S2-ER- sets). The ratio of "good" and "bad" tumours is

maintained as that in the overall dataset 2, subtype 2 sets (S2-ER-sets). Training-sets are obtained (36 in Example 1) by adding dataset 1, type 2 (eg. S1-ER-) to the 35 random-training-sets mentioned above. Step 4 is repeated using dataset 1, subtype 2 (eg. S1-ER-) and dataset 2, subtype 2 (eg. S2-ER-) sets to obtain a combined dataset, subtype 2 (eg. St-ER-) gene expression signal list, and then GO analysis is performed. Steps 5, 6, 7, and 8 are then repeated.

In Example 1, another 3 sets of markers (called NRC-7, -8 and -9, respectively. Each set contains 30 genes, see Table 1) were obtained. These sets were used for ER- samples.

Testing Process

15

General Overview, Example 1: In example 1, for each marker set, nearest shrunken centroid classification and leave-one-out methods were employed. We then combinatory used 3 marker sets together for predicting the recurrence of each sample.

20

For a given dataset, which contains n samples, the test process used in Example 1 was the following (step by step):

Step 13: For a targeted testing sample, we extracted the gene expression profile of the marker set. For each gene expression value, we multiply its marker-factor and get the modified gene expression profile of the testing sample. We computed the standardized centroids for both “good” and “bad” classes from the n-1 samples for the marker set using PAM method (Tibshirani et al., PNAS, 99:6567, 2002). Multiply the marker-factor of each gene to the class centroids and get the modified class centroids of the marker set.

10 For predicting the recurrence of the targeted testing sample using the marker set:
15 we compare the modified gene expression profile of the sample to each of these
20 modified class centroids. The class whose centroid that it is closest to, in squared
25 distance, is the predicted class for that sample. If the sample is predicted as
30 a "good" tumour, it is denoted as 0, otherwise, it is denoted as 1.

35 Step14: For ER+ samples, if a sample has predicted as 0 for all 3 marker
40 sets, we assign it in low-risk group; If a sample has predicted as 1 for all 3
45 marker sets, we assign it in a high-risk group; If a sample is not assigned in low-
50 risk group neither high-risk group, we assign it in intermediate-risk group. For
55 ER- samples, a sample has predicted as 0 for all 3 marker sets, we assign it into
60 low-risk group, otherwise, we assign it into high-risk group. This is a modification
65 of the usual practice of assigning ambiguous samples to an intermediate group.
70 In the case of highly aggressive cancer subtypes, it may be desirable to classify
75 all cancers which are not clearly low-risk as high risk and treat them
80 aggressively, beyond the ordinary standard of care.

Validation of the marker sets in three testing datasets

95 To test the robustness and predicting accuracy of the marker sets, we tested the
100 marker sets in three independent breast cancer datasets from these publications
105 (Koe et al., Cancer Cell, 2006; Chang et al., PNAS 102:3738, 2005 and Sotiriou C,
110 et al., J. Natl Cancer Inst, 98:262, 2006), In total, 644 samples were tested.
115
120 For ER+ samples, in each dataset, we first used NRC-1, -2 and -3 marker sets
125 (from the three breast cancer datasets mentioned above) to stratify the samples
130 into low (LG), intermediate (MG) and high (HG) -risk groups. If the high-risk
135 group had less than 10 samples, we merged MG and HG groups and called it
140 intermediate-risk group. Otherwise, we used NRC-4, -5 and -6 marker sets to
145 stratify the HG group into three new groups: low (NLG), intermediate (NMG) and

10 For ER+ samples, in each dataset, we used NRC-1, NRC-2 and NRC-3 marker sets to stratify the samples into low (LG-) and high (HG-) -risk groups. We also obtained very good results with high predictability accuracy (~ 90% for non-recurrence patients) for the low-risk group and classified three groups nicely in all the 3 testing datasets (See table 2).

15 For ER- samples, in each dataset, we used NRC-7, -8 and -9 marker sets to stratify the samples into low (LG-) and high (HG-) -risk groups. We also obtained very good results with high predicting accuracy (~ 92-100% for non-recurrence patients) for the low-risk group and classified two groups nicely in all the 3 testing datasets (See table 2).

100 Combinatory usage of the marker sets improve predicting accuracy

15

20 For ER+ samples, when NRC-1, NRC-2 and NRC-3 are all in agreement to predict the sample as "good" tumour, the accuracy was significantly improved than using a single marker set, such as NRC-1, NRC-2 or NRC-3 (Table 3). The same results were obtained when NRC-7, NRC-8 and NRC-9 are all in agreement to predict the sample as "good" tumour for ER- samples (Table 3). In general, it is found that the integrative usage of 3 marker sets improves predictive accuracy over using a single set. In one embodiment of the invention accuracy was improved from about 70% to about 90%. In one embodiment of the invention, accuracy is at least 90%. In another embodiment it is at lease 95%.

25

Thus, there is provided herein robust sets of biomarkers and uses thereof.

30 It will be understood that, depending on the type of cancer, and the condition of the patient, different gene profiles may be considered "bad". Metastasis is generally considered to be a significant factor in the decision about how to treat a patient

1 with cancer and sets of biomarker sets, such as those disclosed herein, are useful
2 for that purpose. In addition, biomarker sets can be used to identify cancer cell
3 types which are likely to respond well (or poorly) to one or more particular drugs.
4 Regardless of the exact factors being considered as "good" or "bad", it will usually
5 be desirable to begin the process with training sets S1 and S2 containing both
6 "good" and "bad" genes. Level of gene expression may be considered when
7 identifying good drug targets since highly-expressed targets frequently make good
8 drug targets.

9 In general, the low-risk group (having "good prognostic signature") will not go to
10 treatment, but high-risk group (having "poor prognostic signature") should receive
11 treatment in addition to surgery. Generally, the intermediate-risk group will do so
12 as well; however, this will depend on the typical standard of care for that type of
13 tumour.

15

16 While each of the biomarker sets disclosed herein is, individually, useful in
17 predicting the need for additional treatment, overall prediction accuracy can be
18 markedly improved by the use of multiple biomarker sets.

20

21 For example, if a patient sample is screened against NRC_1, NRC_2 and
22 NRC_3 and all three sets indicate "good" prognosis, the patient is considered to
23 be low risk. If all indicate "bad" prognosis, the sample is considered to be high
24 risk. If one or two sets say "bad" and the other(s) says "good", the cancer is
25 considered to be intermediate risk.

25

26 In an embodiment of the invention, in order to determine if a patient sample is
27 "good" or "bad" in relation to any one biomarker set (e.g. NRC_1), the biomarker
28 set is used to independently screen two banks of cancer cells representing
29 samples from a large number of patients. The first bank represents "good"
30 cancer cells (with a known clinical history of not exhibiting the behaviour or

characteristic of concern, such as metastasis) and the second bank represents “bad” cancer cells (with a known clinical history of exhibiting the behaviour or characteristic of concern). Each of the “good” and “bad” banks will produce a gene expression signature (standard “good” and “bad” gene expression

5 signatures for “good” and “bad” tumours), respectively, for each biomarker set.

For a patient sample, the gene expression signature of a biomarker set of the patient sample is compared to the standard “good” and “bad” gene expression signatures of that biomarker set. Those patient samples which most closely resemble the standard “bad” signature of that biomarker set are considered “bad”

10 and those which most closely resemble the standard “good” signature of that biomarker set are considered “good.”

The method may in some cases involve the combinatory using of one or more of the following cancer biomarker sets: NRC-1, NRC-2, NRC-3, NRC-4, NRC-5, 15 NRC-6, NRC-7, NRC-8, NRC-9.

Example of one possible approach to using the process when a subtype has been identified (for this example ER+/ER-):

-ER status is determined for the tumour sample of cancer cells. (this is often 20 done in clinical setting)

-For ER+ samples, if a sample has predicted as “good” for all 3 marker sets (NRC-1, -2, and -3), it is assigned into low-risk group; If a sample has predicted as “bad” for all 3 marker sets, it is assigned into a high-risk group; If a sample is not assigned into low-risk group neither high-risk group, it is assigned into 25 intermediate-risk group.

-For the ER+ high-risk group, which is defined by the marker sets (NRC-1, -2, and -3), is predicted again using the marker sets (NRC-4, -5, and -6). If a sample has predicted as “bad” for all 3 marker sets, it is assigned into a high-risk

group. Otherwise, it is assigned into the intermediate-risk group, which is defined by NRC-1, -2, and -3.

-For ER- samples, a sample has predicted as "good" for all 3 marker sets (NRC-5, -6, -7, -8, and -9), it is assigned into low-risk group, otherwise, it is assigned into high-risk group.

In an embodiment of the invention there is provided a method of assessing the likelihood of a patient benefiting from additional cancer treatment in addition to surgery, said method comprising:

- printing gene probes of the marker sets onto a microarray gene chip
- extracting message RNAs from the tumour sample.
- hybridizing the message RNA onto the microarray gene chip.
- scanning the hybridized microarray chip to get all the readouts of marker genes for the sample.
- normalizing the readouts
- constructing the gene expression profiles of each marker set for the sample
- correlating the gene expression profiles of each marker set to those of the standard (known as "good" and "bad") tumour samples to make predictions.

20

Detailed information for making microarray gene chip, scanning and normalization of array data can be found at Agilent company website:
<http://www.chem.agilent.com/en-US/products/instruments/dnamicroarrays/pages/default.aspx> and in the publicly available literature.

Table 1A. Lists of NRC biomarker gene signatures for ER+ and ER- breast cancer patients :

EntrezGene ID	Gene Name	Description
NRC_1 (immune)		
730	C7	Complement component 7
6401	SELE	Selectin E (endothelial adhesion molecule 1)
939	CD27	CD27 molecule
2152	F3	Coagulation factor III (thromboplastin, tissue factor)
51561	IL23A	Interleukin 23, alpha subunit p19
9607	CARTPT	CART prepropeptide
6696	SPP1	Secreted phosphoprotein 1 (osteopontin, bone sialoprotein 1, early T-lymphocyte activation 1)
7138	TNNT1	Troponin T type 1 (skeletal, slow)
784	CACNB3	Calcium channel, voltage-dependent, beta 3 subunit
729	C6	Complement component 6
2165	F13B	Coagulation factor XIII, B polypeptide
6403	SELP	Selectin P (granule membrane protein 140kDa, antigen CD62)
5452	POU2F2	POU class 2 homeobox 2
6774	STAT3	Signal transducer and activator of transcription 3 (acute-phase response factor)
5265	SERPINA1	Serpin peptidase inhibitor, clade A (alpha-1 antiprotease inhibitor), member 1
8074	FGF23	Fibroblast growth factor 23
4607	MYBPC3	Myosin binding protein C, cardiac
7940	LST1	Leukocyte specific transcript 1
3952	LEP	Leptin (obesity homolog, mouse)
6776	STAT5A	Signal transducer and activator of transcription 5A
259	AMBP	Alpha-1-microglobulin/bikunin precursor
7125	TNNC2	Troponin C type 2 (fast)
6331	SCN5A	Sodium channel, voltage-gated, type V, alpha subunit
857	CAV1	Caveolin 1, caveolae protein, 22kDa
5936	RBM4	RNA binding motif protein 4
641	BLM	Bloom syndrome
2534	FYN	FYN oncogene related to SRC, FGR, YES
604	BCL6	B-cell CLL/lymphoma 6 (zinc finger protein 51)
10874	NMU	Neuromedin U
3240	HP	Haptoglobin
NRC_2 (cell cycle)		
5933	RBL1	Retinoblastoma-like 1 (p107)
6790	AURKA	Aurora kinase A
898	CCNE1	Cyclin E1
332	BIRC5	Baculoviral IAP repeat-containing 5 (survivin)
4830	NME1	Non-metastatic cells 1, protein (NM23A) expressed in

259266	ASPM	Asp (abnormal spindle) homolog, microcephaly associated (Drosophila)
3070	HELLS	Helicase, lymphoid-specific
10628	TXNIP	Thioredoxin interacting protein
3981	LIG4	Ligase IV, DNA, ATP-dependent
10051	SMC4	Structural maintenance of chromosomes 4
4175	MCM6	Minichromosome maintenance complex component 6
1063	CENPF	Centromere protein F, 350/400ka (mitosin)
11186	RASSF1	Ras association (RalGDS/AF-6) domain family 1
51053	GMNN	Geminin, DNA replication inhibitor
9787	DLG7	Discs, large homolog 7 (Drosophila)
11145	HRASLS3	HRAS-like suppressor 3
274	BIN1	Bridging integrator 1
4013	LOH11CR2A	Loss of heterozygosity, 11, chromosomal region 2, gene
5501	PPP1CC	Protein phosphatase 1, catalytic subunit, gamma isoform
8099	CDK2AP1	CDK2-associated protein 1
10615	SPAG5	Sperm associated antigen 5
4750	NEK1	NIMA (never in mitosis gene a)-related kinase 1
22924	MAPRE3	Microtubule-associated protein, RP/EB family, member 3
1163	CKS1B	CDC28 protein kinase regulatory subunit 1B
5598	MAPK7	Mitogen-activated protein kinase 7
26060	APPL1	Adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1
11011	TLK2	Tousled-like kinase 2
22933	SIRT2	Sirtuin (silent mating type information regulation 2 homolog) 2 (S. cerevisiae)
22919	MAPRE1	Microtubule-associated protein, RP/EB family, member 1
5884	RAD17	RAD17 homolog (S. pombe)
NRC_3 (apoptosis)		
4982	TNFRSF11B	Tumour necrosis factor receptor superfamily, member 1 (osteoprotegerin)
7704	ZBTB16	Zinc finger and BTB domain containing 16
333	APLP1	Amyloid beta (A4) precursor-like protein 1
27250	PDCD4	Programmed cell death 4 (neoplastic transformation inhibitor)
9459	ARHGEF6	Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6
8835	SOCS2	Suppressor of cytokine signaling 2
332	BIRC5	Baculoviral IAP repeat-containing 5 (survivin)
983	CDC2	Cell division cycle 2, G1 to S and G2 to M
9700	ESPL1	Extra spindle pole bodies homolog 1 (S. cerevisiae)
7262	PHLDA2	Pleckstrin homology-like domain, family A, member 2
26586	CKAP2	Cytoskeleton associated protein 2

9135	RABEP1	Rabaptin, RAB GTPase binding effector protein 1
4893	NRAS	Neuroblastoma RAS viral (v-ras) oncogene homolog
4830	NME1	Non-metastatic cells 1, protein (NM23A) expressed in
1191	CLU	Clusterin
6776	STAT5A	Signal transducer and activator of transcription 5A
596	BCL2	B-cell CLL/lymphoma 2
54205	CYCS	Cytochrome c, somatic
3605	IL17A	Interleukin 17A
4255	MGMT	O-6-methylguanine-DNA methyltransferase
10553	HTATIP2	HIV-1 Tat interactive protein 2, 30kDa
55367	LRDD	Leucine-rich repeats and death domain containing
1434	CSE1L	CSE1 chromosome segregation 1-like (yeast)
3981	LIG4	Ligase IV, DNA, ATP-dependent
8717	TRADD	TNFRSF1A-associated via death domain
694	BTG1	B-cell translocation gene 1, anti-proliferative
2730	GCLM	Glutamate-cysteine ligase, modifier subunit
4790	NFKB1	Nuclear factor of kappa light polypeptide gene enhancer B-cells 1 (p105)
5519	PPP2R1B	Protein phosphatase 2 (formerly 2A), regulatory subunit beta isoform
5618	PRLR	Prolactin receptor

NRC_4 (cell motility)

57045	TWSG1	Twisted gastrulation homolog 1 (Drosophila)
3730	KAL1	Kallmann syndrome 1 sequence
283	ANG	Angiogenin, ribonuclease, RNase A family, 5
2549	GAB1	GRB2-associated binding protein 1
6352	CCL5	Chemokine (C-C motif) ligand 5
6402	SELL	Selectin L (lymphocyte adhesion molecule 1)
643	BLR1	Burkitt lymphoma receptor 1, GTP binding protein (chemokine (C-X-C motif) receptor 5)
3576	IL8	Interleukin 8
9542	NRG2	Neuregulin 2
6662	SOX9	SRY (sex determining region Y)-box 9 (campomelic dysplasia, autosomal sex-reversal)
9027	NAT8	N-acetyltransferase 8
7852	CXCR4	Chemokine (C-X-C motif) receptor 4
55591	VEZT	Vezatin, adherens junctions transmembrane protein
55704	CCDC88A	Coiled-coil domain containing 88A
2028	ENPEP	Glutamyl aminopeptidase (aminopeptidase A)
3912	LAMB1	Laminin, beta 1
2304	FOXE1	Forkhead box E1 (thyroid transcription factor 2)
7059	THBS3	Thrombospondin 3

3915	LAMC1	Laminin, gamma 1 (formerly LAMB2)
7043	TGFB3	Transforming growth factor, beta 3
23129	PLXND1	Plexin D1
8611	PPAP2A	Phosphatidic acid phosphatase type 2A
5921	RASA1	RAS p21 protein activator (GTPase activating protein) 1
6376	CX3CL1	Chemokine (C-X3-C motif) ligand 1
3087	HHEX	Hematopoietically expressed homeobox
9464	HAND2	Heart and neural crest derivatives expressed 2
4991	OR1D2	Olfactory receptor, family 1, subfamily D, member 2
6885	MAP3K7	Mitogen-activated protein kinase kinase kinase 7
7019	TFAM	Transcription factor A, mitochondrial
4692	NDN	Necdin homolog (mouse)

NRC_5 (cell proliferation)

283	ANG	Angiogenin, ribonuclease, RNase A family, 5
2919	CXCL1	Chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha)
2549	GAB1	GRB2-associated binding protein 1
3507	IGHM	
7045	TGFBI	Transforming growth factor, beta-induced, 68kDa
3576	IL8	Interleukin 8
973	CD79A	CD79a molecule, immunoglobulin-associated alpha
10220	GDF11	Growth differentiation factor 11
6662	SOX9	SRY (sex determining region Y)-box 9 (campomelic dysplasia, autosomal sex-reversal)
1032	CDKN2D	Cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK-4)
11040	PIM2	Pim-2 oncogene
10428	CFDP1	Craniofacial development protein 1
3600	IL15	Interleukin 15
5473	PPBP	Pro-platelet basic protein (chemokine (C-X-C motif) ligand 7)
8451	CUL4A	Cullin 4A
5376	PMP22	Peripheral myelin protein 22
50810	HDGFRP3	Hepatoma-derived growth factor, related protein 3
4067	LYN	V-yes-1 Yamaguchi sarcoma viral related oncogene homolog
7188	TRAF5	TNF receptor-associated factor 5
7453	WARS	Tryptophanyl-tRNA synthetase
3601	IL15RA	Interleukin 15 receptor, alpha
2028	ENPEP	Glutamyl aminopeptidase (aminopeptidase A)
5511	PPP1R8	Protein phosphatase 1, regulatory (inhibitor) subunit 8
55704	CCDC88A	Coiled-coil domain containing 88A
7041	TGFB1I1	Transforming growth factor beta 1 induced transcript 1

706	TSPO	Translocator protein (18kDa)
8611	PPAP2A	Phosphatidic acid phosphatase type 2A
8850	PCAF	P300/CBP-associated factor
8914	TIMELESS	Timeless homolog (Drosophila)
23705	CADM1	Cell adhesion molecule 1
NRC_6 (sex)		
939	CD27	CD27 molecule
5680	PSG11	Pregnancy specific beta-1-glycoprotein 11
283	ANG	Angiogenin, ribonuclease, RNase A family, 5
6662	SOX9	SRY (sex determining region Y)-box 9 (campomelic dysplasia, autosomal sex-reversal)
6715	SRD5A1	Steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1)
8863	PER3	Period homolog 3 (Drosophila)
3620	INDO	Indoleamine-pyrrole 2,3 dioxygenase
668	FOXL2	Forkhead box L2
5079	PAX5	Paired box 5
23198	PSME4	Proteasome (prosome, macropain) activator subunit 4
54466	SPIN2A	Spindlin family, member 2A
7852	CXCR4	Chemokine (C-X-C motif) receptor 4
6347	CCL2	Chemokine (C-C motif) ligand 2
5818	PVRL1	Poliovirus receptor-related 1 (herpesvirus entry mediator)
3576	IL8	Interleukin 8
4986	OPRK1	Opioid receptor, kappa 1
7707	ZNF148	Zinc finger protein 148
10670	RRAGA	Ras-related GTP binding A
1816	DRD5	Dopamine receptor D5
83737	ITCH	Itchy homolog E3 ubiquitin protein ligase (mouse)
1984	EIF5A	Eukaryotic translation initiation factor 5A
3416	IDE	Insulin-degrading enzyme
4184	SMCP	Sperm mitochondria-associated cysteine-rich protein
1628	DBP	D site of albumin promoter (albumin D-box) binding protein
3295	HSD17B4	Hydroxysteroid (17-beta) dehydrogenase 4
8239	USP9X	Ubiquitin specific peptidase 9, X-linked
51665	ASB1	Ankyrin repeat and SOCS box-containing 1
3014	H2AFX	H2A histone family, member X
3624	INHBA	Inhibin, beta A
6019	RLN2	Relaxin 2
NRC_7 (apoptosis)		
1012	CDH13	Cadherin 13, H-cadherin (heart)

57823	SLAMF7	SLAM family member 7
51129	ANGPTL4	Angiopoietin-like 4
23213	SULF1	Sulfatase 1
2697	GJA1	Gap junction protein, alpha 1, 43kDa
4583	MUC2	Mucin 2, oligomeric mucus/gel-forming
3304	HSPA1B	Heat shock 70kDa protein 1B
79370	BCL2L14	BCL2-like 14 (apoptosis facilitator)
9994	CASP8AP2	CASP8 associated protein 2
2185	PTK2B	PTK2B protein tyrosine kinase 2 beta
3981	LIG4	Ligase IV, DNA, ATP-dependent
2765	GML	GPI anchored molecule like protein
27250	PDCD4	Programmed cell death 4 (neoplastic transformation inhibitor)
28986	MAGEH1	Melanoma antigen family H, 1
355	FAS	Fas (TNF receptor superfamily, member 6)
308	ANXA5	Annexin A5
2914	GRM4	Glutamate receptor, metabotropic 4
57099	AVEN	Apoptosis, caspase activation inhibitor
842	CASP9	Caspase 9, apoptosis-related cysteine peptidase
1409	CRYAA	Crystallin, alpha A
4792	NFKBIA	Nuclear factor of kappa light polypeptide gene enhancer B-cells inhibitor, alpha
6788	STK3	Serine/threonine kinase 3 (STE20 homolog, yeast)
5516	PPP2CB	Protein phosphatase 2 (formerly 2A), catalytic subunit, b isoform
57019	CIAPIN1	Cytokine induced apoptosis inhibitor 1
8682	PEA15	Phosphoprotein enriched in astrocytes 15
7042	TGFB2	Transforming growth factor, beta 2
1870	E2F2	E2F transcription factor 2
2898	GRIK2	Glutamate receptor, ionotropic, kainate 2
972	CD74	CD74 molecule, major histocompatibility complex, class invariant chain
7189	TRAF6	TNF receptor-associated factor 6

NRC_8 (cell adhesion)

57823	SLAMF7	SLAM family member 7
1012	CDH13	Cadherin 13, H-cadherin (heart)
3547	IGSF1	Immunoglobulin superfamily, member 1
7045	TGFBI	Transforming growth factor, beta-induced, 68kDa
1404	HAPLN1	Hyaluronan and proteoglycan link protein 1
80144	FRAS1	Fraser syndrome 1
10666	CD226	CD226 molecule
26032	SUSD5	Sushi domain containing 5

10979	PLEKHC1	Pleckstrin homology domain containing, family C (with FERM domain) member 1
9620	CELSR1	Cadherin, EGF LAG seven-pass G-type receptor 1 (flamingo homolog, Drosophila)
4815	NINJ2	Ninjurin 2
3684	ITGAM	Integrin, alpha M (complement component 3 receptor 3 subunit)
2909	GRLF1	Glucocorticoid receptor DNA binding factor 1
54798	DCHS2	Dachsous 2 (Drosophila)
2811	GP1BA	Glycoprotein Ib (platelet), alpha polypeptide
7414	VCL	Vinculin
6404	SELPLG	Selectin P ligand
2185	PTK2B	PTK2B protein tyrosine kinase 2 beta
4771	NF2	Neurofibromin 2 (bilateral acoustic neuroma)
950	SCARB2	Scavenger receptor class B, member 2
101	ADAM8	ADAM metallopeptidase domain 8
3491	CYR61	Cysteine-rich, angiogenic inducer, 61
22795	NID2	Nidogen 2 (osteonidogen)
55591	VEZT	Vezatin, adherens junctions transmembrane protein
4586	MUC5AC	Mucin 5AC, oligomeric mucus/gel-forming
3636	INPPL1	Inositol polyphosphate phosphatase-like 1
2833	CXCR3	Chemokine (C-X-C motif) receptor 3
261734	NPHP4	Nephronophthisis 4
10418	SPON1	Spondin 1, extracellular matrix protein
8500	PPFIA1	Protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 1

NRC_9 (cell growth)

23418	CRB1	Crumbs homolog 1 (Drosophila)
3488	IGFBP5	Insulin-like growth factor binding protein 5
2620	GAS2	
5654	HTRA1	HtrA serine peptidase 1
27113	BBC3	BCL2 binding component 3
2697	GJA1	Gap junction protein, alpha 1, 43kDa
348	APOE	Apolipoprotein E
4881	NPR1	Natriuretic peptide receptor A/guanylate cyclase A (atrionatriuretic peptide receptor A)
575	BAI1	Brain-specific angiogenesis inhibitor 1
9837	GINS1	GINS complex subunit 1 (Psf1 homolog)
51466	EVL	Enah/Vasp-like
357	SHROOM2	Shroom family member 2
207	AKT1	V-akt murine thymoma viral oncogene homolog 1
2027	ENO3	Enolase 3 (beta, muscle)

6531	SLC6A3	Solute carrier family 6 (neurotransmitter transporter, dopamine), member 3
8089	YEATS4	YEATS domain containing 4
6905	TBCE	Tubulin folding cofactor E
3490	IGFBP7	Insulin-like growth factor binding protein 7
6665	SOX15	SRY (sex determining region Y)-box 15
55785	FGD6	FYVE, RhoGEF and PH domain containing 6
5925	RB1	Retinoblastoma 1 (including osteosarcoma)
55558	PLXNA3	Plexin A3
7251	TSG101	Tumour susceptibility gene 101
978	CDA	Cytidine deaminase
3912	LAMB1	Laminin, beta 1
7042	TGFB2	Transforming growth factor, beta 2
56288	PARD3	Par-3 partitioning defective 3 homolog (C. elegans)
7486	WRN	Werner syndrome
2054	STX2	Syntaxin 2
5516	PPP2CB	Protein phosphatase 2 (formerly 2A), catalytic subunit, b isoform

Note: The message RNA sequences for each gene listed in this table have been attached at the end of this document. All message RNA sequences for each gene

5 in Table 1 are extracted from **National Center for Biotechnology Information (NCBI)**, a public database.

The format of sequences is a FASTA format. A sequence in FASTA format begins with a single-line description, followed by lines of sequence data. The description line is distinguished from the sequence data by a greater-than (">") symbol in the first column.

An example sequence in FASTA:

15 >6019|NM_005059
ATGCCTCGCTGTTTCCACCTGCTAGGAGCTGTTACTACTGAACCAATTTCAGAGCAGTCG
CGGACTCATGGATGGAGGAAGTTAAATTATCGGGCGCGAATTAGTTCGCGCGCAGATTGCCATTG
CGGCATGAGCACCTGGAGCAAAAGCTCTGAGCCAGGAGATGCTCCTCAGACACCTAGACCACTGGCA
GGTGATTTTATTCAAACAGTCTACTGGGAATCTCACCAGGACGGAGGGAAAGCACTGAGAACAGGAAGCT
10 GCTTCACCGAGAGTTCTTGGTGCCCTTCCAAATTGTGCCATCCTCATCAACAAAGATAAGAAACC
ATAAAATGATGTCAGAAATTGTTGCTAATTGCCACAGGAGCTGAAGTTAACCTGTCTGAGATGCAGC
20 CAGCATTACACAGCTACAACACATGTACCTGTTAAAAGATTCCAGTCTCTTGAAGAAATTAA
GAAACTTATTCGCAATAGACAAAGTGAAGGCCAGACAGCACTGCTTCAAGAATTAAACTTGTGGCTT
GATACTCATTCTCGAAAAGAGACAACTCTACAGTGCATTGGCTAATAATGTTGCCATGTTGGTTGA
25 CCAAAAGATCTTGCTAGATTGCTGAGATGAGCTAATTGTCACATCTCGTATAATTCACACAT

ATTCTTAATGACATTCACTGATGCTTCTATCAGGTCCCATCAATTCTAGAATATCTAAGAATCTTGT
TAGATATTAGGTCCCCTCAATTCTAGAATATCTAAACATCTTGTGATGTTAGATTTTTATTTGA
TGTGTAAGAAAATGTTCTTGTGATTAATGACACATTTTGCTG

5 In the description line, the first item, 6019 is NCBI EntrezGene ID, which is the ID
in the first column of Table 1; another item after the symbol (“|”) is the NCBI
reference message RNA sequence ID. It should be noted that one EntrezGene
ID may have several reference message RNA sequences. In this case, all the
message RNA sequences for one EntrezGene ID are listed. Each sequence
10 represents one reference message RNA sequence.

Table 1B. Gene expression signal list of NRC gene signatures

NRC-1 (Cell Cycle)		
Gene Name	EntrezGene ID	Gene Description
RBL1	5933	Retinoblastoma-like 1 (p107)
CCNF	899	Cyclin F
NME1	4830	Non-metastatic cells 1, protein (NM23A) expressed in
CDK2AP1	8099	CDK2-associated protein 1
BIRC5	332	Baculoviral IAP repeat-containing 5 (survivin) Tousled-like kinase
TLK2	11011	2 Structural maintenance of chromosomes
SMC4	10051	4 Cyclin
CCNE1	898	E1
APPL1	26060	Adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper
LOH11CR2A	4013	Loss of heterozygosity, 11, chromosomal region 2, gene A
MAPRE1	22919	Microtubule-associated protein, RP/EB family, member 1
HRASLS3	11145	HRAS-like suppressor 3
GADD45A	1647	Growth arrest and DNA-damage-inducible, alpha
HELLS	3070	Helicase, lymphoid-specific
PPP1CC	5501	Protein phosphatase 1, catalytic subunit, gamma isoform
GMNN	51053	Geminin, DNA replication inhibitor
EPHB2	2048	EPH receptor B2
RAD17	5884	RAD17 homolog (S. pombe)
AURKA	6790	Aurora kinase A
NEK1	4750	NIMA (never in mitosis gene a)-related kinase 1
RASSF1	11186	Ras association (RalGDS/AF-6) domain family 1
VASH1	22846	Vasohibin 1
MAPRE3	22924	Microtubule-associated protein, RP/EB family, member 3 Cell division cycle associated
CDCA8	55143	8
CDC73	79577	Cell division cycle 73, Paf1/RNA polymerase II complex component, homolog
SIRT2	22933	Sirtuin (silent mating type information regulation 2 homolog) 2 (S.

		cerevisiae)
MAPK7	5598	Mitogen-activated protein kinase 7
MKI67	4288	Antigen identified by monoclonal antibody Ki-67
TFDP1	7027	Transcription factor Dp-1
DMBT1	1755	Deleted in malignant brain tumours 1
 NRC-2(immune)		
C7	730	Complement component 7
SELE	6401	Selectin E (endothelial adhesion molecule 1)
CD27	939	CD27 molecule
F3	2152	Coagulation factor III (thromboplastin, tissue factor) Interleukin 23, alpha subunit
IL23A	51561	p19 CART
CARTPT	9607	prepropeptide
SPP1	6696	Secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early T-lymphocyte antigen 2)
TNNT1	7138	Troponin T type 1 (skeletal, slow)
CACNB3	784	Calcium channel, voltage-dependent, beta 3 subunit
C6	729	Complement component 6
F13B	2165	Coagulation factor XIII, B polypeptide
SELP	6403	Selectin P (granule membrane protein 140kDa, antigen CD62)
POU2F2	5452	POU class 2 homeobox 2
STAT3	6774	Signal transducer and activator of transcription 3 (acute-phase response factor)
SERPINA1	5265	Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1
FGF23	8074	Fibroblast growth factor 23
MYBPC3	4607	Myosin binding protein C, cardiac
LST1	7940	Leukocyte specific transcript 1
LEP	3952	Leptin (obesity homolog, mouse)
STAT5A	6776	Signal transducer and activator of transcription 5A
AMBP	259	Alpha-1-microglobulin/bikunin precursor
TNNC2	7125	Troponin C type 2 (fast)
SCN5A	6331	Sodium channel, voltage-gated, type V, alpha subunit
CAV1	857	Caveolin 1, caveolae protein, 22kDa
RBM4	5936	RNA binding motif protein 4
BLM	641	Bloom syndrome
FYN	2534	FYN oncogene related to SRC, FGR, YES
BCL6	604	B-cell CLL/lymphoma 6 (zinc finger protein 51)
NMU	10874	Neuromedin U
HP	3240	Haptoglobin
 NRC-3 (apoptosis)		
ZBTB16	7704	Zinc finger and BTB domain containing 16
ARHGEF6	9459	Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6
PHLDA2	7262	Pleckstrin homology-like domain, family A, member 2
TNFRSF11B	4982	Tumour necrosis factor receptor superfamily, member 11b (osteoprotegerin)

CYCS	54205	Cytochrome c, somatic
TRADD	8717	TNFRSF1A-associated via death domain
BIRC5	332	Baculoviral IAP repeat-containing 5 (survivin)
PDCD4	27250	Programmed cell death 4 (neoplastic transformation inhibitor)
SOCS2	8835	Suppressor of cytokine signaling 2
PPP2R1B	5519	Protein phosphatase 2 (formerly 2A), regulatory subunit A, beta isoform O-6-methylguanine-DNA
MGMT	4255	methyltransferase
IKBKG	8517	Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma
BTG1	694	B-cell translocation gene 1, anti- proliferative
NRAS	4893	Neuroblastoma RAS viral (v-ras) oncogene homolog
ESPL1	9700	Extra spindle pole bodies homolog 1 (S. cerevisiae)
CDC2	983	Cell division cycle 2, G1 to S and G2 to M
APLP1	333	Amyloid beta (A4) precursor-like protein 1
TCTN3	26123	Tectonic family member 3
NME1	4830	Non-metastatic cells 1, protein (NM23A) expressed in
STAT5A	6776	Signal transducer and activator of transcription 5A
CLU	1191	Clusterin
BCL2	596	B-cell CLL/lymphoma 2
HTATIP2	10553	HIV-1 Tat interactive protein 2, 30kDa
EEF1A2	1917	Eukaryotic translation elongation factor 1 alpha 2
INHA	3623	Inhibin, alpha
TNFSF9	8744	Tumour necrosis factor (ligand) superfamily, member 9
LRDD	55367	Leucine-rich repeats and death domain containing
FADD	8772	Fas (TNFRSF6)-associated via death domain
IL19	29949	Interleukin 19
KIAA0367	23273	

NRC_4 (cell adhesion)

CHL1	10752	Cell adhesion molecule with homology to L1CAM (close homolog of L1)
COL15A1	1306	Collagen, type XV, alpha 1
CRNN	49860	Cornulin
KAL1	3730	Kallmann syndrome 1 sequence
SOX9	6662	SRY (sex determining region Y)-box 9 (campomelic dysplasia, autosomal se reversal)
PTPRF	5792	Protein tyrosine phosphatase, receptor type, F
ITGA7	3679	Integrin, alpha 7
MFAP4	4239	Microfibrillar-associated protein 4
EDG1	1901	Endothelial differentiation, sphingolipid G-protein-coupled receptor, 1
ZEB2	9839	Zinc finger E-box binding homeobox 2
PDZD2	23037	PDZ domain containing 2
ROBO1	6091	Roundabout, axon guidance receptor, homolog 1 (Drosophila)
FBN2	2201	Fibrillin 2 (congenital contractual arachnodactyly)
POSTN	10631	Periostin, osteoblast specific factor
CDH5	1003	Cadherin 5, type 2, VE-cadherin (vascular

PKD1		epithelium)
TGFB1I1	5310	Polycystic kidney disease 1 (autosomal dominant)
ITGA5	7041	Transforming growth factor beta 1 induced transcript
RASA1	3678	Integrin, alpha 5 (fibronectin receptor, alpha polypeptide)
COL11A2	5921	RAS p21 protein activator (GTPase activating protein) 1
VEZT	1302	Collagen, type XI, alpha 2
CLDN4	55591	Vezatin, adherens junctions transmembrane protein
BCL6	1364	Claudin
AMIGO2	4	
ECM2	604	B-cell CLL/lymphoma 6 (zinc finger protein 51)
FAF1	347902	Adhesion molecule with Ig-like domain 2
ITGB8	1842	Extracellular matrix protein 2, female organ and adipocyte specific
PRPH2	11124	Fas (TNFRSF6) associated factor 1
CEACAM1	3696	Integrin, beta 8
THY1	5961	Peripherin 2 (retinal degeneration, slow)
	634	Carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycopro
	7070	Thy-1 cell surface antigen

NRC_5 (cell cycle)

NDN	4692	Necdin homolog (mouse)
CDCA8	55143	Cell division cycle associated
CHEK2	8	
CDC45L	11200	CHK2 checkpoint homolog (S. pombe)
STRN3	8318	CDC45 cell division cycle 45-like (S. cerevisiae)
PYCARD	29966	Striatin, calmodulin binding protein 3
HERC5	29108	PYD and CARD domain containing
MN1	51191	Hect domain and RLD 5
XRCC2	4330	Meningioma (disrupted in balanced translocation) 1
NOLC1	7516	X-ray repair complementing defective repair in Chinese hamster cells 2
CHFR	9221	Nucleolar and coiled-body phosphoprotein 1
NHP2L1	55743	Checkpoint with forkhead and ring finger domains
MCM7	4809	NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae)
PIM2	4809	Minichromosome maintenance complex component
INHBA	4176	
ACPP	7	
CETN3	11040	Pim-2 oncogene
MIS12	3624	Inhibin, beta A
PCAF	55	Acid phosphatase, prostate
PTMA	1070	
AXL	79003	Centrin, EF-hand protein, 3 (CDC31 homolog, yeast)
Sep-11	8850	MIS12, MIND kinetochore complex component, homolog (yeast)
LTBP2	5757	P300/CBP-associated factor
SUPT5H	558	Prothymosin, alpha (gene sequence 28)
TOB2	55752	AXL receptor tyrosine kinase
	11	Septin
	4053	
	6829	
	10766	

CDK5R1	8851	Cyclin-dependent kinase 5, regulatory subunit 1 (p35)
ILF3	3609	Interleukin enhancer binding factor 3, 90kDa
POLD1	5424	Polymerase (DNA directed), delta 1, catalytic subunit 125kDa
GADD45B	4616	Growth arrest and DNA-damage-inducible, beta
CDT1	81620	Chromatin licensing and DNA replication factor 1

NRC_6 (cell motility)

KAL1	3730	Kallmann syndrome 1 sequence
PRSS3	5646	Protease, serine, 3 (mesotrypsin)
CHL1	10752	Cell adhesion molecule with homology to L1CAM (close homolog of L1)
ROBO1	6091	Roundabout, axon guidance receptor, homolog 1 (Drosophila)
ZEB2	9839	Zinc finger E-box binding homeobox 2
EDG1	1901	Endothelial differentiation, sphingolipid G-protein-coupled receptor, 1
CDA	978	Cytidine deaminase
ATP1A3	478	ATPase, Na ⁺ /K ⁺ transporting, alpha 3 polypeptide
IGFBP7	3490	Insulin-like growth factor binding protein 7
INHBA	3624	Inhibin, beta A
CSPG4	1464	Chondroitin sulfate proteoglycan 4
WFDC1	58189	WAP four-disulfide core domain 1
PF4	5196	Platelet factor 4 (chemokine (C-X-C motif) ligand 4)
ALOX12	239	Arachidonate 12-lipoxygenase
NDN	4692	Necdin homolog (mouse)
CCDC88A	55704	Coiled-coil domain containing 88A
CEACAM1	634	Carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycopro
ARPC3	10094	Actin related protein 2/3 complex, subunit 3, 21kDa
BCL6	604	B-cell CLL/lymphoma 6 (zinc finger protein 51)
PPAP2B	8613	Phosphatidic acid phosphatase type 2B
LAMB1	3912	Laminin, beta 1
DNAH2	146754	Dynein, axonemal, heavy chain 2
SLIT3	6586	Slit homolog 3 (Drosophila)
CDK5R1	8851	Cyclin-dependent kinase 5, regulatory subunit 1 (p35)
ADRA2A	150	Adrenergic, alpha-2A-, receptor
AMOT	154796	Angiomotin
ACTG1	71	Actin, gamma 1
TGFB3	7043	Transforming growth factor, beta 3 Kinase insert domain receptor (a type III receptor tyrosine kinase)
KDR	3791	kinase)
ABI3	51225	ABI gene family, member 3

NRC-7 (apoptosis)

CDH13	1012	Cadherin 13, H-cadherin (heart)
SLAMF7	57823	SLAM family member 7

ANGPTL4	51129	Angiopoietin-like 4
SULF1	23213	Sulfatase 1
GJA1	2697	Gap junction protein, alpha 1, 43kDa
MUC2	4583	Mucin 2, oligomeric mucus/gel-forming
INPP5D	3635	Inositol polyphosphate-5-phosphatase, 145kDa
BCL2L14	79370	BCL2-like 14 (apoptosis facilitator)
CASP8AP2	9994	CASP8 associated protein 2
PTK2B	2185	PTK2B protein tyrosine kinase 2 beta
LIG4	3981	Ligase IV, DNA, ATP-dependent
GML	2765	GPI anchored molecule like protein
PDCD4	27250	Programmed cell death 4 (neoplastic transformation inhibitor)
MAGEH1	28986	Melanoma antigen family H, 1
		Fas (TNF receptor superfamily, member 6)
FAS	355	
ANXA5	308	Annexin A5
GRM4	2914	Glutamate receptor, metabotropic 4
AVEN	57099	Apoptosis, caspase activation inhibitor
CASP9	842	Caspase 9, apoptosis-related cysteine peptidase
CRYAA	1409	Crystallin, alpha A
NFKBIA	4792	Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, Serine/threonine kinase 3 (STE20 homolog, yeast)
STK3	6788	
PPP2CB	5516	Protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform
CIAPIN1	57019	Cytokine induced apoptosis inhibitor 1
PEA15	8682	Phosphoprotein enriched in astrocytes 15
TGFB2	7042	Transforming growth factor, beta 2
<u>OLFR@</u>	4972	olfactory receptor cluster
		Hypothetical protein
MGC29506	51237	MGC29506
CD74	972	CD74 molecule, major histocompatibility complex, class II invariant chain
TRAF6	7189	TNF receptor-associated factor 6
NRC-8 (cell adhesion)		
SLAMF7	57823	SLAM family member 7
		Cadherin 13, H-cadherin
CDH13	1012	(heart)
IGSF1	3547	Immunoglobulin superfamily, member 1
TGFBI	7045	Transforming growth factor, beta-induced, 68kDa
		Hyaluronan and proteoglycan link protein
HAPLN1	1404	1
FRAS1	80144	Fraser syndrome 1
PLEKHC1	10979	Pleckstrin homology domain containing, family C (with FERM domain) mem
CD226	10666	CD226 molecule
SUSD5	26032	Sushi domain containing 5
CELSR1	9620	Cadherin, EGF LAG seven-pass G-type receptor 1 (flamingo homolog, Dros
GRLF1	2909	Glucocorticoid receptor DNA binding factor 1
NID2	22795	Nidogen 2 (osteonidogen)
DDR1	780	Discoidin domain receptor family, member 1
		Ninjurin
NINJ2	4815	2

DCHS2	54798	Dachsous 2 (<i>Drosophila</i>)
ITGAM	3684	Integrin, alpha M (complement component 3 receptor 3 subunit)
SCARB2	950	Scavenger receptor class B, member 2
CYR61	3491	Cysteine-rich, angiogenic inducer, 61
PVRL2	5819	Poliovirus receptor-related 2 (herpesvirus entry mediator B)
PTK2B	2185	PTK2B protein tyrosine kinase 2 beta
SELPLG	6404	Selectin P ligand
		Glycoprotein Ib (platelet), alpha
GP1BA	2811	polypeptide
VCL	7414	Vinculin
CXCR3	2833	Chemokine (C-X-C motif) receptor 3
WFDC1	58189	WAP four-disulfide core domain 1
DLG1	1739	Discs, large homolog 1 (<i>Drosophila</i>)
ENTPD1	953	Ectonucleoside triphosphate diphosphohydrolase 1
CTNNA3	29119	Catenin (cadherin-associated protein), alpha 3
PPFIA1	8500	Protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interact
NF2	4771	Neurofibromin 2 (bilateral acoustic neuroma)

NRC-9 (cell growth)

WFDC1	58189	WAP four-disulfide core domain 1
CDH13	1012	Cadherin 13, H-cadherin (heart)
ETV4	2118	Ets variant gene 4 (E1A enhancer binding protein, E1AF)
DDR1	780	Discoidin domain receptor family, member 1
PLEKHC1	10979	Pleckstrin homology domain containing, family C (with FERM domain) mem
SELPLG	6404	Selectin P ligand
CYR61	3491	Cysteine-rich, angiogenic inducer, 61
TKT	7086	Transketolase (Wernicke-Korsakoff syndrome)
VAX2	25806	Ventral anterior homeobox 2
RAI1	10743	Retinoic acid induced 1
		Sema domain, transmembrane domain (TM), and cytoplasmic domain, (sem
SEMA6A	57556	6A
DLG1	1739	Discs, large homolog 1 (<i>Drosophila</i>)
		B-cell translocation gene 1, anti-
BTG1	694	proliferative
		Patched homolog 1
PTCH1	5727	(<i>Drosophila</i>)
FGF20	26281	Fibroblast growth factor 20
OGFR	11054	Opioid growth factor receptor
		Ninjurin
NINJ2	4815	2
MORF4L2	9643	Mortality factor 4 like 2
VCL	7414	Vinculin
ESR2	2100	Estrogen receptor 2 (ER beta)
OPHN1	4983	Oligophrenin 1
NTRK3	4916	Neurotrophic tyrosine kinase, receptor, type 3
CDKN2C	1031	Cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)
		Cyclin-dependent kinase 5, regulatory subunit 1
CDK5R1	8851	(p35)
TOP2B	7155	Topoisomerase (DNA) II beta 180kDa

PPT1	5538	Palmitoyl-protein thioesterase 1 (ceroid-lipofuscinosis, neuronal 1, infantile)
GDF2	2658	Growth differentiation factor 2
GFRA3	2676	GDNF family receptor alpha 3
		Glycoprotein Ib (platelet), alpha
GP1BA	2811	polypeptide
PPP2CB	5516	Protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform

Table 2. Performance of the validation of the marker sets in 3 testing datasets

5

ER+**sample**

Group	Test set 1 (173 samples)* N=99, R=57.2%, R1=93.9%	Test set 2 (74 samples) N=22, R=29.7%, R1=90.9%	Test set 3 (201 samples) N=87, R=43.3%, R1=86.8%
Low-risk	N=34, R=19.6%, R1=82.4%	N=52, R=70.3%, R1=79.7%	N=78, R=38.8%, R1=69.2%
Intermediate	N=40, R=23.1%, R2=42.5%	---	N=36, R=17.9%, R2=33.3%
High-risk			

ER-**sample**

Group	Test set 1 (46 samples)* N=9, R=19.6%, R1=100% N=37, R=80.4%, R2=51.4%	Test set 2 (43 samples) N=13, R=30.2%, R1=92.3%	Test set 3 (31 samples) N=14, R=45.2%, R1=100% N=17, R=54.8%, R2=35.3%
Low-risk			
High-risk			

Notes: *There are 295 samples in the original Test set 1. However, it includes 76 samples, which are from van't Veer et al., Nature, 415:530, 2002. Because we 10 used van't Veer dataset (van't Veer et al., Nature, 415:530, 2002) as a training set, we then removed these 76 samples from the 295 samples. Therefore, Test set 1 contains 219 samples.

15 1. N represents sample number
2. R represents the ratio of the sample number in the group to the total sample number of test set

3. R1 represents the percentage of the samples having non-recurrence
(accuracy)

4. R2 represents the percentage of the samples having recurrence
(accuracy)

5. Test set 1 is from Chang et al., PNAS, 2005

6. Test set 2 is from Koe et al., Cancer Cell, 2006

7. Test set 3 is from Sotiriou et al., J. Natl Cancer Inst, 98:262, 2006

Table 3. Comparisons of combinatory usage of marker sets and each individual marker set for predicting low-risk group samples

	Marker set	Accuracy (in low-risk group)
15		Test set 1 (173 samples)
	NRC-1	92.80%
	NRC-2	91.80%
	NRC-3	92.20%
20	NRC-1,2,3	94%
		Test set 2 (74 samples)
	NRC-1	86.80%
	NRC-2	88.90%
25	NRC-3	78.30%
	NRC-1,2,3	91%
		Test set 3 (201 samples)
30	NRC-1	83.10%
	NRC-2	80.50%
	NRC-3	79.50%
	NRC-1,2,3	87%
	ER- samples	
35		Test set 1 (46 samples)*
	NRC-7	76%
	NRC-8	72.70%
	NRC-9	56.50%
	NRC-7,8,9	100%
40		Test set 2 (43 samples)

5	NRC-7	85%
	NRC-8	84.20%
	NRC-9	73.10%
	NRC-7,8,9	92.30%
10		Test set 3 (31 samples)
	NRC-7	91%
	NRC-8	100%
	NRC-9	86.40%
	NRC-7,8,9	100%

Note: The datasets used are the same as those in Table 2.

15

Table 4 List of Cancers

20	Acute Lymphoblastic Leukemia, Adult	<u>Bronchial Tumors, Childhood</u>
	Acute Lymphoblastic Leukemia, Childhood	<u>Burkitt Lymphoma</u>
	Acute Myeloid Leukemia, Adult	
25	Acute Myeloid Leukemia, Childhood	
	Adrenocortical Carcinoma	<u>Carcinoid Tumor, Childhood</u>
	Adrenocortical Carcinoma, Childhood	<u>Carcinoid Tumor, Gastrointestinal</u>
	AIDS-Related Cancers	<u>Carcinoma of Unknown Primary</u>
	<u>AIDS-Related Lymphoma</u>	<u>Central Nervous System Atypical Teratoid/Rhabdoid Tumor, Childhood</u>
30	Anal Cancer	<u>Central Nervous System Embryonal Tumors, Childhood</u>
	<u>Appendix Cancer</u>	<u>Central Nervous System Lymphoma, Primary</u>
	<u>Astrocytomas, Childhood</u>	<u>Cervical Cancer</u>
	<u>Atypical Teratoid/Rhabdoid Tumor, Childhood, Central Nervous System</u>	<u>Cervical Cancer, Childhood</u>
35	<u>Basal Cell Carcinoma, see Skin Cancer (Nonmelanoma)</u>	<u>Childhood Cancers</u>
	Bile Duct Cancer, <u>Extrahepatic</u>	<u>Chordoma, Childhood</u>
	<u>Bladder Cancer</u>	<u>Chronic Lymphocytic Leukemia</u>
	<u>Bladder Cancer, Childhood</u>	<u>Chronic Myelogenous Leukemia</u>
40	<u>Bone Cancer, Osteosarcoma and Malignant Fibrous Histiocytoma</u>	<u>Chronic Myeloproliferative Disorders</u>
	<u>Brain Stem Glioma, Childhood</u>	<u>Colon Cancer</u>
	<u>Brain Tumor, Adult</u>	<u>Colorectal Cancer, Childhood</u>
	<u>Brain Tumor, Brain Stem Glioma, Childhood</u>	<u>Craniopharyngioma, Childhood</u>
45	<u>Brain Tumor, Central Nervous System Atypical Teratoid/Rhabdoid Tumor, Childhood</u>	<u>Cutaneous T-Cell Lymphoma, see Mycosis Fungoides and Sézary Syndrome</u>
	<u>Brain Tumor, Central Nervous System Embryonal Tumors, Childhood</u>	
	<u>Brain Tumor, Craniopharyngioma, Childhood</u>	<u>Embryonal Tumors, Central Nervous System, Childhood</u>
50	<u>Brain Tumor, Ependymoblastoma, Childhood</u>	<u>Endometrial Cancer</u>
	<u>Brain Tumor, Ependymoma, Childhood</u>	<u>Ependymoma, Childhood</u>
	<u>Brain Tumor, Medulloblastoma, Childhood</u>	<u>Esophageal Cancer</u>
	<u>Brain Tumor, Medullopithelioma, Childhood</u>	<u>Esophageal Cancer, Childhood</u>
	<u>Brain Tumor, Pineal Parenchymal Tumors of Intermediate Differentiation, Childhood</u>	<u>Ewing Sarcoma Family of Tumors</u>
55	<u>Brain Tumor, Supratentorial Primitive Neuroectodermal Tumors and Pineoblastoma, Childhood</u>	<u>Extracranial Germ Cell Tumor, Childhood</u>
	<u>Brain and Spinal Cord Tumors, Childhood (Other)</u>	<u>Extragonadal Germ Cell Tumor</u>
	<u>Breast Cancer</u>	<u>Extrahepatic Bile Duct Cancer</u>
	<u>Breast Cancer and Pregnancy</u>	<u>Eye Cancer, Intraocular Melanoma</u>
	<u>Breast Cancer, Childhood</u>	<u>Eye Cancer, Retinoblastoma</u>
	<u>Breast Cancer, Male</u>	

	<u>Gastrointestinal Stromal Tumor (GIST)</u>	<u>Myelodysplastic/Myeloproliferative Neoplasms</u>
	<u>Gastrointestinal Stromal Cell Tumor, Childhood</u>	<u>Myelogenous Leukemia, Chronic</u>
	<u>Germ Cell Tumor, Extracranial, Childhood</u>	<u>Myeloid Leukemia, Adult Acute</u>
	<u>Germ Cell Tumor, Extragonadal</u>	<u>Myeloid Leukemia, Childhood Acute</u>
5	<u>Germ Cell Tumor, Ovarian</u>	<u>Myeloma, Multiple</u>
	<u>Gestational Trophoblastic Tumor</u>	<u>Myeloproliferative Disorders, Chronic</u>
	<u>Glioma, Adult</u>	
	<u>Glioma, Childhood Brain Stem</u>	
	<u>Hairy Cell Leukemia</u>	<u>Nasal Cavity and Paranasal Sinus Cancer</u>
10	<u>Head and Neck Cancer</u>	<u>Nasopharyngeal Cancer</u>
	<u>Hepatocellular (Liver) Cancer, Adult (Primary)</u>	<u>Nasopharyngeal Cancer, Childhood</u>
	<u>Hepatocellular (Liver) Cancer, Childhood (Primary)</u>	<u>Neuroblastoma</u>
	<u>Histiocytosis, Langerhans Cell</u>	<u>Non-Hodgkin Lymphoma, Adult</u>
	<u>Hodgkin Lymphoma, Adult</u>	<u>Non-Hodgkin Lymphoma, Childhood</u>
15	<u>Hodgkin Lymphoma, Childhood</u>	<u>Non-Small Cell Lung Cancer</u>
	<u>Hypopharyngeal Cancer</u>	
	<u>Intraocular Melanoma</u>	<u>Oral Cancer, Childhood</u>
	<u>Islet Cell Tumors (Endocrine Pancreas)</u>	<u>Oral Cavity Cancer, Lip and</u>
		<u>Oropharyngeal Cancer</u>
		<u>Osteosarcoma and Malignant Fibrous Histiocytoma of</u>
	<u>Kaposi Sarcoma</u>	<u>Bone</u>
20	<u>Kidney (Renal Cell) Cancer</u>	<u>Ovarian Cancer, Childhood</u>
	<u>Kidney Cancer, Childhood</u>	<u>Ovarian Epithelial Cancer</u>
		<u>Ovarian Germ Cell Tumor</u>
		<u>Ovarian Low Malignant Potential Tumor</u>
	<u>Langerhans Cell Histiocytosis</u>	<u>Pancreatic Cancer</u>
	<u>Laryngeal Cancer</u>	<u>Pancreatic Cancer, Childhood</u>
	<u>Laryngeal Cancer, Childhood</u>	<u>Pancreatic Cancer, Islet Cell Tumors</u>
25	<u>Leukemia, Acute Lymphoblastic, Adult</u>	<u>Papillomatosis, Childhood</u>
	<u>Leukemia, Acute Lymphoblastic, Childhood</u>	<u>Paranasal Sinus and Nasal Cavity Cancer</u>
	<u>Leukemia, Acute Myeloid, Adult</u>	<u>Parathyroid Cancer</u>
	<u>Leukemia, Acute Myeloid, Childhood</u>	<u>Penile Cancer</u>
	<u>Leukemia, Chronic Lymphocytic</u>	<u>Pharyngeal Cancer</u>
30	<u>Leukemia, Chronic Myelogenous</u>	<u>Pineal Parenchymal Tumors of Intermediate</u>
	<u>Leukemia, Hairy Cell</u>	<u>Differentiation, Childhood</u>
	<u>Lip and Oral Cavity Cancer</u>	<u>Pineoblastoma and Supratentorial Primitive</u>
	<u>Liver Cancer, Adult (Primary)</u>	<u>Neuroectodermal Tumors, Childhood</u>
	<u>Liver Cancer, Childhood (Primary)</u>	<u>Pituitary Tumor</u>
35	<u>Lung Cancer, Non-Small Cell</u>	<u>Plasma Cell Neoplasm/Multiple Myeloma</u>
	<u>Lung Cancer, Small Cell</u>	<u>Pleuropulmonary Blastoma</u>
	<u>Lymphoma, AIDS-Related</u>	<u>Pregnancy and Breast Cancer</u>
	<u>Lymphoma, Burkitt</u>	<u>Primary Central Nervous System Lymphoma</u>
	<u>Lymphoma, Cutaneous T-Cell, see Mycosis Fungoïdes</u>	<u>Prostate Cancer</u>
40	<u>and Sézary Syndrome</u>	
	<u>Lymphoma, Hodgkin, Adult</u>	<u>Rectal Cancer</u>
	<u>Lymphoma, Hodgkin, Childhood</u>	<u>Renal Cell (Kidney) Cancer</u>
	<u>Lymphoma, Non-Hodgkin, Adult</u>	<u>Renal Cell (Kidney) Cancer, Childhood</u>
	<u>Lymphoma, Non-Hodgkin, Childhood</u>	<u>Renal Pelvis and Ureter, Transitional Cell Cancer</u>
45	<u>Lymphoma, Primary Central Nervous System</u>	<u>Respiratory Tract Carcinoma Involving the NUT Gene</u>
		<u>on Chromosome 15</u>
		<u>Retinoblastoma</u>
		<u>Rhabdomyosarcoma, Childhood</u>
50	<u>Macroglobulinemia, Waldenström</u>	<u>110 Salivary Gland Cancer</u>
	<u>Malignant Fibrous Histiocytoma of Bone and</u>	<u>Salivary Gland Cancer, Childhood</u>
	<u>Osteosarcoma</u>	<u>Sarcoma, Ewing Sarcoma Family of Tumors</u>
	<u>Medulloblastoma, Childhood</u>	<u>Sarcoma, Kaposi</u>
	<u>Medulloepithelioma, Childhood</u>	<u>Sarcoma, Soft Tissue, Adult</u>
	<u>Melanoma</u>	<u>115 Sarcoma, Soft Tissue, Childhood</u>
	<u>Melanoma, Intraocular (Eye)</u>	<u>Sarcoma, Uterine</u>
	<u>Merkel Cell Carcinoma</u>	<u>Sézary Syndrome</u>
	<u>Mesothelioma, Adult Malignant</u>	<u>Skin Cancer (Nonmelanoma)</u>
55	<u>Mesothelioma, Childhood</u>	<u>Skin Cancer, Childhood</u>
	<u>Metastatic Squamous Neck Cancer with Occult Primary</u>	<u>Skin Cancer (Melanoma)</u>
	<u>Mouth Cancer</u>	<u>Skin Carcinoma, Merkel Cell</u>
	<u>Multiple Endocrine Neoplasia Syndrome, Childhood</u>	<u>Small Cell Lung Cancer</u>
	<u>Multiple Myeloma/Plasma Cell Neoplasm</u>	
60	<u>Mycosis Fungoïdes</u>	
	<u>Myelodysplastic Syndromes</u>	

	<u>Small Intestine Cancer</u>		<u>Ureter and Renal Pelvis, Transitional Cell Cancer</u>
	<u>Soft Tissue Sarcoma, Adult</u>		<u>Urethral Cancer</u>
	<u>Soft Tissue Sarcoma, Childhood</u>		<u>Uterine Cancer, Endometrial</u>
5	<u>Squamous Cell Carcinoma, see Skin Cancer (Nonmelanoma)</u>	25	<u>Uterine Sarcoma</u>
	<u>Squamous Neck Cancer with Occult Primary, Metastatic</u>		
	<u>Stomach (Gastric) Cancer</u>		<u>Vaginal Cancer</u>
10	<u>Stomach (Gastric) Cancer, Childhood</u>		<u>Vaginal Cancer, Childhood</u>
	<u>Supratentorial Primitive Neuroectodermal Tumors, Childhood</u>		<u>Vulvar Cancer</u>
	<u>T-Cell Lymphoma, Cutaneous, Testicular Cancer</u>	30	
	<u>Throat Cancer</u>		
15	<u>Thymoma and Thymic Carcinoma</u>		<u>Waldenström Macroglobulinemia</u>
	<u>Thymoma and Thymic Carcinoma, Childhood</u>		<u>Wilms Tumor</u>
	<u>Thyroid Cancer</u>		
	<u>Thyroid Cancer, Childhood</u>		
	<u>Transitional Cell Cancer of the Renal Pelvis and Ureter</u>		
20	<u>Trophoblastic Tumor, Gestational</u>		

We claim:

Claim 1- A process to identify tumour characteristics, said process comprising the following steps:

5

- 1) obtaining three different marker sets each predictive of a characteristic of interest;
- 2) obtaining a sample gene expression signals from tumour cells;
- 3) adding a reporter to affect a change in the sample permitting assessment of a gene expression signal of interest in the tumour;
- 4) combining the gene expression signals with the reporter;
- 5) correlating the extracted gene expression signals to the three different marker sets;
- 6) assigning a designation to the extracted gene expression signals according to the following rankings:
 - 15 a. if the correlation of all three predictive gene expression signal sets predict it to have characteristics of concern, it is designated a bad tumour;
 - b. if the correlation of all three predictive gene expression signal sets predict it to lack characteristics of concern it is designated a good tumour;
 - c. if the correlation of all three predictive gene expression signal sets do not provide the same predicted clinical outcome, the tumour is designated as "intermediate";
- 25 7) outputting said designation.

Claim 2. The process of claim 1 wherein a characteristic of concern relates to one or more of: metastasize, inflammation, cell cycle, immunological response genes, drug resistance genes, and multi-drug resistance genes.

Claim 3. The process of claim 1 wherein the tumour characteristic is a tendency to lead to poor patient survival post-surgery.

Claim 4. The process of claim 3 wherein step 4 comprises assigning a value to the extracted gene expression signals according to the following rankings:

- a. if the correlation of all three predictive gene expression signal sets predict it to be a bad tumour, it is designated a bad tumour and more aggressive treatment beyond the typical standard of care would be recommended;
- b. if the correlation of all three predictive gene expression signal sets predict it to be a good tumour, no treatment beyond the standard of care would be recommended and no post-surgery chemotherapy or radiation treatment would be recommended;
- c. if the correlation of all three predictive gene expression signal sets do not provide the same prognosis, the tumour is designated as "intermediate" and the full typical standard of care treatment, including chemotherapy and/or radiation treatment would be recommended.

Claim 5. The process of claim 1 comprising the preliminary steps, prior to step 1, of :

- 25 a) identifying the tumour subtype to be examined
- b) selecting marker sets specific to that subtype of tumour.

Claim 6. A process for determining predictive gene expression signal sets of the type used in claim 1 comprising the following steps:

- 1) obtaining gene expression signal information and patient clinical information for a characteristic of interest for a known tumour population for a cancer of interest;
- 2) correlating the gene expression signals with clinical patient information regarding the characteristic of interest to identify which genes have predictive power for clinical outcome;
- 3) creating at least 30 random training datasets from the identified gene expression signals;
- 4) comparing identified gene expression signals of step 1 to a list of known genes active in cancer;
- 5) selecting identified gene expression signals which correspond to those on the list of known cancer genes;
- 6) grouping the selected identified gene expression signals according to their role in biological processes;
- 7) generating random gene expression signal sets of at least 25 genes from a selected gene expression signals group of step 6;
- 8) correlating the random gene expression signal sets to the random training datasets obtained in step 3;
- 9) obtaining a P value for a survival screening from the correlation for each gene expression signal set of step 7;
- 10) if the P value for a gene expression signal set is less than 0.05 for more than 90% of the random training datasets, keeping the gene expression signal set;
- 11) ranking the random gene expression signal sets kept in step 10 based on frequency of gene appearances in the set;
- 12) selecting the top at least 26 genes as potential candidate markers;
- 13) repeating steps 7 to 12 and producing another, independent, rank set of at least 26 genes;
- 14) comparing the top genes from step 12 and step 13;

- 15) if more than 25 of the genes are the same, the top genes are kept as marker sets;
- 16) twice repeating steps 7 to 15 to obtain three different marker sets;
- 17) outputting said three different marker sets.

5

Claim 7. The process of claim 6 where the grouping of selected identified gene expression signals according to their role in biological process is done using Gene Ontology analysis.

10

Claim 8. The process of claim 6 wherein in step 3, between 30 and 50 random training sets are created.

15

Claim 9. The process of claim 8 wherein between 30 and 40 training sets are created.

Claim 10. The process of step 6 wherein in step 4, the genes known to be active in cancer are selected from the groups of genes responsible for metastasis, cell proliferation, tumour vascularisation, and drug response.

20

Claim 11. The process of claim 6 wherein in step 7, between about 750,000 and 1,250,000 random gene expression signal sets are generated.

25

Claim 12. The process of claim 6 wherein in step 7, between about 900,000 and 1,100,000 random gene expression signal sets are generated.

Claim 13. The process of claim 6 wherein in step 7, about 1,000,000 random gene expression signal sets are generated.

Claim 14. The process of claim 6 wherein in step 7, the random gene expression signal sets generated contain between about 25 and 50 genes.

Claim 15. The process of claim 6 wherein in step 7, the random gene expression signal sets generated contain between about 28 and 32 genes.

Claim 16. The process of claim 6 wherein in step 12 the top 26-50 genes are selected.

Claim 17. The process of claim 6 wherein in step 12 the top 28-32 genes are selected.

Claim 18. The process of claim 1 wherein the tumour is a mammalian tumour.

15

Claim 19. The process of claim 18 wherein the tumour is a tumour of one of: human, ape, cat, dog, pig, cattle, sheep, goat, rabbit, mouse, rat, guinea pig, hamster, or gerbil.

Claim 20. The process of claim 4 wherein at least one the cancer biomarker set is selected from the list consisting essentially of NRC-1, NRC-2, NRC-3, NRC-4, NRC-5, NRC-6, NRC-7, NRC-8, and NRC-9.

Claim 21. A kit comprising at least three marker sets and instructions to carry out 25 the process of claim 1.

Claim 22. The kit of claim 21, said kit comprising at least 10 gene expression signals listed in Table 1A or 1B.

Claim 23, The kit of claim 21 containing at least 30 nucleic acid biomarkers identified according to the method of claim 6.

Claim 24. Use of any of the sequences in Table 1A or 1B in identifying one or 5 more tumour characteristics of interest.

Claim 25. The use of claim 23 wherein at least three different markers sets are used.

Claim 26. The method of claim 5 wherein the cancer biomarkers are breast cancer biomarkers and the first subtype of sample is an ER+ sample.

Claim 27. The method of claim 5 wherein the random training sets are generated by randomly picking samples while maintaining the same ratio of "good" and 15 "bad" tumours as that in the other set from which they are chosen.

Claim 28. The method of claim 1 where all gene expression values designated as a bad tumours are grouped and the following steps are performed:

- 1) creating at least 30 random training datasets from identified gene 20 expression signals;
- 2) comparing identified gene expression signals of the new group to a list of known genes active in cancer;
- 3) selecting identified gene expression signals which correspond to those on the list of known cancer genes;
- 25 4) grouping the selected identified gene expression signals according to their role in biological processes;
- 5) generating random gene expression signal sets of at least 25 genes from a selected gene expression signals group of step 4;
- 6) correlating the random gene expression signal sets to the random training 30 datasets obtained in step 1;

- 7) obtaining a P value for a survival screening from the correlation for each gene expression signal set of step 6;
- 8) if the P value for a gene expression signal set is less than 0.05 for more than 90% of the random training datasets, keeping the gene expression signal set;
- 9) ranking the random gene expression signal sets kept in step 8 based on frequency of gene appearances in the set;
- 10) selecting the top at least 26 genes as potential candidate markers;
- 11) repeating steps 5 to 10 and producing another, independent, rank set of at least 26 genes;
- 12) comparing the top genes from step 10 and step 11;
- 13) if more than 25 of the genes are the same, the top genes are kept as marker sets;
- 14) twice repeating steps 5 to 13 to obtain three new and different marker sets;
- 15) outputting said three different, new marker sets.