(54) 发明名称
具有简单的密封件的齿轮齿条式转向装置

(57) 摘要
本发明涉及一种用于机动车的齿轮齿条式转向装置，其具有：转向传动装置主体（2），齿条能够移动地支承在所述转向传动装置主体中；以及压力件孔（1），压力件设置在所述压力件孔中，借助于旋入螺纹区域（6,7）中的调节螺旋件（11）将所述压力件按压于所述齿条，其中，在所述螺纹区域（6,7）中设有沿径向方向向外凹入的槽（8），并且密封环（16）置于所述槽（8）中。
1. 用于机动车的齿轮齿条式转向装置，具有，转向传动装置壳体(2)，齿条能够移动地支撑在所述转向传动装置壳体中，以及压力件孔(1)，压力件设置在所述压力件孔中，借助于旋入螺纹区域(6,7)中的调节螺旋件(11)将所述压力件挤紧于所述齿条，其特征在于，在所述压力件孔的螺纹区域(6,7)中设有沿径向方向向外凹入的槽(8)，并且密封环(16)置入所述槽(8)中。

2. 如权利要求1所述的齿轮齿条式转向装置，其特征在于，所述调节螺旋件制成为深冲件。

3. 如上述权利要求之一所述的齿轮齿条式转向装置，其特征在于，置入所述槽中的环(16)由热塑性材料制成。

4. 如上述权利要求之一所述的齿轮齿条式传动装置，其特征在于，置入所述槽中的环(16)由弹性体材料制成。

5. 如上述权利要求之一所述的齿轮齿条式转向装置，其特征在于，置入所述槽中的环(16)由PTFE制成。

6. 如上述权利要求之一所述的齿轮齿条式转向装置，其特征在于，所述槽在其圆柱形外部区域中设有结构。

7. 如上述权利要求之一所述的齿轮齿条式转向装置，其特征在于，置入所述槽中的环(16)相对于轴线(3)在径向上直至到达内螺纹(7)的区域中。

8. 如上述权利要求之一所述的齿轮齿条式转向装置，其特征在于，所述调节螺旋件设有驱动结构。

9. 如上述权利要求之一所述的齿轮齿条式转向装置，其特征在于，所述槽(8)通过非切削加工的工艺制成。

10. 如权利要求9所述的齿轮齿条式转向装置，其特征在于，在槽底中的所述结构(9)通过冲压工艺制成。

11. 如权利要求9所述的齿轮齿条式转向装置，其特征在于，在铸造模具中考虑所述槽底中的所述结构(9)。
具有简单的密封件的齿轮齿条式转向装置

技术领域
[0001] 本发明涉及一种具有权利要求1的前序部分所述的特征的用于机动车的齿轮齿条式转向装置。

背景技术
[0002] 齿轮齿条式转向装置，其中经由方向盘和转向轴操纵的小齿轮与可线性移动的齿条的齿段啮合，用以调节车辆的转向轮的转向角，这是长期以来已知的，例如从美国专利文献US326,244中已知。小齿轮和齿条在工作时应无间隙地配合。
[0003] 在机动车中，在间隙地配合适常情况下由经由压力件引起，所述压力件将齿条从与小齿轮相反的侧挤靠小齿轮。压力件借助于弹簧预紧并且能够克服弹簧的压力实现一定的行程，所述行程位于0.01毫米至0.6毫米的范围中。预紧和行程的调节经由调节螺旋转件，所述调节螺旋转件能够借助在转向装置的壳体中的螺纹轴向移动。这例如从专利申请US2003/0188918A1中已知。所述调节螺旋转件借助于锁紧螺母固定在所选定的调节位置中。
[0004] 另一要求在于转向装置壳体相对于在压力件的区域中的环境周围的密封。所述密封通常情况下通过耳环进行，所述耳环置于压力件的在侧面上环绕的槽中并且相对于在转向装置壳体中的孔的壁密封。这样的密封件文献US5,272,933和DE10230602A1中已知。最先提到的文献同样示出压力件借助调节螺旋转件的调节，所述调节螺旋转件通过锁紧螺母固定。第二文献示出用于预紧球轴承的压力件装置，其中所述压力件借助在壳体孔中的耳环密封，并且盖借助于第二耳环相对于壳体孔密封地在压力件的上方同样插入所述孔中。盖的固定不经由螺纹，而是通过将壳体锁紧而进行。
[0005] 最后，从文献EP1291261A2已知一种压力件装置，其中，所述压力件经由螺旋弹簧和盖相对于齿条预紧，并且所述盖经由环绕的耳环与壳体的环形凸缘接触，并且由此密封。盖能够借助固定环固定在转向装置壳体中并且从而不可调节。
[0006] 在压力件的区域中的密封的设计和防止调节螺旋转件不经意的转动是在现有技术和不耗费地实现的设计特征。所需要的制造步骤、部件和安装步骤的数量是大的。

发明内容
[0007] 因此，本发明的目的是，提供一种齿轮齿条式转向装置，其中简化了在可调节的压力件的区域中的制造和安装。所述齿轮齿条式转向装置由此能够更快速和更低成本地制造。
[0008] 所述目的由具有权利要求1所述的特征的齿轮齿条式转向装置得以实现。
[0009] 因为在压力件孔的螺纹区域中设有在径向方向上向外凹入的槽，并且因为优选由热塑性材料制成的密封环置入所述槽中，所以所述调节螺旋转件能够在安装在所述螺纹区域中时插入到所述环中，并且由此既实现了密封也实现了固定调节螺旋转件防止不经意的松开。因此，一个特别简单的构造是可能的，即调节螺旋转件制造为深冲件。
[0010] 在本发明的另一特别有利的设计方案中，所述槽能够通过非切削加工的工艺以及
所述结构通过冲压工艺引入到壳体中。
[0011] 位于槽中的环优选由 PTFE 制成。
[0012] 在拧入调节螺纹件时，螺纹件的螺纹切入 PTFE 环中。这导致对螺纹件的夹紧作用。
[0013] 同时，通过切口而产生密封效果，因为螺纹的侧壁间隙缩小，并且在侧壁之间的

PDFE 形成密封层。
[0014] 此外有利的是，槽在其圆柱形外部区域中设有结构，该结构防止在旋入调节螺纹

件时所述环随之转动。

附图说明
[0015] 下面借助附图详细说明本发明的实施例。附图示出：
[0016] 图 1 详出转向传动装置的压力件孔的纵剖视图；
[0017] 图 2 详出图 1 中的具有插入的调节螺纹件的区域；以及
[0018] 图 3 详出图 1 中的压力件的区域的立体图。

具体实施方式
[0019] 在图 1 中示出在转向传动装置壳体 2 中的压力件孔 1 的区域的放大的纵剖视图。
[0020] 在此，转向传动装置壳体 2 具有压力件孔 1，所述压力件孔在轴线 3 的方向上大致

旋转对称地构造。压力件孔 1 具有圆柱形的侧表面 4，所述侧表面用作为用于这里未示出

的压力件的引导件。连续孔 5 横向于轴线 3 地在图 1 中水平地延伸穿过转向传动装置壳体

2，在工作时齿条可轴向移动地支承在连续孔中。相对于齿条，在压力件孔 1 对面设有转向

小齿轮。由于更好的清晰性，没有示出这个区域。
[0021] 在轴线 3 的轴线方向上连接着压力件孔 1 设有在直径上变大的区域 6，所述区域设

有内螺纹 7。在所述内螺纹中又设有带有大致径向横截面的相对于轴线 3 径向向外凹入的

槽 8。此外，所述槽 8 在其表示为槽底的外周面上具有压纹 9。此外，在轴向方向 3 上，转向

装置壳体 2 的外侧的端部呈锥形扩展并且构成锥形面 10。
[0022] 在图 2 中图解示出图 1 中的转向装置壳体 2 的纵剖视图，其中，调节螺旋件 11 插入

到所述孔 6 中。调节螺旋件 11 具有带有封闭的板形的底部 12 及具有圆柱形侧 13 的板形基

体，所述的端部朝向基体的外侧的端部锥形地扩展到区域 14 中。调节螺旋件 11 在外侧上

设有外螺纹 15，所述外螺纹与内螺纹 7 兼容。密封和固定环 16 置入槽 8 中。可选地，在调

节螺旋件 11 上能够与轴线 3 同轴地设有未示出的孔，所述孔借助同样未示出的栓塞密封。
[0023] 密封和固定环 16 由热塑性材料和/或弹性体材料制成，优选由 PTFE 制成。所述

密封和固定环具有内直径，所述内直径在安装在槽 8 中时直至到达螺纹 7 的区域中或者优

选在轴线 3 的径向方向上还经过螺纹 7 到达孔 6 的内部区域中。
[0024] 调节螺旋件 11 优选由钢板以冲压工艺制成。所述调节螺旋件能够以简单的方式

设有外螺纹，所述外螺纹能够被滚压或者切除。此外，调节螺旋件 11 还能够在内部设有用

于模具有多齿轮或类似的驱动器。
[0025] 在安装助力转向装置时，首先以已知的方式将齿条引入横向孔 5 中。那么然后将

压力件沿轴线 3 的方向引入孔 1 中，直至所述压力件放置在齿条上。弹簧机构，例如螺旋弹
簧作为压力弹簧被放置到压力件的背离齿条的侧上。环 16 插入所述槽 8 中。然后，将调节螺旋件 11 旋入孔 6 中，更准确地说，旋入螺纹 7 中，直至在底部 12 和压力件之间获得例如 0.1 毫米的所需间隙。在旋入螺纹 7 中时，调节螺旋件 11 的外螺纹 15 切入到密封和固定环 16 的径向向内指向的表面中。因此实现了所述区域向外的密封，所述密封既防尘也防水。此外，在适宜地选择材料的情况下，调节螺旋件 11 良好地固定在环 16 中，使得排除了调节螺旋件 11 的不经意的移动。可见的是，目前为止所说明的构造相对于开始阐述的现有技术能够明显更简单地制造和安装。由此提高了在制造时的过程可靠性。以深冲工艺制造调节螺旋件 11 的可能性尤其简化了所述构件的制造。锁紧螺母或其它固定机构能够被省去。同样能够省去为待使用的压力件中的耳环制造槽。

[0026] 最后，图 3 显示在图 1 和 2 中以横截面示出的区域的立体图。相同的组件设有相同的附图标记。槽 8 的压纹 9 导致对插入到所述槽 8 中的环 16 固定防止扭转。因此，所述压纹 9 有助于将调节螺旋件 11 固定在其位置中。
图 2
图 3