

(12) UK Patent Application (19) GB (11) 2 090 256 A

(21) Application No 8138949

(22) Date of filing 24 Dec 1981

(30) Priority data

(31) 80/41559

81/25168

81/30541

(32) 31 Dec 1980

18 Aug 1981

9 Oct 1981

(33) United Kingdom (GB)

(43) Application published

7 Jul 1982

(51) INT CL³

C07D 309/10 A61K 31/35

C07D 407/06 // C07C

79/00 (C07D 407/06

303/02 309/10)

(52) Domestic classification

C2C 1300 1672 200 215

220 227 22Y 246 253 25Y

28X 30Y 313 314 31Y

332 338 339 360 361 362

366 368 36Y 440 491 509

50Y 621 623 628 631 643

652 658 65X 661 672

681 682 708 801 80Y AA

MK MM

(56) Documents cited

GB 1587059

EP 0005006A

JP 12376/79A

(58) Field of search

C2C

(71) Applicants

Beecham Group Limited,

Beecham House, Great

West Road, Brentford,

Middlesex, England

(72) Inventors

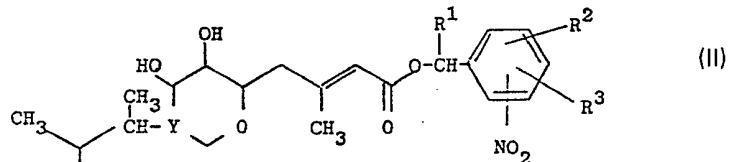
Peter John O'Hanlon,

Graham Walker

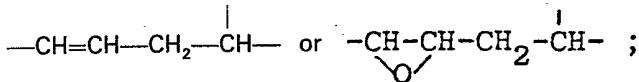
(74) Agent

B. J. Russell,

Beecham

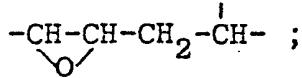

Pharmaceuticals, Great

Burgh, Yew Tree Bottom


Road, Epsom, Surrey

(54) Monic acid esters

(57) Compounds of formula (II):


wherein Y is

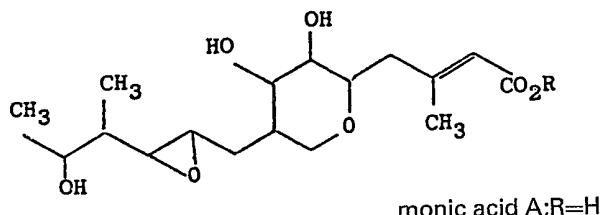
R¹ is hydrogen or C₁₋₄ alkyl,

R² is hydrogen or C₁₋₆ alkyl,

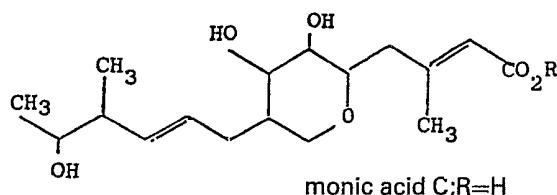
R³ is hydrogen, nitro or C₁₋₆ alkyl and, when Y represents

and R² and R³ are hydrogen, the nitro radical is in the meta- or para- position on the benzene ring.

have the *antimycoplasma* activity. They may be produced by esterification of the corresponding carboxylic acid salt.


GB 2 090 256 A

SPECIFICATION

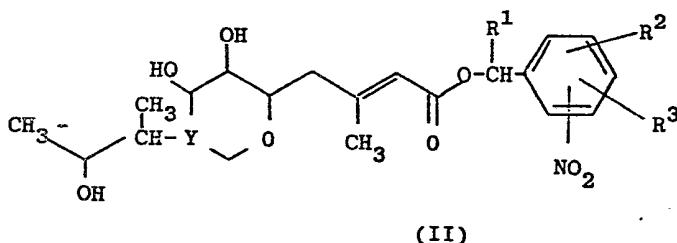

Antibacterial compounds

This invention relates to antibacterial compounds and in particular to a small class of esters which have antibacterial activity against certain Gram-positive and Gram-negative organisms, and also 5 possess anti-mycoplasmal activity. The compounds are therefore of value in the treatment of human and veterinary infections.

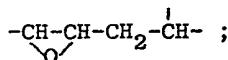
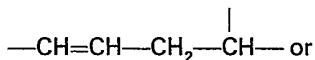
U.K. Patent No. 1 587 059 describes "monic acid A" and pharmaceutically acceptable esters thereof having the formula:

10 European Patent Application No. 0—005 006 describes "monic acid C" and pharmaceutically acceptable esters thereof having the formula: 10

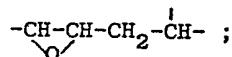
Japanese laid open Application No. 12376/79 discloses pseudomonic acid derivatives of the formula (I)



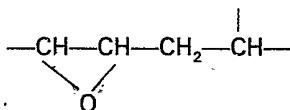
wherein R¹ represents hydrogen or lower alkyl, R² represents hydrogen, lower alkyl, lower alkenyl, lower alkynyl, lower alkoxy, lower alkoxy carbonyl, phenyl optionally substituted with 1—3 members of halogen, nitro, hydroxy, lower alkyl and lower alkoxy or a saturated or unsaturated heterocyclic group, and n represents an integer of 0—3. These derivatives are disclosed as having antibacterial efficacy 20



against Gram-positive bacteria.

We have now surprisingly found that a small group of compounds, all within the broadest disclosure of the above U.K. or European patents, of which some also fall within the scope of the above Japanese Application, but are not specifically disclosed therein, have advantageous properties including outstanding antimycoplasmal and/or antibacterial activity which makes them particularly valuable in the 25 treatment of mycoplasma-induced human or veterinary diseases.


Accordingly, the present invention provides an ester of formula (II);

wherein Y is



5 R¹ is hydrogen or C₁₋₄ alkyl, R² is hydrogen or C₁₋₆ alkyl, R³ is hydrogen, nitro or C₁₋₆ alkyl and, when Y 5
represents

and R² and R³ are hydrogen, the nitro radical is in the meta- or para- position on the benzene ring.

10 Preferably R¹ represents hydrogen or a methyl group. Preferably R² is hydrogen. Compounds of 10
formula (II) wherein Y represents $\text{---CH}=\text{CH---CH}_2\text{---CH---}$ are known as monate C esters, and those
wherein Y represents

are known as monate A esters.

Particularly suitable compounds of the present invention include:

15 p-nitrobenzyl monate A 15
m-nitrobenzyl monate A
1-(m-nitrophenyl)ethyl monate A
1-(p-nitrophenyl)ethyl monate A
m-nitrobenzyl monate C
20 3,5-dinitrobenzyl monate A 20
3,5-dinitro-2-methylbenzyl monate A
2-methyl-3-nitrobenzyl monate A
3,4-dinitrobenzyl monate A
2,4-dinitrobenzyl monate A
25 2-chloro-4-nitrobenzyl monate A 25

The infections against which compounds of this invention are particularly useful include venereal disease. They are also effective in the treatment of respiratory infections such as bacterial bronchitis; and bacterial meningitis, non-specific urethritis and pneumonia. In animals it may be employed for the treatment of mastitis in cattle, for swine dysentery, and for mycoplasma infections in animals such as 30 turkeys, chickens, pigs and cattle.

Some of the human and veterinary diseases either caused by mycoplasma species or in which they play a prominent role, and against which compounds of this invention are effective, are as follows:

35 *Avian*
M gallisepticum —
Chronic respiratory diseases (air-sacculitis) of chickens and turkeys 35

Bovine
M-bovis —
Mastitis, respiratory disease and arthritis of cattle

M. dispar —
Calf pneumonia

Porcine

M. suis pneumoniae —

5 Enzootic pneumonia of pigs 5
M hyorhinis } — arthritis in pigs
M hyosynoviae }

Human

10 *M pneumoniae* — primary atypical pneumonia

15 Compounds of the present invention are particularly useful in the treatment of enzootic pneumonia in animals such as pigs, cattle and sheep, because they also have activity against the bacteria *Bordetella bronchispetica*, *Pasteurella multocida* and *Haemophilus* spp, which often cause respiratory complications in cases of this disease.

15 Compounds of the present invention are also useful in the treatment of *Treponema hyodysenteriae* infections which cause swine dysentery.

20 This invention also provides a pharmaceutical or veterinary composition which comprises a compound of formula (II) together with a pharmaceutically or veterinary acceptable carrier or excipient.

20 The compositions may be formulated for administration by any route, and would depend on the disease being treated. The compositions may be in the form of tablets, capsules, powders, granules, lozenges, liquid or gel preparations, such as oral, topical or sterile parenteral solutions or suspensions.

25 Tablets and capsules for oral administration may be in unit dose presentation form, and may contain conventional excipients such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrrolidone; fillers, for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; tabletting lubricants, for example magnesium stearate, talc, polyethylene glycol or silica; disintegrants for example potato starch, or acceptable wetting agents such as sodium lauryl sulphate. The tablets may be coated according to methods well known in normal pharmaceutical practice. Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, 30 solutions, emulsions, syrups, or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol, syrup, methyl cellulose, glucose syrup, gelatin, 35 hydrogenated edible fats; emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non aqueous vehicles (which may include edible oils), for example almond oil, fractionated coconut oil, oily esters such as glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid, and if desired conventional flavouring or colouring agents.

35 For topical application to the skin compounds of this invention may be made up into a cream, lotion or ointment. Cream or ointment formulations that may be used for compounds of formula (II) are conventional formulations well known in the art, for example, as described in standard text books of 40 pharmaceutics and cosmetics, such as Harry's Cosmeticology published by Leonard Hill Books, and the British Pharmacopoeia.

40 Suppositories will contain conventional suppository bases, e.g. cocoa-butters or other glyceride.

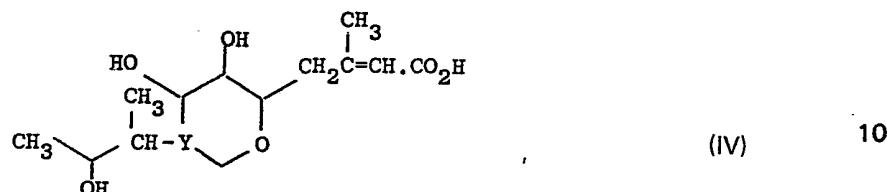
45 For parenteral administration, fluid unit dosage forms are prepared utilizing the compound and a sterile vehicle. The compound, depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle. In preparing solutions the compound can be dissolved in water for injection and filter sterilized before filling into a suitable vial or ampoule and sealing.

45 Advantageously, adjuvants such as a local anaesthetic, preservative and buffering agents can be dissolved in the vehicle. To enhance the stability the composition can be frozen after filling into the vial and water removed under vacuum. The dry lipophilized powder is then sealed in the vial. Parenteral suspensions are prepared in substantially the same manner except that the compound is suspended in the vehicle instead of being dissolved and sterilization cannot be accomplished by filtration. The compound can be sterilized by exposure to ethylene oxide before suspending in the sterile vehicle. Advantageously, 50 a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compounds.

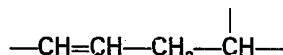
55 Veterinary compositions for intramammary treatment of mammary disorders in animals, especially bovine mastitis, will generally contain a suspension of a compound of formula (II) in an oily vehicle.

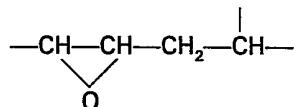
55 The compositions may contain from 0.1% to 99% by weight, preferably from 10—60% by weight, of the active material, depending on the method of administration. Where the compositions comprise dosage units, each unit will preferably contain from 50—500 mg, of the active ingredient. The dosage

as employed for adult human treatment will preferably range from 100 mg to 3 g, per day, for instance 250 mg to 2 g, per day, depending on the route and frequency of administration.


preferably no more than 0.5% by weight. The diet for animals may consist of normal foodstuffs to which the compound may be added or it may be added to a premix.

A suitable method of administration of a compound of formula (II) to animals is to add it to the animals' drinking water. In this case a concentration of compound in the drinking water of about 5—500 $\mu\text{g}/\text{ml}$, for example 5—200 $\mu\text{g}/\text{ml}$, is suitable.


Compounds of formula (II) may be prepared by reacting a nitro-benzyl compound of formula (III);


in which X is a good leaving group, preferably a halogen atom or an alkyl or aryl sulphonate, and R¹, R² and R³ are as defined in formula (II) with a salt of an acid of formula (IV), preferably the sodium salt.:

Preferably, X is a bromine atom or a mesylate group. The acid of formula (IV) wherein Y is

is known as monic acid C, and when Y is

15 it is known as monic acid A.

The reaction is preferably carried out in an organic solvent, suitably dimethylformamide, at 20°C to 100°C and the resulting product may be purified chromatographically on silica.

The following Examples illustrate the preparation of compounds of the present invention.

EXAMPLE 1

20 *p*-Nitrobenzyl Monate A

A solution containing sodium monate A (1.1 g, 3 mmol) *p*-nitrobenzyl bromide (0.65 g, 3 mmol) and dimethyl formamide (35 ml) was stirred at 20°C for 21 hr and then evaporated *in vacuo*. The residue was dissolved in ethyl acetate/brine, the organic phase washed with aqueous sodium bicarbonate and then brine, dried (magnesium sulphate) and evaporated *in vacuo*. The resulting residue was purified by chromatography (0 to 6% methanol in dichloromethane, 20 g silica gel) to give the ester

25 was purified by chromatography (0 to 6% methanol in dichloromethane, 20 g silicagel) to give the ester 25
as a colourless oil (0.78 g, 55%)

i.r. spectrum: ν_{max} (film)
 3400, 1710, 1640, 1600, 1520 cm^{-1} ;

30 uv spectrum: λ_{max} (EtOH)
 216 nm ($\epsilon_m = 20,512$), 263 nm ($\epsilon_m = 9,367$); 30

¹H nmr: δ_{H} (CDCl₃) 8.22 and 7.54 (4H, ABq, aryl), 5.85 (1H, s, H2), 5.22 (2H, s, H1'), 2.23 (3H, s, CH₃—15), 1.21 (3H, d, CH₃—14), 0.93 (3H, d, CH₃—17);

¹³C nmr: δ_c (CDCl₃)

166.0 (Cl), 159.2 (C3), 147.6 (Cl''), 143.9 (C4''), 128.3 (C3'', C5''), 123.7 (C2'', C6''), 116.5 (C2), 74.9 (C5), 71.1 (C13), 70.3 (C7), 68.9 (C6), 65.4 (C16), 64.0 (Cl'), 61.2 (C11), 55.7 (C10), 43.0 (C4), 42.8 (C12), 39.6 (C8), 31.6 (C9), 20.7 (C14), 19.3 (C15), 12.6 (C17).

5 Trituration of this oil with petrol affords crystalline *p*-nitrobenzyl monate A, m.p. 95—98°C.

5

EXAMPLE 2

p-Nitrobenzyl Monate A

A solution containing sodium monate A (0.73 g, 2 mmol), *m*-nitrobenzyl chloride (0.34 g, 2 mmol) and dimethyl formamide (25 ml) was stirred at 20°C for 17 h and then evaporated *in vacuo*. The residue

10 was taken up in ethyl acetate/brine, the organic phase washed with aqueous sodium bicarbonate and then brine, dried (magnesium sulphate) and evaporated *in vacuo*. The resulting residue was purified by chromatography (0 to 6% methanol in dichloromethane, 15 g silicagel) to give the ester as a colourless oil (0.63 g, 65%).

i.r. spectrum: ν_{max} (film)

15 3400, 1710, 1640, 1530 cm⁻¹;

15

uv spectrum: λ_{max} (EtOH)

219 nm (ϵ_m = 21,068);

¹H nmr: δ_H (CDCl₃)

20 8.35—7.30 (4H, m, aryl), 5.88 (1H, s, H2), 5.45 (2H, s, H1'), 2.25 (3H, s, CH₃—15), 1.21 (3H, d, CH₃—14), 0.93 (3H, d, CH₃—17).

20

EXAMPLE 3

1-(*m*-Nitrophenyl)ethyl monate A

A solution of sodium borohydride (0.4 g, 10 mmol) in ethanol (10 ml) was treated with *m*-nitroacetophenone (3.3 g, 20 mmol) at 20°C for 20 mins. The solution was then diluted with aqueous

25 potassium carbonate and extracted with chloroform. The extracts were dried (magnesium sulphate) and evaporated *in vacuo* to give 1-(*m*-nitrophenyl)ethanol as an oil (2.9 g, 90%).

25

i.r. spectrum: ν_{max} (film)

3400, 1530, 1350 cm⁻¹;

¹H nmr: δ_H (CDCl₃)

30 7.3—8.3 (4H, m, aryl), 5.0 (1H, q, H1), 3.2 (1H, bs, OH), 1.5 (3H, s, H2).

30

The above alcohol (1.7 g, 10 mmol) and triphenylphosphine (2.8 g, 11 mmol) in carbon tetrachloride (10 mL) was heated at reflux for 1h, and then cooled and filtered. The filtrate was treated with ether and filtered again, and then evaporated *in vacuo* to give 1-(*m*-nitrophenyl)ethyl chloride as a yellow oil (2.0 g, 100%) from which crystals of starting alcohol and triphenylphosphine oxide slowly separated;

35

i.r. spectrum: ν_{max} (film)

1530, 1350, 690 cm⁻¹;

¹H nmr: δ_H (CDCl₃)

7.4—8.4 (4H, m, aryl), 5.2 (1H, q, H1), 1.8 (3H, d, H2).

40 A mixture containing sodium monate A (1.1 g, 3 mmol) and 1-(*m*-nitrophenyl)ethyl chloride (0.4 g, 2 mmol) in dimethyl formamide (30 mL) was stirred at 50°C for 4 h and then evaporated *in vacuo*. The residue was dissolved in ethyl acetate, which was washed with aqueous sodium bicarbonate, dried (magnesium sulphate) and evaporated *in vacuo*, and the resulting residue purified by chromatography (20 g silica, 0 to 6% methanol in dichloromethane) to give 1-(*m*-nitrophenyl)ethyl monate A as a colourless oil (0.11 g, 11%).

45

i.r. spectrum: ν_{max} (film)

3450, 1715, 1645, 1530, 1350 cm⁻¹;

uv spectrum: λ_{max} (EtOH)

50 219 nm (ϵ_m 18,500), 258 (sh, ϵ_m 6,500);

50 ¹H nmr: δ_H (CDCl₃)
8.24 (1H, s, H2''), 8.13 (1H, d, H4''), 7.69 (1H, d, H6''), 7.50 (1H, dd, H5''), 5.95 (1H, q, H1'), 5.83 (1H, s, H2), 2.20 (3H, s, CH₃—15), 1.49 (3H, d, H2'), 1.20 (3H, d, CH₃—14), 0.90 (3H, d, CH₃—17);

¹³C nmr: δ_c (CDCl₃)

165.5 (Cl), 158.4 (C3), 148.6 (C3''), 144.5 (Cl''), 132.3 (C6''), 129.5 (C5''), 122.7 (C4''), 121.1 (C2''), 117.1, 117.2 (C2), 75.0 (C5), 71.3 (Cl'), 70.5 (C13), 70.3 (C7), 69.1 (C6), 65.4 (C16), 61.3 (C11), 55.5 (C10), 43.0 (C12), 42.9 (C4), 39.7 (C8), 31.7 (C9), 22.3 (C2'), 20.8 (C14), 19.3, 19.2 (C15), 12.6 (C17);

5

m/e (relative intensity)

(C. I. NH₃) 494 (MH⁺, 1%), 227 (31), 150 (100)

EXAMPLE 4

1-(*p*-Nitrobenzyl)ethyl monate A

10 p-Ethynitrobenzene (4.0 ml, 0.03 mmol) heated to 130°C was treated with bromine (1.5 mL, 0.03 mmol). A vigorous reaction took place and hydrogen bromide was evolved. When the reaction was complete the residue in the flask was identified as 1-(*p*-nitrophenyl)ethyl bromide (6.3 g, 100%);

10

¹H nmr: δ_h (CDCl₃)

8.2 (2H, d, H3', H5'), 7.6 (2H, d, H2', H6'), 5.2 (1H, q, H1), 2.0 (3H, d, H2).

15 A solution containing sodium monate A (1.46 g, 4 mmol) 1-(*p*-nitrophenyl)ethyl bromide (0.92 g, 4 mmol) and dimethyl formamide (20 mL) was stirred at 20°C for 4 h and then evaporated *in vacuo*. The residue was dissolved in ethyl acetate, which was then washed with aqueous sodium bicarbonate, dried (magnesium sulphate) and evaporated *in vacuo*. The resulting residue was purified by chromatography (30 g silica, 0 to 8% methanol in dichloromethane), to give 1-(*p*-nitrophenyl)ethyl monate A as a yellowish oil (1.36 g, 70%);

15

i.r. spectrum: ν_{max} (film)

3400, 1710, 1645, 1605 cm⁻¹;

uv spectrum: λ_{max} (EtOH)

219 nm (ϵ_m 24,600), 265 nm (ϵ_m 14,100);

25 ¹H nmr: δ_h (CDCl₃)

8.20 (2H, d, H3'', H5''), 7.63 (2H, dd, H2'', H6''), 5.94 (1H, q, H1'), 5.82 (1H, s, H2), 2.20 (3H, s, CH₃—15), 1.56 (3H, d, H2'), 1.20 (3H, d, CH₃—14), 0.90 (3H, d, CH₃—17);

25

¹³C nmr: δ_c (CDCl₃)

165.5 (Cl), 158.7 (C3), 149.6, 149.5 (C4''), 147.3 (Cl''), 126.8, 126.7 (C2'', C6''), 123.7 (C3'', C5''), 116.9, 116.8 (C2), 74.8 (C5), 71.2 (Cl'), 70.4 (C13), 70.3 (C7), 68.9 (C6), 65.4 (C16), 61.2 (C11), 55.6 (C10), 43.0 (C12), 42.8 (C4), 39.6 (C8), 31.6 (C9), 22.3 (C2'), 20.7 (C14), 19.2, 19.1 (C15), 12.6 (C17);

30

m/e (relative intensity)

493 (M⁺, 1%), 325 (10), 227 (58), 150 (89), 44 (100)

35 EXAMPLE 5

35

m-Nitrobenzyl monate C

Monic acid C (1 mmol, 0.33 g) was dissolved in methanol (10 ml) and sodium bicarbonate (0.84 g, 1 mmol) added and stirred for $\frac{1}{2}$ h. After evaporation *in vacuo*, *m*-nitrobenzyl chloride (0.17 g, 1 mmol) and DMF (10 ml) were added and stirred at 20° overnight. The reaction mixture was evaporated *in vacuo*, and the residue taken up in ethyl acetate/brine. The organic layer was washed with aqueous sodium bicarbonate, then brine, dried (MgSO₄) and evaporated *in vacuo*. The resulting residue was purified by chromatography, (10 g silica gel, 0 to 4% methanol in dichloromethane) to yield the ester as a colourless oil (208 mg, 50%);

40

i.r. spectrum: ν_{max} (CHCl₃)

45 3445, 1710, 1670, 1640, 1530 cm⁻¹;

45

uv spectrum: λ_{max} (EtOH)

216 nm (ϵ_m 20,575), 254 nm (ϵ_m 7.385)

50 ¹H nmr: δ_h (CDCl₃)

8.25 (1H, s, H2''), 8.18 (1H, d, H4''), 7.71 (1H, d, H6''), 7.55 (1H, t, H5''), 5.87 (1H, s, H2), 5.21 (2H, s, CH₂—1'), 2.24 (3H, s, CH₃—15), 1.17 (3H, d, CH₃—14), 0.98 (3H, d, CH₃—17).

50

¹³Cnmr: δ_c (CDCl₃)
 166.0 (Cl), 159.1 (C3), 148.6 (C3''), 138.8 (Cl''), 134.5 133.8 (Cl''), 134.5, 133.8, 129.5, 129.3
 (C5'', 6'', 10, 11), 122.9, 122.8 (C2'', 4''), 116.7 (C2), 75.0 (C5), 71.3 (C13), 70.5 (C7), 69.0
 (C6), 64.9 (C16), 64.1 (Cl'), 44.6 (C12), 43.3 (C4), 42.2 (C8), 32.4 (C9), 20.4 (C14), 19.4 (C15),
 5 16.6 (C17). 5

EXAMPLE 6

3,5-Dinitrobenzyl monate A

A solution containing sodium monate A (0.73 g, 2 mmol), 3,5-dinitrobenzyl chloride (0.44 g, 2 mmol) in dimethyl formamide (25 ml) was stirred at 20°C for 18 h and evaporated *in vacuo*. The residue 10 was taken up in ethyl acetate/brine, the organic phase washed with aqueous sodium bicarbonate and then brine, dried (magnesium sulphate), and then evaporated *in vacuo*. The resulting residue was purified by chromatography (0 to 6% methanol in dichloromethane, on 15 g silicagel) to yield 3,5-dinitrobenzyl monate A as a white solid, m.p. 122—124°C (543 mg, 52%); 10

i.r. spectrum: ν_{max} (film)
 15 3480, 3280, 3110, 1720, 1650, 1540 cm⁻¹; 15

uv spectrum: λ_{max} (EtOH)
 227 nm (ϵ_m 30,984);

¹H nmr: δ_H (CDCl₃)
 20 9.00 (1H, s, H4''), 8.58 (2H, s, H2'', H6''), 5.88 (1H, s, H2), 5.33 (2H, s, H1'), 2.25 (3H, s, CH₃—15), 1.23 (3H, d, CH₃—14), 0.91 (3H, d, CH₃—17); 20

¹³C nmr: δ_c (CDCl₃)
 165.6 (Cl), 160.3 (C3), 148.8 (Cl''), 141.4 (C3'', C5''), 127.8 (C2'', C6''), 118.3 (C4''), 116.1 (C2), 75.0 (C5), 71.4 (C13), 70.5 (C7), 69.1 (C6), 65.5 (C16), 63.1 (C1'), 61.3 (C11), 55.6 (C10), 43.1 (C4), 42.9 (C12), 39.9 (C8), 31.7 (C9), 20.8 (C14), 19.5 (C15), 12.7 (C17);

25 microanalysis:
 (Found C 54.70, H 5.49, N 5.34%, C₂₄H₃₂N₂O₁₁ requires C 54.96, H 6.11, N 5.34%). 25

EXAMPLE 7

3,5-Dinitro-2-methylbenzyl monate A

To a solution containing 3,5-dinitro-2-methylbenzyl alcohol (0.64 g, 3 mmol) in dichloromethane 30 (15 ml) with triethylamine (0.5 ml, 3.5 mmol) at —10°C was added mesyl chloride (0.3 ml, 4 mmol). The mixture was stirred for *ca* $\frac{1}{2}$ h and poured into water. The organic layer was washed with aqueous sulphuric acid, aqueous sodium bicarbonate and then brine, dried (magnesium sulphate), evaporated *in vacuo* and added to a solution of sodium monate A (0.73 g, 2 mmol) in dimethyl formamide (10 ml). The mixture was stirred at 20°C for 19 h and evaporated *in vacuo*. The residue was taken up in ethyl 35 acetate, which was washed with brine, aqueous sodium bicarbonate and then more brine, dried (magnesium sulphate) and evaporated *in vacuo*. The residual oil was purified by chromatography (0 to 6% methanol in dichloromethane, on 10 g silicagel) to yield 3,5-dinitro-2-methylbenzyl monate A as a pale yellow oil (70 mg, 6%). 35

i.r. spectrum: ν_{max} (film)
 40 3400, 1720, 1640, 1535 cm⁻¹; 40

uv spectrum: λ_{max} (EtOH)
 224 nm (ϵ_m 19.314);

¹H nmr: δ_H (CDCl₃)
 45 8.60 (1H, d, H4''), 8.46 (1H, d, H6''), 5.88 (1H, s, H2), 5.27 (2H, s, H1'), 2.57 (3H, s, CH₃—7''), 2.26 (3H, s, CH₃—15), 1.22 (3H, d, CH₃—14), 0.95 (3H, d, CH₃—17); 45

¹³C nmr: δ_c (CDCl₃)
 50 165.5 (Cl), 160.1 (C3), 146.0 (Cl''), 140.1 (C3'', C5''), 137.8 (C2'', 126.2 (C6''), 118.8 (C4''), 116.2 (C2), 75.0 (C5), 71.4 (C13), 70.6 (C7), 69.1 (C6), 65.4 (C16), 62.1 (C1'), 61.3 (C11), 55.5 (C10), 43.1 (C4), 42.9 (C12), 39.8 (C8), 31.7 (C9), 20.9 (C14), 19.5 (C15), 15.1 (C7''), 12.7 (C17); 50

Mass spectrum: m/e (relative intensity)
 538 (M⁺, 1%), 476 (8), 323 (10), 227 (100).

EXAMPLE 8

2-Methyl-3-nitrobenzyl monate A

A solution containing sodium monate A (0.73 g, 2 mmol), 2-methyl-3-nitrobenzyl chloride (0.37 g, 2 mmol), and dimethyl formamide (25 ml) was stirred at room temperature for 17 h and then

5 evaporated *in vacuo*. The residue was then taken up in ethyl acetate/brine, washed with aqueous sodium bicarbonate, then brine, dried (magnesium sulphate), and evaporated *in vacuo*. The resulting residue was purified by chromatography (0 to 4% methanol in dichloromethane on 8 g silicagel) to yield 2-methyl-3-nitrobenzyl monate A as a pale yellow oil (619 mg, 63%); 5

i.r. spectrum: ν_{max} (film)

10 3440, 1710, 1650, 1530 cm^{-1} ;

10

uv spectrum: λ_{max} (EtOH)

221 nm (ϵ_m 20.926);

^1H nmr: δ_{H} (CDCl_3)

7.75 (1H, d, H4''), 7.60 (1H, d, H6''), 7.32 (1H, t, H5''), 5.82 (1H, s, H2), 5.20 (2H, s, CH_2 —1'), 15 2.48 (3H, s, CH_3 —7''), 2.24 (3H, s, CH_3 —15), 1.23 (3H, d, CH_3 —14), 0.94 (3H, d, CH_3 —17); 15

^{13}C nmr: δ_{C} (CDCl_3)

166.0 (Cl), 158.9 (C3), 151.2 (C3''), 137.3 (C1''), 133.2 (C6''), 131.3 (C2''), 126.5 (C5''), 123.9 (C4''), 116.6 (C2), 74.9 (C5), 71.2 (C13), 70.3 (C7), 69.0 (C6), 65.5 (C16), 63.2 (C1'), 61.2 (C11), 55.6 (C10), 42.9 (C4), 42.8 (C12), 39.6 (C8), 31.6 (C9), 20.8 (C14), 19.2 (C15), 14.6

20 (C7''), 12.6 (C17); 20

mass spectrum: m/e (relative intensity)

493 (M^+ , 0.34%), 227 (39), 223 (21), 150 (100)

(Found: M^+ , 493.2349. $\text{C}_{25}\text{H}_{35}\text{NO}_9$ requires 493.2309).

EXAMPLE 9

3,4-Dinitrobenzyl monate A

25 3,4-Dinitrobenzyl alcohol (0.6 g, 3 mmol), acetic acid (10 ml) and a solution of hydrobromic acid in acetic acid (45% w/v HBr, 1 ml, 6 mmol) were heated under reflux for 17 h. The reaction mixture was then evaporated *in vacuo*, and added to sodium monate A (1.1 g, 3 mmol), sodium bicarbonate (0.5 g) and dimethyl formamide (30 ml). The solution was stirred at 20°C for 18 h and then evaporated *in*

30 *vacuo*. The residue was taken up in ethyl acetate/brine, washed with aqueous sodium bicarbonate, then 30 brine, dried (magnesium sulphate) and evaporated *in vacuo*. The resulting residue was purified by chromatography (10 g silicagel, 0 to 4% methanol in dichloromethane) to yield 3,4-dinitrobenzyl monate A (402 mg, 26%);

i.r. spectrum: ν_{max} (film)

35 3440, 1720, 1645, 1550 cm^{-1} ;

25

uv spectrum: λ_{max} (EtOH)

225 nm (ϵ_m 24,139);

^1H nmr: δ_{H} (CDCl_3)

8.1—7.65 (3H, m, aryl), 5.85 (1H, s, H2), 5.25 (2H, s, CH_2), 2.24 (3H, s, CH_3 —15), 1.23 (3H, d, 40 CH_3 —14), 0.94 (3H, d, CH_3 —17); 40

^{13}C nmr: δ_{C} (CDCl_3)

165.6 (Cl), 160.3 (C3), 144.1 (Cl''), 143.1, 141.9, 132.1, 125.5, 123.9 (C2'', 3'', 4'', 5'', 6''), 116.0 (C2), 74.9 (C5), 71.2 (C13), 70.4 (C7), 69.0 (C6), 65.4 (C16), 63.0 (C1'), 61.3 (C11), 55.7 (C10), 43.0 (C4), 42.8 (C12), 39.7 (C8), 31.6 (C9), 20.8 (C14), 19.4 (C15), 12.6 (C17).

45 EXAMPLE 10

45

2,4-Dinitrobenzyl monate A

Sodium borohydride (0.2 g, 10 mmol) in ethanol (40 ml) was added dropwise to 2,4-dinitrobenzaldehyde (1.96 g, 10 mmol) in ethanol (40 ml) and stirred for 1 h. The reaction mixture was then evaporated *in vacuo*, partitioned between ether and aqueous sodium bicarbonate, the ether layer

50 dried (magnesium sulphate) and evaporated *in vacuo* to yield 2,4-dinitrobenzyl alcohol as a brown solid (1.147 g, 58%) m.p. 105—110°C; 50

^1H nmr: δ_{H} (CDCl_3)

9.0—8.1 (3H, m, aryl), 5.18 (2H, s, CH_2), 2.4 (1H, s, OH).

2,4-Dinitrobenzyl alcohol (1.15 g, 5 mmol), acetic acid (10 ml) and a solution of hydrobromic acid in acetic acid (45% w/v HBr, 2 ml, 12 mmol) were heated under reflux for 18 h. The reaction mixture was evaporated *in vacuo*, and sodium monate A (1.8 g, 5 mmol) and dimethyl formamide (30 ml) added and stirred at 20°C for 18 h. The reaction mixture was then evaporated *in vacuo*, taken up in ethyl

5 acetate, washed with aqueous sodium bicarbonate and then brine, dried (magnesium sulphate) and 5 evaporated *in vacuo*. The residual oil was purified by chromatography (15 g silicagel, 0 to 4% methanol in dichloromethane) to yield 2,4-dinitrobenzyl monate A as a pale yellow oil (1.31 g, 50%);

i.r. spectrum: ν_{max} (film)
3440, 1720, 1660, 1610, 1480 cm^{-1} ;

10 uv spectrum: λ_{max} (EtOH)
226 nm (ϵ_m 22,792); 10

^1H nmr: δ (CDCl₃)
8.95 (1H, d, H3''), 8.50 (1H, dd, H5''), 7.90 (1H, d, H6''), 5.90 (1H, s, H2), 5.60 (2H, s, CH₂—1'),
2.24 (3H, s, CH₃—15), 1.21 (3H, d, CH₃—14), 0.93 (3H, d, CH₃—17).

15 EXAMPLE 11 15
2-Chloro-4-nitrobenzyl monate A

2-Chloro-4-nitrobenzyl bromide (0.50 g, 2 mmol), sodium monate (0.73 g, 2 mmol) and dimethyl 20 formamide (20 ml) were stirred at 20°C for 16½ h and then evaporated *in vacuo*. The residue was taken up in ethyl acetate/brine, washed with aqueous sodium bicarbonate, then brine, dried (magnesium 20 sulphate) and evaporated *in vacuo*. The resulting residue was purified by chromatography (10 g silicagel, 0 to 4% methanol in dichloromethane) to yield 2-chloro-4-nitrobenzyl monate A (239 mg, 23% m.p. 101—103°C. 20

i.r. spectrum: ν_{max} (KBr)
3445, 1720, 1650, 1520 cm^{-1}

25 uv spectrum: λ_{max} (EtOH)
216 nm (ϵ_m 28.331); 25

^1H nmr: δ_{H} (CDCl₃)
8.27 (1H, d, H3''), 8.15 (1H, dd, H5''), 7.64 (1H, d, H6''), 5.90 (1H, s, H2), 5.32 (2H, s, CH₂—1'),
2.25 (3H, s, CH₃—15), 1.23 (3H, d, CH₃—14), 0.96 (3H, d, CH₃—17);

30 ^{13}C nmr: δ_{C} (CDCl₃)
165.6 (C1), 159.5 (C3), 148.0 (C1''), 141.7 (C4''), 133.9 (C2''), (129.4 (C3''), 124.6 (C6''), 121.9 (C5''), 116.4 (C2), 75.1 (C5), 71.3 (C13), 70.5 (C7), 69.1 (C6), 65.5 (C16), 61.9 (C11), 61.3 (C11), 55.6 (C10), 43.1 (C12), 42.9 (C4), 39.8 (C8), 31.7 (C9), 20.8 (C14), 19.5 (C15), 12.7 (C17); 30

35 microanalysis 35
Found: C 56.16, H 5.97, N 2.66%,
C₂₄H₃₂NO₉Cl requires: C 56.09, H 6.23, N 2.73%.

Biological Data

The compounds of the present invention were screened for anti-mycoplasmal and anti-bacterial 40 activity, and the results were compared with the structurally closely related compound O-nitrobenzyl monate A. 40

Example No.	Compound	
1	p-nitrobenzyl monate A	
2	m-nitrobenzyl monate A	
3	1-(m-nitrophenyl)ethyl monate A	
5	4	1-(p-nitrophenyl)ethyl monate A
	5	m-nitrobenzyl monate C
	6	3,5-dinitrobenzyl monate A
	7	3,5-dinitro-2-methylbenzyl monate A
	8	2-methyl-3-nitrobenzyl monate A
10	9	3,4-dinitrobenzyl monate A
	10	2,4-dinitrobenzyl monate A
	11	2-chloro-4-nitrobenzyl monate A
	"C"	0-nitrobenzyl monate A for comparison

a) *Anti-Mycoplasma Activity*

15. Table 1 shows the *in vitro* MIC values ($\mu\text{g}/\text{ml}$) of the compounds of the Examples against a number 15 of mycoplasma organisms. The values were determined in Friis broth solidified with 0.9% agarose. The inoculum was 10^3 to 10^5 C.F.U. and the MIC's were recorded after 6 days incubation at 37°C .

TABLE 1

ORGANISMS	EXAMPLE NO - MIC (µg/ml)										C
	1	2	3	4	5	6	7	8	9	10	
<i>M. suis</i> pneumoniae NB12	0.05	0.025	0.25	1.0	0.25	0.05	0.25	0.1	0.25	1.0	1.0
<i>M. suis</i> pneumoniae JF 435	0.1	0.025	0.25	2.5	0.25	0.05	0.25	0.1	1.0	1.0	0.5
<i>M. suis</i> pneumoniae HK(2)	0.1	0.025	0.25	2.5	0.25	0.05	0.25	0.1	0.5	1.0	2.5
<i>M. suis</i> pneumoniae Str. 11	0.05	0.025	0.1	1.0	0.1	0.025	0.1	0.1	0.25	0.5	1.0
<i>M. suis</i> pneumoniae J2206/183b	0.1	0.025	0.25	1.0	0.25	0.05	0.25	0.25	1.0	1.0	0.5
<i>M. suis</i> pneumoniae MS 16	0.05	≤0.01	0.1	1.0	0.1	0.025	0.1	0.1	0.25	0.5	1.0
<i>M. suis</i> pneumoniae PW/C/210	0.05	≤0.01	0.1	1.0	0.1	0.025	0.1	0.1	0.25	0.5	1.0
<i>M. suis</i> pneumoniae LABER	0.05	0.025	0.1	1.0	0.1	0.025	0.1	0.1	0.25	0.5	1.0
<i>M. suis</i> pneumoniae UCD 1	0.1	0.025	0.25	1.0	0.25	0.05	0.25	0.25	0.5	1.0	0.25
<i>M. suis</i> pneumoniae TAM 6N	0.1	0.025	0.25	2.5	0.25	0.05	0.25	0.25	0.5	1.0	2.5
<i>M. suis</i> pneumoniae ATCC 25095	0.05	0.025	0.1	1.0	0.25	0.05	0.25	0.1	0.25	0.5	1.0
<i>M. suis</i> pneumoniae NCTC 10110	0.05	0.025	0.25	2.5	0.25	0.05	0.25	0.1	0.5	1.0	0.5
<i>M. hyorhinis</i> ATCC 23234	0.05	≤0.01	0.1	0.5	0.25	0.025	0.1	0.1	0.25	0.5	0.5
<i>M. hyorhinis</i> ATCC 25021	0.05	≤0.01	0.1	0.5	0.25	0.025	0.1	0.1	0.25	0.5	0.5
<i>M. hyosynoviae</i> ATCC 25591	<0.01	0.025	0.25	0.1	0.25	0.025	0.1	0.05	0.5	0.25	0.1
<i>M. bovis</i> NCTC 10131	<0.01	≤0.01	0.025	0.025	0.1	≤0.01	≤0.1	<0.01	≤0.01	≤0.01	≤0.01
<i>M. bovis</i> genitalium ATCC 14173	<0.01	≤0.01	0.05	0.05	0.1	≤0.01	≤0.1	0.025	≤0.01	0.025	0.025
<i>M. dispar</i> NCTC 10125	0.025	0.01	0.05	0.1	0.1	≤0.01	0.05	0.05	0.025	0.25	0.1
<i>M. gallisepticum</i> S6	0.25	2.5	>10.0	5.0	5.0	2.5	5.0	5.0	5.0	5.0	5.0
<i>M. pneumoniae</i> ATCC 15492	0.1	1.0	5.0	10.0	NG	2.5	2.5	NG	2.5	2.5	5.0

b) *Veterinary Bacteria*

Table 2 shows the MIC values ($\mu\text{g}/\text{ml}$) of the compounds of the Examples against a number of organisms important in veterinary infections. The values were determined using a two fold serial dilutions in Diagnostic Sensitivity Test Agar with an inoculum of 10^4 organisms and incubation for 18 hours at 37°C .

5 5

TABLE 2

ORGANISMS	EXAMPLE NO - MIC (µg/ml)										C
	1	2	3	4	5	6	7	8	9	10	
<i>E. Coli</i> NCTC 10418	40	40	>80	>80	80	>80	>80	80	>80	80	>80
<i>E. Coli</i> E1	40	40	>80	>80	80	>80	>80	80	>80	80	>80
<i>S. dublin</i> S7	40	80	>80	>80	>80	>80	>80	>80	>80	80	>80
<i>S. typhimurium</i> S18	40	40	>80	>80	80	>80	>80	80	>80	80	>80
<i>Bond. bronchiseptica</i> BO8	5	20	>80	>80	40	40	40	40	40	10	80
<i>Bond. bronchiseptica</i> BO9	1.25	5	80	5	40	10	10	5	5	5	2.5
<i>Past. multocida</i> PA1	.156	.615	20	5	10	1.25	2.5	1.25	0.625	2.5	0.625
<i>Past. multocida</i> PA2	<.019	.312	2.5	2.5	2.5	0.625	1.25	0.156	0.625	0.156	1.25
<i>Past. haemolytica</i> PA5	1.25	5	40	20	40	5	5	10	5	2.5	2.5
<i>Erysipelothrix rhusiopathiae</i> NCTC 8163	10	20	80	40	>80	20	10	20	40	20	5
<i>Corynebacterium pyogenes</i> CY1	>80	>80	>80	>80	>80	>80	>80	>80	>80	>80	>80
<i>Staph. aureus</i> B4	.156	.625	2.5	2.5	2.5	0.312	0.625	0.625	0.625	0.156	.625
<i>Staph. aureus</i> 152	.156	.625	2.5	1.25	2.5	0.312	0.625	0.312	0.312	0.625	0.07
<i>Staph. aureus</i> Oxford	.156	.625	2.5	1.25	2.5	0.312	0.625	0.312	0.312	0.625	0.07
<i>Strep. suis</i> (group D) SPS11	1.25	5	40	20	80	20	10	5	5	0.625	20
<i>Strep. uberis</i> SPU1	.039	.07	.312	.312	0.625	0.07	0.156	0.07	0.156	.312	<.019
<i>Strep. dysgalactiae</i> S ² D1	.07	.312	1.25	.625	1.25	0.312	0.625	0.312	0.07	0.312	0.156
<i>Strep. agalactiae</i> SPA1	.317	.625	2.5	2.5	0.312	0.625	0.312	0.312	1.25	0.156	2.5
<i>B. subtilis</i> ATCC 6633	NG	NG	NG	NG	NG	—	—	NG	NG	NG	NG

c) *Human Bacteria*

Table 3 shows the MIC values ($\mu\text{g}/\text{ml}$) of the compounds of the Examples against a number of organisms important in human infections. The values were determined by serial dilutions in nutrient agar with 5% chocolate horse blood after incubations for 18 hours at 37°C.

TABLE 3

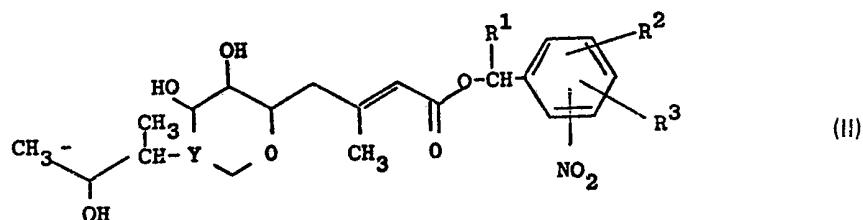
ORGANISMS	EXAMPLE NO - MIC (µg/ml)										
	1	2	3	4	5	6	7	8	9	10	11
<i>E. coli</i> NCTC 10418	25	>100	>100	>100	100	>100	>100	50	>100	>100	>100
<i>E. coli</i> ESS	0.5	5.0	10	2.5	10	1.0	2.5	1.0	1.0	2.5	—
<i>P. mirabilis</i> 889	100	>100	>100	>100	100	>100	>100	50	>100	>100	>100
<i>K. aerogenes</i> A	100	>100	>100	>100	100	>100	>100	100	>100	>100	>100
<i>Ps. aeruginosa</i> NCTC 10662	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
<i>Pasteurella multocida</i> 1633	0.5	10	25	10	25	0.5	5.0	2.5	2.5	5.0	2.5
<i>Haemophilus influenzae</i> Q1	0.1	2.5	1.0	1.0	1.0	0.5	1.0	0.5	0.25	0.5	0.5
<i>Haemophilus influenzae</i> Wy21	—	—	—	—	—	0.5	1.0	—	0.25	0.5	—
<i>Neisseria catarrhalis</i> 1502	—	2.5	1.0	0.5	1.0	<0.025	0.25	0.25	0.05	0.05	1.0
<i>Bacillus subtilis</i> 6633	0.5	5.0	1.0	1.0	1.0	0.5	1.0	0.25	0.5	0.25	0.5
<i>Corynebacterium xerosis</i> 9755	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
<i>Sarcina lutea</i> 8340	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
<i>Staph. aureus</i> Oxford	0.5	10	2.5	2.5	0.5	1.0	2.5	1.0	1.0	1.0	2.5
<i>Staph. aureus</i> Russell	0.5	10	2.5	2.5	1.0	1.0	2.5	2.5	2.5	1.0	2.5
<i>Staph. aureus</i> W2827	0.5	25	5.0	2.5	5.0	1.0	2.5	1.0	2.5	1.0	5.0
<i>Staph. faecalis</i> 1	50	>100	>100	>100	>100	>100	50	25	>100	50	>100
<i>Staph. pyogenes</i> R80/421-A	0.25	2.5	1.0	1.0	0.25	0.25	0.25	0.25	0.25	1.0	0.5
<i>Strep.</i> 2788B	—	10	—	1.0	—	0.5	2.5	—	2.5	2.5	2.5
<i>Strep.</i> 641848-C	0.25	—	2.5	1.0	5.0	0.5	1.0	0.5	2.5	1.0	—
<i>Strep. pneumoniae</i> CN33	0.1	—	—	1.0	—	0.25	0.5	2.5	2.5	2.5	—

The results in the Tables clearly show that m-nitrobenzyl monate A has outstanding antimyplasmal activity, being approximately 20 times more active against *M*₁-supneumoniae than O-nitrobenzyl monate A. Similarly, p-nitrobenzyl monate A has outstanding antibacterial activity as compared to o-nitrobenzyl monate A.

5 d) *Treponema hyodysenteriae*

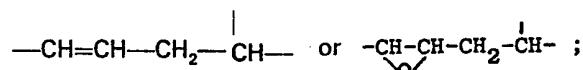
Table 4 shows the MIC values ($\mu\text{g/ml}$) of the compound of Example 1 against various strains of *Treponema hyodysenteriae*, which is important in swine dysentery. The values were obtained by the following method:

10 The compound was incorporated in horse blood agar, inoculated (multi-point) with 0.001 ml of a 3 day growth of the test organism from base of a blood slope (+1 ml foetal calf serum) and incubated at 37°C for 2 days under anaerobic conditions. The MIC was taken as the lowest concentration to inhibit β -haemolysis. 10


TABLE 4

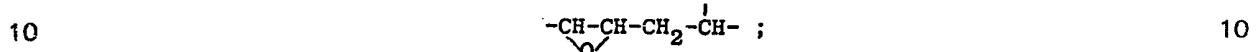
Minimum Inhibitory Concentrations ($\mu\text{g}/\text{ml}$) for 5 Strains
of *Treponema Hydysenteriae*

STRAIN NO.	MIC
S77/2	2.5
S77/10	2.5
P23	2.5
Navis	2.5
B10	2.5


CLAIMS

1. A compound of formula (II):

5 Y is


5

R¹ is hydrogen or C₁₋₄ alkyl,

R² is hydrogen or C₁₋₆ alkyl,

R³ is hydrogen, nitro or C₁₋₆ alkyl and, when Y represents

and R² and R³ are hydrogen, the nitro radical is in the meta- or para-position on the benzene ring.

2. A compound as claimed in claim 1 wherein R¹ is hydrogen or methyl.

3. A compound as claimed in claim 1 wherein R² is hydrogen.

4. A compound as claimed and selected from:

15 p-nitrobenzyl monate A 15

m-nitrobenzyl monate A

1-(m-nitrophenyl)ethyl monate A

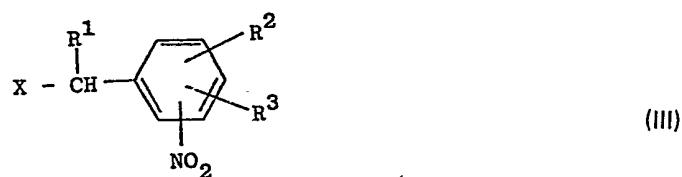
1-(p-nitrophenyl)ethyl monate A

m-nitrobenzyl monate C

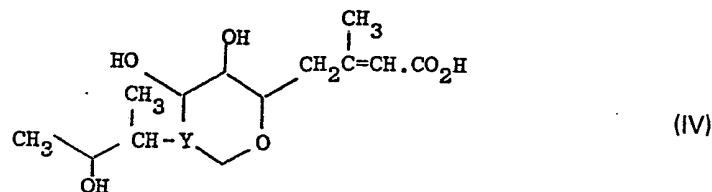
20 3,5-dinitrobenzyl monate A 20

3,5-dinitro-2-methylbenzyl monate A

2-methyl-3-nitrobenzyl monate A


3,4-dinitrobenzyl monate A

2,4-dinitrobenzyl monate A


25 and 25

2-chloro-4-nitrobenzyl monate A.

5. A process for producing a compound of formula (II) as defined in claim 1, which process comprises reacting a nitro-benzyl compound of formula (III):

in which X is a good leaving group, with a salt of an acid of formula (IV):

5 6. A process as claimed in claim 5 wherein X is halogen, alkyl sulphonyloxy or aryl sulphonyloxy.
 7. A process as claimed in claim 5 or claim 6 conducted in an organic solvent at from 20 to 5
 100°C.

8. A pharmaceutical or veterinary composition comprising a compound of II as defined in claim 1
 and a pharmaceutically or veterinarian acceptable carrier therefor.

10 9. A compound of formula (II) as defined in claim 1 for use in the treatment of the human or animal
 body.

10 10. A compound as claimed in claim 9 for use in treating mycoplasmal infections of the human or
 animal body, for use in treating enzootic pneumonia in animals or for use in treating swine dysentery
 in pigs.

15 11. A compound as claimed in claim 1 and substantially as hereinbefore described with reference
 to Examples 1 to 11.

12. A process for producing a compound of formula (II), as claimed in claim 5 and substantially as
 hereinbefore described with reference to Examples 1 to 11.

13. A pharmaceutical or veterinary composition as claimed in claim 8 and substantially as
 hereinbefore defined.