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(57) Abstract: An unsupervised method of segmenting data sets using a region growing technique in which data points are initially
assigned to a single class, new classes are seeded and points in the data set tested by calculating the probability that they belong
to the new class. The probability distributions used in the calculation are adapted as points are reassigned. Classes which fail to
grow are discarded. The technique may be applied to the segmentation of data sets in which the data points are taken from medical
images. The method may be applied to the demarcation of different parts of structures, e.g. in the medical field demarcating an
aneurysm from the surrounding blood vessels in an image or 3-D model of a patient’s vasculature. The method may involve using a
shape descriptor which is representative of the shape of the structure at each point under consideration. Thus the different parts are

distinguished on the basis of their shape.
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UNSUPERVISED DATA SEGMENTATION

The present invention relates to a method and apparatus for unsupérvised data
segmentation which is suitable for assigning multi-dimensional data points of a data
set amongst a plurality of classes. The invention is particularly applicable to
automated image segmentation, for instance in the field of medical imaging, thus
allowing different parts of imaged objects to be recognised and demarcated
automatically.

In the field of automated data processing it is useful to be able to recognise |
automatically different groups of data points within the data set. This is known as
segmentation and it involves assigning the data points in the data set to different
groups or classes.

An example of a field in which segmentation is useful is the field of image
processing. A typical imaged scene contains one or more objects and background,
and it would be useful to be able to recognise reliably and automatically the different
parts of the scene. Typically this may be done by segmeﬁting the image on the basis
of the different intensities or colours appearing in the image. Image segmentation is
applicable in a wide variety of imaging applications such as security monitoring,
photo interpretation, examination of industrial parts or assemblies, and medical
imaging. In medical imaging, for instance, it is useful to be able to distinguish
different types of tissue or organs or to distinguish abnormalities such as an aneurysm-
or tumour from normal tissue. Currently, particularly in medical imaging,
segmentation involves considerable input from a clinician in an interactive method.

For example, there have been proposals for methods of demarcating an
aneurysm in an image of vasculature. A brain aneurysm is a localised persistent
dilation of the wall of a blood vessel. Visually, it appears that part of the vessel has
ballooned out. When the ballooning vessel pops, it will often result in the death of
the patient. There are several possible treatments for an aneurysm including surgery
(clipping) or filling the aneurysm with coils. The type of treatment is dependent

upon factors such as aneurysm volume, neck size and the location of the aneurysm in
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the brain. The methods proposed involve first identifying the aneurysm neck, then
labelling all pixels on one side of the neck as forming the aneurysm, while pixels on
the other side are identified as part of the adjoining vessel. Such techniques are
described in R. van der Weide, K. Zuiderveld, W. Mali and M. Viergever, "CTA-
based angle selection for diagnostic and interventional angiography of saccular
intracranial aneurysms", IEEE Transactions on Medical Imaging, Vol. 17, No. 5,
pp831-341, 1998 and D. Wilson, D. Royston, J. Noble and J. Byme, "Determining X-
ray projecﬁons for coil treatments of intracranial aneurysms", IEEE Transactions on
Medical Imaging, Vol. 18, No. 10, pp973-980, 1999. However, these techniques
also rely on manual intervention for starting the segmentation.

Techniques of segmentation using region-splitting or region growing are well
known, see for example: Rolf Adams and Leanne Bischof, "Seeded Region
Growing", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
16, No. 6, pp641-647, Jun, 1994. However, these techniques require that the number
of regions into which the data set is to be segmented is known in advance. Thus the
techniques are not generally applicable to fully automatic methods.

Segmentation techniques in which there is no initial assumption of the
number of classes found in the data set are referred to as "unsupervised"
segmentation techniques. An unsupervised segmentation algorithm has been

proposed in Charles Kervrann and Fabrise Heitz, "A Markov Random Field model-

.based approach to unsupervised texture segmentation using local and global spatial

statistics", Technical Report No. 2062, INRIA, Oct, 1993. This ptiliées an
augmented Markov Random Field, where an extra class label ié defined for new
regions, and a parameter is pre-set to define the probability assigned to this extra
state. Any points in the data set which are modelled sufficiently badly (assigned a
low probability by the existing classes) will be assigned to this new class. At each
iteration of the algorithm, connected components of such points are collated into new
classes. | |

However, typical problems with unsupervised techniques are under-

segmentation (in which data points are added to inappropriate classes) and over-
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segmentation (in which the data is divided intd too many classes).

One aspect of the present invention provides an unsuperyised segmentation
method which is generally applicable to multi-dimensional data sets. Thus, it allows
for completely automatic segmentation of the data points into a plurality of classes,
without any prior knowledge of the number of classes involved.

In more detail this aspect of the invention provides an unsupervised

segmentation method for assigning multi-dimensional data points of a selected data

set amongst a plurality of classes, the method comprising the steps of:

(a) defining an initial class encompassing all data points of the selected data

set;

(b) defining a second class by selecting a data point and assigﬁing it to the

second class together with data points within a first predetermined

neighbourhood of the selected data point;

- (c) testing each data point lying within a second predetermined
neighbourhood of data points in the second class by calculating the
probability that each said data point belongs to the first class and the
probability that it belongs to the second class, and assigning it to the second
class if the probability that it belongs to the second class is higher;

(d) said probability calculations being adapted during said method in

depéndence upon the assignment of the points to the classes.

The probability calculations may comprise the steps of determining a
probability distribution of a property of the data points in the initial class and
determining a probability distribution of said property of the data points in the second
class, and comparing the data point under test with the two probability distributions.
The probability calculations may also comprise the step of multiplying the

probability derived from the probability distribution with an a priori probability

* derived, for example, from the proportion of points in the neighbourhood in the

various classes.
The calculation of probability may be adapted as the method proceeds by

recalculating the probability distributions as data points are assigned to the classes.
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The distributions will alter as the number of data points in the data points varies. This
adaptation may take place every time a point is reassigned, or after a few points have
been reassigned. The probability distributions may be calculated on the basis of |
histograms with bins of unequal width. The bin widths may be set by reference to the
initial data set, e.g. to give a substantially equal number of counts in each bin.

Thus another aspect of the invention provides a method of histogram

equalisation in which the bin sizes are set to give an initially substantially uniform

 number of counts in each bin. Thus the histogram sensitivity can be adapted to the

specific application by an analysis of the entire data set.

In the segmentation method the classes continue to grow as more data points
are assigned to them. Preferably the method continues until no more data points are
added to the class, at which point another class may be defined and then grown by
repeating the method steps.

The selection of the data point for initiating a class may be random, or it may
be optimised, for example by ordering the remaining points based on the probability
distribution.

Preferably classes are discarded (or "culled") if they fail to grow, i.e. if they
faii to have data points assigned to them when all necessary points have been tested.
This is particularly useful in avoiding over-segmentation of the data set.
Segmentation is concluded when all of the classes formed in turn on the basis of the
data points remaining in the initial class have been discarded. |

A predetermined neighbourhood of a data point d is an open set that contains
at least the data point itself. One example is the open ball of radius r which contains
all data points within a distance r of the data point d, though other shapes are possible
and may be appropriate for different situations. In extreme cases, a neighbourhood
may contain only the data point itself, or may contain the entire data set. The first
and second predetermined neighbourhoods may be defined only on the spatial
position of the data points, for instance in the application of the technique to an
image where the aim is to segment the image into the different parts of the imaged

object. However, in other data sets the neighbou}hoods may be defined in a
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parameter space containing the data points.

 Where the technique is applied to image segmentation, the data points may
comprise a descriptor of at least a part of an object in the image and the spatial
coordinates of that part. The descriptor may be representative of the shape, size,
intensity (brightness), colour or any other detected property, of that part of the object.

Rather than taking the data points from the image itself, they may be taken
from a spatial modél fitted to the imagé, such as a 3-D mesh fitted to the image or its
segmentatioh. This is particularly useful where the descriptor is a descriptor of the
shape of the object.

The image may be a volumetric image or a non-invasive image, and for
example may be an image in the medical field or indusfrial field (e.g. a part x-ray).

Another aspect of the invention provides a method of demarcating different
parts of a structure in a representation of the structure, comprising the steps of
calculating for each of a plurality of data points in the representation at leasf one
shape descriptor of the structure at that point, and segmenting the representation on
the basis of said at least one shape descriptor.

The representation may be an image of the structure, or may be a 3-D model
of the structure (which could be derived by various imaging modalities). The results
may be displayed in the form of a visual representation of the structure, with the parts
distinguished, for instance by being shown in different colours.

The descriptor may corhprisc values representing cross-sectional size -or shape
of the structure at that point. The values may be lateral dimensions of the structure at
that point, or a measure of the mean radius of rotation. '

Another aspect of the invention provides a way of calculating a shape
descriptor by defining a volume, e.g. a spherical volume, and changing the size of the
volume, e.g. growing it, until a predefined proportion of it is filled by the structure.

The descriptors may be used to segment the representation automatically, for
example using an unsupervised segmentation method such as the method in
accordance with the first aspect of the invention.

The image may be a volumetric image or a non-invasive image, and for
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example may be an image in the medical field or industrial field (e.g. a part x-ray). In
the medical field the method may be used to demarcate an aneurysm from
vasculature, or to demarcate other protrusions. |

The invention extends to a computer program comprising prograrri code
means for executing the methods on a suitably programmed computer. Further, the

invention extends to a system and apparatus for processing and-displaying data

~ utilising the methods.

The invention will be further described by way of example, with reference to

the accompanying drawings.in which:-

Figure 1 illustrates schematically an imaging system in accordance with one
embédiment of the invention;

Figure 2 is a flow diagram of one embodiment of the invention; |

Figures 3A and 3B show respectively a 3-D model of an aneurysm and
adjoining vessels and a mesh computed for the 3-D model;

Figure 4 illustrates schematically a blood vessel and aneurysm indicating the
shape descriptors used in an embodiment of the present invention;

Figure 5 illustrates the concepts of data point classes and regions used in one
embodiment of the present invention;

Figure 6 illustrates a synthetic data set containing three groups of data points;,

Figure 7 illustrates an initial probability distribution for the data set of Figure
6;

Figures 8A and 8B illustrate respectively a newly seeded class in the data set
of Figure 6 and the initial probability distribution for that class;

Figure 9 illustrates the classification after the class of Figure 8 has converged,;

Figure 10 illustrates the classification after a further class has converged;

Figurés 11A, B and C illustrate probability densities for the classes in Figure
10; '

Figures 12 A and B illustrate the seeding of a further class and its initial
probability distribution;

Figure 13 illustrates the final segmentation of the data set of Figure 6
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achieved with one embodiment of the present-invention;

Figures 14 and 15 illustrate the results of applying the image segmentation
method of an embodiment of the invention to medical images;

Figures 16A and B illustrate another example of the shape descriptor
calculated according to an embodimeént of the invention;

Figure 17 illustrates a typical prior art Hist'ogram;

Figure 18 illustrates a typical histogram of vessel radius in an image of
vasculature; and

Figuré 19 illustrates a modified histogram in accordance with an embodiment
of the present invention.

An embodiment of the invention applied to the shape based segmentation of
an image of vasculature including an aneurysm and to the intensity based
segmentation of a synthetic image will be described below. Héwever, it will be
appreciated that the segmentation technique is applicable to the segmentation of
general data sets having data points in n-dimensions, where each data point has m
numeric values. Thus it may be applied, for example, to intensity-based
segmentation, for instance of ultrasound, MRI, CTA, 3-D angiography or
colour/power Doppler data sets, to the segmentation of PC-MRA data where a scan
provides information on the.speed (intensity) and an estimated flow direction, and to
unsupervised texture segmentation as well as obj éct segmentation 6f parts based on
geometry.

Figure 1 illustrates schematically the apparatus used in one embodiment of |
the invention which comprises an image acquisition device 1, a data processor 3 and
an image display 5. The operation of the apparatus is illustrated schematically by the
flow diagram of Figure 2 and involves the general steps acquiring the image in step
s1 and performing an initial segmentation to distinguish foreground (blood vessels
and aneurysm) from background (tissue and air), calculating a 3-D model in step s2,
then performing a second segmentation in step s3 to distinguish the aneurysm from
the normal vaculature, and displaying the final segmented image in step s4. The

aneurysm and related blood vessels may be imaged using a 3-D imaging modality
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such as MRA, CTA or 3-D Angiography. The initial segmentation within step sl
may be carried out by standard techniques such as A.C.S Chung and J.A. Noble,
"Fusing magnitude and phase information for vascular segmentation in phase
contrast MR angiograms", Proceedings Medical Image Computing and Computer
Assisted Intervention. (MICCALI), pp. 166-175, 2000 and D.L. Wilson and J.A.
Noble, "An Adaptive Segmentation Algorithm for Time-of-Flight MRA Data", IEEE
Transactions on Medical Imaging, Vol. 18, No. 10, pp 938-945, Oct, 1999, IEEE.
Other techniques are available for other imaging modalities. Thus an image in which

the foreground (blood) has been separated from the background (tissue and air) is

“obtained.

The segmented image can then be used to produce a 3-D model of the vessels
and aneﬁrysm. Given such a 3-D model, it is useful to demarcate the aneurysm,
identifying where it connects to the major vessel. This allows the estimation of
aneurysm volume and neck size and other geometry-reiated parameters, and hence
aids the clinician to choose the appropriate treatment for a particular patient and
possibly to use the information in the actual treatment (eg to select views of the
anéurysm). In this embodiment the aneurysm is demarcated by first computing a
triangular mesh over the 3-D model. Such a mesh can be computed using an
established mesh method such as the marching cubes algorithm (see, for example,
W.E. Lorensen and H.E. Cline, "Marching Cubes: A High Resolution 3D Surface
Construction Algorithm", Computer Graphics, Vol. 21, No. 3, pp 163-169, July,
1987). An example of a 3-D model showing an aneurysm and the adjoining vessels,
and its associated mesh is illustrated in Figures 3A and B. The aneurysm is the large
ballooning section near the centre of the image.

The aneurysm segmentation of step s3will be carried out in this embodiment
by computing and using a shape descriptor, i.e. a description of the shape of the
vasculature at that point. Two methods for doing this will be described.

1) As a first example of a shape descriptor at each vertex in the triangular
mesh, a local description of the vessel shape is computed in the form of two values

representing the radius and diameter of the vessel at that point, as shown in Figure 4.
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Taking the unit surface normal », to the mesh at a particular vertex v,, a ray is
extended from v, into the vessel and the distance to the opposite side of the vessel is
measured, e.g. by stepping along the ray and testing whether the voxel is still
foreground (within the vessel) or background (outside the vessel). Halving this value
gives an estimate of the vessel radius ; at v This estimate of vessel radius is the
first of two descriptor values that are computed. »

Using r,, the point p; is defined as an estimate of the vessel centre, defined as
pi=vtr.n;

The two directions of principal curvature on the mesh, that is the directions in
which the curvature of the mesh at v, are a maximum and minimum can then be
estimated. Denoting these directions as c,,,, and c,,,, Where the absolute value of c,,,
is larger than the absolute value of c,,,,, a vector from p; in the directions of c,,,, and
-C,... 18 extended, measuring the distance in each direction to the vessel surfacé.
Adding these two distances together gives an estimate of the vessel diameter &, in a
direction perpendicular to n, . _

Thé two values (7, d,) form the shape descriptor which characterises the
vessel at the point v, and are computed for vertices of the mesh over the whole image
or area of interest. |

2) A problem with the method above is that error in the estimation of the
surféce normal could have a large effect on the ray that is extended through the
vessel, and hence on the estimated value of diameter. An example of a Shape measure
which is more robust in the presence of noise will now be described with reference to
Figures 16 A and 16 B.

With this shape measure, only a single scalar value is éomputed for each point
on the vessels. This will be an approximation of the mean radius of rotation of the
vessel (i.e. the inverse of the mean curvature).

Thus, given a point p on the vessel, first estimate the normal vector n to the
vessel, such that the normal is pointing inwards towards the centre of the vessel.

There are several well-known methods to do this such as "Computer Graphics Using

OpenGL", F.S. Hill, Jr., Published by Prentice Hall, 2™ edition, 2001.
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Then define a spherical neighbourhood with radius r that is centred on the point

p+rn, where r is some small scalar quantity. Note that, by definition, this spherical

neighbourhood will include the point p on its boundary.

Now count the number of foreground voxels (i.e. vasculature and aneurysm)
that lie in the neighbourhood and divide this by the total number of voxels in the
neighbourhood. This ratio is an estimate of the proportion of the neighbourhood that
lies within the vessel. Voxels that intersect the neighbourhood are considered to lie
within the neighbourhood. However, excluding these voxels would have little effect
upon the final results. |

Ther; increase the size of the neighbourhood until it no longer lies within the
vessel. Thus a sequence of neighboufhoods is defined, with increasingly larger values
of r, each of which is centred on p + rn and each of which has a boundary that
touches the point p. When the proportion of foreground voxels in the neighbourhood
falls beloW. some pre-defined threshold value, the method steps. In this A
implementation, 0.8 was used as the threshold value.

The radius of the final neighbourhood before exceeding the threshold is
recorded, and taken to be indicative of the radius of the vessel. The process is then
repeated at each point on the surface of the vessels.

In summ‘ary, ét each surface point a spherical neighbourhood is grown until it
has outgrown the vessel, and then the final radius is taken as indicative of the vessel
radius. |

The first shape measure above is very local in nature. Slight variations in the

estimation of the surface normal could have a large effect on the estimates of

diameter. The second shape measure is integral in nature. That is, the value computed

is the result of a summation process of many voxels, making it less susceptible to
noise in a small number of voxels.

In addition, the second shape measure is more robust when an aneurysm is
somewhat ellipsoid in shape, rather than spherical. This is because the mean radius of
curvature is estimated, rather than two estimates of the radius in perpendicular

directions.
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Recall that the neighbou_rhood size is increased until the proportion that lies
within the aneurysm falls below some threshold value (0.8 in this implementation). If
this threshold value is set to 1.0, then the process of increasing the size of the
neighbourhood is terminated as soon as a boundary of the aneurysm is breached.
With a threshold of 1.0, the estimated radius will be an estimate of the minimum
radius. By choosing a smaller value for the threshold, some proportion of the
neighbourhood is tolerated to lie outside of the aneurysm. For an aneurysm that is
ellipsoid in nature (rather than spherical), this allows for a better estimate of tﬂe mean
radius. Impdrtantly, this means that a similar value will be computed at all points on
the aneurysm. If the minimum radius is being estimated, then different values will be
estimated at different points on the aneurysm.

It should be noted that it is not necessary to compute the shape descriptor at

every vertex on the mesh (which typically has tens of thousands of vertices - probably

- atamuch finer resolution than the image). Instead a subset can be taken, e.g. an arbitrary

point for each voxel on the surface of the vessel (i.e. neighbours a background vessel).
For example, the top, left-hand corner of each surface voxel could be used.

Whichever shape descriptor is used, the next task is to segment the data set to
demarcate the aneurysm, i.e. to group together points that lie on the aneurysm and to
distinguish these from points on the adjoining vessels. This will allow the aneurysm to
be demarcated. Points lying along the single blood vessel will have similar values of
shape descriptof. At the neck of the aneurysm, these values will change rapidly. Passing
over the neck and onto the aneurysm itself, there will be a similarity in the values on the
aneurysm.

Segmentation is achieved in this embodiment by using a region splitting
algorithm. The algorithm separates the points on the triangular mesh into regions (sub-
parts) that are similar. Each vessel should be identified as a sub-part, while the
aneurysm will form a different sub-part.

Firstly, to illustrate the concepts used in the segmentation method it will be
helpful to consider the simple set of points illustrated in Figure 5. Suppose the task is

to classify data point d,. It is assumed that it must be in the same class as one of the
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other five data points that lie within the dotted circular neighbourhood, i.e. within a
distance 7, of the data point under consideration. Of these, as indicated in Figure 5,
d;and d, belong to class C;; d; and d , belong to class C,; and d; belongs to class C;. The
point d, will be classified depending upon some property which it holds in common with
the data points in one of the other classes. This property may, for example, be its
intensity or colour if the points are pixels in an image, or a shape descriptor such as that
described above in connection with the task of aneurysm demarcation, and can be a
scalar or n-vector quantity. The approach in this embodiment is to calculate the
probabilities in turn that the point dj, is in each of the classes C,, C; or C;, and then to
assign it to the class for which the probability is the highest. In this embodiment the
probability will be the product of two terms. The first is a probability that is
independent of the property of interest. of d,. The second is a probability based on the
value of the property (for example intensity or shape descriptor) of the point and a
comparison with the distribution of such values in each of the three classes.

Taking the first of those probabilities, there are several ways of calculating this
probability. One way is to set it as being direétly proportional to the number of data

points of each class within the radius ;. For example, referring to Fig. 5, this

| probability term as regards class C, would be 2/5 because 2 of the 5 points within the

distance ., are points of class C;. There are other possibilities, such as setting the
probability in accordance with the Euclidean distance in real or parameter space between
the various points. This term, which does not depend on the value of the property of
interest at the data point, is known as the "a priori" probability.

The second term, based on the value of the propérty of interest of point d, (such
as intensity or shape descriptor) is, in this embodiment, obtained by comparing the value
of the property for d, to the distribution of such values in the three classes C,, CZ; C;.
This will be described below with reference to a specific intensity-based example
illustrated in Figure 6. Figure 6 illustrates a data set which consists of intensity values.
The aim is to segment this image automatically into the three regions or classes which
are clearly visible. The first step is to assign all data points (in this case pixels) to a

single initial class C,. Then the probability distribution (in this case of intensity on a
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gray scale) over the class C, is calculated. In this case it is calculated by computing a
histogram of the values of intensity (i.e. binning the intensity values, counting the
number of values within each bin, and normalising the total count to 1). (A
developmeﬁt of the histogram calculation will be discussed below). The histogram is
then smoothed using Parzen windows by convolving the values in the histogram using
akernel function. The kernel function used in this embodiment is the Gaussian function,
although others may be used. This smoothing function is adaptive as will be explained
below. The result is the initial probability distribution as illustrated in Figure 7. |
Incidently, in Figure 7 three peaks corresponding to the three classes of Figure 6 can be
seen.

The next step is to start or "seed"” a new class. This is achieved by choosing a
data point, defining a neighbourhood of radius r,,,, around it, and assigning all points
within the ﬂeighbourhood to the new class C,. This is illustrated in Figure 8A. In some
embodiments the point may be chosen randomly, although in other embodiments the
points in the data set may be ordered for selection, for instance in accordance with how
badly they are modelled by the remaining class. It cah be seen that the new class C,
happens to be in the bottom left-hand -area of the image. Then the probability
distribution of intensity values is calculated for the class C, in just the same way as the
probability distribution above (namely by forming a histogram and then smoothing it).
This probability distribution is illustrated in Figure 8B.

It was mentioned above that the smoothing is adaptivéf In this. embodiment this
is achieved by making the variance of the Gaussian kernel function dependent upon the
number of data points in the class. This greatly affects the probability distribution
produced. When the histogram comprises only‘ a small number of values, it is
appropriate to use a large variance. This results in heavy smoothing. If the histogram
consists of a large number of values, it is more likely that the pfobability distribution
accurately reflects the underlying distribution, and so a small variance is appropriate,
resulting in less smoothing. The variance may be defined as a function of the number
of data points in a class, such that as the number of data points in the class increases, the

variance decreases. In this example, the variance is inversely proportional to the square
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of an affine function of the size of the class. Other functions are possible. For example,
the variance may be inversely proportional to the natural logarithm of the number of data
points in the class.

Note that functions other than a Gaussian can be used as the kernel function for
the Parzen window estimate of the probability distribution. In this case, some property
of the kernel function comparable to the Gaussian's variance will be adjusted as a class
grows or shrinks. ‘

The next step is to test data points near the class C, to check whether they can
be assigned to class C, not. In this efnbodiment all points d; are tested which lie within
a radius r ., of any point in the class C;. The testing involves selecting a point d; and
computing the probabilities that this point belongs to class C, or C;. For each class, this
involves computing two values, which are multiplied together to compute the
probability. |

The first value is the a priori probability t—hat d; belongs to each class. As
mentioned above this probability is independent of the value of the properfy of interest.
In this example it is taken as the proportion of points within a radius r,,,, of d; that are
in the relevant class, as explained in relation to Figure 5.

The second value is computed by comparing the value of the property of interest
(intensity or shape descriptor etc) with the probability distributions computed for the
class. For classes C, and C, these probability distributions are shown in Figure 7 and
8B. Thus, for example, if the point d; has an intensity corresponding to the value 20 on
the horizontal axis of the distribution, the value for class C, can be read off as 0.010
whereas the value for class C, can be read off as about 0.027. These values are
multiplied with the a priori probabilities to give the probability that data point d; belongs
to either clasé C, or C,. In the example of the two values that we have quoted, where d;
has an intensity of 20, if the a priori probabilities are of a similar magnitude, then class
C, will have a higher probability and the data point will be assigned to class C,.

Thus the class C, grows with each point that is assigned to it. The testing is
repeated recursively, choosing all points within a radius 7, of each point added to

class C, and testing whether they should be reclassified to class C, . It should be noted
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that only points which are currently in class C, are considered (in other words
reclassified poiﬁts are not subsequently reconsidered). It is important to note, though,
that each time a point is reassigned, the probability distributions for the two classes are
recalculated with a new variance for the Gaussian kernel set in accordance with the
change in the number of points. Where there are a large number of data points sﬁch that
the probability distribution does not vary much as a single point is reassigned, the
recalculation of the probability distribution need not occur évery time a point is
reassigned, but after a preset number of points have been reassigned. This means that
the probability distribution varies adaptively as the classification process proceeds.

The variance used, therefore, when computing the probability that a point under
test belongs to the initial class C, will increase as points are removed from the class, and,
the variance used to compute the probability that the point belongs to class C, will-
decreasé as that class grows. In this way, C, will improve its model of thé distribution
of numeric values for the property of interest in the class, and this distribution will be
removed gradually from the three distributions that together formed the distribution for
class C, illustrated in Figure 7.

The process of testing points for addition to class C, is continued until no new
points within a radius 7 ussipy OF the existing points in the class are added. This is the
situation indicated in Figure 9. If viewed graphically, the class C,; appears to "flood-fill"
out to the borders of the class as shown in Figure 9.

Then the process is repeated by seeding a new class C, on a point in class Cy and
groWing that class. Whilst growing the class C,, when testing whether to reassign some
point d; from class C, to class C,, it may be found that points from class C, also lie
within a neighbourhood of radius 7, of d,. In this case, it is tested whether to assign
data point d; to class C,, C, or C,.

After this second class C, has converged, the data will be classified into C), C,
and C, as shown in Figure 10. Figure 11 shows the probability distributions for the three
classes. |

Because this is an unsupervised algorithm, the process does not, of course,

"know" that there are no more classes of points. Therefore the process will continue by
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seeding a new class C; as shown in Figure 12A. The initial probability distribution for
class Cj, is shown in Figure 12B. However, this class will, in fact, not grow in the way
that C, and C, did. The algorithm is designed to discard classes which do not grow (by
reclassifying their points back to class C;). The reason thét class C; does not grow will
be explained. First, because C; contains fewer points than C,, the probability
distribution is generated by convolving with a Gaussian kernel function with a large
variance. Thus it is more smoothed than the probability distribution for the remaining
points in C,. This results in lower probabilities being read off for values from the
underlying distribution. It will be seen that in Figure 12B the maximum probability is
0.045, while the maximum for the remaining class C, is 0.06 as shown in Figure 11A.
Thus as class C ; attempts to grow, by testing data points, most points will not be re-
classified from C, to C;, but will remain instead in C,. If the class does not grow
sufficiently it will be "culled". The growth is tested against a threshold. In this example
if, at convergence, a class is less than three times as large as when it was seeded it is
culled. Other criteria, for example based on the rate of growth, are possible. In this way
the algorithm does not introduce an excessive number of classes to the segmentation.

In practice the algorithm continues to attempt to seed new classes on each of the
points left in C,, but each new class will be culled. The final segmentation is shown in
Figure 13. It can be seen that the segmentation is fairly accurate.

It should be noted that the algorithm can be applied again within each of the
classes C,, C,, C, to check for segmentation within those classes. Thus each class is
taken in turn, all its data points regarded as an initial class and a new class seeded within
it, the method then proceeding as before.

The data set need not comprise all data points available (e.g. all pixels in the
image or all points in the model). A subset of the data points may be selected to optimise
fhe segmentation (e.g. by excluding obvious outliers). In addition, not all data points in
a class may be used in the computation of the probability distribution. A subset of the
data points may be selected (e.g. by excluding outliers according to some statistical test).

The algorithm therefore involves segmenting a data set by initially assigning all

points to a single class and then randomly seeding and growing new classes. The
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probability distributions in the classes are adaptive and this, together with the culling of
classes which do not grow, means thét over-segmentation is avoided.

In the description above the histograms were computed in a fairly typical
fashion by finding the minimum and maximum values to be included, and then
separating the interval between these into equally sized bins. Each value will then be
assigned to a bin, and the probability computed for a particular value will equal the
number of points in that bin, divided by the total number of points in the histogram.
This is illustrated in Figure 17. '

This works well if there is a’uniform prior probability of getting any particular
numerical value. However, this is rarely the case in real applications.

Consider the example of a histogram of the radius of points on blood vessels.
Imagine that thé minimum sized vessel that can be detected has a radius of 1mm, and
that the largest vessel in the brain has a radius of 30mm. This is quite a realistic value
if the patient has a giant aneurysm. There will be many vessels with a radius in the
range 3mm-9mm, but very few in the range 20mm-30mm

The problem arises that when grouping the surface points on a vessel, if the
radius changes from 6mm to 9mm, then this probably indicates that a new vessel has
been reached. However, if in a large vessel the radius changes from 26mm to 29mm
(again a difference of 3mm), then this merely indicates variation in the vessel radius.

The fundamental issue is that a small change in radius is important in the first

instance, but not the second.

One solution is to try to normalise the change by dividing by the vessel
radius, so as to measure a ratio of change in vessel diameter. However, this approach
has a serious limitation.

In real data, there are likely to be few small vessels (in fact, there will be
many small vessels, but the scan will detect very few of them because of its finite
resolution, so for the purposes of processing the data that is scanned, there will be
few small vessels) and few extremely large vessels, but many medium-sized vessels.
Thus if vessel diameter changes from 1mm to 2mm or 25mm to 30mm, it is likely to

be because of noise or natural variation. However, if vessel size changes from 10mm



10

15

20

25

30

WO 03/075209 PCT/GB03/00891

-18-

to 13mm, then this probably indicates that a change of vessel. Simply normalising by
dividing by vessel radius does not take this into account, and will result in an
algorithm that is overly sensitive to variation in small vessels.

As an aside, mathematically the problem can be constructed as trying to
define a metric space of ‘vessel radii’. This is a 1-D space, where each point is a

possible vessel radius, and where the distance between two points in the space is

"indicative of how likely it is that the points lie on the same vessel. The metric for this

space is non-linear. Two points with radii 26mm and 29mm would be considered
very close in the metric space, but two points with radii 6mm and 9mm are not close
(i.e. the difference _likely indicates that they lie on different vessels). The earlier
approach of dividing by the vessel radius was an attempt to make the metric linear by
a simple process of normalisation. This does not work as it becomes overly sensitive
to changes in small vessel radii. A further embodiment of the invention involves a
solution to the problem of estimating the metric on this non-linear space, where the
true metric is estimated from the data. It is assumed that, given the true metric for the
space, the data would be uniformly spread over the space. Thus the metric can be
estimated by examining the density of points under a linear metric, and warping the
space so that these points are spread uniformly.

The method begins by computing the vessel radius at all surface points. A

"realistic histogram is shown in Figure 18, where there are many medium sized

vessels.

This is then used to define a second histogram, where tﬁe bin sizes are not
equal, but the data count in each bin is épproximately equal. Let N be the total
number of data points and let b be the number of bins desired for histogram. The
technique is to separate the histografn in Figure 18 into b bins, each containing at
least (N/b) entries, as shown in Figure 19. The original histogram entries are shown
dashed. Note that this second histogram necessarily contains less bins than the first
histogram did. To compute the histogram, the method starts with the lowest value in
the histogram of Figure 18, and incrementally widen the bin until it includes at least

(N/b) entries. Then begin a new bin. Note that some bins contain more points than
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others. This effect is because each time a bin is widened, all the values are added
from a bin in Figure 18. This effect reduces as the number of bins in the initial
histogram increases (i.e. Figure 19).

Examining the histogram of Figure 19, note that the bins are wide where there
was little data (i.e. small and large values), and narrow where there was much data
(medium sized values).

This method is applied to the segmentation technique above by perforrnihg
the computation of these bin sizes as an initial stage of processihg, performed before
grouping the vessel surface points into different vessels. Thus the sequence of steps
is as follows:

1. Estimate vessel radius for each surface point in the 3D model.
2. Compute a histogram with equal bin size for all of the data (Figure 18).
3. Compute a second histogram with bins of unequal size, but with
gpproximately equal counts in each bin (Figure 19).
4. Proceed with the grouping algorithm as before, i.e.:

i. Assign all point.s to a single group G,. Compute a histogram
of the values in this group. Smooth the histogram only a small
amount, because there is a large amount of data.

ii. Seed a new group G, with a small neighbourhood of points.
Compute a histogram of the values in this new group. Smooth’
the histogram a large amount, because there is a small amount
of data.

iil. For each point in G, that lies near G,, compute the

probability assigned to its numeric value (vessel radius) by
both G, and G,. If a higher probability was computed from
the histogram of G,, then reassign the point to G,.

iv. Repeat with new points in G, that are near G;.

v. When no more points can be added to G,, count the number
of points in G,. If the size falls below some threshold value,

then discard the group G,.
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vi. Repeat, seeding a new group G, in a different location.

The important change is that when histbgrams are computed in the algorithm,
it now uses the bins that were computed in Step 3 (shown in Figure 19), rather than
équal sized bins. There will be a higher concentration of bins for medium sized
vessels, where it is important to distinguish betweeﬁ small changes in vessel radius,
and less bins for very small or large vessels, where slight changes are less important.

As a side note, because of the way that the unequal histogram bins are |
computed, thé initial histogram computed in Step 4i for G, will have roughly an

equal number of values in all bins. However, this will change once entries start being

removed and assigned to groups G, G,, G, etc...

Thus this development adapts the sensitivity of the histogram to a specific

" application, from an initial analysis of the entire data set.

Incidently it is applicabIe to more than the immediate application above. It
may be applied to the grouping of data representing scans of body parts other than the

head. More generally, the data need not be medical in nature. For example, the points

may indicate pixel coordinates in a satellite image, and the numerical value for each

point indicate the intensity of that pixel. In this case, the grouping algorithm would
separate up the image into different objects. More generally still, this algorithin vmay
be applied to any 2-D image in a similar way. It may also be applied to 3D range
data. In short, it is applicable in any application where there is a set of data points,

provided that each point has some spatial location, and each point has a numeric

~ value assigned to it. More generally, this histogram equalisation process may be .

coupled with other algorithms. That is, it need not only be applied in the context of
the grouping algorithm. proposed here. Instead, it may be used as part of any
algorithm that requires the computation of a histogram.. ‘

Returning to applying the algorithms above to the problem of demarcation of
an aneurysm, instead of intensity values, the shape descriptor is used. Thus, referring
to Figure 3, the 3-D model of the aneurysm and blood vessels is calculated from an

image of the vasculature and a triangular mesh is defined over the model. At various
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points on the mesh the shape descriptor , e.g. two-dimensional data points (r;, d;) or
spherical radius (r), are computed which describe the shape of the vessel or aneurysm
at that point. The algorithm is then applied by initially assigning all points to the
same region, and then seeding a new region somewhere on the mesh. The method
attémpts to grow this new region. If it does not grow, it is culled. At completion, the
mesh is separated into the appropriate regions, with the aneurysm separated from its
adjoining vessels on the basis of its shape descriptor. _

Figures 14 and 15 show the application of an embodiment of the invention to
two clinical data sets. The results for two patients with aneurysms are shown and in |
each case the three views of the 3-D brain model are shown on the left, and the
segmented results on the right. In each case the aneurysm present is successfully
identified.

 The method can, of course, be applied also to intensity-based segmentation,

such as the segmentation of B-mode ultrasound follicle images where it has

successfully demarcated regions indicating follicles. The method is also applicable

to the segmentation of MRI, CTA, 3-D angiography and colour/power Doppler sets

where blood can be distinguished from other tissue type by its intensity.
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CLAIMS

1. An unsupervised segmentation method for assigning multi-dimensional
data points of a selected data set amongst a plurality of classes, the method
comprising the steps of: _

(a) defining an initial class ¢ncompas$ing all data points of the selected data

set; '

(b) defining a second class by selecting a data point and assigning it to the

second class together with data points within a first predetermined

neighbourhood of the selected data point;

(c) testing each data point lying within a second predetermined

neighbourhood of data points in the second class by calculating the

probability that each said data pdint belongs to the first class and the °

probability that it belongs to the second class, and assigning it to the second

class if the probability that it belongs to the second class is higher; and

(d) said probability calculations being adapted during said method in

dependence upon the assignment of the points to the classes.

2. A method according to claim 1 wherein the probability calculations

comprise the steps of determining a probability distribution of a property of the data

points in the initial class and determining a probability distribution of said property
of the data points in the second class and comparing the data point under test with

said probability distributions.

3. A method according to claim 1 or 2 wherein said calculation is adapted by

recalculating said probability distributions as data points are assigned to classes.

4. A method according to claim 3 wherein said probability distributions are

recalculated on the basis of the number of data points in each class.
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5. A method according to claim 4 wherein said probability distributions are

recalculated after each assignment of a data point.

6. A method according to claim 2, 3, 4 or 5 wherein the probability

 distributions are calculated on the basis of histograms of the data points.

7. A method according to claim 6 wherein the histograms have bins of

unequal width.

8. A method according to claim 7 wherein the widths of the bins of the

histograms are set to give an initially approximately equal number of counts in each

~ bin.

9. A method according to any one of the preceding claims wherein steps (b),
(c) and (d) are repeated iteratively testing in step (c) data points lying within the

second predetermined neighbourhood of data points assigned to the second class.

10. A method according to claim 9 wherein steps (b) to (d) are repeated

iteratively until no more data points are added to the second class.

11. A method according to any one of the preceding claims further
comprising the step of defining a third class by selecting a data point from the initial
class and assigning it to the third class together with data points within the first
predetermined neighbourhood of the selected data point, and repeating the method

iteratively with respect to the third class.

12. A method according to any one of the preceding claims further
comprising the step of discarding any class which fails to have sufficient data points
assigned to it in step (c) according to a predetermined criterion, by reassigning its
data points to the initial class, when all data points within said predetermined

neighbourhood have been tested.
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13. A method according to claim 12 further comprising the step of
concluding the segmentation when all classes formed in turn on the basis of selecting

each of the data points remaining in the initial class have been discarded.

14, A method according to any one of the preceding claims wherein said first
and second predetermined neighbourhoods are open spheres centred on the data point

and having a predetermined radius.

15. A method according to any one of the preceding claims wherein said first
and second predetermined neighbourhoods are defined ona parameter space

containing the data points.

16. A method according to any one of the preceding claims wherein said data
points are derived from an image, said classes corresponding to different physical

parts in said image.
17. A method according to claim 16 wherein said property of said data points
comprises a descriptor of at least part of an object in the image and the spatial

coordinates of that part. |

18. A method according to claim 17 wherein the descriptor comprises at least

a value representing the shape of at least part of said object.

19. A method according to claim 18 wherein the descriptor comprises at least

a value representing the size of at least part of said object.

20. A method according to any one of claims 16 to 19 wherein the image is a

medical image.

21. A method according to any one of claims 16 to 19 wherein the image is a



WO 03/075209 PCT/GB03/00891

10

15

20

25

30

25-

volumetric image or non-invasive image.

22. A method according to any one of claims 17 to 21 wherein the data

points are taken from a spatial model fitted to said image.

" 23. A method of demarcating different parts of a structure in a representation
of the structure, comprising the steps of calculating for each of a plurality of data
points in the representation at least one shape descriptor of the structure at that point,

and segmenting the representation on the basis of said at least one shape descriptor.

24. A method according to claim 23 wherein the descriptor comprises at least

one value representing the cross-sectional size of the structure at that point.

25. A method according to claim 24 wherein the at least one value
representing the cross-sectional size comprises the lateral dimensions of the structure

at that point.

26. A method according to claim 24 wherein the at least one value comprises

a measure of the mean radius of rotation of the structure as said point.

27. A method according to claim 23, 24 or 26 wherein the at least one value is
calculated by defining a volume at said point and changing the size of the volume

until a predefined proportion of the volume is filled by the structure.

28. A method according to claim 27 wherein the volume is a spherical

volume.

29. A method according to any one of claims 23 to 28 wherein the

representation is segmented automatically.
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30. A method according to claim 29 wherein the representation is segmented

using an unsupervised segmentation method.

31. A method according to any one of claims 23 to 28 wherein the

representation is segmented by hand.

32. - A method éccording to any one of claims 23 to 31 wherein the structure

is in the human or animal body.

33. A method according to any one of claims 23 to 31 wherein the

representation is a medical image.

34. A method according to any one of claims 23 to 31 wherein the image is a

volumetric or non-invasive image.

35. A method according to any one of claims 23 to 34 wherein the

representation is a model of the structure.

36. A method according to any one of claims 23 to 35 wherein the

segmentation method is in accordance with any one of claims 1 to 22.

37. A computer program comprising program code means for executing on a

programmed computer the method of any one of the preceding claims.

38. Apparatus for segmenting a data set of multi-dimensioned data points,
the apparatus comprising:
means for receiving the data set;
" a data processor for segmenting the data set in accordance with the method of
any one of claims 1 to 23; and

a display device for displaying the segmented data set.
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39. Apparatus according to claim 38 wherein the means for receiving the data

set comprises an acquisition device for acquiring the data set from a subject.

40. Apparatus for demarcating different parts of a structure in a
representation of the structure, the apparatus comprising: |

means for receiving said representation in the form of a data set;

a data processor for processing said data set to demarcate the different parts

of the structure in accordance with the method of any one of claims 23 to 31.
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Figure 3: a.) 3-D model of an aneurysm and adjoining vessels. b.) Mesh computed for the 3-D model.
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Figure 5: Point and neighbourhood.
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Figure 10: Classification after C; converges.
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Figure 11: Probability densities after C; converges. a.) P(v; | d; € Cy). b.) P(v;| d; € C)).
c)P(v;| d; € ).



WO 03/075209 PCT/GB03/00891
5/9

Seed for class C;

a. ' b.
Figure 12: a.) Seed for Class C;. b.) Initial probability for P(v;| d; € C3).

Figure 13: Final segmentation of synthetic data.
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Figure 14: Results for patient 1. Original 3D model shown on left, processed data shown on right.
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Figure 15: Results for patient 2. Original 3D model shown on left, processed data shown on right.
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