Office de la Propriete Canadian CA 2253829 C 2002/07/23

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 253 829
Un organisme An agency of | 12 BREVET CANADIEN
Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de dépot PCT/PCT Filing Date: 1997/05/20 (51) Cl.Int.%/Int.CI.° GOBF 17/30
(87) Date publication PCT/PCT Publication Date: 199//11/27 | (72) Inventeurs/Inventors:
- _ WEEKS, Richard, GB;
(45) Date de deéelivrance/lssue Date: 2002/0/7/23 STEP ENS e Mlchael GB:
(85) Entree phase nationale/National Entry: 1998/11/06 DAVIES, Nlcholas John, GB
(86) N° demande PCT/PCT Application No.: GB 1997/001363 REVETT, Mike Charles, GB;
o o FLAVIN, Phil Graeme, GB
(87) N publication PCT/PCT Publication No.: 1997/044/47 o
o L (73) Proprietaire/Owner:
1996/05/22 (96303645.4) EP COMPANY GB
(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre : RECUPERATION D'INFORMATIONS DANS UNE BASE DE DONNEES CACHE
(54) Title: INFORMATION RETRIEVAL IN CACHE DATABASE

100
W3 VIEWER
105 110
PROXY SERVER
REMOTE
115 SERVER
CACHE 135

CONTROLLER

LOOKAHEAD 130

MAIN PROCESSOR

CACHE

120

125
LOOKAHEAD
CACHE

(57) Abrége/Abstract:

The invention provides an information access system for downloading information using a communications network (110) such
as the Internet. The system downloads pages at user request to local storge (120) and at the same time reviews the pages for
embedded HTML links. It then also downloads the pages identified by the embedded links to a secondary, "lookahead"” local
cache (125). The invention, referred to as "Casper’ (Cached Access to Stored Pages with Easy Retrieval), offers a reduction In
accessing times to the user and also a reduction in network traffic.

e

T N §.
.l.!.\‘\-c.c..--.
. T

3 '_{,-.T'l'.
o~

C an a d a http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

f

#

CA

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

02253829 1998-11-06

(51) International Patent Classification © :

GO6F 17/30

Al

(21) International Application Number:

(22) International Filing Date: 20 May 1997 (20.05.97)

(30) Priority Data:

9610505.1 20 May 1996 (20.05.96) GB
96303645.4 22 May 1996 (22.05.96) EP

(34) Countries for which the regional or
international application was filed: GB et al.
(71) Applicant (for all designated States except US): BRITISH

TELECOMMUNICATIONS PUBLIC LIMITED COM-
PANY [GB/GB];, 81 Newgate Street, London ECIA 7AJ

(GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WEEKS, Richard
[GB/GB]; 44 Glemsford Close, Felixstowe, Suffolk IP11
8UG (GB). STEPHENS, Lee, Michael [US/US]; 22 Haugh-
ley Drive, Rushmere St. Andrew, Ipswich, Suffolk P4
5QT (US). DAVIES, Nicholas, John [GB/GB]; 10 Spindle
Wood, Colchester, Essex CO4 4SX (GB). REVETT, Mike,
Charles [GB/GB];
bridge, Suffolk IP12 4DL (GB). FLAVIN, Phil, Graeme
[GB/GB]; 8 Westmorland Road, Felixstowe, Suffolk P11
OTB (GB).

Kingston Rise, Broomheath, Wood- |

(74) Agent: DUTTON, Erica, Lindley, Graham; BT Group Legal
Services, Intellectual Property Dept., 8th fioor, 120 Holbom,
London ECIN 2TE (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE.
GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, SI, SK, TI, TM, TR, TT,
UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS,
MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ,
MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE,
SN, TD, TG).

Published
With international search report.

(54) Title: INFORMATION RETRIEVAL IN CACHE DATABASE

(57) Abstract

The invention provides an information
access system for downloading information
using a communications network (110) such
as the Internet. The system downloads pages
at user request to local storge (120) and at
the same time reviews the pages for em-
bedded HTML links. It then also down-
loads the pages identified by the embedded
links to a secondary, "lookahead" local cache
(125). The invention, referred to as "Casper"
(Cached Access to Stored Pages with Easy
Retrieval), offers a reduction in accessing
times to the user and also a reduction in net-
work traffic.

CACHE
CONTROLLER

100

W3 VIEWER

110
105

PROXY SERVER

REMOTE
SERVER

135

—
LOOKAHEAD 130
MAIN PROCESSOR
CACHE
120

125

LOOKAHEAD

CACHE

R e —— " 4 L/ T el T e AR el < IR Sl an T 1 h arP-Ab PP, Ary < = Gmd = e o, s s ok Al B P ol WA ST 3w e, S P | e AR L L D A = e e A

e aA A AL A N A A A __ammas A A8 a2 B . L AlR e

——
(11) International Publication Number: WO 97/44747 l
r (43) International Publication Date: 27 November 1997 (27.11.97)

PCT/GB97/01363 |

AR AL P AL OARIRILY LR R T T LA By el e D STt Y U o A T O o e o e N Ly o o e

10

16

20

25

30

CA 02253829 2001-08-30

INFORMATION RETRIEVAL IN CACHE DATABASE

The present invention relates to methods and/or systems for accessing

information by means of a communication system.

The Internet is a known communications system based on a plurality of separate
communications networks connected together. It prOvides a rich source of
information from many different providers but this very richness creates a problem

in accessing specific information as there is no central monitoring and control.

in 1982, the volume of scientific, cbrporate and technical information was
doubling every five years. By 1988, it was doubling every 2.2 years and by 1992
every 1.6 years. With the expansion of the Internet and othet networks the rate
of increase will continue to increase. Key to the viability of such networks will be
the ability to manage the information and provide users with the information they

want, when they want it.

Navigating the information available over the Internet is made possible by the use
of browsers and languages such as Hypertext Markup Language (HTML). For
instance, the familiar Worldwide Web (WWW) is an area of the Internet which can

be browsed using Hypertext links between documents.

In co-pending international patent application number WO 96/23265 dated
August 1, 1996, there is disclosed a system for accessing information, for
instance by means of the Internet, based on a community of intelligent software
agents which store meta information about pages on the Internet. The agent-
based access system uses keyword sets to locate information of interest to a
particular user. It also stores user profiles such that pages being stored by one

user can be notified to another whose profile indicates potential interest.

CA 02253829 1998-11-06

WO 97/44747 PCT/GB97/01363

According to a first aspect of the present invention, there is provided an

Information access system, for accessing information accessible by means of a

communications network, the access system comprising:

a) means for downloading items of information from the network to local
b storage; and

b) an information processor for processing items of information to locate

embedded links to other items of information accessible over the network:

wherein said information processor comprises:
10 i) a queuing arrangement for queuing items of information having such links

embedded; and

1) a set of concurrently activatable information acquisition units

the processor, in use, processing items of information to identify links embedded
15 therein which identify information for downloading, and allocating identified links

to respective available aquisition units, each aquisition unit then acting to

download an item of information identified by a link aliocated to it, from the

network to the local storage.

20 An advantage of embodiments of the present invention is that delays in accessing
iInformation pages can be reduced. It can also be the case that network traffic is
reduced since pages are only retrieved once across the network. Subsequent

access by a user can be to the local storage.

25 Preferably, the local storage comprises more than one cache data store, a first
cache data store holding items of information which have been retrieved by the
system and a second cache data store holding items of information transferred out
of the first cache data store when a user has requested access. The second
cache data store can then be managed in a different way from the first, for

30 instance to provide information which is accessed relatively frequentiy by users.
The first cache data store may for instance be significantly smaller and be
“pruned” to hold only information downloaded for links embedded in pages very

recently requested by users.

SUBSTITUTE SHEET (RULE 26)

. MV ANVEA AT AN T A A A A A e S £ P i v r |

CA 02253829 1998-11-06

WO 97/44747 PCT/GB97/01363

In general, embodiments of the present invention will need monitoring and
scheduling capabilities in order to control the queueing process. Otherwise, the

queue may become a processing bottlieneck.

According to a second aspect of the present invention, there is provided a method

of storing items of information accessible by means of a communications network,

which method comprises the following steps:

i) processing an item of information to locate one or more links to other
10 items of information embedded therein, to be downloaded; and

1) downloading said one or more other items of information by means of said

network to a local data store.

An information access system according to an embodiment of the present
15 invention will now be described, by way of example only, with reference to the

accompanying Figures, wherein:

Figure 1 shows an environment in which the information access system is
supported;

20 Figure 2 shows a flow diagram of the overall operation of the information access
system;
Figure 3 shows a block diagram of the components of a lookahead processor in the

information access system of Figure 1;

25 Figure 4 shows a flow diagram for the process that is provided by the lookahead
processor of the information access sytem:
Figure b shows a processing queue and the relevant information acquisition units;
Figure 6 shows the queue and units of Figure 5 after a time interval has passed;
and

30 Figure 7 shows an alternative flow diagram with respect to that of Figure 2.

The specific embodiment of the present invention described below is referred to

herein as “Casper”, standing for “Cached Access to Stored Pages with Easy

SUBSTITUTE SHEET (RULE 26)

WAV VN ATUINA sl BB s = ol s Pp il A 2 PV it N\ = pu Ay «vred & v oundaddih s il B la

10

15

20

25

30

CA 02253829 2001-08-30

Retrieval”. The Casper system is particularly designed for accessing WorldWide
Web pages provided over the Internet Global Communications network. Other
embodiments of the invention of course could however be used to access other

information systems where data units (“items of information”) have embedded

links to other data units.

Information accessible by means of the Web is provided as pages in HTML. Within
a document, strings of words or other identifiers may be highlighted. If the user,
while viewing a document, select's a highlighted string of words or an identifier, '
and clicks on it using the mouse button, the highlighted text provides a link to
another document. Clicking on the highlighted text triggers the system into
calling up the relevant document over the Internet for viewing on the user’s

screen. It replaces the document the user was previously viewing.

In the above mentioned co-pending patent application, a system is described
which can be used to store meta information about pages selected over the
Internet by clicking on Hypertext links. By using keywords sets, the system alerts |
other interested users in a user group of a new document for which meta

information has been'stored.

In a Casper system, according to an embodiment of the present invention, when a
page is selected, for instance to have its meta information stored, the system wiill

automatically review that page for HyperText links to other documents available

over the Internet. If there are such links in the document, and the linked

documents are not already stored locally, then the Casper system enters the new
page to a page processing queue. The links from the page are then allocated to
page acquisition software units, as they become available. The linked document

for each link in turn is then read into a local “lookahead” cache datastore.

This has the effect of putting together a local store of pages which are clearly
related to pages that the user has an interest in. When the user decides to go

beyond a page originally accessed, they can simply get the related pages from

10

15

20

25

30

CA 02253829 1998-11-06

WO 97/447477 PCT/GB97/01363

local data cache, rather than calling in links on the Internet. This makes

iInformation retrieval faster for the user and reduces traffic on the Internet.

Referring to Figure1, the hardware/software environment which will support

embodiments of the present invention comprises the following:

1) a WWW viewer 100 connected via a proxy server 105 to a network such as
Internet 110.

it} main and “lookahead” caches 120, 125 and an associated cache controller
115.

i) a “lookahead” processor 130 connected between the cache controtier 115 and

the “lookahead” cache 125, and having direct access to the Internet 110.

The environment supporting Casper is generally of known type. The WWW viewer
100 provides browsing capability in respect of the Internet 110 via the proxy
server 105. The proxy server 105 is a known type of software system which can
Intercept requests for information from users’ browsers and process them before
passing them on to the information source on the Internet. The main and
lookahead caches 120, 125 are local data stores for storing WWW pages and the
cache controller 115 provides an interface to them which writes and retrieves

pages to and from the caches and fogs their contents.

The areas where Casper differs primarily is in the provision of the second cache,

the lookahead cache 125, and in the provision of the lookahead processor 130.

It ts known to use a caching server, the cache being a temporary store in which for
Instance pages most recently accessed by a group of users are held. Once the
cache is full, pages are removed as more recent ones are added. In Casper, there
Is the main cache 120 which stores pages accessed by users. There is also
however the lookahead cache 125 which stores pages which havn’t themselves
been accessed but which are linked to pages which have been accessed by users.
This lookahead cache 125 is filled by taking the links embedded in pages requested

by users and downloading the pages for those links.

SUBSTITUTE SHEET (RULE 26)

o ol a2 B b e g A ol Ll s o B e s e € Ll e red s ol s b

CA 02253829 1998-11-06

WO 97/44747 PCT/GB97/01363

These caches 120,125 then come into use when a user requests a page. Casper
uses the proxy server 105 to intercept the request in order to make a check first
as to whether the page is already in the main cache 120 or the lookahead cache
o 125. If the page is already present in one of the caches 120, 125, Casper
retrieves it from the cache. Otherwise, the relevant information source on the

Internet must be contacted after all and the page requested from a remote server

10 Referring to Figure 2, a flow diagram for the above comprises the following steps:

STEP 300: the proxy server 105 of the Casper system receives a user request

300 involving a Universal Resource Locator {URL) at a remote site on the Internet

15 For instance, the user may be requesting to view a page and/or may be requesting
reloading of a page from the relevant remote server 135 for updating purposes.
Alternatively, the user may be calling a program which runs dynamicaily and for
which caching would be inappropriate. Where a request for a page is made, it may
Incorporate an indication that the cached version of the page is unacceptable and

20 that therefore the system will have to deliver the page from the originating remote

server 135.

STEP 305: in order to determine the nature of the request, and any relevant
constraints, the proxy server 105 reviews the user request. The user request can
25 contain optional constraints selected by the user, such as “reload” which means a
cached version of a file is not acceptable, but it may also contain embedded
constraints, for instance in relation to a URL which it contains. Casper is provided
with a configuration file that can specify:
 URLs to be outlawed, for instance because they have dubious content
30 e URLs that themselves force a network reload, for instance because their content
Is known to change frequently or because the server involved is local or fast and

caching is therefore inappropriate

SUBSTITUTE SHEET (RULE 26)

CA 02253829 1998-11-06

WO 97/44747 PCT/GB97/01363

The request review can therefore take the form of a series of checks such as the
following:
e does URL force reload?
e s URL a permitted location?
5 e has user specified reload?

* has user otherwise specified that a cached version is unacceptabie?

Depending on the outcome, the proxy server will move to either of STEPS 310 or
330. If the user has clicked on “reload”, or the URL forces “reload”, then the

10 “cached version not acceptable” path to STEP 310 is followed. It the URL is not a
permitted location, then an “access denied” message 1s returned to the user and

no further processing takes place. Otherwise, the “cached version acceptable”
path to STEP 330 is followed.

15 STEP 310: if at STEP 305, it is found that a cached version is not acceptable, the
proxy server 105 initiates a connection with the relevant remote server 135. As
seen in Figure 1, the proxy server 105 has a direct interface to the Internet 110.
In STEP 315, the proxy server 105 checks whether the subject of the request
exists. If not, in STEPS 320, 355, it generates and delivers a message to the user

20 appropriately.

STEP 323: if the subject of the request exists, the proxy server 105 checks
whether it should be cached. If the subject of the request exists, is an HTML page
but caching is not relevant, for instance where Casper’s configuration file defines
25 the URL as a forced reload iocation, then the proxy server will go to STEPS 350,
355 to trigger the lookahead processor and send the page to the user’s browser.
It the subject of the request exists, is an html page and caching is relevant, the
proxy server 105 moves to STEP 325 and writes the relevant page to the main
cache 120. The proxy server 105 will then go to STEPS 350, 355 as above.
30
It may be the case that neither caching nor lookahead processing is actually
relevant, for instance in the case of a program which runs dynamically. In that

case, the proxy server 105 can go to STEPS 350. 355 as above, and the

SUBSTITUTE SHEET (RULE 26)

aamam _oa a asama e s aaaaans o o 5l A A A A BA —BARAR o A
A B PR

10

15

20

25

30

CA 02253829 1998-11-06

WO 97/44747 PCT/GB97/01363

lookahead processor 130 will not find any embedded links to process. On the
other hand, an extra check can be made {not shown in Figure 2) as to whether
lookahead processing is relevant. If not, then the proxy server 105 could leave out

STEPS 350, 355 and simply deliver the program to the user’s browser 100.

STEP 330: if at STEP 305 it is found that caching is relevant, that the user has
not specified reload or that a cached version is unacceptable, then the proxy server
105 makes a check via the cache controller 115 whether the subject of the
request, usually a Web page, is in the main cache 120. If it is, then the proxy

server Is ready to go to STEP 345.

It a requested Web page is not in the main cache 120, then the proxy server 105
makes a check via the cache controller 115 whether it is already in the lookahead
cache 125. If it is, the proxy server 105 moves to STEP 340 and transfers the
page to the main cache 120 and is ready to go to STEP 345.

If the requested Web page is not in the iookahead cache 125 either, then the proxy
server 105 moves to STEP 310 and follows the process described above for STEP
310.

STEP 345: the proxy server fetches the requested page from the main cache 120
and moves to STEP 350, triggering the lookahead processor 130. After triggering
the processor, the proxy server 105 moves to STEP 355 where it adds Casper

page wrappers to the requested page(s) and sends them to the user’s browser
100.

Meanwhile, as further discussed below, the lookahead processor 130 reviews the
requested page(s) to identify embedded links and to access and download to the

lookahead cache 125 the pages identified by the embedded links.
Retferring to Figure 3, the lookahead processor 130 comprises software processes

and memory, running on a Unix machine. It comprises three asynchronous

processes, a page processor 255, a slot processor 260 and a shelf processor 265.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

PR LI IRL Y L T S u S N pren TC g Snp— g g g

CA 02253829 1998-11-06

WO 97/44747 PCT/GB97/01363

The page processor 255 has a message input 200 for receiving messages that will
for instance contain the URL of a page to be processed, an HTML parser 205 for
retrieving the contents of a URL and parsing them in sufficient detail to identify all
the HTML links embedded, a link assessor 210 for determining which of the
identified links need to be “pre-fetched”, and a page queue 215 which stores page
data for processing as processing requests come in to the message input 200. The
parser 205 and the link assessor 210 both have access to the main cache 120,
and the link assessor 210 has access to the lookahead cache 125 There is a
timer 235 associated with the page queue 215 which marks as “ignore” any links
which have been waiting too long (a configurable parameter) for processing. This

provides a mechanism for moderating the iength of the page gueue.

The slot processor 260 has the overall purpose of processing the page data in the
page queue 215 as quickly as possible. To that end, it is capable of running a
number of Unix sub-processes in parallel, by means of a plurality of aquisition slots
225. It is provided with a slot filler 220 which monitors the status of the slots
225 and attempts to populate any free slots from the page queue 215. Each time
a free slot is newily filled, a connect processor 230 is fired off as 3 Unix sub-
process to attempt a connection to the server indicated by a URL.in an embedded
link. If successful, a read processor 240 reads the relevant page from the server
and passes it to a cache writer 245, part of the cache controller 115, which writes
the data to the lookahead cache 125 and notifies the shelf processor 265. Both
the connect and read processors 230,240 are provided with timing means 235 to

avoid aquisition slots 225 being tied up inefficiently.

The shelf processor 265 limits the size of the lookahead cache 125 by removing
files after a length of time. It maintains a list of files sent to the lookahead cache
125 by entering file identifiers in time slots in a data store 250 calied the “timeout
shelt”. It is provided with a clock 235 which effectively shifts the time slots

through the data store, each time slot triggering deletion of all its associated files

from the lookahead cache 125 when it reaches the end of the data store.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

CA 02253829 1998-11-06

WO 97/44747 PCT/GB97/01363

10

The maximum permissible length of the page queue and the number of aquisition
slots are intended to be configurable in order to meet operating conditions. To
dimension a lookahead processor 130, the considerations discussed below are

relevant.

Concerning page queue length, there’s no serious penalty in software terms in
making the page queue length arbitrarily long. Curtailing its length does however
give a measure of control over system performance. The reasoning behind letting
pages drop off the end of the queue is that where pages which have got to the end
of the queue without being fully processed, the user is anyway likely to have lost
interest by that time. There is therefore no point in processing those pages

further.

A possible initial strategy would therefore be to start with a short page queue and

increase its length until it only rarely overflows. However, if pages are remaining

on the queue for too long, more than a minute say, this may be an indication that

queue length should be reduced. Alternatively, the number of aquisition slots

should be increased: see below.

The matter is complicated somewhat by the fact that there can be two different
modes of operation of the iookahead cache, depending on the length of the

“shelf”, ie the permitted lifetime of pages in the lookahead cache.

If the only purpose of lookahead caching is to give users increased speed of
response during their immediate browsing sessions, then there is no point in
keeping pages in the cache for more than a few minutes. |f pages are kept in the
lookahead cache for considerably longer, a few days say, then the possibility arises
that the cache will be able to fulfill a second demand for a page. Operating the
lookahead cache in this manner would change the above argument for determining
page queue length in favour of having a longer queue, since there is value in pre-

fetching pages even if it takes several minutes.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

CA 02253829 2001-08-30

17

With regard‘to the number of aquisition slots, at the simplest level then the more

slots the hetter. If there are always free aquisition slots, pages can be fetched
with the minimum of delay.

in practice, a Unix machine will place a limit en the number of sub-processes
permitted. Within this limit, a large number of sub-processes, over twenty say,

can be run, since none usas much cpu (central processing unit) or memaory

resource. Most of the sub-processes’ “lives” are spent simpily waiting for data to
become available.

If the lookahead load is more than one machine can handle, multiple Mmachines can
of course be used.

An alternative to multiple sub-processes would be to have multiple threads running
within the lookahead processor. This approach wauld require less operating
system overhead and possibly operate more efficiently, but could make
maintenance mare difficult. The lookahead processor wouid then be implemented
all in one program, rather than in separafely maintainable parts. Reliability of the
lookahead pracessor could also be compromised: the multiple sub-process
arrangement is tolerant of failure within any of the sub-processes- such failures do

not affect the lookahead processar jtself which must after all run reliably and
canlnuously.

Referring to Figure 4, a flow diagram through the basic operation of the “look
ahead processor” can be described as follows:

STEP 400: The proxy server 105 provides A page 10 the user, either from its main
cache or fram the Intermet, and instructs the loockahead processar 130 to handle

the page by transmitting a message 1o the processor congaining the URL for the
relevant page.

STEP 405: The lockahead processor 130 gets the URL's contents from the main
cache 120 and parses the page’s contents to determine the links 1o other pages.

10

15

20

25

30

CA 02253829 2001-08-30

12

(That is, it interprets tha page’s HTML 1o extract information about the linked
pages. This of course requires programmed-in knowledge of HTML syntax.)

STEP 410;: The existence of the child links sa determined is 1ested against the
main cache 120 and the loaokahead cache 1285.

STEP 415: If a chiid link is not already cached, and it is not a page or a child page
that is already being processed, It 1S added to the page‘s child list.

STEP 420: |f the page to be processed s determined to have any child finks that
need to be retrieved, the page is added to the head of the page processing quaue.
Each entry in the page processing éueue 215 has associated with it the page’s
URL and, for each of the chitd'links, a link URL and link status. This last will be
selected from “ignored” it rejected by the link assessor 21Q, “done” if fully
processed, “aborted” if timed out or a slot numbaer If currently processing.

STEP 425: |If the page processing guaue 2185 has grown oo lang, indicating a
processing botrieneck, the last page in the queus is removed, and any outstanding
aquisitions associated with its children are aborted.

STEP 430: An attempr is made 1o process each child of the new page, and any
still unprocessed children of other pages in the page queue, by assigning them 1o
inactive bage acquisition slots. The slot filler 220 monitors the status of the
aquisition slots 2258, each of which can have a status of “free”, “connecting” or

!

“reading”, and populates free slots from the page queude 215, starting with the
first unprocessed link in the most recently added page.

STEP 435: Newly-filled page acquisition slats are activated and a “connect
processor” 230 is fired off as a Unix sub-process as described above.

STEP 440: Any page acquisition siots that have spent toq long artempting 10
connect, ar fail for some other reason, are released and marked inactva, the slot
filler 220 being notified.

STEP 445: Any page acquisition siots that have succassfully connected to sarvers
139 are updated from a “connect” state to a “ read” state. Reading is achiaved by
a read processar 240, using the sam‘e Unix sub-process as the connecrt phase.
The slaot processor 130 reads. the reievant child link's data from the network and

passes it to a cache writer in the cache controller 115. This writes the data to the
loakahaead cache 12% and notifies the shelf processaor 28645.

10

15

20

25

30

CA 02253829 2001-08-30

13

STEP 450: Any page acquisition sjots 225 that have spent too long attempting to
read from the servers are released and marked nactive, again notifying the slot
filler 220 as in the connect phase.

STEP 4556: Pages that have been in the look ahead cache for 100 long are deemed
unwanted and removed from the cache. This is practical since any files which
have been accessed by a user afrer pre-fetching will have heen transferred 1o the
main cache 120 by a separate cache controlier exercise. Alrthough simplest to trim
the lookahead cache 125 by regularly scanning for, and remaving, outdated files,
this approach cansumes significant computing time and incurs high amounts of

disc access. It is therefore preferred to use a shelf processor 265 as described

above. ’

The above process sieps repear indefinitely, although not necessarily in the 6rder
descriped, Clearly, steps 44C, 445, 450 and 455 in particular can be carried out
at a frequency found appropriate in relation to the rest of the process and.these
steps are shown in dottéd outline 10 indicate they may not he present each time
that the lookahead pracessor 130 is instructed to handle a page.

Referring to Figure 5, a real time view of the system could be as shown. In thé
example, there are four pages 500 in the queue 216 and there are ten individual
acquisition slots 505. Assuming that a new page (page 1) has JUST arrived, and
that some acquisition slots 505 have just become free because processing of some
children of page 4 has just completed, then some re-allocation of acquisition slots
505 is needed. Page 2 has twao of its children being processed. Its other two
children are ready for procassing but the arrival of the new page 1 may affect

what will happen to them. Page 3 has four children processing, one caonnecting,
three already connected and already being read. Page 4 is complete, all its

children having either been read or ahorted because they were 100 slow.

The lookahead processor 130 will now assign the children of the newly arrived

page 1 to slots 2, 6 and 7, and a child of page 2 to slot 8. Page 4 will be removed
from the queue as it has ne outstanding operations.

10

15

20

25

30

CA 02253829 1998-11-06

WO 97/447747 PCT/GB97/01363

14

Referring to Figure 6, the results of the re-allocation can be seen.

Referring to Figure 7, a slightly different version of the present invention might be
found preferable, at STEPS 345, 350, where the system bypasses the lookahead
processor 130 in the event that a page is found already in the main cache. This
may be preferred if all pages have already been processed by the lookahead

processor before loading to the main cache 120.

As a consequence of the above variation, as shown in Figure 7, the system may

move directly to trigger the lookahead processor 130, STEP 350, after transferring
a page from the lookahead cache 125 to the main cache 120. In this case, at the
same time as transferring the page to the main cache, the system will also have to

supply the page to the lookahead processor 130.

It would be possible to design embodiments of the invention in object-oriented
technology. For instance, at the highest level, the three processors, the page, slot
and shelf processors, can be regarded as objects. Each can be an iIndependent
entity, communicating with the others via messages rather than by direct data
access or modification. At a lower level, the elements of the page queue and the
aquisition slots have object-like features: each is an instantiation of a prototype (a

page queue element or an aquisition slot) and each has associated data and states.

As described, Casper accesses all pages linked to a selected page. |t would be
possible to use the principles of the co-pending patent application referenced
above and to select the pages accessed according to a user profile based on

interests and context for instance.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

CA 02253829 2001-08-30

15

CLAIMS

1. An information access system, for accessing information accessible by
means of a communications network, the access system comprising:

a) means for downloading items of information from the network to local
storage; and

b) an information processor for processing items of information to locate

embedded links to other items of information accessible over the network:

wherein said information processor comprises:

i) a queuing arrangement for queuing downloaded items of information
having such links embedded; and

i) a set of concurrently activatable information acquisition units for
downloading items of information identified by said embedded links from

the network to local storage

the processor, in use, processing items of information to locate links embedded
therein which identify other items of information for downloading, queuing
processed items of information, and allocating links located in the processed items
of information to respective available acquisition units, each acquisition unit then
acting to download an item of information identified by a link allocated to it, from

the network to the local storage.

2. An information access system according to Claim 1, which further

comprises an input for requests to download items of information.

3. An Iinformation access system according to Claim 2, wherein the local
storage comprises at least two cache data stores, a first cache data store to
which the acquisition units download identified items of information and a second
cache data store for storing items of information downloaded in response to a

request received at the input.

R C e ARV Y | | 1 K el e o A A AP A o Apm 8 o Lrng AT A Al B e e T TR T T o b L Y PRy e A ke e ak clee e ¢ e ot e s e mtes m g ten e e ae

10

15

20

25

30

CA 02253829 2001-08-30

16

4, An information access system according to claim 3, the system further
comprising means for transferring an item of information from the first cache data
store to the second cache data store in response to a download request received

at the input and identifying the item of information.

5. An information access system according to any one of claims 2 to 4,
wherein each download request contains at least one location indicator, indicative
of the location of a relevant item of information in the network, and the system
further comprises a register for storing location indicators together with related
constraint data, the system responding to a download request at the input by
accessing the register to obtain any constraint data stored in relation to a location

indicator contained in the request.

6. An information access system according to any one of claims 1 to b,
which further comprises queue length control means for deleting items of

information from the queuing arrangement.

7. An information access system according to claim 6 wherein the queue
length control means deletes items of information which have been in the queuing

arrangement for the greatest length of time.

8. An information access system according to any one of claims 1 to 7,
further comprising acquisition unit monitoring means for detecting when units

become available and transferring links located in items of information from the

queuing arrangement to such units.

9. An information access system according to claim 8 wherein the
acquisition unit monitoring means transfers links located in items of information in
a priority order, the priority order being determined by the relative lengths of time

the items have been present in the queuing arrangement.

10

15

20

25

30

CA 02253829 2001-08-30

17

10. An information access system according to claim 9 wherein highest
priority is given to links located in the item which has been in the queuing

arrangement for the least amount of time.

11. An information access system according to any one of claims 1 to 10
wherein the queuing arrangement is arranged to queue each item of information

by storing in respect of it:

a) an identifier for the item: and
b) an identifier for one or more links embedded in the item.
12. An information access system according to claim 11 wherein the queuing

arrangement is further arranged to store status information for each of the link

identifiers, relating to the download status of the link by means of an acquisition

unit.

13. An Information access system according to any one of claims 1 to 12, the
system comprising a proxy server arranged to receive user requests from users’

browsers.

14, A method of storing items of information accessible by means of a

communications network, which method comprises the following steps:

1) receiving a user request to download an item of information:

1) downloading and processing the requested item of information to locate
one or more links to other items of information embedded therein, to be
downloaded; and

i) downloading said one or more other item:é of information by means of

said network to a local data store.

15. A method according to claim 14, wherein the method is carried out by a
proxy server, said proxy server being arranged to receive user requests from

users’ browsers.

wWW@&WWmemmmmrmmw# ——— i ey ey Y VTR U VAR L e s s e et e s

10

15

20

25

CA 02253829 2001-08-30

18

16. A method according to either one of claims 14 or 15 wherein said
processing step includes queuing the items of information by means of storing, in

respect of each, an identifier for the item and an identifier for each link embedded

therein.

17. A method according to any one of claims 14 to 16 wherein said processing
step includes allocating queued links to respective acquisition units of a set of
concurrently activatable acquisition units, and downloading the items of

information associated with the allocated links by means of the acquisition units.

18. A method according to claims 16 and 17 wherein said processing step
further includes storing status information in respect of each identifier for the
embedded links, indicating its status in respect of downloading by means of the

acquisition units.

19. A method according to any one of claims 14 to 18, for use with an
information access system according to Claim 2, wherein the local storage
comprises at least two cache data stores, a first cache data store to which the
acquisition units download identified items of information and a second cache
data store for storing items of information downloaded in response to a request
received at the input, the method comprising transferring an item of information
from the first cache data store to the second cache data store in responSe to a

download request received at the input in respect of the item of information.

CA 02253829 1998-11-06

WO 97/44747 PCT/GB97/01363

1/6

Fi1g.1.

| 100
W3 VIEWER
' 105
PROXY SERVER
REMOTE
SERVER

CACHE 135
CONTROLLER
<

LOOKAHEAD 130
MAIN PROCESSOR
CACHE

110

120

125

LOOKAHEAD

CACHE

SUBSTITUTE SHEET (RULE 26)

CA 02253829 1998-11-06

WO 97/44747 PCT/GB97/01363

2/6

F1g.2.

USER
REQUEST | 290

REQUEST NCACHED VERSION NOT ACCEPTABLE
ANALYSIS

305

REQUEST
DENIED

CACHED VERSION ACCEPTABLE
310

330

1S |S

PAGE IN PAGE IN NO GET SUBJECT
MAIN CACHE LOOKAHEAD OF REQUEST
? CACHE ?

FROM NETWORK

YES
315

TRANSFER PAGE
TO MAIN CACHE YES
345
GET PAGE FROM
MAIN CACHE

TRIGGER
LOOKAHEAD
PROCESSOR

DOES
SUBJECT
EXIST 7

NO

323

SHOULD
SUBJECT BE

CACHED ?
WRITE PAGE TO
MAIN CACHE

NO

YES

350

GENERATE

MESSAGE

WRAPPERS AND
SEND TO BROWSER

355 320

DONE

SUBSTITUTE SHEET (RULE 26)

AL AR TEE St d e i A AR s AL A LBl A G EBAASAS 4B e 0. AAA SR A man AL A A AR A LA PSS A 4 4Re s ass s sses s dhesnns e o sen endhennnns 40 o s o

02253829 1998-11-06

CA

PCT/GB97/01363

WO 97/44747

3/6

OLL

Scé

"H0OS53004Hd
adv3ay,

d05S53004d
JLIO3INNOD,

313130

Gcl

dHOVO dHOVO
AviaHvVY0OT NIVIA

—— /1=
B 502
— /7
|
| 3n3nD 39V HOSS3ISSY H3ISHYd
Gle 0le 002 |
HOSS3IO0Hd 3Hvd 130008 |

AHOM13 E

T hesssbe—

SUBSTITUTE SHEET (RULE 26)

PRI 2ol v LA g o d B4 S 4 SN DN A D T AN 4 8 A e

AR N M s M o LS ol W At rd s 1 AT S I D PRI T T Y I EIro=-

CA 02253829 1998-11-06

WO 97/44747 PCT/GB97/01363

4/6

F1g.4.

LOOKAHEAD PROCESSOR 400
INSTRUCTED TO HANDLE PAGE

405

PAGE'S CONTENTS PARSED
TO DETERMINE LINKS TO
OTHER PAGES (CHILD LINKS)

410

FOR EACH CHILD
LINK, 1S IT: BEING
PROCESSED ALREADY ?
ALREADY CACHED 7

ADD TO PAGE'S CHILD LIST
5
ADD PAGE TO PAGE
0 PROCESSING QUEUE
425
TRIM | YES
QUEUE

430 | ASSIGN UNPROCESSED CHILD
LINKS TO INACTIVE
ACQUISITION SLOTS

435 | ACTIVATE NEWLY
FILED SLOTS

44& TIME OUT SLOTS TAKING |

. TOO LONG TO CONNECT

445 PROMOTE SLOTS WHICH HAVE !
\. SUCCESSFULLY CONNECTED |

YES NO

STOP

IS QUEUE
TOO LONG

450 TIME OUT SLOTS !
_ TAKING TOO LONG TO READ_}

455 REMOVE OLD PAGES E
_ FROM LOOKAHEAD CACHE |

CA 02253829 1998-11-06

WO 97/44747 PCT/GB97/01363

5/6

PAGE PROCESSING QUEUE

205
215 J R|{C|-|R|C|R|-|-|-|RL PAGE ACQUISITION SLOTS
0 12 3 4 5/6 7 8 9 505
505
QUEUE KEY: SLOTS KEY:
?=UNASSIGNED -=INACTIVE
#=SLOT NUMBER C=CONNECTING
D=DONE R=READING
A=ABORTED
F1Q.6.
1 2 3
rr= - -7 = 7/ /= T/ s = e =

PAGE PROCESSING QUEUE

225

|
l
|
|
|
|
|
|
L

-

215j R|C|C|R|C|R| C|C|C|R|_PAGE ACQUISITION SLOTS
0 1/2 3 45 6 7 8 9 505

505

SUBSTITUTE SHEET (RULE 26)

CA 02253829 1998-11-06

WO 97/44747 PCT/GB97/01363

6/6

F1g.7.

USER
REQUEST 300

CACHED VERSION NOT ACCEPTABLE

305

REQUEST
ANALYSIS

REQUEST
DENIED
CACHED VERSION ACCEPTABLE

310

330 335

1S 1S

PAGE IN PAGE IN GET SUBJECT
MAIN CACHE > LOOKAHEAD >-N© OF REQUEST
? CACHE ? FROM NETWORK
YES
YES 340 o
TRANSFER PAGE DOES NO
TO MAIN CACHE | YeEsN_ SUBJECT
EXIST 2
345
GET PAGE FROM
MAIN CACHE 323

SHOULD
SUBJECT BE

CACHED ?
WRITE PAGE TO
MAIN CACHE

NO

TRIGGER YES

LOOKAHEAD
PROCESSOR

350
ADD CASPER PAGE " ENOT PO "
PAGE NOT FOUND
WRAPPERS AND MESSAGE
SEND TO BROWSER
e 320
DONE

SUBSTITUTE SHEET (RULE 26)

100
W3 VIEWER

110

105
PROXY SERVER
REMOTE
115 SERVER
CACHE 135

CONTROLLER

LOOKAHEAD 130

MAIN PROCESSOR

CACHE

120

125

LOOKAHEAD
CACHE

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - abstract drawing

