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(57) ABSTRACT 
A method and apparatus are disclosed for predicting the 
presence of at least one congenital or acquired imbalance or 
therapeutic condition associated with thrombosis/hemosta 
sis from at least one time-dependent measurement profile. At 
least one time-dependent measurement on an unknown 
Sample is performed and a respective property of Said 
Sample is measured over time So as to derive a time 
dependent measurement profile. A set of a plurality of 
predictor variables are defined which sufficiently define the 
data of the time-dependent measurement profile. A model is 
then derived that represents the relationship between the 
congenital or acquired imbalance or therapeutic condition, 
and the Set of predictor variables. Subsequently, the model 
is utilized to predict the existence of the congenital or 
acquired imbalance or therapeutic condition in the unknown 
Sample. 
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METHOD FOR PREDICTING THE PRESENCE OF 
CONGENTAL AND THERAPEUTIC CONDITIONS 
FROM COAGULATION SCREENING ASSAYS 

BACKGROUND OF THE INVENTION 

0001. This application is a continuation of U.S. patent 
application Ser. No. 08/477,389 to Givens et al. filed Jun. 7, 
1995, the subject matter of which is incorporated herein by 
reference. This application is also related to the following 
publications, the Subject matter of each also being incorpo 
rated herein by reference: 
0002) 1. B. Pohl, C. Beringer, M. Bomhard, F. Keller, The 
quick machine-a mathematical model for the extrinsic 
activation of coagulation, Haemostasis, 24, 325-337 (1994). 
0003 2. J. Brandt, D. Triplett, W. Rock, E. Bovill, C. 
Arkin, Effect of lupus anticoagulants on the activated partial 
thromboplastin time, Arch Pathol Lab Med, 115, 109-14 
(1991). 
0004 3. I. Talstad, Which coagulation factors interfere 
with the one-stage prothrombin time, HaemoStasis, 23, 
19-25 (1993). 
0005. 4. P. Baumann, T. Jurgensen, C. Heuck, Comput 
erized analysis of the in vitro activation of the plasmatic 
clotting system, Haemostasis, 19, 309-321 (1989). 
0006 5. C. Heuck, P. Baumann, Kinetic analysis of the 
clotting System in the presence of heparin and depolymer 
ized heparin, HaemoStasis, 21, 10-18 (1991). 
0007 6. M. Astion and P. Wilding, The application of 
backpropagation neural networks to problems in pathology 
and laboratory medicine, Arch Pathol Lab Med, 116, 995 
1001 (1992). 
0008 7. M. Astion, M. Wener, R. Thomas, G. Hunder, 
and D. Bloch, Overtraining in neural networks that interpret 
clinical data, Clinical Chemistry, 39, 1998-2004 (1993). 
0009) 8. J. Furlong, M. Dupuy, and J. Heinsimer, Neural 
network analysis of Serial cardiac enzyme data, A.J.C.P., 96, 
134-141 (1991). 
0010) 9. W. Dassen, R. Mulleneers, J. Smeets, K. den 
Dulk, F. Cruz, P. Brugada, and H. Wellens, Self-learning 
neural networks in electrocardiography, J. Electrocardiol, 
23, 200-202 (1990). 
0.011) 10. E. Baum and D. Haussler, What size net gives 
valid generalization?Advances in Neural Information Pro 
cessing Systems, Morgan Kauffman Publishers, San Mateo, 
Calif., 81-90 (1989). 
0012) 11. A. Blum, Neural Networks in C++, John Wiley 
& Sons, New York, (1992). 
0013 12. S. Haykin, Neural Networks A Comprehensive 
Foundation, Macmillan College Publishing Company, New 
York, (1994). 
0.014 13. J. Swets, Measuring the accuracy of diagnostic 
systems, Science, 240, 1285-1293 (1988) 
0.015 14. M. Zweig and G. Campbell, Receiver-operat 
ing characteristic (ROC) plots: a fundamental evaluation 
tool in clinical medicine, Clinical Chemistry, 39, 561-577 
(1993) 
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0016 15. D. Bluestein, L. Archer, The sensitivity, speci 
ficity and predictive value of diagnostic information: a guide 
for clinicians, Nurse Practitioner, 16, 39-45 (1991). 
0017. 16. C. Schweiger, G. Soeregi, S. Spitzauer, G. 
Maenner, and A. Pohl, Evaluation of laboratory data by 
conventional Statistics and by three types of neural net 
works, Clinical Chemistry, 39, 1966-1971 (1993). 
0018 Blood clots are the end product of a complex chain 
reaction where proteins form an enzyme cascade acting as a 
biologic amplification System. This System enables rela 
tively few molecules of initiator products to induce Sequen 
tial activation of a Series of inactive proteins, known as 
factors, culminating in the production of the fibrin clot. 
Mathematical models of the kinetics of the cascade's path 
ways have been previously proposed. 

0019. In 1), a dynamic model of the extrinsic coagula 
tion cascade was described where data were collected for 20 
Samples using quick percent, activated partial thromboplas 
tin time (APTT), thrombin time (TT), fibrinogen, factor(F) 
II, FV, FVII, FX, anti-thrombin III (ATIII), and factor 
degradation product (FDP) assays. These data were used as 
input to the model and the predictive output compared to 
actual recovered prothrombin time (PT) screening assay 
results. The model accurately predicted the PT result in only 
11 of 20 cases. These coagulation cascade models demon 
Strate: (1) the complexity of the clot formation process, and 
(2) the difficulty in associating PT clot times alone with 
Specific conditions. 

0020. Thrombosis and hemostasis testing is the in vitro 
study of the ability of blood to form clots and to break clots 
in Vivo. Coagulation (hemostasis) assays began as manual 
methods where clot formation was observed in a test tube 
either by tilting the tube or removing fibrin strands by a wire 
loop. The goal was to determine if a patient's blood Sample 
would clot after certain materials were added. It was later 
determined that the amount of time from initiation of the 
reaction to the point of clot formation in vitro is related to 
congenital disorders, acquired disorders, and therapeutic 
monitoring. In order to remove the inherent variability 
asSociated with the Subjective endpoint determinations of 
manual techniques, instrumentation has been developed to 
measure clot time, based on (1) electromechanical proper 
ties, (2) clot elasticity, (3) light Scattering, (4) fibrin adhe 
Sion, and (5) impedance. For light scattering methods, data 
is gathered that represents the transmission of light through 
the Specimen as a function of time (an optical time-depen 
dent measurement profile). 
0021. Two assays, the PT and APTT, are widely used to 
Screen for abnormalities in the coagulation System, although 
Several other Screening assays can be used, e.g. protein C, 
fibrinogen, protein S and/or thrombin time. If Screening 
assays show an abnormal result, one or Several additional 
tests are needed to isolate the exact Source of the abnormal 
ity. The PT and APTT assays rely primarily upon measure 
ment of time required for clot time, although Some variations 
of the PT also use the amplitude of the change in optical 
Signal in estimating fibrinogen concentration. 

0022. Blood coagulation is affected by administration of 
drugs, in addition to the vast array of internal factors and 
proteins that normally influence clot formation. For 
example, heparin is a widely-used therapeutic drug that is 
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used to prevent thrombosis following Surgery or under other 
conditions, or is used to combat existing thrombosis. The 
administration of heparin is typically monitored using the 
APTT assay, which gives a prolonged clot time in the 
presence of heparin. Clot times for PT assays are affected to 
a much Smaller degree. Since a number of other plasma 
abnormalities may also cause prolonged APTT results, the 
ability to discriminate between these effectors from screen 
ing assay results may be clinically significant. 

0023. Using a sigmoidal curve fit to a profile, Baumann, 
et all 4 showed that a ratio of two coefficients was unique 
for a Select group of blood factor deficiencies when fibrino 
gen was artificially maintained by addition of exogenous 
fibrinogen to a fixed concentration, and that same ratio also 
correlates heparin to FII deficiency and FXa deficiencies. 
However, the requirement for artificially fixed fibrinogen 
makes this approach inappropriate for analysis of clinical 
Specimens. The present invention makes it possible to pre 
dict a congenital or acquired imbalance or therapeutic con 
dition for clinical Samples from a time-dependent measure 
ment profile without artificial manipulation of Samples. 

0024. The present invention was conceived of and devel 
oped for predicting the presence of congenital or acquired 
imbalances or therapeutic conditions of an unknown Sample 
based on one or more time-dependent measurement profiles, 
Such as optical time-dependent measurement profiles, where 
a set of predictor variables are provided which define 
characteristics of profile, and where in turn a model is 
derived that represents the relationship between a congenital 
or acquired imbalance or therapeutic condition and the Set of 
predictor variables (so as to, in turn, utilize this model to 
predict the existence of the congenital or acquired imbalance 
or therapeutic condition in the unknown Sample). 

SUMMARY OF THE INVENTION 

0.025 The present invention is directed to a method and 
apparatus for predicting the presence of at least one con 
genital or acquired imbalance or therapeutic condition from 
at least one time-dependent measurement profile. The 
method and apparatus include a) performing at least one 
assay on an unknown Sample and measuring a respective 
property over time So as to derive a time-dependent mea 
Surement profile, b) defining a set of predictor variables 
which sufficiently define the data of the time-dependent 
profile, c) deriving a model that represents the relationship 
between a diagnostic output and the Set of predictor vari 
ables, and d) utilizing the model to predict the existence of 
a congenital or acquired imbalance or therapeutic condition 
in the unknown Sample relative to the diagnostic output. In 
one embodiment, training data is provided by performing a 
plurality of assays on known Samples, the model is a 
multilayer perceptron, the relationship between the diagnos 
tic output and the Set of predictor variables is determined by 
at least one algorithm, and the at least one algorithm is a 
back propagation learning algorithm. In a Second embodi 
ment of the present invention, the relationship between the 
diagnostic output and the Set of predictor variables is derived 
by a set of Statistical equations. 
0026. Also in the present invention, a plurality of time 
dependent measurement profiles are derived, which time 
dependent measurement profiles can be optical time-depen 
dent measurement profiles Such as ones provided by a 
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automated analyzer for thrombosis and hemostasis, where a 
plurality of optical measurements are taken over time, and 
where the plurality of optical measurements are normalized. 
The optical profiles can include one or more of a PT profile, 
a fibrinogen profile, an APTT profile, a TT profile, a protein 
C profile, a protein S profile and a plurality of other assays 
asSociated with congenital or acquired imbalances or thera 
peutic conditions. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0027 FIG. 1 is a general neuron diagram relating to the 
embodiment of the present invention utilizing a neural 
network; 
0028 FIG. 2 is a diagram of a multilayer perceptron for 
predicting congenital or acquired imbalances or therapeutic 
conditions, relating to the neural network embodiment of the 
present invention; 
0029 FIG. 3 is an optical profile with first and second 
derivatives of a normal clotting Sample, 
0030 FIG. 4 is an illustration of two learning curves; 
0031 FIG. 5 is an illustration of an unstable learning 
curve, 

0032 FIG. 6 is a graph showing a comparison of training 
and croSS-Validation learning curves, 
0033 FIG. 7 is a graph showing a comparison of training 
error for training tolerances of 0.0 and 0.1; 
0034 FIG. 8 is a ROC illustrating the effect of decision 
boundary on classification; 
0035 FIG. 9 is a Table comparing hidden layer size with 
prediction error; 
0036 FIG. 10 is a receiver operator characteristic plot 
related to predicting an abnormality in relation to Factor 
VIII; 
0037 FIG. 11 is a graph demonstrating the ability to 
predict actual Factor VIII activity; 
0038 FIG. 12 is a receiver operator characteristic plot 
related to predicting an abnormality in relation to Factor X; 
and 

0039 FIG. 13 is a chart listing examples of predictor 
variables for use in the present invention. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

0040. In the present invention, both a method and appa 
ratus are provided for predicting the presence of at least one 
congenital or acquired imbalance or therapeutic condition. 
AS one of the first Seeps of the method, one or more 
time-dependent measurements are performed on an 
unknown Sample. The term “time-dependent measurement' 
is referred to herein to include measurements derived from 
assays (e.g. PT, APTT, fibrinogen, protein C, protein S, TT, 
ATIII, plasminogen and factor assays). The terms “unknown 
Sample” and “clinical Sample' refer to a Sample, Such as one 
from a medical patient, where a congenital or acquired 
imbalance or therapeutic condition associated with throm 
bosis/hemostasis is not known (or, if Suspected, has not been 
confirmed). In the present invention, a coagulation property 
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is measured over time So as to derive a time-dependent 
measurement profile. In a preferred embodiment, the time 
dependent measurement is an optical measurement for 
deriving an optical profile. For example, a PT profile, a 
fibrinogen profile, a TT profile, an APTT profile and/or 
variations thereof can be provided where, an unknown 
Sample is analyzed for clot formation based on light trans 
mittance over time through the unknown Sample. In another 
preferred embodiment, two (or more) optical profiles are 
provided, such as both a PT profile and an APTT profile. 
0041 After the time-dependent measurement profiles are 
provided, a Set of predictor variables are defined which 
sufficiently define the data of the time-dependent profile. 
One or more predictor variables comprise the Set. And, in 
one embodiment, three or more, and in a preferred embodi 
ment, four or more predictor variables were found to desir 
ably make up the Set. It was found that the characteristics of 
the time-dependent measurement profile could best be 
defined by one or more predictor variables, including the 
minimum of the first derivative of the optical profile, the 
time index of this minimum, the minimum of the Second 
derivative of the optical profile, the time index of this 
minimum, the maximum of the Second derivative, the time 
index of this maximum, the overall change in transmittance 
during the time-dependent measurement, clotting time, 
Slope of the optical profile prior to clot formation, and Slope 
of the optical profile after clot formation. 
0042. After defining the set of predictor variables, a 
model is derived which represents the relationship between 
a congenital or acquired imbalance or therapeutic condition 
and the set of predictor variables. This model can be derived 
from a neural network in one embodiment of the present 
invention. In another embodiment, the model is derived via 
a set of Statistical equations. 
0.043 Neural networks represent a branch of artificial 
intelligence that can be used to learn and model complex, 
unknown Systems given Some known data from which it can 
train. Among the features of neural networks that make them 
an attractive alternative for modeling complex Systems are: 

0044) 1. They can handle noisy data well and rec 
ognize patterns even when Some of the input data are 
obscured or missing. 

0045 2. It is unnecessary to determine what factors 
are relevant a priori Since the network will determine 
during the training phase what data are relevant, 
assuming there are at least Some meaningful param 
eters in the Set. 

0046) Neural networks are formed from multiple layers 
of interconnected neurons like that shown in FIG. 1. Each 
neuron has one output and receives input i . . . in from 
multiple other neurons over connecting links, or Synapses. 
Each synapse is associated with a synaptic weight, wi. An 
adder X or linear combiner Sums the products of the input 
signals and Synaptic weights iwi. The linear combiner 
output sum, and 0 (a threshold which lowers or a bias which 
raises the output) are the input to the activation function f(). 
The Synaptic weights are learned by adjusting their values 
through a learning algorithm. 

0047. After deriving the model, whether based on neural 
networks or Statistical equations, the model is utilized to 
predict the existence of a congenital or acquired imbalance 
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or therapeutic condition in the unknown Sample relative to 
the time-dependent measurement profile(s). AS Such, a con 
genital or acquired imbalance or therapeutic condition can 
be predicted. Conditions which can be predicted as being 
abnormal in the present invention can include, among oth 
ers, a) factor deficiencies, e.g. fibrinogen, Factors II, V, VII, 
VIII, IX, X, XI and XII, as well as ATIII, plasminogen, 
protein C, protein S, etc., b) therapeutic conditions, e.g. 
heparin, coumadin, etc., and c) conditions Such as lupus 
anticoagulant. In one embodiment of the present invention, 
the method is performed on an automated analyzer. The 
time-dependent measurement profile, Such as an optical data 
profile, can be provided automatically by the automated 
analyzer, where the unknown Sample is automatically 
removed by an automated probe from a Sample container to 
a test well, one or more reagents are automatically added to 
the test well So as to initiate the reaction within the Sample. 
A property over time is automatically optically monitored So 
as to derive the optical profile. The predicted congenital or 
therapeutic condition can be automatically Stored in a 
memory of an automated analyzer and/or displayed on the 
automated analyzer, Such as on a computer monitor, or 
printed out on paper. As a further feature of the invention, if 
the predicted congenital or acquired imbalance or therapeu 
tic condition is an abnormal condition, then one or more 
assays for confirming the existence of the abnormal condi 
tion are performed on the automated analyzer. In fact, in a 
preferred embodiment, the one or more confirming assays 
are automatically ordered and performed on the analyzer 
once the predicted condition is determined, with the results 
of the one or more confirming assays being Stored in a 
memory of the automated analyzer and/or displayed on the 
analyzer. 

EXAMPLE 1. 

Prediction of Heparin in Sample 
0048. This example shows a set of predictor variables 
that adequately describe Screening assay optical profiles, 
develops an optimal neural network design, and determines 
the predictive capabilities of an abnormal condition associ 
ated with thrombosis/hemostasis (in this case for the detec 
tion of heparin) with a Substantial and well-quantified test 
data Set. 

0049 SimplastinTM L, PlatelinTM L, calcium chloride 
solution (0.025 M), imidazole buffer were obtained from 
Organon Teknika Corporation, Durham, N.C., 27712, USA. 
All plasma specimens were collected in 3.2% or 3.8% 
Sodium citrate in the ratio of one part anticoagulant to nine 
parts whole blood. The tubes were centrifuged at 2000 g for 
30 minutes and then decanted into polypropylene tubes and 
stored at -80 C. until evaluated. 757 specimens were 
prepared from 200 Samples. These Specimens were tested by 
the following specific assays: FII, FV, FVII, FVIII, FIX, FX, 
FXI, FXII, heparin, fibrinogen, plasminogen, protein C, and 
AT-III. Samples represented normal patients, a variety of 
deficiencies, and therapeutic conditions, of the Specimen 
population 216 were positive for heparin determined by a 
heparin concentration greater than 0.05 units/ml measured 
with a chromogenic assay Specific for heparin The remain 
ing Specimens, classified as heparin-negative, included nor 
mal specimens, a variety of Single or multiple factor defi 
ciencies, and patients receiving other therapeutic drugs. 
Positive heparin Samples ranged to 0.54 units/ml. 
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0050 PT and APTT screening assays were performed on 
each specimen utilizing two automated analyzers (MDATM 
180S) and multiple reagent and plasma vials (Organon 
Teknika Corporation, Durham N.C. 27712, USA) over a 
period of five days. When clot-based coagulation assays are 
performed by an automated optically-based analyzer Such as 
the MDA 180, data are collected over time that represents 
the normalized level of light transmission through a Sample 
as a clot forms (the optical profile). As the fibrin clot forms, 
the transmission of light is decreased. The optical profile 
was Stored from each test. 

0051. The network configuration chosen, a multilayer 
perceptron (MLP) maps input predictor variables from the 
PT and APTT screening assays to one output variable (see 
FIG. 2) which represents a single specified condition. A 
similar network was also employed for PT-only variables 
and APTT-only variables. This specific MLP consists of 
three layers: the input layer, one hidden layer, and the output 
layer. 

0.052 Anormal optical profile is shown in FIG.3. The set 
of predictor variables were chosen with the intent of describ 
ing optical profiles as completely as possible with a mini 
mum number of variables. They are summarized in Table 1 
where t is time from initiation of reaction, T is normalized 
light transmission through the reaction mixture, and pv is 
the kth predictor variable of assay j. 
0053. The predictor variables were scaled to values 
between 0 and 1, based on the range of values observed for 
each variable for assay type k 

iif(Pik- (Pink).min (Pink).max). 
0054) The input variable set includes is , for both a PT 
assay and APTT assay for each Specimen. For known output 
variable values, heparin Samples with results of greater than 
0.05 units/ml were considered positive and assigned a value 
of 1 while negative Samples were assigned a value of 0. 
0.055 As the ratio of training set sample to the number of 
weights in a network decreases, the probability of general 
izing decreases, reducing the confidence that the network 
will lead to correct classification of future Samples taken 
from the same distribution as the training Set. Thus, Small 
Samples Sizes, then can lead to artificially high classification 
rates. This phenomenon is known as overtraining. In order 
to achieve a true accuracy rate of 80%, a guideline for the 
number of Samples in the training Set is approximately five 
times the number of weights in the network. For most of this 
work, a 14-6-1 network was used, leading to an upward 
bound on the sample size of 0(450). To monitor and evaluate 
the performance of the network and its ability to generalize, 
a croSS-Validation Set is processed at the end of each training 
epoch. This croSS-Validation Set is a randomly determined 
Subset of the known test set that is excluded from the 
training Set. 
0056. Once the input predictor variables and output val 
ues were determined for all specimen optical profiles, the 
757 sets of data were randomly distributed into two groups: 
387 were used in the training set and 370 were used in the 
croSS-Validation Set. These same two randomly determined 
Sets were used throughout all the experiments. 
0057 All synaptic weights and threshold values were 
initialized at the beginning of each training Session to Small 
random numbers. 
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0058. The error-correction learning rule is an iterative 
process used to update the Synaptic weights by a method of 
gradient descent in which the network minimizes the error as 
pattern associations (known input-output pairs) in the train 
ing Set are presented to the network Each cycle through the 
training Set is known as an epoch. The order or presentation 
of the pattern associations was the same for all epochs. The 
learning algorithm consists of Six Steps which make up the 
forward pass and the backward pass. In the forward pass, the 
hidden layer neuron activations are first determined 

0059 where h is the vector of hidden-layer neurons, i the 
vector of input-layer neurons, W1 the weight matrix 
between the input and hidden layers, and Fo the activation 
function. A logistic function is used as the activation func 
tion 

0060. Then the output-layer neurons are computed 
o=F(h W2+0.) 

0061 where o represents the output layer, h the hidden 
layer and W2 the matrix of Synapses connecting the hidden 
layer and output layers. The backward pass begins with the 
computation of the output layer error 

0062 where d is the desired output. If each element of 
e is less than Some predefined training error tolerance 
vector TE, than the weights are not updated during that 
pass and the proceSS continues with the next pattern asso 
ciation. A training error tolerance of 0.1 was used in all 
experiments unless otherwise Specified. Otherwise, the local 
gradient at the output layer is then computed: 

go=O(1-O)es. 

0063) Next, the hidden-layer local gradient is computed: 
g=h(1-h)W2g. 

0064. Once the hidden layer error is calculated, the 
Second layer of weights is adjusted 

0065 where 
AW2=nhg+YAW2. 

0066) is the learning rate, Y is the momentum factor, and 
m is the learning iteration. The first layer of weights is 
adjusted in a similar manner 

where 

0068 The forward pass and backward pass are repeated 
for all of the pattern associations in the training Set, referred 
to as an epoch, 1000 times. At the end of each epoch, the 
trained network is applied to the croSS-Validation Set. 
0069. Several methods were employed to measure the 
performance of the network's training. Error, E, for each 
input Set was defined as 
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0070 The learning curve is defined as the plot of E versus 
epoch The percent classification, p, describes the percent of 
the total test Set (training and cross-validation) that is 
correctly classified based on Some defined decision bound 
ary, B. Receiver-Operating Characteristic (ROC) plots have 
also been utilized to describe trained networks’ ability to 
discriminate between the alternative possible outcome 
States. In these plots, measures of Sensitivity and Specificity 
are shown for a complete range of decision boundaries. The 
Sensitivity, or true-positive fraction is defined as 

true positive 
sensitivity= - true positive + false negative 

0071 and the false-positive fraction, or (1-specificity) is 
defined as 

-w false positive 
(1 - specificity) = . . . . . false positive + true negative 

0.072 These ROC plots represent a common tool for 
evaluating clinical laboratory test performance. 
0073. Using the test set described, experiments were 
performed to determine if the presence of heparin could be 
predicted with this method. First, experiments were con 
ducted to determine optimal error-correction backpropaga 
tion learning parameters: (1) hidden layer size, (2) learning 
rate, and (3) momentum. Additional experiments were also 
conducted to compare the performance of networks based on 
PT and APTT assays alone with that of one combining the 
results of both, the effect of the training error tolerance, and 
the decision boundary Selection. 
0074 FIG. 9 shows the effect of the hidden layer size on 
the training and croSS validation error and the percent correct 
classification for the optimal decision boundary, defined as 
the decision boundary which yielded the lowest total number 
of false positives and false negatives from the total test Set. 
AS the hidden layer Size is increased, the error is decreased. 
However, the ability to generalize does not increase after a 
hidden layer size of 6. The most significant benefit in terms 
of both error and percentage correct classification is between 
4 and 6. A hidden layer size of 6 was used for the remainder 
of the experiments. 
0075) A series of experiments were conducted with 
m{0.01.0.1,0.5,0.9} and Y={0.0.0.1.0.5,0.9}. FIG. 4 shows 
the learning curves for two of the best combinations of 
parameters. FIG. 5 shows an example learning curve when 
the learning rate is So high it leads to oscillations and 
convergence to a higher E. In general, as m >0 the network 
converged to a lower E and as Y-> 1, the rate of convergence 
improved. AS m > 1, value of E converged too increased and 
oscillations increased. In addition, as m > 1, Y-> 1 exacer 
bated the oscillations. 

Dec. 20, 2001 

0076 FIG. 6 shows a comparison of the learning curve 
for the training Set and croSS-Validation Set for m=0.5 and 
Y=0.1. It is a primary concern when developing neural 
networks, and it has been previously shown that it is 
important to look not only at the error in the training Set for 
each cycle, but also the croSS-Validation error. 
0.077 FIG. 7 shows the learning curve m=0.5 and Y=0.1 
and a learning tolerance of 0.0 and 0.1. These results Suggest 
that a Small learning tends to Smoothen the convergence of 
the learning process. 

0078 FIG. 8 shows the ROC plot for networks trained 
with the predictor variables from each of the two Screening 
assays with that of them combined. In the Single assay cases, 
the hidden layer size was 3. While using the data from one 
assay does lead to Some Success, using the information from 
both assays makes a significant improvement in the ability 
of the network to correctly predict the presence of heparin. 
This graph indicates that a 90% true positive proportion can 
be achieved with a false positive proportion of 15%. Using 
a single assay, a 60-70% true positive proportion can be 
achieved with a false positive proportion of approximately 
15%. 

EXAMPLE 2 

Factor VIII 

0079 Similar tests were run as in Example 1. As can be 
seen in FIGS. 10 and 11, two training sessions were 
conducted for predicting a Factor VIII condition in an 
unknown sample. FIG. 10 is a receiver operator character 
istic plot related to predicting an abnormality in relation to 
Factor VIII. In FIG. 10, everything below 30% activity was 
indicated as positive, and everything above 30% was indi 
cated as negative. Cutoff values other than 30% could also 
be used. In this Example, the activity percentage has a 
known accuracy of approximately + or -10%. In FIG. 11, 
the actual percent activity was utilized as the output. 

EXAMPLE 3 

Factor X 

0080. As can be seen in FIG. 12, the method of the 
present invention was run Similar to that as-in Example 2, 
where here an abnormality in Factor X concentration was 
predicted from unknown samples. Everything below 30% 
activity was indicated as positive, and everything above 
30% was indicated as negative. Cutoff values other than 
30% could also be used. 

0081. The results of the cross-validation sample sets 
throughout the experiments indicate that the Sample size was 
sufficient for the network to generalize. While the random 
distribution of the training and croSS-Validation Sets were 
held constant throughout the experiments presented, other 
distributions have been used. These distributions, while all 
yielding different results, Still lead to the same general 
conclusion. 

0082) Many alternatives for or additions to the set of 
predictor variables were explored. This included coefficients 
of a curve fitted to the data profile, pattern recognition, and 
clot time-based parameters. Low order functions tend to lose 
information due to their poor fit, and high order functions 
tend to lose information in their multiple close Solutions. 



US 2001/0053959 A1 

Clot-based parameters, Such as clot time, Slope in the Section 
prior to the initiation of clot formation, and afterwards, are 
often available, but not always (because in Some samples, 
the clot time is not detectable). The successful results 
observed indicate that the Set of predictor variables used are 
effective for predicting congenital or acquired imbalances or 
therapeutic conditions. 
0.083. The optimization of the network learning algo 
rithms parameters made Significant differences in its per 
formance. In general, performance was best with low learn 
ing rates, high momentum rates, Some Small training error 
tolerance, and a hidden layer Size approximately half of the 
Size of the input layer. 
0084. It is to be understood that the invention described 
and illustrated herein is to be taken as a preferred example 
of the Same, and that various changes in the method and 
apparatus of the invention may be resorted to, without 
departing from the Spirit of the invention or Scope of the 
claims. 

We claim: 
1. A method for predicting the presence of at least one 

congenital or acquired imbalance or therapeutic condition 
asSociated with thrombosis/hemostasis from at least one 
time-dependent measurement profile, comprising: 

a) performing at least one time-dependent measurement 
on an unknown Sample and measuring a respective 
property over time So as to derive a time-dependent 
measurement profile; 

b) defining a set of a plurality of predictor variables which 
Sufficiently define the data of the time-dependent mea 
Surement profile; 

c) deriving a model that represents the relationship 
between the congenital or acquired imbalance or thera 
peutic condition, and the Set of predictor variables, and 

d) utilizing the model of step c) to predict the existence of 
the congenital or acquired imbalance or therapeutic 
condition in the unknown Sample. 

2. A method according to claim 1, wherein Said at least 
one time-dependent measurement profile is at least one 
optical profile. 

3. A method according to claim 2, wherein Said at least 
one optical profile is provided by an automated analyzer for 
thrombosis and hemostasis testing. 

4. A method according to claim 2, wherein a plurality of 
optical measurements at one or more wavelengths are taken 
over time So as to derive Said at least one optical profile, Said 
optical measurements corresponding to changes in light 
Scattering and/or light absorption in the unknown Sample. 

5. A method according to claim 2, wherein a plurality of 
optical measurements are taken over time So as to derive Said 
at least one optical profile, and wherein Said plurality of 
optical measurements are each normalized to a first optical 
measurement. 

6. A method according to claim 3, wherein in Step a) said 
at least one optical profile is provided automatically by Said 
analyzer, whereby said unknown Sample is automatically 
removed by an automated probe from a Sample container to 
a test well, one or more reagents are automatically added to 
Said test well So as to initiate Said property changes within 
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Said Sample, and the development of Said property over time 
is automatically optically monitored So as to derive Said 
optical data profile. 

7. A method according to claim 6, wherein after Step d), 
a predicted congenital or acquired imbalance or therapeutic 
condition is automatically Stored in a memory of Said 
automated analyzer and/or displayed on Said automated 
analyzer. 

8. A method according to claim 6, wherein in step d), one 
or more assays for confirming the existence of Said con 
genital or acquired imbalance or therapeutic condition is 
automatically performed. 

9. A method according to claim 8, wherein Said one or 
more confirming assays are automatically ordered and per 
formed on Said analyzer, with results of Said one or more 
assays being Stored in a memory of Said automated analyzer 
and/or displayed on Said analyzer. 

10. A method according to claim 1, further comprising: 
before step a), providing a set of data from known 

Samples, which data is used in Step c) for deriving said 
model. 

11. A method according to claim 10, wherein Said data 
from known Samples is provided by performing a plurality 
of assays on Said known Samples. 

12. A method according to claim 10, wherein Said model 
of step c) is a neural network. 

13. A method according to claim 1, wherein Said relation 
ship in Step c) is determined via at least one automated 
algorithm. 

14. A method according to claim 1, wherein in step a), a 
plurality of time-dependent measurement profiles are 
derived for use in step b). 

15. A method according to claim 14, wherein Said plu 
rality of time dependent measurement profiles includes at 
least two profiles from assays initiated with PT reagents, 
APTT reagents, fibrinogen reagents and TT reagents. 

16. A method according to claim 13, wherein Said model 
is a multilayer perceptron, and wherein Said at least one 
algorithm is a back propagation learning algorithm. 

17. A method according to claim 1, wherein Said Set of 
predictor variables includes a plurality of a minimum of the 
first derivative of the profile, a time index of the minimum 
of the first derivative, a minimum of the second derivative 
of the profile, a time index of the minimum of the Second 
derivative, a maximum of the Second derivative of the 
profile, a time index of the maximum of the Second deriva 
tive, an overall change in the coagulation parameter during 
the time-dependent measurement on the unknown Sample, a 
clotting time, a slope of the profile prior to clot formation, 
and a slope of the profile after clot formation. 

18. A method according to claim 17, wherein three or 
more of Said predictor variables are within Said Set. 

19. A method according to claim 18, wherein more than 
three of Said predictor variables are within Said Set. 

20. A method according to claim 1, wherein Said unknown 
Sample is a Sample from a medical patient, and wherein in 
Step d), both said model and additional patient medical data 
are utilized for predicting the existence of Said congenital or 
acquired imbalance or therapeutic condition. 

21. An apparatus for performing at least one time-depen 
dent measurement on an unknown Sample to derive at least 
one time-dependent measurement profile, and predicting the 
presence of at least one congenital or acquired imbalance or 
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therapeutic condition associated with thrombosis/hemosta 
sis from the at least one time-dependent measurement pro 
file, comprising: 
means for performing at least one time-dependent mea 

Surement on an unknown Sample and measuring a 
respective property over time So as to derive a time 
dependent measurement profile; 

means for defining a set of a plurality of predictor 
variables which sufficiently define the data of the 
time-dependent measurement profile; 

means for deriving a model that represents the relation 
ship between the congenital or acquired imbalance or 
therapeutic condition, and the Set of predictor variables, 
and 

means for utilizing the model of Step c) to predict the 
existence of the congenital or acquired imbalance or 
therapeutic condition in the unknown Sample. 

22. An apparatus according to claim 21, wherein Said 
means for performing at least one time-dependent measure 
ment comprises an optical System for performing at least one 
optical measurement over time and So as to derive an at least 
one optical profile. 

23. An apparatus according to claim 22, wherein Said 
optical System is part of an automated analyzer for throm 
bosis and hemostasis testing. 

24. An apparatus according to claim 22, wherein Said 
optical means comprises a means for performing a plurality 
of optical measurements at one or more wavelengths over 
time So as to derive said at least one optical profile, said 
optical measurements corresponding to changes in light 
Scattering and/or light absorption in the unknown Sample. 

25. An apparatus according to claim 22, wherein in Said 
optical System, a plurality of optical measurements are taken 
over time So as to derive Said at least one optical profile, and 
wherein Said plurality of optical measurements are each 
normalized to a first optical measurement. 

26. An apparatus according to claim 23 which is an 
automated analyzer for thrombosis and hemostasis testing, 
and wherein Said at least one optical profile is provided 
automatically by Said analyzer, whereby said unknown 
Sample is automatically removed by an automated probe 
from a Sample container to a test well, one or more reagents 
are automatically added to Said test well So as to initiate Said 
property changes within Said Sample, and the development 
of Said property over time is automatically optically moni 
tored So as to derive Said optical data profile. 

27. An apparatus according to claim 26, further compris 
ing at least one of a memory and a display wherein a 
predicted congenital or acquired imbalance or therapeutic 
condition is automatically Stored in Said memory of Said 
automated analyzer and/or displayed on Said display of Said 
automated analyzer. 

28. An apparatus according to claim 26, further compris 
ing means for automatically performing one or more assays 
for confirming the existence of Said congenital or acquired 
imbalance or therapeutic condition. 
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29. An apparatus according to claim 28, wherein Said 
means for performing one or more confirming assays is an 
automatic performing means wherein Said confirming assays 
are automatically ordered and performed on Said analyzer, 
with results of Said one or more assays being Stored in a 
memory of Said automated analyzer and/or displayed on a 
display of Said analyzer. 

30. An apparatus according to claim 21, further compris 
ing means for providing a Set of data from known Samples, 
which data is used in Step c) for deriving said model. 

31. An apparatus according to claim 30, wherein Said data 
from known Samples is provided by Said means for per 
forming a plurality of assays on Said known Samples. 

32. An apparatus according to claim 30, wherein Said 
means for deriving a model is a means for deriving a model 
by means of a neural network. 

33. An apparatus according to claim 21, wherein Said 
relationship determined by Said deriving means comprises a 
means for determining Said relationship via at least one 
automated algorithm. 

34. An apparatus according to claim 21, wherein Said 
means for performing at least one time-dependent measure 
ment is capable of performing a plurality of time-dependent 
measurement profiles. 

35. An apparatus according to claim 34, wherein Said 
means for performing a plurality of time dependent mea 
Surement profiles includes a means for performing at least 
two profiles from assays initiated with PT reagents, APTT 
reagents, fibrinogen reagents and TT reagents. 

36. An apparatus according to claim 33, wherein Said 
model is a multilayer perceptron, and wherein Said at least 
one algorithm is a back propagation learning algorithm. 

37. An apparatus according to claim 21, wherein Said Set 
of predictor variables includes a plurality of a minimum of 
the first derivative of the profile, a time index of the 
minimum of the first derivative, a minimum of the Second 
derivative of the profile, a time index of the minimum of the 
Second derivative, a maximum of the Second derivative of 
the profile, a time index of the maximum of the Second 
derivative, an overall change in the coagulation parameter 
during the time-dependent measurement on the unknown 
Sample, a clotting time, a slope of the profile prior to clot 
formation, and a slope of the profile after clot formation. 

38. An apparatus according to claim 37, wherein three or 
more of Said predictor variables are within Said Set. 

39. An apparatus according to claim 38, wherein more 
than three of Said predictor variables are within Said Set. 

40. An apparatus according to claim 21, wherein Said 
unknown Sample is a Sample from a medical patient, and 
wherein Said utilizing means comprising a means for utiliz 
ing both Said model and additional patient medical data for 
predicting the existence of Said congenital or acquired 
imbalance or therapeutic condition. 


