Office de la Propriete Canadian CA 2424650 A1 2004/01/16

Intellectuell Intellectual P
du Canada Office P oy 2 424 650
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2003/04/07 (51) ClInt.”/Int.ClL.Y GO6T 1/60, GO6T 15/50

(41) Mise a la disp. pub./Open to Public Insp.: 2004/01/16 (71) Demandeur/Applicant:

(30) Priorité/Priority: 2002/07/16 (10/196,864) US MICROSOFT CORPORATION, US

(72) Inventeurs/Inventors:
BOLAND, MICHELE B., US;
BOYD, CHARLES N., US;
KANCHERLA, ANANTHA R., US

(74) Agent: SMART & BIGGAR

(54) Titre : SYSTEMES ET METHODES POUR FOURNIR DES CIBLES INTERMEDIAIRES DANS UN SYSTEME DE
GRAPHISME
54) Title: SYSTEMS AND METHODS FOR PROVIDING INTERMEDIATE TARGETS IN A GRAPHICS SYSTEM

Maximum Shader
Hardware P,{gft{zr
Count

MRT1

Shader

Program
Portion
SPP2

Shader
Program
Portion
SPP3

(57) Abrége/Abstract:
Systems and methods for utilizing intermediate target(s) In connection with computer graphics In a computer system are
provided. In various embodiments, intermediate memory buffers Iin video memory are provided and utilized to allow serialized

B

.

'

e
ok [[f
RO . e s
. M "c'-'-.n:‘-:{\: .«me . m s
.
.

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

(5

CA 2424650 A1 2004/01/16

(21) 2 424 650
(13) A1

7) Abregeé(suite)/Abstract(continued):

programs from graphics APIs to support algorithms that exceed the instruction limits of procedural shaders for single programs.
The Intermediate buffers may also allow sharing of data between programs for other purposes as well, and are atomically
accessible. The size of the buffers, I.e., the amount of data stored in the intermediate targets, can be variably set for a varying

th
18

amount of resolution with respect to the graphics data. In this regard, a single program generates intermediate data, which can

en be used, and re-used, by an extension of the same program and/or any number of other programs any number of times as
ay be desired, enabling considerable flexibility and complexity of shading programs, while maintaining the speed of modern

graphics chips.

10

CA 02424650 2003-04-07

ABSTRACT

Systems and methods for utilizing intermediate target(s) in connection with
computer graphics in a computer system are provided. In various embodiments,
intermediate mémory buffers in video memory aie provided and utilized to allow
serialized programs from graphics APIs to support algorithms that exceed the instruction
limits of procedural shaders for single programs. The intermediate buffers may also
éllow sharing of data between programs for other purposes as well, and are atOmiCally
accessible. The size of the buffers, 1.e., the amount of data stored in the intermediate
targets, can be variably set for a varying amount of resolution with respect to the
graphics data. In this regard, a single program generates intermediate data, which can
then be used, and re-used, by an extension of the same jaro gram and/or any number of
other programs any number of times as may be desired, enabling considerable flexibility
and complexity of shading programs, while maintaining the speed of modern graphics

chips.

10

15

20

25

CA 02424650 2003-04-07

SYSTEMS AND METHODS FOR PROVIDING INTERMEDIATE TARGETS IN
A GRAPHICS SYSTEM

COPYRIGHT NOTICE AND PERMISSION

A portion of the disclosure of this patent document may contain material that is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent files or records, but otherwise reserves all

copyright rights whatsoever. The following notice shall apply to this document:
Copyright © 2002, Microsoft Corp.

FIELD OF THE INVENTION

The present invention is directed to systems and methods for providing
intermediate memory target(s) in connection with computer graphics. More particularly,
the present invention is related to systems and methods for providing intermediate

memory target(s) for use in connection with procedural shaders, such as pixel and vertex

shaders.

BACKGROUND OF THE INVENTION
Rendering and displaying three dimensional (3-D) graphics typically involves

many calculations and computations. For example, to render a 3-D object, a set of

“coordinate points or vertices that define the object to be rendered are formed. Vertices

can be joined to form polygons that define the surface of the object to be rendered and
displayed. Once the vertices that define an object are formed, the vertices can be
transformed from an object or model frame of reference to a world frame of reference
and finally to 2-D cooi'dinates that can be displayed on a flat display deviCe, such as a
monitor. Along the way, vertices may be rotated, scaled, eliminated or clipped because
they fall outside of a viewable area, lit by various lighting schemes and sources,
colorized, otherwise transformed, shaded and so forth. The processes invblved n
rendering and displaying a 3-D object can be computationally intensive and may involve

a large number of vertices.

10

15

20

25

30

CA 02424650 2003-04-07

Conventionally, as illustrated in Fig. 1, complex 3-D objects, or portions thereof,
can be represented by collections of adjacent triangles (“a mesh”) representing the
approximate geometry of the 3-D object, or by a geometry map, or surface, in two
dimensional (2-D) surface space. The mesh can be specified through the posttion of the
vertices of the triangles. One or more texture maps can be mapped to the surface to
create a textured surface according to a texture mapping process. In this regard, signals

textured over a surface can be very general, and can specify any sort of intermediate

result that can be input to transformation mechanism(s), such as shader procedure(s), to

produce a final color and/or other values associated with a point sample.
After texture sampling, additional transformations, such as shading algonthms

and techniques, can optionally be applied to the textured surface prior to rendering the

- image with picture elements (pixels) of a display device, or outputting the data to

somewhere else for some purpose other than display. Images in computer graphics are
typically represented as a 2-D array of discrete values (grey scale) or as three 2-D arrays
of discrete values (color). Using a standard (X, y, z) rectangular coordinate isystem, a
surface can be specified as a mesh (e.g., triangle mesh) with an (x,y,z) coordinate per
mesh vertex, or as a geometry map in which the (X,y,z) coordinates are specified as a
rectilinear image over a 2D (u,v) coordinate s_ystem, sometimes termed the surface
parameterization domain. Texture map(s) can also be specified with the (u, v) coordinate
system.

~ Point samples in the surface parametrization domain, where signals have been
attached to the surface, including its geometry, can be generated from textured meshes or
geometry maps. These samples can be transformed and shaded using a variety of
computations. At the end of this transformation and shading processing, a point sample
includes (a) positional information, 1.e., an image address indicating where in the image
plane the point maps to and (b) textured color, or grey scale, information that indicates
the color of the sample at the position indicated by the positional information. Other
data, such as dépth information of the point sample to allow hidden surface elimination,
weight, or any other useful information about the point sample can also be included. The
transfonned, textured surface is placed m a frame buffer prior to being rendered by a
display 1n 2-D pixel image space (X, y). At this point, in the case of a black and white
display device, each (X, y) pixel location in 2-D image space 1s assigned a grey valuein
accordance with some function of the surface 1n the frame buffer. In the case of a typical

2.

10

15

20

25

30

CA 02424650 2003-04-07

color display device, each (x, y) pixel location 1n 2-D image space lS assigned red, green.
and blue (RGB) values. I‘t is noted that a variety of color formats other than RGB exist as
well. While variations of the architecture, from start to finish, the above-described
vehicle for the crunching of massive amounts of graphics vertex and pixel data is known
as the graphics pipeline.

The computer graphics industry and graphics pipelines have seen a particularly
tremendous amount of growth 1n the last few years. For example, current generations of
computer games are moving to three dimensional (3-D) graphics in an ever increasing
and more realistic fashion. At the same time, the speed of play is driven faster and faster.
This combination has fueled a genuine need for the rapid rendering of 3-D graphics in
relatively inexpensive systems. - -

As early as the 1970s, 3-D rendering systems were able to describe the

“appearance” of objects according to parameters. These and later methods provide for

the parameterization of the perceived color of an object based on the position and

orientation of its surface and the light sources 1lluminating it. In so doing, the appearénce .
of the object 1s calculated therefrom. Parameters further include values such as diffuse
color, the specular reflection coefficient, the specular color, the reflectivity, and the
transparency of the material of the object. Such parameters are globally referred to as the
shading parameters of the obj'ect.

- Early systems could only aécribe a single value to shading parameters and hence
they remained constant and uniform across the entire surface of the object. Later systems
allowed for the use of non-uniform parameters (transparency for instance) that might

have different values over different parts of the object. Two prominent and distinct

- techniques have been used to describe the values taken by these non-uniform parameters

on the various parts of the object’s surface: procedural shading and texture mapping.
Texture mapping 1s pixel based and resolution dependent. '

Procedural shading describes the appearance of a material at any point of a 1-D,
2-D or 3-D space by defining a function (often called the procedural shader) In this space

into shading parameter space. The object is “immersed” in the original 1-D, 2-D or 3-D

‘space and the values of the shading parameters at a given point of the surface of the

object are defined as a result of the procedural shading function at this point. For
instance, procedural shaders that approximate appearance of wood, marble or other

natural materials have been developed and can be found in the literature.

-3 -

10

15

20

25

30

CA 02424650 2003-04-07

The rendering of graphics data in a computer system 1s a collection of resource
intensive proc_ésses. The process of shading, 1.8., the process of performing complex
algorithms upon set(s) of specialized graphics data structures, used to determine values
for certain primitives, such as color, etc. associated with the graphics data structures,
exemplifies such a computation intensive and complex process. Generally the process of

shading has been normalized to some degree. By passing source code designed to work

~ with a shader into an application, a shader becomes an object that the application may

create/utilize in order to facilitate the efficient drawing of complex video graphics.
Vertex shaders and pixel shaders are examples of such shaders.
Prior to their current implementation in specialized hardware chips, vertex and

pixel shaders were sometimes implemented wholly or mostly as software code, and

- sometimes implemented as a combination of more rigid pieces of hardware with

software for controlling the hardware. These implementations frequently contained a

'CPU or emulated the existence of one using the system’s CPU. For example, the

hardware implementations directly integrated a CPU chip into their design to perform the
processing functionaﬁty required of shading tasks. While a CPU adds a lot of flexibility
to the shading process because of the range of functionality that a standard processing
chip offers, the incorporation of a CPU adds overhead to the specialized shading process.
Without today’s hardware state of the art, however, there was little choice.

Today, though, existing advances in hardware technology have facilitated the
ability to move functionality previously implemented in software into specialized
hardware. As a result, today’s pixel and vertex shaders are implemented as specialized
and programmable hardware chips. Today’s hardware designs of vertex and pixel shader
chips are mghly specialized and thus do not behave like CPU hardware implementations
of the past. _
' Specialized 3-D graphics APIs have been developed that expose the specialized
functionality of today’s vertex and pixel shaders. In this regard, a developer is able to
download instructions to a vertex shader that effectively program the vertex shader to
perform specialized behavior. For instance, APIs expose functionality associated with
increased numbers of registers in vertex shaders, e.g., specialized vertex shading
functionality with respect to floating point numbers at a register level. In addition, it is
possible to implement an instruction set that causes the extremely fast vertex shader to
return only the fractional portion of ﬂoating point numbers. A variety of functiohality

-4 -

10

15

20

25

30

CA 02424650 2003-04-07

can be achieved through downloading these instructions, assuming the instruction count
limit of the vertex shader is not exceeded.

Similarly, with respect to pixel shaders, specialized pixel shading functionality
can be achieved by downloading instructions to the pixel shader. For instance,
functionality 1s exposed that provides a linear interpolation mechanism in the pixel
shader. Furthermore, the functionality of many different operation modifiers are exposed
to developers in connection with instruction sets tailored to pixel shaders. For example,
negating, remapping, biasing, and other functionality are extremely useful for many

graphics applications for which efficient pixel shading is desirable, yet as they are

executed as part of a single instruction they are best expressed as modifiers to that

instruction. In short, the above functionality is advantageous for a lot of graphics
operations, and their functional incorporation into already specialized pixel and vertex
shader sets of instructions adds tremendous value from the perspective of ease of
development and improved pex_'formance. A variety of functionality can thus be achieved
through downloading these 1nstructions, assuming the instruction count limit 6f the pixel
shader 1s not exceeded.

Comrhonly assigned copending U;S. Patent Appln. No. 09/801,079, filed March
6, 2001, provides such exemplary three-dimensional (3-D) APIs for communicating with
hardware implementations of vertex shaders and pixel shaders having local registers.
With respect to vertex shaders, API communications are described therein that may make
use of an on-chip register index and API communications are also provided for a
specialized function, implemented on-chip at a register level, which outputs the
fractional portion(s) of input(s). With respect to pixel shaders, API communications are
provided for a specialized function, implemented on-chip at a register level, that '
performs a linear interpolation function and API communications are provided for
specialized modifiers, also implemented on-chip at a register level, that perform
modification functions including negating, complementing, femapping, biasing, scaling
and saturating. Advantageously, the API 6ommunications expose very useful on-chip
graphical algorithmic elements to a developer while hiding the détails of the operation of
the vertex shader and pixel shader chips from the developer.

Commonly assigned copending U.S. Patént Appln. No. 09,796,577, filed March
1, 2001, also describes 3-D APIs, which expose unique algorithmic elements to '

developers for use with procedural shaders via a mechanism that is conceptually below

-5 -

10

15

20

25

30

CA 02424650 2003-04-07

or inside the software interface, and enable a developer to download instructions to the
procedural shaders, and GPU. For instance, such a 3-D API enables operations to be
downloadable to a 3-D chip for improved performance characteristics. These 3-D APIs
take advantage of cutting edge 3-D graphics chips that have begun to handle such
programmable functionality, by including ﬂexible on chip processing and limited on chip
memory, to remove custom graphics code from the processing of the host processor and
to place such programmable and downloadable functionality in a graphics chip. Such
APIs make 1t so that pro gramrmng or algorithmic elements written by the developer can
be downloaded to the chip, thereby programming the chip to perform those algorithms at
improved performance levels. Related to this case where a developer may write a routine
downloadable to the 3-D chip, there are also set(s) of algorithmic elements that are
provided in connection with the 3-D API (routines that are not written by the developer,
but which have already been programmed for the developer). Similarly, a developer can
download theee pre-packaged API algorithms to a programmable 3-D chip for improved
performance. The ability to download 3-D algorithmieelements provides improved
performance, greater control as well as development ease. '

Thus, the introduction of programmable operations on a per vertex and per pixel

- basis has become more wide spread in modern graphics hardware. This general

programmability allows a vast potential for sophisticated creative algorithms at increased

performance levels. However, there are some limitations to what can be achieved.

_ Typieally, with present day rendering pipelines at the vertex and pixel shaders, as

illustrated in Fig. 2A, a stream of geometry data SGD is input to the vertex shader 200 to
perform some operation of the vertices, after which a rasterizer 210 rasterizes the
geometry data to pixel data, outputting a stream of pixel data SPD1. The vertex shader
200 may receive instructions which pro gram the vertex shader 200 to perform

specialized functionality, but there are limits to the size and complexity of the vertex

shader instructions. Similarly, a pixel shader 220 can optionally perform one or more

transformations to the data outputting a stream of pixel data SPD2. The pixel shader 220
may also receive instructions which program the pixel shader 220 to perform spemahzed
functionality, but there are limits to the size and complex1ty to the pixel shader

instructions. Thus, one limit to today’s APIs and corresponding hardware is that most

hardware has a very limited instruction count This limited 1nstruct1on count prevents

implementation of some of the most sophisticated algorithms by the developer using the
-6 -

10

15

20

25

30

CA 02424650 2003-04-07

APIs. Additionally, the current programmable hardware has very limited mechanisms to
exchange data between separate programs, 1.€., a first pixel shader program cannot re-use
data output from a second pixel shader program.

Additionally, as illustrated in Fig. 2A, a pixel is commonly thought of as a point
in the 2-D grid of image space, having a grey scale value or color values associated
therewith; however, modern graphics regards a pixel in the pixel engine pipeline as any
collective data associated with a point in any 2-D array, whether it be relevant to a
displayed image or not. For instance, while Fig. 2A 1illustrates a pixel having a bucket
for Red, a bucket for Green and a bucket for Blue, this need not be the case, and any
number of buckets and corresponding values can be a pixel. Thus, there 1s considerable

flexibility in generating a 2-D array of pixel data, which could include parameter values

- for lighting effects, weight, z-buffer information, etc. A problem with today’s graphics

pipeline, as illustrated in Fig. 2C, relates to the flexibility with which separate sets of
pixels can be output. While pixel engine 230 is capable of outputting any kind of pixel
data, 1.e., the pixels P1, P2, P3, P4 to PN being streamed as ciutput can take‘ on
considerable flexibility as to the kind and number of buckets defining the pixels, P1, P2,
P3, P4 to PN, P1, P2, P3, P4 to PN nonetheless all have to have the same buckets. Thus,
if P1 includeé R, G, B data, so do P2, P3, P4 to PN, and thus there isn’t the flexibility to
define different sets of output pixel data, some of which might be used for lighting and
some might be used strictly for color. Moreover, currently, resolution for render targets
is predetermined 1n accordance with the rasterization process, 1.€., the rendering process

drives the amount of samples that can be placed in a render target, and it would thus be

~ desirable to variably control the resolution of a render target, 1.¢., the amount of samples

that can be stored in connection with a render target

. It would thus be desirable to implement systems and methods that overcome the
shortcomings of present programmability in connection with present graphics pipelines '
architectures, APIs and hardware due to limitations in instruction count, limitations in

form of output and the lack of sharing of data between programs.

SUMMARY OF THE INVENTION

In view of the foregoing, the present invention provides systems and methods for
providing intermediate target(s) in connection with computer graphics in a computer

system. In various embodiments, the invention provides and utilizes intermediate

-7 -

10

15

20

25

30

CA 02424650 2003-04-07

memory buffers in video memory to allow serialized programs from graphics APIs to
support algorithms that exceed the 1astruction limits of procedural shaders for single
programs. The intermediate buffers may also allow sharing of data between programs for
other purposes as well, and are atomically accessible. The size of the buffers, i.e., the
amount of data stored in the intermediate targets, can be variably set for a varying
amount of resolution with respect to the graphics dat_a.' In this regard, a single program
generates intermediate data, which can then be used, and re-used, by an extension of the
same program and/or any number of other programs any number of times as may be
de31red enabling considerable flexibility and complemty of shading programs, while
maintaining the speed of modern graphics chips.

Other features and embodiments of the present invention are described below.

BRIEF DESCRIPTION OF THE DRAWINGS

The system and methods for previding intermediate memory targets in
accordance with the present invention are further described with reference to the
accompanying drawings in which: .

Figure 1 provides an overview of the process of a graphics pipeline in a coniputer
graphics system;

Figures 2A to 2C illustrate various limitations of and problems with prior art
graphics pipelines;

. Figure 3A ie a block diagram representing an exemplary network environment
having a variety of computing devices in which the present invention may be
implemented; '

Figure 3B is a block diagram representing an exemplary non-limitiﬁg computing
device in which the present invention may be implemented;

Figure 4 illustrates exemplary use of the intermediate memory targets of the

Invention to circumvent a hardware instruction count limait;

Figure 5 is an exemplary flow dlagram 1llustrating the use of an API in

accordance w1th the invention;

Figure 6 is a block dl'agram 1llustrating exemplary aspects of the intermediate

memory targets of the invention; and

10

15

20

25

30

CA 02424650 2003-04-07

Figure 7 illustrates exemplary use of the intermediate memory targets to achieve

complex functionality with several program passes by hardware in accordance with the

mnvention.

DETAILED DESCRIPTION OF THE INVENTION
Overview .

As described above, the present invention enables multiple intermediate target
circulation for use in shading languages, such as low level shading languages, which
enable a developer to program the functionality of procedural shaders. Graphics
platforms that do not have the recirculation of intermediate targets in accordance with the
invention are limited in the size and complexity of programs that operate on a per pixel
and per vertex level. The systems and methods of the invention enable the creation of a
high level language to abstract and simplify use of the programmable capabilities in

connection with the evolution of a generally programmable graphics pipeline. The

“invention can also be used to create virtually unlimited length programs that allow non-

real time rendering using hardware acceleration. The size of the buffers, 1.e., the amount
of data stored in the intermediate targets, can be variably set for a varying amount of
resolution with respect to the graphics data. The availability of unlimited hardware

accelerated recirculation for non-real time rendering applications in accordance with the

‘invention thus increases the speed and performance of a graphics pIatform.

Exemplary Networked and Distributed Environments
One of ordinary skill in the art can appreciate that a computer or other client or

server device can be deployed as part of a computer network, or in a distributed
computing environment. In this regard; the present invention pertains to any computer
system having any number of memory or storage units, and any number of applications
and processes occurring across any number of storage units or volumes, which‘may be
used 1n connection with the intermediate memory targets of the invention. The present
invention may apply to an environment with server computers and client computers
deployed in a network environment or distributed computing environment, having
remote or local storage. The present invention may also be applied to standalone
computing devices, having prog:rarnming language functionality, interpretation and
execution capabilities for generating, receiving and transmitting information in

connection with remote or local services.
-0.

10

15

20

25

30

CA 02424650 2003-04-07

Distributed computing facilitates sharing of computer resources and services by
direct exchange between computing deviceS and systems. These resources and services
include the exchange of information, cache storage, and disk storage for files. Distributed
computing takes advantage of network connectivity, allowing clients to leverage their
collecfive power to benefit the entire enterprise. In this regard, a variety of devices may
have applications, objects or resources that may implicate the intermediate memory
targets of the invention. o

Fig. 3A provides a schematic diagram of an exemplary networked or distributed
computing environment. The distributed computing environment comprises computing

objects 10a, 10b, etc. and computing objects or devices 110a, 110b, 110c, etc. These

objects may comprise programs, methods, data stores, programmable logic, etc. The

- objects may comprise portions of the same or different devices such as PDAs,

televisions, MP3 players, televisions, personal computers, etc. Each object can
communicate with another object by way of the communications network 14. This
network may ;itself comprise other computing objects and computing devices that
provide services to the system of Fig. 3A. In accordance with an aspect of the invention,
each object 10a, 10b, etc. or 110a, 110b, 110c, etc. may contain an application that might
make use of an API, or other object, to request use of the intermediate memory targets of
the invention.

In a distributed computing architecture, computers, which may have traditionally
been used solely as clients, communicate directly among themselves and can act as both
clients and servers, assuming whatever role is most efficient for the network. This
reduces the load on servers and allows all of the clients to access resources available on
other clients, thereby increasing the capability and efficiency of the entire network.
Services that use the intermediate targets .in accordance with the present invention may
thus be distributed among clients and servers, acting in a way that 1s efficient for the
entire network.

Distributed computing can help businesses deliver services and capabilities more
efficiently across diverse geographic boundaries. Moreover, distributed computing can
move data closer to the point where data is consumed acting as a network caching .
mechanism. Distributed computing also allows computing networks to dynamically
work together using intelligent agents. Agents reside on peer computers and '

communicate various kinds of information back and forth. Agents may also initiate tasks

- 10 -

10

15

20

235

30

CA 02424650 2003-04-07

on behalf of other peer systems. For instance, intelligent agents can be used to prioritize
tasksona netWork, change traffic flow, search for files locally or determine anomalous
behavior such as a virus and stop it before 1t affects the network. All sorts of other
services may be contemplated as well. Since graphical object(s), texture maps, ehading
data, etc. may in practice be physically located in one or more locations, the ability to
distribute services that make use of the intermediate targets described herein is of great
utility in such a system. '

It can also be appreciated that an object, such as 110c, may be hosted on another
computing device 10a, 10b, etc. er 110a, 110b, etc. Thus, although the physical
environment depicted may show the connected devices as computers, such illustration is
merely exemplary and the physical environment may alternatively be depicted or
described comprising various digital devices such as PDAs, televisions, MP3 players,
etc., software objects such as interfaces, COM objects and the like.

- There are a variety of systems, components, and network configurations that
support distributed computing ehvironments. For example, computing systems may be
connected together by wireline or wireless systems, by local networks or widely
distributed networks. Currently, many of the networks are coupled to the Internet, which
provides the infrastructure for widely distributed computing and encompasses many
different networks.

In home networking environments, there are at least four disparate network
transport media that may each support a unique protocol, such as Power line, data (both
wireless and wired), voice (e.g., telephoae) and entertainment media. Most home control
devices such as light switches and appliances may use power line for connectivity. Data
Services may enter the home as broadband (e.g., either DSL or Cable modem) and are
accessible within the home using either wireless (e.g., HomeRF or 802.1 1b) or wired
(e.8., Home PNA, Cat 5, even power line) connectivity. Voice traffic may enter the home

either as wired (e.g., Cat 3) or wireless (e.g., cell phones) and may be distributed within

- the home using Cat 3 wiring. Entertainment media, or other graphical data, may enter the

home either through satellite or cable and is typically distributed in the home uSing
coaxial cable. IEEE 1394 and DVI are also emerging as digital interconnects for clusters
of media devices. All of these network environments and others that may emerge as .
protocol standards may be interconnected to form an intranet that may be connected to

the outside world by way of the Internet. In short, a variety of disparate sources exist for

11-

10

15

20

25

30

CA 02424650 2003-04-07

the storage and transmission of data, and consequently, moving forward, computing
devices will require ways of sharing data, such as data accessed or utilized incident to

program ob] ects which make use of intermediate results of intermediate targets in

- accordance with the present invention.

The Internet commonly refers to the collection of networks and gateways that
utilize the TCP/IP suite of protocols, which are well known in the art of computer
networking. TCP/IP s an acronym for “Transport Control Protocol/Interface Pro gram.”
The Internet can be described as a system of geographically distributed remote computer
networks interconnected by computers executing networking protocols that allow users
to interact and share 'information over the networks. Because of such wide-spread
information sharing, remote networks such as the Internet have thus far generally
evolved into an open system for which developers can de51gn software applications for
performing specialized operations or services, essentially without restriction.

Thus, the network infrastructure enables a host of network topologies such as

client/server, peer-to-peer, or hybrid architectures. The “client” is a member of a class or

group that uses the services of another class or group to which it is not related. Thus, in

computing, a client is a process, 1.e., roughly a set of instructions or tasks, that requests a
service provided by another program. The client process utilizes the requested service
without having to “know” any working details about the other program or the service
itself. In a client/server architecture, particularly a networked system, a client is usually
a computer that accesses shared network resources provided by another computer, e.g., a
server. In the example of Fig. 3A, computers 110a, 110b, etc. can be thought of as clients
and computer 10a, 10b, etc. can be thought of as the server where server 10a, 10b, etc.
maintains the data that is then repli’cated in the client computers 110a, 110b, eto.

A server is typically a remote computer system accessible over a remote network
such as the Internet. The client process may be active in a first computer system, and the
server process may be active in a second computer system, communicating with one
another over a communications medium, thus providing distributed functionality and
allowing multiple clients to take advantage of the information-gathering capabilities of
the server. .

Client and server communicate w1th one another utilizing the functionality
provided by a protocol layer. For example Hypertext Transfer Protocol (HTTP) 1s a
common protocol that is used in oonjunetron with the World Wide Web (WWW).

- 12 -

10

15

20

25

30

CA 02424650 2003-04-07

Typically, a computer network address such as a Universal Resource Locator (URL) or
an Internet Protocol (IP) address is used to 1dentify the server or client computers to each
other. The network address can be referred to as a URL address. For example,
communication can be provided over a commumcatlons medium. In partlcular, the
client and server may be coﬁpled to one another via TCP/IP connections for high-
capacity communication.

Thus, Fig. 3A 1llustrates an exemplary ne®orked or distributed environment,
with a server in communication with client xcomputers via a network/bus, in which the
present invention may be employed. In more detail, a number of servers 10a, 10b, etc.,
are intercorinectéd via a communications network/bus 14, which may be a LAN, WAN,
intranet, the Internet, efc., with a number of client or remote computing devices 110a,
110b, 110c, 1 10&, 110e, etc., such as a portable computei', handheld coinputer, thin
client, networked appliance, or other deVice, such as a VCR, TV, oven, light, heater and
the like in accordance with the present invention. It is thus contemplated that the present
invention may apply to any 'computing device in connection with which it is desirable to
Process graphjéal obj eci(s).

In 2 network environment in which the communications network/bus 14 is the
Internet, for example, the servers 10a, 10b, etc. can be Web servers with which the
clients 110a, 110b, 110c, 110d, 110e, etc. communicate via any of a number of known
protocols such as HITP. Servers 10a, 10b, etc. may also serve as clients 110a, 110b,
110c, 110d, 110e, etc., as may be characteristic of a distributed computing environmeht.
Communications may be wired or wireless, where appropriate. Client devices 1 10a,
110b, 110c, 110d, 110e, etc. may or may not communic-:ate'via communications
network/bus 14, and may have 'independent communications associated therewith. For
example, in the case of a TV or VCR, there may or may not be a networked aspect to the
control thereof. Each client computer 110a, 110b, 110c, 1 10d, 110e, etc. and server
computer IOa, 10b, etc. may be equipped with various application program modules or
objects 135 and with connections or access to various types of storage elements or
objects, across which files may be stored or to which portion(s) of files may be
downloaded c_jr migrated. Any computer 10a, 10b, 110a, 110b, etc. may be responsible
for the maintenance and updating of a database 20 or other storage element in accordance
with the present invention, such as a database or memory 20 for storing g‘raphics'
object(s) or intermediate graphics object(s) or data processed according to the invention.

- 13-

10

15

20

25

30

CA 02424650 2003-04-07

Thus, the present invention can be utilized in a computer network environment having
client computefs 110a, 110b, etc. that can access and interact with a computer
network/bus 14 and server computers 10a, 10b, etc. that may interact with client

computers 1103, 110b, etc. and other like devices, and databases 20.

Exemplary Computing Device ‘
Fig. 3B and the following discussion are intended to provide a brief general

description of a suitable computing environment in which the invention may be

implemented.- It should be understood, however, that handheld, portable and other
computing devices and computing objects of all kinds are contemplated for use in
connection with the present invention. While a general purpose computer is described
below, this is but one example, and the present invention niay be implemented with a
thin client having network/bus interoperability and interaction. Thus, the present

invention may be implemented in an environment of networked hosted services in which

“very little or minimal client resources are implicated, e.g., a networked environment n

which the client device serves merely as an interface to the network/bus, such as an

‘ object placed in an appliance. In essence, anywhere that data may be stored or from

which data may be retrieved is a desirable, or suitable, environment for operation of the
graphics pipeline techniques of the invention.

~ Although not required, the invention can be implémented via an operating
system, for uSe by a developer of services for a device or object, and/or included within
appliCation software that operates in connection with intermediate targets of the
invention. The invention also implicates the design of vertex shaders and pixel shaders as
well in order to interact with the mtermediate targets of the invention. Software may be
described in the general context of computer-executable instructions, such as program
modules-, being executed by dne or more compﬁters, such as client workstatiOns, SErvers
or other devices. Generally, program modules include routines, programs, objects,
components, data structures and the like that perform particular tasks or implement
particular abstract data types. Typically, the functionality of the program modules may
be combined or distributed as desired .in various embodiments. Moreover, those skilled
in the art will appreciate that the invention may be practiced with other computer system
conﬁguratioﬁs. Other well known computing systems, environments, and/or

configurations that may be suitable for use with the invention include, but are not limited

- 14 -

10

15

20

25

30

CA 02424650 2003-04-07

to, personal computers (PCs), automated teller machines, server computers, hand-held or
laptop devices, multi-processor systems, microprocessor-based systems, programmable
consumer eleetronics, network PCs, appliances, lights, environmental control elements,
.minieomputers, mainframe computers and the like. The invention may also be practiced
in distributed computing environments where tasks areperformed by remote processing
devices that are linked through a communications network/bus or other data transmission
medium. In a distributed computing environment, program modules may be located in
both local and remote computer storage media including memory storage devices, and
client nodes may in turn behave as server nodes.

Fig. 3B thus illustrates an example of a suitable computing system environment
100 1n which the inVention may be implemented, although as made clear above, the
computing system environment 100 1s only one example of a suitable computing
environment and is not intended to suggest any limitatien as to the scope of use or

functionality of the invention. Neither should the computing environment 100 be

- interpreted as having any dependency or requirement relating to any one or combination

of components illustrated in the exemplary Operating environment 100.

With reference to Fig. 3B, an exemplary System for implementing the invention
includes a general purpose computing device in the form of a eofnputer 110.
Components of computer 110 may include, but are not limited to, a processing unit 120,
a system memory 130, and a system bus 121 that couples various system components
including the system memory to the processing unit 120. The system bus 121 may be
any of several types of bus structures including a memory bus or memory controller, a
peﬁpheral bus, and a local bus using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus (also known as Mezzanine bus).

Computer 110 typically includes a variety of computer readable media.
Computer readable media can be any available media that cari be accessed by computer
110 and includes both volatile and nonvolatile media, removable and non-removable
media. By way of ex'ample, and not limitation, computer readable media may compri-se
computer storage media and communication media. Cempﬁter storage media includes

both volatile and nonvolatile, removable and non-removable media implemented in any

- 15 -

10

15

20

25

30

CA 02424650 2003-04-07

method or technology for storage of information such as computer readable instructions,
data structures, program modules or other data. Computer storage media includes, but is
not limited to, RAM, ROM, EEPROM, flash memory or other memory technology,
CDROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or oiher magnetic storage devices, or any other
medium which can be used to store the desired information and which can accessed by
computer 110. Communication media typically embodies computer readable
instructions, data structures, program modules or other data in a modulated data signal
such as a carrier wave or other transport mechanism and includes any information '
delivery media. The term “modulated data signal” means a signal that has one or more

of its characteristics set or changed in such a manner as to encode information in the

signal. By way of example, and not limitation, communication media includes wired

media such as a wired network or direct-wired connection, and wireless media such as

‘acoustic, RF, infrared and other wireless media. Combinations of any of the above

- should also be included within the scope of computer readable media.

The system memory 130 includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic
routines that help to transfer information between elements within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or
program modules that are immédiately acceséible to and/or presently being operated on
by processing unit 120. By way of _example, and not limitation, Fig. 3B illustrates
operating system 134, application programs 135, other program modules 136, and
program data 137. '

The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, Fig. 3B '
illustrates a hard disk drive 141 that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive 151 that reads from or writes to a removable,
nonvolatile magnetic disk 152, and an optical disk drive 155 that reads from or writes to
a removable, nonvolatile optical disk 156, such as a CD ROM or bther optical media.
Other removable/non-removable, volatile/nonvolatile computer storage media that can be
used 1n the exemplary operating environment include, but are not limited to, magnetic
tape cassettes, flash memory cards, digital versatile disks, digital video tape; solid state

- 16 -

10

15

20

25

30

CA 02424650 2003-04-07

RAM, solid state ROM, and the like. The hard disk drive 141 is typically connected to
the system bus 121 through an non-removable memory interface such as interface 140,

and magnetic disk drive 151 and optical disk drive 155 are typically connected to the

- system bus 121 by a removable memory interface, such as interface 150.

The drives and their associated computer storage media discussed above and
1llustrated in Fig. 3B provide storage of computer readable instructions, data structures,
program modules and other data for the computer 110. In Fig. 3B, for example, hard
disk drive 141 is illustrated as storing operating system 144, application programs 145,
other program modules 146, and.program data 147. Note that these components can
either be the same as or different from operating systein 134, application programs 135,

other program modules 136, and program data 137. Operating system 144, application

- programs 145, other program modules 146, and program data 147 are given different

numbers here to illustrate that, at a minimum, they are different copies. A user may enter
commands and information into the computer 110 through input devices such as a
keyboard 162 and pointing device 161, commonly referred to as a mouse, trackball or
touch pad. Other input devices (not shown) may include a microphone, joystick, game
pad, satellite dish, scanner, or the like. These and other input devices are often connected
to the processing unit 120 through a user input interface 160 that is coupled to the system
bus 121, but may be connected by other interféce and bus structures, such as a parallel
port, game port or a universal serial bus (USB). A graphics interface 182, such as
Northbridge, may also be connected to the system bus 121. Northbridge is a chipset that
communicates with the CPU, or host procéssing unit 120, and assumes responsibility for
accelerated graphics port x(AGP) communications. One or more graphics processing units
(GPUs) 184 may communicate with graphics interface 182. In this regard, GPUs 184
generally include on-chip memory storage, such as register stora ge and GPUs 184
communicate with a video memory 186, wherein the intermediate targets of the
invention may be .impl_emented. GPUs 184, however, are but one example of a
coprocessor and thus a variety of ct)processing devices may be included in-cbmputer

110, and may include a variety ot procedural shaders, such as pixel and vertex shaders. A
monitor 191 or other type of diéplay device is also connected to the system bus 121 via
an interface, such as a video interface 190, which may in turn communicate with video

memory 186. In addition to monitor 191, computers may also include other peripheral

-17 -

10

15

20

23

30

CA 02424650 2003-04-07 |

output devices such as speakers‘ 197 and printér 196, which may be connected through an
output peripheral interface 1935.

The computer 110 may operate in a networked or distributed environment using
logical connections to one or more remote computers, such as a remote computer 180.
The remote computer 180 may be a personal éomputer, a server, éi router, a network PC,

a peer device or other common n_etwork node, and typically includes many or all of the

elements described above relative to the computer 110, although only a memory storage

device 181 has been 1llustrated in Fig. 3B. The logical connections depicted in Fig. 3B
inciude a local area network (LAN) 171 and a wide area network (WAN) 173, but may
also include other networks/buses. Such networking environments are commonplace in
homes, offices, enterprise-wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer 110 is connected to
the LAN 171 through a network interface or adapter 170. When used in a WAN'

networking environment, the computer 110 typically includes a modem 172 or other

means for establishing communications over the WAN 173, such as the Internet. The

modem 172, which may be internal or external, may be connected to the system bus 121
via the user input interface 160, or other appropriate mechanism. In a networked
environment, program modules depicted relative to the computer 110, or portions
thereof, may be stored in the remote memory storage device. By way of example, and
not limitation, Fig. 3B illustrates remote application programs 185 as residing on
memory device 181. It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications link between the

computers may be used.

Exemplary Distributed Computing Frameworks or Architectures

Various distributed computing frameworks have been and are being developed in
Light of the convergence of personal computing and the Internet. Individuals and business ‘
users alike are provided with a seamlessly interoperable and Web-enabled interface for
applications and computing devices, making computing activities increasingly Web
browser or network-oriented.

For example, MICROSOFT®’s .NET platform includes servers, building-block
services, such as Web-based data storage and downloadable device software. Generally

speaking, the .NET platform provides (1) the ability to make the entire range of

- 18 -

10

15

20

25

30

CA 02424650 2003-04-07

computing devices work together and to have user information automatically updated
and synchronized on all of them, (2) increased interactive capability for Web sites,

enabled by greater use of XML rather than HTML, (3) online services that feature

" customized access and delivery of products and services to the user from a central

starting point for the management of various applications, such as e-mail, for example, or
software,. such as Office .NET, (4) centralized data storage, which will increase
efficiency and ease of access to information, as well as synchrbnization of information
among users and devices, (5) the ability to integrate various communications media, such
as e-mail, faxes, and telephones, (6) for developers; the ability to create reusable
modules, thereby increasing productivity and reducing the number of programming
érrors and (7) many other cross-platform integration features as well. ‘
While exemplary embodiments herein are described in connection with software

residing on a computing device, one or more portions of the invention may also be

‘implemented via an operating system, application programming interface (API) or a

“middle man” object between a coprocessor and requesting object, such that controllable
texture sampling services may be performed by, supported‘in or accessed via all of
NET’s languages and services, arid in other distrib<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>