wo 2014/014906 A2 |11 0FV0 0O O A A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/014906 A2

23 January 2014 (23.01.2014) WIPO | PCT
(51) International Patent Classification: (74) Agents: LYMAN, Beverly A., Ph. D. et al.; Thompson
GO6F 19/00 (2011.01) Hine LLP, 10050 Innovation Drive, Suite 400, Dayton, OH
) . 45342-4934 (US).
(21) International Application Number:
PCT/US2013/050673 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
16 July 2013 (16.07.2013) BZ, CA. CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
61/672,028 16 July 2012 (16.07.2012) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
SD, SE, 8@, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(63) Related by continuation (CON) or continuation-in-part TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(CIP) to earlier application: . L
Us 61/672,028 (CON) (84) Designated States (uniess otherwise indicated, for every
Filed on 16 July 2012 (16.07.2012) kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(71) Applicant: PNEURON CORP. [US/US]; 99 North East- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
ern Blvd., Suite 100, Nashua, New Hampshire 03062 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Tnventors: MOSS, Simon, Byford; 210 Bible Street, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Greenwich, Connecticut 06807 (US). ELKINS, Elizabeth, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
)) : . TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
Winters; 1255 North Shore Drive, Roswell, Georgia KM, ML, MR, NE, SN, TD, TG)
30076 (US). BACHELOR, Douglas, Wiley; 26 Brown ? ’ o e ’
Lane, Groton, Massachusetts 01460-1485 (US). CUR- Published:

BELO, Raul, Hugh; 174 Cedar Street, Sturbridge, Mas-
sachusetts 01566 (US). FOUNTAIN, Thomas, C.; 86 Noe
Avenue, Madison, NJ 07940 (US).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: A METHOD AND PROCESS FOR ENABLING DISTRIBUTING CACHE DATA SOURCES FOR QUERY PRO-
CESSING AND DISTRIBUTED DISK CACHING OF LARGE DATA AND ANALYSIS REQUESTS

100

~

PNEURON
SERVER

REQUEST FOR
LARGE DATA

—i

PROCESSING

Q

FIG. 4

(57) Abstract: A method and system for large data and distributed disk cache processing in a Pneuron platform (100). The system
and method include three specific interoperable but distributed functions: the adapter/cache Pneuron (14) and distributed disk files
(34), a dynamic memory mapping tree (50), and distributed disk file cleanup (28). The system allows for large data processing con-
siderations and the ability to access and acquire information from large data files (102) and rapidly distribute and provide the in-
formation to subsequent Pneurons (104) for processing. The system also provides the ability to store large result sets, the ability to
deal with sequential as well as asynchronous parallel processing, the ability to address large unstructured data; web logs, email, web
pages, etc., as well as the ability to handle failures to large block processing.

10

15

20

25

30

WO 2014/014906 PCT/US2013/050673

A METHOD AND PROCESS FOR ENABLING DISTRIBUTING CACHE DATA

SOURCES FOR QUERY PROCESSING AND DISTRIBUTED DISK CACHING OF

LARGE DATA AND ANALYSIS REQUESTS

TECHNICAL FIELD
[0001] The present invention relates to enabling
distributing cache data sources for processing large data and
analysis requests and more particularly, relates to providing
a distributed caching model to enable the management of
distributed cache files on multiple servers or virtual
machines and facilitating multiple distributed processing

operations simultaneously.

BACKGROUND INFORMATION
[0002] Accessing geographically dispersed multiple systems
and large datasets and being able to operate on this
information to perform multiple simultaneous operations is
very difficult. Combining and federating distributed
operation results together compounds the problems. Most
companies utilize an aggregated data warehouse with multiple
feeder data sources and extraction, transformation, and
loading (ETL) routines to organize distributed data together.
The data preparation cost and time are signification.
[0003] Therefore, what is needed is a distributed cache
evaluation and processing model that operates across multiple
servers simultaneously. The system should function such that
multiple analytic and business operations occur, while the
system should also enable sampling and evaluation with
collection and recording of results. Furthermore, the
invention should provide for distributed cache creation and

orchestration of coordinated distributed data access and

E

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

generation of iteration results from other distributed
applications. All distributed cache files operations should

be coordinated together into unified processing models.

SUMMARY OF THE INVENTION
[0004] The system and method of the present invention
implements an Adapter Pneuron that interacts within its
distributed processing infrastructure for large data
processing. The Adapter Pneuron enables the real-time
acquisition of data from different types of application data
sources, including service application programming interface
(API), database, and files. Data is acquired and transformed
into self-describing ASCII disk cache files with an
associated definition of the structure. The disk cache files
are distributed across one to many servers or virtual
machines (VMs). The distributed disk cache files are
accessed by participating Pneuron applications to perform
operations selectively on the distributed disk data.
Multiple operations are performed simultaneously by the
different Pneurons with results evaluated and subsequent
iteration operations applied. Evaluated results are
concatenated and federated together across the different disk
cache files simultaneously.
[0005] Disk cache files are removed automatically using a
high-low disk evaluation model to remove disk cache files
based on server disk utilization and automatic evaluation
aging for disk cache files. The present invention enables
the ability to quickly access target systems and data sources
and generate distributed disk cache files, to simultaneously
perform real-time operations by other Pneuron programs and to
federate the results together. These activities occur

without requiring preparation of the data.

- 2 -

10

15

20

25

30

WO 2014/014906 PCT/US2013/050673

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] These and other features and advantages of the
present invention will be better understood by reading the
following detailed description, taken together with the
drawings wherein:
[0007] FIG. 1 is a comparison of the prior art process
execution with the distributed cache model according to one
embodiment of the present invention;
[06008] FIG. 2 is an overview of the dynamic memory mapping
tree according to one embodiment of the present invention;
[0009] FIG. 3 is an overview of distributed disk cache
removal model scenarios according to one embodiment of the
present invention; and
[0010] FIG.4 is a block diagram of a system on which may

be implemented the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0011] The present invention features a system and method
for large data processing and requesting reconstruction. The
system 100, FIG. 4 and method includes the capacity for large
data processing considerations (targeting record, queries and
responses of 1 million and higher results). The invention
provides for the ability to access and acquire information
from large data files 102 (greater than 1 million records)
and rapidly provide the information to subsequent Pneurons
for processing combined with the ability to extract and
render large queries from databases 102 without impacting
system of records processing and rapidly provide the
information to subsequent Pneurons for processing. The
system also has the ability for multi-threaded processing by

multiple distributed pneurons 104 of large input/record sets

-3 -

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

files, enabling of storage and access to large historical
results and the ability to handle large inputs. The
invention provides the ability to store or persist large
result sets. For example, a million plus raw data evaluation
may generate a very large array of intelligence results that
need to be persisted for future use, which might occur with
time-series data with multiple month-years and multiple
intelligence results for each intelligence record. Further,
the invention is able to deal with sequential as well as
asynchronous parallel processing, is able to address large
unstructured data; web logs, email, web pages, etc. and is
able to handle failures to large block processing.

[0012] The design considerations of the present invention
are focused on maximizing distributed processing workload
(volumes, results and requests) without running out of
resources; e.g. hardware resources, including memory and CPU.
The solution consists of essentially three specific
interoperable but distributed functions. First, the
Adaptor/Cache Pneuron 14 and distributed disk cache files 30,
32. Second, the dynamic mapping tree 50, Fig. 3. Third, the
distributed disk cache file cleanup Fig. 4. Each function
will be described in greater detail below.

[0013] The Adaptor/Cache Pneuron 14 (and/or distributed
adaptor/cache pneurons 104) and distributed disk cache files
34 address the problem of extremely large record set
processing which presents different technology challenges.
Some of the current problems in the prior art include:
loading all information into memory will exceed hardware
server resources; and breaking up large requests presents
complexities in consolidating and synchronizing the

information results together and multiple operations may be

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

required at different times by different programs across one
or more large record sets.

[0014] The present invention solves these problems by
extracting large record sets from target systems 102 and data
sources and converting them into distributed disk cache files
34. The disk-based intermediate cache files and processing
is coordinated by and across multiple Pneurons 104 to perform
multiple simultaneous operations on the information
(distributed disk cache files 34). A comparison of the prior
art system of process execution (FIG. 1A) and the distributed
cache model of the present invention (FIG. 1B) is shown in
Figure 1.

[0015] The cache file based system 10 of the present
invention will store the large requests within self-
describing ASCII files and make these files (the data within
them) available to any Pneuron that needs to access them.
Large data requests 12, are received and processed by the
Adapter Pneuron 14. The Adapter Pneuron 14 transforms the
large data requests into ASCII file content (extended CSV
format - including the attribute type definition), and saves
the ASCII file content on the local host hard drive. Once a
request is received, the Adapter Pneuron 14 will send to all
its associated Pneuron connections 104 a special message that
will announce that new work is available and the data can be
accessed from the referred files from the target disk cache
location 30, 32 on the file system. This process will
perform in the same manner even if the request is composed
from multiple batches, thereby allowing the request to be
reconstructed. All of the Pneurons will interact with this
model approach. The Adapter Pneuron 14 maintains context of
each distributed cache file and provides system context to

each participating Pneuron. Context includes the definition

- 5 -

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

of the cached file format and information elements and
location of the file. Participating Pneurons are able to
parse the cached/adaptor Pneuron information and perform
different operations.

[0016] Once the data has been cached, the Adapter Pneuron
14 will send to subsequently connected Pneurons 104 a special
message 15 that will announce to all configured and
associated Pneurons that new work is available and the
Pneurons can execute their operations on the disk cache
files. The system includes a utility that enables the
calling Pneurons 104 to transform to and from XmlMessage to
the target extended CSV extended file format.

[0017] As a result, the invention greatly simplifies the
access and operations on the distributed disk cache data and
provides a common abstraction layer and interface for the
Pneurons to access and perform operations on the data. The
Pneurons only need to read the referred file content and
transform the information into usable XmlMessage Type data.
In addition, the Pneurons can filter and extract only the
necessary attributes as vectors or other objects and optimize
the memory management resources.

[0018] This invention therefore provides many critical
transformational benefits. The data is accessed and managed
at targeted server 106 locations on the respective filing
system 30, 32 such that requests do not need to be
reconstructed, which saves processing time and reduces
complexity. The system ability to process very large amounts
of data is significant and unconstrained. Within the actual
memory processing, the information is streamlined. Only
reference and common messages and pointers are included. The
distributed cache file model enables a planning mechanism to

be implemented to optimize the resources and synchronize

-5 -

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

distributed cache file access and processing. The messages
do not require any complex logical operations that will
require the file structure to change. The system will be
fully capable of handling the CRUD operations (create - add
new entry/record; read -~ record; update - record; and delete
- record). This solution will work for all cases where the
entity (large request -~ as a whole) will retain its
integrity/structure.

[0019] The dynamic mapping tree model shown for example in
FIG. 2 is implemented to support the Adaptor Pneuron. The
memory mapping enables a large data processing request
transaction to retain its processing integrity from
initiation through completion of an execution. By retaining
processing integrity, the representation and all the data
characteristics will be retained and accessible during the
request life cycle. Data representation defines the meta-
data characteristics of the information, including the way
that the data is stored on the file system, the number of
files, file types, data definition (attribute definition),
request references etc.

[0020] In order to manage the distributed disk caching
model, the invention enables the following operations to be
performed on the disk cache files: Create - add new record
within the large request; Read - access one or more records
from the large request; Update - update/modify the data for
one or more records; and Delete - delete one or more records.
Given the synchronization and management complexities, the
invention restricts the following functions: batching,
duplicate batches and conditional batches.

[0021] To manage the distribution complexity of multiple
disk cache files, the invention maintains and adjusts the

system context dynamically. This model enables automatic

- 7 -

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

changes to the data representation and structure. A
programmatic change history tracking is maintained, which
keeps track of changes applied to the disk cache file(s).
This feature enables automatic reconstruction of the disk
cache file at any given time to support a Pneuron initiated
operation and request. The present invention has implemented
a programmatic process to decompose large data sets into
request into smaller batches. The batches are organized into
parallel execution requests and configured as part of the
Pneuron Networks definition.

[0022] A dynamic memory tree map, Figure 2, is implemented
to manage the distributed cache process across multiple
Pneurons. The dynamic tree maintains and provides system
context for the entire distributed processing model and plan.
The entire processing life cycle is maintained. Each
node/leaf within the dynamic tree will contain a file
reference or a position/index reference and then point the
Pneuron request message to the corresponding memory area.

The dynamic memory tree map establishes a breadcrumb trail.
Using this approach, the system is able to reconstruct the
request with the new values by traversing the memory tree.
The system merges and reconstructs the disk cache results
based on the specific request. The same logic and approach
is also applied for the Large Request Reconstruction, which
enables a generic distributed disk cache operation model to
be applied at the Pneuron Base Level.

[0023] The system will apply different solutions based on
the context and type of operation. Dead (empty) messages are
still sent out through the network. When a batch gets split
in two or more sub-batches they are flagged. By doing this
the system will be able to track the messages. The final

Pneuron should have a max dead time interval, which will

- 8 -

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

represent the time that it will wait for more batches. This
time 1is checked/validated with the last batch arrival time.
Each time a batch gets split the characteristic flag is
appended with additional information meant to inform about
the split. Example: 1/1-3/15-1/3-6/7-4/4. SPLIT is defined
as [Position/Number Of Message/Batch] / [Total Number Of
Messages]. Each time a batch gets split request, the split
information will be appended to the current flag, which will
be done for each split/sub batch. By the time the message
reaches the Final Pneuron, the Pneuron will be able to
establish the context based on the amount of information that
it receives, and the Pneuron will be ready to create an
execution tree, such as the one detailed in Figure 2. This
approach is based on the fact that when the Final Pneuron
receives a batch request, it will be able to trace it and
complete (or start i1if it is the first batch from a large
request) based on the defined execution tree. Any sub-batch
that is received is able to communicate with the Pneuron of
all the tree node parents and also the number of “leafs” per
split. With this approach the Final Pneuron will be able to
map out what it should receive, also the information that it
receives can be ordered.

[0024] There are scenarios where the requesting Pneuron is
unable to interact with the distributed cache disk. Examples
could include: (1) The target data source or system is not
available for access by the Adapter Pneuron and the disk file
cache cannot be created; and (2) The file system where the
disk cache file is stored is not available. An Idle or Dead
Time interval model can be implemented to manage this
scenario, such that the Idle or Dead Time interval
establishes a periodic mechanism to compose the message and

send it further (or execute the request). The Idle or Dead

- 9 -

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

Time interval evaluates each past request and the elapsed
time when the last batch was received and the execution
trigger.

[0025] Finally, the distributed disk cache file clean up
portion of the process 28, Figure 3, provides users with the
capability of caching data, within the entire system, on all
the hosts 106 that are running the platform (distributed
pneuron 104). The cache is a file system 34 based mechanism
that transforms and stores them indefinitely making them
available to one or more worker process pneurons. Since the
invention is dealing with a highly distributed system that
provides value by providing the users with parallel computing
capabilities, all the resources that are used within this
computing process must be available at each host level (that
takes part of the parallel execution). In doing so, each
host will own a copy for each cache data that it will
process. This creates a big problem because the hardware
resources, hard drive space in this case is not unlimited,
and since each host must have a local copy of the cached job
the system does not deal with replication (duplicate
resources - at different host levels).

[0026] Therefore, the present invention has implemented a
High-Low distributed disk cache removal model. The invention
configures properties for each host 106 (either a physical
server or virtual server machine). The host Max Available
Space property establishes the amount of bytes (megabytes or
even gigabytes) that can be used by the caching system 34 on
that specific server 106. Once this max threshold is
reached, the system will delete existing cache files based on
the size and age of the distributed cache file. This model
will eliminate past files and enable new disk files to be

established and used. The cache file system will be bounded

.10

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

with these rules; in this case the only rule/limitation that
we need is to have a maximum level of space that it can be
used in order to store the working cache files. This maximum
level of space that can be used will be stored within the
Softwarerx.Properties file 36 from CFG directory, because
this is a centralized storage point for all the properties
and attributes that must or can’t be stored within the
database.

[0027] The following examples are intended to provide
details on how the distributed disk file clean up functions
in the present system. In a first example, a save cache data
request 38 is requested/received and max space has not been
reached on the host server 30/32. 1In this scenario, a
Pneuron issues a request 38 to save data into the cache data
file system 34. The request reaches the SAN (Storage Area
Network or Cache System/process) 40. The system checks the
Max Space configured value 36. The system 28 compares the
Max Space with the actual available space on the local hard
drive, which is the hard drive where the host system 106 is
running, or more exactly where the “cache” directory file
system 34 is found. In this first example there is
sufficient space to save the information; therefore the
system 28 will save the information 42 with the provided data
(reference name/file name) in the file system 34.

[0028] In a second example, a save cache data request is
requested and max space has been reached. In this scenario,
a Pneuron issues a request to save data into the cache data
system. The request reaches the SAN (Storage Area Network or
Cache System). The system checks the Max Space configured
value. The system compares the Max Space with the actual
available space on the local hard drive, which is the hard

drive where the system is running, or more exactly where the

- 11 -

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

“cache” directory is found. The system determines 44 there
is NO sufficient space to save the information. The system
orders the existing cache data in descending order based upon
the creation date. Then a loop occurs, which deletes the
oldest file 46 and then re-checks to see if there is
sufficient space. The loop ends once sufficient space is
cleared or 1f there 1s nothing else to delete. If the system
has sufficient space to save, then the information is saved
42 with the provided data (reference name/file name).

[0029] In a third example, a save cache data reguest is
requested and max space has been reached, however the system
is unable to make sufficient space. In this scenario, a
Pneuron issues a request to save data into the cache data
system. The request reaches the SAN (Storage Area Network or
Cache System). The system checks the Max Space configured
value. The system compares the Max Space with the actual
available space on the local hard drive, which is the hard
drive where the system is running, or more exactly where the
“cache” directory is found. The system finds there is NO
sufficient space to save the information. The system orders
the existing cache data descending based upon the creation
date. A loop is created, such that the oldest file is
deleted and then the system re-checks to see if there is
sufficient space. In this example, the system deletes all
old files 46 and checks again for sufficient space and
determines that there is not sufficient space and there is
nothing else to delete, thereby ending the loop. In this
example, the system does not have sufficient space to save
and the system will register a failure.

[0030] In a fourth example, a system is able to get cache
data when a local copy is available. 1In this scenario, the

cache system receives a request 48 to get a specific data.

- 12 -

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

This request can be issued by any Pneuron Instance that is
supposed to use the cached data and needs to get a reference
to the local file copy in order to read and parse/analyze or
otherwise utilize the necessary information. The system
receives a request to get cache data 48. The system process
cache 50 checks to see if the cached data is found within the
local file system 34. The cache data is found to exist 52
within the local file system. Return reference to cache data
54. The caller will then be able to use the data.

[0031] In a fifth example, a system is unable to get cache
data because a local copy is not available. 1In this
scenario, the cache system 30, 32 receives a request to get
specific data 48. This request can be issued by any Pneuron
Instance that is supposed to use the cached data and needs to
get a reference to the local file copy in order to read and
parse/analyze or otherwise utilize the necessary information.
The system receives a request to get cache data 48. The
system cache process 50 checks to see if the cached data is
found within the local file system 34a. The system
determines that the cache data DOES NOT EXIST within the
local file system. The Current Cache System asks the other
registered host 32 by calling their associated cache system
process 50a which check for existence of the data. A loop is
created, such that the Foreign Cache file system 34b of
server 32 1is checked for data 56, then the data is found, and
then the data is copied locally 58. The loop ends when there
are no more hosts/cache systems to search or once the cache
data is found. Return reference to cache data 58. The
caller host 30 will then be able to use the cached data.
[0032] In a sixth example, a system is unable to get cache
data because a local copy is not available anywhere. The

cache system receives a request to get a specific data. This

__13_

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

request can be issued by any Pneuron Instance that is
supposed to use the cached data and needs to get a reference
to the local file copy in order to read and parse the
necessary information. The system receives a get cache data
request. The system checks to see if the cached data is
found within the local file system. The system determines
that cache data DOES NOT EXIST within the local file system.
The Current Cache System asks the other registered host by
calling their associated cache systems 32 and checking for
the data existence. A loop is created, wherein the system
checks the Check Foreign Cache System for data and determines
that the data is not found. The loop ends once there are no
more hosts/cache systems to check and no cache data has been
found. The system determines that the data was not found. A
failure has occurred.

[0033] In summary, the present invention enables the real-
time generation, management, and synchronization of
distributed disk caches within a highly distributed
processing environment. The process deconstructs and
organizes large data sets acquired from disparate systems and
data sources across an unlimited number of physical servers
and virtual machines. An abstraction layer is applied across
all distributed disk cache files. Multiple distributed
Pneurons perform simultaneous operations across one or more
disk cache files. Processing is synchronized automatically.
The system maintains an in-memory mapping tree to maintain
distributed interactions and provides the ability to
dynamically construct and deconstruct the distributed cache
files into any form. The distributed cache model enables
synchronized federation of selected information from multiple
distributed cache files automatically and as part of the

Pneuron processing. The invention allows Pneuron to use

- 14 -

WO 2014/014906 PCT/US2013/050673

existing client disk capacity and obtain and utilize targeted
large data cache files on demand and without preparing
aggregated data stores. As a result, businesses benefit by
foregoing large data preparation activities.

5 [0034] Modifications and substitutions by one of ordinary
skill in the art are considered to be within the scope of the
present invention, which is not to be limited except by the

allowed claims and their legal equivalents.

WO 2014/014906 PCT/US2013/050673

10

15

20

CLAIMS

The invention claimed is:
1. A method for processing large data and analysis
requests, said method comprising the following acts:

acquiring data in real-time from one or more application
data sources by a data processing pneuron, said data
processing pneuron configured for operating under control of
a computer program product, said computer program product
comprising a computer program;

transforming said data into self-describing ASCII disk
cache files by said data processing pneuron;

distributing said disk cache files across one or more
servers or virtual machines by an adaptor cache pneuron;

allowing access to said distributed disk cache files by
participating applications, wherein said applications are
configured to perform operations on said distributed disk
data; and

removing said disk cache files automatically using a
high-low disk evaluation model to remove said distributed
disk cache files based on server disk utilization and
automatic evaluation aging for said distributed disk cache

files.

WO 2014/014906 PCT/US2013/050673

10

15

20

25

30

2. A system for processing large data and analysis
requests, said system comprising:

a pneuron server configured for operating under control
of a computer program product, said computer program product
comprising a computer program, for deploying a data
processing pneuron for acquiring data in real-time from one
or more application data sources, said data processing
pneuron for transforming said data into one or more self-
describing ASCII disk cache files;

said pneuron server configured for deploying one or more
adaptor cache pneuron, said adaptor cache pneuron operating
under control of a computer program product, said computer
program product comprising a computer program, for
distributing said one or more disk cache files across one or
more servers or virtual machines;

said one or more servers configured for allowing access
to said distributed disk cache files by one or more
distributed worker pneurons, wherein said distributed worker
pneurons are configured to perform operations on said
distributed disk data; and

said one or more worker pneurons configured removing
said disk cache files automatically using a high-low disk
evaluation model to remove said distributed disk cache files
based on server disk utilization and automatic evaluation

aging for said distributed disk cache files.

3. The system of claim 2 wherein said one or more worker
pneurons configured removing said disk cache files are
configured for removing disk cache files prior to storing

disk cache files received from said adaptor pneuron.

PCT/US2013/050673

WO 2014/014906

1/4

dal-

.............................. { vonounand

“, TYNOILdO
|
|
|
|
Z ANLOIaTHd -
u
oy 0 NOYN3Nd JUVANOD

Vi

T¥NOILJO

1

¢ ANILIId34d
IJILATYNY

o

~+——] U"0 NOYN3Nd

old

| AAILOIA3Hd
IJILATVNY

Ol

_ U0 NOYN3INd

JdvdNOD

JHOVO /d01dvay

3\

| IAILOIdIHd
IOILATYNY

\\.o_

A _\J
A43NO
3SvJ @3HOVO

[

A43N0

34SVO NOILNO3X3 ¥V1NO3IY

SUBSTITUTE SHEET (RULE 26)

WO 2014/014906

(50

LARGE
BATCH
1M

2/4

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/050673

SECRCRCEC

FIG. 2

PCT/US2013/050673

WO 2014/014906

3/4

€ 9lId

43
W3LSAS JHOVD @j N
A LSOH 1SOH SIHL NO S1SIX3 39VSSan
205 JHOYD 41335 OL ¥03HD a W3LSAS 31
| e/
™| | SS3008d 314 IHOVO 130 | M= gniay anno4 3novo 3 7€
AdOD IHOVD IAVS
0¢ 86 —— 30VdS XV
W3LSAS 3HOVO . $31143d0Yd XFHVMLAO0S
X 1SOH N |\ Y
9¢
1SOH
YIHLO WOYH WILSAS FTI4 —
139 JHOVD i b
ONISSIN O JHOYD 139 9 JOVdS dv310 BHe
0L ()34 JHOY) J3IHOVIY FOVdS [30vds XYW
Nm B S . . :
1830710313734 ¥ AN IS S XV 41 MOFHD € NAE Tk
_ \\L/ \l/
$S300¥d 3714 IHOVD 139 $S300¥d 3114 IHOVD IAVS
v JONIYI4H 3114 0s—’ ov—
L L wm,\r VLva 3714 IHOVD IAVS ')

JHOVO TvOOTNINLIY ©

o

wv\,_ JOVSSAWIHOVO 13O Y

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/050673

WO 2014/014906

4/4

¥ "'OlI4

- 2 | [-—
O—aro) =
T "
|
q90l |
|
|
|
“ o u3ayas
_ NOYN3INd
% | [
~—]
O—evol [
SQL]
Y !
viva viva
QNQL mNeL

001

ONISS3004d

< VLVd 30UV

404 1S3N03d

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings

