

US007889319B2

(12) **United States Patent**
Hayashi et al.

(10) **Patent No.:** US 7,889,319 B2
(45) **Date of Patent:** Feb. 15, 2011

(54) **EXPOSURE APPARATUS AND DEVICE FABRICATION METHOD**

(75) Inventors: **Naoto Hayashi**, Utsunomiya (JP);
Shinichiro Hirai, Saitama (JP)

(73) Assignee: **Canon Kabushiki Kaisha**, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 168 days.

(21) Appl. No.: **12/369,581**

(22) Filed: **Feb. 11, 2009**

(65) **Prior Publication Data**

US 2009/0207400 A1 Aug. 20, 2009

(30) **Foreign Application Priority Data**

Feb. 15, 2008 (JP) 2008-035084

(51) **Int. Cl.**

G03B 27/42 (2006.01)

G03B 27/54 (2006.01)

(52) **U.S. Cl.** **355/53**

(58) **Field of Classification Search** **355/52, 355/53, 55, 67-71; 356/399-401, 495**
See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

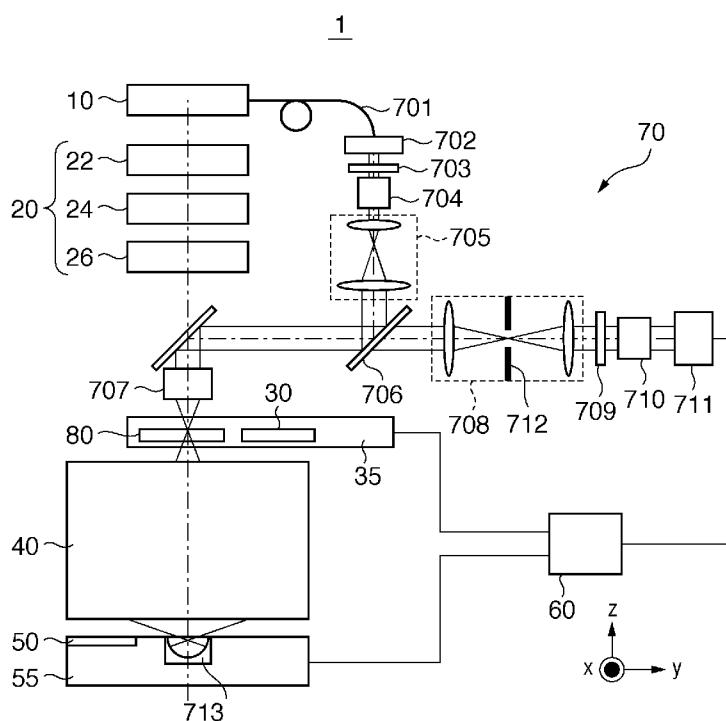
7,106,452 B2 * 9/2006 Ouchi 356/495

7,283,207 B2 * 10/2007 Nomura 355/67
7,605,914 B2 * 10/2009 Stammiller et al. 356/239.2
2006/0170932 A1 8/2006 Hayashi et al.
2007/0046922 A1 3/2007 Kadono et al.

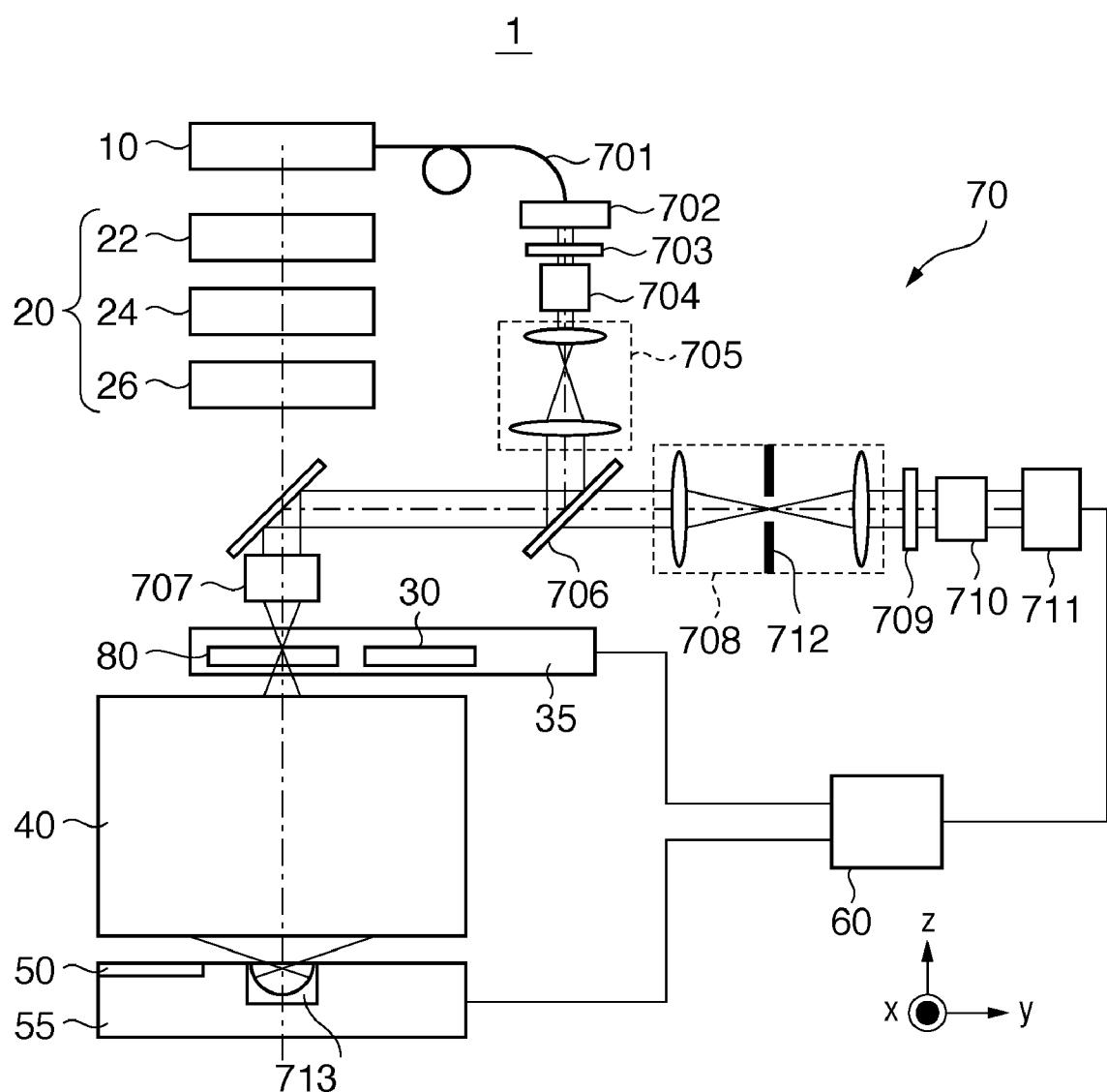
FOREIGN PATENT DOCUMENTS

JP	2006-214856 A	8/2006
JP	2007-059566 A	3/2007
KR	10-0379521 B	4/2003

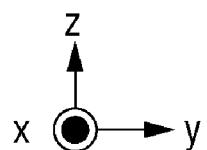
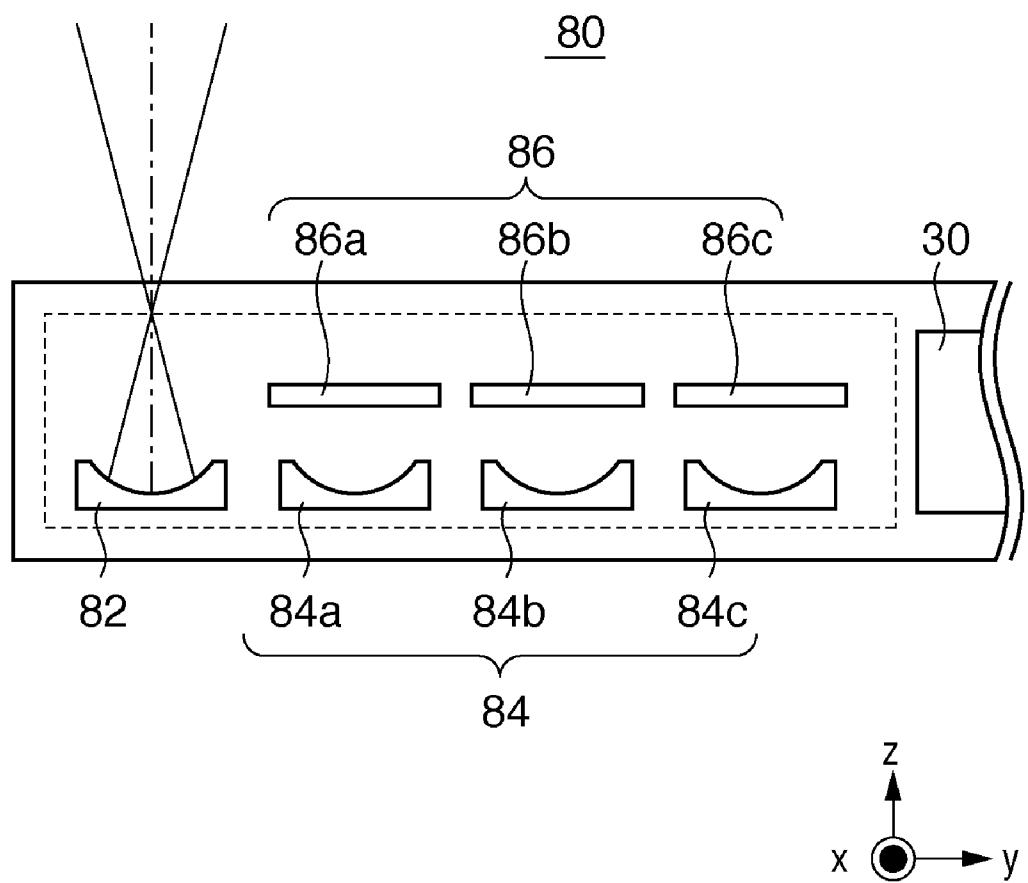
* cited by examiner

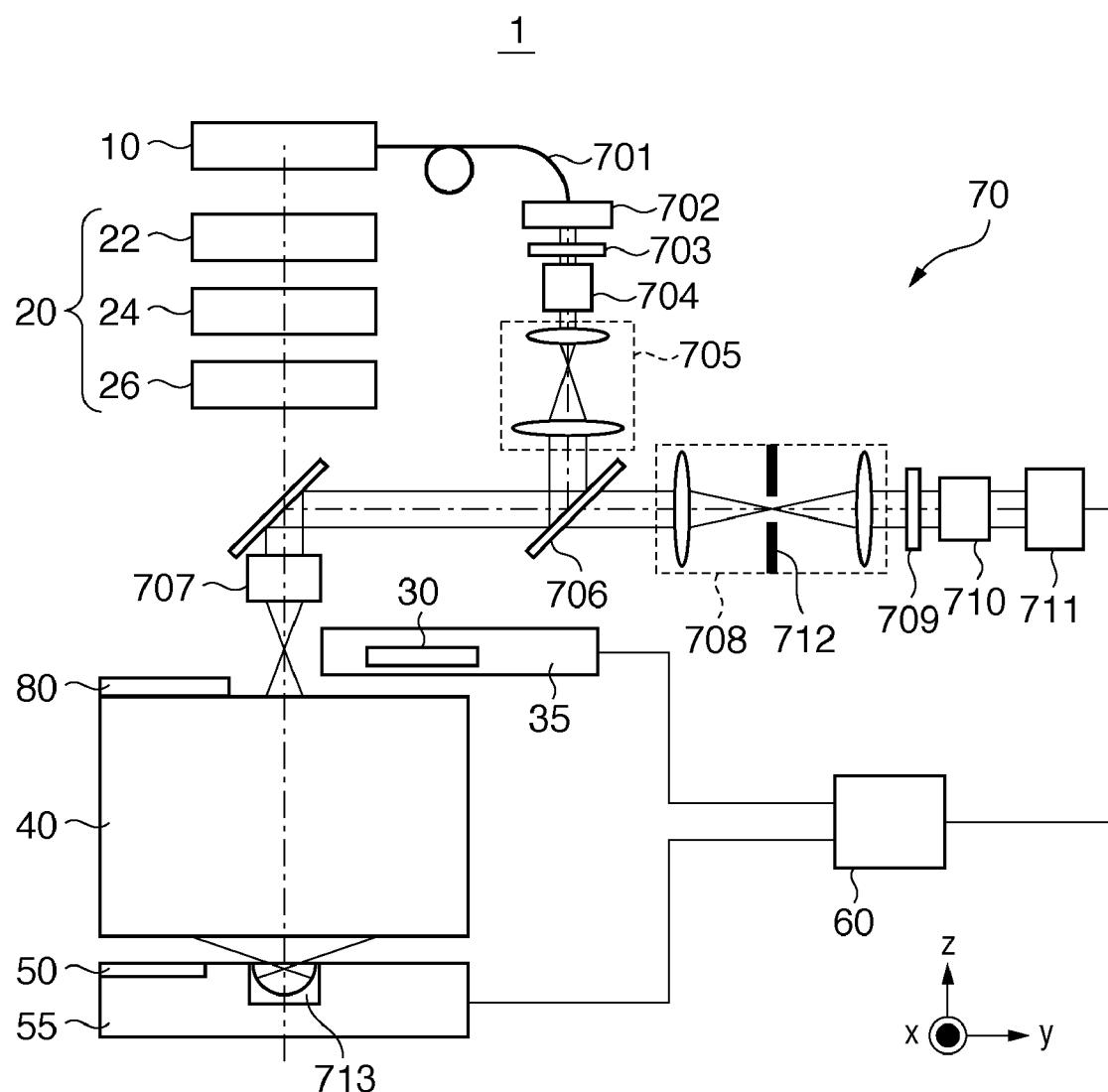

Primary Examiner—Hung Henry Nguyen

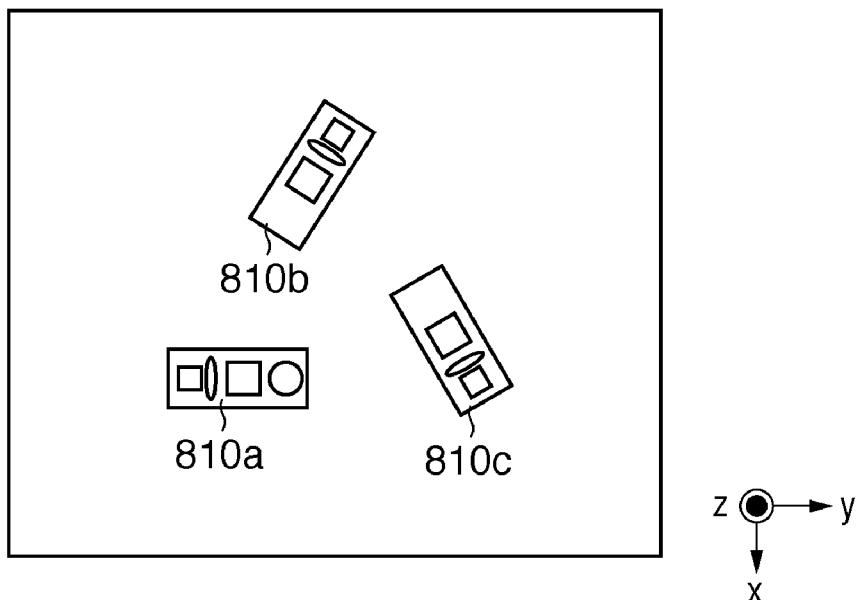
(74) Attorney, Agent, or Firm—Canon U.S.A., Inc., IP Division

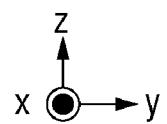
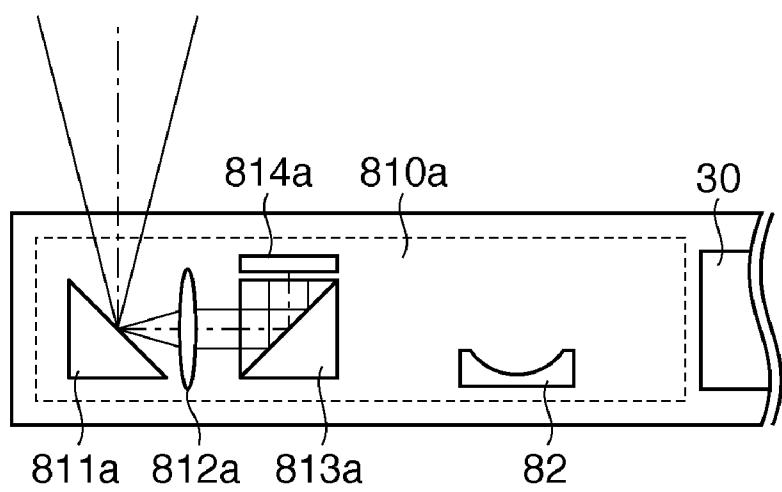

(57) **ABSTRACT**

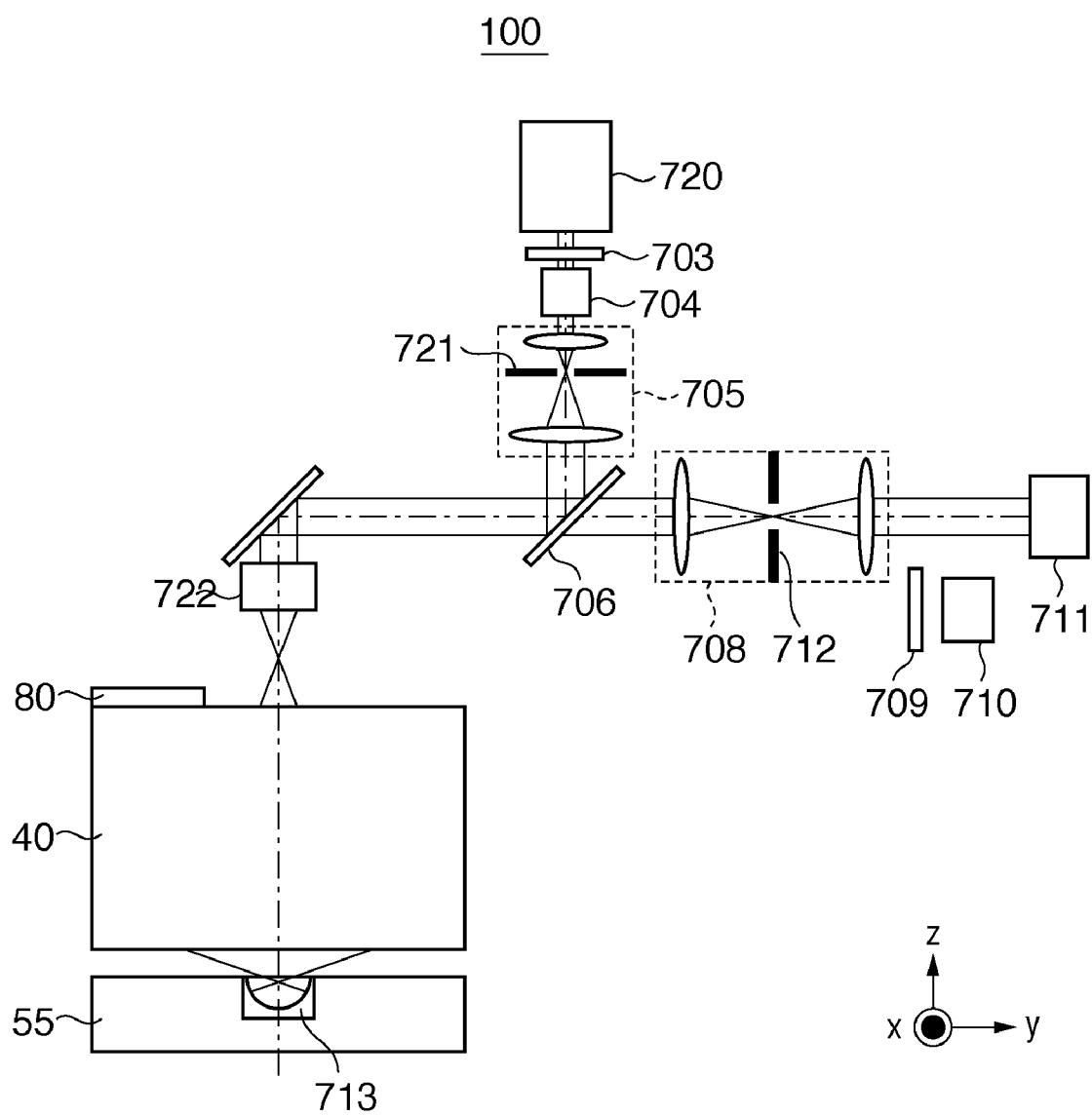
The present invention provides an exposure apparatus including a measuring unit which includes an imaging optical system configured to guide light having propagated through a projection optical system to an image sensor, and is configured to measure the overall birefringence of the imaging optical system and the projection optical system, a calibration unit which is set on a side of an object plane of the projection optical system in order to measure a birefringence of the imaging optical system, and is configured to reflect the light from the measuring unit back to the measuring unit without using the projection optical system, and a calculation unit configured to isolate, from the result of measuring the overall birefringence, the birefringence of the imaging optical system measured by the measuring unit, thereby calculating the birefringence of the projection optical system.



9 Claims, 5 Drawing Sheets


FIG. 1


FIG. 2



FIG. 3


FIG. 4

80

FIG. 5

FIG. 6

EXPOSURE APPARATUS AND DEVICE FABRICATION METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an exposure apparatus and a device fabrication method.

2. Description of the Related Art

A projection exposure apparatus has conventionally been employed to fabricate a micropatterned semiconductor device such as a semiconductor memory or logic circuit by using photolithography. The projection exposure apparatus projects and transfers a circuit pattern formed on a reticle (mask) onto a substrate such as a wafer via a projection optical system.

Along with the recent advance in micropatterning of semiconductor devices, the projection exposure apparatus is being required to further improve the resolving power (a minimum feature size that the exposure apparatus can transfer) than ever. To meet this demand, the wavelength of the exposure light is shortening, and the development of a high-NA projection optical system is in progress (the numerical aperture (NA) of the projection optical system is increasing). For example, a projection exposure apparatus which uses an ArF excimer laser beam having a wavelength of about 193 nm as the exposure light and includes a projection optical system having an NA more than 0.8 attains a resolving power of 0.1 μm . Also, an immersion exposure apparatus has already been proposed, which increases the NA of the projection optical system by the so-called immersion method of filling at least a part of the space between the wafer and the final surface (final lens) of the projection optical system with a liquid having a refractive index higher than 1. Under the circumstances, a further improvement in the resolving power than ever is being expected.

To achieve an improvement in the resolving power of the exposure apparatus, it is indispensable to precisely evaluate the performance (for example, the imaging performance) of the projection optical system. Conventionally, the transmitted wavefront aberration has been mainly used to evaluate the performance of the projection optical system as mounted in the exposure apparatus or that of the projection optical system during assembly. Along with an improvement in the performance of the projection optical system, the influence of the birefringence of the projection optical system is becoming non-negligible. To keep up with this recent trend, it is necessary to evaluate not only the transmitted wavefront aberration but also the birefringence (the birefringence on the pupil plane) of the projection optical system.

To meet this need, Japanese Patent Laid-Open No. 2006-214856 proposes a measuring apparatus in which an interferometer for measuring the transmitted wavefront aberration in assembling the projection optical system is additionally imparted with a function of measuring the birefringence of the projection optical system. The measuring apparatus disclosed in Japanese Patent Laid-Open No. 2006-214856 mounts an imaging optical system in order to measure (evaluate) the birefringence (birefringence distribution) of the projection optical system. To accurately measure (evaluate) the birefringence of the projection optical system, it is necessary to isolate the birefringence of the imaging optical system (to be referred to as the "system error" hereinafter) mounted in the measuring apparatus, and that of the projection optical system.

The birefringence is generally represented by a Jones matrix, so matrix calculation is necessary to isolate the sys-

tem error and the birefringence of the projection optical system (that is, to calibrate the measuring apparatus). For example, Japanese Patent Laid-Open No. 2006-214856 separately measures the birefringence of the forward path from the light source to the projection optical system (an optical system inserted in the optical path from the light source to the projection optical system), and that of the backward path from the projection optical system to the light detection unit (an optical system inserted in the optical path from the projection optical system to the light detection unit). Then, the Jones matrix representing the measurement value containing the system error and the birefringence of the projection optical system (that is, the measurement result obtained by the measuring apparatus) is multiplied by the inverse matrices of the Jones matrices representing the birefringences of the forward and backward paths, thereby isolating the system error and the birefringence of the projection optical system.

Unfortunately, Japanese Patent Laid-Open No. 2006-214856 discloses merely a technique used in assembling the projection optical system, and discloses no technique of measuring the birefringence of the projection optical system as mounted in the exposure apparatus, and isolating the system error of the measuring apparatus used in measuring that birefringence. In other words, this patent reference proposes no technique of accurately measuring the birefringence (birefringence distribution) of the projection optical system as mounted in the exposure apparatus.

The technique disclosed in Japanese Patent Laid-Open No. 2006-214856 inserts a mirror and prism at positions at which the incident angle of light is 5° or less in the imaging optical system mounted in the measuring apparatus, divides the optical path in the measuring apparatus into four, and measures the birefringences of these optical paths, thereby obtaining the birefringences of the forward and backward paths. Therefore, to isolate the system error and the birefringence of the projection optical system, birefringence measurement must be performed a number of times (at least four times), which requires a long measurement time.

SUMMARY OF THE INVENTION

The present invention provides an exposure apparatus which can accurately measure the birefringence of a projection optical system as mounted in the exposure apparatus in a short period of time.

According to the first aspect of the present invention, there is provided an exposure apparatus comprising a projection optical system configured to project a pattern of a reticle held by a first stage onto a substrate held by a second stage, a measuring unit which includes an imaging optical system configured to guide light having propagated through the projection optical system to an image sensor, and is configured to measure the overall birefringence of the imaging optical system and the projection optical system, a calibration unit which is set on a side of an object plane of the projection optical system in order to measure a birefringence of the imaging optical system in calibrating the measuring unit, and is configured to reflect the light from the measuring unit back to the measuring unit without using the projection optical system, and a calculation unit configured to isolate, from the result of measuring the overall birefringence of the imaging optical system and the projection optical system by the measuring unit, the birefringence of the imaging optical system measured by the measuring unit by setting the calibration unit on the side of the object plane of the projection optical system, thereby calculating the birefringence of the projection optical system, wherein the imaging optical system includes

a forward-path optical system configured to guide light from a light source to the projection optical system, and a backward-path optical system configured to guide the light having propagated through the projection optical system to the image sensor, the calibration unit set on the side of the object plane of the projection optical system reflects the incident light back to the measuring unit so that the measuring unit measures the birefringence of the imaging optical system, and the calibration unit set on the side of the object plane of the projection optical system reflects at least three different linearly polarized light components of the incident light back to the measuring unit so that the measuring unit measures a birefringence of the backward-path optical system.

According to the second aspect of the present invention, there is provided a device fabrication method comprising steps of exposing a substrate using an exposure apparatus, and performing a development process for the substrate exposed, wherein the exposure apparatus includes a projection optical system configured to project a pattern of a reticle held by a first stage onto the substrate held by a second stage, a measuring unit which includes an imaging optical system configured to guide light having propagated through the projection optical system to an image sensor, and is configured to measure the overall birefringence of the imaging optical system and the projection optical system, a calibration unit which is set on a side of an object plane of the projection optical system in order to measure a birefringence of the imaging optical system in calibrating the measuring unit, and is configured to reflect the light from the measuring unit back to the measuring unit without using the projection optical system, and a calculation unit configured to isolate, from the result of measuring the overall birefringence of the imaging optical system and the projection optical system by the measuring unit, the birefringence of the imaging optical system measured by the measuring unit by setting the calibration unit on the side of the object plane of the projection optical system, thereby calculating the birefringence of the projection optical system, wherein the imaging optical system includes a forward-path optical system configured to guide light from a light source to the projection optical system, and a backward-path optical system configured to guide the light having propagated through the projection optical system to the image sensor, the calibration unit set on the side of the object plane of the projection optical system reflects the incident light back to the measuring unit so that the measuring unit measures the birefringence of the imaging optical system, and the calibration unit set on the side of the object plane of the projection optical system reflects at least three different linearly polarized light components of the incident light back to the measuring unit so that the measuring unit measures a birefringence of the backward-path optical system.

Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic view showing an exposure apparatus according to one aspect of the present invention.

FIG. 2 is a schematic sectional view showing a calibration unit of the exposure apparatus shown in FIG. 1.

FIG. 3 is a schematic view showing an exposure apparatus according to one aspect of the present invention.

FIG. 4 is a schematic view showing another calibration unit of the exposure apparatus shown in FIG. 1.

FIG. 5 is a schematic sectional view showing an optical unit of the calibration unit shown in FIG. 4.

FIG. 6 is a schematic view showing a Fizeau interferometer to which the calibration unit according to this embodiment is applied.

DESCRIPTION OF THE EMBODIMENT

A preferred embodiment of the present invention will be described below with reference to the accompanying drawings. The same reference numerals denote the same members throughout the drawings, and a repetitive description thereof will not be given.

FIG. 1 is a schematic view showing an exposure apparatus 1 according to one aspect of the present invention. In this embodiment, the exposure apparatus 1 is a projection exposure apparatus which transfers the pattern of a reticle 30 onto a wafer 50 by the step & scan scheme. However, the exposure apparatus 1 can adopt the step & repeat scheme or another exposure scheme.

The exposure apparatus 1 includes a light source 10, an illumination optical system 20, a reticle stage (first stage) 35 for holding the reticle 30, a projection optical system 40, a wafer stage (second stage) 55 for holding the wafer 50, a control unit 60, a measuring unit 70, and a calibration unit 80. The exposure apparatus 1 also includes, for example, an alignment detection system and focus detection system (neither are shown).

The light source 10 is, for example, an excimer laser such as an ArF excimer laser having a wavelength of about 193 nm or a KrF excimer laser having a wavelength of about 248 nm. However, the light source 10 is not particularly limited to an excimer laser, and may be an F2 laser having a wavelength of about 157 nm, an EUV (Extreme Ultra Violet) light source having a wavelength of about 10 nm to 15 nm, or a lamp such as a mercury lamp or xenon lamp.

The illumination optical system 20 illuminates the reticle 30 with light from the light source 10. In this embodiment, the illumination optical system 20 includes a shaping optical system 22 for shaping light from the light source 10 into a shape symmetrical about the optical axis, an incoherent optical system 24 for shortening the coherence length, and an illumination system 26 for illuminating the reticle 30.

The reticle 30 has a circuit pattern and is held and driven by the reticle stage 35.

The reticle stage 35 holds the reticle 30 and drives it in the x-, y-, and z-axis directions and the rotation directions about the respective axes. In this embodiment, the reticle stage 35 mounts the calibration unit 80 (to be described later) and drives it in the x-, y-, and z-axis directions and the rotation directions about the respective axes, as in the reticle 30. Note that the scanning direction of the reticle 30 or wafer 50 on its surface is defined as the y-axis direction, a direction perpendicular to the scanning direction is defined as the x-axis direction, and a direction perpendicular to the surface of the reticle 30 or wafer 50 is defined as the z-axis direction.

The projection optical system 40 projects the pattern of the reticle 30 onto the wafer 50. The projection optical system 40 can be a dioptric system catadioptric system, or catoptric system.

The wafer 50 is a substrate onto which the pattern of the reticle 30 is projected (transferred). However, the wafer 50 can be substituted by a glass plate or another substrate.

The wafer stage 55 holds the wafer 50 and drives it in the x-, y-, and z-axis directions and the rotation directions about the respective axes. The wafer stage 55 also holds a concave mirror 713 to be drivable in the x-, y-, and z-axis directions and the rotation directions about the respective axes.

The control unit **60** includes a CPU and memory and controls the operation of the exposure apparatus **1**. The control unit **60** synchronously controls the reticle stage **35** and the wafer stage **55** on the order of nanometers based on the measurement results obtained by laser interferometers arranged around the reticle stage **35** and wafer stage **55**. The laser interferometers measure the positions of the reticle stage **35** and wafer stage **55** in the optical axis direction (that is, the z-axis direction) of the projection optical system **40**, and those on a plane (that is, the x-y plane) perpendicular to the optical axis of the projection optical system **40**.

In this embodiment, the control unit **60** also controls the operation of the measuring unit **70** (to be described later) (that is, an operation associated with the calibration of the measuring unit **70** and the measurement of the birefringence of the projection optical system **40** by the measuring unit **70**). For example, the control unit **60** controls the driving of the calibration unit **80** and concave mirror **713**, which is necessary to calibrate the measuring unit **70** and measure the birefringence of the projection optical system **40**, via the reticle stage **35** and wafer stage **55**. The control unit **60** also serves as a calculation unit which performs calculation processing necessary to calibrate the measuring unit **70** and measure the birefringence of the projection optical system **40**. The control unit **60** calculates, for example, the Jones matrix representing the birefringence, based on an image sensed by an image sensor **711**. The control unit **60** also calculates the birefringence of the projection optical system **40** by isolating the birefringence of the measuring unit **70** from the result of measuring the overall birefringence of the measuring unit **70** and projection optical system **40** by the measuring unit **70**. The detailed calculation processing by the control unit **60** will be explained in detail later.

The measuring unit **70** includes an imaging optical system for guiding light from the light source **10** to the projection optical system **40** and further guiding the light having propagated through the projection optical system **40** to the image sensor **711**, and measures the birefringence of the projection optical system **40**. Note that, as described above, because the measuring unit **70** includes an imaging optical system, the measurement result obtained by the measuring unit **70** contains the birefringences of the projection optical system **40** and measuring unit **70** (that is, the birefringence of the imaging optical system). In this embodiment, the measuring unit **70** includes a fiber **701**, fiber port **702**, $\lambda/2$ plate **703**, polarizer **704**, beam expander **705**, half mirror **706**, and objective lens **707**. The measuring unit **70** also includes a pupil imaging lens **708**, $\lambda/4$ plate **709**, analyzer **710**, image sensor **711**, spatial filter **712**, and concave mirror **713**.

The calibration unit **80** is mounted on the reticle stage **35** to be insertable into and retractable from the optical path of the imaging optical system of the measuring unit **70**, as described above. The calibration unit **80** is an optical unit set on the side of the object plane of the projection optical system **40** in order to measure the birefringence of the imaging optical system of the measuring unit **70** in calibrating the measuring unit **70**. The calibration unit **80** includes, for example, a plurality of mirrors and a plurality of prisms, and reflects light from the measuring unit **70** back to the measuring unit **70** without using the projection optical system **40**. The calibration unit **80** includes concave mirrors **82** and **84** and a prism **86**, as shown in FIG. 2. The concave mirror **82** is used to measure the birefringence of the whole imaging optical system of the measuring unit **70**. The concave mirror **84** and prism **86** are used to measure the birefringence of the backward-path optical system of the imaging optical system of the measuring unit **70**. In this embodiment, the prism **86** includes three

prisms **86a** to **86c**, which are set at different angles (for example, 0° , 60° , and 120°) with respect to the z-axis and transmit only predetermined linearly polarized light components. Accordingly, the prisms **86a** to **86c** transmit three different linearly polarized light components. Three concave mirrors **84a** to **84c** are set in correspondence with the three prisms **86a** to **86c**. The concave mirrors **84a** to **84c** reflect the light components transmitted through the prisms **86a** to **86c**, respectively, back to the measuring unit **70**. Note that FIG. 2 is a schematic sectional view showing the calibration unit **80**.

Calculation processing by the control unit **60** will be explained below, together with the detailed arrangements and functions of the measuring unit **70** and calibration unit **80**. A method of measuring the system error as the birefringence of the measuring unit **70** will be explained first. As described above, because the birefringence is represented by a Jones matrix, matrix calculation is necessary to isolate (subtract) the system error from the result of measuring the overall birefringence of the measuring unit **70** and projection optical system **40** by the measuring unit **70**. It is therefore necessary to separate the imaging optical system of the measuring unit **70** into a forward-path optical system which guides light from the light source **10** to the projection optical system **40**, and a backward-path optical system which guides the light from the projection optical system **40** to the image sensor **711**, thereby obtaining the birefringences of the forward-path optical system and backward-path optical system. In this embodiment, let J_m be the Jones matrix representing the birefringence of the whole imaging optical system of the measuring unit **70**; J_r , the Jones matrix representing the birefringence of the backward-path optical system; and J_g , the Jones matrix representing the birefringence of the forward-path optical system.

Light from the light source **10** comes from the fiber port **702** via the fiber **701**. The light leaving the fiber port **702** is transmitted through the $\lambda/2$ plate **703** and polarizer **704**. The $\lambda/2$ plate **703** and polarizer **704** are arranged on a θ stage (not shown). Rotating the $\lambda/2$ plate **703** and polarizer **704** makes it possible to obtain known linearly polarized light. The light transmitted through the $\lambda/2$ plate **703** and polarizer **704** is reflected by the half mirror **706** via the beam expander **705** which enlarges the light beam diameter, and enters the objective lens **707**.

In measuring the birefringence of the whole imaging optical system of the measuring unit **70**, the calibration unit **80** mounted on the reticle stage **35** is set on the side of the object plane of the projection optical system **40**. More specifically, the calibration unit **80** is set such that the concave mirror **82** is located immediately beneath the objective lens **707** and the focal position of the objective lens **707** matches the center of curvature of the concave mirror **82**.

The incident light on the calibration unit **80** is reflected by the concave mirror **82**, and enters the $\lambda/4$ plate **709**, which is arranged on the θ stage, via the objective lens **707**, half mirror **706**, and pupil imaging lens **708**. The light modulated by the $\lambda/4$ plate **709** enters the image sensor **711** via the analyzer **710**. At this time, the image sensor **711** senses only a linearly polarized light component determined by the angle of the analyzer **710**.

In this way, three different angles (for example, 0° , 60° , and 120°) are set in the polarizer **704**, and three polarization parameters are measured, thereby calculating the Jones matrix. The polarization parameters and Jones matrix are obtained by the phase retarder method. The phase retarder method is disclosed in Japanese Patent Laid-Open No. 2006-214856, and a detailed description thereof will not be given herein. With this operation, the Jones matrix J_m represent-

ing the birefringence from the polarizer 704 to the $\lambda/4$ plate 709, that is, the birefringence of the whole imaging optical system of the measuring unit 70 can be obtained.

In measuring the birefringence of the backward-path optical system of the measuring unit 70, the calibration unit 80 is set such that the concave mirror 84 and prism 86 are located immediately beneath the objective lens 707. For example, when the calibration unit 80 is set such that the concave mirror 84a and prism 86a are located immediately beneath the objective lens 707, the light reflected by the concave mirror 84a is known linearly polarized light determined by the angle of the prism 86a. Accordingly, a polarization parameter upon guiding linearly polarized light determined by the angle of the prism 86a to the birefringences of the objective lens 707, half mirror 706, and pupil imaging lens 708 is measured. Likewise, three different polarization parameters can be measured by setting the calibration unit 80 such that a set of the concave mirror 84b and prism 86b and a set of the concave mirror 84c and prism 86c are located immediately beneath the objective lens 707. With this operation, the Jones matrix J_r representing the birefringence from the objective lens 707 to the $\lambda/4$ plate 709, that is, the birefringence of the backward-path optical system of the measuring unit 70 can be obtained.

The prism 86 in the calibration unit 80 will be explained herein. In this embodiment, the prism 86 is a Wollaston prism. A Wollaston prism splits the incident light into ordinary light and extraordinary light at equal angles. For this reason, when a Wollaston prism is used as the prism 86, it is necessary to shield extraordinary light by the spatial filter 712 to prevent it from entering the image sensor 711.

A splitting angle θ_D of ordinary light and extraordinary light is given by:

$$\theta_D = \Delta r/f_0 \quad (1)$$

where Δr is the opening radius of the spatial filter 712, and f_0 is the focal length of the pupil imaging lens 708, and more specifically, the focal length of a lens set on the side of the half mirror 706, of lenses which constitute the pupil imaging lens 708.

Because a Wollaston prism outputs ordinary light in a direction tilted with respect to the incident light as well, the position of the concave mirror 84 must be adjusted so that the ordinary light passes through (the opening of) the spatial filter 712.

A Wollaston prism has a feature that the coupling angle of the prism can be decreased as long as the splitting angle θ_D is small. This makes it possible to downsize the Wollaston prism, thus suppressing the generation of any aberration even when it is set near the focal position of the objective lens 707 as the prism 86. A general prism is made of a birefringent glass material, so it causes a phase difference in the crystal axis direction upon setting it at the focal position. However, it is possible to prevent the generation of any aberration by inserting a birefringent glass material which cancels the phase difference between the concave mirror 84 and the prism 86.

Although a Wollaston prism is used as the prism 86 in this embodiment, it can be substituted by a prism such as a Glan-Thompson prism or a Savart plate if the aperture angle of the objective lens 707 is small.

Using the Jones matrices J_m and J_r , the Jones matrix J_g representing the birefringence from the polarizer 704 to the objective lens 707, that is, the birefringence of the forward-path optical system of the measuring unit 70 can be calculated by:

$$J_g = J_r^{-1} \times J_m \quad (2)$$

where J_r^{-1} is the inverse matrix of the Jones matrix J_r representing the birefringence of the backward-path optical system of the measuring unit 70.

A method of isolating (subtracting) the system error from the result of measuring the overall birefringence of the measuring unit 70 and projection optical system 40 by the measuring unit 70 will be explained next. The calibration unit 80 is retracted from the optical path of the imaging optical system of the measuring unit 70, and the objective lens 707 is set such that the focal position of the objective lens 707 matches the object point of the projection optical system 40. Also, the concave mirror 713 is set such that the center of curvature of the concave mirror 713 held by the wafer stage 55 matches the image point of the projection optical system 40.

The light from the objective lens 707 propagates through the projection optical system 40, and is perpendicularly reflected by the concave mirror 713. The light perpendicularly reflected by the concave mirror 713 propagates through the projection optical system 40 again, and enters the image sensor 711 via the objective lens 707, half mirror 706, pupil imaging lens 708, $\lambda/4$ plate 709, and analyzer 710. At this time, the overall birefringence of the measuring unit 70 and optical system 40 is measured.

Letting J_a be the Jones matrix representing the overall birefringence of the measuring unit 70 and projection optical system 40, the Jones matrix J_p representing the birefringence of the projection optical system 40 can be calculated by:

$$J_p = (J_r^{-1} \times J_a \times J_g^{-1})^{1/2} \quad (3)$$

The root calculation of the matrix is the same as in Japanese Patent Laid-Open No. 2006-214856, and a detailed description thereof will not be given herein.

In this manner, according to this embodiment, it is possible to obtain the birefringences of the forward-path optical system and backward-path optical system of the measuring unit 70 by performing measurement twice, and to isolate the system error from the overall birefringence of the measuring unit 70 and projection optical system 40. Hence, the exposure apparatus 1 can accurately measure the birefringence of the projection optical system 40 as mounted in the exposure apparatus 1 in a short period of time.

Although the calibration unit 80 is mounted on the reticle stage 35 in this embodiment, it may be mounted in the projection optical system 40 (more specifically, on the incident surface of a lens barrel which forms the projection optical system 40), as shown in FIG. 3. In this case, it is necessary that the objective lens 707 can be driven so as to be located immediately above the calibration unit 80. Note that FIG. 3 is a schematic view showing an exposure apparatus 1 according to one aspect of the present invention.

The calibration unit 80 may include three optical units 810a to 810c arranged at different angles, as shown in FIG. 4. In this case, the optical units 810a to 810c are located immediately beneath the objective lens 707, and measure three different polarization parameters, thereby calculating the Jones matrix. The optical units 810a to 810c may be mounted on the reticle stage 35 or in the projection optical system 40. Note that FIG. 4 is a schematic sectional view showing another calibration unit 80.

FIG. 5 is a schematic sectional view showing the optical unit 810a. The optical unit 810a includes the concave mirror 82, a bending mirror 811a, a lens 812a, a polarizing beam splitter 813a, and a reflecting mirror 814a, as shown in FIG. 5. The concave mirror 82 is used to measure the birefringence of the whole imaging optical system of the measuring unit 70,

as described above. The bending mirror **811a**, lens **812a**, polarizing beam splitter **813a**, and reflecting mirror **814a** are used to measure the birefringence of the backward-path optical system of the imaging optical system of the measuring unit **70**. Each of the optical units **810b** and **810c** has the same arrangement as that of the optical unit **810a** except that each of them does not have the concave mirror **82**, and a detailed description thereof will not be given herein.

In measuring the birefringence of the backward-path optical system of the measuring unit **70**, the optical unit **810a** is set such that the bending mirror **811a** is located immediately beneath the objective lens **707**. The light from the objective lens **707** is perpendicularly deflected by the bending mirror **811a**, and enters the lens **812a**. The incident light on the lens **812a** is collimated into collimated light and enters the polarizing beam splitter **813a**. Of the incident light, a linearly polarized light component determined by the angle of the polarizing beam splitter **813a** strikes the reflecting mirror **814a**. The incident light on the reflecting mirror **814a** is perpendicularly reflected back to the objective lens **707** via the polarizing beam splitter **813a**, lens **812a**, and bending mirror **811a**. The bending mirror **811a** and lens **812a** are preferably made of a glass material having a birefringence sufficiently lower than that of the backward-path optical system of the measuring unit **70**. With this arrangement, the polarization parameter becomes approximately identical to that obtained upon guiding linearly polarized light determined by the polarizing beam splitter **813a** to the backward-path optical system of the measuring unit **70**. Performing the same measurement using the optical units **810b** and **810c** makes it possible to obtain the Jones matrix J_r representing the birefringence of the backward-path optical system of the measuring unit **70** from three polarization parameters. A method of measuring (calculating) the Jones matrix J_m representing the birefringence of the whole imaging optical system of the measuring unit **70**, and a method of isolating the system error from the overall birefringence of the measuring unit **70** and projection optical system **40** are the same as above.

Although the optical unit **810a** includes the reflecting mirror **814a** in this embodiment, a reflection film may be formed on the exit surface (a surface facing the reflecting mirror **814a**) of the polarizing beam splitter **813a**, instead of using the reflecting mirror **814a**. Also, the light transmitted through the polarizing beam splitter **813a** may be perpendicularly reflected, instead of perpendicularly reflecting the light reflected by the polarizing beam splitter **813a**.

If the bending mirror **811a** and lens **812a** cannot be made of a glass material having a birefringence sufficiently lower than that of the backward-path optical system of the measuring unit **70**, their birefringences are measured in advance. The polarization state of the light which enters the backward-path optical system of the measuring unit **70** may be calculated based on the birefringences of the bending mirror **811a** and lens **812a**.

In the operation of the exposure apparatus **1**, the birefringence of the projection optical system **40** is measured first. The birefringence of the projection optical system **40** can be obtained by measuring the birefringence of the measuring unit **70** (system error) using the calibration unit **80**, and isolating the system error from the result of measuring the overall birefringence of the measuring unit **70** and projection optical system **40** by the measuring unit **70**, as described above. As the birefringence of the projection optical system **40** is measured, it is adjusted based on the measurement result. The birefringence of the projection optical system **40** can be adjusted by, for example, rotating an optical element

which constitutes the projection optical system **40** about the optical axis or driving it in the optical axis direction. As described above, because the measuring unit **70** can accurately measure the birefringence of the projection optical system **40** in a short period of time, it, in turn, can be accurately adjusted in a short period of time.

Next, the pattern of the reticle **30** is transferred onto the wafer **50** by exposure. Light emitted by the light source **10** illuminates the reticle **30** by the illumination optical system **20**. The light which bears the information of the pattern of the reticle **30** forms an image on the wafer **50** by the projection optical system **40**. As described above, the birefringence of the projection optical system **40** used for the exposure apparatus **1** is adjusted accurately, thus achieving an excellent imaging capacity. Hence, the exposure apparatus **1** can provide high-quality devices (e.g., a semiconductor device, an LCD device, an image sensing device (e.g., a CCD), and a thin-film magnetic head) with a high throughput and a good economical efficiency. Note that the devices are fabricated by a step of exposing a substrate (for example, a wafer or glass plate) coated with a photoresist (photosensitive agent) using the exposure apparatus **1**, a step of developing the exposed substrate, and other known steps.

The calibration unit **80** according to this embodiment is also applicable to a Fizeau interferometer **100**, as shown in FIG. 6. The interferometer **100** has a configuration which implements a function of measuring the transmitted wavefront aberration of the projection optical system **40**, and that of measuring the birefringence of the projection optical system **40**, as will be described later. FIG. 6 is a schematic view showing the Fizeau interferometer **100** to which the calibration unit **80** is applied.

The interferometer **100** includes a $\lambda/2$ plate **703**, polarizer **704**, beam expander **705**, half mirror **706**, pupil imaging lens **708**, $\lambda/4$ plate **709**, analyzer **710**, image sensor **711**, spatial filter **712**, and concave mirror **713**. The interferometer **100** also includes an interferometer light source **720** having a long coherence length, and a wavefront shaping pinhole **721** in order to measure the transmitted wavefront aberration. The interferometer **100** also includes a so-called TS lens **722** in place of the objective lens **707**. The TS lens **722** has its final surface whose center of curvature matches the lens focal position, and transmits a certain component of the light which enters the final surface and reflects the remaining component. The $\lambda/4$ plate **709** and analyzer **710** are insertable into and retractable from the optical path of the interferometer **100**. In measuring the transmitted wavefront aberration of the projection optical system **40**, the $\lambda/4$ plate **709** and analyzer **710** are retracted from the optical path of the measuring unit **70**.

In measuring the transmitted wavefront aberration of the projection optical system **40**, the so-called fringe scan method of finely driving the concave mirror **713** held by the wafer stage **55** in the z-axis direction and modulating the phase is used. The concave mirror **713** may be driven by the wafer stage **55** or by attaching a piezoelectric actuator to the concave mirror **713**. The phase can be modulated even by finely driving the TS lens **722** in the z-axis direction in place of the concave mirror **713**.

In measuring the birefringence of the projection optical system **40**, the $\lambda/4$ plate **709** and analyzer **710** are inserted in the optical path of the interferometer **100**. Because the calibration unit **80** is mounted in the projection optical system **40**, the TS lens **722** is located immediately above the calibration unit **80** in calibrating the interferometer **100**. To measure the birefringence of the projection optical system **40** by the interferometer **100**, it is necessary to remove an interference pattern generated upon measuring the transmitted wavefront

11

aberration by driving the spatial filter 712 or using, for example, the average intensity of the interference pattern. A method of removing the interference pattern is disclosed in Japanese Patent Laid-Open No. 2006-214856, and a detailed description thereof will not be given herein. A method of measuring the birefringences of the projection optical system 40 and (the imaging optical system of) the interferometer 100 is as above.

While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.

This application claims the benefit of Japanese Patent Application No. 2008-035084 filed on Feb. 15, 2008, which is hereby incorporated by reference herein in its entirety.

What is claimed is:

1. An exposure apparatus comprising:

a projection optical system configured to project a pattern of a reticle held by a first stage onto a substrate held by a second stage;

a measuring unit which includes an imaging optical system configured to guide light having propagated through the projection optical system to an image sensor, and is configured to measure the overall birefringence of the imaging optical system and the projection optical system;

a calibration unit which is set on a side of an object plane of the projection optical system in order to measure a birefringence of the imaging optical system in calibrating the measuring unit, and is configured to reflect the light from the measuring unit back to the measuring unit without using the projection optical system; and

a calculation unit configured to isolate, from the result of measuring the overall birefringence of the imaging optical system and the projection optical system by the measuring unit, the birefringence of the imaging optical system measured by the measuring unit by setting the calibration unit on the side of the object plane of the projection optical system, thereby calculating the birefringence of the projection optical system,

wherein the imaging optical system includes a forward-path optical system configured to guide light from a light source to the projection optical system, and a backward-path optical system configured to guide the light having propagated through the projection optical system to the image sensor,

the calibration unit set on the side of the object plane of the projection optical system reflects the incident light back to the measuring unit so that the measuring unit measures the birefringence of the imaging optical system, and

the calibration unit set on the side of the object plane of the projection optical system reflects at least three different linearly polarized light components of the incident light back to the measuring unit so that the measuring unit measures a birefringence of the backward-path optical system.

2. The apparatus according to claim 1, wherein the calibration unit is mounted on the first stage.

3. The apparatus according to claim 1, wherein the calibration unit is mounted in the projection optical system.

4. The apparatus according to claim 1, wherein the calibration unit is insertable into and retractable from an optical path of the imaging optical system.

12

5. The apparatus according to claim 1, wherein the calibration unit includes:

a mirror configured to reflect the incident light back to the measuring unit,

a plurality of prisms configured to respectively transmit the at least three different linearly polarized light components of the incident light, and

a plurality of mirrors configured to respectively reflect the light components transmitted through the plurality of prisms back to the measuring unit.

6. The apparatus according to claim 5, wherein each of the plurality of prisms includes a Wollaston prism.

7. The apparatus according to claim 1, wherein

the calibration unit includes a plurality of optical units each including a polarizing beam splitter configured to reflect a predetermined linearly polarized light component of the incident light, and a mirror configured to reflect the light component reflected by the polarizing beam splitter back to the measuring unit,

the plurality of optical units are set such that the polarizing beam splitters respectively reflect the at least three different linearly polarized light components, and

one optical unit of the plurality of optical units further includes a mirror configured to reflect the incident light back to the measuring unit.

8. The apparatus according to claim 1, wherein the calculation unit isolates the birefringence of the backward-path optical system measured by the measuring unit from the birefringence of the imaging optical system measured by the measuring unit, thereby calculating a birefringence of the forward-path optical system.

9. A device fabrication method comprising steps of: exposing a substrate using an exposure apparatus; and performing a development process for the substrate exposed,

wherein the exposure apparatus includes:

a projection optical system configured to project a pattern of a reticle held by a first stage onto the substrate held by a second stage;

a measuring unit which includes an imaging optical system configured to guide light having propagated through the projection optical system to an image sensor, and is configured to measure the overall birefringence of the imaging optical system and the projection optical system;

a calibration unit which is set on a side of an object plane of the projection optical system in order to measure a birefringence of the imaging optical system in calibrating the measuring unit, and is configured to reflect the light from the measuring unit back to the measuring unit without using the projection optical system; and

a calculation unit configured to isolate, from the result of measuring the overall birefringence of the imaging optical system and the projection optical system by the measuring unit, the birefringence of the imaging optical system measured by the measuring unit by setting the calibration unit on the side of the object plane of the projection optical system, thereby calculating the birefringence of the projection optical system,

wherein the imaging optical system includes a forward-path optical system configured to guide light from a light source to the projection optical system, and a backward-path optical system configured to guide the light having propagated through the projection optical system to the image sensor,

the calibration unit set on the side of the object plane of the projection optical system reflects the incident light back

13

to the measuring unit so that the measuring unit measures the birefringence of the imaging optical system, and
the calibration unit set on the side of the object plane of the projection optical system reflects at least three different 5 linearly polarized light components of the incident light

14

back to the measuring unit so that the measuring unit measures a birefringence of the backward-path optical system.

* * * * *