wo 2010/065848 A2 [0K 0 DO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(9 World Intclectuat Poperty Organization. /85| NN OO B 0RO
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
10 June 2010 (10.06.2010) PCT WO 2010/065848 A2

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GOG6F 15/16 (2006.01) GOG6F 3/048 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
GOG6F 9/44 (2006.01) GO6F 3/14 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HO04L 29/06 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

. L KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(21) International Appllcatlon Number: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

PCT/US2009/066764 NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,

(22) International Filing Date: SE, S@G, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
4 December 2009 (04.12.2009) TZ,UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English (84) Designated States (unless otherwise indicated, for every

L.) kind of regional protection available): ARIPO (BW, GH,

(26) Publication Language: English GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(30) Priority Data: ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
61/120372 5 December 2008 (05.12.2008) Us M), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

ES, FIL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(71) Applicant (for all designated States except US): SO- MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
CIAL. COMMUNICATIONS COMPANY [US/US]; TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
2086 Potter Street, Eugene, Oregon 97405 (US). ML, MR, NE, SN, TD, TG).

(72) Inventors; and Declarations under Rule 4.17:

(71) Applicants : VAN WIE, David [US/US]; PO Box 5610, . . . ,

Fugene, Oregon 97405 (US). ALTMAIER, Joseph [US/ as to the identity of the inventor (Rule 4.17(1))
US]; PO Box 5610, Eugene, Oregon 97405 (US). — as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

(74) Agent: GARCIA, Edouard; Attorney at Law, 1351]]] o
Cuernavaca Circulo, Mountain View, California 94040 — as o the applicant’s entitlement to claim the priority of
(US). the earlier application (Rule 4.17(iii))

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

[Continued on next page]

(54) Title: REALTIME KERNEL

/ 12
24 Client Node
Stream
< T 22 ,
Te) 1] Handlers 18
33
Hardware .
Realtime N Network 14
Kernel v
20"
Area Server Node - 15
) 1 28 . ;__32
Area » Vittual Area T
Applica&ionj , R
1077 —— Area Service
267 N
FIG. 1

(57) Abstract: A realtime kernel (20) supports realtime communications between communicants operating on respective network
nodes (12, 14). The realtime kernel (20) handles the complex tasks of connecting to communicants, virtual areas (28), and other
network resources, switching those connections in response to user inputs, and mixing realtime data streams. The realtime kernel
(20) enables developers to focus on developing high-level communications functionality instead of low-level plumbing code. The
realtime kernel (20) imposes relatively low computational resource requirements so that realtime communications performance
can be achieved using a wide range of computing devices and network connections that currently are available.

WO 2010/065848 A2 I W00 0)00 U0 0O OO RO A

Published:

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

WO 2010/065848 PCT/US2009/066764

-1-
REALTIME KERNEL

BACKGROUND OF THE INVENTION

[0001] Interest in avatar-based virtual reality communications systems has grown
with the increased availability of computing systems that have high-processing-power
and high-bandwidth network connections. A primary goal of such a virtual reality
system is to create a virtual space in which users can interact and communicate using
realtime data streams, such as audio, video and text chat streams. The virtual space
typically is defined by a computer graphics specification that describes the visual
geometry of the space, the colors and textures that are mapped onto the visual
geometry, the collision properties that control how users maneuver within the space,
and auditory properties, such as, reverberation and sound absorption properties, of the
space.

[0002] In a typical virtual reality system, the users communicate with each other
from respective computers through an interface that is a source, a sink, or both a source
and a sink of one or more of the realtime data streams that are supported by the
system. A virtual reality software application running on each of the user's computers
configures its own audio and graphic rendering based on position information describing
the positions of avatars in the virtual space. The position information typically is
received either directly from the other users’ computers or indirectly from a central
presence server. By default, the virtual reality software application typically connects
each source represented in the virtual space to every sink represented in the virtual
space, subject to conditions specified in global switching rules, local user preferences,
and the properties of objects within the virtual space. These conditions typically are
specified in terms of relative distances between objects. For example, some virtual
reality software applications are configured so that realtime data stream connections are
not established if the separation distance between avatars exceeds a maximum
threshold distance.

[0003] A successful virtual reality communications system typically should have
relatively low computational resource requirements so that realtime communications
performance can be achieved using currently available computing devices and network
bandwidth constraints. In addition, such a system typically should be implemented in a
way that encourages area designers to develop virtual areas that increase the adoption
of the system by users.

WO 2010/065848 PCT/US2009/066764

-2.
BRIEF SUMMARY OF THE INVENTION

[0004] In one aspect, the invention features a method in accordance with which
one or more stream handling instructions are received at a local network node from a
remote network node. The one or more stream handling instructions include a
specification of a stream handler for processing at least one realtime data stream. At
the local network node, a stream handler is created in accordance with the specification.
A resultant data stream is produced at the local network node. In this process, a
realtime data stream is processed through the created stream handler.

[0005] In another aspect, the invention features a method in accordance with
which a specification of a realtime stream handler is parsed from one or more stream
handling instructions. In this process, an input source identifier, an output sink identifier,
and a respective identifier of each of one or more data processing objects are parsed
from the one or more stream handing instructions. Realtime stream handling objects
corresponding to respective ones of the identifiers are instantiated. A directed graph
that includes ones of the instantiated realtime stream handling objects are created in
accordance with the specification. A realtime data stream is received from an input
source corresponding to the input source identifier. A resultant data stream is produced
at an output sink corresponding to the output sink identifier. In this process, the realtime
data stream is processed through the directed graph.

[0008] In another aspect, the invention features a method in accordance with
which at least one realtime data stream connection is established between a local
network node and at least one remote network node. At the local network node, at least
one realtime data stream that is sourced by the remote network node is processed. In
this process, the at least one realtime data stream is processed through one or more
realtime data processing operations to produce a resultant data stream. The
processing is monitored. In response to a determination based on the monitoring that
the processing deviates from a performance target, the processing is modified in
accordance with a realtime performance targeting routine.

[0007] In another aspect, the invention features a method in accordance with
which, on a local network node, a first session is established with a remote network
node on a transport stream in accordance with a connectionless transport protocol. On
behalf of one or more software entities on the local network node, one or more channels
over which data is transmitted between the local network node and the remote network
node in the first session automatically are opened. In the first session, a table is

WO 2010/065848 PCT/US2009/066764

-3-

maintained. The table identifies open ones of the channels and associates respective
attribute values with the identified channels. In response to a determination that the first
session has failed, a second session with the remote network node is automatically
attempted to be established on a second transport stream in accordance with the
connectionless transport protocol. In response to successful establishment of the
second session, each of the channels identified in the table automatically is opened.

[0008] In another aspect, the invention features a method in accordance with
which a list of kernel components that include one or more kernel service components is
parsed. All the kernel components in the parsed list that are missing from a local
repository are determined. Each of the kemel components determined to be missing is
retrieved. Kernel services are instantiated from ones of the kernel service kernel
components. The instantiated kernel services are executed to communicate with one or
more remote network nodes in a communication environment defined with respect to a
virtual area.

[0009] In another aspect, the invention features a method that is performed on a
local network node. In accordance with this method the local network node is
configured to support realtime communications with at least one remote network node in
a context defined by a virtual area. The configuration process includes: returning a list
comprising identifiers of all plugins associated with the specified APl in a plugin
database in response to a call to enumerate all plugins that support a specified
application programming interface (API); delivering a list comprising identifiers of all
variants of the given API that are supported by the identified plugin in response to a call
to enumerate variants of a given API supported by an identified one of the plugins; and
loading the identified plugin and providing a pointer to an instance of the identified
variant in response to a call to instantiate an identified one of the variants of an
identified AP| supported by an identified one of the plugins. At least one realtime data
stream connection is established between the configured local network node and the at
least one remote network node.

[0010] The invention also features apparatus operable to implement the inventive
methods described above and computer-readable media storing computer-readable
instructions causing a computer to implement the inventive methods described above.

[0011] Other features and advantages of the invention will become apparent from

the following description, including the drawings and the claims.

WO 2010/065848 PCT/US2009/066764

-4-
BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 is a diagrammatic view of an embodiment of a virtual area
communication environment that includes a first client network node, a second client
network node, and an area server network node 16 that are interconnected by a
network.

[0013] FIG. 2 is a flow diagram of an embodiment of a method that is performed
by an embodiment of a realtime kernel.

[0014] FIG. 3A is diagrammatic view of an embodiment of a virtual area
communication environment in which network nodes communicate in a peer-to-peer
architecture.

[0015] FIG. 3B is a diagrammatic view of an embodiment of a virtual area
communication environment in which network nodes communicate in a server-mediated
architecture.

[0016] FIG. 4 is a diagrammatic view of an embodiment of a network node that
includes a graphical user interface presenting a depiction of a virtual area.

[0017]FIG. 5A is a diagrammatic view of an embodiment of a heads-up display
(HUD) superimposed on a graphical user interface presenting a depiction of a virtual
area.

[0018] FIG. 5B is a diagrammatic view of the HUD shown in FIG. 5A.

[0019] FIG. 5C is a diagrammatic view of an expanded view of the HUD shown in
FIG. 5A.

[0020] FIG. 6 is a flow diagram of an embodiment of a method that is
implemented by an embodiment of an area network infrastructure service.

[0021]FIG. 7 is a flow diagram of an embodiment of a method that is
implemented by an embodiment of a realtime kemel.

[0022] FIG. 8 is a block diagram of an embodiment of a client network node that
includes an embodiment of a realtime kernel.

[0023] FIG. 9 is a flow diagram of an embodiment of a method that is
implemented by an embodiment of the realtime kernel of FIG. 8 in response to a
realtime kernel API call requesting a connection to a virtual area.

[0024] FIG. 10 is a flow diagram of an embodiment of a method that is
implemented by an embodiment of the realtime kemel of FIG. 8 in response to a
realtime kernel API call requesting entry into a virtual area.

WO 2010/065848 PCT/US2009/066764

-5-

[0025] FIG. 11 is a flow diagram of an embodiment of a method that is
implemented by an embodiment of the realtime kemel of FIG. 8 in response to stream
handling instructions received from an area service.

[0026] FIG. 12 is a block diagram of an embodiment of a stream handler that is
created by a stream handler configuration manager.

[0027] FIG. 13 is a flow diagram of an embodiment of a method that is
implemented by an embodiment of the realtime kemel of FIG. 8 in a process of
scheduling tasks that are performed by the realtime kernel.

[0028] FIG. 14 is a flow diagram of an embodiment of a method that is
implemented by an embodiment of the realtime kemel of FIG. 8 based on the
monitoring of the processing of the at least one realtime data stream.

[0029] FIG. 15 is a block diagram of an embodiment of the realtime kernel of FIG.

[0030] FIG. 16 is a flow diagram of an embodiment of a method by which an
account server is authenticated through its credential.

[0031]FIG. 17 is a flow diagram of an embodiment of a method that is
implemented by a loader component of an embodiment of the realtime kernel of FIG. 8.

[0032] FIG. 18 is a flow diagram of an embodiment of a session management
method that is implemented by a STRAW service component of an embodiment of the
realtime kernel of FIG. 8.

[0033] FIG. 19 is a flow diagram of an embodiment of a method that is
implemented by components of an embodiment of the realtime kemel of FIG. 8 in
response to remote stream handling instructions that are received from an area network
infrastructure service.

[0034] FIG. 20 is a diagrammatic view of components of transport protocol
implemented by a STRAW service component of the an embodiment of the realtime
kernel of FIG. 8.

[0035] FIG. 21 shows an embodiment of a method by which a server stream is
established between the client network node 344 and the server 346.

[0036] Referring to FIG. 22, each session is identified by a new GUID conjured
up by the issuing server. client stream[0260]

[0037] FIG. 23 shows elements of an exemplary embodiment of a four-

communicant audio processing graph.

WO 2010/065848 PCT/US2009/066764

-6-

[0038] FIG. 24 shows an embodiment of a computer system that enables people
to communicate with virtual area communicants via non-virtual area based
communication applications.

[0039] FIG. 25 shows a diagrammatic view of an embodiment of a plugin class
hierarchy.

[0040] FIG. 26 is a diagrammatic view of an embodiment of set of plugin base
classes each of which is associated with a respective set of one or more derived variant
classes.

[0041] FIG. 27 is a block diagram of an embodiment of a plugin architecture.

[0042] FIG. 28 is a block diagram of an embodiment of a plugin architecture that
includes a plugin manager, a plugin directory that contains a set of plugin containers, a
plugin database, and a caller.

[0043] FIG. 29 is a flow diagram of an embodiment of a method that is
implemented by an embodiment of the plugin manager of FIG. 28 in the process of
registering the plugins that are available on a client network node.

[0044] FIG. 30 is a diagrammatic view of an embodiment of a plugin database.

[0045] FIG. 31 is a flow diagram of an embodiment of a method that is
implemented by an embodiment of the plugin manager of FIG. 28 in response to receipt
of an API call from a caller.

DETAILED DESCRIPTION OF THE INVENTION

[0048] In the following description, like reference numbers are used to identify
like elements. Furthermore, the drawings are intended to illustrate major features of
exemplary embodiments in a diagrammatic manner. The drawings are not intended to
depict every feature of actual embodiments nor relative dimensions of the depicted
elements, and are not drawn to scale.

. DEFINIITON OF TERMS

[0047] A “computer” is any machine, device, or apparatus that processes data
according to computer-readable instructions that are stored on a computer-readable
medium either temporarily or permanently.

[0048] A “computer operating system” is a software component of a computer
that manages and coordinates the performance of tasks and the sharing of software
and hardware resources. A “kernel” is a collection of software components that can be
invoked by software applications to provide specific functions for accessing computer

WO 2010/065848 PCT/US2009/066764

-7-

resources (e.g., CPU, memory, network links, and peripheral resources). A “software
application” (also referred to as software, an application, computer software, a computer
application, a program, and a computer program) is a set of instructions that a computer
can interpret and execute to perform one or more tasks.

[0049] An “application programming interface” (or API) is a set of declarations of
the functions (or procedures) that an operating system, library, or service provides to
support requests made by a software application. An API specifies an interface and the
behavior of the identifiers specified in that interface. An implementation of an AP| refers
to the software application code that provides the functionality described by the API. A
“computer data file” is a bock of information that durably stores data for use by a
software application.

[0050] A “service” is a process that performs a task on its own initiative
(independently of other processes).

[0051] A “manager” is a gateway for a service to perform tasks. A manager does
not perform a task on its own initiative.

[0052] A “database” is an organized collection of records that are presented in a
standardized format that can be searched by computers. A database may be stored on
a single computer-readable data storage medium on a single computer or it may be
distributed across multiple computer-readable data storage media on one or more
computers.

[0053] A “data sink” (referred to herein simply as a “sink”) is any of a device, part
of a device (e.g., a computer), or software that receives data.

[0054] A “data source” (referred to herein simply as a “source”) is any of a device,
part of a device (e.g., a computer), or software that originates data.

[0055] A “network node” (also referred to simply as a “‘node”) is a junction or
connection point in a communications network. Exemplary network nodes include, but
not limited to, a terminal, a computer, and a network switch. A “server network node” is
a host computer on a network that responds to requests for information or service. A
“client network node” is a computer on a network that requests information or service
from a server. A “network connection” is a link between two communicating network
nodes. The term “local network node” refers to a network node that currently is the
primary subject of discussion. The term “remote network node” refers to a network

node that is connected to a local network node by a network communications link.

WO 2010/065848 PCT/US2009/066764

-8-

[0056] “Presence’” refers to the ability and willingness of a networked entity (e.g.,
a communicant, service, or device) to communicate, where such willingness affects the
ability to detect and obtain information about the state of the entity on a network and the
ability to connect to the entity.

[0057] A “realtime data stream” is data that is structured and processed in a
continuous flow and is designed to be received with no delay or only imperceptible
delay. Realtime data streams include digital representations of voice, video, user
movements, facial expressions and other physical phenomena, as well as data within
the computing environment that may benefit from rapid transmission, rapid execution, or
both rapid transmission and rapid execution, including for example, avatar movement
instructions, text chat, realtime data feeds (e.g., sensor data, machine control
instructions, transaction streams and stock quote information feeds), and file transfers.

[0058] A “stream mix” is a combination of two or more realtime data streams of
the same or semantically consistent type (e.g., audio, video, chat, and motion data).

For example, a set of voice streams might be mixed into a single voice stream or a
voice stream might be mixed into the audio portion of a video stream.

[0059] A “switching rule” is an instruction that specifies a connection or
disconnection of one or more realtime data sources and one or more realtime data sinks
subject to one or more conditions precedent.

[0060] A “virtual area” (also referred to as an “area” or a “place”) is a
representation of a computer-managed space or scene. Virtual areas typically are one-
dimensional, two-dimensional, or three-dimensional representations; although in some
embodiments a virtual area may correspond to a single point. Oftentimes, a virtual area
is designed to simulate a physical, real-world space. For example, using a traditional
computer monitor, a virtual area may be visualized as a two-dimensional graphic of a
three-dimensional computer-generated space. However, virtual areas do not require an
associated visualization to implement switching rules. A virtual area typically refers to
an instance of a virtual area schema, where the schema defines the structure and
contents of a virtual area in terms of variables and the instance defines the structure
and contents of a virtual area in terms of values that have been resolved from a
particular context.

[0061] A “virtual area application” (also referred to as a “virtual area
specification”) is a description of a virtual area that is used in creating a virtual area
communication environment. The virtual area application typically includes definitions

WO 2010/065848 PCT/US2009/066764

-9-

of geometry, physics, and realtime switching rules that are associated with one or more
zones of the virtual area.

[0062] A “virtual communication environment” is a representation of a computer-
managed space that includes at least one virtual area and supports realtime
communications between communicants.

[0063] A “zone” is a region of a virtual area that is associated with at least one
switching rule or governance rule. A switching rule controls switching (e.g., routing,
connecting, and disconnecting) realtime data streams between network nodes
communicating in the context of a virtual area. A governance rule controls a
communicant’s access to a resource (e.g., an area, a region of an area, or the contents
of that area or region), the scope of that access, and follow-on consequences of that
access (e.g., a requirement that audit records relating to that access must be recorded).

[0064] A “position” in a virtual area refers to a location of a point or an area or a
volume in the virtual area. A point typically is represented by a single set of one-
dimensional, two-dimensional, or three-dimensional coordinates (e.g., x, y, z) that define
a spot in the virtual area. An area typically is represented by the three-dimensional
coordinates of three or more coplanar vertices that define a boundary of a closed two-
dimensional shape in the virtual area. A volume typically is represented by the three-
dimensional coordinates of four or more non-coplanar vertices that define a closed
boundary of a three-dimensional shape in the virtual area.

[0065] In the context of a virtual area, an “object” is any type of discrete element
in a virtual area that may be usefully treated separately from the geometry of the virtual
area. Exemplary objects include doors, portals, windows, view screens, and
speakerphone. An object typically has attributes or properties that are separate and
distinct from the attributes and properties of the virtual area. An “avatar” is an object
that represents a communicant in a virtual area.

[0066] A “communicant’ is a person who communicates or otherwise interacts
with other persons over a network connection, where the communication or interaction
may or may not occur in the context of a virtual area. A “user’ is a communicant who is
operating a particular network node that defines a particular perspective for descriptive
purposes.

[0067] An “area server” is a network node that includes an area network

infrastructure service, which administers a virtual area that hosts a virtual area

WO 2010/065848 PCT/US2009/066764

-10 -

application by managing sessions of client nodes associated with objects in the virtual
area.

[0068] As used herein, the term “includes” means includes but not limited to, and
the term “including” means including but not limited to.

Il. INTRODUCTION

[0069] The embodiments that are described herein provide a realtime kernel that
supports realtime communications between communicants operating on respective
network nodes. The realtime kemel handles the complex tasks of connecting to
communicants, virtual areas, and other network resources, switching those connections
in response to user inputs, and mixing realtime data streams. The realtime kernel
enables developers to focus on developing high-level communications functionality
instead of low-level plumbing code. The realtime kernel imposes relatively low
computational resource requirements so that realtime communications performance can
be achieved using a wide range of computing devices and network connections that
currently are available.

[0070] In some embodiments, the realtime kernel supports remote configuration
and execution of audio and graphic rendering engines, as well as switching of realtime
data streams in response to instructions (also referred to as definitions) that are
received from a remotely hosted virtual area application. In this way, the realtime kernel
enables virtual area designers to maintain control over the presentation of immersive
virtual communication environments on remote client network nodes, thereby
encouraging the development of a wide variety of different types of virtual areas and
increasing the number of users who will want to adopt the communications system.

[0071] In some embodiments, the realtime kernel monitors the processing of a
realtime data stream and adapts the processing based on deviations of the processing
from a performance target. In this way, the realtime kernel increases the likelihood that
realtime performance can be achieved regardless of the computing environment in
which the realtime data stream processing is being performed.

[0072] In some embodiments, the realtime kernel implements a stream transport
protocol that is efficient in connection and disconnection, as well as in transport. In
some of these embodiments, the stream transport protocol provides a connection-
oriented, encrypted connection over a connectionless transport protocol (e.g., UDP).
The realtime kernel additionally provides between a client application and the transport

WO 2010/065848 PCT/US2009/066764

-11-

layer a reconnection mechanism that automatically attempts to reestablish failed
connections without intervention by the client application, thereby adding reliability on
top of an inherently unreliable communication protocol.

[0073] In some embodiments, the realtime kernel has a plugin architecture that
allows the functionalities of kemel components to be provided by one or more plugins
that can be loaded dynamically on client network nodes. In this way, kernel
components can be independently developed and remotely managed and updated.
The plugin architecture additionally allows the installation footprint of the realtime kernel
to be reduced substantially, thereby allowing the kernel to be installed on a wide range
of client devices including those with significant computing and memory resource
constraints.

. OVERVIEW
A INTRODUCTION

[0074] FIG. 1 shows an embodiment of an exemplary virtual area communication
environment 10 that includes a first client network node 12, a second client network
node 14, and an area server network node 16 that are interconnected by a network 18.
The first client network node 12 includes an embodiment of a realtime kernel 20 that
includes one or more configurable stream handlers 22, and input/output (I/0) hardware
24. The second client network node 14 typically is configured in substantially the same
way as the first client network node 12. The area server network node 16 includes an
area network infrastructure service 26 (also referred to simply as an "area service’) that
administers a virtual area 28 by managing sessions of the first and second client nodes
12, 14 in the virtual area 28. The virtual area 28 hosts a virtual area application 30 that
includes a description of a virtual area that is used in creating a virtual area
communication environment. The area service 26 administers the virtual area 28 in
accordance with the virtual area application 30.

[0075] In the process of creating the shared virtual area communication
environment, the area service 26 remotely configures the realtime kernels in the first
and second client network nodes 12, 14 in accordance with the remote virtual area
application 30 subject to a set of constraints 32 on the virtual area application 30. The
constraints 32 typically include controls on access to the virtual area. The access
controls typically are based on one or more of capabilities (where access is granted to
communicants or client nodes having proper capabilities or permissions) and an access

WO 2010/065848 PCT/US2009/066764

-12-

control list (where access is granted to communicants or client nodes having identities
that are on the list). In some embodiments, the constraints 32 are administered by a
security network infrastructure service (described below). Client software applications
operating on the first and second client network nodes 12, 14 allow communicants to
access the shared virtual area communication environment by presenting respective
views of the virtual area in accordance with data received from the area service 26 via
the realtime kernel 20 and by providing an interface for receiving commands from the
communicants. The communicants typically are represented in the virtual area by
respective avatars, which move about the virtual area in response to commands that
are input by the communicants at their respective network nodes. Each communicant's
view of the virtual area typically is presented from the perspective of the communicant’s
avatar, which increases the level of immersion that is experienced by the communicant.
Each communicant typically is able to view any part of the virtual area around his or her
avatar. The realtime kernels operating on the first and second client network nodes 12,
14 establish realtime data stream connections with other network nodes sharing the
virtual area communication environment based at least in part on the positions of the
communicants’ avatars in the virtual area.

[0076] FIG. 2 shows an exemplary embodiment of a method that is implemented
by the realtime kernel 20. In accordance with this method, the realtime kernel 20
establishes a session with the area service 26 (FIG. 2, block 34). Either in response to
communicant input or automatically, the realtime kernel 20 requests entry into an
instance of the virtual area 28 (FIG. 2, block 36). If the constraints 32 on the
communicant's access to the virtual area instance are satisfied, the area service 26
transmits to the realtime kernel 20 configuration data that includes current state
information, including the positions of avatars in the virtual area. The realtime kernel 20
receives the configuration data from the area service 26 (FIG. 2, block 38). The
realtime kernel 20 configures the I/O hardware 24 to render a human perceptible virtual
area communicant environment in accordance with instructions received from the area
service 26 (FIG. 2, block 40).

[0077] In some embodiments, the process of configuring the I/O hardware 24
involves dynamically configuring at least one of the stream handlers 22 in accordance
with the instructions that are received from the remote network node 14 and the position
data. For example, the virtual area application 30 may specify one or more audio
effects that should be applied to audio streams that are associated with the objects

WO 2010/065848 PCT/US2009/066764

-13 -

currently in the virtual area, in which case the area service 26 sends to the realtime
kernels executing on the first and second client network nodes 12, 14 instructions that
configure their respective audio stream handlers to implement the specified effects in
accordance with the positions of the respective objects in the virtual area.

[0078] The realtime kemnel 20 processes realtime data streams that are
associated with the communicant objects through each of the configured stream
handlers 22 to produce a respective output 33. Depending on its content, the output 33
may be stored on a computer-readable medium or converted into a human-perceptible
output by the /0 hardware operating on the first and second network nodes 12, 14. For
example, audio output signals are converted into audible sounds by audio hardware
(e.g., a sound card and speakers) and graphic output signals are converted into visible
images by graphic hardware (e.g., a video card and a display). In some embodiments,
the output 33 that is produced by at least one of the stream handlers 22 is processed by
one or more downstream software components that in tumn produce an output that either
may be stored on a computer-readable medium or converted into a human-perceptible
output.

B. AN EXEMPLARY OPERATING ENVIRONMENT

[0079] The realtime kemel 20 operates in the context of the virtual area
communication environment 10, which includes the network 18 and a network
infrastructure service environment that includes a number of network infrastructure
services including the area service 26. The realtime kernel 20 and the network
infrastructure service environment constitute a platform for creating virtual area
communication environments for communicants.

1. NETWORK ENVIRONMENT

[0080] The network 18 may include any of a local area network (LAN), a
metropolitan area network (MAN), and a wide area network (WAN) (e.g., the internet).
The network 18 typically includes a number of different computing platforms and
transport facilities that support the transmission of a wide variety of different media
types (e.q., text, voice, audio, and video) between network nodes.

[0081] The realtime kernel 20 typically operates on a network node that includes
software and hardware resources which — together with administrative policies, user
preferences (including preferences regarding the exportation of the user’'s presence and
the connection of the user to areas and connection targets), and other settings -- define

WO 2010/065848 PCT/US2009/066764

-14-

a local configuration that influences the administration of realtime connections with other
network nodes. The network connections between network nodes may be arranged in
a variety of different stream handling topologies, including a peer-to-peer architecture, a
server-mediated architecture, and hybrid architectures that combine aspects of peer-to-
peer and server-mediated architectures.

[0082] FIG. 3A shows an embodiment 42 of the virtual area communication
environment 10 in which the first and second network nodes 12, 14 and the remote
network node 16 are interconnected by the communications network 18 in a peer-to-
peer architecture. In this architecture, each of the network nodes 12-16 transmits state
changes (e.g., avatar movements in the virtual area 28) to each of the other network
nodes. One of the network nodes (typically the network node that initiates a
communication session) operates as an “area server’. In the illustrated embodiment,
the network node 16 has assumed the role of an area server. The area server network
node 16 maintains global state information and serves as a data server for the other
network nodes 12, 14. The global state information includes a list of all of the objects
that are in the virtual area and their respective locations in the virtual area. The area
server network node 16 sends instructions that configure the other network nodes 12,
14. The area server network node 16 also registers and transmits initialization
information to other network nodes that request to join the communication session. In
this process, the area server network node 16 transmits to each joining client network
node a list of components (e.g., plugins) that are needed to render the virtual area 28 on
the client network node in accordance with the virtual area application 30. The realtime
kernels on the client network nodes 12, 14 typically retrieve any missing components on
the list from a remote server (e.g., a plugin server). The area server network node 16
also ensures that other network nodes 12, 14 ¢an synchronize to a global state if a
communications fault occurs.

[0083] FIG. 3B shows an embodiment 44 of the virtual area communication
environment 10 in which the network nodes 12-16 (also referred to as “area client”
network nodes in this architecture) communicate in an architecture that is mediated by
an area server 46. In this embodiment, the area server 46 assumes the area server
functions that were performed by the network node 16 in the peer-to-peer architecture
embodiment shown in FIG. 3A. In this regard, the area server 46 maintains global state
information and serves as a data server for the area client network nodes 12-16. This
architecture allows the realtime data stream switching between the area client nodes

WO 2010/065848 PCT/US2009/066764

-15-

12-16 to be handled in a variety of topologies, including a peer-to-peer topology, a fully
server-mediated topology in which the area server 46 operates as a communications
broker between the network nodes 12-16, and a hybrid topology that combines aspects
of the peer-to-peer topology and the fully server-mediated topology. Exemplary
topologies of these types are described in US Application Nos. 11/923,629 and
11/923,634, both of which were filed on October 24, 2007.

2. NETWORK INFRASTRUCTURE SERVICES

[0084] One or more network infrastructure services typically cooperate with the
realtime kernel 20 in the process of establishing and administering the network
connections with other network nodes. The network infrastructure services may run on
a single network node or may be distributed across multiple network nodes. The
network infrastructure services typically run on one or more dedicated network nodes
(e.g., a server computer or a network device that performs edge services, such as
routing and switching). In some embodiments, however, one or more of the network
infrastructure services run on at least one of the communicants’ network nodes. Among
the network infrastructure services that are included in the exemplary embodiment of
the virtual area communication environment 10 are an account service, a security
service, the area service 26, a rendezvous service, and an interaction service.

[0085] The account service manages communicant accounts in the network
infrastructure service environment. The account service also manages the creation and
issuance of authentication tokens that can be used by client network nodes to
authenticate themselves to any of the network infrastructure services.

[0086] The security service controls communicants’ access to the assets and
other resources of the virtual area communication environment 10. The access control
method implemented by the security service typically is based on one or more of
capabilities (where access is granted to entities having proper capabilities or
permissions) and an access control list (where access is granted to entities having
identities that are on the list). After a particular communicant has been granted access
to a resource, that communicant typically uses the functionality provided by the other
network infrastructure services to interact in the virtual area communication environment
10.

[0087] The area service 26 administers a virtual area. In this process, the area
service 26 manages connections that are associated with the virtual area subject to the

WO 2010/065848 PCT/US2009/066764

-16-

capabilities of the requesting entities, maintains global state information for the virtual
area, and serves as a data server for the client network nodes participating in a shared
communication session in a context defined by the virtual area. The global state
information includes a list of all the objects that are in the virtual area and their
respective locations in the virtual area. The area service 26 sends instructions that
configure the client network nodes. The area service 26 also registers and transmits
initialization information to other client network nodes that request to join the
communication session. In this process, the area service 26 transmits to each joining
client network node a list of components (e.g., plugins) that are needed to render the
virtual area 28 on the client network node in accordance with the virtual area application
30. The area service 26 also ensures that the client network nodes can synchronize to
a global state if a communications fault occurs.

[0088] The rendezvous service manages the collection, storage, and distribution
of presence information and provides mechanisms for network nodes to communicate
with one another (e.g., by managing the distribution of connection handles) subject to
the capabilities of the requesting entities. The rendezvous service typically stores the
presence information in a presence database.

[0089] The interaction service maintains an interaction database that records
interactions between communicants and supports queries on the interaction database
subject to the capabilities of the requesting entities. For every interaction between
communicants, one or more services in the virtual area communication environment 10
(e.g., the area service 26) transmit interaction data to the interaction service. In
response, the interaction service generates one or more respective interaction records
in the relationship database. Each interaction record describes the context of an
interaction. For example, in some embodiments, an interaction record contains an
identifier for each of the communicants, an identifier for the place of interaction (e.g., a
virtual area instance), a description of the hierarchy of the interaction place (e.g., a
description of how the interaction room relates to a larger area), start and end times of
the interaction, and a list of all files and other streams shared during the interaction.
Thus, for each realtime interaction, the interaction service tracks when it occurred,
where it occurred, and what happens during the interaction in terms of communicants
involved (e.g., entering and exiting), objects that are activated/deactivated, and the files
that were shared.

WO 2010/065848 PCT/US2009/066764

-17 -

[0090] The interaction service is able to present the results of queries on the
interaction database records in a sorted order (e.g., most frequent or most recent)
based on place. The query results can be used to drive a frequency sort of contacts
whom a communicant has met in which virtual areas, as well as sorts of who the
communicant has met with regardless of virtual area and sorts of the virtual areas the
communicant frequents most often. The query results also may be used by application
developers as part of a heuristic system that automates certain tasks based on
relationships. An example of a heuristic of this type is a heuristic that permits
communicants who have visited a particular virtual area more than five times to enter
without knocking by default, or a heuristic that allows communicants who were present
in an area at a particular time to modify and delete files created by another
communicant who was present in the same area at the same time. Queries on the
interaction database can be combined with other searches. For example, queries on
the interaction database may be combined with queries on contact history data
generated for interactions with contacts using a communication system (e.g., Skype,
Facebook, and Flickr) that is outside the domain of the network infrastructure service
environment.

3. VIRTUAL AREAS

[0091] The realtime kernel 20 administers the realtime connections with network
nodes in a communication context that is defined by an instance of a virtual area. The
virtual area instance may correspond to an abstract (non-geometric) virtual space that is
defined with respect to abstract coordinates. Alternatively, the virtual area instance may
correspond to a visual virtual space that is defined with respect to one-, two- or three-
dimensional geometric coordinates that are associated with a particular visualization.
Abstract virtual areas may or may not be associated with respective visualizations,
whereas visual virtual areas are associated with respective visualizations.

[0092] As explained above, communicants typically are represented by
respective avatars in a virtual area that has an associated visualization. The avatars
move about the virtual area in response to input commands that are input by the
communicants at their respective network nodes. The communicant’s view of a virtual
area instance that has an associated visualization typically is presented from the
perspective of the communicant’'s avatar, and each communicant typically is able to

WO 2010/065848 PCT/US2009/066764

-18-

view any part of the visual virtual area around his or her avatar, increasing the level of
immersion that is experienced by the communicant.

[0093] FIG. 4 shows an embodiment of an exemplary network node that is
implemented by a computer system 48. The computer system 48 includes a display
monitor 50, a computer mouse 52, a keyboard 554, speakers 56, 58, and a microphone
60. The display monitor 50 displays a graphical user interface 62. The graphical user
interface 62 is a windows-based graphical user interface that can include multiple
windows, icons, and a pointer 64. In the illustrated embodiment, the graphical user
interface 62 presents a two-dimensional depiction of a shared virtual area 66 that is
associated with a three-dimensional visualization representing an art gallery.
Communicants are represented in the virtual area 66 by respective avatars 68, 70, 72,
each of which may have a respective role (e.g., a curator, an artist, and a visitor) in the
context of the virtual area 66.

[0094] As explained in detail below, the virtual area 66 includes zones 74, 76, 78,
80, 82 that are associated with respective rules that govern the switching of realtime
data streams between the network nodes that are represented by the avatars 68-72 in
the virtual area 66. (During a typical communication session, the dashed lines
demarcating the zones 74-82 in FIG. 4 are not visible to the communicants although
there may be visual cues associated with such zone boundaries.) The switching rules
dictate how local connection processes executing on each of the network nodes
establishes communications with the other network nodes based on the locations of the
communicants’ avatars 68-72 in the zones 74-82 of the virtual area 66.

[0095] A virtual area is defined by a specification that includes a description of
geometric elements of the virtual area and one or more rules, including switching rules
and governance rules. The switching rules govern realtime stream connections
between the network nodes. The governance rules control a communicant’s access to
resources, such as the virtual area itself, regions with the virtual area, and objects within
the virtual area. In some embodiments, the geometric elements of the virtual area are
described in accordance with the COLLADA - Digital Asset Schema Release 1.4.1 April
2006 specification (available from http://iwww.khronos.org/collada/), and the switching
rules are described using an extensible markup language (XML) text format (referred to
herein as a virtual space description format (VSDL)) in accordance with the COLLADA
Streams Reference specification described in US Application Nos. 11/923,629 and
11/923,634.

WO 2010/065848 PCT/US2009/066764

-19-

[0096] The geometric elements of the virtual area typically include physical
geometry and collision geometry of the virtual area. The physical geometry describes
the shape of the virtual area. The physical geometry typically is formed from surfaces of
triangles, quadrilaterals, or polygons. Colors and textures are mapped onto the physical
geometry to create a more realistic appearance for the virtual area. Lighting effects
may be provided, for example, by painting lights onto the visual geometry and modifying
the texture, color, or intensity near the lights. The collision geometry describes invisible
surfaces that determine the ways in which objects can move in the virtual area. The
collision geometry may coincide with the visual geometry, correspond to a simpler
approximation of the visual geometry, or relate to application-specific requirements of a
virtual area designer.

[0097] The switching rules typically include a description of conditions for
connecting sources and sinks of realtime data streams in terms of positions in the virtual
area. Each rule typically includes attributes that define the realtime data stream type to
which the rule applies and the location or locations in the virtual area where the rule
applies. In some embodiments, each of the rules optionally may include one or more
attributes that specify a required role of the source, a required role of the sink, a priority
level of the stream, and a requested stream handling topology. In some embodiments,
if there are no explicit switching rules defined for a particular part of the virtual area, one
or more implicit or default switching rules may apply to that part of the virtual area. One
exemplary default switching rule is a rule that connects every source to every
compatible sink within an area, subject to policy rules. Policy rules may apply globally
to all connections between the area clients or only to respective connections with
individual area clients. An example of a policy rule is a proximity policy rule that only
allows connections of sources with compatible sinks that are associated with respective
objects that are within a prescribed distance (or radius) of each other in the virtual area.

[0098] In some embodiments, governance rules are associated with a virtual area
to control who has access to the virtual area, who has access to its contents, what is the
scope of that access to the contents of the virtual area (e.g., what can a user do with the
contents), and what are the follow-on consequences of accessing those contents (e.g.,
record keeping, such as audit logs, and payment requirements). In some embodiments,
an entire virtual area or a zone of the virtual area is associated with a “governance
mesh.” In some embodiments, a governance mesh is implemented in a way that is
analogous to the implementation of the zone mesh described in US Application Nos.

WO 2010/065848 PCT/US2009/066764

-20-

11/923,629 and 11/923,634. A governance mesh enables a software application
developer to associate governance rules with a virtual area or a zone of a virtual area.
This avoids the need for the creation of individual permissions for every file in a virtual
area and avoids the need to deal with the complexity that potentially could arise when
there is a need to treat the same document differently depending on the context.

[0099] In some embodiments, a virtual area is associated with a governance
mesh that associates one or more zones of the virtual area with a digital rights
management (DRM) function. The DRM function controls access to one or more of the
virtual area or one or more zones within the virtual area or objects within the virtual
area. The DRM function is triggered every time a communicant crosses a governance
mesh boundary within the virtual area. The DRM function determines whether the
triggering action is permitted and, if so, what is the scope of the permitted action,
whether payment is needed, and whether audit records need to be generated. In an
exemplary implementation of a virtual area, the associated governance mesh is
configured such that if a communicant is able to enter the virtual area he or she is able
to perform actions on all the documents that are associated with the virtual area,
including manipulating the documents, viewing the documents, downloading the
documents, deleting the documents, modifying the documents and re-uploading the
documents. In this way, the virtual area can become a repository for information that
was shared and discussed in the context defined by the virtual area.

[0100] Additional details regarding the specification of a virtual area are
described in US Application Nos. 61/042714 (which was filed on April 4, 2008),
11/923,629 (which was filed on October 24, 2007), and 11/923,634 (which was filed on
October 24, 2007).

4. OTHER PLATFORM COMPONENTS

[0101] The realtime kemel 20 is designed to work as a component of a local
network node as part of a client software package that additionally includes:
a. a Heads-Up Display (HUD) software application;
b. local Human Interface Device (HID) and audio playback devices;
¢. aSo3D graphical display, avatar, and physics engine;
d. a system database and storage facility.

WO 2010/065848 PCT/US2009/066764

-21-
a. Heads-up display (HUD)

[0102] The Heads-up Display (HUD) is an application interface to the realtime
kernel 20, which operates on each client network node. The HUD is a smalll, lightweight
interface that a user can keep up and running all the time on his or her desktop. It is the
user's interface for launching virtual area applications, providing him or her with
immediate access to realtime contacts and realtime collaborative places (or areas). A
virtual area is integrated with the user's desktop through the HUD and the realtime
kernel 20 such that the user can drag and drop files into the virtual area
communications environment, use files stored in association with the virtual area using
the native client software applications independently of the virtual area communications
environment while still present in a virtual area, and more generally treat presence and
position within a virtual area as an aspect of their operating environment analogous to
other operating system functions rather than just one of several applications.

[0103] FIGS. 5A and 5B show an embodiment 84 of the HUD that is implemented
by a translucent user interface that is docked in the lower right hand corner of the
communicant's desktop. The HUD 84 is the application interface to the platform.
Characteristics of the HUD 84 include:

. Small, lightweight application that is intended to be running all the time on

the user’s desktop; and

. Provides the user with an easy interface to see and interact with contacts
as well as the virtual areas where interactions occur.

[0104] In this embodiment, the HUD 84 is implemented by a substantially
transparent (semi-translucent) user interface overlay that provides a persistent interface
and access to controls. In the embodiment shown in FIG. 5A, the HUD 84 is
transparent except for a limited set of one or more of the following semi-transiucent
elements of the interface:

. the outline of progressive immersion control;

. the outline of user's current location;

. the sprites representing realtime contacts in the virtual area 86; and
. the line demarcating the border of HUD area.

[0105] The communicant is able to work in a normal desktop computing
environment while the realtime kernel 260 and the HUD 84 are running and ready to
initiate realtime communications sessions. For example, the communicant may work

WO 2010/065848 PCT/US2009/066764

-22-

with other applications, such as Microsoft® Excel®, to create a document that can later
be shared in a realtime communications session. The virtual area 86 is integrated with
the communicant’s desktop such that the communicant can drag and drop files into the
virtual area, use files stored in association with the virtual area using native client
software applications independently of the virtual area communications environment
while still present in a virtual area, and more generally treat presence and position
within a virtual area as an aspect of the operating environment analogous to other
operating system functions rather than one of several applications.

[0106] While the communicant interacts in the virtual area 86, the HUD 84
provides the communicant with independent control over his or her desired
visualization. For example, a communicant may display a minimized view of the virtual
area (minimized to the lower right-hand corner of the desktop) and participate in an
audio conversation with another communicant in the virtual area while working in
different application such as Microsoft ® Excel®. A communicant then can change his
or her visualization schema and enter into a more immersive three-dimensional
rendering of the virtual area 86. This is accomplished by changing the setting of the
progressive immersion slider 88 in the HUD 84 from “Desktop” to “3D”. Once in the 3D
visualization mode, the communicant’s desktop displays a 3D rendition of the virtual are
86 (as shown in FIG. 5A). The communicants (represented by sprites 90, 92, 94 in the
Desktop mode) now take the form of three-dimensional avatars 96, 98, 100, as shown
in FIG. 5A.

[0107] Any data that is associated with the virtual area 86 can be displayed on
view screens 102, 104, 106. A view screen is a generic data rendering component that
can be used to render any arbitrary data. Examples of the types of data that can be
rendered on a view screen include:

. Microsoft PowerPoint presentation

. Video

. output of a Webcam

. realtime data that comes directly from an organization’s ERP system

[0108] As shown in FIG. 5C, the HUD 84 is designed to serve as a true interface
that displays information and provides access to controls with only minimal obscuration
of the underlying parts of the graphical user interface 62 being presented on the
communicant's display monitor. The HUD 84 efficiently shows:

WO 2010/065848 PCT/US2009/066764

-23-

. the ones of the communicant’s realtime contacts that currently are online,

. where the communicant and the communicant’s realtime contacts
currently are “located” in the virtual area 86,

. a progressive immersion control that controls the visualization of the
virtual area 86, and

. navigation controls that enable the user to quickly connect to a particular
place.

In particular, the HUD 84 provides communicants with inmediate access to their
realtime contacts and the virtual area where realtime collaboration occurs. The HUD 84
allows navigation through areas based on the locations of people as well as views into
virtual areas. These virtual areas can be accessed in several ways: most frequently
used, most recently used, or an application specific way.

[0109] The HUD 84 shows an ordered set of place tiles 108, 110, 112. Clicking
on one of the place tiles brings the user to the virtual area represented by the selected
place tile. For people, we have a basic metaphor of Go (to the communicant's area)
and Get (bring them to the user's area). This is refined in the HUD 84 by allowing
communicants to queue requests to go or get, as well as communicate with people via
text or voice without “moving.” The HUD 84 notifies the communicant when each
communication request is received from another communicant. The communicant can
accept the request, ignore it, or add it to a communications queue. In this way,
communicants can respond to non-priority communications at a later time. For
example, a communicant can queue communications received during a time when the
communicant is busy (e.g., engaged in a current communications session) and, after
the communicant is free, the communicant can respond to communication requests in
the communications queue.

[0110] As described above, the interaction network infrastructure service
maintains an interaction database that records who the communicant meets with and
where. The interaction service responds to queries on the relationship database with
query results that may be presented in a sorted order (e.g., most frequent or most
recent) based on place. In this way, the relationship database information can be used
to drive a frequency sort of who the communicant met in which areas, as well as sorts of
who the communicant has met with regardless of area, and sorts of the areas the
communicant has frequented most often. This data is used in the HUD 84. This data
also may be used by virtual area application developers as part of a heuristic system

WO 2010/065848 PCT/US2009/066764

-24-

(e.g. a rule that permits people who have visited a particular virtual area more than five
times to enter without knocking by default, or people who were present in a virtual area
at a particular time to modify and delete files created by another communicant there at
the same time).

[0111] In FIG. 5C, the HUD 84 presents a series of place tiles 108, 110, 112 that
represent respective virtual areas. Each of the virtual areas is tied to queries on the
relationship database. With respect to each virtual area, the rendezvous service does a
query on the relationship database for all of the contacts the user has met with in that
virtual area. The rendezvous service typically presents the identified contacts in a list
that is sorted either by frequency or by recentness of interaction (e.g., the contact with
whom the communicant interacted with last). In other embodiments, the contacts may
be sorted in some other application-dependent way.

[0112] Queries on the relationship database can be combined with other
searches. For example, queries on the relationship database may be combined with
queries on contact history data generated for interactions with contacts using another
communication system (e.g., Skype, Facebook, and Flickr). In one example, the Skype
virtual area 112 may be associated with a query on a communicant’s relationship data
associated with the Skype virtual area 112 and the communicant’s Skype history data to
produce a sorted list of realtime contacts of the user that are associated with the Skype
virtual area 112.

[0113] FIG. 5C shows the basic navigation of contacts and virtual areas in the
HUD 84. Clicking on the left-facing arrow associated with each of the virtual area tiles
108-112 displays a list of realtime contacts sorted by frequency of interaction, in a given
place. For example, clicking on the left-facing arrow 114 of the main HUD tile 84
(labeled “Office”) displays the realtime contacts the user communicates with most
frequently in the virtual area 86. The list of contacts (represented by respective icon
tiles) is sorted by frequency. The first contact in the list (DVW in this example)
represents the contact that the user collaborates with most frequently in the virtual area
86, followed by PJB, Tim, etc. Clicking on the upward-facing arrow 116 displays a set
of place tiles representing some or all the virtual areas the communicant has visited.
The set of place tiles typically is sorted by frequency, recentness, or other ordering.
The virtual area place tiles show the realtime activity currently occurring in the
corresponding virtual areas. For example, DVW, Kim and Joe (represented by
respective sprites in the Main virtual area tile 108) are all present in the Main virtual

WO 2010/065848 PCT/US2009/066764

-25-

area and are having a realtime conversation, whereas, Jeff, Ann and Jane (represented
by respective sprites in the virtual area tile 110) are all in the Facebook virtual area.

[0114] Should any communicant exit a virtual area or enter a virtual area, the
presence indicators (i.e., the sprites shown by circles, which typically are associated
with names or other identifiers) in that virtual area will automatically be updated in
realtime. This feature demonstrates the ability of a virtual area designer to put
application-specific realtime data into a place tile. The place tile may appear either
associated with a communicant, or with the communicant’s places. For example, a
game developer may export a map of where a communicant is in their game
environment such that other people connected to that communicant through the
relationship database receive a realtime feed of that communicant’s current activities.
These people can use this virtual area tile to navigate to that communicant,
communicate with him or her, or contact him or her (e.g., send an invitation to enter a
virtual area). The HUD 84 manages this interface to contacts and virtual areas for many
different virtual areas simultaneously.

[0115] The realtime data used in the HUD virtual area tiles 84, 108, 110, 112 is
provided by an interface that is managed by the area service hosting the relevant area
via the realtime kernel 20. Each area service may provide a different respective HUD
virtual area tile data feed to communicants based on the communicants’ permissions to
view the hosted virtual area. For example, if a communicant enters a virtual area that
the communicant does not have permission to view, the HUD virtual area tile may show
limited or no detailed information. In addition, the HUD virtual area tile data feed that is
provided by the hosting area service may be customized by the virtual area provider
operating that area service to present an application-specific view of the virtual area to
subscribing HUDs.

b. Local Human Interface Device (HID) and Audio Playback Devices

[0116] The local HID devices enable a communicant to input commands and
other signals into the client network node while participating in a virtual area
communications session. Exemplary HID devices include a computer keyboard, a
computer mouse, a touch screen display, and a microphone.

[0117] The audio playback devices enable a communicant to playback audio
signals received during a virtual area communications session. Exemplary audio
playback devices include audio processing hardware (e.g., a sound card) for

WO 2010/065848 PCT/US2009/066764

-26 -

manipulating (e.g., mixing and applying special effects) audio signals, and speakers for
outputting sounds.

c. So3D Graphical Display, Avatar, and Physics Engine

[0118] The So3D engine is a three-dimensional visualization engine that controls
the presentation of a respective view of a virtual area and objects in the virtual area on a
display monitor. The So3D engine typically interfaces with a graphical user interface
driver and the HID devices to present the views of the virtual area and to allow the
communicant to control the operation of the HUD application.

[0119] The So3D engine typically receives graphics rendering instructions from
the area service 26 via the realtime kernel 20. In some embodiments, the So3D engine
also reads a communicant avatar database that contains images needed for rendering
the communicant’s avatar in the virtual area. Based on this information, the So3D
engine generates a visual representation (i.e., an image) of the virtual area and the
objects in the virtual area from the point of view (position and orientation) of the
communicant’s avatar in the virtual area. The visual representation typically is passes
to the graphics rendering components of the operating system, which drive the graphics
rendering hardware to render the visual representation of the virtual area on the client
network node.

[0120] The communicant can control the presented view of the virtual area by
transmitting commands from a HID device (e.g., a computer mouse) to the realtime
kernel 20, which transmits view control commands to the So3D engine. The So3D
engine updates the view of the virtual area in accordance with the view control
commands. The So3D engine also updates the graphic representation of the virtual
area on the display monitor in accordance with updated object position information that
is received from the area service 26 via the realtime kernel 20.

d. System Database and Storage Facility

[0121] The system database and storage facility stores various kinds of
information that is used by the platform. Exemplary information that typically is stored
by the storage facility includes the presence database, the interaction database, an
avatar database, a real user id (RUID) database, an art cache database, and a virtual
area specification database. This information may be stored on a single network node
or it may be distributed across multiple network nodes.

WO 2010/065848 PCT/US2009/066764

-27-
C. EXEMPLARY COMMUNICATION SESSION

[0122] Referring back to FIG. 4, during a communication session, each of the
client network nodes generates a respective set of realtime data streams (e.g., motion
data streams, audio data streams, chat data streams, file transfer data streams, and
video data streams). For example, each communicant manipulates one or more input
devices (e.g., the computer mouse 52 and the keyboard 54) that generate motion data
streams, which control the movement of his or her avatar in the virtual area 66. In
addition, the communicant’s voice and other sounds that are generated locally in the
vicinity of the computer system 48 are captured by the microphone 60. The microphone
60 generates audio signals that are converted into realtime audio streams. Respective
copies of the audio streams are transmitted to the other network nodes that are
represented by avatars in the virtual area 66. The sounds that are generated locally at
these other network nodes are converted into realtime audio signals and transmitted to
the computer system 48. The realtime kernel 20 converts the audio streams that are
generated by the other network nodes into audio signals that are rendered by the
speakers 56, 58. The motion data streams and audio streams may be transmitted from
each of the communicant nodes to the other client network nodes either directly or
indirectly. In some stream handling topologies, each of the client network nodes
receives copies of the realtime data streams that are transmitted by the other client
network nodes. In other stream handling topologies, one or more of the client network
nodes receives one or more stream mixes that are derived from realtime data streams
that are sourced (or originated) from other ones of the network nodes.

[0123] In some embodiments, the area service 26 maintains global state
information that includes a current specification of the virtual area, a current register of
the objects that are in the virtual area, and a list of any stream mixes that currently are
being generated by the network node that is hosting the area service 26. The objects
register typically includes for each object in the virtual area a respective object identifier
(e.g., a label that uniquely identifies the object), a connection handle (e.g., a URI, such
as an |P address) that enables a network connection to be established with a network
node that is associated with the object, and interface data that identifies the realtime
data sources and sinks that are associated with the object (e.g., the sources and sinks
of the network node that is associated with the object). The objects register also
typically includes for each object one or more optional role identifiers, which may be
assigned explicitly to the objects by either the communicants or the area service 26, or

WO 2010/065848 PCT/US2009/066764

-28 -

may be inferred from other attributes of the objects. In some embodiments, the objects
register also includes the current position of each of the objects in the virtual area as
determined by the area service 26 from an analysis of the realtime motion data streams
received from the network nodes associated with objects in the virtual area. In this
regard, the area service 26 receives realtime motion data streams from the network
nodes associated with objects in the virtual area, tracks the communicants’ avatars and
other objects that enter, leave, and move around in the virtual area based on the motion
data. The area service 26 updates the objects register in accordance with the current
locations of the tracked objects.

[0124] In the process of administering realtime data stream connections with
other network nodes, the area service 26 maintains for each of the client network nodes
a set of configuration data, including interface data, a zone list, and the positions of the
objects that currently are in the virtual area. The interface data includes for each object
associated with each of the client network nodes a respective list of all the sources and
sinks of realtime data stream types that are associated with the object. The zone list is
a register of all the zones in the virtual area that currently are occupied by the avatar
associated with the corresponding client network node. When a communicant first
enters a virtual area, the area service 26 typically initializes the current object positions
database with position initialization information. Thereafter, the area service 26 updates
the current object positions database with the current positions of the objects in the
virtual area as determined from an analysis of the realtime motion data streams
received from the other client network nodes sharing the virtual area.

[0125] FIG. 6 shows an embodiment of a method in accordance with which an
embodiment of the area service 26 determines a set of required realtime data stream
connections to make when the user enters a virtual area or crosses a boundary
between zones of a virtual area. The area service 26 builds the list of occupied zones
for each communicant from the virtual area specification and the location of the
communicant's avatar in the virtual area instance (FIG. 6, block 180). In this process,
the area service 26 retrieves the current position of the user’s avatar in the virtual area
instance from the current object positions database, which contains the coordinates of
the avatar’s current position in the virtual area instance. The area service 26 then
compares the current position of the communicant’s avatar with the zone definitions in
the virtual area specification. The area service 26 compiles the occupied zones list from
all the zones in the virtual area specification that coincide with the current position of the

WO 2010/065848 PCT/US2009/066764

-29-

communicant’s avatar. For example, in some embodiments, the occupied zones list
consists of all the zones whose meshes contain the current position of the
communicant’s avatar.

[0126] The area service 26 determines a set of target realtime data stream types
that are defined for the zones in the occupied zones list (FIG. 8, block 182). The area
service 26 then determines a set of required realtime data stream data from the set of
target realtime data stream types, the positions of the objects in the virtual area
instance, and the switching rules defined in the virtual area specification (FIG. 6, block
184).

[0127] In some exemplary embodiments, after the area service 26 has
determined the set of realtime data stream data that enables the user to participate in a
collaborative communication session with other network nodes in the shared virtual area
instance (FIG. 6, block 184), the area service 26 determines the realtime data stream
connections that will result in the delivery of the required data stream data to the
computer system 120.

[0128] In some of these embodiments, the area service 26 determines a realtime
data stream handling topology that delivers the set of realtime data streams to the
computer system 120 based at least in part on bandwidth capabilities of the computer
system 120. In this process, the area service 26 determines a respective form in which
to receive each of the realtime data streams from an unmixed realtime data stream and
a stream mix derived from a combination of realtime data streams. The area service 26
also determines a network route over which each of the realtime streams is received
from a direct peer-to-peer network route and a network route mediated by one or more
of the other network nodes. After the stream handling topology has been determined,
the area service 26 sends instructions to the realtime kernel operating on the computer
system 120. The instructions specify the required realtime data stream connections
between the computer system 120 and other ones of the network nodes in accordance
with the determined stream handling topology.

[0128] FIG. 7 shows an embodiment of a method that is implemented by the
realtime kernel 20 in the process of determining a topology of realtime data stream
connections that deliver the required data stream data to the computer system 120.

[0130] In accordance with this method, the realtime kernel 20 determines if the
computer system 120 has sufficient bandwidth to receive the set of required realtime
data stream data 186 directly from the other network nodes (FIG. 7, block 188). In this

WO 2010/065848 PCT/US2009/066764

-30-

process, the other network nodes transmit link requests to the computer system 120.
The link requests indicate the respective bandwidth requirements for transmitting the
respective sets of realtime data streams needed by the computer system 120. The
realtime kernel 20 compares the overall bandwidth that is needed to establish the
required direct connections with the download bandwidth that is available currently to
the computer system 120.

[0131] If the available bandwidth is at least equal to the overall required
bandwidth, the realtime kernel 20 establishes direct connections with the other network
nodes that provide the required realtime data stream data (FIG. 7, block 190). In this
process, the realtime kemnel 20 creates sockets (e.g., TCP sockets or specialized
realtime sockets optimized for performance) hetween the computer system 120 and one
or more of the other network nodes. The realtime kernel 20 processes the realtime data
streams, including encrypting them, recording them, and delivering the processed data
streams to downstream software components as needed for rendering into the user
interface and transmission over the network 18.

[0132] If the available bandwidth is less than the required bandwidth (FIG. 7,
block 188), the realtime kemnel 20 checks the stream mix list to determine if a stream
mix that provides the required realtime data stream data currently is being generated by
the area service 26 (FIG. 7, block 192). If the needed stream mix is available, the
realtime kernel 20 establishes with the area service 26 a connection over which a copy
of the needed realtime data stream mix is transmitted from the area server 28 to the
computer system 120 (FIG. 7, block 194). If the needed stream mix is not available, the
realtime kernel 20 sends a stream mix request to the area service 26 (FIG. 7, block
196). If possible, the area service 26 generates the needed stream mix in response to
the stream mix request.

IV. SYSTEM ARCHITECTURE
A INTRODUCTION

[0133] A communicant typically connects to the network 18 from a client network
node, which typically is implemented by a general-purpose computer system or a
dedicated communications computer system (or “console”, such as a network-enabled
video game console). The network node executes communications processes that
establish realtime data stream connections with other network nodes and typically

WO 2010/065848 PCT/US2009/066764

-31-

executes visualization rendering processes that present a view of each virtual area
entered by the communicant.

[0134] FIG. 8 shows an embodiment of a client network node that is implemented
by a computer system 120. The computer system 120 includes a processing unit 122, a
system memory 124, and a system bus 125 that couples the processing unit 122 to the
various components of the computer system 120. The processing unit 122 may include
one or more data processors, each of which may be in the form of any one of various
commercially available computer processors. The system memory 124 may include a
read only memory (ROM) that stores a basic input/output system (BIOS) that contains
start-up routines for the computer system 120 and a random access memory (RAM).
The system bus 126 may be a memory bus, a peripheral bus or a local bus, and may be
compatible with any of a variety of bus protocols, including PCI, VESA, Microchannel,
ISA, and EISA. The computer system 120 also includes a persistent storage memory
128 (e.g., a hard drive, a floppy drive, a CD ROM drive, magnetic tape drives, flash
memory devices, and digital video disks) that is connected to the system bus 126 and
contains one or more computer-readable media disks that provide non-volatile or
persistent storage for data, data structures and computer-executable instructions.

[0135] A communicant may interact (e.g., input commands or data) with the
computer system 120 using one or more input devices 130 (e.g. one or more
keyboards, computer mice, microphones, cameras, joysticks, physical motion sensors
such Wii input devices, and touch pads). Information may be presented through a
graphical user interface (GUI) that is presented to the communicant on a display
monitor 132, which is controlled by a display controller 134. The computer system 120
also may include other input/output hardware 136 (e.g., peripheral output devices, such
as speakers and a printer). The computer system 120 connects to other network nodes
138, 140, and 142 through a network adapter 138 (also referred to as a “network
interface card” or NIC).

[0136] A number of program modules may be stored in the system memory 124,
including an operating system (OS) 144 (e.g., the Windows XP® operating system
available from Microsoft Corporation of Redmond, Washington U.S.A)), the realtime
kernel 20, drivers 146 (e.g., a GUI driver), network protocols 148, a local software
application 150 (e.g., the HUD 84), and data (e.g., input data, output data, program
data, a registry 156, and the configuration settings 152).

WO 2010/065848 PCT/US2009/066764

-32-
B. OPERATING SYSTEM

[0137] The operating system 144 hosts software applications by providing the
base operating system services for creating a run-time execution environment on the
computer system 120. Among the exemplary types of services that typically are
provided by the operating system are resource management, file management, security,
authentication, verification, notification, and user interfaces (e.g., windowing, menus,
dialogs, etc.).

[0138] The services relating to the management of the resources (e.g., memory,
processors, and I/O devices) of the computer system 120 typically are implemented by
an operating system kemel. File management may be implemented by the operating
system kemel or it may be implemented by a separate file system manager (e.g., the
installable file system, which is provided in some Microsoft® Windows® operating
systems). In the process of opening a file (e.g., a computer data file or a software
application file), the file system manager typically calls an appropriate file system driver
that looks up the disk storage location of the file in a database (e.g., afile allocation
table, such as FAT, FAT98, VFAT, MFT, and CDFS) that maps out the storages
locations of the file on the disk. Other operating system functions, such as security,
authentication, verification, notification, and user interfaces, may be provided by one or
more other components of the operating system (e.g., the executive services layer in
some Microsoft® Windows® operating systems).

[0139] Among the exemplary types of services that typically are provided by the
operating system kernel are process management, memory management, device
management, and system call handling. Process management includes running
applications and providing an application programming interface (API) to hardware
components of the computer system. In the process of running a software application,
the operating system kernel typically sets up an address space in memory for the
software application, loads a file that contains the software application code into the
address space, and executes the loaded software application code. Memory
management involves managing software application accesses to the system memory
124. Device management involves providing access to hardware devices through
device drivers. System call handling involves providing an API that exposes the
operating system kernel services to user mode software applications. By invoking the
API (e.g., through inter-process communication mechanisms and system calls), a
software application can request a service from the operating system kernel, pass

WO 2010/065848 PCT/US2009/066764

-33-

parameters, and receive results that are generated by the service in response to the
request.

[0140] The operating system 144 typically stores hardware and software
configuration information, user preferences, and setup information in the registry 156.
For example, the registry 156 typically contains the following information: parameter
values that are needed to boot and configure the system; system-wide software settings
that control the operation of the operating system 144; a security database; and per-
user profile settings. In some embodiments, the connection rules 32 are stored in the
registry 156 instead of a separate database.

C. NETWORK PROTOCOLS

[0141] The network protocols 148 control or enable the connection,
communication, and transfer of data between the computer system 120 and other
network nodes. Exemplary types of network protocols include the Transmission Control
Protocol/Internet Protocol (TCP/IP), the User Datagram Protocol/Internet Protocol
(UDP/IP), the realtime Transport Protocol (RTP), and the Session Initiation Protocol
(SIP).

[0142] The TCP/IP includes a TCP portion and an IP portion. The TCP portion of
the protocol provides the transport function by breaking a message into smaller packets,
reassembling the packets at the other end of the communication network, and re-
sending any packets that get lost along the way. The IP portion of the protocol provides
the routing function by assigning to the data packets addresses for the destination
network and the target node at the destination network. Each data packet that is
communicated using TCP/IP includes a header portion that contains the TCP and IP
information. The IP provides no guarantee of packet delivery to the upper layers of the
communications stack. The TCP, on the other hand, provides a connection-oriented,
end-to-end transport service with guaranteed, in-sequence packet delivery. In this way,
the TCP protocol provides a reliable, transport layer connection.

[0143] The UDP is a message-oriented transport layer protocol that provides an
interface between the application layer and the internet layer. UDP does not guarantee
message delivery to the application layer. UDP is a connectionless protocol in that
there is no effort made to setup a dedicated end-to-end connection. A UDP sender
retains no state information about UDP messages after they are sent. Communication

WO 2010/065848 PCT/US2009/066764

-34-

is based on transmission of messages in one direction from source to destination
without checking the state of the receiver.

[0144] The RTP defines a standardized packet format for delivering audio and
video over network connections. A variety of network protocols may be used in
transmitting and receiving RTP data between network nodes, including peer-to-peer
networking frameworks, a centralized server using TCP sockets alone or in combination
with UDP, and multicast protocols.

[0145] The SIP provides means for users to locate one another, establish
communicative sessions, and terminate active sessions. With a SIP transaction,
session negotiations processes are handled in accordance with a Session Description
Protocol (SDP).

D. DEVICE DRIVERS

[0146] The device drivers 146 typically are implemented by software applications
that enable other software applications (e.g., user-mode software applications and the
operating system) to interact with hardware devices that are connected to the computer
system 120. A device driver typically provides an API for functions that can be invoked
by calls made by software processes in order to translate commands and data that are
transferred between the software processes and the hardware device.

E. REALTIME KERNEL
1. INTRODUCTION

[0147] The realtime kernel 20 includes services that control the processing and
switching of realtime data streams between the computer system 120 and other network
nodes sharing a virtual area communication environment, as well as the presenting of a
respective view of a virtual area and objects in the virtual area on the display monitor
132. Inthese processes, the realtime kemnel interfaces with the operating system
functions that communicate with the drivers 148 to translate commands and data to and
from the hardware components of the computer system 120 in order to exchange
realtime data streams with other network nodes and to present an immersive virtual
area communication experience to the communicant.

[0148] Implementations of the realtime kernel 20 include one or more discrete
modules or libraries (e.g., dynamic linked libraries) that are not limited to any particular
hardware, firmware, or software configuration. In general, these modules may be
implemented in any computing or data processing environment, including in digital

WO 2010/065848 PCT/US2009/066764

-35-

electronic circuitry (e.g., an application-specific integrated circuit, such as a digital signal
processor (DSP)) or in computer hardware, firmware, device driver, or software. In
some embodiments, the functionalities of the modules are combined into a single data
processing component. In some embodiments, the respective functionalities of each of
one or more of the modules are performed by a respective set of multiple data
processing components. In some implementations, process instructions (e.g.,
computer-readable code, such as computer software) for implementing the methods
that are executed by the embodiments of the realtime kernel 20, as well as the data
they generate, are stored in one or more computer-readable media. Storage devices
suitable for tangibly embodying these instructions and data include all forms of non-
volatile computer-readable memory, including, for example, semiconductor memory
devices, such as EPROM, EEPROM, and flash memory devices, magnetic disks such
as internal hard disks and removable hard disks, magneto-optical disks, DVD-
ROM/RAM, and CD-ROM/RAM.

2. EXEMPLARY REALTIME KERNEL FUNCTIONALITY

[0149] The realtime kernel 20 cooperates with one or more of the network
infrastructure services in establishing and administering the network connections
between the computer system 120 and the other network nodes sharing a virtual area
communication environment. Among the exemplary functionalities that are involved in
the process of establishing and administering network connections are session
administration, remote-controlled stream handling, and realtime task scheduling.

e. Session Administration

[0150] FIG. 9 shows an embodiment of a method that is implemented by the
realtime kernel 20 in response to a realtime kemnel API call requesting a connection to a
virtual area.

[0151] In accordance with the method of FIG. 9, the realtime kernel 20
determines a designation of a virtual area (FIG. 9, block 160). In some embodiments,
this functionality of the realtime kernel 20 is invoked by issuing a realtime kernel API call
that includes a virtual area designation to a realtime kemel service . The realtime kernel
API call may be made by any of a software application, an operating system service.

[0152] The realtime kernel 20 establishes a session with a network infrastructure
service that hosts the designated virtual area (FIG. 9, block 162). In this process, the
realtime kernel 20 establishes a session with the area service 26. The realtime kemel

WO 2010/065848 PCT/US2009/066764

-36-

20 then transmits to the area service 26 a request to connect to the designated virtual
area. The area service 26 determines an instance of the virtual area that is designated
in the request received from the realtime kernel 20. After determining the instance of
the virtual area instance, the area service 46 determines if the user's capabilities satisfy
the capability requirements associated with the virtual area instance. If the user's
capabilities meet the capability requirements, the area service 46 transmits a message
indicating the availability of state data that describes a current state of the virtual area
instance (e.g., a list of the objects currently in the virtual area instance, along with the
names of communicants associated with those objects).

[0153] The realtime kemel 20 subscribes to state data describing the current
state of the virtual area instance (FIG. 9, block 164). In response to the subscription
request, the area service 26 publishes the state data to a channel on the link between
the realtime kernel 20 and the area service 26.

[0154] In some embodiments, So3D engine of the realtime kernel 20 invokes a
user interface service of the operating system 144 to render a human-perceptible view
of the state data. For example, the So3D engine may invoke the interface service to
render a representation of each of the communicants associated with objects currently
in the area on the display 132. In some embodiments, the communicants may be
represented by an icon, thumbnail image, or other graphic that optionally is labeled with
the communicant’s name. In some embodiments, the state data is presented in a
graphical interface of a software application that triggered the invocation of the realtime
kernel 20. In some embodiments, the state data is presented in an embodiment of the
heads-up display (HUD) interface 84 (see FIGS. 5A-5C).

[0155] After a connection has been established with a virtual area instance, the
software application that triggered the invocation of the realtime kernel 20 can give the
user an option to request entry into the virtual area instance or can automatically
request entry into the virtual area instance on behalf of the user.

[0156] FIG. 10 shows an embodiment of a method that is implemented by the
realtime kernel 20 in response to a realtime kemnel API call requesting entry into a virtual
area.

[0157] In accordance with the method of FIG. 10, the realtime kernel 20 declares
an intention to enter the virtual area to the network infrastructure service hosting the
virtual area (FIG. 10, block 168). In this process, the realtime kernel 20 sends a
message containing the declaration to the area service 26. The message may be sent

WO 2010/065848 PCT/US2009/066764

-37 -

on a channel of an existing link with the area service 26 or over a new link that is
established with the area service 26 by the realtime kernel 20. In response, the area
service 26 determines if the user’s capabilities satisfy the capability requirements that
are associated with the virtual area instance. If the user's capabilities meet the
capability requirements, the area service 26 retums configuration data to the realtime
kernel 20. The configuration data typically includes a definition of the virtual area
instance, a register of the objects currently in the virtual area instance, and a set of
realtime data stream sources and sinks that are associated with objects in the virtual
area in accordance with the specification of the virtual area instance.

[0158] The realtime kemel 20 initiates transfer of at least one realtime data
stream over at least one network connection with at least one realtime data stream
source respectively associated with at least one object in the virtual area (FIG. 10, block
170). In this process, the realtime kernel 20 ascertains one or more network nodes that
are associated with the instance of the virtual area based on the configuration data that
was received from the area service 26. The realtime kernel 20 then initiates transfer of
at least one realtime data stream over at least one network connection with at least one
of the ascertained network nodes. The connections between the realtime kernel 20 and
the other network nodes may be peer-to-peer connections or server-mediated
connections. With respect to a peer-to-peer connection, the connection target network
node and the realtime kernel 20 typically authenticate one another, and then establish a
link over which to transmit the at least one realtime data stream either to or from the
connection target. Links typically are one-way and requested by the transmitter and
accepted or rejected by the receiver.

[0159] In the illustrated embodiment, the realtime kernel 20 processes the
initiated realtime data streams in accordance with at least one stream handling
definition in the specification of the virtual area instance (FIG. 10, block 172). In this
process, the realtime kemel 20 assembles a set of stream processing objects into a
directed graph in accordance with the stream processing configuration that is defined in
the virtual area specification.

f. Remote-Controlled Stream Handling

[0160] FIG. 11 shows an embodiment of a method that is implemented by the
realtime kernel 20 in response to stream handling instructions that are received from the
area service 26.

WO 2010/065848 PCT/US2009/066764

-38-

[0161] In accordance with the method of FIG. 11, the realtime kernel 20 receives
one or more stream handling instructions from the area service 26 operating on a
remote network node, where the stream handling instructions include a specification of
a stream handler for processing at least one realtime data stream (FIG. 11, block 200).
The realtime kemel 20 creates a stream handler in accordance with the stream handler
specification (FIG. 11, block 202). The stream handler typically includes a mixing
function that is specified in the one or more stream handling instructions. The mixing
function is used to mix the realtime data stream with at least one other realtime data
stream to produce a mixed realtime data stream. The realtime kernel 20 produces a
resultant data stream in a process that includes processing a realtime data stream
through the created stream handler (FIG. 11, block 204). In some embodiments, this
process involves determining configuration parameter values from realtime state
information that is specified in the one or more stream handling instructions, and
dynamically configuring the stream handler with the configuration parameter values.

[0162] FIG. 12 shows an embodiment of a stream handler 206 that is created by
a stream handler configuration manager 208 (which is component of the realtime kernel
20) in accordance with stream handling instructions 210 that are received from the area
service 26. The stream handler configuration manager 208 typically is composed of
one or more constituent services and other components of the realtime kermel 20. The
stream handler configuration manager 208 constructs the stream handler 206 from a set
of processing objects (also referred to as processing graph elements or PGEs). Each of
the processing objects is a software object that is capable of performing a particular
function on a data stream (e.g., a transformation function, a splitting function, and a
mixing function). The stream handler configuration manager 208 instantiates the
processing objects that are specified in the one or more stream handling instructions
and assembles the instantiated processing objects into a directed graph component 212
of the stream handler 206 in accordance with the specification. In some embodiments,
the stream handling instructions specify the processing objects with respective unique
identifiers and the stream handler configuration manager 208 instantiates the
processing objects by issuing calls that include respective ones of the identifiers to a
processing object API. The stream handler 206 is configured to process multiple data
streams 214 of a particular data type (e.g., audio, video, and motion data types) through
respective processing chains 216-218, which are composed of respective ones of the
processing objects. The stream handler 206 additionally includes a mixing object 220

WO 2010/065848 PCT/US2009/066764

-39 -

(which was specified in the one or more stream handling instructions). In operation, the
stream handler 206 executes the mixing object 220 to produce a mixed realtime data
stream 222 from a combination of the processed realtime data streams 216-218. In
some embodiments, at least one of the instantiated processing objects encapsulates a
respective call to a driver module 224, which controls a hardware component of the
local network node based at least in part on the resultant data stream 222.

g. Realtime Task Scheduling

[0163] FIG. 13 shows an embodiment of a method that is implemented by the
realtime kernel 20 in a process of scheduling tasks that are performed by the realtime
kernel 20.

[0164] In accordance with the method of FIG. 13, the realtime kernel 20
establishes at least one realtime data stream connection with at least one remote
network node (FIG. 13, block 230).

[0165] The realtime kernel 20 processes at least one realtime data stream that is
sourced by the remote network node (FIG. 13, block 232). In this process, the realtime
kernel 20 processes the at least one realtime data stream through one or more realtime
data processing operations to produce a resultant data stream.

[0166] The realtime kernel 20 monitors the processing of the at least one realtime
data stream (FIG. 13, block 234). In some embodiments, the realtime kernel 20
monitors one or more of the following parameters: the rate at which the resultant data
stream is produced; utilization of at least one processor of the local network node; and
bandwidth utilization by at least one networking resource of the local network node. In
some embodiments, the realtime data stream is packetized into frames and the realtime
kernel 20 monitors the processing of each of each of the frames during each of
successive fixed length intervals that are set in accordance with a local clock, which
typically is synchronized with a remote master clock service. Based on the monitoring,
the realtime kernel 20 determines whether or not the processing of the realtime data
stream deviates from a performance target. In some embodiments, the performance
target includes a time-based threshold on the production of the resultant data stream.
For example, in some embodiments, the performance target is a predicate (i.e.,
condition) on the rate at which frames of the resultant data stream are produced.
Exemplary performance targets of this type include a target threshold and a target
range.

WO 2010/065848 PCT/US2009/066764

-40-

[0167] In response to a determination that the processing of the at least one
realtime data stream varies from a performance target, the realtime kernel 20 modifies
the processing in accordance with a realtime performance targeting routine (FIG. 13,
block 236).

[0168] FIG. 14 shows an embodiment of a method that is performed by the
realtime kernel 20 based on the monitoring of the processing of the at least one realtime
data stream. In response to a determination that the processing of the at least one
realtime data stream fails to satisfy the performance target (FIG. 14, block 238), the
realtime kernel 20 reduces that computational resource load to a lower level (FIG. 14,
block 240). Depending on the design of the realtime performance targeting routine, the
realtime kernel 20 typically reduces the computational resource in one or more of the
following ways: the realtime kernel 20 may omit the processing of one or more portions
of the realtime data stream (FIG. 14, block 242); the realtime kernel 20 may omit one or
more of the realtime data processing operations (FIG. 14, block 244), and the realtime
kernel 20 may replace at least one of the realtime data processing operations with a
different respective data processing operation (FIG. 14, block 246). In the process of
omitting the processing of one or more portions of the realtime data stream (FIG. 14,
block 242), the realtime kemel 20 typically performs at least one of the following
operations: omitting one or more of the data processing operations that are
characterized by respective performance values that are outside the performance
target; and preferentially omitting one or more of the data processing operations based
on priority values that are respectively assigned to ones of the data processing
operations.

[0169] If the processing of the at least one realtime data stream satisfies the
performance target (FIG. 14, block 238) and the computational load has been reduced
to a lower level by any of the methods described above (FIG. 14, block 248), the
realtime kernel 20 increases the computational load from the lower level (FIG. 14, block
250). The realtime kernel 20 typically increases the computational resource load by
reversing one or more of the operations that were used to reduce the computational
resource load in block 240 in accordance with a heuristic. If the processing of the at
least one realtime data stream satisfies the performance target (FIG. 14, block 238) and
the computational load has not been reduced to a lower level by any of the methods
described above (FIG. 14, block 248), the realtime kernel 20 maintains the current
processing of the realtime data stream.

WO 2010/065848 PCT/US2009/066764

-41-

[0170] In some embodiments, the realtime kernel 20 instantiates processing
objects that perform respective ones of the data processing operations on the at least
one realtime data stream. The realtime kernel 20 builds a directed graph from ones of
the instantiated processing objects and processes the at least one realtime data stream
through the directed graph. Depending on the realtime performance targeting routine,
the realtime kernel 20 may modify the processing of the realtime data stream by pruning
one or more of the instantiated processing objects from the directed graph. In some
embodiments, the processing objects are assigned respective priority values, and the
realtime kernel 20 prunes processing objects by removing ones of the instantiated
processing objects from the directed graph based on the assigned priority values. For
example, in some of these embodiments, the pruning includes removing from the
directed graph ones of the instantiated processing objects having assigned respective
priority values that fail to satisfy a priority threshold.

[0171] In some embodiments, the realtime kernel 20 builds from ones of the
instantiated processing objects a second directed graph that is used to process a
second realtime data stream that is sourced by one of the local network node and the at
least one remote network node. In some of these embodiments, the first and second
directed graphs are assigned respective priority values, and the realtime kernel modifies
the processing of the first and second realtime data streams by preferentially modifying
one of the first and second directed graphs based on the assigned priority values. For
example, the realtime kernel may tear down the one of the first and second directed
graphs that is assigned a lowest priority value.

[0172] In some embodiments, the realtime kernel 20 processes a second
realtime data stream through the directed graph, where the second realtime data stream
is sourced by one of the local network node and the at least one remote network node.
In some of these embodiments, the first and second realtime data streams are assigned
respective priority values, and the realtime kernel 20 preferentially modifies the
processing of one of the first and second realtime data streams based on the assigned
priority values.

[0173] In some embodiments, the realtime kernel 20 establishes respective
realtime data stream connections between the local network node and multiple remote
network nodes. The realtime kemel 20 processes through the directed graph realtime
data streams that are sourced by respective ones of the remote network nodes. In
some of these embodiments, the realtime data streams are assigned respective priority

WO 2010/065848 PCT/US2009/066764

-42 -

values, and the realtime kernel 20 preferentially medifies the processing of one or more
of the realtime data streams based on the assigned priority values. The directed graph
typically includes multiple directed chains of respective ones of the instantiated
processing objects. The realtime kernel 20 typically processes a respective one of the
realtime data streams through each of the directed chains. In some of these
embodiments, the realtime kernel 20 iteratively modifies the processing of the realtime
data streams until the processing is within the specified performance target. During
each of the iterations, the modifying typically includes performing one or more of (i)
removing one or more of the chains from the directed graph and (ii) pruning one or more
of the instantiated processing objects from the directed graph.

V. EXEMPLARY REALTIME KERNEL EMBODIMENT
A INTRODUCTION

[0174] FIG. 15 shows an embodiment 260 of the realtime kernel 20. The realtime
kernel 260 supports remote configuration and execution of a 2D/3D graphics rendering
engine and an audio mixing and switching engine on different network nodes to create a
sense of physical presence between two or more communicants. In the process of
managing all communicants interacting in a single virtual area instance at one time, the
area service 26 remotely configures the sessions between the realtime kernel 260 and
other network nodes via a packet transport component (referred to herein as the
STRAW service 268) of the realtime kernel 260. In some embodiments, the realtime
kernel 260 configures data streams (e.g., realtime audio data streams) point-to-point
(P2P), so as to minimize communication with the area service 26. The area service 26
also can mix data streams and pipe them to client network nodes when necessary. The
realtime kernel 260 will report P2P connection failures to the area service 26 so that the
area service 26 can determine when to mix data streams for the client network nodes.
The realtime kemmel 260 has a small initial footprint, and loads updates and incremental
functionality over network connections as plugins.

[0175] The realtime kernel 260 includes a set of managers and services. Among
the realtime kernel managers are a connection and service mix manager 262, an
area/zone manager 264, and a plugin manager 266. Among the realtime kernel
services are a STRAW service 268, a SODA handler service 270, a media service 271,
an audio stream service 272, a So3D interface service 274, an asset cache service 275,
one or more social processors 277, a recording, playback, and transport bus service

WO 2010/065848

PCT/US2009/066764

-43-

276, a realtime scheduler service 278, a time service 280, a SIP service 282, a local

HID/RDS driver handler service 284, and interface services for local audio devices

including local audio playback 286, a local speaker 288, a local microphone 290, and

Skype® audio. In one exemplary embodiment, the realtime kernel 260 is implemented

by the following runtime package components:

B.

LIBRARIES:

Library Name
SORK.DLL
Compress.DLL
Media.DLL
SODA.DLL

GIPS.DLL
OpenAL.DLL
AudioSve.DLL
TransBus.DLL
OpenAL.DLL
STRAW.DLL
CSMMgr.DLL
AreaZone.DLL
ArtCache.DLL

So3D.DLL
TimeSID.DLL
PluginMgr.DLL

Description
Realtime scheduler 278

Compression engine

Media Service 271 for streaming audio transport
SODA channel service 270 for streaming SODA
definition transport

GIPS voice components

Open Audio Library for sound card support

Audio stream service 272

Media transport bus including Audio stream service 272
Sound card

STRAW Service 268 (packet transport engine)
Connection and Server Mix Manager 262

Area/Zone Manager 264

Asset Cache service providing SODA interface to art in
local db

SODA interface to the 3D rendering engine

Network time standard interface

Plugin manager

OTHER PLUGINS:

Encryption algorithm
Compression algorithm
Authentication algorithm

Credential
Audio Mix
Audio Source
Audio Codec

Audio Calculation
Graphical effect
Physics extension
Script extension
Input device hosting

REALTIME KERNEL DESIGN

[0176] As shown in FIG. 15, the realtime kernel 260 is designed as a collection of

services, plugins and a realtime scheduler, which constitute a platform for rendering

virtual area communication environments in accordance with instructions received from

the area service 26. Services work together to implement the platform, operating at

WO 2010/065848 PCT/US2009/066764

-44 -

different levels - from network features through audio and graphics rendering
configuration. Plugins are of various classes, each adhering to a Plugin Management
API, each with its own class API. The realtime scheduler 278 ensures that audio and
graphic rendering occur at an even frame rate. The platform is configured in
accordance with an instance of a virtual area by area service 26 through SODA
definition records transmitted over a STRAW UDP socket (see section VI, which
contains SODA definitions for an exemplary set of SODA records.). The STRAW
service 268 de-multiplexes SODA record streams using a publish/subscribe model.
SODA records are transmitted only when a subscriber exists on the other end of a
STRAW socket. Received SODA records are delivered to one or more subscribers on
arrival. Services support local APIs for use by the So3D graphics engine and the HUD
84.

[0177] The following sub-sections describe the installation, design, and operation
of embodiments of the realtime kernel 260 and its components.

1. INSTALLATION
a. Overview

[0178] In some embodiments, the virtual area based rendering platform is
downloaded as a software package over the interet as an installation package. It is
delivered by HTTP download from a download server. On client network nodes
operating a Microsoft® Windows® operating system, the platform software package is a
.msi package. The initial installation is a single package that is amended on the
download server as updates become available. When a new client network node
performs a current installation, no other updates are needed until such time as
subsequent updates are created.

[0179] The realtime kemel 260 makes use of plugins to customize applications.
Necessary plugins are included in the installation package. From time to time
components may be updated independently (e.g., realtime kernel services may be
point-released and plugins may be added). In this case a separate Windows® .msi
installation package may be created for the point release and registered with an update
server. The installed platform software will be informed of the update and will offer the
communicant the option of upgrading. Some communicants may delay upgrading until
more than one update is available. When the communicant finally agrees to upgrade,
all available updates will be loaded and applied sequentially.

WO 2010/065848 PCT/US2009/066764

-45-

[0180] Multiple versions of a plugin may be present on a client network node at
the same time. This is because the client network node typically negotiates features,
and chooses the plugin that suits the API and version requirements. Each plugin
advertises its AP| and variants. The plugins will have different file names to avoid name
collision in the file system. Two plugins with the same API and different variants are
different implementations, and the choice is made by the service requesting the plugin
(perhaps by negotiation with a server for instance). When a plugin is loaded with the
same API and variant as an existing plugin, this is a bug-fix. The new plugin replaces
the old one. Services are always replaced by an upgrade. There are never two
services with the same API. The Windows® installation uses a manifest and bundled
Windows® dependent DLLs, to guarantee a functioning product regardiess of the
update state of the Windows® environment. The Windows® side-by-side feature is
used to avoid conflicting with other product installation requirements.

b. Update Server

[0181] The update server contains installation packages for each supported host
operating environment, and upgrade packages for each previous supported installation
package.

[0182] The client network node and the update server communicate over a
reliable STRAW channel. The update server publishes available upgrade definitions for
each supported host operating environment. The virtual area based rendering platform
software that is installed on the client network node subsequently may subscribe to an
upgrade. The update server begins sending the desired software piecemeal.

[0183] In some embodiments, a client version and upgrade tool is installed on
each client network node to allow the user to see the current client software version, list
available upgrades and start and monitor the upgrade process. The client network node
will keep a table of the GUIDs of the upgrade packages that have been applied. It will
present this list to the update server, and in return get a list of pending upgrades by
GUID, in order of application. They will have attached description, size and date
attributes.

[0184] An upgrade is marked “applied” only when the download completes, and
the automatic install reports success. The automatic install process includes stopping
any running SORK services so the DLLs can be overwritten. Downloading an upgrade
is done through a sequence of SODA records, so the process can be interrupted and

WO 2010/065848 PCT/US2009/066764

-46 -

resumed without repeating any data transfer. The records include the upgrade GUID
and an offset.

[0185] Since there is no requirement for rolling back or uninstalling, there is no
need for any Microsoft® Windows® “side-by-side” library manifests. Any required
libraries can be loaded as part of the upgrade.

[0186] The upgrade tool will make a registry entry or keep a file, containing the
GUIDs of applied upgrades as well as the GUID of any current loading upgrade, its
offset and a reference to the file on disk containing the data “so far’. Upgrade packages
are deleted once applied. If it is desirable to cache an upgrade package for multiple
client network nodes, then point them each at the same client proxy which will do the
caching.

C. Update Local Database

[0187] The client network node stores the virtual area based rendering platform
services and plugins in an asset directory in local file system. The services and plugins
are self-describing, through APls and attached resources. No further information is kept
on the client network node software state. When a client network node reinstalls the
virtual area based rendering platform software, perhaps after an OS upgrade, existing
plugins typically are revalidated. The fresh installation includes all basic services and
plugins, but there may be present on the machine optional or application-specific
plugins, which typically are deleted or re-validated. In some embodiments, the binary
content of valid plugins is hashed and one-way encrypted and the resulting value is
stored as an attached resource that is used to check whether or not the plugins are
authentic. To validate a suspected plugin, the current plugin content is rehashed and
encrypted, and the resulting value is compared with the existing resource. If the content
does not match the resource, then the plugin is invalid.

d. Client Authentication

[0188] Network authentication typically is made once each time the realtime
kernel 260 is launched. In some embodiments, an account server running the account
network infrastructure service is used to authenticate the communicant and establish a
real user identifier (RUID) for the communicant. The account server creates a token
(subsequently included as part of the RUID) and gives it to the client network node to
authenticate itself to other servers. In this process, the client network node is securely
issued a credential at installation time. The credential typically is a CA-defined

WO 2010/065848 PCT/US2009/066764

-47 -

certificate that is signed by a certificate authority. The certificate contains a private and
public key. The virtual area based rendering platform installation package creates a
new credential containing just the public key. The private key is stored securely on the
client network node. The virtual area based rendering platform installation package
creates a signature using the private key to encrypt a digest of a communicant-supplied
password, and transmits the signature securely to the account server. The account
server recovers the digest and stores it as the client identifying secret.

[0189] When establishing connections, the realtime kernel 260 shares the
credential with the account server. The account server responds with its credential
(e.9., a server-side certificate). The client network node and the account server validate
the credentials using a registration authority. Once verified, the server-side credential is
valid for any server anywhere.

[0190] In some embodiments, the account server also provides a random 128-bit
challenge phrase to the client network node. The client network node hashes the
challenge phrase with a cryptographic digest of the communicant-provided password
and returns this as a response. The account server also hashes the challenge phrase
with the previously-obtained digest for that communicant and verifies that the response
from the client network node matches. The network connection is now authenticated
and the communicant is identified as the owner of the private key.

[0191] In some embodiments, the account server assigns to the communicant a
random Client ID with attached signatures. The signature is a 128-bit hash of the Client
ID encrypted using the account server private key. The signature can only be created
by the account server. Anyone receiving the token can validate the communicant by
decrypting the digest using the public key published by the account server and
comparing it with the Client ID.

e. Account Server Authentication

[0192] FIG. 16 shows an embodiment of a method by which an account server
296 is authenticated through its credential. In accordance with this method, a client
network node 294 and the account server 296 exchange credentials (FIG. 16; blocks
298, 300). The client network node 294 issues a Server ID and Server Token to the
account server 296 for later fast validation of the account server 296 to the client
network node 294 (FIG. 16; block 302). The account server 296 then issues the Client
ID and an attached identifying token to the client network node 294 (FIG. 16; block 304).

WO 2010/065848 PCT/US2009/066764

-48 -

The authentication phase on the stream to the account server is encrypted using the
participants’ public keys.

2. INITIALIZATION SEQUENCE

[0193] FIG. 17 shows an embodiment of a method that is implemented by a
loader component of the realtime kernel 260 each time the operating system on the
client network node is launched. In this process, the loader parses a static list of kernel
components that includes one or more kernel service components (FIG. 17, block 320).
The loader determines all the kemnel components in the parsed list that are missing from
a local repository (e.g., a directory in the local file system) (FIG. 17, block 322). The
loader retrieves each of the kernel components that is determined to be missing (FIG.
17, block 324). In some embodiments, the loader instantiates on the client network
node an update service that retrieves the missing kernel components from a remote
network node (e.g., the download server or the update server). After the missing kernel
components have been retrieved, the loader instantiates kernel services from respective
ones of the kernel service components (FIG. 17, block 326). The instantiated kernel
services are executed to communicate with one or more remote network nodes in a
communication environment that is defined with respect to a virtual area (FIG. 17, block
328). For example, in some embodiments, the HUD 84 invokes the kermnel services to
communicate with an area server in order to establish a HUD session or an area
session as described in detail herein.

[0194] In some embodiments, the following services of the realtime kemel 260
are loaded at boot time as Windows® service DLLs:

. STRAW service 268
. SODA service 270

. media service 271

. audio stream service 272

. connection and server mix manager 262
. area/zone manager 264

. asset cache service 275

. realtime scheduler service 278

. HUD 84

. default plugins

[0195] In these embodiments, services are loaded by name, not by GUID. Only
one copy of each service is present on a client network node at one time. After loading,

WO 2010/065848 PCT/US2009/066764

-49-

the SODA channel service 270, the media service 271, the audio stream service 272,
the area/zone manager, and the realtime scheduler service wait idle. The connection
and server mix manager leaves audio un-configured and waits for a definition of a
connection to an area server. The default plugins are registered by GUID as API class
objects. They are loaded when referenced by GUID in a definition. The HUD 84
contacts the account server, authenticates and identifies the communicant. The HUD
84 creates a stream to the rendezvous network infrastructure service and the interaction
network infrastructure service and populates its most recently used (MRU) friends and
area lists and its frequency friends and area lists. The asset cache service 275 typically
contacts the art database server and begins to cache digital resources according to a
heuristic and update its GUID map.

3. SESSIONS

[0196] The realtime kernel 260 manages sessions between the client network
node and other network nodes. During a session, data is shared between a server and
the client network node as SODA definition records over STRAW sockets. Data is
shared in a publish/subscribe model. The realtime kernel 260 subscribes only to the
data the client network node needs. To subscribe, the realtime kernel 260 creates a
STRAW channel to the desired server. A STRAW channel is negotiated by well-known
GUID for a particular virtual area. In some embodiments, STRAW sockets are
connected using an address that is provided through a configured DNS.

[0197] The area service will send publish messages indicating the data streams
that are available to the communicant, tagging each with a GUID handle. The realtime
kernel 260 then sends subscribe messages for the desired data streams. Any changes
to area service data for the subscribed channels are sent as SODA definition records to
all client network nodes that have subscribed to those channels.

[0198] There are two primary types of sessions: (a) a HUD session, which
involves displaying current relationship and presence information in the HUD 84; and (b)
an area session, which involves either lurking or entering a virtual area instance.

a. HUD Session

[0199] In a HUD session, the HUD 84 contacts the account server, the RUID
server, and the rendezvous server, and through STRAW channels subscribes to the
communicant’'s own account and relationship information. The HUD 84 then subscribes

WO 2010/065848 PCT/US2009/066764

-50-

to presence information for closely-related contacts and virtual areas. At this point the
HUD 84 can display dynamic presence information for closely-related contacts.

b. Area Session

[0200] In an area session, the HUD 84 subscribes to information about related
virtual areas. In some embodiments, a directory server is consulted to determine the
current area server hosting a virtual area specified by the HUD. A STRAW stream is
created to the current area server.

[0201] The HUD subscribes to the presence data that is associated with the
virtual area and updates its 2D head-up display with the names of the other
communicants currently participating in the virtual area. At this point the communicant
is “lurking” in the virtual area. The presence of a communicant can be displayed in a
pop-up list, and an icon is displayed in the HUD area representation (e.g., in the Office
place tile shown in FIGS. 5A-5C).

[0202] If the communicant directs the HUD 84 to enter a virtual area, then the
realtime kernel informs the rendezvous service of the communicant’s request to enter
the virtual area. Other communicants that are subscribed to the presence information
that is associated with the virtual area are informed of the new communicant that has
entered the virtual area.

[0203] The realtime kemnel 260 directs the So3D engine to launch an interactive
environment. The So3D engine subscribes to the area server environment data (e.g.,
rendering and motion data). The area server begins to stream the requested area
server environment data to the realtime kernel 260. The realtime kernel passes the
requested data to the So3D engine, which renders the data according to the current
visualization mode (e.g., 2D overhead view, low-resolution view, or fully immersive 3D
view).

[0204] The area server defines raw microphone audio media streams between
the client network nodes that are associated with objects in the virtual area. The area
server also creates definitions of audio mix elements according to audio handling
instructions (e.g., spatial effects definitions and zone definitions) in the virtual area
specification. The connection and server mix manager 262 listens for audio definitions,
which include GUID handles for each P2P audio stream, and creates media streams for
each definition. Each of the media streams is registered with the local transport bus
276 and appropriate audio mixing components are created by the audio stream service

WO 2010/065848 PCT/US2009/066764

-51-

272. The area/zone manager 264 also subscribes to SODA definitions for audio and for
avatar motion and orientation data. The area/zone manager 264 controls gain/mute of
each audio stream as the communicant’s avatar navigates the virtual area.

[0205] In some embodiments, the area/zone manager 264 additionally
subscribes to relationship data, which the area/zone manager 264 uses to control
avatar orientation/movement/pose within the virtual area via social processors 277 (see
FIG. 15). In this process, the area/zone manager 264 sets parameter values of the
social processors 277 based on the positions of the avatars in the virtual area and the
relationship data. In this way, relationships can be indicated by changing the positions
and orientations of an avatar's head when a communicant speaks (e.g., turning the
avatar to face another avatar as it enters a zone of the virtual area, or orienting the
avatar for optimal viewing of a view screen when a media zone of the virtual area is
entered). In some embodiments, the social processors 277 are defined by third party
developers and delivered to the client network nodes via plugins. Each social processor
277 is a set of instructions that are executed automatically when a specific event occurs
(e.g., automatic motion triggered by proximity to other avatars, or position in an area, or
both). A social processor 277 can be any arbitrary programmatic routine that controls
the motion of avatars or objects in a virtual area. For example, in some embodiments, if
an avatar approaches a view screen, one type of the social processor automatically
snaps the avatar to a grid that is defined in the virtual area specification and centers the
avatar in front of the view screen so that the user can easily see the contents of the
view screen. In this way, the need for complex manipulation of movement of the avatar
is eliminated. Another type of social processor 277 automatically pivots and turns an
avatar to acknowledge the presence of another user. For example, an embodiment of
this type of social processor is configured to automatically re-orient avatars in a virtual
area from facing each other to respective orientations in which the avatars are facing a
new communicant’s avatar in response to the entry of the new communicant into the
virtual area. In this case, the communicants that are associated with the avatars
originally in the virtual area do not have to manipulate their avatars manually; instead,
the social processor automatically rotates their heads to acknowledge the presence of
the new communicant.

WO 2010/065848 PCT/US2009/066764

-52-
4. MANAGING SESSIONS

[0206] FIG. 18 shows an embodiment of a session management method that is
implemented by the STRAW service 268.

[0207] In accordance with the method of FIG. 18, on a local network node, the
STRAW service 268 establishes a first session with a remote network node on a
transport stream in accordance with a connectionless transport protocol (e.g., UDP)
(FIG. 18, block 362). The STRAW service 268 creates a definition of the session,
where the definition includes an internet protocol (IP) address, a port address, and a
globally unique identifier of a transport protocol. The STRAW service 268 sends the
definition to the remote network node. The STRAW service 268 determines a first
station definition that is assigned to the remote network node and stores the first station
definition in the table as an attribute of each of the open channels. In this process, the
STRAW service 268 parses a station definition record that is received from the remote
network node. The station definition record includes a set of fields, where each of the
fields is defined by a respective field type and an associated field value, and each of the
field types is identified by a respective globally unique identifier (GUID).

[0208] On behalf of one or more software entities on the local network node, the
STRAW service 268 automatically opens one or more channels over which data is
transmitted between the local network node and the remote network node in the first
session (FIG. 18, block 364). In this process, the STRAW service 268 sends to the
remote network node records defining the local publish channels and a record of each
of the local subscribe channels having an identifier that matches an identifier of one of
the remote publish channels.

[0209] In the first session, the STRAW service 268 maintains a table that
identifies open ones of the channels and associates respective attribute values with the
identified channels (FIG. 18, block 366). The STRAW service 268 records attributes of
local publish channels available from the local network node, local subscribe channels
requested by the one or more software entities, remote publish channels available from
the remote network node, and remote subscribe channels requested by the remote
network node. In this process, the STRAW service 268 maintains for each of the local
publish channels a record that includes an identifier of one of the software entities
indicating a capacity to publish data on the local publish channel, an identifier of a
remote network node subscribing to the local publish channel, and an identifier of the
local publish channel. The STRAW service 268 maintains for each of the local

WO 2010/065848 PCT/US2009/066764

-53-

subscribe channels a record that includes an identifier of one of the software entities
subscribing to the local subscribe channel, an identifier of a remote network node
indicating a capacity to publish data on the local subscribe channel, an identifier of the
local subscribe channel, and one or more network transport parameters associated with
the local subscribe channel. The STRAW service 268 maintains for each of the remote
publish channels a record that includes an identifier of a remote network node indicating
a capacity to publish data on the remote publish channel, and an identifier of the remote
publish channel.

[0210] The STRAW service 268 transmits data between the local network node
and the remote network node on the one or more open channels in the session. In
some embodiments, the data is transmitted in the form of records each of which
includes a set of fields. Each of the fields of a record is defined by a respective field
type and an associated field value, and each of the field types is identified by a
respective GUID. Some of the records are media records that contain media data,
which includes packets of renderable data. Other records are configuration records that
contain configuration data, which includes definitions of configuration settings. The
media records and the configuration records typically are encapsulated in transport
records over the transport stream. The media records typically are compressed using a
first data compression service and the configuration records typically are compressed
using a second data compression service. On transmission, the STRAW service 268
associates the transport records with identifiers of respective ones of the channels on
which they are transmitted, encrypts the transport records, and sequences the
encrypted transport records. On reception, the STRAW service 268 decrypts the
transport records and dispatches the media records and the configuration records
contained in the decrypted transport records to subscribing ones of the software
entities.

[0211] In response to a determination that the first session has failed, the
STRAW service 268 automatically attempts to establish a second session with the
remote network node on a second transport stream in accordance with the
connectionless transport protocol (FIG. 18, block 368). In some embodiments, the
STRAW service 268 determines that the first session has failed in response to a
determination that the current station definition assigned to the remote network node is
different from the first station definition that was assigned to the remote network node
when the first session was established.

WO 2010/065848 PCT/US2009/066764

-54-

[0212] In response to successful establishment of the second session, the
STRAW service 268 automatically opens each of the channels identified in the table
(FIG. 18, block 370).

5. PROCESSING DATA STREAMS

[0213] The realtime kemnel 260 supports remote configuration of stream handlers
for processing data streams that are received by a client network node from other
network nodes. In response to instructions that are received from the area service 26,
various services and other components of the realtime kernel 260 cooperatively
construct and configure directed graphs of processing elements into stream handlers
that are used to process data streams. The area service instructions configure the
stream handlers in accordance with a virtual area application being hosted by a virtual
area that is managed by the area service 26.

[0214] FIG. 19 shows an embodiment of a method that is implemented by
components of the realtime kernel 260 in response to remote stream handling
instructions that are received from the area service 26.

[0215] In accordance with the method of FIG. 19, the realtime kemel 260 parses
a specification of a realtime stream handler from one or more stream handling
instructions (FI1G. 19, block 330). In this process, the STRAW service 268 receives
SODA definitions for configuring a stream handler from the area service 26. The
STRAW service 268 dispatches the SODA definitions to the connection and server mix
manager 262 and the area/zone manager 264. The connection and server mix
manager 262 parses an input source identifier, an output sink identifier, and a
respective identifier of each of one or more data processing objects from the one or
more stream handing instructions.

[0216] The connection and server mix manager 262 instantiates realtime stream
handling objects corresponding to respective ones of the identifiers (FIG. 19, block 332).
The connection and server mix manager 262 registers the instantiated objects with the
transport bus 276.

[0217] The transport bus 276 creates a directed graph that includes ones of the
instantiated realtime stream handling objects in accordance with the specification (FIG.
19, block 334). The area/zone manager 264 passes audio calculation SODA definitions
to specified audio calculation objects in the directed graph.

WO 2010/065848 PCT/US2009/066764

-55-

[0218] The STRAW service 268 receives a realtime data stream from an input
source corresponding to the input source identifier (FIG. 19, block 336). The STRAW
service 268 passes the realtime data stream to the media service 271, which processes
the stream and passes it to the transport bus 276. The transport bus 276 executes the
processing graph elements of the stream handler in sequence to perform the specified
processing of the realtime data stream.

[0219] The stream handler produces a resultant data stream at an output sink
corresponding to the output sink identifier (FIG. 19, block 338). The resultant data
stream then is passed to rendering components of the client network node.

6. SERVICES AND OTHER COMPONENTS OF THE REALTIME KERNEL

[0220] The components of the realtime kernel 260 include services, plugins, and

libraries.

a. Compressor Library

APIs:
Compressor::Ctor()
Compressor::KeyFrame(preload)
Compressor::Compress(data, size, target)
Compressor::Decompress(data, size, target)
Compressor::Dtor()

Services:
Compressor

Client of:
PluginMgr

[0221] The compressor library implements an optional compression layer for
transport data. It is not intended to compress protocol headers or link negotiation
exchanges.

[0222] The compressor library is used by the SODA channel service 270 and by
the media service 271. When encryption is configured, these services 270, 271 create
two compressor instances and pipe channel data through. One compressor instance is
used for transmit and the other compressor instance is used for receive.

WO 2010/065848 PCT/US2009/066764

-56 -

[0223] The compressor library uses a compression/decompression plugin that is
configured by variant. It is up to the service to negotiate the compression variant, and
provide it to compressor.

b. Audio Stream Service

APIls:
AudioService::Ctor(TransBus &)

AudioService::Mix(guidld, api, variant, owner,
AudioComponent*source1, AudioComponent*source2,
AudioComponent*&)

AudioService::Effect(guidld, api, variant, owner, AudioComponent*,
AudioComponent*&)

AudioService::Source(guidld, api, device, AudioComponent*&)

AudioService::Calculation(guidScript, AudioComponent*, GUID
RUIDSource, GUID RUIDSink, param1, param2)

AudioService::Dtor()

Services:
AudioService

Client of:
TransBus.DLL
PluginMgr.DLL
[0224] In some embodiments, the audio stream service 272 is a Windows®

service DLL.

[0225] The audio stream service 272 manages audio stream mixing. It defines
APls for creating and configuring audio processing graph elements (also referred to as
AudioComponent objects), which are manipulated by the area/zone manager 264. The
audio stream service 272 is a client of the transport bus 276. All audio processing
graph elements are registered with the transport bus 276.

[0226] Audio processing graph elements are created through the plugin manager
266 (PluginMgr) via the following API calls:

PluginMgr::APIEnumerate(guiPluginApi)
PluginMagr::VariantEnumerate(guidldentifier, guidPluginApi)
PluginMgr:: Createlnstance(guidldentifier, guidPluginApi, guidVariant)

WO 2010/065848 PCT/US2009/066764

-57 -

The invocation of the PluginMgr::Createlnstance() API yields a guidPlugin, representing
an instance of the desired variant of the API.
[0227] The plugin APIs used for audio processing graph elements are:

Audio Mix

Audio Source

Audio Insert

Audio Send
The caller supplies the variant, which is just passed along by the audio stream service
272. The variant represents an implementation of an audio processing graph element,
as defined in the virtual area application. The audio stream service 272 then creates an
AudioComponent object that encapsulates the plugin instance (guidPlugin). The
AudioComponent uses the plugin manager 266 to access the methods of the plugin.
The audio stream service 272 creates the correct type of derived AudioComponent for
each audio API:

AudioMix

AudioSource

Audiolnsert

AudioSend
AudioComponent objects are registered with the transport bus 276. The transport bus
APl is used to link components into a graph. The AudioComponent AP| supports the
operations of the transport bus 276 and the area/zone manager 264. The base class
AudioComponent has the AP| of an AudioSource and an AudioSink, both of which are

aspects of the same plugin.

c. STRAW Service

Services:
STRAW.DLL

Client of:
Compress.DLL
PluginMgr

(i) Overview

[0228] In some embodiments, the STRAW service 268 is a Windows® service
DLL.

WO 2010/065848 PCT/US2009/066764

-58 -

[0229] The STRAW service 268 implements a STRAW transport protocol that
enables connection-oriented, encrypted secure socket connections between network
nodes over a connectionless transport protocol (e.g., UDP). The STRAW transport
protocol uses fixed-length globally unique identifiers (GUIDs) to identify all records and
all field types in the records. For example, in some embodiments, a network node (or
station) is defined by an IP_Address and a Port. In these embodiments, a STRAW
station identification record defines a particular network node with the following set of
GUIDs: {GUID1, GUID2, GUID3, GUID4, GUID5, GUID6}, where

. GUID1 identifies the STRAW record as a SODA record;

. GUID2 identifies the STRAW record as a network node identification
record;

GUID3 is an IP address field tag;

GUID4 is the IP address of the network node;

GUIDS is an Port number field tag; and

GUIDS is the Port number of the network node

* 9 o

In these embodiments, the station identification record consists of binary data that can
be readily compressed to a small size. In some embodiments, the size of one or more
of the STRAW records may be further reduced by omitting the field tags. In these
embodiments, both the transmitter and the receiver of the STRAW records know the
format of the STRAW records so that the semantics of the field values are known
without reference to any field tags.

[0230] Referring to FIG. 20, the STRAW service 268 manages a session 340 on
a transport stream 342. In some embodiments, a stream in the context of a STRAW
session is defined by a pair of {IP, port} addresses and a transport GUID. A session
consists of zero or more logical channels, where a channel is a sequence of records
appropriate for a particular kernel manager (e.g., the So3D graphics engine 274, the
connection and server mix manager 262, and the area/zone manager 264). More than
one kernel manager can receive records from the same stream, differentiated by
channel.

[0231] The STRAW service 268 manages two kinds of channels: media
channels that contain streaming data (e.g., audio); and SODA channels that contain
SODA records of definitions (or instructions). STRAW records encapsulate SODA
records and media records over a stream. STRAW records are encrypted, sequenced,
and include a message integrity field. The sequence is independent of the record

WO 2010/065848 PCT/US2009/066764

-59-

source or purpose — it is a link-level feature used to detect out-of-order or missing
records.

[0232] STRAW records are identified by channel. GUIDs are used as channel
identifiers. SODA and media records may be compressed at the channel level, as a
stream irrespective of STRAW record encapsulation. Each SODA record contains one
or more SODA definitions 344, Examples of SODA definitions include processing graph
elements (e.g., AudioMix and AudioEffect), 3D rendering assets (e.g., texture and
mesh), and RDS (e.g., avatar motion checkpoints). Each media record contains one
media packet 346. Examples of media packets include audio codec and text.

[0233] Applications publish channels on a session using a well-known GUID ID.
Kernel managers subscribe to channels. The publish/subscribe model is
connectionless. A kernel manager that subscribes to a channel registers to receive
notification of channel state changes and channel records as they arrive.

(i) Stream vs. Session vs. Channel vs. Record

[0234] In the context of STRAW sessions, a stream is a bi-directional UDP socket
between two network nodes defined by two IP address/port pairs, and a transport GUID.
A stream supports sessions of channels. A session is a logical node-to-node
connection. Sessions transport channels for the two nodes. Sessions may pass
through one or more proxy stations and are transported over streams that may contain
multiple sessions.

[0235] A channel is a logical construct that transfers SODA or media records
between two network nodes in a session. A channel can be reliable or unreliable,
compressed or non-compressed. The content of a channel is identified by a content
GUID. Channel records are transported in a sequence of STRAW records sharing the
same header CHANNEL_CLIENT ID and with sequential packet numbers and a MAC
field. The MAC calculation depends upon the packet sequence on the given channel in
one direction only. All records transmitted on a single channel share a single set of
configuration parameters (e.g., {Client, reliable, compressed}). Records on a single
channel are compressed as a serial stream. Only reliable channels normally can be
compressed. In some embodiments unreliable channels can be compressed with a
compression process in which compression restarts on each key frame. In the case of
a lost packet on an unreliable channel, records on that channel are discarded until a key
frame is reached (because they cannot be decompressed out of order).

WO 2010/065848 PCT/US2009/066764

-60-

[0236] Compression uses Compress.lib. To improve compression a channel
definition can include preload data, which is run through the compressor but not
transmitted. The purpose is to prime the compression state tables with common
phrases. The compression state table is reset and rebuilt each time a key frame is
received.

Encrypt STRAW Records individually

STRAW Record

MAC: long
CHANNEL_CLIENT:GUID
PACKET #:short
KEYFRAME: bit

Compress Records by Channel

SODA Record

(iii) SODA records

[0237] SODA records are nested structures with an initial GUID ID and one or
more SODA definitions. A SODA definition has a definition type, a definition length and
one or more fields. The definition type is a well-known GUID (e.g., guidAsset). The
length indicates total size of fields. Fields are a combination of type-specific fixed fields
and nested SODA definitions. That is,

SODA Record:
guid ID
SODA definition

SODA Definition:

Guid DefinitionType

long length;

[Field] — depend upon definitionType
Field:

Fixed field
Or SODA Definition

WO 2010/065848 PCT/US2009/066764

-61 -

For example,

SODA Record

GUID: YYYY

SODA Operation: length 318
OPERATION: ART_ASSET
ATTRIBUTES: length 24
CLASS, TEXTURE
COLLADA_NAME, Tex7
COLLADA._ID, 449

DATA: length 256
00022B6C 0001 ...

[0238] SODA records are encapsulated within a STRAW record:

STRAW Record
MAC: long
CHANNEL_CLIENT:GUID
PACKET #:short
KEYFRAME: bit

SODA Record

SODA Record

(iv)Channel reliability and link-level protocol

[02329] STRAW records are numbered and contain a channel ID. After receiving
a packet and after a short time delay the transport sends an ACK record containing the
number of the next expected packet for each channel so that the sender can confirm
transmitted records were received and can release local resources. There is no
reliability feature for this ACK beyond periodic transmission. This scheme uses the
minimum network resources for reliability, assuming that almost all records are
successfully received.

[0240] A MAC field is calculated for each STRAW record transmitted. It is
checked on receive.

WO 2010/065848 PCT/US2009/066764

-62 -

[0241] For Reliable Channels:

[0242] If records in a channel are received out-of-order, a NACK is transmitted for
the missing record. A MAC failure also results in a NACK being transmitted for the
expected record. Up to four NACKSs for a single record are permitted, and then the
transport queues a failure message to any subscribing kernel managers and erases the
channel definition.

[0243] For Unreliable Channels:

[0244] If records in a channel are received out-of-order, the missed packet
number is signaled to any managers subscribed to the channel and no NACK is sent. A
MAC failure is also indicated as a missed packet to any kernel managers subscribed to
the channel and no NACK is sent. There is no threshold for missed packets, and the
channel is never closed by the transport.

[0245] There is no need to “close” a channel. If all kernel managers unsubscribe,
then data transmission over the channel stops. Since a channel is a logical entity, no

operating system resources are used.
(v} Publish/Subscribe

[0246] The STRAW service 268 maintains a list of local publish and subscribe
entries. Each entry contains

Local Manager that created the entry
Server identifier

Channel identifier

Publish or Subscribe

Transport parameters (for Subscribe)

[0247] The list is initialized with

{STRAW Service, GUID_NULL, Session, Subscribe, Reliable,
Uncompressed}

In this way, the STRAW service 268 subscribes to all arriving SODA records arriving on
any session channel. These include publish and subscribe definitions. The
GUID_NULL channel is never published and assumed by every server to be subscribed
with a well-known channel ID on every stream.

[0248] The STRAW service 268 also maintains a table of all arrived publish
definitions, for use in case a late subscribe is registered in the local list.

{ IDClient, IDServer, IDChannel }

WO 2010/065848 PCT/US2009/066764

-63 -

Where IDClient is a (possibly NULL) GUID of a particular client for which the channel is
intended, IDServer is the remote source of channel records and IDChannel is a well-
known GUID of a channel.

[0249] When the STRAW service 268 receives a session definition for a desired
connection to another station, the STRAW service 268 establishes the stream, sends
the session definition, and then sends all of the local table publish entries in a SODA
record on the session channel. When a publish definition arrives at a STRAW service
268, the STRAW service 268 enters that definition into the publish definition table and
then sends a subscribe definition on the session channel for each subscribe entry in the
local list that had a matching Channel ID in the publish record. When a subscribe
definition arrives, the STRAW service 268 begins sending definition updates (piped from
the publishing Applications) on the given channel as STRAW records containing the
SODA record for that definition. The records may be sent on more than one channel.

[0250] When a kernel manager desires to participate in a channel with a server,
the kemnel manager defines a subscribe request, whether or not any STRAW Streams
exist to any servers. If a virtual area application publishes later (i.e., after stream is
established) then the change in the local table triggers re-sending of the publish entries
in the table, which automatically triggers any latent subscribe on the other end of the
link. If a kernel manager subscribes |later and there is an entry in the publish table, then
the STRAW service 268 sends the subscribe request automatically. This process
ensures that channel data is sent over a link only if it is desired by the receiver.

(vi) Channel Record Dispatching

[0251] STRAW records are decrypted as they arrive. If valid, their embedded
records are uncompressed and then dispatched to all subscribing kernel managers.
The list of local subscribe entries is examined, and all entries matching the Channel ID
(in the subscribe transport info) receive a copy of the record on their message queue.

[0252] The subscribing kernel manager is responsible for freeing messages as
they are processed. The bulk data portion of a message is not copied, but points to the
original network buffer containing the STRAW Record. Each kernel manager frees
messages such that when they are all freed the network buffer can be recycled.

(vii) Establishing a STRAW Stream

[0253] The client network node connects sessions over streams with servers and
peer network nodes. In this process, each party authenticates itself to the other.

WO 2010/065848 PCT/US2009/066764

-64 -
[0254] STRAW streams are authentic and secure. This means that:

the client network node is certain of the partner’s identity;
messages are private;
received messages are certifiably the message that was sent (not
been modified in the middle somewhere); and

. messages will be interpretable by both parties, in the same way.

[0255] Part of a session definition is a list of stream transport plugin GUIDs. If
the client network node responding to the definition supports at least one of the GUIDs,
it loads the plugin and uses it to establish the session. The server creating the definition
may examine the support list of each client network node involved and decide which
transport plugin GUID to include in the definition.

[02586] Part of a session definition is a list of stream encryption plugin GUIDs. If
the client network node responding to the definition supports at least one of the GUIDs,
it loads the plugin and uses it to encrypt the Session. The server creating the definition
may examine the support list of each client network node involved and decide which
stream encryption pluginGUID to include in the definition.

(viii) Server Stream

[0257] In some embodiments, a stream from a client network node 344 to a
server 346 is established using an address that is obtained from a server, such as a
directory server, a map server, or an area server. Exemplary purposes of the stream
include obtaining presence information, rendering a public space using rendering
definitions from a map server, and rendering a virtual area using rendering definitions
from an area server.

[0258] FIG. 21 shows an embodiment of a method by which a server stream is
established between the client network node 344 and the server 346. In accordance
with this method, the client network node 344 sends a client credential and a Stream ID
to the server 346 (FIG. 21, block 348). The server 346 replies with a server credential
and a pre-master secret (FIG. 21, block 350). Upon stream creation, the connecting
client network node 344 negotiates a cipher set, and then authenticates by presents its
identifying token (FIG. 21, block 352). The server 346 presents the server token
appropriate for the client network node 344 (chosen by stream ID and communicated to
the server 346 by the account server) (FIG. 21, block 354).

WO 2010/065848 PCT/US2009/066764

-65-
(ix) Client Stream

[0259] Referring to FIG. 22, each session is identified by a new GUID that is
generated by the issuing server. Network nodes involved in the stream are informed of
the session definition, and each network node communicates with the other using a
hash of the session GUID and Client ID as the stream encryption key. In the exemplary
embodiment shown in FIG. 22, an area server 356 defines a session between two client
network nodes 358, 360. Each of the client network nodes 358, 360 is authenticated to
the area server, and uses an encrypted channel to communicate definitions (including
session definitions). There is no need for the client network nodes 358, 360 to share
any further authentication information with each other. Each of the client network nodes
358, 360 is identified by the server 346 with a respective GUID. Each session definition
identifies both client network nodes 358, 360 by their GUIDs. The client network nodes
358, 360 can use this information to decide which channels to publish on the session.

[0260] If the stream or session fails for one of the client network nodes 358, 360,
that client network node informs the area server 356 of the failure using a
SessionFailure SODA definition. Reasons for failure include, for example, no
compatible transport, no available channel, and reliable channel failure. In some
embodiments, the area server 356 responds to the SessionFailure SODA definition by
attempting to re-route the stream (e.g., by reflecting an audio stream through a proxy or
server).

[0261] In some embodiments, the client network nodes 358, 360 communicate
P2P in accordance with the Simple Traversal of UDP through Network Address
Translators (NATs) (abbreviated STUN) network protocol. In these embodiments, the
clients 358, 360 operate through respective NATs. A server (e.g., the area server 356)
acts as a STUN server, which listens at two IP addresses in the network on the public
side of the NATs and reports the mapped IP addresses and ports on the outside of the
NATs. From this information, the client network nodes 358, 360 are able to discover the
presence and specific type of NAT, and obtain the mapped (external) IP address (NAT
address) and port number that the NAT has allocated for the clients’ UDP connections
to remote hosts. The client network nodes 358, 360 then use the external |IP addresses
to communicate with one another P2P in accordance with the UDP protocol. Additional
details regarding the STUN protocol can be obtained from Jonathan Rosenberg et al.,
“STUN - Simple Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATs),” Internet proposed standard RFC 3489 (March 2003).

WO 2010/065848 PCT/US2009/066764

-65 -
(x} Keep-Alive

[0262] In some embodiments, once a stream is established, the transport on the
client network node issues periodic idle StreamKeepAlive definitions. The partner
network node returns a StreamKeepAlive definition with the timeout set to whatever it
estimates is the maximum interval it can tolerate. The purpose of this message is to
keep any NAT firewall pinhole active. The partner network node records the desired
timeout and lengthens the interval each time. If the next message comes from a
different IP and port, then the NAT timed out and a new pinhole was created by the
keepalive. The interval should then be shortened.

[0263] If either the client network node or the partner network node notices a
StreamKeepAlive is missing either because the idle timer expired and no message was
received, or no answer was received to a keepalive message, then it issues an
immediate StreamKeepAlive with a very small timeout. This is to distinguish between a
dropped station and a dropped UDP packet. Several retries can be attempted. If no
answer is received after the retries then a local StreamFailure event is generated with
the failed Session ID(s), and the stream definition is deleted.

[0264] In some embodiments, the STRAW service 268 responds to a broken link
by automatically reestablishing the link and re-linking all subscriptions and data flows
based on the local publish and subscribe table entries without application (or client)
intervention.

f. Media Channel Service

APIs:

MediaChannel::Ctor(STRAWS, AudioSource&, IDChannel,
IDCodec, TransportParams)

MediaChannel::Send()

MediaChannel::Receive(data&)

MediaChannel::Dtor()

Services:
Media.DLL streaming audio channel

Client of:
Compress.lib compression
PluginMgr

[0265] In some embodiments, the media channel service 271 is a Windows®

service DLL.

WO 2010/065848 PCT/US2009/066764

-67 -

[0266] The media channel service 271 is used to robustly communicate P2P
audio and text chat. The media channel service 271 will compress the stream if
configured to do so. The compressor library accomplishes compression as requested.
The media channel service uses an audio codec plugin configured by variant. The
variant GUID is taken from the stream definition.

g. SODA Channel Service

APIs:
SODAChannel::Ctor(STRAWS, IDChannel, TransportParams)
SODAChannel::Send(SODA&)
SODAChannel::Receive(SODA&)
SODAChannel::Dtor()

Services:
SODA.DLL SODA channel

Client of:

Compress.lib compression
[0267] In some embodiments, the SODA channel service 270 is a Windows®
service DLL.

[0268] The SODA channel service 270 is used to robustly communicate SODA
definitions. The SODA channel service 270 will compress the stream if configured to do

so. The compressor library accomplishes compression as requested. This is the place
where data structures are converted to network byte order. In some embodiments,
little-endian (Intel) network byte order is used.

WO 2010/065848 PCT/US2009/066764

-68 -

h. Connection and server mix manager

SODA definitions:

AudioStream

AudioCalculation

AudioEffect

AudioMix

AudioDevice

AudioParameter
AreaSession
CommunicantState

Services:
CSMMgr.DLL

Client of:
STRAW.DLL get instructions from AS, create new
connections to clients
Media.DLL
SODA.DLL
TransBus.DLL audio stream connections

[0269] In some embodiments, the connection and server mix manager 262 is a
Windows® service DLL.

[0270] In some embodiments, the connection and server mix manager 262
exports a procedural AP| available for the local conference scheduling tool to initiate a
session with an area server. This APl is the initial entry point for creating a session.
The connection and server mix manager 262 publishes an active session definition.
The area server receives the session definition on a SODA channel.

[0271] The connection and server mix manager 262 also constructs audio graphs
from audio graph processing elements. The audio graph processing elements are
configured by the area service 26, either directly through SODA records or indirectly
through VSDL scripts. In any case SODA definitions are the result. In some
embodiments, the connection and server mix manager 262 processes the following
SODA definitions sent by area service 26:

. AudioDevice

. AudioStream

. AudioMix

. AudioEffect

. AudioCalculation

. AudioRecord

WO 2010/065848 PCT/US2009/066764

-69 -
. AudioPlayback

[0272] These SODA definitions are described in the following paragraphs.

[0273] AudioDevice is a definition of a local audio device to be registered with the
audio transport bus (which is a component of the transport bus 276) as an AudioSource.
The well-known ID of a standard local audio source (microphone, headset) or a
registered local audio recording (file, streaming CD audio) is provided, along with an
instance ID (which headset if more than one is available). The device is given a new ID
for use on the audio transport bus. The connection and server mix manager 262
creates an instance of the appropriate variant of the AudioDevice plug-in using the well-
known audio source ID, and hands it off to the audio transport bus.

[0274] AudioStream is a definition of an incoming audio stream to be registered
with the audio transport bus as an AudioSource. An incoming audio stream is defined
by the Channel ID it is transported over. For purposes of dynamic mixing (done by the
arealzone manager 264) it is necessary to associate a stream with an Avatar ID. The
device uses the Channel ID as its audio transport bus ID. The connection and server
mix manager 262 creates an instance of the appropriate variant of the AudioStream
plug-in based on the Channel Type ID, and hands it off to the audio transport bus.

[0275] AudioMix is a definition of a combination AudioSource and AudioSink
plug-in. The definition fully specifies the plug-in API ID, variant ID, one or two Audio
Transport Bus source IDs, and an associated Avatar ID (for the area/zone manager
264). The connection and server mix manager 262 creates the indicated variant of the
AudioMix plug-in based on the IDs provided, and hands it off to the Audio Transport
Bus.

[0276] AudioEffect is a definition of a combination AudioSource and AudioSink
plug-in. The definition fully specifies the plug-in API ID, variant ID, one audio transport
bus Source IDs, and an associated Avatar ID (for the areaf/zone manager 264). The
connection and server mix manager 262 creates the indicated variant of the AudioEffect
plug-in based on the IDs provided, and hands it off to the audio transport bus.

[0277] AudioCalculation is a definition of an AudioCalculation plug-in. The
definition fully specifies the plug-in API ID, variant ID, associated audio transport bus
AudioSource object ID, the component's own audio transport bus 1D, and two situation-
specific parameters. The AudioCalculation objects are not processing audio data
directly in audio chains. Instead the AudioCalculation objects calculate settings for
other audio graph components based on a “domain object model”, external information

WO 2010/065848 PCT/US2009/066764

-70-

such as manual settings (mute, volume control in the HUD), avatar position and motion,
reverb spaces and Windows® settings (speaker selection in the Control Panel for
instance). AudioCalculation objects are executed on a different rendering timer event —
much less often than normal audio rendering. This is because the data they use as
inputs to calculations change slowly. The connection and server mix manager 262
creates the indicated variant of the AudioCalculation plug-in based on the IDs provided,
and hands it off to the audio transport bus.

[0278] AudioRecord is a definition of an AudioSink plug-in. The definition links a
point in the audio graph with a storage component. At rendering time, an AudioRecord
component doesn'’t trigger rendering itself. But if rendering is triggered by another
AudioSink component, then the rendered audio data is provided to the AudioRecord
object for transfer to the indicated storage component. The connection and server mix
manager 262 creates the AudioSink plug-in and hands it off to the audio transport bus.

[0279] AudioPlayback is a definition of an AudioSource plug-in. The definition
links a point in the audio graph with a storage component. If an audio chain references
this component, then at frame-preparation time one time-slice worth of audio data is
fetched from the storage component and provided as output of this component. The
connection and server mix manager 262 creates the AudioSource plug-in and hands it
off to the audio transport bus.

[0280] The connection and server mix manager 262 configures the transport bus
276 and the audio stream service 272 according to definitions received from the area
server. Each definition results in the creation of an audio processing graph element,
which is an audio stream plugin, an audio calculation plugin, or an audio source plugin.
The local audic devices (e.g., microphone, speaker(s), and Skype audio) can be
configured according to settings chosen through a HID configuration tool. The HID
configuration tool allows the user to choose keyboard and mouse options for navigating
the 3D collaborative space. For example, shortcut keys may be defined, and mouse
gestures bound to avatar behaviors. In some embodiments, the audio output selection
follows the Windows® Control Panel “Sounds and Audio Device” settings for Audio and
Voice. This ensures that the same audio settings are used for virtual area
communications as are used for ordinary VOIP conversations.

[0281] In the event of an area server session transport failure, the connection and
server mix manager 262 attempts recovery. [t tears down the session and re-launches
it on a different area server. In the event of a media stream failure, the connection and

WO 2010/065848 PCT/US2009/066764

-71-

server mix manager 262 attempts recovery. In this process, the connection and server
mix manager 262 tries to reconnect to the client network node. If the reconnection
attempt fails, the connection and server mix manager 262 defines the communicant
state as inaudible to the area server.

i. Area/zone manager

SODA definitions:
PhysicsCheckpoint
AudioCalculation
Zone

Services:
AreaZone.DLL

Client of:
STRAW.DLL
OpenAL.DLL
GIPS.DLL

[0282] In some embodiments, the area/zone manager 264 is a Windows®

service DLL.

[0283] The area/zone manager 264 adjusts the audio stream service 272 mix
parameters according to zone definitions and avatar position definitions. The area
service 26 publishes to the area/zone manager 264 SODA definitions that relate each
avatar to the audio processing graph element that responds to that avatar’s motion.
The avatar position data is used to mix the audio streams from each of the client
network nodes participating in a virtual area in a way that allows each communicant to
hear the other communicants at the right audio location with the right volume according
to local zone definitions. The parameter values that are applied to the audio processing
graph elements typically depend upon a calculation that includes relative position,
orientation of communicants, zone definitions, audio properties of the virtual area, and
manual settings (e.g., mute, volume) that are configured by the communicant.

[0284] In some embodiments, the area/zone manager 264 processes the
following SODA definitions, which pertain to gross features of the simulated audio space
in which the current audio graph is rendering.

. AudioReverb

WO 2010/065848 PCT/US2009/066764

-72 -

. AudioAperture
. AudioObstruction

[0285] These SODA definitions are described in the following paragraphs.

[0286] AudioReverb is a definition of a reverb space which is a “hollow space’
that results in a certain reverb or echo effect. The definition identifies a simple
geometry with a location. This definition is provided in a domain object model (DOM) to
all AudioCalculation objects when they are invoked.

[0287] AudioAperture is a definition of a connection between two reverb spaces.
It identifies two reverb spaces by ID, and specifies an audio connection between them.
The connection is a circle at a certain location and orientation. This definition is
provided in a domain object model (DOM) to all AudioCalculation objects when they are
invoked.

[0288] AudioObstruction is a definition of a physical barrier to sound propagation.
It is modeled as a sphere at a location. This definition is provided in a domain object
model (DOM) to all AudioCalculation objects when they are invoked.

[0289] The SODA definitions described above are inputs for AudioCalculation
objects, which are scriptable calculation plugins that take the following parameters as
an argument:

Physics of both sound source and sink;

Zone definition for source and sink;

Manual settings (individual mutes, volume/AGC);
Ambient settings (global mute, volume); and
Room audio characteristics.

[0290] Initial Audio Calculation plugins include:

Manual Mute;

Manual Volume;

Location;

Doppler shift;

Orientation (facing toward/away);
Zone; and

Room Reverb.

[0291] Some calculations are appropriate for individual audio sources; some for
whole-room final mix. The virtual area application can introduce new plugins at will by

WO 2010/065848 PCT/US2009/066764

-73-

referring to them in audio definitions. The area/zone manager 264 will subscribe to
plugins that it doesn’t have, and receive their definition from the area server.

Calculation Plugin | Function

Manual Mute This simply returns 0.0 or 1.0 depending upon the mute
setting for that source (Avatar).

Manual Volume Returns between 0.0 and 1.0 depending upon the
volume setting for that source (Avatar).

Location Takes a mono signal, and retums 5.1. Gains are

calculated from the relative angle of the source from the
sink, including the sink orientation. This may even
include ear separation?

Doppler Shifts frequency depending upon relative velocity of
source vs. sink.

Orientation Attenuates source depending upon source orientation
e.g. facing toward or away.

Zone Sets Zone Mute for a sound source (1.0 if in same Zone

else 0.0). Perhaps it could have a graduated setting for
elegant zone boundary fade-out.

Room Applies room audio characteristics to a source relative to
a sink including reverb zones, apertures and
obstructions. Functions on 5.1 signal, produces multi-
variant setting for a Reverb widget

[0292] FIG. 23 shows an example of a four-communicant audio processing graph
380, which might be specified by an area server application. Certain audio processing
graph elements (e.g., codecs, the network, filtering, special effects, and error
concealment graph elements), which typically are present in a complete audio
processing graph, have been left out of this example for simplicity.

[0293] The arrows 382, 384, 386, 388, 390 represent AudioSources, which are all
dry mono audio sources. Avatars 1, 2 and 3 are network streams from remote client
network nodes. Whisper is an optional local audio feed from a designated source.
Everything to the left of the audio Panners is mono with a series of effects added.
These effects include adjusting volume according to Zone and speaker Orientation and
applying a Doppler shift to account for relative velocity of speaker and listener. The
audio Panners position each adjusted mono signal in the three hundred sixty degree
audio space of the currently occupied zone of a virtual area. The Location of the
speaker relative to the listener is used. Everything to the right of an audio Panner is 5.1
audio. The Room audio processing graph element calculates the effect of the room
acoustics on the audio signal. It takes into account position of speaker and listener,
room characteristics, and obstructions. The Final Mix audio processing graph element

WO 2010/065848 PCT/US2009/066764

-74-

adds all of the processed audio signals together to produce a resultant stream that is
piped to the designated audio output device (i.e., SPKR, which represents the local
speaker(s) in the illustrated example).

[0294] Some audio processing graph elements (inserts) have fixed parameters
and, therefore, are not associated with any runtime calculation plugin scripts. These
elements include echo and noise cancellation, automatic gain control (AGC), silence
detection, fixed-source Panner, and Final Mix.

j. Asset Cache Service

SODA definitions
See Art resource APl document

Services:
ArtCache.DLL

Client of:
File system or db
So3D

[0295] In some embodiments, the asset cache service 275 is a Windows®

service DLL.

[0296] Assets are recorded in a local database or table service indexed by GUID.
The asset data is kept in an amorphous storage pool. The ID on a particular asset
never changes, thereby avoiding any cache consistency issues. Assets are cached by
SODA record. This means that large assets may be stored in many pieces, since
SODA records are limited in size to the UDP MTU (around 1000 bytes). The asset
cache must index records by GUID and the data offset, which is a field in the SODA
record.

(i) Asset Index

[0297] Assets are represented in a class table, and an optional attribute table.
[0298] The asset class table maps the asset GUID to a class GUID and a data
store reference.

Asset ID Asset Class Data store
guidSurface guidClass Texture | <image1>
guidConfTableSurface guidClassTexture | <image2>

guidSococoConfTableSurface | guidClassTexture | <image3>
guidDogShowMesh guidClassMesh | <image4>

WO 2010/065848 PCT/US2009/066764

-75-
guidNameSococoConfiName | guidClassText “Conference”
guidAuthorDVW guidClassText “David Van Wie”

The asset attribute table attaches a tagged attribute scalar value to an asset.
(i) Data Store

[0299] The asset storage interface of the virtual area based rendering platform
allows heaping data, storing a separate index transactionally, and scavenging unused
asset storage for reuse. A combination of a database and file will serve for asset
storage. The database contains two tables: a storage allocation table, and a
GUID/offset index. The file is created with a fixed size according to the cache size
configured. Assets are stored in the file using a heap-bucket algorithm.

[0300] The asset cache data store will be indexed by GUID and offset. The heap
is partitioned into buckets by data size, in powers of two. The smallest bucket is 32
bytes; the largest is 2 kilobytes, which makes a total of 7 buckets. Each bucket is
budgeted the same amount of storage, which means there are half as many items in
each successive bucket. Each bucket is a heap table large enough to hash enough
items to fulfill the storage budget, which makes the chance of hash collision reasonably
small.

(iii) SODA Asset Definition records

[0301] Assets are encapsulated in SODA records for transmission. The definition
includes the asset GUID, its content (unstructured data) and it's offset if it is larger than
one record, and a table of attributes. A SODA record encapsulating an asset never
contains any reference to the storage system.

Asset: length 1400

ID: guidSococoConfTableSurface
TOTAL_SIZE: 4096

ATTRIBUTES

CLASS, TEXTURE

APPLICATION, guidAppSococoConf
AUTHOR, guidAuthorDVW

NAME, guidNameSococoConfName
COLLADA_NAME, Tex7
COLLADA_ID, 449

WO 2010/065848 PCT/US2009/066764

-76 -

OFFSET: 0

DATA
00022B6C0001 ...

The offset and data fields can be repeated as long as they fit in one record.
[0302] A query for an asset is a definition

Asset query: length 60
ID

Array: length 28 (1 entry)
Offset: 0
Length: 10000

[0303] An asset is forgotten using a definition

Asset dereference: length 36

Array: length 20 (1 entry)
ID

(iv) Attribute Hierarchy

[0304] Assets have attributes, the most important of which are Type and Default.
Type specifies the purpose of the asset. Default specifies a base asset that can be
used in place of the given asset. An exemplary attribute hierarchy is shown in the
following table:

Name Type Default Value

Blank Texture | NULL <image5>
WoodGrain? Texture | Blank <image6>
TableTop1 Texture | WoodGrain? <image7>
ConfTableWood | Texture | TableTop1 <image8>

SococoTable Texture | ConfTableWood | <image9>

In this example, a virtual area scene that includes the SococoTable texture will be
rendered using the first texture available, searching from SococoTable through
ConfTableWood, then TableTop1, etc.

WO 2010/065848 PCT/US2009/066764

-77 -

[0305] The Artbase will have a huge hierarchical tree of assets based on default
assets, all finally based on a small number of fundamental assets. These fundamental
assets are installed as part of the client software package. This feature is intended to
allow designing a level with specific art assets called out, and to allow rendering it
before all of the art assets are actually designed. Also it may be desirable to start
rendering a virtual area before all of the art assets are loaded.

[0306] Optional attributes include Default, Author, Application and Collada ID
which is a reference to the Collada source from which the asset is derived. Browsing
tools running on an author station will index assets by any and all Attributes.

k. Audio Transport Bus

[0307] The audio transport bus is a component of the transport bus 276 that
handles audio streams. In some embodiments, the audio transport bus is implemented
by a library that manages an audio graph as a collection of component objects. All of
the audio graph objects are registered with the audio transport bus by a unique ID. The
audio transport bus is responsible for managing the audio graph objects when rendering
audio. The audio transport bus traces the audio graph components by ID. In this
process, the audio transport bus invokes each audio graph component in turn, providing
the audio data from the input component named by ID.

[0308] The audio transport bus buffers one time-interval of each audio stream
available on the client network node. The audio transport bus feeds these streams to
zero or more subscribers as configured by the audio stream service 272. Streaming
data uses a pull model, where the final output stage calls preceding stages for data as
needed. Each stage calls the one before until the original audio stream source is
reached. If the source needs to control rate (flow control) it typically does its own
buffering and has its own particular signaling scheme. For instance a local file source
can double-buffer and read ahead one time-interval while processing the preceding one.
A network file source can signal flow rates and buffer limits over the network to the
server. A local microphone source, on the other hand, has no ability to control flow rate
at all.

[0309] The audio transport bus operates in two phases: upon a rendering timer
event, it provides existing rendered data to AudioSink components; the audio transport
bus then traverses the audio graph, causing the next time-slice worth of audio data to
be rendered and buffered. This technique gives the audio graph a good chance of

WO 2010/065848 PCT/US2009/066764

-78 -

providing continuous playback, even in the presence of variable-latency audio source
data.

[0310] In some embodiments, the audio transport bus measures the rendering
latency of each audio graph component, and aggregates each rendering chain latency
by adding up all dependent (source) audio component latencies. The audio transport
bus collects and registers the rendering latency statistics. Based on these statistics, the
realtime scheduler 278 determines when and how the audio graph should be modified
in order to achieve an audio graph processing target. In some embodiments, the
realtime scheduler 278 executes one or more of the methods described above in
connection with FIGS. 13 and 14 in the process of determining when and how the audio
graph should be modified in order to achieve an audio graph processing target.

[0311] Another function of the audio transport bus is to invoke AudioCalculation
objects periodically. The AudioCalculation objects are used to change settings of
associated ones of the audio graph processing elements. The period of
AudioCalculation execution typically is much longer (less often) than the audio graph
rendering period.

[0312] The audio transport bus typically has the ability to record streams and
replay recorded streams. The raw audio streams typically are recorded so that during
playback the mix can be re-rendered according to the viewer's point of view. Some
embodiments include a hub that receives all of the raw audio streams. In these
embodiments, the hub typically handles the recording of sessions. When it is not
desirable to re-render a session, the audio transport bus typically only records audio
streams at the client network node.

[0313] The AudioSource object is the base for all audio sources. This object
delivers data when polled, and defines its desired latency and channels (e.g., mono,
stereo, 5.1). Derived objects include Microphone, MediaStream, Clip, WaveFile,
DirectX audio, and the output side of the Mix plugins.

[0314] The AudioSink object is the base object for audio output devices. This
object requests data from an AudioSource when polled. Derived objects include
Speaker, MediaStream and the input side of the Mix plugins.

() Audio Plugin API

[0315] In some embodiments, the audio plugins incorporate VST audio effect
C++ objects that are available from Steinberg Media Technologies GmbH. In particular,

WO 2010/065848 PCT/US2009/066764

-79-

the audio plugins incorporate VST objects wrapped as plugins. A shim library is
provided for wrapping a VST object as an audio plugin. This wrapper supplies the audio
plugin APl. The API of the VST objects will be used as the audio plugin class-specific
APL. This APl includes:

setBusArrangements (inputs, ninput, output, nOutput)

getBusArrangements (direction, index, speaker&)

canProcessSampleSize(size)

getLatencySamples()

setupProcessing(process)

setProcessing(state)

process(data&)

getTailSamples()

[0316] In these embodiments, a VST plugin is wrapped as an AudioSource and
AudioSink. For instance, the AudioSource::Frame(data&, size) call will be implemented
as a call to the preceding AudioSource::Frame(data&, size&), followed by
setupProcessing(process) and process(data&). The Configuration(latency&,
channelLayout&) call is implemented in terms of getLatencySamples() and
getBusArrangements(output, i, channelLayout&) for each supported channel. The
existence of a wrapper means that VST source code is required to shim an existing VST
plugin into the audio bus.

(i) OpenAL

[0317] Most audio processing graph mixing and effect elements are executed
using the OpenAL cross-platform audio API available from www.openal.org. The
OpenAL library is capable of calculating all parameters listed above in the area/zone
manager section using the best features of the available soundcard to implement the
features. In particular, OpenAL Sources, Listeners, and program Buffers are created for
each operation in the audio graph from mute through final mix. Before each update, the
buffer parameters are modified according to the calculation plugins.

[0318] In some embodiments the GIPS componentized audio library available
from Global IP Solutions, Inc. is used for implementing stream-processing components
(inserts). The GIPS audio library directly supports the following audio plugins: Codecs,
Error Concealment, Jitter control, Echo and Noise cancellation, AGC, and Silence
detection.

WO 2010/065848

-80 -

PCT/US2009/066764

Interfaces:

TransBus:
TransBus::
TransBus::
TransBus::
TransBus:
TransBus:

TransBus::
TransBus::

TransBus

:Ctor(bufferHint)

Register(AudioSource&, AudioSink&, GUID)
Reference(GUID, AudioSource&)
Link(GUID, indexSrc¢, GUID, indexSink)

:Record(GUID)
:Playback(stream, GUID)
TransBus::

EnumerateRecordings()
EnumeratePlayback()
QueryLink(GUID, indexSrc)

::Dtor()

AudioSource::Ctor()
AudioSource:.Frame(data&, size)

AudioSource::Configuration(latency&, channelLayout&)

AudioSource::Configure(parameter, value)
AudioSource::Dtor()

AudioSink::Ctor()

AudioSink::Link(AudioSource &)

AudioSink::Frame()

AudioComponent::Ctor(guidld, latency&, channelLayout&)
AudioComponent::Frame(data&, size)
AudioComponent::Link(AudioSource &)
AudioComponent::Dtor()

WO 2010/065848

-81-

PCT/US2009/066764

Plugins:

AUDVol.DLL
AUDMix.DLL
AUDMute.DLL
AUDPan.DLL
AUDFreq.DLL
AUDJitr.DLL
AUDRevrb.DLL
AUDLPF.DLL
AUDHPF.DLL
AUDETrror.DLL
AUDIPCM.DLL
AUDILBC.DLL
AUDEcho.DLL
AUDNoise.DLL
AUDSIInc.DLL
AUDAGC.DLL

Volume control
Aggregate streams
Mute

Panner

Frequency shifter

Jitter reducer

Reverb

Low-pass filter
High-pass filter

Error concealment (lost media packet)
iPCM-wb codec

iLBC codec

Echo cancellation
Noise cancellation
Silence detection
Automatic Gain Control

Local stream sources

[0312] Local Stream sources are the microphone, local sound sources such as

recorded wav files and music, and sound art resources. A Windows® operating system

APl is used to attach each of these sources and present them to the audio transport bus

for distribution. Each source is “wrapped” as an AudioSource derived class. Source

object wrappers are created when a definition is received (see the AudioDevice SODA

definition in section VI). DirectSound APls are used on Windows® based computing

systems for microphone, clip, Skype, and CD sound. RTP streaming is simply an

AudioSource wrapper around the Real-Time Protocol (RTP) service, which is used to

deliver streaming data (e.g., audio) over a UDP socket. Streaming audio over the

internet supports web-based download-and-play and also Microsoft Media Server

streams.

WO 2010/065848 PCT/US2009/066764

-82 -

Plugins:
AUDMic.DLL Microphone
AUDClip.DLL Audio clip file
AUDRtp.DLL Streaming audio over network
AUDSKype.DLL Skype session live capture
AUDCD.DLL Local music playback
AUDWeb.DLL Web service audio
AUDComft.DLL Comfort noise generator

[0320] In some embodiments, the realtime kernel 260 supports sourcing and
mixing of sessions of virtual area based communications with non-virtual area based
communications (e.g., Skype and VOIP audio). In these embodiments, the realtime
kernel intercepts non-virtual area based communications and presents them as local
audio sources. The non-virtual area based communication session is initiated by one of
the communicants on a client network node that is responsible for sharing the non-
virtual area based communication session raw audio with other client network nodes.
The hosting client network node also mixes audio associated with a virtual area
communication environment for the communicant who is communicating via the non-
virtual area based communication application.

[0321] FIG. 24 shows an embodiment of a computer system 389 (labeled
“System 2”) that enables people to communicate with virtual area communicants via
different communication applications (e.g., Skype and VOIP). In FIG. 24, audio
communication channels are established between four network nodes (i.e., System 1,
System 2, System 3, and System 4) sharing a virtual area. System 1 represents a client
network node that does not run a virtual area based communication application; instead,
System 1 is configured to operate an alternative communication application (e.g.,
Skype). System 2 represents a communicant’s network node that is running an
embodiment of the realtime kernel 260, which includes a stream handler 391 that
sources and mixes virtual area based sessions with System 1. In this process, the
stream handler 391 uses an integration component 393 that virtualizes the playback
and audio capture streams of System 1. Systems 3 and 4 represent two other client
terminals that are running virtual area based communications applications. The
components of the system shown in FIG. 24 include:

. Stream Handler 391: composed of the following audio graph processing
elements:

WO 2010/065848 PCT/US2009/066764

-83 -

o The integration component 393 virtualizes alternate playback and
capture streams. In this process, the integration component 393
sends Microphone (Mic) 1 to C Split 1 received from virtualized
Alternate Playback, receives Microphones 2, 3 and 4 mix from P
Mix, and sends to virtualized Alterate Capture for transmission to
System 1.

o C Split 1 receives Microphone 1 from the integration component
393 and sends Microphone 1 to both P Route and I/O
Multiplexer/Demultiplexer.

o C Split 2 receives Microphone 1 from System 2 Capture and sends
Microphone 2 to P Mix and the I/O Multiplexer/Demultiplexer.

o P Route receives Microphone 1 from C Split 1, and Microphones 2
and 3 from the I/O Multiplexer/Demultiplexer. P Route also sends
Microphones 1, 3 and 4 to System 2 Playback and Microphones 3
and 4 to P Mix.

o P Mix receives Microphone 2 from C Split 2 and Microphones 3 and
4 from P Route, sends a mix of Microphones 2, 3 and 4 to the
stream handler 391 for transmission out virtualized.

. C: Audio Capture by a virtual area based communication application
. P: Audio Playback by a virtual area based communication application
. Ca: Audio Capture by the alternate audio application of System 1

. Pa: Audio Playback by the alternate audio application of System 2

. V Mic; virtual microphone associated with System 2 alternate audio

. V Spkr: virtual speaker(s) associated with System 2 alternate audio

[0322] In operation of the computer system 389, the /O Multiplexer/Demultiplexer
sends the audio signals 1 and 2 received from Systems 1 and 2 to both System 3 and
System 4. The /O Multiplexer/Demultiplexer alsoc sends the audio signals 3 and 4
received from Systems 3 and 4 to the P Route component of the stream handler 391.
The P Route component sends the audio signals 1, 3, and 4 to the playback component
of System 2 and passes the audio signals 3 and 4 to the P mix component of System 2.
The P Mix component of the stream handler 391 mixes the audio signals 2, 3, 4 and
passes the mixed signal to the integration component of System 2. The integration
component 393 passes the mixed signal to the audio capture component of an
alternative communications application (e.g., Skype) that is running on System 2 and
that corresponds to the communications application 395 (e.g., Skype) that is used by
System 1. The alternative audio capture system (Ca) passes the captured mixed signal
2+3+4 to the playback component of the alternative communications application 395
running on System 1.

WO 2010/065848 PCT/US2009/066764

-84-

[0323] In some embodiments of the communication infrastructure 389, P Mix
subscribes to I/O Multiplexer/Demultiplexer directly so that the system is more
symmetric. In these embodiments, P Route becomes P Mix 1, and receives 3, 4 from
IO and 1 from C Split 1. Since these are sent as independent channels, the output of C
Split 1 could be sent directly to the Playback Component, but that isn’t quite as flexible
(since P Mix could perform an actual mix instead of a pass through of independent
channels, see 3 below). In this case, P Mix becomes P Mix 2 and receives 3, 4 from /O
and 2 from C Split 2. The output of this mixer is a true mix, since the Alternate Audio
System is a single channel communication system (even if the channel is stereo, we
there is no multi-track mixer at the other end to combine signals from multiple sources).

[0324] FIG. 24 does not show the interaction between System 3 and System 4
with one another, only with System 2 and by extension, System 1. The interaction
hetween System 3 and 4 could be either peer-to-peer or server mediated as described
above.

[0325] In FIG. 24, any time two streams are delimited with a comma (meaning
that it is a multichannel route), the system could also be sending mixed streams to
conserve internal communication resources (e.g., out of the I/O
Multiplexer/Demultiplexer). The stream to be mixed is indicated with plus signs (i.e. the
virtualized microphone signal sent by the integration component 393 to the alternate
capture component Cp).

m. Realtime scheduler

Services:
SORK.DLL
Client of:
TimeSID.DLL
TransBus.DLL
So3D

[0326] In some embodiments, the realtime scheduler service 278 is a Windows®

service DLL.

[0327] In some embodiments, rendering of audio and the 3D scene is done on a
frame-by-frame basis. Initially, the streams are started, then after a delay the realtime
scheduler service 278 begins processing the first frame. The delay is calibrated by the
combined desired latency of each audio and video processing chain. The realtime
scheduler service 278 initiates consumption of the previously prepared frame and then
processes the next frame, on a time Tick that has a period of 50 milliseconds.

WO 2010/065848 PCT/US2009/066764

-85 -

[0328] The final rendering objects in each chain are registered with the realtime
scheduler service 278. The objects are derived from a SoFrameRenderer class, which
has a method

FrameRender(timeFrameMs)

This method prepares one frame for the time indicated, from data sources that are
particular to the rendering chain (audio or video). The SoFrameRenderer class includes
another method

FrameDeliver()

This method delivers the previously prepared frame to the final destination, which is
particular to the rendering chain. SoFrameRenderer objects are not required to be able
to buffer more than one complete frame. The realtime scheduler service 278 will
FrameDeliver the previously prepared frame on schedule, and then call FrameRender
to prepare the frame for the next interval.

[0329] A Windows® operating system has no “hard scheduling” ability. In some
emboadiments, the realtime scheduler service 278 is configured to call one or more
SoFrameRenderer classes, which include audio processors, graphical processors,
physical modeling and scripts. The SoFrameRenderer classes enable the realtime
scheduler service 278 to readjust frame processing in response to a determination that
the client network node cannot keep up with the target processing level. In some
embodiments, the realtime scheduler 278 implements one or more of the methods
described above in connection with FIGS. 13 and 14. In some of these embodiments,
the realtime scheduler service 278 measures the rendering time for all frames, and
make statistics available through a SODA interface. If the statistics fall out of range
(e.9., it takes too long to prepare a frame) then a log event is generated. A heuristic will
be triggered, to try to “catch up”, perhaps by skipping a frame, dropping out-of-range
rendering chains (which typically are out-of-range due to a hardware or network error),
or by dropping lower-priority rendering chain(s). For the purpose of implementing
priority-based scheduling, the SoFrameRenderer class defines the method:

FramePriority()

This method returns a number, with lower numbers being most important. The heuristic
can determine from the chains’ latency and priority, which chain(s) should be dropped to
produce the most benefit with the least impact on total priority.

WO 2010/065848 PCT/US2009/066764

-86 -

[0330] In some embodiments, the realtime scheduler service 278 additionally is
able to drop stages within a chain. For this purpose, the realtime scheduler service 278
is able to call the method:

Latency=FramePrune(priority)

Where the processing chain is responsible for “dropping links” that are lower than the
indicated priority. The realtime scheduler service 278 can start calling at the maximum
priority and count backwards until all frames render within the desired total latency. A
combined heuristic of iteratively dropping low-priority chains and pruning the chains
themselves typically terminates at some priority level. If the priority level is below a
threshold, a log entry can be made and, in some cases, the session is closed.

[0331] The realtime scheduler service 278 also is responsible for managing the
interface to a SIS time service (a network resource), so as to synchronize the client
network node clock with the clocks of the other client network nodes in the network. In
some embodiments the time services are implemented by plugins, as described below.

7. FAILURE RECOVERY

[0332] The realtime kemel 260 makes a best-effort attempt to continue operating
in the presence of network and server failures. In this process, the realtime kernel 260
implements a two-tier failure recovery algorithm. First the SODA channel service 270
and the Media service 271 independently attempt to reestablish connections upon
failure. The media recovery will allow a conference to continue in the presence of
individual audio channel failure, or to recover in the case of NAT timeout. Second, if the
SODA channel service 270 and the media service 271 fail to reestablish connections,
they will signal failure to their clients. In some embodiments, the actions of multiple
communicants simultaneously attempting recovery are coordinated by registering the
client node sessions with an area vault server that can synchronize the recovery
attempts.

[0333] In some embodiments, the area/zone manager 264 also attempts a
recovery in the event of a server failure. The area/zone manager 264 fields the stream
failure and then tears down the session and re-launched it on a different area server.

WO 2010/065848 PCT/US2009/066764

-87-
8. PLUGINS

[0334] In some embodiments, the realtime kermel 260 has a componentized,
open, and platform-independent architecture that allows developers to independently
and develop and remotely add and update components of the realtime kernel 260.

a. Plugin Design

[0335] Plugins are platform-specific binary images that are downloaded from a
plugin server. On Windows® based computer systems, plugins are implemented as
DLLs (e.g., .NET or COM style plugins). Plugins differ from normal dynamic linked
libraries, however, by the way in which they are loaded. In particular, during loading
there is no need to link to the plugin library; nor is there any need for any compilation of
software code. Instead, the plugin manager 266 simply loads the plugins that are
contained in the plugin directory. In this way, plugins can be added or removed from a
client network node without any further configuration of the station (e.g. registry entries),
simply by downloading or deleting the executable. The plugins connect to each plugin
host in a well defined way.

[0336] As shown in FIG. 25, an active instance of a plugin 392 is derived from a
respective plugin variant class 394, which in turn is derived from a respective plugin
base class 396. In some embodiments, a plugin instance 392 is instantiated by creating
a base plugin object and casting the base plugin object to an identified variant through
inheritance. Each base class 396 and variant class 394 signifies that it provides a
service by declaring that it implements an interface.

[0337] FIG. 26 shows an exemplary set of plugin base classes 398, 400 each of
which is associated with a respective set of one or more derived variant classes 402,
404 and 406, 408. Each of the plugin base classes 398, 400 defines a particular
category of functionality, whereas each plugin variant class defines a particular purpose
or category of behavior of the functionality of the corresponding base class (e.g.,
APIl=human interface device, Variant=mouse). The plugins typically use header files to
define interfaces, function prototypes of interface functions, and macros for invoking the
interface functions.

[0338] Plugins are identified by GUID as well as human-readable name. A single
plugin can have multiple APls supported as well as multiple variants on the same API.
In some embodiments, a plugin APl is a C language data structure containing function
pointers to the plugin functions implementing the services defined by the interface.

WO 2010/065848 PCT/US2009/066764

-88-

[0339] The following table shows an example of a fictitious Physics plugin that is
identified as guidPhysicsSet1.

File Name Internal Identifier API Variant
Name
Physics.DLL | Frictionless | guidPhysicsSet1 | guidJoint guidJointBall
physics set
1.0

Physics.DLL | Frictionless | guidPhysicsSet1 | guidJoint guidJointHinge
physics set
1.0

Physics.DLL | Frictionless | guidPhysicsSet1 | guidJoint guidJointSlider
physics set
1.0

Physics.DLL | Frictionless | guidPhysicsSet1 | guidJoint guidJointSpring
physics set
1.0

Physics.DLL | Frictionless | guidPhysicsSet1 | guidCollision | guidCollisionOctTree
physics set
1.0

Physics.DLL | Frictionless | guidPhysicsSet1 | guidCollision | guidCollisionDynamic
physics set
1.0

In this example there are four variants of a “Joint” APl and two of the “Collision
Detection” API. The file name is name under which the plugin is stored in the file
system. The Internal Name is intended to describe the plugin as a whole. The Identifier
identifies the entire plugin binary image, and is only used by the plugin manager 266.
The APl is a well-known GUID that specifies a procedural API that is supported by the
plugin. The Variant is a well-known GUID that client applications can use to choose a
plugin for a particular purpose. For instance the SODA channel service 270 may
negotiate a compression plugin variant for use on a session.

[0340] FIG. 27 shows an exemplary architecture of a plugin 410 that is
compatible with the Microsoft® COM (Component Object Model) architecture. The
plugin 410 includes a set of entry point functions 412, a first API class 414 that includes
first and second variants 416, 418, and a second AP| class 420. The plugin 410
implements all of the functions in all of the supported API classes 414, 420 and in all of
the variants within each API class. Each API class and each variant within an API class
is associated with a respective entry point function (also referred to as a “factory”).
When the plugin 410 is loaded, a respective entry point function is registered with the
plugin host for each of the supported API classes. The plugin host uses the entry point

WO 2010/065848 PCT/US2009/066764

-89 -

function that is associated with an API class in order to instantiate the API class and to
obtain a pointer to its IlUnknown interface. The plugin host uses the IlUnknown interface
to search for entry point functions of the variants supported by the API class. The
plugin host uses the entry point function that is associated with a variant in order to
instantiate the variant and to obtain a pointer to its IlUnknown interface. The plugin host
uses the IUnknown interface to query the variant for its interface function table. The
function tables give the host access to the variant's API implementations.

[0341] Each plugin executable supports a core Plugin API that allows the plugin
manager 266 to manage the plugin. The core Plugin APl makes the plugin executables
self-describing. In particular, each plugin exports a function that can be called by the
plugin manager 266 to allow the plugin to register itself. In some embodiments, each
plugin executable exports the following core Plugin API:

Plugin:GUID() returns GUID of this plugin

Plugin:NameGet() get human-readable name of API

Plugin:APIEnumerate() retuns GUIDs of supported APls

Plugln:VariantEnumerate(guidPluginApi) return GUIDs of supported Variants
for given API

Plugin:DependencyEnumerate(guidPluginApi) | retum GUIDs of plugins API

depends upon

Plugln:Create (guidPluginApi, guidVariant, retun PluginVariant instance
PluginVariant&*)

(i) Plugin Variant

[0342] An active instance of a plugin variant is derived from the class
PluglnVariant. They are always created using a Plugln object. All useful plugins extend
this class to include API-specific methods. The only common methods are generic
configuration methods.

‘ Plu§InVariant:Configure() launch dialog

PluginVariant: ConfigurationSet{parameters) | set configuration parameters
PluginVariant. ConfigurationGet(parameters&) | get configuration parameters

(ii) Plugin Manager

[0343] FIG. 28 shows an embodiment of a plugin architecture that includes the
plugin manager 266, a plugin directory 422 that contains a set of plugin containers 424,
a plugin database 426, and a caller 428. The plugin manager 266 queries the plugin
containers 424 in the plugin directory 422, registers the plugins in the plugin database

WO 2010/065848 PCT/US2009/066764

-90-

426, and responds to AP| requests from the caller 428 to send information about the
available plugins and to instantiate specified plugin variants. The caller 428 typically is
a kernel component (e.g., the installation loader component, a kernel manager, such as
the connection and server mix manger 262 and the area/zone manager 264, and a
kernel service); although, in some embodiments, the caller 428 may correspond to a
software application or service running on the client node or on a remote network node
(e.g., a server).

[0344] FIG. 29 shows an embodiment of a method that is implemented by the
plugin manager 266 in the process of registering the plugins that are available on a
client network node.

[0345] In accordance with the method of FIG. 29, the plugin manager 266
discovers the plugins that are available on the client network node (FIG. 29, block 430).
In some embodiments, all plugins are stored in a shared plugin directory that is created
in the file system of the client network node. In these embodiments, the plugin manager
266 discovers the available plugins by checking the shared plugin directory. In other
embodiments, the plugin manager 266 may be configured to check other file locations
for available plugins.

[0346] The plugin manager 266 queries the discovered plugins for all APls that
they support (FIG. 29, block 432). In this process, the plugin manager 266 makes calls
to the core API in order to enumerate the parameter values associated with the
available plugins. For example, the plugin manager 266 queries the plugins with core
API calls that return the GUIDs of the plugins, the GUIDs of supported APIs, and the
GUIDs of supported variants for given API.

[0347] Based on the results of the querying, the plugin manager 266 stores
associations between the plugins and the APIs that they respectively support in the
plugin database 426 (FIG. 29, block 434). In this process, the plugin manager 266
classifies all of the plugins in the directory 422 by the APls that that support. The plugin
manger 266 automatically enters the plugins into the plugin database 426 under all
supported APIs. In this way, the plugin database 426 allows plugins with the same AP
to be queried for a variant. In addition, plugins in the plugin database 426 can be
enumerated by API and variant and instances created when referenced by a virtual area
application. FIG. 30 shows an exemplary embodiment of a plugin database 436.

[0348] The Plugin Manager exports the following API:

WO 2010/065848 PCT/US2009/066764

-91 -
PluginMgr: PluginEnumerate(guidP luginApi) get list of available plugins by
name, identifier
PluginMgr:VariantEnumerate(guidldentifier, get list of variants
| guidPluginApi)
PluginMgr:DependencyEnumerate(guididentifier, | return GUIDs of plugins this
| guidPluginApi) plugin depends upon
PluginMgr:Createlnstance(guidldentifier, load plugin and get Plugin
| guidPluginApi, guidVariant, Plugin&*) instance
PluginMgr:EntryPointEnumerate(guidPlugin) get list of available entry points
PluginMgr:EntryPointGet(guidPlugin, EntryPoint) | get entry point
PluginMgr:Configure(guidPlugin) display configuration dialog
modally
PluginMgr:ConfigurationSet(guidPlugin) set SODA record of plugin
configuration
PluginMgr:ConfigurationGet(guidPlugin) get SODA record of plugin
configuration
PluginMgr:NameGet(guidPlugin) get human-readable name

[0349] FIG. 31 shows an embodiment of a method that is implemented by the
plugin manager 266 in response to receipt of an API call from the caller 428. In
accordance with this method, in response to receipt of a call to enumerate all plugins
that support a specified one of the APIs (FIG. 31, block 440), the plugin manager 266
returns a list that includes identifiers of all the plugins that are associated with the
specified APl in the plugin database (FIG. 31, block 442). In response to receipt of a
call to enumerate variants of an identified one of the APls supported by an identified
one of the plugins (FIG. 31, block 444), the plugin manager 266, retuns a list that
includes identifiers of all variants of the given API that are supported by the identified
plugin (FIG. 31, block 446). In response to receipt of a call to instantiate an identified
one of the variants of an identified one of the APIs supported by an identified one of the
plugins (FIG. 31, block 448), the plugin manager 266 loads the identified plugin and
returns a pointer to an instance of the identified variant (FIG. 31, block 450). In this
process, the specified variant is located, the specified variant is loaded into the caller's
address space, and an internal table of pointers is populated with the function table

addresses of the variant functions implementing the services defined by the API.
(ii) Plugin server

[0350] Plugins are present on a server in appropriate downloadable form for each
supported platform. Servers always support a minimum set of encryption, compression
and authentication plugins, so client network nodes always succeed when attempting a
server connection.

WO 2010/065848

-92 -

[0351] When first registered on a server by a third party developer, the plugin is
examined by an automated tool to ensure it conforms to the API specification, and is
checked for unacceptable client station API references. For instance, no dynamic
binding is allowed to any native interfaces not already in the Plugin envircnment. Then
the plugin is scanned for viruses. All images on the server are then virus-safe.

[0352] Plugins are access-controlled by authenticating users. In this way a user
who has paid for access can use the plugin from any location. In some embodiments,
user is authenticated for plugin download via an electronic commerce engine.

b. Classes of Plugin

[0353] All plugins conform to the plugin APl. Some plugins are specific to certain
tools (e.g., OpenGL) and have their own standard. Each class of plugin has APIs that
are class-specific. In some embodiments, plugins depend upon a native application
runtime for all client station access. In each component where plugins are used,
protocols allow negotiation of the feature using a GUID namespace. For example, in
some instances, when connecting a network stream the offering client network node
offers its encryption plugin GUID list in order of preference and the receiving network
node chooses among those offered and responds with a choice or a refusal.

[0354] In some exemplary embodiments, the following classes of plugins are
defined and used by developers to develop plugins for use in creating virtual area
communicant environments.

encryption algorithm
compression algorithm
authentication algorithm
credential

graphic effect

physics extension
script extension

input device hosting
audio mix

audio source

audio insert

stream transport

time service

These plugin classes are defined in the following paragraphs.

PCT/US2009/066764

WO 2010/065848 PCT/US2009/066764

-93 -

Encryption algorithm

[0355] Encryption is a stream transport feature, and is negotiated at stream
creation time. The session definition will include the encryption Variant ID. Exemplary
encryption variants include AES and RC4 block encryption.

Compression algorithm

[0356] Compression is an optional Channel content feature. Channels choose
compression when the transport negotiates a channel definition. The subscribing
station offers available compression options, and the publishing station indicates its
selection when the publication is offered. Audio codecs may choose to skip
compression, since their content is already compressed. An exemplary audio
compression plugin variant implements the ITU-T V.44 compression process with a
channel-specific priming stream.

Authentication algorithm

[0357] Network infrastructure servers require certain authentication protocols in
order to connect. Third party servers may have specific authentication requirements.
Authentication protocols may be amended from time to time. In addition to the core
Plugin API, an authentication plugin has APIs for executing authentication protocols and
gaining access to local credentials. Exemplary authentication plugin variants include
plugin variants that support SSL type of authentication for an initial server and that
support subsequent server login using a signed ID as a token.

Credential

[0358] Credentials may be created and must be encapsulated in a plugin for
storage and use by the authentication algorithm. Exemplary credentials are certificates
containing public keys.

Graphical effect

[0359] OpenGL and Collada support scriptable shaders, samplers, profiles and
annotations. Some embodiments support Collada cg_surface_type and
glsl_surface_type which are shaders, and gl_samplerX and cg_samplerX which are
samplers.

Physics Extension

[0360] In some embodiments, the Open Dynamics Engine (ODE) is amended to
included specific hooks into the dynamic behavior loop. Virtual area applications
typically specify physics by applying physical properties to entities in the scene graph.
Physics extension plugins have an API for querying associated property GUID(s) that

WO 2010/065848 PCT/US2009/066764

-94-

are processed by that plugin. In this way, the physics plugins are only invoked for
pertinent objects and virtual areas. Some embodiments support Collada
rigid_constraint which is a joint in a model, and OpenGL collision detection which is a
global motion algorithm for avatars and artifacts.

Script extension

[0361] Script extension plugins have an additional API to allow wrapping a
scripting runtime (e.g., Java and JavaScript) and to provide to it the native application
runtime. Scripts are defined through a SODA record that includes the GUID of the
script extension plugin.

Input device hosting

[0362] Input device plugins generate SODA records for standard input events
(e.g., events generated by computer keyboard, computer mouse, Xbox® controller, and
Wii® controller) that are processed by application logic.

Audio Mix, Audio Source, and Audio Insert

[0363] Audio processing is desirable at the origin (e.g., microphone) and effects
and mixing at the destination (e.g., speaker). Audio plugins typically are not able to
change audio network routing, because that affects other user's experience. Audio
plugins on the Windows® platform are DLLs that conform to the Audio Plugin APIl. They
are registered with the realtime kernel 260 and are available for reference by SODA.
Virtual area developers may request audio plugins as part of a virtual area application
(e.g., using extended Collada fields or VSDL semantics).

[0364] Avatar scripts can request audio plugins as well.

[0365] Mix variants include echo, echo cancellation, reverb and compose.

[0366] Source variants include microphone, clip, media, Skype and streaming
file.

[0367] Insert variants include panner, volume, iLBC, RCU, iPCM-wb, equalizer,
LPF, HPF, AGC, Noise Cancellation, Error Concealment, Jitter Control, mute, delay,
silence detection, comfort noise.

Stream Transport

[0368] STRAW uses a stream transport plugin to host sessions on a network. A
Stream transports packets and provides reliability, authentication and encryption.

Time Service
[0369] The realtime scheduler 260 is interested in synchronizing time between

client network nodes. For this purpose each client network node will synchronize with

WO 2010/065848 PCT/US2009/066764

-95-

an internet time standard, such as SIS, NTP (Network Time Protocol), or ITS (Internet
Time Service).

c. Plugin Class APls

[0370] All Plugin class objects are based on PluginVariant.
Encryption algorithm
[0371] This plugin is based on PluginVariant. It performs a block encryption
algorithm including keying. This plugin is stateless except for the key i.e. each
encryption is independent of any other.
Encryption::Ctor(algorithm, key)
Encryption::Encrypt(data, size, target)
Encryption::Decrypt(data, size, target)
Encryption::Dtor()

Compression algorithm

[0372] This plugin is based on PluginVariant. It performs one or more lossless
compression/decompression algorithms. It compresses is a continuous stream, and
may keep an internal state table. The algorithm is restarted on each KeyFrame, which
may include processing a “priming” block which is not emitted but contributes to the
compression state.

Compression::Ctor(algorithm)
Compression::KeyFrame(preload)
Compression::Compress(data, size, target)
Compression::Decompress(data, size, target)
Compression:: Dtor()

Authentication algorithm

[0373] This plugin is based on PluginVariant. It accesses local credentials, and
implements a client authentication state machine of one or more states. The
authentication state machine does NOT control the communication link to the
authentication server. It only processes messages and produces subsequent
messages.

Authentication::Ctor(algorithm, credential)
Authentication:: InitialState()
Authentication:: State(state)

WO 2010/065848

PCT/US2009/066764

-96 -

Authentication::Advance(messageData, messageConsumer&)
Authentication::SessionKey(key&)
Authentication:: Dtor()

Credential

This plugin is based on PluginVariant. It accesses platform-specific
credential stores.

Credential::Ctor()
Credential::Select(index)
Credential::Accept(data, size, index&)
Credential::PrivateKey(key&)
Credential::PublicKey(key&)
Credential::Passphrase(passpharase&)
Credential::Dtor()

Graphical effects — Shader
[0374] This plugin is based on PluginVariant. It affects 3D rendering.

[0375] The Shader API supports shaders (scripted procedural surface

generators).

Shader::Ctor(gl&)

Shader::Initialize(format, size, mip, type, code, technique)
Shader:: SetTextureParameters(texture)
Shader::SetTextureStream(idStream)
Shader::Render(pass)

Shader::Dtor()

Graphical effects — Sampler
[0376] The Sampler API is based on PluginVariant. It supports mapping texture

to surfaces.

Sampler::Ctor(gl&)

Sampler::Initialize(type, wrap, minFilter, magFilter, mipFilter, color,
mipmap_maxLevel, mipmap_bias)

Sampler::Dtor()

Physics Extension - Joint

[0377] This plugin is based on PluginVariant. It extends the dynamics of motion.

WO 2010/065848 PCT/US2009/066764

-97 -

[0378] The Joint AP supports joint constraints and dynamics for avatar and
artifact subassemblies.
Joint::Ctor(ode&, dimension, nUnbounded)

Joint::Initialize(body1, anchor1, orientation1, body2, anchor2, orientation2,
axis, erp, ¢fm)

Joint::Torque(torque)

Joint::GetState(fps&, erp&, jLin1&, jAng1&, jLin2&, jAng2&, ¢&, cfm&,
low&, high&)

Physics Extension - Collision

[0379] The Collision API is based on PluginVariant. It supports rapidly
calculating collision detection. In some embodiments, a collision plugin variant may
implement the quad-tree class dxSpace algorithm in the Open Dynamics Engine (ODE).

Collision::Ctor(ode&, space)
Collision::Step()

Script extension
[0380] This plugin is based on PluginVariant. It supports execution of code

supplied by the virtual area application. This code is in binary form and labeled by the
language and the API the particular code definition supports. The plugin varies by
language. It loads a particular code definition and calls it, supplying a native application
runtime object appropriate for the API.

ScriptExtension::Ctor(sonar&)

ScriptExtension::Execute(code, api)

ScriptExtension::Dtor()

Input device hosting
[0381] This plugin is based on PluginVariant. It supports user event capture

(other than audio). This includes everything from a mouse to a video camera with facial
recognition. The plugin generates user events to the queue.

InputDevice::Ctor(arg, queue)

InputDevice::Configure(arg)

Audio Mix
[0382] This plugin is based on AudioComponent. It combines two audio streams.

WO 2010/065848 PCT/US2009/066764

-98 -

AudioMix::Ctor(audioSrc1, audioSrc2, param)
AudioMix::Configure(param)
AudioMix:: Dtor()

Audio Source
[0383] This plugin is based on AudioComponent. It provides a pollable audio
stream.
AudioSource::Ctor()
AudioSource::Configure(arg)
AudioSource::GetLatency(latency&)
AudioSource::Poll(data)

Audio Insert
[0384] This plugin is based on AudioComponent. It translates an audio stream.
It may compress, decompress or simply modify the stream.
Audiolnsert::Ctor(AudioSource&)
Audiolnsert::GetLatency(latency&)
Audiolnsert::Process()

Audio Send
[0385] This plugin is based on AudioComponent. It divides an audio stream into
two equal streams (copies the stream). Any AudioSource can be routed to any other
audio element.
AudioSend::Ctor(AudioSource&)
AudioSend:: Dtor()
AudioSend::Copy(data&)

Stream Transport
[0386] This plugin is based on PluginVariant. An exemplary stream transport
plugin variant supports an IP UDP transport with configurable authentication and
encryption.
Transport::Ctor(port, station, session, encryption)
Transport:MTU()
Transport::Hello()
Transport::Challenge(credential)

WO 2010/065848

-99 -

Transport::Respond(challenge, encryption)
Transport.:Response(response, encryption)
Transport.: ldentifyingToken()
Transport::IdentifyingToken(token)
Transport::Send(data, size, idChannel)

Transport.:Receive(record)

Transport::Dtor()

Time Service

[0387] This plugin is based on PluginVariant. It synchronizes a client network

node time with an intermnet standard.

VI.

TimeSve::Ctor()
TimeSvc::Sync()
TimeSvc::Dtor()

SODA DEFINITIONS

[0388] Session

IDStation1
IDStation2
IDSession

[0389] SessionFailure

IDSession
Reason
Parameter

[0390] Station

ID
STRAW_Address
STRAW_Transport

[0391] Publish

IDClient
IDServer
IDChannel
IDCompression

[0392] Subscribe

IDClient
IDServer
IDChannel

[GUID]

GUID
GUID
GUID

PCT/US2009/066764

WO 2010/065848

IDChannellndex
Reliable
Compressed
KeyFrameUser
IDCompression
Preload

[0393] StreamKeepAlive
IDSession
Timeout

[0394] StreamFailure

IDSession

[0395] ChannelFailure
IDChannelindex

[0396] CommunicantState

IDSelf
IDCommunicant
State

[0397]HID

IDDeviceClass
IDDevice
ID

[0398] AudioParameter

ID
IDParameter
Value

[0399] AudioDevice

IDDeviceClass
IDDevice
ID

[0400] AreaSession
IDArea
ID

[0401] PhysicsCheckpoint

Location
Velocity
Acceleration
Orientation

-100 -

GUID
bit

bit

bit
GUID
text

GUID
long

GUID

GUID

GUID
GUID
short

GUID
GUID
GUID

GUID
GUID
short

GUID
GUID
GUID

GUID
GUID

doubleX3
doubleX3
doubleX3
doubleX3

PCT/US2009/066764

WO 2010/065848

-101 -
Center Of Gravity doublexX4
Inertia Tensor doubleX3
Mass double
[0402] Zone
ID GUID
Shape Mesh
Origin doubleX3
Avatar [GUID]
[0403] AudioAperture
ID GUID
Radius double
Origin doubleX3
Orientation doubleX3
[0404] AudioObstruction
D GUID
Radius double
Origin doubleX3
[0405] AudioReverb
ID GUID
Shape Mesh
Origin doubleX3
[0406] AudioMix
ID GUID
Type GUID
Variant GUID
Avatar GUID
Source1 GUID
Source2 GUID
[0407] AudioEffect
ID GUID
Type GUID
Variant GUID
Avatar GUID
Source1 GUID
[0408] AudioStream
IDAudio GUID
Avatar GUID
[0409] AudioCalculation
IDSource GUID

PCT/US2009/066764

WO 2010/065848

IDSink

IDComponent
IDOperation

Param1
Param2

[0410] Plugin

Type
Name
ID

API Supported

-102 -

GUID
GUID
GUID
long
long

GUID
Text
GUID
[GUID]

[0411] UpgradeDependencyList

Base Installation
Description
Upgrade ID

[0412] Upgrade
ID
Offset
Data

[0413] AudioRecord
ID
IDAudio
IDStore

[0414] AudioPlayback

ID

IDAudio

IDStore
[0415] NetworkDNS

Address

[0416] NetworkProxy
Address

[0417] Debuginfo

ID
Statistic
Reset

[0418] DebugTrap

ID
Trap

GUID
Text
[GUID]

GUID
long

I

GUID
GUID
GUID

GUID
GUID
GUID

String

String

GUID
GUID
Boolean

GUID
GUID

PCT/US2009/066764

WO 2010/065848 PCT/US2009/066764

-103 -
Rearm Boolean
[0419]1HID
IDKvm GUID
HID event

VIl. CONCLUSION

[0420] The embodiments that are described herein provide a realtime kemel that
supports the realtime communications between communicants operating on respective
network nodes. The realtime kemnel handles the complex tasks of connecting to
communicants, virtual areas, and other network resources, switching those connections
in response to user inputs, and mixing realtime data streams. The realtime kernel
enables developers to focus on developing high-level communications functionality
instead of low-level plumbing code. The realtime kernel imposes relatively low
computational resource requirements so that realtime communications performance can
be achieved using a wide range of currently available computing devices and network
connections.

[0421] Other embodiments are within the scope of the claims.

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

- 104 -

CLAIMS

1. A computer-implemented method of remote-controlled realtime data
stream handling, comprising:

at a local network node (12), receiving one or more stream handling instructions
from a remote network node (16}, wherein the one or more stream handling instructions
comprise a specification of a stream handler (22) for processing at least one realtime
data stream;

at the local network node (16), creating a stream handler (22} in accordance with
the specification; and

producing a resultani data stream at the local network node (18), wherein the
producing comprises processing a realtime data stream through the created stream
handler (22).

2. The method of claim 1, wherein the producing comprises

determining configuration parameter values from realtime state information
specified in the one or more stream handling instructions, and

dynamically configuring the stream handler (22) with the configuration parameter

values.

3. The method of claim 1, wherein the creating comprises huilding the stream
handler (22} with a mixing function that is specified in the one or more stream handling
instructions, and the producing comprises mixing the reallime data stream with at least
one other reallime data stream in accordance with the mixing function o produce a

mixed realtime data stream.

4, The method of claim 1, wherein:

the creating comprises instantiating processing objects specified in the one or
more stream handling instructions and assembling the instantiated processing objects
into a directed graph component of the siream handler (22} in accordance with the
specification; and

the processing comprises processing the realtime data stream through the

directed graph.

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

- 105 -

5 The method of claim 4, wherein the producing comprises

determining configuration parameter values for the instantiated processing
objacts from realtime state information specified in the one or more stream handling
instructions, and

configuring the processing objects with the configuration parameter values.

6. The method of claim 4, wherein the instantiating comprises instantiating a
mixing object specified in the one or more stream handling instructions, and the
producing comprises executing the mixing object {o produce a mixed realtime data
stream from a combination of the realtime data stream and at least one other reaitime

data stream.

7. The method of claim 4, wherein at least one of the instantiated processing
objects encapsulates a respective call {o a driver module confrolling a hardware
component of the local network node (16} based at least in part on the resultant data

stream.

8. The method of claim 4, wherein the one or more stream handiing
instructions specify the processing objects with respective unigue identifiers and the
instantiating comprises issuing (o a processing object application program interface

procedure (AP1) cails comprising respective ones of the identifiers.

8. The method of claim 1, wherein the one or more stream handiing
instructions comprise a second specification of a second stream handler (22} for
processing at least one realtime data stream of a data type different that the first
realime data stream, the creating comprises creating a second stream handler (22) in
accordance with the second specification, and the producing comprises processing a
realtime data stream through the second stream handier (22).

10. The method of claim 1, wherein the local network node (16} is associated
with a first object in a virtual area (28), and further comprising receiving the realtime

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

- 108 -

data stream from a second remote network node that is associated with a second object
in the virtual area (28).

11. The method of claim 10, wherein the one or more stream handiing
instructions comprise realtime position information describing the respective positions of
the first and second objects in the virtual area (£28), and the producing comprises
determining configuration parameter values from the reaitime position information and
configuring the stream handier (22} with the configuration parameter values.

12. The method of claim 11, further comprising receiving a second realtime
data stream from a third remote network node that is associated with a third object in the
virtual area {(28), wherein the creating comprises building the stream handler (22) with a
mixing function specified in the one or more stream handling instructions, and the
producing comprises combining the first realtime data stream and the second realtime

data stream in accordance with the mixing function.

13. The method of claim 11,

wherein the one or more stream handling instructions comprise a second
specification of a second stream handier (22) for procassing at least one reaitime data
stream of a data type different than the first reaitime data stream,

further comprising receiving a second realtime data stream from the third remote
network node, and

wherein the creating comprises creating a second stream handler (22} in
accordance with the second specification, and the producing comprises configuring the
second stream handler (22) in accordance with one or more of the configuration
parameter values and processing the first realtime data stream and the second realiime

data stream through the second stream handler {22).

14, The method of claim 10, wherein:

the one or more stream handling instructions comprise reallime position
information describing the respective positions of the first and second objects in the
virtual area (28);

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764
- 107 -

the creating comprises building the stream handler (22) with one or more object
attribute processing functions that are specified in the one or more stream handling
instructions;

the producing comprises determining object configuration parameter valuas from
the realtime position information, and dynamically configuring the one or more object
attribute processing functions with the object configuration parameter values while
producing the resulfant data stream; and

the generating comprises rendering a visible output comprising visual
representations of the first and second objects in the virtual area (28) based at least in

part on the resultant data stream.

15, The method of claim 14, wherein at least one of the one or more object
attribute processing functions is configured o dynamically controt the visual
representation of the first object in terms of af least one of orientation, position,

movemaeant, and pose based on the position of the first object in the virtual area (28).

16. The method of claim 1, wherein the specified data type 1s audio and the
generating comprises generating an audible output.

17. The method of claim 16, wherein the creating comprises building the
stream handler (22) with one or more audio processing functions that are specified in

the one or more stream handling instructions.

18. The method of claim 17, wherain the network node is associated with a
first object in a virtual area (28), further comprising receiving the realtime data stream
from a second network node that is associated with a second object in the virtual area
{28), and wherein the one or more stream handiing instructions comprise realtime
position information describing the respective positions of the first and second objects in
the virtual area (28}, and the producing comprises determining audio processing
configuration parameter values from the realtime position information and configuring
the siream handler (22) with the audio processing configuration parameter values.

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

- 108 -

19. The method of claim 16, wherein the creating comprises building the
stream handler (22) with a mixing function that is specified in the one or more stream
handiing instructions, and the producing comprises combining the reallime data siream
with at least one other realtime audio data stream in accordance with the mixing

function.

20, The method of claim 1, further comprising at the local network node (16):

storing remuote publish definitions received from the remote network nods,
wherein the definitions describe realtime data streams available from one or more
remote network nodes:

storing local subscription definitions of realtime data streams requested by local
realtime kemel components of the local network node (18); and

sending to one or more of the remote network nodes respective realtime data
stream requests for each of the local subscribe definitions having a matching remote
publish defimtion.

21, The method of claim 20, further comprising at the local network node (16)
directing reaitime data streams received from the one or more remote network nodes in
response o the requests to respective ones of the local realtime kernel components in
accordance with the local subscribe definitions.

22, The method of claim 1, further comprising generating a human-perceptible

output at the local network node {(16) based at least in part on the resultant data stream.

23, Apparatus, comprising:
a computer—+readable medium storing computer-readable instructions; and
a data processing unit coupled to the memory, operable to execute the
instructions, and based at least in part on the execution of the instructions operable to
perform operations comprising
at a local network node (18), receiving one or more stream handiing
instructions from a remote network node, wherein the one or more
stream handling instructions comprise a specification of a stream
handler (22) for processing at least one realtime data stream,

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

- 109 -

at the local network node (16), crealing a stream handler (22) in
accordance with the specification, and

producing a resultant data stream at the local network node (16), wherein
the producing comprises processing a realtime data stream through

the created stream handier (22).

24, Alleast one computer-readable medium having computer-readable
program code embodied therein, the computer-readable program code adapted to be
executed by a computer to implement a method comprising:

at a local network node (186), receiving one or more stream handling instructions
from a remote network node, wherein the ong or more stream handling instructions
comprise a specification of a stream handler (22) for processing at least one reallime
data stream;

at the local network node {(16), creating a stream handler (22) in accordance with
the specification; and

producing a resultant data stream at the local network node (16), wherein the
producing comprises processing a reaitime data stream through the created stream
handier (22}

25 A computer-implemented method of realtime data stream handling,
comprising:

parsing a specification of a realiime stream handler (208) from one or more
stream handling instructions {210), wherein the parsing comprises parsing an input
source identifier, an output sink identifier, and a respective identifier of each of one or
more data processing objects from the one or more stream handing instructions {210);

instantiating reaitime stream handling objects corresponding 1o respective ones
of the identifiers;

creating a directed graph (212) comprising ongs of the instantiated realtime
stream handling objects in accordance with the specification;

receiving a reaitime data stream from an input source corresponding to the input
source identifier; and

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

- 110 -

producing a resullant data stream at an output sink corresponding to the output
sink identifier, wherein the producing comprises processing the realtime data stream
through the directed graph (212).

26. The method of claim 25, wherein the parsing comprisas exiracting
identifiers of data processing objects from the one or more stream handiing instructions
{210), and the creating comprises assembling the directed graph (212) from
instantiations of realtime stream handling objects corresponding to the extracted

identifiers.

27, The method of claim 25, wherein the parsing comprises exiracting
identifiers of audio processing objects from the one or more stream handling instructions
{210), and the processing comprises processing the realtime data stream through one
or more instantiated audio processing objects corresponding to respective ones of the

extracted identifiers.

28, The method of claim 25, wherein the instantiating comprises querying an
object library for the respective identifiers, retrieving objects from the object library in
response o the querying, and instantiating the refrieved objects.

29. The method of claim 28, wherein the instantiating comprises issuing o a
processing object application program interface (AP1) procedure calls comprising

respective ones of the identifiers.

30. The method of claim 25, wherein the producing comprises

determining configuration parameter vaiues from realtime state information
specified in one or more of the stream handiing nstructions (210}, and

dynamically configuring one or more of the instantiated realtime stream handling
objects in the directed graph (212) with the configuration parameter values.

31. The method of claim 25§, wherein:
the receiving comprises receiving a second reallime data stream from a second
input source corresponding to a second input source identifier in the specification; and

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

-111 -

the producing comprises processing the second realtime data stream through the
directed graph (212).

32. The method of claim 31, wherein the instantiating comprises instantiating a
reallime stream mixing object (220) corresponding {o a respective one of the parsed
identifiers, the creating comprises incorporating the instantiated realtime stream mixing
object into the directed graph (212}, and the producing comprises executing the
instantiated realtime stream mixing object (220} to combine the first realtime data

stream and the second realtime data stream.

33. The method of claim 32, wherein the first input source corresponds o a
definition of an ncoming realtime data stream (214) from a first remote network node,
and the second input source corresponds 1o a definition of an incoming realtime data
stream {214} from a second remote network node.

34. The method of claim 25, wherein:

the parsing comprises parsing a second specification of a second realtime stream
handier (22} from the one or more stream handling instructions {210), the second
specification comprising a second nput source identifier, a second output sink identifier,
and a respective identifier of each of one or more data processing objects;

the creating comprisaes creating a second directed graph from ones of the
instantiated realtime stream handiing objects in accordance with the second
specification;

the receiving comprises recelving a second reallime data stream from a second
input source corresponding to the second input source identifier, wherein the first and
second realtime data streams are deferent in terms of data type; and

the producing comprises processing the second realtime data stream through the
second directed graph to a second output sink corresponding o the second output sink
identitier.

36, The method of claim 34, wherein the first realtime data stream and the
second reallime data stream are processed concurrently.

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

-112 -

36, The method of claim 25, wherein at least one of the instantiated realtime
stream handling objects encapsulates a respective call to a driver module controlling a

local hardware component.

37. The method of claim 25, wherein the parsing, the instantiating, the
creating, the receiving, the producing, and the generating are performed on a local
network node (16) that is associated with a first object in a virtual area (28), and the
receiving comprises receiving the realtime data stream from a remote network node that

is associated with a second object in the virtual area (28).

38. The method of claim 37, wherein the one or more stream handling
instructions {210} comprise realtime position information describing the respective
positions of the first and second objects in the virtual area (28), and the producing
comprises determining configuration parameter values from the realtime position
information and dynamically configuring one or more of the instantiated realtime stream

handiing objects in the directed graph with the configuration parameter values.

39. The method of claim 38, wherein the receiving comprises receiving a
second realfime data stream from a second remote network node that is associated with
a third object in the virtual area (28), the creating comprises building the directed graph
with an instantiated mixing object corresponding to a respective one of the parsed
identifiers, and the producing comprises executing the instantiated mixing object (220)

to combineg the first realtime data stream and the second realtime data stream.

40. The method of claim 38, wherein:

the parsing comprises parsing a second specification of a second realtime stream
handler (22} from the one or more stream handling instructions {210), the second
specification comprising a second nput source identifier, a second output sink identifier,
and a respective identifier of each of one or more data processing objects;

the creating comprises creating a second directed graph from ones of the
instantiated realtime stream handiing objects in accordance with the second
specification;

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764
- 113 -

the receiving comprises receiving a second realtime data stream from a second
input source corresponding to the second input source identifier, wherein the second
input source corresponds o a definition of an incoming realtime data stream from a
second remote network node and the first and second realtime data streams are
different in terms of data type; and

the producing comprises processing the second realtime data stream through the
second directed graph to a second output sink corresponding to the second output sink

identifier,

41. The method of claim 38, wherein:

the parsing comprises extracting identifiers of graphic object appearance
processing objects from the one or more stream handling instructions (210); and

the producing comprises processing the realtime data stream through one or
more instantiated graphic object appearance processing objects corresponding to
respective ones of the extracted identifiers, and dynamically configuring the instantiated
graphic object appearance processing objects to control a visual representation of the
first object in {ferms of at least one of onentation, position, movement, and pose based at
least in part on the position of the first object in the virtual area (28).

42, The method of claim 25, wherein the parsing, the instantiating, the
creating, the receiving, the producing, and the generating are performed on a remote
network node, and further comprising associating interface elements of a user-level
application executing on a local network node {16) with the realtime data stream, and
transmitting the realtime dafa stream from the local network node (16) {0 the remote

network node.

43. The method of claim 42, further comprising transmitting the one or more
stream handing instructions from the local network node (16} to the remote network
node.

44, The method of claim 43, wherein the user-level application is a desktop
application program.

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

114 -

45 The method of claim 44, wherein the user-evel application is a Microsoft
Office® desktop application program.

486, The method of claim 25, wherein the stream handling instructions (210)

specify the realtime stream handler {22) without reference to function.

47, The method of claim 25, wherein the stream handling nstructions (210}
specify the realtime stream handler (22) without reference to stream type.

48. The method of claim 25, wherein the producing comprises traversing the
directed graph (212) from the output sink to the input source during each of successive

fixed length intervals.

49, The method of claim 25, wherein the parsing comprises parsing ong or
more records each of which comprises a respective dafinition type, a respective
definition length, and at least one of a definition-type-specific field and a respective

definition-type-specific definition.

50. The method of claim 25, further comprising generating a human-
perceptible ocutput based at least in part on the resultant data stream.

51. Apparatus, comprising:
a computer-readable medium storing computer-readable instructions; and
a data processing unit coupled to the memory, operable to execute the
instructions, and based at least in part on the execution of the instructions operable to
perform operations comprising
parsing a specification of a realtime stream handier {22) from one ar more
stream handling instructions (210), wherein the parsing comprises
parsing an input source identifier, an output sink identifier, and a
respective identifier of each of one or more data processing objects
from the one or more stream handing instructions,
instantiating realtime stream handling objects corresponding to respective

ones of the identifiers,

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764
- 115 -

creating a directed graph (212) comprising ones of the instantiated
realtime stream handling objects in accordance with the
specification,

receiving a reaitime data stream (214) from an input source corresponding
to the input source identifier, and

producing a resuliant data stream at an output sink corresponding to the
output sink identifier, wherein the producing comprises processing
the realtime data stream through the directed graph (212).

52. At least one computer-readable madium having computer-readable
program code embodied therein, the computer-readable program code adapted to be
executed by a computer to implement a method comprising:

parsing a specification of a realtime stream handler {22} from one or more stream
handling instructions (210), wherein the parsing comprises parsing an input source
identifier, an output sink identifier, and a respective identifier of each of one or more
data processing objects from the one or more stream handing instructions,

instantiating realtime stream handling objects corresponding o respective ones
of the identifiers;

creating a directed graph (212) comprising ongs of the instantiated realtime
stream handling objects in accordance with the specification;

receiving a realtime data stream (214} from an input source corresponding o the
input source dentifier, and

producing a resultant data stream at an output sink corresponding to the output
sink identifier, wherein the producing comprises processing the realtime data stream
through the directed graph (212).

53. A computer-implemented method of realtime data stream handling,
comprising:

establishing at least one realtime data stream connection between a local
network node (16) and at least one remote network node (230},

at the local network node (16), processing at least one realtime data stream
sourced by the remote network node, wherein the processing comprises processing the

10

15

20

25

3G

WO 2010/065848 PCT/US2009/066764

- 116 -

at least one realtime data stream through one or more reallime data processing
operations to produce a resultant data stream (232);

monitoring the processing (234); and

in response to a determination based on the monitoring that the processing
deviates from a performance target, modifying the processing in accordance with a

realiime performance targeting routine (236).

54, The method of claim 53, wherein the modifying (236) comprises omitting
the processing of one or more portions of the realtime data stream in response to a

determination that the processing fails to satisfy the performance target.

55, The method of ¢claim 53, wherein the modifying (236) comprises omitting
one or more of the realtime data processing operations in response to a determination
that the processing fails 1o satisfy the performance target.

56. The method of claim 595, wherein the omitting comprises omitling one or
more of the data processing operations characterized by respective performance vailues
that are outside the performance target.

57. The method of claim 55, wherein ones of the dala processing operations
are assigned respective priority values, and the omitting comprises preferentiatly
omitling one or more of the data processing operations based on the assigned priority

values.

58. The method of claim 53, wherein the modifying (236) comprises replacing
at least one of the reaitime data processing operations with a different respective
realime data processing operation in response to a determination that the processing

fails to satisfy the performance target.

58. The method of claim 53, wherein one or more of the reailtime data
processing operations are assigned respective priority values, the realtime performance
targeting routine comprises a heuristic that determines ones of the data processing

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764
- 117 -

operations to omit based on the assigned priority values, and the modifying (236) is
performed in accordance with the heuristic.

60. The method of claim 59, wherein the heuristic determines ones of the data
processing operations to omit based on a weighting of the assigned priority values by a

time-based performance statistic,

61. The method of claim 53, wherein the modifning (236) comprises iteratively

modifying the procassing until the processing is within the specified performance target.

62. The method of claim 53, whereain the processing (232} comprises:
instantiating processing objects ones of which are operable to perform respective ones
of the data processing operations,; building a directed graph from ones of the
instantiated processing objects; and processing the realtime data stream through the
directed graph.

63. The method of claim 62, wherein the maodifying (238) comprises pruning
one or more of the instantiated processing objects from the directed graph.

64, The method of claim 63, wherein ones of the processing objects are
assigned respective priority values, and the pruning comprises removing ones of the
instantiated processing objects from the directed graph based on the assigned priority

values.

65, The method of claim 64, wherein the pruning comprises removing from the
directed graph ones of the instantiated processing objecis assigned respective priority

values that fail to salisty a priority threshold.

66, The method of claim 62, wherein the processing (232) comprises building
a second directed graph from ones of the instantiated processing objects, and
processing through the second directed graph a second realtime data stream sourced
by one of the local network node (16) and the at least one remote network node.

10

15

20

25

3G

WO 2010/065848 PCT/US2009/066764

-118 -

87. The method of claim 86, whereain the first and second directed graphs are
assigned respective priority values, and the modifying (236) comprises preferentially
modifying one of the first and second directed graphs based on the assigned priority

values.

68. The method of claim 67, whergin the modifying (236} comprises omitting
the processing of the one of the first and second realtime data sfreams through the
respective one of the first and second directed graphs assigned a lowest priority value.

89. The method of claim 82, wherein the processing {232} comprises
processing through the directed graph a second realtime data stream sowrced by one of
the local network node (16) and the at least one remote network node.

70. The method of claim 89, wherein the first and second realtime data
streams are assigned respective prionty values, and the modifying (236) comprises
preferentially modifying the processing of one of the first and second reaitime data

streams based on the assigned priority values.

71. The method of claim 62, wheraint the establishing {230) comprises
astablishing respective reallime data stream connections between the local network
node (18) and multiple remote network nodes, and the processing (232} comprises
processing through the directed graph realtime data streams sourced by respective

ones of the remote network nodes.

72, The method of claim 71, wherein the realtime data streams are assigned
respective priority values, and the modifying (236) comprises preferentially modifying
the processing of one or more of the realtime data streams based on the assigned

priority values.

73, he method of clam 71, wherein the directed graph comprises multiple
directed chains of respective ones of the instantiated processing objects, and the
processing {232) comprises proceassing through each of the directed chains a respective

10

15

20

25

3G

WO 2010/065848 PCT/US2009/066764

- 119 -

one of the realtime data streams each of which is sourced by a respective one of the
local network node (16) and the remote network nodes.

74. The method of claim 73, wherein the madifying (236) comprises iteratively
modifying the processing untit the processing is within the specified performance target,
and during each iteration the modifying comprises performing one or more of {i)
removing one or more of the chains from the directed graph and {if} pruning one or more

of the instantiated processing objects from the directed graph.

75. The method of claim 53, wherein the performance target comprises a tima-

based threshold on production of the resultant data stream.

76. The method of claim 53, further comprising at the local network node (16)
receiving from a remote network node one or more stream handing instructions
comprising assighments of respective priority values o the one or more realtime data
processing operations, wherein the modifying {(236) comprises modifying the processing

based on the assigned priority values.

77, The method of claim 53, wherainn the modifying (238) comprises reducing
a computational resource load to a lower level in response to a determination that the

processing fails to satisfy the performance target.

78. The method of claim 77, wherein the modifying (238) comprises increasing
the computational resource load from the lower level in response {0 a determination that

the processing satisfies the performance target.

79. The method of claim 83, wherein the realtime data stream is packetized

into frames, and the monitoring is performed on each of each of the frames.

80. The method of claim 79, wherein the processing (232) comprises
processing the frames of the realtime data stream during each of successive fixed
length intervals that are set in accordance with a iocal clock.

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

- 120 -

81. The method of claim 80, further comprising at the local network node (16),
synchronizing the local clock with a remote master clock service.

82. The method of claim 53, wherein the monitoring (234) comprises

monitoring ulilization of at least one processor of the local network node {16).

83. The method of claim 53, wherein the monitoring (234) comprises
maonitoring bandwidth utilization by at least one networking resource of the local netwaork
node (16).

84. The method of claim 53, further comprising, at the local network node {16},
generating a human-perceptible output responsive o the resultant data stream.

85. The method of claim 84, wherein the local network node (16) and the
remote network node are associated with respective objects in a virtual area (28), and
the human-perceptible oulput is a visualization of the objects in the virtual area (28)on a
display.

86. Apparatus, comprising:
a compiter-readable medium storing computer-readable instructions; and
a data processing unit coupled to the memory, operable to execute the
instructions, and based at least in part on the execution of the insfructions operable to
perform operations comprising
gstablishing at least one realtime data stream connection between a local
network node (16) and at least one remote network node (230},
at the local network node (16), processing at least one realime data
stream sourced by the remote network node, wherein the
processing comprises processing the at least one reallime data
stream through one or more realtime data processing operations to
produce a resultant data stream (232);
monitoring the processing (234), and
in response to a determination based on the monitoring that the
processing deviates from a performance farget, modifying the

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

-121 -

processing in accordance with a realtime performance targeting
routine (236).

87. Atleast one computer-readable medium having computer-readable
program code embodied therein, the computer-readable program code adapted 1o be
executed by a compuier {o implement a method comprising:

establishing at least one reallime data stream connection between a local
network node (16) and at least one remote network node (230},

at the local network node (16), processing at least one realtime data stream
sourced by the remote network node, wherein the processing comprises processing the
at least one realtime data stream through one or more realtime data processing
operations to produce a resultant data stream (232);

monitoring the processing (234); and

in response to a determination based on the monitoring that the processing
deviates from a performance target, modifying the processing in accordance with a

realtime performance targeting routine (236).

88. A computer-implemented method, comprising:

on a local network node {16), establishing a first session with a remote network
node on a transport stream in accordance with a connectionless transpori protocol
{362);

on behalf of one or more software entifies on the local network node (16),
automatically opening one or more channels over which data is transmitted between the
local network node {(16) and the remote network node in the first session (364},

in the first session, maintaining a table identifying open ones of the channels and
associating respective attribute values with the identified channels (366);

in response to a determination that the first session has failed, automatically
attempting to establish a second session with the remote network node on a second
transport stream in accordance with the connectionless fransport protocol (368); and

in response to successful establishment of the second session, automatically
opening each of the channels identified in the table (370},

10

15

20

25

3G

WO 2010/065848 PCT/US2009/066764

- 122 -

89. The method of claim 88, wherein the establishing (362) comprises
determining a first station definition assigned to the remote network node and the
maintaining comprises storing the first station definition in the table as an attribute of

gach of the open channels.

90. The method of claim 89, further comprising discovaring a failure of the first
session, wherein the discovering comprises determining a current station definition
assigned to the remote network node and determining that the first session has failed in
rasponse to a determination that the current station defintion is different from the first
station definition.

91. The method of claim 89, wherein the determining comprises parsing a
station definition record received from the remote network node, wherein the station
definition record comprises a set of fields, each of the fields is defined by a respective
field type and an associated field value, and each of the field types is identified by a

respective globally unique identifier (GUID).

92. The method of claim 88, further comprising recording attributes of local
publish channels available from the local network node (16), local subscribe channels
requested by the one or more software entities, remote publish channels available from
the remote network node, and remote subscribe channels requested by the remote

network nods.

83. The method of claim 92, wherein the recording comprises maintaining for
aach of the local publish channels a record comprising an identifier of one of the
software entities indicating a capacity {o publish data on the local publish channel, an
identifier of a remote network node subscribing to the local publish channel, and an

identifier of the local publish channel.

84. The method of claim 92, wherein the recording comprises maintaining for
gach of the local subscribe channels a record comprising an identifier of one of the
software entities subscribing to the local subscribe channel, an identifier of a remote

network node indicating a capacity to publish data on the local subscribe channel, an

10

15

20

25

3G

WO 2010/065848 PCT/US2009/066764
-123 -

identifier of the local subscribe channel, and one or more network transpont parameters
associated with the focal subscribe channel

95. The method of claim 92, wherein the recording comprises maintaining for
gach of the remote publish channels a record comprising an identifier of a remote
network node indicating a capacity 1o publish data on the remote publish channel, and

an identifier of the remote publish channel.

96. The method of claim 92, wherein the opening comprises sending to the

remaote network node records defining the local publish channels,

97. The method of claim 92, wherein the opening comprises sending to the
remote network node a record of each of the local subscribe channels having an
identifier that matches an identifier of one of the remote publish channels.

98. The method of claim 88, wherein the establishing (362) comprises:
creating a definition of the session comprising an internet protocol (1P} address, a port
address, and a globally unique identifier of a transport protocol; and sending the
definition fo the remote network node.

99. The method of claim 88, further comprising transmitting data between the
local network node (16) and the remote network node on the one or more opsen

channels in the session.

100. The method of claim 99, wherein the transmitting comprises transmitting
the data in records, each of the records comprises a set of fields, each of the fields is
defined by a respective field type and an associated field value, and each of the field

types is identified by a respective GUID.

101. The method of claim 99, wherein the transmitting comprises transmitting
media records containing media data comprising packets of renderabile dafa, and
transmitting configuration records containing configuration data comprising definitions of

configuration settings.

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

124 -

102. The method of claim 101, wherein the transmitting comprises
ancapsulating media records and configuration records in transport records over the

transport stream.

103. The method of claim 102, wherein the encapsulating comprises
compressing ones of the media records using a first data compression service and
compressing ones of the configuration records using a second data compression

sarvice.

104. The method of claim 102, wherein the encapsulating comprisas
associating the fransport records with identifiers of respective ones of the channegls on
which they are transmitted, encrypling the transport records, and sequencing the
encrypted transport records.

105, The method of claim 102, further comprising at the local network node (16)
receiving ones of the transport records transmitted from the remote network node,
wherein the receiving comprises decrypting the transport records and dispatching the
media records and the configuration records contained in the decrypted transport
records to subscribing ones of the sofiware entities.

106. Apparatus, comprising:
a computer-readable medium storing computer-readable instructions; and
a data processing unit coupled to the memory, operable to execute the
instructions, and based at least in part on the execution of the instructions operable to
perform operations comprising
on a local network node (16), establishing a first session with a remote
network node on a fransport stream in accordance with a
connectionless transport protocol (362},
on behalf of one or more software entities on the local network node {16},
automatically opening one or more channels over which data is
transmitied betwesn the local network node {16) and the remote
network node in the first session (364);

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

- 125 -

in the first session, maintaining a table identifying open ones of the
channels and associating respective atiribute values with the
dentified channels (366},

in response to a determination that the first session has failed,
automatically altempting to establish a second session with the
remote network node on a second {ransport stream in accordance
with the connectionless transport protocol (368); and

in response to successful establishment of the second session,
automatically opening each of the channels identified in the table
{370).

107. Atleast one computer-readable medium having computar-readable
program code embodied therein, the computer—readable program code adapted to be
executed by a computer to implement a method comprising:

on a local network node (16), establishing a first session with a remote network
node on a transport stream in accordance with a connectioniess transport protocol
{362);

on behalf of one or more software entities on the local network node (16},
automatically opening one or more channels over which data is transmitted between the
local network node (186) and the remote network node in the first session (364},

in the first session, maintaining a table identifying open ones of the channels and
associating respective attribute values with the identified channels (366);

in response to a determination that the first session has failed, automatically
attempting 1o establish a second session with the remote network node on a second
transport stream in accordance with the connectionless transport protocol {368); and

in response 1o successful establishment of the second session, automatically

opening each of the channels identified in the table (370).

108. A method performed on a local network node (16), the method comprising:

parsing a list of kermnel components comprising one or more kernel service
components (320);

determining all the kemel components in the parsed list that are missing from a
local repository (322);

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

- 126 -

retrieving each of the kernel components determined to be missing (324);

instantiating kernel services from ones of the kernel service kernel components
{326},

executing (328) the instantiated kernel services to communicate with one or more
remote network nodes in a communication environment defined with respect to a virtual
area {28).

109. The method of claim 108, wherein the nstantialing (326) comprises
instantiating a stream connection kernel service, and the executing (328) comprises
executing the stream connection kernet service to dynamically load at least one stream
transport plugin providing at ieast one of a reliability function, an authentication function,

and an encryption function.

110, The method of claim 109, wherein the executing (328) comprises
dynamically loading the at least one stream transport plugin in response to a network

connection definition received from one of the remote network nodes.

111, The method of claim 108, wherein the instantiating (326) comprises
instantiating a realtime scheduler kernel service, and the executing (328) comprises
executing the realtime scheduler kernel service to dynamically load a time service plugin

providing a time synchronization function.

112, The method of claim 111, wherein the executing (328} comprises
dynamically loading the time service plugin in response {o a network connection

definition received from one of the remote nelwork nodes.

113. The method of claim 108, wherein the instantiating (328) comprises
instantiating one or more stream handling kemel services, and the executing {328)
comprises executing the one or more stream handling kernel services {o dynamically
create and configure at least one stream handler {22} from one or more plugins
providing stream processing functions.

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764
- 127 -

114, The method of claim 113, wherein the executing (328) comprises
dynamically creating and configuring the stream handler (22) in response {0 a stream
handler specification received from one of the remote network nodes.

115, The method of claim 114, wherein the executing (328) comprises
assembiling muliiple ones of the plugins into a directed graph in accordance with the

stream handler specification,

116. The method of claim 115, wherein the executing (328) comprises
assembling one of the plugins into a second directad graph in accordance with a second
stream handler specification received from the one remote network node, the first and
second directed graphs having different respective plugin topologies.

117, The method of claim 114, wherein the configuring comprises dynamically
configuring the stream handler {22} while the stream handler (22} is processing a

realtime data stream received from one of the remote network nodes.

118, The method of claim 114, wherein the one or more remote network nodes
are associated with respective objects in the virtual area (28), and the configuring
comprises determining configuration parameter values based on positions of objects in
the virtual area (28} and configuring ones of the plugins in the stream handler (22} with

the configuration parameter values.

119, The method of claim 108, further comprising on the local network node
{16)

declaring to a network infrastructure service an infention to enter the virtual area
{28), and

receiving from the network infrastructure service an dentification of plugins that
are needed {0 render the virtual area (28).

120, The method of claim 119, further comprising on the local network node
{16)

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

- 128 -

retrieving from a remote network node ones of the plugins that are missing from
the local network node (16).

121. The method of claim 119, further comprising loading at least one of the
plugins and invoking one or more functions of the loaded plugin in a process of

rendering the virtual area (28) on the local network node {186).

122. The method of claim 108, further comprising establishing a network
session between the local network node (16) and one of the remote network nodes,
whereain the establishing comprises receiving an identification of a set of variants of an
identified transport application programming interface (AP, selecting one of the
variants from the set, and invoking one or more functions of the selected variantin a
process of transferring a realtime data stream between the local network node (16) and
the one remote network node on the session,

123. The method of claim 122, wherein the invoking comprises leading a
transport plugin supporting the identified fransport ARl and invoking one or more
functions of the transport plugin.

124. Apparatus, comprising:
a computer-readable medium storing computar-readable instructions; and
a data processing unit coupled to the memory, operable to execute the
instructions, and based at least in part on the execution of the instructions operable to
perform operations comprising
parsing a list of kernet components comprising ohe or more kemel service
components {320),
determining all the kermel components in the parsed list that are missing
from a local repository (322),
retrieving (324} each of the kemel components determined {0 be missing,
instantiating kemel services from ones of the kernel service kernel
components {326), and

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

- 129 -

executing {326) the instantiated kernel services to communicate with one
or mare remote network nodes in a communication environment
defined with respect to a virtual area (28).

125, Atleast one computer—readable medium having computer-readable
program code embodied therein, the computer-readable program code adapted to be
executed by a computer to implement a method comprising:

parsing a list of kermnel components comprising one or more kernel service
components (320);

determining all the kermnel componenis in the parsed list that are missing from a
local repository (322);

retrieving each of the kernel components determined to be missing (324);

instantiating kermnel services from ones of the kernel service kernel components
{326), and

executing (328} the instantiated kernel services to communicate with one or more
remote network nodes in a communication environment defined with respect to a virtual
area {28).

126. A method performed on a local network node {16}, comprising:
configuring the local network node (16) {o support reaitime communications with
at least one remote network node in a context defined by a virtual area {28), wherein the
configuring comprises
in response to a call to enumerate all pluging that support a specified
application programming interface (AP}, returning a list comprising
dentifiers of all plugins associated with the specified APl in a plugin
database (442},
in response to a call to enumerate variants of a given AP! supported by an
identified one of the pluging, delivenng a list compnsing identifiers
of all variants of the given AP1 that are supported by the identified
plugin {446}, and
in response to a call to instantiate an wdentified one of the varianis of an
identified AP! supporied by an identified one of the plugins, loading

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

- 130 -

the identified plugin and providing a pointer 1o an instance of the
identified variant {450); and
establishing at least one realtime data stream connection between the configured
local network node (16) and the at least one remote network node.

127, The method of claim 126, wherein

the loading {450) comprises creating a base plugin object and the relurned
pointer points to the base plugin object, and

further comprising exscuting the identffied variant instance, wherein the executing

comprises casting the base plugin object to the identified variant through inheritance.

128. The method of claim 126, wherein the communicating comprises
instantiating ones of the plugins in a set in response 1o calls comprising identifiers of the
pluging in the set and identifiers of one or more of the APIs respectively supported by

the plugins in the set, and assembling the instantiated pluging into a directed graph.

129. The method of claim 128, wherein the assembling is performed in
accordance with a stream handling specification received from a remote network node.

130. The mathod of claim 128, wherein the returning, the delivering, and the
loading, are performed independently of APl type.

131, The method of claim 126, wherein at least one of the plugins supports
multiple ones of the APls and multiple variants of at least one of the muitiple APls that it

supporis.

132, The method of claim 128, further comprising, communicating with one or
more remote network nodes in a communication environment defined with respect to a
virtual area (28}, wherein the communicating comprises executing the identified variant
instance.

133. The method of claim 132, wherein the communicating comprises
instantiating at least one of the plugins that provides a stream transport function.

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764

-131 -

134. The method of claim 132, wherein the communicating comprises
instantiating at least one of the plugins that provides an audio siream processing

function.

135, The method of claim 132, wherein the communicating comprises

instantiating at least one of the plugins that provides a visual graphical effect function.

136. The method of claim 132, wherein the communicating comprises

instantiating at least one of the plugins that provides a collision detection function.

137. The method of claim 126, further comprising:

discovering {430) plugins available on the local network node (16);

querying the plugins for all application programming interfaces (APls) that they
support (432); and

based on the querying, storing associations between the pluging and the APls
that they respectively support in a plugin database on a computer-readable medium
{434).

138. Apparatus, comprising:
a computer-readable medium storing computar-readable instructions; and
a data processing unit coupled to the memory, operable to execute the
instructions, and based at least in part on the execution of the instructions operable to
perform operations comprising
configuring the locat network node (16) to support realtime communications with
at least one remote network node in a context defined by a virtual area
{28), wherein the configuring comprises
in response to a call to enumerate all plugins that support a
specified application programming interface (AP}, retuming
a hist comprising identifiers of all pluging associated with the
specified AP in a plugin database (442),
in response to a call to enumerate variants of a given API supported
by an identified one of the plugins, delivering a list

10

15

20

25

30

WO 2010/065848 PCT/US2009/066764
-132 -

comprising identifiers of all variants of the given AP that are
supported by the identified plugin (448), and
in response to a call to instantiate an identified one of the variants

of an wWentified AP! supported by an wdentified one of the

pluging, loading the identified plugin and providing a pointer

to an instance of the identified varant (450}, and
establishing at least one realtime data stream connection between the configured

locat network node {(16) and the at least one remote network node.

139. At least one computer-readable medium having computer-readable
program code embodied therein, the computer-readable program code adapted to be
executed by a computer to implement a method comprising:

configuring the local network node {16) to support realtime communications with
at least one remote network node in g context defined by a virtual area (28}, wherein the
configuring comprises

in response to a call to enumerate all pluging that support a specified
application programming interface (AP}, returning a list comprising
identifiers of all plugins associated with the specified AP1 in a plugin
database (442},

in response o a call to enumerate variants of a given APl supported by an
identified one of the plugins, delivering a list comprising identifiers
of all variants of the given API that are supported by the identified
plugin (446), and

in response to a call to instantiate an identified one of the variants of an
identified AP! supported by an identified one of the plugins, loading
the wentified plugin and providing a pointer {0 an instance of the
identified variant (450); and

gstablishing at least one reallime data stream connection between the configured
local network node (16) and the at least one remote network node.

WO 2010/065848 PCT/US2009/066764

1/20
;’72
24\ Client Node
’ Stream ||
;) Handlers
Ha Ié?ar SBJI
raware Realtime
Kernel
20"
.
30 " Area Server Node |- 15
Aron » Vitual Area
Application,] ' '
1077 ' P! Area Service | | Contraints
26 N
FIG. 1

Establish A Session With The Area Service 34

A

Request Entry Into An Instance Of The Virtual | . 36
Area

k.
Receive Configuration Data Including
Interface Data, Positions Of Communicant 38
Objects In The Virtual Area

A 4
Configure The 1/O Hardware To Render A
Human Perceptibie Virtual Area
Communication Environment In Accordance 40
With Instructions Received From The Area
Service

FIG. 2

WO 2010/065848 PCT/US2009/066764

2/20

Area Application + 30
1 28

Virtual Area

1 ?)v\,g? Area Service | 26
Network -
":M QK_M/

14

FIG. 3A

30 ~ Area Application

28~ Virtual Area

26 ~{ Area Service

N

FIG. 3B

PCT/US2009/066764

WO 2010/065848

3/20

48 %

i 82
¢

Lonmaed
s
P SOOI

" " /
e ——

<=

It
esisnsesensisiess,
ireissasnsossnsnsntiees,

i,
\\x\w\\av\\\\\\\vx\x
\\\\\\\\\\\\\w\\\\&
iZ \\.\\\\\\\\\\xa\\\x\\\
4 “\\ 1 \\\\\\\\\\\\\\\.\\\\\,

W

o

Z
e)

i

A\.w\\‘\\\\\\\\é

i

FIG. 4

WO 2010/065848 PCT/US2009/066764

4/20

- §2

- 84

X1

e—""pf
/ - 84
/ 3D
li
Desk
Top
Off
Office

FIG. 5B

WO 2010/065848 PCT/US2009/066764

5720

62\

0
f

S

Tom |} Joe Tim || PJB [| DVW | \}
100 S 11413

\
2
% :

FIG. 5C

WO 2010/065848 PCT/US2009/066764

6/20

Build A List Of Qccupied Zones From The Virtual Area Specification
And The Location Of The Connection Objects in The Virtual Area

¥
Determine A Target Set Of Target Real-Time Data Stream Types That

)

Determine A S8sat Of Required Real-Time Data Stream Connections
From The Target Set Of Required Real-Time Data Sireams, Positions

In The Virtual Area Specification

FIG. 6

186

Sat Of Required
Real-Time Data
Stream Connect'ons

f”‘i§2

180

Are Defined For The Zones In The Zone List 182

Of The Objects In The Virtual Area, And The Switching Rules Defined | 184

188

BandM tream Mix™~_____ | Request New
Available " Available / No | Stream Mix

L 196

Yes \Y/es

100] Establish Direct Connect To Existing |~ 194
Connection Stream Mix

FIG. 7

WO 2010/065848 PCT/US2009/066764
7120
Client Node
132 ~ Display Monitor
130 lngut
Devices
¢ v
134 ~ Display Controlier | «
122~ Processing Unit |« »
124 —1 System Memuory
156 152 / 150
o Local - 126
Configuration o
, Appt
Seftings pplication
. o
- 3
y RI5
20 =
@
r J/ §
144 =1~ Realtime)
o8 Kemael
146 ~~ Drivers Network Protocols -+ 148
198 Persistent Storage .
Memory
138~ Network Adapter |[e—»
136 ~ Other /0O Hardware [«—»
AN

FIG. 8

120

WO 2010/065848 PCT/US2009/066764

8/20

Determine A Target Virtual Area - 1680

4

Establish A Session With A Network Infrastructure Service |
Hosting An Instance Of The Target Virtual Area 162

¥

Subscribe To State Data That s Available From The |
Network Infrastructure Service 164

FIG. 9

Declare To The Network Infrastructure Service An Intention |
To Enter The Virtual Area Instance

k
initiate Transfer Of Al Least One Realtime Data Stream
Over At Least One Network Connection With At Least One |
Realtime Daia Stream Source Respectively Associated 170

With At Least One Object In The Virtual Area

4
Process The Resgltime Data Stream In Accordance With At

Least One Stream Handling Definition In A Specification Of i 172
The Virtual Area Instance

FIG. 10

WO 2010/065848

8/20

PCT/US2009/066764

Receive One Or More Stream Handling Instructions From A

Remote Network Node, Wherein The One Or More Stream - 200

Handling Instructions Include A Specification Of A Stream Handler
For Processing At Least One Realtime Data Stream

Create A Stream Handler In Accordance With The Specification | 202

¥

Produce A Resultant Data Stream, Wherein The Producing
Includes Processing A Realtime Data Stream Through The | 204
Created Stream Handler

FIG

11

Stream
Handling ~—r» Stream Handler Configuration Manager 208
Instructions 240! ry
Stream Handler - 208
v
Data Stream 1 sl PGE L PGE L PGE L 216
/ 220 f 224
. . . . > | Driver
. . . . | PCE \ "I Module
222
Data Stream N » PGE > PGE 2 PGE
- 218
sz :
‘ Y912

FIG.

12

WO 2010/065848 PCT/US2009/066764
10/20
Establish At Least One Realtime Data Stream Connection With At | 230
Least One Remote Network Node
b 4
Process At Least One Realtime Data Stream Sourced By The
Remote Network Node, Wherein The Processing Includes
Processing The At Least One Realtime Data Stream Through | 232
One Or More Realtime Data Processing QOperations To Produce A
Resultant Data Stream
¥
Monitor The Processing - 234
k.4
in Response To A Determination Based On The Monitoring That
The Processing Deviates From A Performance Target, Modify | 536
The Processing In Accordance With A Realtime Performance
Targeting Routine
FIG. 13
4 NO F 3
. . ' Increase
.w*’"’» -
o Processing

-

Satisfies The Performance '
///Y €8

-~ Lo

Computational ™ | Computational
Load Reducw Resource

ad

248

Target? .
v"/
No | 240

\org

Reduce Computational Resource Load To A Lower Level

] 242 | 244 1246
Omit The Processing Of Omit One Or More Replace At Least One Of The Realtime
One Or More Portions Of The Realtime Data Processing Operations Wit
Of The Realtime Data Data Processing Different Respective Realtime D
Stream Operations Processing Operation

hA
ata

FIG. 14

Gl Old

sng podsues] » yoegheld ‘Bupiossy

PCT/US2009/066764

11/20

WO 2010/065848

2 3 11

¥ u ¥ N M
m ' 1afeuepy ﬁﬁ Janag o m m
“ ; B HORRIER0 : urbnig opny 1085810UI093 :
] 90LOSANG |4 Y9z | : , ¢ ‘
o usiand |3 : : '
; : sebeueyy suoz/Esly ; 5ip Qcmm adojenuz Jape ;
: : I M L puyuedopny | 3

epsiy |s ' ! H Bnpayss ' BIpUBH 80IN0G ;
m XNUIs(m ¢ 52z .| swen m suieay 3 PUNOS/OENYY B0 X4 t
; 1e Ll jssy |3 82 : :
: ;o 810859001 ; (% “BIpUEH umOpXiyy 3 2uks | 4
: i H ‘ Weens d1y }'G/0R1Alg '
m somsg 3 m B190S soisAld : SOMISS AU | m m

S ’
e VA0S) : a0eLBIU| (JE05 P Jabeveyy uibng 1 m
pizl 99zl ziz!
IORURH AL SOIAIRG 20IAIBG oIpny - 1S yorgAe;d
SOM/OIH 8307 MYMLS diS adhig Qipny 2007

¥az7 | 897 | zge! z67 | o6z ! 88z | o8z !

WO 2010/065848 PCT/US2009/066764

12/20
| Client 298
" { Credential
Server Credential [~ 300
4+ Chaltenge e
7 {(128b) \ \
Response (128b)

+ Server 1D (128h)

+ Server Token (128)
Encrypted with Server Public
Key

Client 1D (128b) - 304
+ {dentifying Token
{128b)

Encrypted with
Client Public Key

FIG. 16

Parse A Static List Of Kernel Components That Includes One Or More

Kernel Service Components 320

Y
Determine All The Kermel Componentis In The Parsed List That Are
Missing From A Local Repasitory

~ 322

4

Retrieve Each Of The Kernel Components Determined To Be Missing + 324

4

instantiate Kernel Services From Ones Of The Kernel Service
Components

- 326

b

Exscute The Instantiated Kernel Services To Communicate With One Or
More Remote Network Nodes In Communication Environment Defined - 328
With Respect To A Virtual Area

FIG. 17

WO 2010/065848 PCT/US2009/066764

13/20

Establish A First Session With A Remote Network Node On A Transport
Stream In Accordance With A Connectioniess Transport Protocol
v
On Behalf Of One Or More Software Entities On The Local Network
Node, Automatically Open One Or More Channels Over Which Data Is

Transmitted Between The Local Network Node And The Remote
Network Node In The First Session

- 362

- 364

. 4
In The First Session, Maintain A Table ldentifying Open Ones Of The
Channels And Associating Respective Attribute Values With The - 366
Identified Channels

b

in Response To A Determination That The First Session Has Failed,
Automatically Attempt To Establish A Second Session With The Remote
Network Node On A Second Transport Stream In Accordance With The
Connectionless Transport Protocol

- 368

h

in Response To Successful Establishment Of The Second Session,

Automatically Open Each Of The Channels Identified In The Table | °' 0

FIG. 18

WO 2010/065848 PCT/US2009/066764

14/20

Parse A Specification Of A Realtime Stream Handler From One Or More

Stream Handling Instructions, Wharein The Parsing Includes Parsing An

tnput Source {dentifier, An Qutput Sink Identifier, And A Respective - 330

{dentifier Of Each Of One Or More Data Processing Objects From The
One Or More Stream Handing Instructions

4
Instantiate Realtime Stream Handling Objects Corresponding To
Respective Ones Of The ldentifiers

- 332

Y
Create A Directed Graph That Includes Ones Of The Instantiated
Realtime Stream Handling Objects In Accordance With The Specification

- 334

k.
Receive A Realtime Data Stream From An Input Source Corresponding
To The Input Source Identifier

" 336

Y
Process The Realtime Data Stream Through The Directed Graph In The
Process Of Producing A Resuliant Data Stream

FIG. 19

- 338

SODA Definition - 344 Media Packet - 346

N 2N\
STRAW
) ~ [~ 268
4 p <7 Session
SODAChanne! Media Channel L340
| Compressor | Com;&ressor
) 7/
Transport Stream |
- 4 342
L Encryption J
J

35

NETWORK FIG. 20

WO 2010/065848 PCT/US2009/066764

15/20

Cliert Credential
1+ Stream 1D (128b)

Server Credential

+ Pre-Master Secret
| Encrypted with Client
Public Key

+ 346

Client ID (128b)

+ {dentifying Token {128h)
Encrypted with

Current Cipher Set

Server ID {128b)
+ Server Token (128b) | -
Encrypted with

Current Cipher Set

FIG. 21

Define RDS Stream: Define RDS Streant,
42.1.17.250:19185, 42.1.17.250:19185,
67.144.225.16:16380 67.144.225.16:16380

Session id {GUID3)

Transport id {GUIDSG)
Encryption id {AES)

r

Session id {GUID3)
Transport id (GUID9S)
Encryption id (AES)

Node: 67.144.225.16:16380

FIG. 22

Node: 42.1.17.250:19185

PCT/US2009/066764

WO 2010/065848

16/20

/

|

\

£C Ol

A
Lo 1 fuonomaq) _ ﬂ il _ M UOREYSIIE] |
| jauued | mucm_mmw ﬁowq asI0N 0ys3 w /&E\ - Bg

QIOASY

WIO0Y

]
}

BUINIOA | SWINIOA

HS by

;
Mﬁ_mccmm |

o :,»_/

;

QISASY - sutey

A,

;
!

.

| Jeiddog

| | uogeeug | | suoz |

]

Hws beid

z., ‘
meg‘\ ”

eyddog

| | uorewsuQ

UL oo | (s bons bl o |
qionay | fBuURd s "baig BUINOA,
s il I)
{ wooy | | 403e20T myddog uoeaLQ |
f,////f
jsuued
1g OUOl ouopy Mg

X 0ge

PCT/US2009/066764

WO 2010/065848

17/20

]
i
i
i
}
i
i
i
i
{
}
i
i
i
i
i

. m ,
ve Ol M ' : H
| T o0 | (vow) |
M “w v & m
M “w nite
} } ‘
M i d % w
,, Jaxaidnnwag 8 wslsha!
“ Jexsdnnp | P e g
M O :x&sksks&s&skskskg
| | “w
f u ¢} N W
| S ey
) tH §
§ ““ m “
_ ' ‘ W
M Iy _ d ods/
¥ }
| LisipueH wesng W vt ;
| L mdg gnod| |
i { 8 | d ¥ € ;
S P LGS S “
{ ; 1 N }
osee, TETE : prgeq!
W BN £ R¥) AEEN |
= C i :
Hon i o . _o _ d “
H M M stodwon uoyelfa; “
H } 7
! P “ T oeee! N :
H pow) 1| : (zow) (& |
i .
} M M
H ueshst

WO 2010/065848 PCT/US2009/066764
18/20
Plugin Base Class |}~ 396
Plugin Variant Class | 3%
{Plugin Instancesy- 392
FIG. 25 - 0
/ /
AP Class 1 .o APl Class K
il T
I i 400, | 1
402 J Variant | 404 .§ Variant Vartant { 408 .| Variant
(L1 1, .. (1L (Kt ... KM
FIG. 26

Entry Point Functions H- 412

GUID I APl Class 1 L 414

GUID | Variant 1 | 416
Function Table
GUID | Vanant 2

Function Table H 418
GUID| APIClass 2

. L 420

FIG. 27

WO 2010/065848 PCT/US2009/066764

18/20

l——-—-—» Caller }|-428
F Y

{Plugin
instances}
& ¥

, 266

Plugin Manager | Plugin
~ Database
F N w

h 4

fPlugm Containers? - 422

.

\' 424

FIG. 28

426

Discover Plugins Available On A Local Network Node

L 430

v

Query The Plugins For All Application Programming
Interfaces (APIs) That They Support

- 432

4

Based On The Querying, Store Associations Belween
The Plugins And The APls That They Respectively
Support In A Plugin Database

- 434

FIG. 29

WO 2010/065848 PCT/US2009/066764
20/20
Plugin Database
AP1 Class 1 APt Class K
L 436
{Plugin ldentifiers} v {Plugin ldentifiers}
FIG. 30

/ 442

Return A List Including

" Received Call i .
To Enumerate All Plugins That Support A = p{dentfﬁfr; %{ﬁ%hesﬂug#r}s p
Spacified One Of The APis? .~ Yes Ssocialon VI 118 opeclie
o APl in The Plugin Database
No 1«
/L 446
444
__—Received Call ™ Return A List Including
/,,,f"f To Enumerate Variants Of An Identifiers Of Alt Variants Of
%ﬂt&ﬁad One Of The APls Supported By An Py The Given APl That Are
. ldentified One OfThe " "5 | Supported By The Identiied
Plugins? _—" Plugin
No
R// A 2
eceived Call To o .
“Tnstantiate An identified One Of The™ LOag;Z? ;iegtg?:iﬁr?ﬁnmd
_ Variants Of An Identified One Of The APls - o
. Yes Instance Of The identified
pported By An identified One (}f)e/ Variant

| Plugins? -

ﬂ'&?

No

FIG. 31

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - claims
	Page 107 - claims
	Page 108 - claims
	Page 109 - claims
	Page 110 - claims
	Page 111 - claims
	Page 112 - claims
	Page 113 - claims
	Page 114 - claims
	Page 115 - claims
	Page 116 - claims
	Page 117 - claims
	Page 118 - claims
	Page 119 - claims
	Page 120 - claims
	Page 121 - claims
	Page 122 - claims
	Page 123 - claims
	Page 124 - claims
	Page 125 - claims
	Page 126 - claims
	Page 127 - claims
	Page 128 - claims
	Page 129 - claims
	Page 130 - claims
	Page 131 - claims
	Page 132 - claims
	Page 133 - claims
	Page 134 - claims
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - drawings
	Page 151 - drawings
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings

