PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:	A1	(11	1) International Publication Number:	WO 94/01375
C03C 25/02, C08J 5/08 C09D 175/04	AI	(43	3) International Publication Date:	20 January 1994 (20.01.94)
(21) International Application Number: PCT/US	S93/062	227	(74) Agents: GILLESPIE, Ted, C. Toledo, OH 43659 (US).	et al.; Fiberglas Tower 26,
(22) International Filing Date: 30 June 1993	(30.06.	.93)		
(30) Priority data: 912,559 13 July 1992 (13.07.92)		US	(81) Designated States: JP, KR, Eu GB, IT).	ropean patent (DE, ES, FR,
(71) Applicant: OWENS-CORNING FIBERGLAS (ATION [US/US]; 26 Fiberglas Tower 26, To 43659 (US).			Published With international search rep	ort.
(72) Inventors: COSSEMENT, Marc; Rue du Bay-E B-4620 Fleron (BE). MASSON, Nadia; Rue C la Lice 25B, B-4621 Retinne (BE). PIRET, Wi Falhez 53, B-4652 Xhendelesse (BE).	Chapell	le à		

(54) Title: SIZE COMPOSITION

(57) Abstract

An aqueous coating composition comprising a polyurethane/isocyanate emulsion, a homopolymer of acrylic acid, an amino silane and water. The sizes are particularly useful for reinforcing polyamide resins (nylons).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NE	Niger
BE	Belgium	GN	Guinea	NL	Netherlands
BF	Burkina Faso	GR	Greece	NO	Norway
BG	Bulgaria	HU	Hungary	NZ	New Zealand
BJ	Benin	IE	Ireland	PL	Poland
BR	Brazil	IT	Italy	PT	Portugal
BY	Belarus	JP	Japan	RO	Romania
CA	Canada	KP	Democratic People's Republic	RU	Russian Federation
CF	Central African Republic		of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	ΚZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	UA	Ukraine
DE	Germany	MG	Madagascar	US	United States of America
DK	Denmark	ML	Mali	UZ	Uzbekistan
ES	Spain	MN	Mongolia	VN	Viet Nam
FI	Finland				

WO 94/01375

1

-1-

5

DESCRIPTION

SIZE COMPOSITION

TECHNICAL FIELD

This invention relates to a size composition, coated glass fibers and reinforced thermoplastics. These sizes are particularly useful for reinforcing polyamide resins (nylons).

BACKGROUND ART

Numerous thermoplastic materials are available
including polyolefins, polyacetals, polyamides (nylons),
polycarbonates, polystyrenes, styrene-acrylonitrile
copolymers, acrylonitrile-butadiene styrene (ABS)
copolymers and polyvinyl chloride (PVC). Thermoplastic
resin and glass fibers are made into useful shapes by
means of heat and pressure. Processes include injection
of hot resin into a mold, extrusion and pultrusion.
Other processes include hot calendaring, casting, vacuum
forming and the like. Chopped glass fibers feed into
these processes to strengthen and stiffen the resulting
composite.

25 <u>DISCLOSURE OF THE INVENTION</u>

The invention includes a size consisting essentially of:

- a polyurethane/isocyanate emulsion containing blocked isocyanates;
- a homopolymer of acrylic acid monomer;

1 -2-

one or more amino organo-silane coupling agents; and

5 water.

In the preferred embodiment, we also add polyvinyl pyrrolidone (PVP) for better strand integrity, size stability and fuzz reduction.

The resulting coated glass fibers yield

desirable reinforced thermoplastics. We have found an especially surprising effect on the processability of the reinforcements without any sacrifice in mechanical properties for reinforced nylon in the case of aging in a water/ethylene glycol medium.

BEST MODE OF CARRYING OUT INVENTION

The glass size composition of the present invention is useful with filamentous glass which is well known to those skilled in the art. Various types of glass filaments, such as "E" glass and other known types of glass, can be sized with the size. The size is useful on glass filaments having a wide range of diameters and can be used on glass filaments whether or not they are gathered into fibers, ropes, rovings, yarns and the like.

Various polyurethane dispersions which are useful in the present invention include aqueous emulsions of blocked polyurethane resins such as aqueous solutions of polyurethane polymers formed by a reaction between an organic isocyanate or polyisocyanate and an organic polyhydroxylated compound or hydroxyl terminated polyether or polyester polymer. The polyurethane dispersion may contain a crosslinking group.

15

20

25

30

1 -3-

Other suitable examples include chain extended thermoplastic polyurethanes derived from chain extension of an isocyanate-terminated prepolymer prepared by the 5 reaction of an aliphatic or cycloaliphatic diisocyanate with a polyalkylene ether polyol. A suitable polyurethane emulsion is Rucothane latex having a trade designation of 2011L available from Ruco Chemical Corp. 10 from New York. This material along with other Rucothane polyurethane lattices are thermoplastic polyurethane lattices comprised of high molecular weight aliphatic isocyanate-based thermoplastic elastomers in a water dispersion with an anionic or nonionic surfactant, where the dispersion or latex has varying particle sizes. lattices typically have a polymer solids content ranging 15 from around 55 to 65 percent by weight where the urethane polymer has an ester backbone.

Other suitable polyurethane dispersions include:

. From Bayer: PU402

20 PU403

PU130

. From Baxenden: BW 197-58X

BW 199-76X

. From Witco: 290H

. From Hooker: Ruco 2010 L

. From Synthomer: Vondic 2220

The preferred polyurethane is Baxenden 199-76X.

One suitable polyurethane crosslinking agent dispersion is an anionic aliphatic low branched polyester based polyurethane emulsion containing caprolactam

1 -4-

blocked isocyanate which enables the polyurethane polymer to be cured at a temperature exceeding about 150°C. polyurethane/crosslinking agent system has a milky white appearance having a percent solids of 60, an anionic particle charge of pH at 25°C of 8.0, and a viscosity at 25° Brookfield RVT of 150 cps. Specifically, one suitable polyurethane crosslinking agent dispersion comprises an aqueous dispersion of a high molecular 10 weight branched polyurethane polymer based on polyester polyol and 1,1- methylenebis(isocycanatocyclohexane) wherein some of the polymer chains are terminated with blocked isocyanate groups. Other suitable polyurethane crosslinking agent dispersions comprise polyurethane/isocyanate emulsions of an aliphatic 15 polyurethane containing blocked isocyanate having a milky white appearance, a percent solids of 40, a pH at 25°C of approximately 8-9, and a viscosity at 25°C Brookfield RVT of approximately 200-250 cps. Other suitable polyurethane crosslinking agent dispersions comprise a polyurethane and a trimer of 3-isocyanatomethyl-3,5,5-20 trimethylcyclohexyl isocyanate ("isophorone diisocyanate" or "IPDI") blocked with butanone oxime.

Other blocking groups like phenols, cresols Σ -caprolactam, malonates, aceto acetates, sodium bisulfite also may be used.

The acrylic acid monomer has the formula:

CH₂

CX-COOH

30

5

25

30

1 -5-

wherein X is a hydrogen atom or a methyl or an alkyl group having 1 to 10 carbon atoms.. Preferably, the acrylic acid monomer has the formula:

CH2

СН-СООН

The salt of the polyacrylic acid may be that of alkalimetal or ammonium salts either derived from 10 ammonium hydroxide or from any organic primary, secondary or tertiary amine poly- or monofunctionalized, e.g. triethylamine, triethanolamine, glycine, dimethylaminoethylmethacrylate. Degree of neutralization of the polyacrylic acid may vary from about 20% to 90%. Below 20%, the shelf life of the polyacrylic acid silane 15 mixture is too short and does not present industrial interest. Preferred salts are those from ammonium hydroxide with a degree of neutralization of about 40%. Generally the ammonium hydroxide is added to the polyacrylic acid aqueous solution in order to reach a pH of about 5 or higher if it is necessary to adjust the pH 20 of the polyacid solution with the pH of the polyurethane dispersion.

Some commercially available polyacrylic acid homopolymers that have been evaluated successfully are now given as example:

Acrylic acid homopolymer solutions:

(1) From Allied Colloid (UK)

. VERSICOL E5: Active content 25%; pH 1.5; specific gravity 1.10;

. 1 -6-

		viscosity 16 cps (25%); approximate Mw 3,500.
5	. VERSICOL E7:	Active content 25%; pH 1.5;
		specific gravity 1.10;
		viscosity 50 cps (25%);
		approximate Mw 30,000.
	. VERSICOL E9:	Active content 25%; pH 1.5;
10		specific gravity 1.10;
		viscosity 200 cps (25%);
		approximate Mw 75,000.
	. ANTIPREX 461:	Active content 50%; pH 3.0;
		specific gravity 1.26;
		viscosity 600 cps (25%).
15	. DISPEX A40:	Ammonium salt; active
		content 40%; pH 7.5 - 8.5;
		specific gravity 1.16.
	. SYNCOL F40:	Active content 40%; pH 2 -
		2.5; viscosity 3.0 cS (5%,
		25°C).
20	(2) From Rohm and H	laas

. Acrysol A-1, Acrysol A-3, Acrysol A-5

	TYPICAL PHYSICAL PRO	PERTIES	
	ACRYSOL A-1	ACRYSOL A-3	ACRYSOL A-5
Solids content, %	25	25	12.5
pH (5% aqueous solution)	about 2	about 2	about 2
Dilutability with Water	infinite	infinite	infinite
Molecular weight	~60,000	~190,000	~400.000
Viscosity (Brookfield), cps			·
625°C	15	18	20
5% solids content	15	65	260
12.5% solids content	160	1,550	-
25% solids content	!		

1

-7-

. Acrysol LMW-10, Acrysol LMW-20, Acrysol LMW-

45 5

Typical properties of ACRYSOL Polymers

10

PRODUCT	FORM		ECULAR IGHT2	z	DENSITY		BROOKFIELD
		Mw	Mn	TOTAL SOLIDS	25°C LBS/GAL	рĦ	VISCOSITY 25°C cps
ACRYSOL LMW-45	Partial Na Salt, 207 neutralized	4,500	3,000	48	10.2	4.0	800
ACRYSOL LMW-20	Partial Na Salt, 20% neutralized	2,000	1,425	48	10.3	4.0	185
ACRYSOL LMW-10	Partial Na Salt, 20% neutralized	1,000	750	48	10.5	4.0	45

15

(3) From BF GOODRICH

. Good-Rite K732, Good-Rite K752

20

Good-riteU\Bolymers Appearance	K-752 Hazy to Clear Amber Solution	K-732 Hazy to Clear Amber Solution
Molecular Weight	2,100	5,100
Total solids (%)	63	50
Sodium ion content (%)	0.79	0.49
pH (as shipped)	2.2-3.0	2.2-3.0
pH (1% aqueous solution)	3.1	2.8
Percent neutralization (weight %)	4.9	3.4
Specific gravity (g/cc)	1.23	1.18
Viscosity, cP at 25°C	400-1400	250-500
Surface tension (dyne/cm)	59.1	62.9
(5% solution, pH 10)		

1 -8-

5

10

15

20

25

30

Particularly suitable organo-silane coupling agents include amino silanes such as gamma-aminopropyltriethoxysilane, available as A-1100 from Union Carbide. In various embodiments, the coupling agent can optionally further include additional, conventionally known aminosilanes such as gamma-methacryloxypropyltri-methoxy silane and/or a diamino silane such as N-beta-(aminomethyl)-gamma-amino propyltrimethoxysilane and triamino silanes.

The aqueous sizing compositions of the invention can be prepared following generally accepted mixing practices. These sizing compositions can be applied to the glass fiber using any convenient method. The amount of aqueous sizing composition applied is not narrowly critical, but is preferably controlled so as to deposit on the glass fibers a size coating comprising the dried residue of the aqueous sizing composition of the invention in an amount from about 0.25 to about 2 percent of the weight of the glass, taking into account the dilution of the non-volatile components in the aqueous sizing composition and the usual mechanical loss of some of the aqueous composition initially applied to the fibers before it is dried.

The aqueous sizing composition can be applied to the glass fibers drawing the fibers over a roll, pad, or other suitable surface wet or flooded with the aqueous sizing composition, by spraying, by dipping, or by any other suitable means. The overall concentration of the non-volatile components in the aqueous sizing composition can be adjusted over a wide range according to the means

1 -9-

of application to be employed, the character of the glass fibers to be sized, e.g., their diameter and composition, and the weight of dried size coating desired for the intended use of the sized fibers.

Generally, the size composition has the following composition in parts per 100 parts of solids:

		parts per 100	
10		parts of solids	
	polyurethane/isocyanate emulsion	5 to 80	
	homopolymer of acrylic acid	20 to 90	
	amonium hydroxide	to pH 5 - 11	
	amino silane	3 to 50	
15	water	balance	
	Descendent the mine		-1

Preferably, the size composition ranges has the following formulation:

		parts per 100
		parts of solids
	polyurethane/isocyanate	20 to 60
20	emulsion	
	homopolymer of acrylic acid	30 to 70
	amonium hydroxide	to pH 5 - 11
	amino silane	3 to 25
	water	balance

25 The addition of a base to the size is primarily for pH control. The amount of base employed is sufficient to impart to the size a pH of 3 or higher. However, the quantity of base may be increased to impart to the size a pH within the size from about 5 to about 30 11.

1 -10-

The classical additives of the sizing art may be added to the formulation when necessary like:

-- antioxydant

-- processing aids

-- humidity regulator

-- surfactants to help PU dispersion

-- dispersion stabilizer

10 -- antistatic

-- lubricants

-- stabilizers

-- optical brightener

-- discolorant

-- etc...

The lubricant may be any normally liquid or solid lubricating material suitable for the purpose. Such materials include vegetable and mineral oils, waxes or various types and certain materials which also have utility as surfactants, such as fatty acid monoesters of polyalkylenegylcols.

Surfactants that aid dispersion are ethoxylated fatty acids or di-acids, an ethoxylated nonylphenol, and an ethoxylated octylphenol.

Polyvinyl pyrrolidone (PVP) also may be present for better processing, i.e., strand integrity, size stability and fuzz reduction.

25

20

1 -11-

EXAMPLE I

Our preferred size composition has the 5 following formation:

		parts per 100
		parts of solids
	polyurethane/isocyanate	26
	emulsion; Baxenden 199-76X	
10	partial amonium salt of acrylic	65.6
	acid, DP-6195 from Allied	
	Colloids	
	gamma-aminopropyl	3.4
	triethoxysilane,	
	Union Carbide A-1100	
15	luviskol PVP K90 from BASF	5.0
	20% solution	
	water	balance
	The size is efficient o	n glass fibers from 0

The size is efficient on glass fibers from 0.1 to 1.2 LOI.

The aqueous solution has a solids content of

6.3 weight percent and a pH of 5-5.5. The size was
applied to individual glass fibers by conventional
application methods and at rates such that the strand
solids, on drying, amounted to about .8% weight percent.

Glass fibers comprising standard length chopped 25 glass fibers having an average length of about 0.125 inches and from about 0.00035-.00039 inch fiber diameter were produced from the strands.

The present formulation allows for excellent processability of the sized fibers, i.e., we observed excellent strand integrity, size stability and fuzz

1 -12-

reduction over standard products for reinforcing nylon resins.

5 EXAMPLE II

Sized chopped glass fibers of Example I were compared to standard products. We tested reinforcements from Example I and standard products under hydrolysis pressure at 120°C. We carried out the tests in a medium of 50/50 water/ethylene glycol mixture. Mechanical properties such as tensile strength, tensile elongation, tensile modulus, charpy unnotched impact strength for the products of Example I were essentially the same as for the standard products.

INDUSTRIAL APPLICABILITY

The sized glass fibers of the invention can be incorporated into the curable matrix resin which is to be reinforced thereby in the final cured resinous article as either monofilament or multi-filament strand, as either long, essentially continuous, elements or short chopped pieces, depending upon the shape and method of fabrication of the article to be formed. The sized glass fibers of this invention are particularly adapted for use in the form of chopped glass fibers. Principal among such reinforcements are glass fibers which generally have diameters of about 0.0025 to 0.0075 inch and lengths of about 0.13 to about 2.00 inch.

1 -13-

CLAIMS

1. An aqueous size composition consisting
5 essentially of:

a polyurethane/isocyanate emulsion containing blocked isocyanates;

a homopolymer of acrylic acid monomer; one or more amino organo-silane coupling agents; and

water.

- 2. The size composition of claim 1, wherein the polyurethane/isocyanate dispersion comprises an aliphatic polyurethane emulsion containing blocked isocyanate.
- 15 3. The size composition of claim 1, wherein the polyurethane/isocyanate dispersion comprises an aqueous emulsion of blocked or unblocked polyurethane resins comprising an aqueous solution of polyurethane polymer formed by a reaction between and organic isocyanate or polyisocyanate and an organic polyhydroxylated compound or hydroxyl terminated polyether or polyester polymer.
- 4. The size composition of claim 1, wherein the polyurethane/isocyanate dispersion comprises an anionic aliphatic low branched polyester based

 25 polyurethane emulsion containing caprolactam blocked isocyanate having a milky white appearance having a percent solids of 60, an anionic particle charge, a pH at 25°C of 8.0, and a viscosity of 25°C Brookfield RVT of 150 cps.

WO 94/01375

1

5

-14-

- 5. The size composition of claim 1, wherein the polyurethane/isocyanate dispersion comprises an aqueous dispersion of a high molecular weight branched polyurethane polymer based on polyester polyol and 1,1-methylenebis(isocyanatocyclohexane) wherein some of the polymer chains are terminated with blocked isocyanate groups.
- 10 6. The size composition of claim 1, wherein the polyurethane/isocyanate dispersion comprises an emulsion of an aliphatic polyurethane containing blocked isocyanate having a milky white appearance, a percent solids of 40, a pH at 25°C of approximately 8-9, and a viscosity at 25°C Brookfield RVT of approximately 200-250 cps.
 - 7. The size composition of claim 1, wherein the polyurethane/isocyanate dispersion comprises a polyurethane and a trimer of 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate blocked with butanone oxime.
- 20 8. The size composition of claim 1, wherein the acrylic acid monomer has the formula:

CH₂

l

CX-COOH

- wherein X is a hydrogen atom or a methyl or an alkyl group having 1 to 10 carbon atoms.
 - 9. The size of claim 1 including polyvinyl pyrrolidone.

1 -15-

10. The size composition of claim 1, wherein acrylic acid polymer has molecular weight in the range of about 750 to about 10 \times 106.

- 11. The size composition of claim 10, wherein the molecular weight ranges from 2000 to 75,000.
- 12. The size composition of claim 10, wherein the molecular weight ranges from 2000 to 5000.
- 13. The size of claim 1, wherein the acrylic acid monomer has the formula:

CH₂

I

СН - СООН

- 14. The size composition of claim 1, wherein the acrylic acid polymer is an alkalimetal salt or an ammonium salt.
 - 15. The size of claim 1, wherein the acrylic acid polymer is a salt of any primary, secondary or tertiary amine.
- 16. The size of claim 1, wherein the acrylic acid polymer is a salt of ammonium hydroxide.
 - 17. The size of claim 1, wherein the amino silane is gamma-aminopropyltriethoxysilane.

25

1 -16-

18. The size composition of claim 1 having the following composition:

5		parts per 100
		parts of solids
	polyurethane/isocyanate	5 to 80
	emulsion	
	homopolymer of	20 to 90
10	acrylic acid	
	amonium hydroxide	to pH 3 or higher
	amino silane	5 to 50
	water	balance
	19. The size of claim	18 including polyvinyl
	pyrrolidone.	
15	20. The size of claim	1 having the following
	composition:	
		parts per 100
		parts of solids
	nolyurethane/isocyanate	20 to 60

parts of solids

polyurethane/isocyanate 20 to 60
emulsion

20 homopolymer of 30 to 70
acrylic acid
amonium hydroxide to pH 3 or higher
amino silane 5 to 25
water balance

- 25 21. The size of claim 20 including polyvinyl pyrrolidone.
 - 22. Glass fibers sized with aqueous size composition of claim 1.
- 23. Thermoplastic resins reinforced with the 30 glass fibers of claim 22.

1 -17-

24. Polyamide resins reinforced with the glass fibers of claim 22.

5 25. Nylon resins reinforced with the glass fibers of claim 22.

10

15

20

25

INTERNATIONAL SEARCH REPORT

Inten. Just Application No PCT/US 93/06227

A. CLASSIFICATION OF SUBJECT MATTER IPC 5 C03C25/02 C08J5/08 C09D175/04 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 5 CO3C CO8J CO9D CO8G Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X DE,A,33 36 845 (BAYER AG) 25 April 1985 1,2,17, 22-25 see the whole document A US,A,3 814 592 (D.E. MCWILLIAMS ET AL.) 4 1-6, 17, June 1974 22-25 see the whole document A US, A, 3 919 145 (P.S. ECKHOFF) 11 November 1975 see abstract Further documents are listed in the continuation of box C. Patent family members are listed in annex. * Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report **-** 5. 11. 93 28 October 1993 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 REEDIJK, A

1.

INTERNATIONAL SEARCH REPORT

information on patent family members

Inter. nal Application No
PCT/US 93/06227

Patent document cited in search report	Publication date		Patent family member(s)	
DE-A-3336845	25-04-85	CA-A- JP-B- JP-A- US-A-	1255420 5007335 60096549 4659753	06-06-89 28-01-93 30-05-85 21-04-87
US-A-3814592	04-06-74	US-A- BE-A- DE-A- FR-A- GB-A- NL-A-	3803069 732419 1922441 2007727 1221639 6905650	09-04-74 03-11-69 20-11-69 09-01-70 03-02-71 05-11-69
US-A-3919145	11-11-75	GB-A- US-A-	1530186 4108811	25-10-78 22-08-78