发明名称
衍射光栅透镜及使用该衍射光栅透镜的摄像装置

摘要
本发明的衍射光栅透镜，具有透镜基体（51），该透镜基体（51）具有能够在基本形状上设置衍射光栅（52）的表面（51a）。衍射光栅（52）具有多个环带（61A, 61B）和分别位于多个环带间的多个第一衍射段差（65A）和第二衍射段差（65B）。透镜基体由在使用波长λ折射率为n（λ）的第一材料构成。第一衍射段差（65A）和第二衍射段差（65B）各自具有实质上相同的高度d。高度d在m设为衍射级次时满足下式（1）：

$$d = \frac{m \cdot \lambda}{n(\lambda) - 1}$$

（1）
1. 一种衍射光棚透镜，其具有透镜基体，且该透镜基体具有能够在基本形状上设置衍射光栅的表面，其中，
所述衍射光栅在所述透镜基体的透镜直径内的区域，具有多个环带和分别位于所述多个环带间的多个衍射段差，
所述透镜基体由在使用波长 λ 折射率为 $n_1(\lambda)$ 的第一材料构成，
所述多个衍射段差各自具有实质上相同的高度 d，
所述高度 d 在 m 设为衍射级次时满足下式 (1)，
[算式 13]
$$d = \frac{m \cdot \lambda}{n_1(\lambda) - 1}$$ (1)
所述多个衍射段差包含多个第一衍射段差和与所述多个第一衍射段差的至少一个相邻的至少一个第二衍射段差，
所述多个第二衍射段差的前端，位于使所述基本形状沿所述衍射光栅的光轴方向平行移动的第一面上；所述至少一个第二衍射段差的前端，位于使所述基本形状沿所述光轴方向平行移动的第二面上，
所述第一面和所述第二面在所述光轴上处于互不相同的位置。
2. 一种衍射光栅透镜，具有透镜基体和光学调节膜，该透镜基体具有能够在基本形状上设置衍射光栅的表面，该光学调节膜以覆盖所述透镜基体的表面的方式被设置，其中，
所述衍射光栅在所述透镜基体的透镜直径内的区域，具有多个环带和分别位于所述多个环带间的多个衍射段差，
所述透镜基体由在使用波长 λ 折射率为 $n_1(\lambda)$ 的第一材料构成，
所述光学调节膜由在所述使用波长 λ 折射率为 $n_2(\lambda)$ 的第二材料构成，
所述多个衍射段差各自具有实质上相同的高度 d，
所述高度 d 在 m 设为衍射级次时满足下式 (2)，
[算式 14]
$$d = \frac{m \cdot \lambda}{n_1(\lambda) - n_2(\lambda)}$$ (2)
所述多个衍射段差包含多个第一衍射段差和与所述多个第一衍射段差的至少一个相邻的至少一个第二衍射段差，
所述多个第二衍射段差的前端，位于使所述基本形状沿所述衍射光栅的光轴方向平行移动的第一面上；所述至少一个第二衍射段差的前端，位于使所述基本形状沿所述光轴方向平行移动的第二面上，
所述第一面和所述第二面在所述光轴上处于互不相同的位置。
3. 根据权利要求 1 或 2 所述的衍射光栅透镜，其中，
所述多个衍射段差包括多个第二衍射段差，
各第一衍射段差和各第二衍射段差被交替配置。
4. 根据权利要求 1～3 中任一项所述的衍射光栅透镜，其中，
所述第一面和所述第二面在所述光轴上的间隔 l 满足下式 (3)：
[算式 15]
0.4d \leq L \leq 0.9d \quad (3)。

5. 根据权利要求 1～3 中任一项所述的衍射光栅透镜，其中，
所述第一面和所述第二面在所述光轴上的间隔 L 满足下式 (4)：

\[\text{算式 16} \]
\[0.4d \leq L \leq 0.6d \quad (4). \]

6. 根据权利要求 1～3 中任一项所述的衍射光栅透镜，其中，
所述第一面和所述第二面在所述光轴上的间隔 L 满足 L = 0.5d。

7. 根据权利要求 1 或 2 所述的衍射光栅透镜，其中，
所述多个衍射段差含有多个第二衍射段差，
所述多个第一衍射段差和所述多个第二衍射段差分别按 i 个和 j 个连续地配置，并
且 i 个的所述第一衍射段差和 j 个的所述第二衍射段差被交替配置，i 为 2 以上的整数，j
为 2 以上的整数。

8. 根据权利要求 2 或 3 所述的衍射光栅透镜，其中，
所述使用波长 \(\lambda \) 为可视光区域的波长，并且相对于可视光区域的全域的波长实质上
满足式 (2)。

9. 一种衍射光栅透镜，其具有透镜基体，该该透镜基体具有能够在基本形状上设置衍
射光栅的表面，其中，
所述衍射光栅具有多个环带和分别位于所述多个环带间的多个衍射段差，
所述透镜基体由在使用波长 \(\lambda \) 折射率为 \(n_1(\lambda) \) 的第一材料构成，
所述多个衍射段差各自具有在 m 设为衍射级次时由下式 (1) 所示的高度 d，

\[\text{算式 17} \]
\[d = \frac{m \cdot \lambda}{n_1(\lambda) - 1} \quad (1) \]

所述多个环带包括相互邻接的第一、第二和第三环带，所述第二环带由所述第一和第
三环带所夹，所述第一环带和第二环带的宽度大致相同，所述第二环带的宽度比所述第一
环带的宽度窄。

10. 一种摄像装置，其中，
具有权利要求 1～9 中任一项所述的衍射光栅透镜和摄像元件。
衍射光栅透镜及使用该衍射光栅透镜的摄像装置

技术领域
[0001] 本发明涉及利用衍射现象进行光的会聚或发散的衍射光学透镜（衍射光学元件）和使用了该衍射光学透镜的摄像装置。

背景技术
[0002] 通过在透镜基体上设有衍射光栅且利用衍射现象进行光的会聚或发散的衍射光学元件被称为衍射光栅透镜。众所周知，衍射光栅透镜在像面弯曲和色像差（因波长造成的成像点的偏移）等透镜像差的修正方面优异。这是由于，衍射光栅具有与由光学材料产生的色散性相反的色散性（逆色散性），或具有从光学材料的色散的直线性脱离的色散性（异常色散性）。因此，通过使之与通常的光学元件加以组合，而使衍射光栅透镜发挥巨大的色像差修正能力。

[0003] 另外，将衍射光栅用于摄像用光学系统时，与只由非球面透镜构成的摄像用光学系统相比，能够以很少的透镜片数得到相同性能。因此，不仅能够降低摄像用光学系统的制造成本并能够缩短光学长度且能够实现小型化这样的优点存在。

[0004] 一边参照图 18（a）～（c），一边说明现有的衍射光栅透镜形状的设计方法。衍射光栅透镜主要根据相位函数法或高折射率法加以设计。在此说明的是使用相位函数法的设计方法。根据高折射率法进行设计时，最终得到的结果也相同。

[0005] 就衍射光栅透镜的形状而言，由设有衍射光栅的透镜基体的基本形状和衍射光栅的形状形成。图 18（a）表示透镜基体的表面形状为非球面形状 Sb 时的一例，图 18（b）表示衍射光栅的形状 Sp1 的一例。图 18（b）所示的衍射光栅的形状 Sp1 由相位函数决定。相位函数由下式 (5) 表示。

[0006] [算式 1]

[0007] \[\phi(r) = \frac{2\pi}{\lambda_0} \psi(r) \]

[0008] \[\psi(r) = a_1 r + a_2 r^2 + a_3 r^3 + a_4 r^4 + a_5 r^5 + a_6 r^6 + \cdots + a_i r^i \] (5)

[0009] \[(r^2 = x^2 + y^2) \]

[0010] 在此，\(\phi (r) \)为 \(r \) 相位函数，\(\psi (r) \)为光程差函数（\(z = \psi (r) \)），\(r \)为距光轴的半径方向的距离，\(\lambda_0 \)为设计波长，\(a_1, a_2, a_3, a_4, a_5, a_6, \cdots, a_i \)为系数。

[0011] 在利用 1 次衍射光的衍射光栅的情况下，如图 18（b）所示，在相位函数\(\phi (r) \)中按距离基点（中心）的相位每达到 2n \(\pi \)（\(n \)为 1 以上的自然数）就分割相位差函数的曲线。通过使该按 2n \(\pi \) 分割的相位差函数的曲线所形成的形状 Sp1 与图 18（a）的非球面形状 Sb 相加，从而决定图 18（c）所示的衍射光栅面的形状 Spb1。从相位差函数向光程差函数的转换运用式 (5) 的关系。

[0012] 在将图 18（c）所示的衍射光栅面的形状 Spb1 设置在实际的透镜基体的情况下，当环带的段差高度 161 满足下式 (1) 时，能够得到衍射效果。

[0013] [算式 2]
在此，m 是设计级次（1 次衍射光时 m = 1），λ 为使用波长，d 为衍射光栅的段差高度，n(λ) 为在使用波长 λ 下的构成透镜基体的透镜材料的折射率。透镜材料的折射率有波长依存性，且是波长的函数。如果是满足式 (1) 这样的衍射光栅，则在环带的根部和前端，在相位函数上是相位差为 2π，相对于使用波长 λ 的光，光程差成为波长的整数倍。因此，能够使使用波长的光所对应的 1 次衍射光的衍射效率（以下称为“1 次衍射效率”）大体上达到 100%。如果波长 λ 变化，则遵循式 (1)，衍射效率成为 100% 的 d 的值也变化。反之，如果 d 的值固定，则在满足式 (1) 的波长 λ 以外的波长中，其衍射效率达不到 100%。

但是，将衍射光栅透镜用于一般性的摄像用途时，需要对较宽的波长范围（例如波长 400 ～ 700nm 左右的可视光区域等）的光进行衍射。其结果如图 19 所示，向在透镜基体 171 上设有衍射光栅 172 的衍射光栅透镜入射可视光线 173 时，除作为使用波长 λ 所决定的波长的光所形成的 1 次衍射光 175 以外，发生不必要级次的衍射光 176（以下也称不必要级次衍射光）。例如，在将决定段差高度 d 的波长作为绿色的波长（例如 540nm）时，绿色波长的 1 次衍射效率为 100%，没有发生绿色波长的不必要级次衍射光 176，但在红色波长（例如 640nm）和蓝色波长（例如 440nm）下 1 次衍射效率达不到 100%，红色的 0 次衍射光和蓝色的 2 次衍射光发生。这些红色的 0 次衍射光和蓝色的 2 次衍射光就是不必要的级次衍射光 176，成为光斑和重影并在像面上扩展而使图像劣化，或使 MTF（调制传递函数 : Modulation Transfer Function）特性降低。

专利文献 1 公开的是，如图 20 所示，在形成有衍射光栅 172 的透镜基体 171 的表面上设置光学调整膜 181，该光学调整膜 181 与透镜基体有着不同的折射率和折射率色散（refractive index dispersion）的光学材料构成。专利文献 1 公开的是，通过将形成有衍射光栅 172 的基体 171 的折射率，与以输出衍射光栅 172 的方式所形成的光学调整膜 181 的折射率在特定的条件下进行设定，能够降低衍射效率的波长依存性，降低不必要级次衍射光，抑制不必要级次衍射光带来的光斑。

另外，专利文献 2 公开有一种方法，其是在使用图 19 的一般性的衍射光栅透镜的照相机的摄像中，根据不必要级次衍射光 176 的二维点像分布，以基于最小二乘法的拟合，将不必要级次衍射光 176 的绝对量求得并加以去除的方法。

专利文献 3 公开有一种方法，其是在第一级差（≈ m）的摄影中饱和的像素存在时，以使该像素不饱和的方式进行第二级差的摄影，根据这时的曝光时间的调节值求得不必要级次衍射光 176 的绝对量，除去不必要级次衍射光 176 的方法。
发明者的发现可知，在特定的条件下，条纹状光斑光具有使所拍摄的图像的品质大大降低的可能性。

发明内容

[0026] 本发明是为了解决这样的问题而做成的，其目的在于，提供一种能够抑制条纹状光斑光发生的衍射光栅透镜及使用它的摄像装置。

[0027] 本发明的衍射光栅透镜具有透镜基体，该透镜基体具有能够在基本形状上设置衍射光栅的表面，所示衍射光栅在所述透镜基体的透镜直径内的区域，具有多个环带和分别位于所述多个环带间的多个衍射段差，所述透镜基体由在使用波长 λ 折射率为 $n_1(\lambda)$ 的第一材料构成，所述多个衍射段差各自具有实质上相同的高度 d，所述高度 d 在 m 设为衍射级次时满足下式 (1)，

$$ d = \frac{m \cdot \lambda}{n_1(\lambda) - n_2(\lambda)} \quad (1) $$

[0028] [算式 3]

[0029] 所述多个衍射段差含有多个第一衍射段差和与所述多个第一衍射段差的至少一个所邻接的至少一个第二衍射段差，所述多个第一衍射段差的前端，位于使所述基本形状沿所述衍射光栅的光轴方向平行移动的第一面上；所述至少一个第二衍射段差的前端，位于使所述基本形状沿所述光轴方向平行移动的第二面上，所述第一面和所述第二面在所述光轴上处于互不相同的位置。

[0031] 另外，本发明的衍射光栅透镜，具有透镜基体和光学调节膜，该透镜基体具有能够在基本形状上设置衍射光栅的表面，该光学调节膜以覆盖所述透镜基体的表面的方式被设置，所述衍射光栅在所述透镜基体的透镜直径内的区域，具有多个环带和分别位于所述多个环带间的多个衍射段差，所述透镜基体由在使用波长 λ 折射率为 $n_1(\lambda)$ 的第一材料构成，所述光学调节膜由在所述使用波长 λ 折射率为 $n_2(\lambda)$ 的第二材料构成，所述多个衍射段差各自具有实质上相同的高度 d，所述高度 d 在 m 设为衍射级次时满足下式 (2)，

$$ d = \frac{m \cdot \lambda}{n_1(\lambda) - n_2(\lambda)} \quad (2) $$

[0032] [算式 4]

[0033] 所述多个衍射段差含有多个第一衍射段差和与所述多个第一衍射段差的至少一个所邻接的至少一个第二衍射段差，所述多个第一衍射段差的前端，位于使所述基本形状沿所述衍射光栅的光轴方向平行移动的第一面上；所述至少一个第二衍射段差的前端，位于使所述基本形状沿所述光轴方向平行移动的第二面上，所述第一面和所述第二面在所述光轴上处于互不相同的位置。

[0035] 在有的优选实施方式中，所述多个衍射段差含有多个第二衍射段差，各第一衍射段差和各第二衍射段差被交替配置。

[0036] 在有的优选实施方式中，所述第一面和所述第二面在所述光轴上的间隔 L 满足下式 (3)。

[0037] [算式 5]

[0038] $0.4d \leq L \leq 0.9d \quad (3)$
在有的优选实施方式中，所述第一面和所述第二面在所述光轴上的间隔 L 满足下式 (4)。

[0041] 0.4d ≤ L ≤ 0.6d (4)

[0042] 在有的优选实施方式中，所述第一面和所述第二面在所述光轴上的间隔 L 满足 L = 0.5d。

[0043] 在有的优选实施方式中，所述多个衍射段差含有多个第二衍射段差。所述多个第一衍射段差和所述多个第二衍射段差分别按 i 个 (i 为 2 以上的整数) 和 j 个 (j 为 2 以上的整数) 连续地配置，并且，i 个的所述第一衍射段差和 j 个的所述第二衍射段差被交替配置。

[0044] 在有的优选实施方式中，所述使用波长 λ 为可视光区域的波长，相对于可视光区域的全波的波长实际满足式 (2)。

【算式7】

[0047] \[d = \frac{m \cdot \lambda}{n_i(\lambda) - 1} \] (1)

[0048] 所述多个环带含有相互邻接的第一、第二和第三环带，所述第二环带被所述第一和第三环带所夹，所述第一环带和第二环带的宽度大致相同，所述第二环带的宽度比所述第一环带的宽度窄。

[0049] 本发明的摄像装置，具有上述任一项所述的衍射光栅透镜和摄像元件。

[0050] 根据本发明，多个第一衍射段差的前端，位于使基本形状沿衍射光栅的光轴方向平行移动的第二面上。至少一个第二衍射段差的前端，位于使基本形状沿所述光轴方向平行移动的第二面上，第一面和所述第二面在所述光轴上处于互不相同的位置。由此，环带宽度不同的两种环带被包含在衍射光栅中。由环带宽度不同的两种环带产生的条纹状光斑互相干扰，条纹状光斑的发生受到抑制。

[0051] 另外，使用含有本发明的衍射光栅的摄像装置，即使在拍摄弱光源时，也能够得到条纹状光斑很少的图像。

附图说明

[0052] 图 1 (a) 是本发明的衍射光栅透镜的第一实施方式的剖面图，(b) 是放大表示衍射光栅透镜的剖面图。

[0053] 图 2 (a) ～ (c) 是表示本发明的衍射光栅透镜的衍射光栅面形状的导出方法的图，(a) 是表示基本形状的图，(b) 是表示相位差函数的图，(c) 是表示衍射光栅的表面形状的图。

[0054] 图 3 是用于说明在图 1 所示的衍射光栅透镜中条纹状光斑被抑制的理由的图。

[0055] 图 4 是表示在与图 2 (c) 所示的衍射光栅不同的位置设有衍射段差的衍射光栅的
表面形状的图。

[0056] 图 5(a) ～ (c) 是表示第一实施方式的环带的位置的模式图。
[0057] 图 6(a) ～ (c) 是本发明的衍射光栅透镜的第二实施方式的剖面图。
[0058] 图 7 是本发明的摄像装置的实施方式的剖面图。
[0059] 图 8(a) 和 (b) 是本发明的层叠型光学系统的实施方式的剖面图和俯视图，(c) 和 (d) 是本发明的层叠型光学系统的主要实施方式的剖面图和俯视图。
[0060] 图 9A(a) ～ (e) 是表示实施例 1 的衍射段差的位置的模式图。
[0061] 图 9B(f) ～ (j) 是表示实施例 1 的衍射段差的位置的模式图。
[0062] 图 10A(a) ～ (f) 是在向实施例 1 的衍射光栅透镜从视场角 60 度方向入射波长 538nm 的平面波时的焦点面上的二维像图。
[0063] 图 10B(g) ～ (j) 是在向实施例 1 的衍射光栅透镜从视场角 60 度方向入射波长 538nm 的平面波时的焦点面上的二维像图。
[0064] 图 11 是表示实施例 1 的衍射段差的位置的偏移量和条纹状光斑最大强度比率的关系的图。
[0065] 图 12 是表示实施例 2 的衍射段差的位置的模式图。
[0066] 图 13(a) ～ (e) 是在向实施例 2 的衍射光栅透镜从视场角 60 度方向入射波长 538nm 的平面波时的焦点面上的二维像图。
[0067] 图 14 是表示实施例 2 的衍射段差的位置的偏移量和条纹状光斑最大强度比率的关系的图。
[0068] 图 15 是表示实施例 3 的衍射段差的位置的模式图。
[0069] 图 16(a) ～ (e) 是在向实施例 3 的衍射光栅透镜从视场角 60 度方向入射波长 538nm 的平面波时的焦点面上的二维像图。
[0070] 图 17 是表示实施例 3 的衍射段差的位置的偏移量和条纹状光斑最大强度比率的关系的图。
[0071] 图 18(a) ～ (e) 是表示现有的衍射光栅透镜的衍射光栅面形状的导出方法的图，(a) 是表示基本形状的图，(b) 是表示相位差函数的图，(c) 是表示衍射光栅的表面形状的图。
[0072] 图 19 是表示在现有的衍射光栅透镜中不必要衍射光发生的情况的图。
[0073] 图 20 是表示在透镜基体上设有光学调整膜的现有的衍射光栅透镜的剖面图。
[0074] 图 21 是表示从光轴方向看到的衍射光栅的环带的图。
[0075] 图 22 是表示在通过环带的光束所含聚的摄像元件上发生条纹状光斑的情况的模式图。
[0076] 图 23(a) 是使用具有现有的衍射光栅透镜的摄像装置所拍摄的图像的一例，(b) 是对 (a) 所示的图像的一部分进行了放大的图像的一例，表示条纹状光斑发生的情况。

具体实施方式

[0077] 首先，对于本申请发明者已经探讨清楚的衍射光栅透镜所产生的条纹状光斑光进行说明。
[0078] 如图 21 所示，在设置衍射光栅 172 的衍射光栅透镜中，环带 21 分别由配置为同心
圆状的衍射段差则夹隔。因此，由在透过相邻的两个环带 21 的光的光轴间所设置的衍射段差所分割。透过各个环带 21 的光，能够视为通过具有环带 21 的间距 A 的宽度的狭缝的光。若环带 21 的间距 A 变小，则透过衍射光栅透镜的光，能够视为通过以同心圆状所配置的非常狭窄的狭缝的光，并且在衍射段差地域，光的波阵面的绕射可被观察到。图 22 中模式化地表示，将光入射到设有衍射光栅 172 的透镜基体 171，出射光经由衍射光栅 172 而发生衍射的情况。

[0079] 一般来说，通过非常狭窄地遮光的狭缝的光，会在无限远的观测点形成衍射条纹。这称为夫琅和费衍射（フランホーファー回折）。就该衍射现象而言，通过包含具有正焦距的透镜系统，在有限距离（焦点面）也会发生。

[0080] 本申请发明者，关于在环带 21 的间距 A 变小时透过各环带 21 的光会互相干涉从而发生如图 22 所示这种的如蝴蝶展开翅膀的形状的条纹状光斑 191 的情况，根据来自实际透镜的图像评价加以确认。

[0081] 再有，就该条纹状的光斑而言，可知在有比历来已知的使不必要级次衍射光发生时入射光量增加的光入射到摄像用光学系统时会显著呈现，另外，虽然不必要级次衍射光相对于特定的波长不会发生，但条纹状光斑光会在含有设计波长的使用波长范围全域会发生。

[0082] 条纹状光斑在图像上比不必要级次衍射更宽地扩展而使画质不良，特别是在夜间等漆黑的背景下拍摄灯光等明亮的被摄物体时等对对比度很大的极端环境下，条纹状光斑光 191 特别明显，就构成问题。另外，条纹状光斑光以条纹状明暗分明地发生，因此与不必要级次衍射光 176 相比，更为明显的问题。

[0083] 图 23(a) 表示使用具有现有的衍射光栅透镜的摄像装置所拍摄的图像的一例。图 23(a) 所示的图像，是表示荧光灯点亮时的室内情况的图像。图 23(b) 是图 23(a) 所示的图像中的荧光灯邻域的放大图像。如图 23(b) 所示，在荧光灯的下部区域明亮的光为条纹状光斑。

[0084] 本申请发明者为了解决这一课题，想到了具有全新构造的衍射光学元件和使用它的摄像装置。以下，一边参照附图，一边说明本发明的衍射光栅透镜的实施方式。

[0085] （第一实施方式）

[0086] 图 1(a) 是表示本发明的衍射光栅透镜的第一实施方式的剖面图。第一实施方式的衍射光栅透镜 11 具有透镜基体 51。透镜基体 51 具有第一表面 51a 和第二表面 51b，在第二表面 51b 上设有衍射光栅 52。

[0087] 在本实施方式中，衍射光栅 52 被设于第二表面 51b，但也可以设于第一表面 51a，优选设于第一表面 51a 和第二表面 51b 两方。

[0088] 另外在本实施方式中，第一表面 51a 和第二表面 51b 的基本形状为非球面形状，但基本形状也可以是球面或平板形状。第一表面 51a 和第二表面 51b 这两方的基本形状可以相同，也可以不同。另外，第一表面 51a 和第二表面 51b 的基本形状分别为凸型非球面形状，但也可以是凹型非球面形状。此外，也可以是第一表面 51a 和第二表面 51b 的基本形状之中，一方为凸型，另一方为凹型。

[0089] 在本申请说明书中，所谓“基本形状”是指，在衍射光栅 52 的形状被赋予前的透镜基体 51 的表面的设计上的形状。如果衍射光栅 52 等结构物未附加到表面，则透镜基体 51
的表面具有基本形状。在本实施方式中，第一表面 51a 未设衍射光栅，因此第一表面 51a 的基本形状为第一表面 51a 所具有的表面形状，即非球面形状。

另一方面，第二表面 51b 其构成是在基本形状上设置衍射光栅 52。因为在第二表面 51b 设有衍射光栅 52，所以第二表面 51b 的形状，透镜基体 51 的第二表面 51b 不是球面形状。但是，在以下说明的，因为衍射光栅 52 具有基于规定条件的形状，所以，通过从设有衍射光栅 52 的第二表面 51b 的形状扣除衍射光栅 52 的形状，就能够使第二表面 52b 的基本形状得以确定。

衍射光栅 52 具有多个环带 61A、61B 和多个衍射段差 65A、65B。在环带 61A、61B 之间分别设有一个衍射段差 65A、65B。环带 61A、61B 是由衍射段差 65A、65B 夹住的环状的凸部。在本实施方式中，环带 61A、61B 被配置为以作为第一表面 51a 的基本形状和第二表面 51b 的基本形状的非球面的光轴 53 中心或同心圆状。即，衍射光栅 52 的光轴与非球面的光轴 53 一致。环带 61A、61B 未必配置成同心圆状。但是在摄像用途的光学系统中，为了使像差特性良好，优选环带 61A、61B 的环带形状相对于光轴 53 旋转对称。

如图 1(a) 所示，与以往不同，衍射光栅 52 的衍射段差 65A、65B 中的衍射段差 65B，被设置在距相位函数的基准点的相位差为 2nπ 以外的位置，衍射段差 65A 与以往一样，被设置在距相位函数的基准点的相位差为 2nπ 的位置。在此 n 为整数，m 为衍射级次。衍射级次本身由 0 和正或负的整数定义，但若衍射级次为 0，则不发生衍射。因此，在本发明中，m 为正或负的整数。

参照图 2(a)～(c) 说明衍射光栅 52 的构造和具有衍射光栅 52 的第二表面 51b 的形状的设计方法。

如上述，衍射光栅透镜 11 的第二表面 51b 的形状，由设有衍射光栅的透镜基体 51 的形状，与设于基本形状上的衍射光栅 52 本身的形状构成。图 2(a) 表示第二表面 51b 的基本形状为非球面状 Sb 时的一例，图 2(b) 表示衍射光栅 52 的形状 Sp2 的一例。图 2(b) 所示的衍射光栅的形状 Sp2 由相位函数决定。相位函数由式 (5) 表示。

\[\phi(r) = \frac{2\pi}{\lambda_0} \psi(r) \]

\[\psi(r) = a_1 r + a_2 r^2 + a_3 r^3 + a_4 r^4 + \ldots + a_i r^i \quad (5) \]

\[r^2 = x^2 + y^2 \]

在此，\(\phi(r) \) 为相位函数，\(\psi(r) \) 为光程差函数 \((z = \psi(r)) \)，\(r \) 为距光轴的半径方向的距离，\(\lambda_0 \) 为设计波长，\(a_1, a_2, a_3, a_4, a_5, a_6, \ldots, a_i \) 为系数。

在利用一次衍射光时，即 \(m = 1 \) 时，如图 2(b) 所示，在相位函数 \(\phi(r) \) 中距基准点（中心）的相位差处于 2nπ 的位置和 2nπ 以外的位置，分割相位差函数的曲线的形状 Sp，使所分割的曲线以 2nπ 向负方向移动。就是说将这些位置设置衍射段差。其结果如图 2(b) 所示，衍射光栅 52 的形状 Sp2 由所分割的曲线部分 s1、s2、s3、s4、s5... 构成。就在图 2(b) 中由虚线表示的曲线部分 sa 而言，在现有的衍射光栅时，由于距基准点的相位差在 2π 和 4π 之间，因此与曲线部分 s1 连接。但在本实施方式中，在 2nπ 以外的位置进行分割，其结果是作为 sa' 与曲线部分 s2 连接。通过使该所分割的相位差函数的曲线构成的形状 Sp2 与图 2(a) 的非球面形状 Sb 相加，从而决定出图 2(c) 所示的衍射光栅的形状 Sbp2。
从相位差函数向光程差函数的转换运用式 (5) 的关系。另外，相位函数在式 (5) 中也可以包含常数项。这时，基准点就不为 0 了，衍射段差的位置就会在图 2(b) 中整体沿 r 方向移动固定量。

【0101】图 2(c) 所示的衍射光栅面的形状 Sbp2 被设于实际的透镜基体时，如果环带的衍射段差的高度 d 满足下式 (1)，则能够得到衍射效果。

【0102】[算式 9]

$$d = \frac{m \cdot \lambda}{n_1(\lambda)} - 1$$

【0103】在此，m 为设计级次（1 次衍射光时 m = 1），λ 为使用波长，d 为衍射光栅的段差高度，n_1(\lambda) 为在使用波长 λ 下的构成透镜基体的透镜材料的折射率。透镜材料的折射率有波长依存性，且为波长的函数。

【0104】将衍射光栅透镜 11 用于摄像时，在透镜直径内的区域设置衍射光栅 52，作为对透镜直径内的区域入射相同或同一波长区域的使用波长的光，且以相同的衍射级次使光发生衍射的器件。因此，透镜直径内的区域的衍射段差 65A、65B 各自的段差高度 d，遵从式 (1)，设计为实质相同的值。所谓实质相同的值是指，例如衍射段差 65A、65B 各自的段差高度 d 满足下式 (1')。

【0105】[算式 10]

$$0.9d \leq \frac{m \cdot \lambda}{n_1(\lambda)} \leq 1.1d$$

【0106】在此，所谓透镜直径是指，在衍射光栅透镜 11 中通过将赋予了相应的会聚和发散功能的一部分投影到与光轴垂直的面上所得到的圆形区域（透镜区域）的直径。

【0108】使用波长 λ 一般说来与设计波长 α 一致，但也可以不同。相位差函数所使用的波长，可以为了降低衍射而决定在可视光区域的正中（540nm 等）。相对于此，用于衍射段差的高度 d 的使用波长 λ，在例如考虑衍射效率下加以决定。因此，衍射效率在可视光整体区域相对于中心波长呈非对称的分布的情况下，有时使用波长 λ 稍微错开可视光区域的正中。这时，使用波长 λ 与设计波长 α 不同。

【0109】图 2(c) 所示的衍射光栅面的形状 Sbp2，是透镜基体 51 的第二表面 51b 的实际的形状。在 z 方向，即光程差对透镜基体 51 与其相接触的介质的折射率差以及所使用的光的波长有依存性。图 2(b) 所示的相位差函数的曲线构成的形状 Sp2，在距基准点的相位差处于 2n π 的位置和 2n π 以外的位置被分割，因此将图 2 的相位函数的值化算成光程长度，使之与图 2(a) 所示的透镜基体的表面形状 Sb 相加。若如此，即在被分割的位置，即，就衍射段差而言，在距设计波长 λ 的基本形状的光程差达到波长的整数倍（相位函数上的 2n π）的位置和整数倍（相位函数上的 2n π）以外的位置进行设置。具体来说，就存在着在达到波长的整数倍（相位函数上的 2n π，n = 1, 3, 5, ...）的位置所设置的衍射段差 65A 和在整数倍（相位函数上的 2n π，n = 2, 4, 6, ...）以外的位置所设置的衍射段差 65B（图 2 表示 m = 1 的情况）。衍射段差 65A 和衍射段差 65B 从光轴 53 朝向外侧而交替配置。衍射段差 65A 和衍射段差 65B 的高度均是与在设计波长 λ 的相位差 2 π 相当的值 d。根据这一结构，衍射光栅 52 中含有两种环带 61A 和 61B。其结果是，在邻接的环带 61A 和环带 61B 中，环带 61A 的环带面 62A 和环带宽度相对地短，环带 61B 的环带面 62B 和环带宽度相
对长条。如此，由于环带宽度或环带面的宽度不同的两种环带 61A 和环带 61B 被包含在衍射光栅 52 中，从而能够抑制条纹状光斑。详情后述。

[0111] 图 1(b) 是设有衍射光栅 52 的透镜基体的表面 51b 的放大表示的剖面图。如前述，根据在距相位函数上的基准点的相位差于 2nπ 位置和 2nπ 以外的位置分割相位函数的曲面，并且设置衍射段差的设计方法，可以说表面 51b 具有以下所示的结构。如图 1(b) 所示，在表面 51b，各环带 61A 的前端 63A 位于使基本形状 Sb 沿衍射光栅 52 的光轴方向平行移动的第一面 66A 上。同样，各环带 61B 的前端 63B 位于使基本形状 Sb 沿衍射光栅 52 的光轴方向平行移动且与第一面不同的第二面上。在衍射段差 65B 在 2nπ 以外的位置，并且邻接的衍射段差 65B 彼此的相位差为 2nπ 时，各环带 61B 的前端 63B 同样位于使基本形状 Sb 沿衍射光栅 52 的光轴方向平行移动的且与第一面 66A 不同的第二面 66B 上。第一面 66A 和第二面 66B 在衍射光栅 52 的光轴上的间隔 1，为衍射段差 65A 和衍射段差 65B 的高度 d 以下的值。

[0112] 即，全部的环带的前端不在使基本形状 Sb 沿衍射光栅 52 的光轴方向平行移动的一个面上时，在距相位函数上的基准点的相位差为 2nπ 以外的位置至少设有一个衍射段差，由此导致夹角该衍射段差的相邻的两个环带的宽度不同。

[0113] 关于环带 61A 的根部 64A 和环带 61B 的根部 64B 也同样。各环带 61A 的根部 64A 位于使基本形状 Sb 沿光轴方向平行移动的曲面上，各环带 61B 的根部 64B 位于使基本形状 Sb 沿光轴方向平行移动的曲面上。但是，根部 64A 所在的曲面与根部 64B 所在的曲面不同。

[0114] 在现有的衍射光栅透镜中，通过在距基准点的相位差 2nπ 的位置分割相位函数而设置衍射段差，因此各环带的前端全部位于使基本形状沿光轴方向平行移动的一个曲面上。同样，各环带的根部也全部位于使基本形状沿光轴方向平行移动的一个曲面上。因此，可以说上述的衍射光栅的构造是本发明所特有的。

[0115] 另外，如图 18(b)、(c) 所示，在现有的衍射光栅透镜中，虽然越靠衍射光栅的周侧，环带的宽度越宽，但在连接相邻的三个左右的环带间，环带的宽度大致相同，相对于此，在本实施方式的衍射光栅透镜 11 中，着眼于环带 61A 和将其夹住的两个环带 61B 中，夹隔环带 61A 而相邻的两个环带 61B 的宽度相同，夹在两个环带 61B 间的环带 61A 的宽度比两个环带 61B 的宽度窄。在此，所谓相同不仅包括两个环带的宽度一致的情况，也包括即使两个宽度不一致时长的一方的环带的宽度是短的一方的环带的宽度的 1.05 倍以下的情况。

[0116] 图 3 是用于说明在设有衍射光栅 52 的衍射光栅透镜 11 中条纹状光斑被降低的理由的曲线图。如图 3 所示，由环带宽度窄的环带 1 形成的夫琅和费衍射的光（衍射条纹）中，径向的波的间隔相对地宽阔，而由环带宽度宽的环带 2 形成的夫琅和费衍射的光中，径向的波的间隔相对地狭窄。因为中心附近振幅强度反映环带宽度，所以环带 1 形成的夫琅和费衍射的光强度弱，而环带 2 形成的夫琅和费衍射的光强度强。将来自环带 1 和环带 2 的夫琅和费衍射的光相加，就是本实施方式的衍射光栅所形成的夫琅和费衍射的光。由图 3 可知，来自环带 1 和环带 2 的夫琅和费衍射的光在径向的波的间隔不同，因此在中心附近以外的位置，波相互抵消，与现有的衍射光栅形成的夫琅和费衍射的光相比，使得光的振幅变小，即，条纹状光斑被降低。

[0117] 该效果由上述的说明可知，是通过在距相位函数上的基准点的相位差达到 2nπ 的位置和 2nπ 以外的位置设置衍射段差，且邻接的环带 61A 和环带 61B 的宽度不同而产生。
说明书

的。因此，如果相位差为 2nπ 以外，则衍射段差 65B 能够设在任意的位置。

【0118】优选距相位函数上的基准点的相位差为 2nπ 以外处所设的衍射段差 65B 的位置 有 π/5 以上的偏差，即，从 2nπ 的位置偏移 ±10%以上。这是如果偏移量在 ±10%以内 则两种干涉并可衍射的光的干涉的效果不充分的缘故。更优选偏移量为～-40%～-90% 的 范围，进一步优选为～-40%～-60%的范围。

【0119】如图 2(b) 所示，在相位函数中，设于 2nπ 以外处的位置的衍射段差的从 2nπ 的位 置的偏移量 δ，与设于 2nπ 的位置的衍射段差的前端和设于 2nπ 以外处的位置的衍射段差 的前端的偏移量 Δ一致。因此，上述的衍射段差 65B 从 2nπ 的位置的优选的偏移量，能够 由参照图 1(b) 说明的，带 61A 的前端 63A 所在的第一面 66A 与环带 61B 的前端 63B 所在 的第二面 66B 在衍射光栅 52 的光轴上的间隔 L 的从前衍射段差 d 的偏移量来表示。使用环 带 61A 的前端 63A 所在的第一面 66A 和环带 61B 的前端 63B 所在的第二面 66B 在衍射光栅 52 的光轴上的间隔 L 时，优选间隔 L 为 0.4d ≤ L ≤ 0.9d，更优选 L 为 0.4d ≤ L ≤ 0.6d。优选这些范围的理由在以下的实施例中进行说明。

【0120】另外，优选在距相位函数上的基准点的相位差为 2nπ 的位置所设置的衍射段差 65A 的位置，保持距 2nπ 的位置小于 ±10%的偏移量。这是由于如果偏移量为 ±10%以 上，则衍射光栅 52 的特性会发生巨大变化。为了发挥衍射光栅 52 的在设计上的特性，优选 尽加工可能偏移量小的方法。

【0121】在本实施方式中，衍射光栅透镜 11 利用衍射光栅 52 的 1 次衍射光，但也可以利用 2 次以上衍射。这时，以 m 为所利用的衍射光的级次，衍射段差 65A 和 65B 设于距相位函数 上的基准点的相位差为 2nmπ 以外的位置。

【0122】如果衍射段差 65B 在衍射光栅 52 上设置 1 处以上，则形成环带宽度不同的环带 61A 和 61B，因此能够达到上述本发明的效果。但是，优选衍射段差 65B 被设于衍射光栅透 镜 11 的透镜直径内的区域。设于该区域外的段差不作为衍射段差 65B 发挥作用。例如，有 将用于保持衍射光栅透镜的透镜边缘设于透镜基体的衍射光栅的外周的情况。由该边缘形 成的段差，即使在距相位函数上的基准点的相位差为 2nmπ 以外的位置，也无法作为衍 射段差 65B 发挥作用。即，优选衍射段差 65B 被设于衍射光栅 52 的外周端以外的区域。假 如，由该透镜边缘形成的段差处于距相位函数上的基准点的相位差为 2nmπ 以外的位置， 则优选在衍射光栅透镜 11 的透镜直径内的区域至少设有其他的衍射段差 65B。

【0123】另外，如距相位函数上的基准点的相位差为 2nπ 以外的位置，则设置衍射段差 65B 的位置任意。在图 2(c) 中，衍射段差 65B 被设于 3π , 7π , 11π 的位置。但是，例如如 图 4 所示，也可以将衍射段差 65B 设于 5π , 9π , 13π 的位置的衍射光栅面的形状 Sbp2 设置在透镜基体 51 的表面 51b。

【0124】如上述，根据本发明，将衍射段差 65A 和 65B 设于距相位函数上的基准点的相位差 达到 2nπ 的位置和 2nπ 以外的位置，环带 61A 的前端 63A 所在的第一面 66A 和环带 61B 的前端 63B 所在的第二面 66B 会在衍射光栅 52 的光轴上处于互不相同的位置，因此致使环 带 61A 和环带 61B 的宽度不同，从而能够降低条纹状光斑或使之不那么醒目。详细的研究 结果可知，根据衍射段差 65B 的位置，条纹状光斑的降低效果不同。

【0125】图 5(a)～(c) 中，为了便于理解本发明的特征，表示在相对于半径位置的相位 差线性变化的假定下的相位函数所形成的模式化的衍射光栅 52 的表面形状的图。在图
5(a)～(c)中，虚线表示衍射段差全部设于2nπ的位置时的衍射光栅52的表面形状。

【0126】根据详细的研究，为了降低在从主要的聚光位置偏向的位置发生的条纹状光斑光，如图5(a)，优选将衍射段差65A设于相位函数上的基准点的相位差2nmπ的位置，将衍射段差65B设于相位差(2n-1)mπ的位置（图5(a)是m=1的情况）。通过如此构成，由两个环带宽度不同的环带发生的条纹和赴衍射的衍射条纹互相干涉，能够有效地降低条纹状光斑。在以下的实施例1中，对于该结构进行详细地说明。这时，衍射段差65A和衍射段差65B交替配置。

【0127】另外，为了使某一特定位置发生且醒目的条纹状光斑光分散到宽广的范围而不那么突出，如图5(b)和(c)，优选将衍射段差65A和65B分别连续地各配置i个和j个，并且将i个衍射段差65A和j个衍射段差65B交替配置。图5(b)表示i=j=3时的衍射光栅52的表面形状，图5(c)表示i=j=4时的衍射光栅52的表面形状。通过成为这样的构成，各种条纹间隔的条纹状光斑光发生，条纹的明暗的对比度变小，因此能够使条纹状光斑光不突出。在实施例2、3中对于该构成详细地说明。

【0128】对于连续的衍射段差65A和65B的个数i、j没有特别限定，另外衍射段差65A的个数i和段差65B的个数j也可以不同。i和j优选为2个以上，是透镜直径内的环带个数的1/2以下。为了有效地抑制条纹状光斑，优选i、j相等。

【0129】这样为了有效地抑制条纹状光斑，优选衍射段差65A的分布密度和衍射段差65B的分布密度大致相等。具体来说，作为优选，衍射光栅52包括多个衍射段差65A和多个衍射段差65B且交替配置衍射段差65A和衍射段差65B，或者各连续配置i(2以上的整数)个和j(2以上的整数)个并且交替配置i个衍射段差65A和j个衍射段差65B。

【0130】这样根据本发明实施方式的衍射光栅透镜，衍射段差被设于距相位函数的基准点的相位差处于2nπ的位置和2nπ以外的位置。由此，相位差处于2nπ的位置的衍射段差的前端，位于使基本形状沿衍射光栅的光轴方向平行移动的第一面上；相位差处于2nπ以外的位置的衍射段差的前端，位于使基本形状沿光轴方向平行移动的第二面上，第一面和所述第二面在光轴上处于互不相同的位置。由此，环带宽度不同的两种环带被包含在衍射光栅中，由环带宽度不同的两种环带产生的条纹状光斑互相干涉，条纹状光斑的发生得到抑制。

【0131】在本实施方式中，衍射光栅52中设于2nπ以外的位置的衍射段差65B，被设于透镜基体51的第二表面51b的整个面。但是，衍射段差65B只要如上述在去除衍射光栅的外周端的至少一处设置即可，也可以仅在第二表面51b的外周区域或仅在中央部分等局部地形成。特别是因为透镜周边部环带的间距容易变得更加小，所以条纹状光斑光容易强烈发生。因此，仅在透镜周边部设置段差65B，也能够充分抑制条纹状光斑。

【0132】（第二实施方式）

【0133】图6(a)是表示本发明的衍射光栅透镜的第二实施方式的剖面图。图6(a)所示的衍射光栅透镜12具有：透镜基体51；设在透镜基体51上的衍射光栅52；以覆盖衍射光栅52的方式设在透镜基体51上的光学调节膜54。透镜基体51具有第一表面51a和第二表面51b，在第二表面51b上设有衍射光栅52。优选以完全掩埋衍射光栅52的衍射段差的方式设置光学调节膜54。

【0134】设有衍射光栅52的透镜基体51，具有与第一实施方式的衍射光栅透镜11相同的
构造。

透镜基体 51 与第一实施方式同样，由在使用波长 λ 折射率为 n₁ 的第一材料构成。另外，光学调节膜 54，由在使用波长 λ 折射率为 n₂(λ) 的第二材料构成。

在衍射光栅 52 的衍射段差 65A、65B 的高度设为 d 且衍射级次设为 m 时，透镜直径内区域的衍射段差 65A、65B 各自具有由式 (2) 所示的实质上相同的高度 d。

[算式 11]

\[d = \frac{m \cdot \lambda}{n₁(\lambda) - n₂(\lambda)} \]

(2)

作为优选，使用波长 λ 为可视光区域的波长，相对于可视光区域的全域的波长 λ，实质上满足式 (2)。所谓实质上满足，指的是例如满足下式 (2’) 的关系。

[算式 12]

\[0.9d \leq \frac{m \cdot \lambda}{n₁(\lambda) - n₂(\lambda)} \leq 1.1d \]

(2’)

这时，由于可视光区域的任意的波长 λ 的光实质上满足式 (2)，从而不会发生不必要级次衍射光，衍射效率的波长依存性非常小，另外能够得到高衍射效率。

为了使可视光区域的任意的波长 λ 的光实质上满足式 (2)，将具有在可视光区域的任意的波长 λ 或所使用的光的波长范围内 d 大致恒定的这样的波长依存性的折射率 n₁(λ) 的第一材料和折射率 n₂(λ) 的第二材料加以组合即可。通常，将折射率高且波长色散低的材料与折射率低且波长色散高的材料组合。

更具体地说，选择具有与第一材料的折射率的波长依存性显示出相反倾向的折射率的波长依存性的材料作为第二材料即可。例如，在使用衍射光学透镜 12 的光的波长范围，第二材料的折射率比第一材料的折射率小，并且第二材料的折射率的波长色散性比第一材料的折射率的波长色散性大。即，优选第二材料是比第一材料低折射率高色散材料。

折射率的波长色散性例如由阿贝数表示。阿贝数越大，折射率的波长色散性越小。因此，优选第二材料的折射率比第一材料的折射率小，并且第二材料的阿贝数比第一材料的阿贝数小。

优选的第一材料和第二材料的组合的例子表示在以下的表 1 中。表 1 中，折射率 (nd) 表示在 d 线的折射率，阿贝数 (v d) 是在 d 线的阿贝数。还有，在表 1 中，可以将第一材料作为透镜基体 51 的材料，将第二材料作为光学调节膜 54 的材料；也可以将第二材料作为透镜基体 51 的材料，将第一材料作为光学调节膜 54 的材料，无论哪种情况下均实质上满足式 (2)，由此不会使不必要级次衍射光发生，在可视光区域的全域能够得到高衍射效率。

[表 1]

<table>
<thead>
<tr>
<th>第一材料</th>
<th>第二材料</th>
</tr>
</thead>
<tbody>
<tr>
<td>折射率 (n d)</td>
<td>阿贝数 (v d)</td>
</tr>
<tr>
<td>1. 680</td>
<td>65</td>
</tr>
<tr>
<td>1. 623</td>
<td>40</td>
</tr>
<tr>
<td>1. 650</td>
<td>45</td>
</tr>
</tbody>
</table>

15
作为第一材料和第二材料，也可以使用在玻璃或树脂中分散有无机粒子的复合材料。就复合材料而言，通过调节所分散的无机粒子等的种类、粒子的大小和添加量，由此调节复合材料整体的折射率和波长色散性，因此能够适合作为第一材料和第二材料使用。

折射率 $n_2(\lambda)$ 比折射率 $n_1(\lambda)$ 大时，d 为负值。这种情况下，衍射光栅 52 的第二表面 51b 的形状是通过将基于相位差函数的相位差倒转而与基本形状相加来获得。图 6(b) 表示折射率 $n_2(\lambda)$ 比折射率 $n_1(\lambda)$ 大时的衍射光栅透镜 12’ 的构造。

如上述，本实施方式的衍射光学透镜 12 中，由光学调节膜 54 覆盖衍射光栅 52，这一点与第一实施方式的衍射光学透镜 11 不同，但如果光学调节膜 54 为空气层，则可以说衍射光学透镜 11 和衍射光学透镜 12 是相同的构造。如果比较式 (2) 和式 (1) 则可知，由于一般作为光学材料的第二材料的折射率 $n_2(\lambda)$ 比 1 大，因此与第一实施方式的衍射光学透镜 11 的情况相比，段差 d 变大。但是，当将投影衍射造成的衍射条纹的发生和来自于本项发明的条纹状光斑的抑制效果不依赖于波长。因此，即使以光学调整膜 54 覆盖衍射光栅 52，在本实施方式的衍射光学透镜 12 中，仍与第一实施方式同样，条纹状光斑的发生受到抑制。另外，通过在使用波长区域的全域满足式 (2)，还能够降低不要求级次衍射光形成的光斑。

（第三实施方式）

图 7 是表示本发明的摄像装置的实施方式的模式剖面图。摄像装置 13 具有透镜 81、衍射光栅透镜 82、光阑 56 和摄像元件 57。

透镜 81 含有透镜体 55。透镜体 55 的第一表面 55a 和第二表面 55b 具有球面形状，非球面形状等公知的透镜的表面形状。在本实施方式中，透镜体 55 的第一表面 55a 具有凹状，第二表面 55b 具有凸状。

透镜 82 含有透镜体 51。透镜体 51 的第一表面 51a 和第二表面 51b’ 的基本形状具有球面形状，非球面形状等公知的透镜的表面形状。在本实施方式中，第一表面 51a 具有凸状，第二表面 51b’ 具有凹状。在第二表面 51b’ 上设有第一实施方式中说明的衍射光栅 52。

从透镜 81 的第二面 55b 入射的来自被摄物体的光，由透镜 81 和透镜 82 会聚，在摄像元件 57 的表面成像，由摄像元件 57 转换电信号。

本实施方式的摄像装置 13 具有两片透镜，但透镜的数量和透镜的形状没有特别限制，可以是 1 片，也可以有 3 片以上的透镜。增加透镜片数能够提高光学性能。摄像装置 13 具有多片透镜时，衍射光栅 52 设在多片透镜上的某一片透镜上也可。另外，没有衍射光栅 52 的面可以配置在被摄物体侧，也可以配置在拍摄侧，也可以是多个面。但是，若设置多个衍射光栅 52，则衍射效果降低。因此，优选衍射光栅 52 只设在一个面。衍射光栅 52 的环带形状并非需要配置成以光轴 53 为中心的同心圆状。但是，摄像用途的光学系统中，为了达到良好的像差特性，优选衍射光栅 52 的环带形状相对于光轴 53 旋转对称。另外，也可以没有光阑 56。

本实施方式的摄像装置，具有设有第一实施方式中说明的衍射光栅 52 的衍射光栅透镜，因此即使在拍摄强光源时，也能够得到条纹状光斑光少的图像。

（第四实施方式）

图 8(a) 是表示本发明的光学系统的实施方式的模式的剖面图，图 8(b) 是其俯视图。光学元件 14 含有透镜体 51 和透镜体 58。在透镜体 51 的一面设有衍射光栅 52，
其具有第一实施方式中所说明的构造。透镜基体 58 设有衍射光栅 52”，其具有与衍射光栅 52 相对应的形状。透镜基体 51 和透镜基体 58 隔开规定的间隙 59 地保持。

[0161] 图 8(e) 是表示本发明的光学系统的其他实施方式的模式的剖面图。图 8(d) 是其俯视图。光学元件 14’具有透镜基体 51A，透镜基体 51B 和光学调节膜 60。在透镜基体 51A 的一面设有衍射光栅 52，其具有第一实施方式所说明的构造。同样在透镜基体 51B 也设有衍射光栅 52。光学调节膜 60 覆盖透镜基体 51A 的衍射光栅 52。将光学基体 51A 和光学基体 51B 以在设于光学基体 51B 的表面衍射光栅 52 和光学调节膜 60 之间形成有间隙 59’的方式保持。

[0162] 在层叠了设有衍射光栅的透镜基体的光学元件 14 和光学元件 14’中，如第一实施方式所说明的，因为设有衍射光栅 52，所以条纹状光斑的发生受到抑制。

[0163] 实施例 1

[0164] 制作第一实施方式的衍射光学透镜 11，调查条纹状光斑的产生效果，说明其结果。在本实施例中，在图 2 所示的衍射光学透镜 11 中，衍射段差 65A 设于距相位函数上的基准点的相位差为 2π 的位置，将衍射段差 65B 设于距相位差为 (2nπ-2π × S) 的位置。使 S 在 0 到 0.9 之间按 0.1 变化。衍射段差 65A 和 65B 交替配置。

图 9A(a) ～ (e) 和图 9B(f) ～ (j) 是模式化地表示，在将衍射段差 65B 设于距相位函数上的基准点的相位差为 (2nπ-2π × S) (S = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9) 的位置时的衍射光栅的形状。为了方便，在图 9A 和图 9B 中，以等间隔表示环带间距，但是，在实际的衍射光栅透镜中，也使用（式算 1）中的 a1 以外的高次的项来设计衍射光栅，如图 2(b) 所示，衍射段差的间距变化。衍射级数使用 1 次。使衍射光栅透镜的衍射光栅的段差高度为 0.9mm，设计波长和使用波长为 538nm，在使用波长的透镜基体 51 的折射率 n 为 1.591。空气的折射率为 1。}

[0165] 参照图 1(b)，如第一实施方式所说明的，设置衍射段差 65B 的位置从 2nπ 以 2π × S (S = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9) 旋转时，环带 61A 的前端 63A 所在的上面 66A 和环带 61B 的前端 63B 所在的第二面 66B 在衍射光栅 52 的光轴上的间隔 1 作为 d × S (S = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9)。图 10A(a) ～ (f) 和图 10B(g) ～ (j) 是在向具有图 9A(a) ～ (e) 和图 9B(f) ～ (j) 所示构造的衍射光栅透镜，分别从视场角 60 度的方向入射波长 538nm 的平面波时的焦点面上的二维图像。

[0166] 这些图之中，图 10A(f) 模式化地表示了在 S = 0.5 (50%) 的情况下，且将衍射段差 65B 设于距相位函数上的基准点的相位差为 (2nπ-2π × 0.5) 即 2(n-1)π 的位置时的衍射光栅的形状。另外，图 10A(f) 表示由此构造得到的二维图。另外，图 10A(a) 模式化地表示了在 S = 0.0 (0%) 的情况下，且将衍射段差 65B 设于距相位函数上的基准点的相位差为 (2nπ-0) 即 2nπ 的位置的现有的衍射光栅的形状。另外，图 10A(a) 表示由此构造得到的二维图。

[0167] 如图 10A(f) 所示，条纹状光斑只在中心部可见，周边部的光斑光量能够降低。会集在中心部的条纹状光斑与主光连接，因此不醒目。相应于此，图 10(a) 所示，在现有的衍射光栅透镜中，条纹状光斑在偏离中心部的位置发生并明显地扩展。这时，在本来不可能发生的地方也存在明显的光带，因此观察图像时很显眼。在图 10A、图 10B 的二维图像上所示的数字是条纹状光斑的最大强度比率。具体来说表示的是，认为虚线框内为主光，虚线框外为条纹状光斑，虚线框外的光强度的最大值对于虚线框内的光强度的最大值的比率。
中能够降低至 0.026%。由该结果可，在实施例 1 中，通过在距相位函数上的基准点的相位差为 \((2n=1)\pi\) 的地方设置衍射段差，条纹状光斑规律集在中心部，能够大幅降低周边部醒目的光斑光。衍射光栅镜中，一般越靠近镜面的周边，周期间距越细，周期间距在透镜面的中心和周边部发生很大的变化。这种情况下，会发生与周期间距相应的各种条纹间隔的条纹状光斑光。但是，如实施例 1，通过在 \(2n\pi\) 和 \((2n=1)\pi\) 的位置交替配置衍射段差，能够降低条纹状光斑光。

[0168] 如图 9A(a) ～ (c) 和图 9B(f) ～ (j) 所示，随着 S 从 0 变大，设于 \(2n\pi\) 以外的位置的衍射段差 65B 的位置也发生偏移。S = 0.9 的衍射光栅镜的形状并非接近 S = 0 的形状，而接近衍射段差高度为 2 倍的 \(m = 2\)（利用 2 次衍射光）的衍射光栅镜的构成。其中，各衍射段差 65A, 65B 的高度如第一实施方式中所说明的那样是 d。

[0169] 由图 10A(a) ～ (f) 和图 10B(g) ～ (j) 所示的结果可知，随着 S 从 0 靠近 0.5, 条纹状光斑光的最大强度比率变小。另外，若 S 比 0.5 大，则条纹状光斑光的强度比率也增大。

[0170] 图 11 是归纳 S 值和条纹状光斑光的最大强度比率的关系的图形。图 11 可知，通过使偏移量 S 处于 0.4(40%)以上, 0.9, 条纹状光斑光的最大强度比率约为 0.05%以下，能够大幅降低条纹状光斑光。更优选使偏移量处于 0.4 以上，0.6 以下，从而能够使条纹状光斑光的最大强度比率达到 0.04%以下。偏移量 S 最优选处于 0.5。由此能够使线框外的条纹状光斑光整体上不突出。

[0171] 可以说以环带 61A 的前端 63A 所在的第一面 66A 和环带 61B 的前方 63B 所在的第二面 66B 在衍射光栅 52 的光轴上的间隔 L 表示该条件时，间隔 L 优选为 0.4d 以上, 0.9d 以下，更优选为 0.4d 以上, 0.6d 以下，最优选为 0.5d。在本实施例中，使衍射段差 65B 偏移的方向在图 9A, 图 9B 中为左侧，但沿反方向（右侧）使之移动时能够得到同样的结果。

[0172] 实施例 2

[0173] 在本实施例中，如图 12 所示，以衍射段差的相位差为 (2n\pi - 2n\pi = S) 的位置连续设置 3 个衍射段差，在 \(2n\pi\) 的地方连续设置 3 个衍射段差，将它们交替配置。衍射段差使用 1 次。衍射光栅镜的衍射光栅的段差高度为 0.9 \(\mu m\)，设计波长和使用波长为 538nm。在设计波长的透镜基体 51 的折射率 n 为 1.591。空气的折射率为 1。

[0174] 图 13(a) ～ (e) 表示的是，在向按 S = 0.1 至 0.5 间的每 0.1 使之阶段性地变化的衍射光栅透镜，从视场角 60 度方向入射波长 538nm 的平面波的照射点面上的二维图像。图 14 是表示条纹状光斑最大强度比率和偏移量 S 的关系的图形。图 13 可知，偏移量 S 为 0.3 和 0.4 时，与图 10A(a) 比较，能够使成为明显的光带的条纹状光斑光平衡地分散，能够在画面上使光斑不醒目。另外，图 14 可知，与比较例相比，也能够大幅地降低条纹状光斑的最大强度比率。

[0175] 实施例 3

[0176] 在本实施例中，如图 15 所示，在距相位函数上的基准点的相位差为 (2n\pi - 2n\pi = S) 的位置连续设置 6 个衍射段差，在 \(2n\pi\) 的地方连续设置 6 个衍射段差，将它们交替配置。衍射段差使用 1 次。衍射光栅镜的衍射光栅段差高度为 0.9 \(\mu m\)，设计波长和使用波长为 538nm。在设计波长的透镜基体 51 的折射率 n 为 1.591。空气的折射率为 1。
图 16(a)～(e) 表示的是，在向按 S = 0.5 至 0.9之间的每 0.1 使之阶段性地变化的衍射光栅透镜，从视场角 60°方向入射波长 538nm 的平面波时的焦点面上的二维图像。图 17 是表示条纹状光斑最大强度比率和偏移量 S 的关系的图形。在图 17 的图形中，还表示 S 为 0.4 以下时的结果。由图 16 可知，偏移量 S 为 0.6 和 0.7 时，与图 10A(a) 比较，能够使成为明显的光带的条纹状光斑光平面地分散，能够在画质上使光斑不醒目。另外，由图 17 可知，与比较例相比，也能够大幅地降低条纹状光斑的最大强度比率。另外，根据图 11、14、17 的图形，条纹状光斑光的降低效果从偏移量 S 在 0.1 附近开始明显地呈现。因此，设于距相位函数上的相位差为 2nπ 以外的地方的衍射段差的位置优选从 2nπ 偏移 10% 以上。这时，以环带 61A 的前端 63A 所在的第二面 66A 和环带 61B 的前端 63B 所在的第二面 66B 在衍射光栅 52 的光轴上的间隔 L 表示该条件时，间隔 L 优选为 0.1d 以上。产业上的可利用性
本发明的衍射光栅透镜和使用它的摄像装置，具有降低条纹状的光斑光的功能，作为高品质的摄像机特别有用。
符号的说明
11、12、12’ 衍射光栅透镜
13 摄像装置
14、14’ 光学元件
61A、61B 环带
65A、65B 衍射段差
51、171 透镜基体
62 光阑
161.d 衍射光栅的段差高度
52 衍射光栅
53 光轴
157、174 摄像元件
175 1 次衍射光
176 不必要级次衍射光
181 光学调节膜
191 条纹状光斑光
图 3

图 4
图 5
图 6
图 7
图10A
图 10B
图 13

(a) S=0.1 0.17%
(b) S=0.2 0.14%
(c) S=0.3 0.10%
(d) S=0.4 0.088%
(e) S=0.5 0.13%
图 14

图 15
图 16
图17
图 23