METHODS FOR THE REDUCTION OF STUTTER IN MICROSATELLITE AMPLIFICATION

Inventors: Sulekha Rao Coticone, Half Moon Bay, CA (US); Will Bloch, White Salmon, WA (US)

Assignee: Applied Biosystems Group, Foster City, CA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 09/850,514
Filed: May 7, 2001

Prior Publication Data

References Cited
U.S. PATENT DOCUMENTS
5,545,539 A 8/1996 Miller 435/91.2
5,571,674 A 11/1996 Hashina et al. 435/6
5,880,728 A 12/1996 Perlin 435/6
5,846,716 A 12/1998 Miller 435/6
5,935,787 A 8/1999 Sidransky et al. 435/6
6,077,664 A 6/2000 Slater et al. 435/6
6,156,512 A 12/2000 Schumai et al. 435/6

FOREIGN PATENT DOCUMENTS
DE \ 44 11 588 C1 \ 9/1995
WO \ WO 92/08800 \ 5/1992
WO \ WO 99/46400 \ 9/1996

OTHER PUBLICATIONS

(List continued on next page.)

Primary Examiner—Jeffrey Freedman
Assistant Examiner—Teresa Strzelecka
Attorney, Agent, or Firm—Michael P. Straher; Cozen O’Connor

ABSTRACT

The invention provides a method for reducing stutter in the amplification of a microsatellite comprising the steps of: providing a sample comprising a microsatellite having a G+C content of 50% or less; contacting the sample with at least one enzyme having nucleic acid polymerase activity; and incubating the sample with the enzyme for a sufficient amount of time and under conditions sufficient to amplify the microsatellite; wherein the incubation is performed in the presence of an amount of betaine, sorbitol or mixtures thereof, effective to reduce stutter relative to the amount of stutter observed in the absence of betaine and/or sorbitol. The invention also provides compositions containing betaine and/or sorbitol, kits for amplifying microsatellites having a G+C content of 50% or less, and methods of using all of the foregoing.

76 Claims, 6 Drawing Sheets
OTHER PUBLICATIONS

Mullis, K.B. et al., The Polymerase Chain Reaction, 1994.

Miller, M. J. et al., “Semiautomated Resolution of Overlapping Shutter Patterns in Genomic Microsatellite Analysis”.
FIG. 2

(CA)$_n$ Repeat

Control 28% Dinucleotide STR

46B : D6S1581 (2) / S2R1 / /

+betaine 14%

36B : D6S1581 (Mod 1) / Sr15 / /
FIG. 3

(CTTT)_n

6.1%

37B : D6SampleSr21 / Control / +betaine

3.0%

14B : A11SampleSR6 / Modified /
FIG. 5

Dinucleotide (CA)_n Repeat

Control

49%

5B: A1SampleSR1 / SR1 / /

3600 3150 + Sorbitol

35.5%

7B: +Sorbitol / SR3 / /

Dinucleotide STR
FIG. 6

Tetranucleotide
(CTTT)_n repeat

Control

75%

1B : A1SampleSR1 / SR1 / /

+ Sorbitol

3.1%

4B : A7SampleSR4 / SR4 / /
1
METHODS FOR THE REDUCTION OF STUTTER IN MICROSATellite AMPLIFICATION

FIELD OF THE INVENTION

The invention relates to methods, compositions and kits for reducing stutter in polymerase chain reaction amplification of microsatellites. In certain embodiments, the invention relates to the use of sorbitol and/or betaine in polymerase chain reactions in an amount effective to reduce stutter in the amplification of mononucleotide, dinucleotide, trinucleotide, tetranucleotide, and pentanucleotide microsatellites.

BACKGROUND OF THE RELATED ART

Microsatellites, or short tandem repeats (STRs), consist of tandemly repeated DNA sequence motifs of 1 to 6 nucleotides in length. They are widely dispersed and abundant in the eukaryotic genome, and are often highly polymorphic due to variation in the number of repeat units. This polymorphism renders microsatellites attractive DNA markers for genetic mapping, medical diagnostics, and forensic investigation. The combination of PCR and gel or capillary electrophoresis under denaturing conditions has greatly improved the genotyping of microsatellite DNA sequences. However, PCR artifacts exhibited by non-proofreading enzymes and referred to as stutter and the terminal transference side-reaction can complicate analysis of closely spaced microsatellite alleles.

Stutter signals differ from the PCR product representing the genomic allele by multiples of repeat unit size. For dinucleotide repeat loci, the prevalent stutter signal is generally two bases shorter than the genomic allele signal, with additional side-products that are 4 and 6 bases shorter. The multiple signal pattern observed for each allele especially complicates interpretation when two alleles from an individual are close in size (e.g., medical and genetic mapping applications) or when DNA samples contain mixtures from two or more individuals (e.g., forensic applications). Such confusion is maximal for mononucleotide microsatellite genotyping, when both genomic and stutter fragments experience one-nucleotide spacing.

All previous methods of analyzing mononucleotide, A repeat, “BAT” alleles have generated multiple stutter signals, frustrating accurate genotype determination. These studies have been able only to determine a size range for each allele.

There is a need in the art to develop PCR reaction conditions that minimize or eliminate stutter so that genetic analysis may be more accurate and reliable. This invention is directed to these, as well as other, important ends.

SUMMARY

In accordance with some embodiments of the methods of the invention, methods for reducing stutter in the amplification of a microsatellite are provided comprising the steps of:

(a) providing a sample comprising a microsatellite of interest, in which the microsatellite has a G+C content of 50% or less;
(b) contacting the sample with at least one enzyme having nucleic acid polymerase activity; and
(c) incubating the sample with the enzyme for a time and under conditions sufficient to amplify the microsatellite; wherein said incubation is performed in the presence of an amount of an additive effective to reduce stutter relative to the amount of stutter observed in the absence of the additive; wherein the additive is selected from the group consisting of betaine, sorbitol and mixtures thereof.

The invention also provides methods for reducing stutter in the amplification of a mononucleotide microsatellite comprising the steps of:

(a) providing a sample comprising a microsatellite of interest, in which the microsatellite has a G+C content of 50% or less;
(b) contacting the sample with at least one enzyme having nucleic acid polymerase activity; and
(c) incubating the sample with the enzyme for a time and under conditions sufficient to amplify the microsatellite; wherein the incubation is performed in the presence of an amount of an additive selected from the group consisting of betaine, sorbitol and mixtures thereof, wherein the additive is effective to reduce stutter relative to the amount of stutter observed in the absence of the additive.

The invention also provides methods for reducing stutter in the amplification of a dinucleotide microsatellite comprising the steps of:

(a) providing a sample comprising a microsatellite of interest, in which the microsatellite has a G+C content of 50% or less;
(b) contacting the sample with at least one enzyme having nucleic acid polymerase activity; and
(c) incubating the sample with the enzyme for a time and under conditions sufficient to amplify the microsatellite; wherein the incubation is performed in the presence of an amount of an additive selected from the group consisting of betaine, sorbitol and mixtures thereof, wherein the additive is effective to reduce stutter relative to the amount of stutter observed in the absence of the additive.

The invention further provides methods for reducing stutter in the amplification of a trinucleotide microsatellite comprising the steps of:

(a) providing a sample comprising a microsatellite of interest, in which the microsatellite has a G+C content of 50% or less;
(b) contacting the sample with at least one enzyme having nucleic acid polymerase activity; and
(c) incubating the sample with the enzyme for a time and under conditions sufficient to amplify the microsatellite; wherein the incubation is performed in the presence of an amount of an additive selected from the group consisting of betaine, sorbitol and mixtures thereof, wherein the additive is effective to reduce stutter relative to the amount of stutter observed in the absence of the additive.

The invention further provides methods for reducing stutter in the amplification of a tetranucleotide microsatellite comprising the steps of:

(a) providing a sample comprising a microsatellite of interest, in which the microsatellite has a G+C content of 50% or less;
(b) contacting the sample with at least one enzyme having nucleic acid polymerase activity; and
(c) incubating the sample with the enzyme for a time and under conditions sufficient to amplify the microsatellite; wherein the incubation is performed in the presence of an amount of an additive selected from the group consisting of betaine, sorbitol and mixtures thereof, wherein the additive is effective to reduce stutter relative to the amount of stutter observed in the absence of the additive.
ence of an amount of an additive selected from the group consisting of sorbitol, betaine and mixtures thereof, wherein the additive is effective to reduce stutter relative to the amount of stutter observed in the absence of the additive.

The invention also provides methods for reducing stutter in the amplification of a pentanucleotide microsatellite comprising the steps of:

(a) providing a sample comprising a microsatellite of interest, in which the microsatellite has a G+C content of 50% or less;

(b) contacting the sample with at least one enzyme having nucleic acid polymerase activity; and

(c) incubating the sample with the enzyme for a time and under conditions sufficient to amplify the microsatellite, wherein the incubation is performed in the presence of an amount of an additive selected from the group consisting of sorbitol, betaine and mixtures thereof, wherein the additive is effective to reduce stutter relative to the amount of stutter observed in the absence of the additive.

In further embodiments of the methods of the invention, methods are provided comprising the steps of:

(a) providing a sample comprising a nucleic acid that contains one or more microsatellites selected from the group consisting of mononucleotide microsatellites, dinucleotide microsatellites, trinucleotide microsatellites, tetranucleotide microsatellites and pentanucleotide microsatellites; and

(b) amplifying at least one nucleobase sequence of said nucleic acid, said nucleobase sequence comprising at least one of said microsatellites; said amplified microsatellite having a G+C content of 50% or less; wherein said amplification is performed in the presence of an additive selected from the group consisting of sorbitol, sorbitol and mixtures thereof.

Also provided in accordance with the present invention are methods for performing polymerase chain reaction amplification of a microsatellite selected from the group consisting of mononucleotide microsatellites, dinucleotide microsatellites, trinucleotide microsatellites, tetranucleotide microsatellites, and pentanucleotide microsatellites, said microsatellite having a G+C content of 50% or less; said method comprising the step of contacting said microsatellite with a polymerase in the presence of an amount of an additive effective to reduce the amount of stutter arising from said amplification relative to the amount of stutter observed in the absence of said additive, wherein the additive is selected from the group consisting of sorbitol, betaine and mixtures thereof.

Also provided by the present invention are methods of detecting cancer or a pre-cancerous condition and genetic disorders, such as Friedrich’s ataxia, in a subject comprising amplifying a region of DNA from a subject, wherein said region comprises a microsatellite selected from the group consisting of a mononucleotide repeat, a dinucleotide repeat, a trinucleotide repeat, a tetranucleotide repeat, and a pentanucleotide repeat, wherein said amplification comprises the steps of:

(a) providing a sample comprising a nucleic acid that contains a nucleic acid having a microsatellite instability;

(b) amplifying at least one nucleobase sequence of the nucleic acid, in which the nucleobase sequence comprises at least one of the microsatellites; and

(c) detecting alterations of the microsatellite as compared to corresponding microsatellites amplified from control tissue; the amplified microsatellite having a G+C content of 50% or less; wherein the amplification is performed in the presence of a sufficient amount of an additive to reduce stutter from that observed in the absence of the additive, wherein the additive is selected from the group consisting of sorbitol, betaine and mixtures thereof.

In some embodiments, the cancer or cancerous condition is colon cancer (HNPPC), or breast cancer. In further embodiments, the microsatellite amplification comprises at least one genetic locus, for example, (A),

In some embodiments, the present invention also provides methods of genetic mapping, comprising amplifying a plurality of regions of DNA from a sample containing DNA from a subject, wherein the regions comprise at least one microsatellite selected from the group consisting of a mononucleotide repeat, a dinucleotide repeat, a trinucleotide repeat, a tetranucleotide repeat, and a pentanucleotide repeat, wherein the amplification comprises the steps of:

(a) contacting said DNA with a enzyme having at least one enzyme having nucleic acid polymerase activity, and

(b) incubating said sample with the enzyme for a time and under conditions sufficient to amplify the regions; and

(c) separating amplified regions, forming a microsatellite pattern, wherein the incubation is performed in the presence of an amount of an additive effective to reduce stutter relative to the amount of stutter observed in the absence of the additive, wherein the additive is selected from the group consisting of sorbitol, betaine and mixtures thereof.

In further embodiments, the present invention also provides methods of personal genetic identification comprising amplifying a plurality of regions of DNA from a sample containing DNA from a subject, wherein said regions comprise at least one microsatellite selected from the group consisting of a mononucleotide repeat, a dinucleotide repeat, a trinucleotide repeat, a tetranucleotide repeat, and a pentanucleotide repeat; wherein the microsatellite has a G+C content of 50% or less; wherein the amplification comprises the steps of:

(a) contacting said DNA with an enzyme having nucleic acid polymerase activity; and

(b) incubating the sample with the enzyme for a time and under conditions sufficient to amplify the regions;

(c) separating amplified regions, forming a microsatellite pattern; and

(d) comparing the microsatellite pattern with a corresponding microsatellite pattern derived from the DNA sample of a second source; wherein the incubation is performed in the presence of an amount of an additive effective to reduce stutter relative to the amount of stutter observed in the absence of the additive, wherein the additive is selected from the group consisting of sorbitol, betaine, and mixtures thereof.

In some embodiments, the subject is a forensic sample and a said second source comprises at least one selected from the group consisting of the presumed matching source, a family member of the presumed matching source, and a database of sources.

In some embodiments of the methods of the invention, the microsatellite is a dinucleotide microsatellite, the microsatellite comprises a dinucleotide repeat selected from the group consisting of CA/TG and CT/AG. In further embodiments where the microsatellite is a trinucleotide microsatellite, the microsatellite comprises the dinucleotide repeat GAA/TTC. In further embodiments where the mic-
Rosatellite is a tetranucleotide microsatellite, the microsatellite comprises a tetranucleotide repeat selected from the group consisting of TCTA/AGTA, AGAA/TCT/ AAGG/CTTT, AATG/TAAT, TCTG/GAGA, and TATT/CAGA. In further embodiments where the microsatellite is a pentanucleotide microsatellite, the microsatellite comprises the pentanucleotide repeat AAAGA/TCTTT.

In some embodiments of the method of the invention, the microsatellite has a G+C content of 50% or less. In further embodiments, the microsatellite has a G+C content of 40% or less. In further embodiments, the microsatellite has a G+C content of 30% or less. In further embodiments, the microsatellite has a G+C content of 20% or less. In further embodiments, the microsatellite has a G+C content of 10% or less.

In some embodiments of the invention, the amount of stutter is reduced to 90% or less than the amount of stutter obtained in the absence of sorbitol and/or betaine. In other embodiments the amount of stutter is reduced to 80% or less. In other embodiments, the amount of stutter is reduced to 70% or less. In other embodiments, the amount of stutter is reduced to 60% or less. In other embodiments, the amount of stutter is reduced to 50% or less. In other embodiments, the amount of stutter is reduced to 40% or less. In other embodiments, the amount of stutter is reduced to 30% or less.

In some embodiments of the invention, the amplification comprises contacting said nucleic acid sequence with an enzyme having a polymerase activity. For example, the enzyme having polymerase activity may be selected from the group consisting of DNA polymerase from Thermaus aquaticus, Thermus thermophilus, other Thermus species, Bacillus species, Thermotoga species, and Pyrococcus species. For example, suitable polymerases include AmpliTaq Gold® DNA polymerase; AmpliTaq® DNA Polymerase; AmpliTaq® DNA Polymerase, Stoffel fragment; rTh DNA Polymerase; rTh DNA Polymerase XL; Bst DNA polymerase large fragment from Bacillus stearothermophilus; Vent and Vent Exo- from Thermococcus litoralis; Taq from Thermotoga maritima; Deep Vent and Deep Vent Exo- and Pfu from Pyrococcus; and mutants, variants and derivatives thereof.

Also provided in certain embodiments of the invention are compositions comprising:

(a) a nucleic acid sequence comprising a microsatellite, in which the microsatellite has a G+C content of 50% or less, the microsatellite being selected from the group consisting of mononucleotide microsatellites, dinucleotide microsatellites, trinucleotide microsatellites, tetranucleotide microsatellites and pentanucleotide microsatellites;

(b) at least two primers, each of said primers having a sequence that is substantially complementary to a portion of the nucleic acid sequence that is adjacent to the microsatellite;

(c) at least one enzyme having nucleic acid polymerase activity; and

(d) an additive selected from the group consisting of betaine, sorbitol and mixtures thereof.

In some embodiments of the methods and compositions of the invention, sorbitol and/or betaine is present in an amount of from 1.5 to 3.5 M. In other embodiments, sorbitol and/or betaine is present in an amount of 2.0 to 3.0 M. In other embodiments, sorbitol and/or betaine is present in an amount of 2.0 M.

In some embodiments of the invention, at least 0.5 mM of each of dNTPs are used. In other embodiments, at least 1 mM dNTPs are used.

In some embodiments, the present invention also provides kits for amplification of a target nucleic acid sequence, the target nucleic acid sequence comprising a microsatellite having a G+C content of 50% or less, selected from the group consisting of mononucleotide microsatellites, dinucleotide microsatellites, trinucleotide microsatellites, tetranucleotide microsatellites and pentanucleotide microsatellites, comprising, in separate containers: a polymerase, a plurality of deoxynucleotide triphosphates; and sorbitol and/or betaine. In some embodiments of the compositions and kits of the invention, the polymerase is selected from the group consisting of a DNA polymerase from Thermaus aquaticus, Thermus thermophilus, other Thermus species, Bacillus species, Thermococcus species, Thermotoga species, and Pyrococcus species. For example, suitable polymerases include, but are not limited to, AmpliTaq Gold® DNA polymerase; AmpliTaq® DNA Polymerase; AmpliTaq® DNA Polymerase, Stoffel fragment; rTh DNA Polymerase; rTh DNA Polymerase XL; Bst DNA polymerase large fragment from Bacillus stearothermophilus; Vent and Vent Exo- from Thermococcus litoralis; Taq from Thermotoga maritima; Deep Vent and Deep Vent Exo- and Pfu from Pyrococcus; and mutants, variants and derivatives thereof.

In some further embodiments of the invention, methods are provided in which a sample containing nucleic acid that is suspected of containing one or more microsatellites having a G+C content of 50% or less is contacted with an enzyme that polymerizes nucleotides in the presence of an effective amount of betaine and/or sorbitol to reduce observed stutter relative to the amount of stutter observed in the absence of betaine and/or sorbitol, and amplifying at least one nucleic acid sequence containing at least one microsatellite of the nucleic acid contained in the sample. Such microsatellites may include mononucleotide, dinucleotide, trinucleotide, tetranucleotide, and/or pentanucleotide microsatellites.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows GeneScan traces from PCR amplifications of a mononucleotide microsatellite ((A/T)n) for control conditions (upper panel) and with added betaine (lower panel).

FIG. 2 shows GeneScan traces from PCR amplifications of a dinucleotide microsatellite (CA/TG)n for control conditions (upper panel) and with added betaine (lower panel).

FIG. 3 shows GeneScan traces from PCR amplifications of a tetranucleotide microsatellite ((C/T)/AAAG)n for control conditions (upper panel) and with added betaine (lower panel).

FIG. 4 shows GeneScan traces from PCR amplifications of a mononucleotide microsatellite ((A/T)n) for control conditions (upper panel) and with added sorbitol (lower panel).

FIG. 5 shows GeneScan traces from PCR amplifications of a dinucleotide microsatellite (CA/TG)n for control conditions (upper panel) and with added sorbitol (lower panel).

FIG. 6 shows GeneScan traces from PCR amplifications of a tetranucleotide microsatellite ((C/T)/AAAG)n for control conditions (upper panel) and with added sorbitol (lower panel).

DETAILED DESCRIPTION

Most of the words used in this specification have the meaning that would be attributed to those words by one
skilled in the art. Words specifically defined in the Specification have the meaning provided in the context of the present invention as a whole, and as are typically understood by those skilled in the art. In the event that a conflict arises between an art-understood definition of a word or phrase and a definition of the word or phrase as specifically taught in this specification, the specification shall control. Headings used herein are merely for convenience, and are not to be construed as limiting in any way.

As used herein, the term “microsatellite” refers to a genetic locus comprising a short (e.g., 1-5 nucleotide), tandemly repeated sequence motif. As used herein “mononucleotide microsatellite” refers to a genetic locus comprising a repeated nucleotide (e.g., A/T). “Dimonucleotide microsatellite” refers to a genetic locus comprising a motif of two nucleotides that is tandemly repeated (e.g., CA/TG, CT/GA). “Trinucleotide microsatellite” refers to a genetic locus comprising motif of three nucleotides that is tandemly repeated (e.g., GAA/TTC). “Tetranucleotide microsatellite” refers to a genetic locus comprising a motif of four nucleotides that is tandemly repeated (e.g., TCTA/TTAG, AGAT/ATCT, AGAA/TTCT, AAGG/CATT, TTTG/GAAA, CTTT/AAAG and GATA/TATC). “Pentanucleotide microsatellite” refers to a genetic locus comprising a motif of five nucleotides that is tandemly repeated (e.g., AAAAGG/CATTT). Microsatellites may contain repeat-motif interspersions, or “cryptically simple sequence” (Tautz, D. et al. (1986) Nature 323:680:652–656). Such repeat-motif interspersions include simple repeat-motif interspersions wherein the microsatellite contains one or more interspersed repeats with the same length as the tandemly repeated sequence motif, but a different repeat sequence (Eichler, E. E. et al. (1994) Nat. Genet. 8:88–94; Eichler, E. E. et al. (1996) Hum. Mol. Genet. 5:319–330). For example, if the tandemly repeated sequence motif is TCTA, a simple repeat-motif interspersion may appear as follows: TCTA(TCTG), (TCTA), (SEQ ID NO:39), wherein the interspersed repeat “TCTG” interrupts the repeat of the TCTA tandemly repeated sequence motif. Repeat-motif interspersions also include more complex repeat-motif interspersions wherein the repeat motif interspersion is not the same length as the tandemly repeated sequence motif. For example, if the tandemly repeated sequence motif is TCTA, the complex repeat-motif interspersion may appear as follows: (TCTA) _TA(TCTA),TCTA(TCTA), (SEQ ID NO:40), wherein the tandemly repeated sequence motif is interrupted by TA and TCA. Other more complex repeat-motif interspersions include the combination of the simple repeat-motif interspersion and the complex repeat-motif interspersion in the same microsatellite. For example, such a complex sequence repeat-motif interspersion may appear as follows: (TCTA), (TCTG), , (TCTA), TA(TCTA), TCA(TCTA), TCCA(TCTA), (SEQ ID NO:41), wherein both forms of interspersed repeats interrupt the tandemly repeated sequence motif, TCTA. Microsatellites with and without interspersed repeats are encompassed by the term “microsatellites” as used herein.

As used herein, the term “stutter” or “stutter signal” refers to a PCR artifact wherein microsatellites are incorrectly amplified such that a diverse population of fragments of varying length are produced for each allele in the genomic source DNA. A typical “stutter signal” results from one or more PCR products that differ from the appropriate length of the microsatellite-containing fragment by one or more repeat-unit lengths of the microsatellite. As used herein “appropriate length of the microsatellite-containing fragment” refers to the length predicted from the primer sequences and the genomic target sequence, with or without one added nucleotide, depending on whether the PCR conditions promote or suppress the polymerase terminal transferase side reaction. A stutter signal may be perceived with the naked eye, such as by examining a band on an agarose or polyacrylamide gel, or may be perceived with the aid of instrumentation. A stutter signal seen on a gel typically appears as a blurry, shadow band due to microsatellites which are incorrectly amplified such that a diverse population of fragments of varying length are produced. A stutter signal as detected on a GeneScan trace or other electropherogram may appear as a quantified signal, such as a peak on a graph. Stutter signals may be represented by any means, such as, but not limited to, brightness, intensity (e.g., maximum intensity), magnitude of a signal output (e.g., peak height, integration of the area of a peak, peak width at half peak height), and the like. For example, in a GeneScan trace for a tetranucleotide microsatellite, a major stutter signal is typically seen as a peak found at four nucleobase units downfield (i.e., at a location corresponding to a shorter fragment) on the electropherogram from the major peak, which represents the allele. Other, less prominent stutter signals may be found at 8 and 12 nucleobase units downfield on the chromatogram. As used herein, the term “reducing stutter” is intended to mean the production of lower amounts of amplified stutter product, as reflected by a decrease in the number or signal intensity of stutter fragments.

As used herein “sorbitol” refers to the polyol (polyhydric alcohol) corresponding to glucose, represented by the following structural formula:

As used herein “betaine” refers to N,N,N-trimethylglycine.

As used herein, the term “isolated nucleic acid molecule” refers to a nucleic acid molecule (DNA or RNA) that has been removed from its native environment.

As used herein, “DNA” refers to deoxyribonucleic acid in its various forms as understood in the art, such as genomic DNA, cDNA, isolated nucleic acid molecules, vector DNA, chromosomal DNA. “Nucleic acid” refers to DNA or RNA in any form. Examples of isolated nucleic acid molecules include, but are not limited to, recombinant DNA molecules contained in a vector, recombinant DNA molecules maintained in a heterologous host cell, partially or substantially purified nucleic acid molecules, and synthetic DNA molecules. Typically, an “isolated” nucleic acid is free of
sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, is generally substantially free of other cellular material or culture medium when produced by recombinant techniques, or of chemical precursors or other chemicals when chemically synthesized.

As used herein "nucleobase sequence" refers to a sequence of consecutive nucleobases.

As used herein, "anneal" refers to specific interaction between strands of nucleotides wherein the strands bind to one another substantially based on complementarity between the strands as determined by Watson-Crick base pairing. It is not necessary that complementarity be 100% for annealing to occur.

As used herein, "amplifying" refers to enzymatically increasing the amount of a specific nucleotide sequence in a polymerase chain reaction.

As used herein "incubating" refers to maintaining a state of controlled conditions such as temperature over a period of time.

As used herein "denaturation" refers to the separation of nucleotide strands from an annealed state. Denaturation may be induced by a number of factors including ionic strength of the buffer, temperature, or chemicals that disrupt base pairing interactions.

As used herein "G+C content" refers to the relative amount of guanosine and cytosine present in a given nucleic acid or portion thereof that is of interest, such as a microsatellite. The "G+C content" of a given nucleobase sequence, expressed in percent, can be calculated from the formula 100(#G+#C)/#tot where #G is the number of guanine nucleobases in the nucleobase sequence, #C is the number of cytosine nucleobases in the nucleobase sequence, and Tot is the total number of nucleobases in the nucleobase sequence.

As used herein, "sufficient amount of time" when referring to time for the amplification of nucleic acid, refers to the time which allows the enzyme used to complete the polymerization of deoxynucleotide triphosphates into the amplifying nucleic acid. The amount of time required varies depending on several factors which are well-known by persons of ordinary skill in the art. General principles of PCR and strategies for amplification may be found in such texts as, for example, Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, 2001 and THE POLYMERASE CHAIN REACTION, Mullis, K. B., F. Ferre, and R. A. Gibbs, Eds., Birkauser, Boston, 1994; AND MOLECULAR CLONING: A LABORATORY MANUAL (3rd ed.) Sambrook, J. & D. Russell, Eds. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001).

As used herein "conditions sufficient to amplify microsatellites" refers to reaction conditions for the PCR reactions. The reaction conditions include the chemical components of the reaction and their concentrations, the temperatures used in the reaction cycles, the number of cycles of the reaction, and the durations of the stages of the reaction cycles.

Typically, buffered water is used as the milieu for the reaction. The other chemical components of standard PCR reactions include a DNA polymerase, deoxyribonucleoside triphosphates ("dNTPs"), oligonucleotide primers, divalent metal ion, and a DNA sample expected to contain the PCR target.

The solvent used for PCR typically contains a buffering agent such as Tris·HCl and non-buffering salts such as KCl. The buffering agent may be any known buffers in the art, and may be varied to optimize PCR results by routine experimentation. Persons of ordinary skill in the art will readily be able to determine optimal buffering conditions. Some PCR buffers may be optimized depending on the enzyme used. As an example, but not by way of limitation, AmpliTaq Gold® DNA polymerase has an optimum KCl concentration of 50 mM, AmpliTaq® DNA Polymerase, Stoffel fragment has an optimum KCl concentration of 10 mM, and rTth DNA Polymerase and rTth DNA Polymerase XL, have an optimum KCl concentration of 75–100 mM.

Divalent metal ions are often advantageous to allow the polymerase to function efficiently. For example, but not by way of limitation, magnesium ions allow certain DNA polymerases to function effectively. Typically, MgCl₂ or MgSO₄ is added to reaction buffers to supply the optimum magnesium ion concentration. The magnesium ion concentration required for optimal PCR amplification may depend on the specific set of primers and template used. Thus, the amount of magnesium salt added to achieve optimal amplification is often determined empirically, and is a routine practice in the art. Generally, the concentration of magnesium ion for optimal PCR can vary between 1 and 10 mM. A typical range of magnesium ion concentration in PCR reactions is between 1.0 and 4.0 mM, varying around a mid point of 2.5 mM.

Deoxynucleotide triphosphates ("dNTPs"), which are the building blocks of the amplifying nucleic acid molecules, are typically supplied in standard PCR reactions at a concentration of 40–200 µM each of deoxycytidine triphosphate ("dATP"), deoxyguanosine triphosphate ("dGTP"), deoxyinosine triphosphate ("dITP"), and deoxythymidine triphosphate ("dTTP"). Other dNTPs, such as deoxyuridine triphosphate ("dUTP"), and dNTP analogs, and conjugated dNTPs may also be used, and are encompassed by the term "dNTPs" as used herein. While use of dNTPs at such concentrations is amenable to the methods of the invention, concentrations of dNTPs higher than 200 µM may be advantageous. Thus, in such embodiments of the methods of the invention, the concentration of each dNTP is generally at least 500 µM and may range up to 2 mM. In some further embodiments, concentration of each dNTP may range from 0.5 mM to 1 mM.

The enzyme that polymerizes the nucleotide triphosphates into the amplified fragments of the PCR may be any DNA polymerase, including heat-resistant polymerases known in the art. Polymerases that may be used in the invention include, but are not limited to DNA polymerases from such organisms as Thermus aquaticus, Thermus thermophilus, Thermococcus litoralis, Bacillus stea rothermophilus, Thermotoga maritima and Pyrococcus sp. The enzyme may be isolated from the source bacteria, produced by recombinant DNA technology or purchased from commercial sources. For example, DNA polymerases are available from Applied Biosystems and include AmpliTaq Gold® DNA polymerase; AmpliTaq® DNA Polymerase; AmpliTaq® DNA Polymerase, Stoffel fragment; rTth DNA Polymerase; and rTth DNA Polymerase XL. Other suitable polymerases include, but are not limited to Pfu, Bst DNA polymerase large fragment from Bacillus stea rothermophilus, Vent and Vent Exo- from Thermococcus litoralis, Tma from Thermoto ga maritima, Deep Vent and Deep Vent Exo- and Pfu from Pyrococcus, and mutants, variants and derivatives of the foregoing.

Oligonucleotide primers are added to the reaction and demarcate the 5' and 3' ends of the amplified fragment. One
oligonucleotide primer anneals to the sense (+strand) of the denatured, template DNA, and the other oligonucleotide primer anneals to the antisense (−strand) of the denatured, template DNA. Typically, oligonucleotide primers are 12–25 nucleotides in length, however, they may be shorter or longer depending on the specific template sequence to be amplified, and the length of the primer is not essential to the operation of the invention. Oligonucleotide primers may be designed to anneal to specific portions of DNA that flank a microsatellite of interest to specifically amplify the portion of DNA between the primer-complementary sites. Generally, oligonucleotide primers are chemically synthesized. One of ordinary skill in the art may easily design specific primers to amplify a target microsatellite of interest. Furthermore, there are many known primer sequences to amplify microsatellite regions. Any of these may be used, and are within the scope of the invention.

The oligonucleotide primers may be composed of adenosine, thymidine, guanosine, cytidine, uracil, nucleoside analogs (e.g., locked nucleic acids (LNA), peptide nucleic acid (PNA), phosphorimidates) and nucleosides containing or conjugated to chemical moieties such as radioisotopes (e.g., 32P, 35S), fluorescent molecules, minor groove binders, or any other nucleoside conjugate known in the art.

In some embodiments of the invention, a fluorophore is used to tag at least one primer of the PCR reaction. In some embodiments, primers for different target fragments can be tagged with different fluorophores (that produce differently colored products) and may be used in the same multiplex PCR reaction and subsequently analyzed together. Typically, the forward primer is tagged, but the reverse primer may also be tagged. Examples of fluorophores include, but are not limited to, fluorescein (which absorbs maximally at 492 nm and emits maximally at 520 nm); TAMRA, N,N,N′,N′-tetramethyl-6-carboxyfluorescin (which absorbs maximally at 555 nm and emits maximally at 580 nm); FAM, 5-carboxyfluorescein (which absorbs maximally at 495 nm and emits maximally at 525 nm); JOE, 2′,7′-dimethoxy-4′, 5′-dichloro-6-carboxyfluorescein (which absorbs maximally at 525 nm and emits maximally at 555 nm), ROX, 6-carboxy-X-rhodamine (which absorbs maximally at 585 nm and emits maximally at 605 nm); CY3 (which absorbs maximally at 552 nm and emits maximally at 570 nm); CY5 (which absorbs maximally at 643 nm and emits maximally at 667 nm); TET, tetrachloro-fluorescein (which absorbs maximally at 521 nm and emits maximally at 536 nm); and HEX, hexachloro-fluorescein (which absorbs maximally at 535 nm and emits maximally at 556 nm).

Other known components of PCR reactions may be used within the scope of the invention. Such components include, but are not limited to, detergents (e.g., Triton X-100, Nonidet P-40 (NP-40), Tween-20) and agents that disrupt mismatching of nucleotide pairs, such as dimethylsulfoxide (DMSO), and tetramethylammonium chloride (TMAC).

As used herein the term “additive” when referring to a PCR reaction, refers to sorbitol, betaine and mixtures thereof.

PCR reaction times, temperatures and cycle numbers may be varied to optimize a particular reaction as a matter of routine experimentation. Those of ordinary skill in the art will recognize the following as guidance in determining the various parameters for PCR reactions, and also will recognize that variation of one or more conditions is within the scope of the invention.

PCR reaction temperature and time are determined in three stages: denaturation, annealing and extension. One round of denaturation, annealing and extension is referred to as a “cycle.” Denaturation is generally conducted at a temperature that permits the strands of DNA to separate, yet not destroy polymerase activity. Generally, thermostable polymerases are used. However, heat-labile polymerases may be used if they are replenished after each denaturation step of the PCR. Thermostable polymerases can withstand high temperatures and maintain some level of activity. Typically, denaturation is conducted above 90° C. and below 100° C. In some embodiments, denaturation is conducted at a temperature of 94–95° C. Denaturation of DNA is generally conducted for at least 1 to 30 seconds. In some embodiments, denaturation is conducted for 1 to 15 seconds.

In other embodiments, denaturation is conducted for up to 1 minute or more. In addition to the denaturation of DNA, for some polymerases, such as AmpliTaq Gold®, incubation at the denaturation temperature also serves to activate the enzyme. Therefore, it may be advantageous to allow the first step of PCR (denaturation) to be longer than subsequent denaturation steps when these enzymes are used.

During the annealing phase, oligonucleotide primers anneal to the target DNA in their regions of complementarity and are substantially extended by the DNA polymerase once the latter has bound to the primer-template duplex.

In a conventional PCR, the annealing temperature typically is at or below the melting point (Tm) of the least stable primer-template duplex, where Tm can be estimated by any of several theoretical methods well known to practitioners of the art. For example, the Tm may be determined by the formula:

\[T_{m} = (4^\circ C \times \text{number of } G \text{ and } C \text{ bases}) + (2^\circ C \times \text{number of } A \text{ and } T \text{ bases}) \]

Typically, in standard PCRs, the annealing temperature is 5° C. to 10° C. below the estimated Tm of the least stable primer-template duplex. The annealing time is between about 30 seconds and 2 minutes. However, in certain embodiments of the methods of the invention, the high concentration of betaine and/or sorbitol increases reagent viscosity and appears to slow certain steps of the reaction (e.g., primer annealing and polymerase binding to the primer-template duplex). Thus, in certain embodiments of the methods of the invention, the annealing step is performed for a longer period of time than would be used in standard PCR protocols, typically for at least 3 minutes and as long as 5 to 6 minutes.

Sorbitol and betaine not only increase reaction viscosity, but also are mild DNA denaturants. Thus, in certain embodiments of the methods of the invention, it is may be advantageous to use a lower temperature for annealing primers to the template than would be used by one of ordinary skill in the art for standard PCR reactions. In general, temperatures lower than 10° C. below the Tm (estimated in the absence of additive) may be employed in certain embodiments of the invention.

The annealing phase typically is followed by an extension phase. “Extension” is conducted for a sufficient amount of time to allow the enzyme to complete primer extension into the appropriately sized fragments. As discussed above, the addition of high concentrations of sorbitol and/or betaine increases the viscosity of the reaction, making unconventionally long extension times advantageous in certain embodiments of the methods of the invention; i.e., the use of extension times that are longer compared to extension times one of ordinary skill in the art would calculate for standard PCR reactions. Furthermore, as noted above for the annealing phase, sorbitol and betaine are mild denaturants. Thus, in some embodiments of the methods of the invention, it may
be advantageous to also use a lower temperature for extension than would be used by one of ordinary skill in the art for standard PCR reactions. Thus, for some embodiments, temperatures for extension are below the temperature reported for optimal activity of the polymerases used.

The number of cycles of PCR (denaturation, annealing and extension) used will determine the desired amount of amplification. PCR is an exponential amplification of DNA molecules. Thus, theoretically, after each cycle of PCR, there are twice the number of fragments that were present in the previous cycle. Typically, 20–30 cycles of PCR are performed. More typically, 25–30 cycles are performed, although cycle number is not particularly limited.

For some embodiments, it is advantageous to incubate the reactions at a certain temperature following the last phase of the last cycle of PCR. In some embodiments, a prolonged extension phase is selected. In other embodiments, an incubation at a low temperature (e.g., 4°C) is selected.

In one embodiment of the invention, methods are provided for reducing stutter in the amplification of a microsatellite wherein a sample containing a microsatellite of interest is provided, wherein the microsatellite has a GC content of 50% or less. The sample is contacted with at least one enzyme having nucleic acid polymerase activity, and the sample is incubated with the enzyme for a sufficient amount of time and under conditions sufficient to amplify said microsatellite. The incubation is performed in the presence of an amount of betaine and/or sorbitol that is effective to reduce stutter relative to the amount of stutter observed in the absence of betaine and/or sorbitol. The PCR reaction includes primers that are selected to amplify the target microsatellite of interest and which are optionally tagged, dNTPs, buffer, the sample containing the target nucleic acid to be amplified, betaine and/or sorbitol and the polymerase.

In another embodiment of the invention, primer extension reactions may be performed with greater accuracy when conducted in the presence of sorbitol and/or betaine. In primer extension reactions, an oligonucleotide primer is permitted to bind to a specific target sequence on a nucleic acid molecule in the presence of dNTPs and a polymerase. The reaction is incubated and the polymerase polymerizes the dNTPs and extends the oligonucleotide primer in the 5’ to 3’ direction to form the complement of the target nucleic acid molecule. The primer may contain a detectable label, or the dNTPs used may contain a detectable label. Further, the dNTPs may be modified dNTPs, including, such as, but not limited to, dideoxynucleotide triphosphates.

The microsatellites amplified in the methods of the invention may be mononucleotide microsatellites, dinucleotide microsatellites, trinucleotide microsatellites, tetranucleotide microsatellites and/or pentanucleotide microsatellites, and the microsatellites may include repeat motif interspersions. The mononucleotide microsatellites of the invention comprise repeats of A, such as have been noted in some tumor markers where microsatellite instability has been described. The complementary strand of this portion of DNA would contain repeats of T. To denote the microsatellite with its complementary strand, the notation A/T is used. In some embodiments, the microsatellite is a dinucleotide microsatellite. Examples of dinucleotide microsatellites include, but are not limited to CA/TG, and CT/AG. In other embodiments, the microsatellite is a trinucleotide microsatellite, including but not limited to AAG/TTT, AGG/CCC, AAT/TCC.

GAAA, TCTG/CAGA, and TAGG/CCTA. In other embodiments, the microsatellite is a pentanucleotide microsatellite, including but not limited to [TCTG] (TCTG)5, TCTA, (TCTA)5 (SEQ ID NO:42–45); D16S539 ([AGAT]5; D8S179 ([TCTG])5 (wherein R is purine); D21S11 ([TCTA]TCTG), TCA(TCTA), TCA(TCTA), TCTA(TCTA)5 (SEQ ID NO:42–45); D18S551 ([AGAA]5; D19S433 ([AGGA](AAAG)(AAGG)(TAGG)(AAGG)] (SEQ ID NO:46); TH01 ([AAGT]); FGA ([TTTC]TGTCTCTCTCTCC) (SEQ ID NO:47); D7S820 ([GAIA]); D13S317 (GAIA); DSS818 ([AGAT]) (SEQ ID NO:48); CSF1PO ([AGAT]); and TPOX ([AATG]).

The microsatellites amplified in the method of the invention generally have a GC content of 50% or less. In some embodiments, the microsatellite has a GC content of 40% or less. In other embodiments, the microsatellite has a GC content of 30% or less. In other embodiments, the microsatellite has a GC content of 20% or less. The amount of sorbitol and/or betaine added to the PCR reaction is generally in an amount effective to reduce stutter relative to the amount of stutter observed in the absence of sorbitol and/or betaine. In some embodiments, the amount of sorbitol and/or betaine added to the PCR reaction is generally 1.5 to 3.5 M. In some embodiments, sorbitol and/or betaine is added in an amount of 2.0 to 3.0 M. In other embodiments, sorbitol and/or betaine is added in an amount of 2.0 M. The sorbitol and/or betaine may be added from a separate stock or may be added as part of another PCR reagent. For example, in one embodiment of the invention, the sorbitol and/or betaine is included in the DNA polymerase preparation and is added when the enzyme is added to the reaction. In another embodiment of the invention, the sorbitol and/or betaine is included with a preparation of magnesium ion containing reagent (e.g., MgCl2 or MgSO4) so that the sorbitol and/or betaine is added with the MgCl2 or MgSO4.

Sorbitol and betaine may be included together in the same reaction. When sorbitol and betaine are used together, the concentration of the total amount of additive (i.e., sorbitol and betaine) is generally 1.5 to 3.5 M. In some embodiments, the amount of additive is 2.0 to 3.0 M. In other embodiments the amount of additive is 2.0 M. The additive may be in any combination of sorbitol with betaine, from 100% sorbitol to 100% betaine. For example, but not by way of limitation, the additive may be 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% betaine, the remainder being sorbitol; or 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% sorbitol, the remainder being betaine.

Sorbitol and betaine have different chemical properties which may be exploited for various purposes. For example, sorbitol is more hydrolytically inert than betaine, which may impart a longer shelf-life to the PCR reagents. As another example, betaine has a carboxylate group which may affect the pH of the PCR reaction when betaine is added in high concentrations, whereas sorbitol possesses no acid-base properties.

In accordance with some embodiments of the invention, betaine and/or sorbitol is employed in PCR protocols using concentrations of dNTPs that are higher than those currently employed in standard PCR protocols. Thus, in some embodiments of the methods of the invention, PCR is
employed to amplify one or more mono-, di-, tri-, tetra-, or pentanucleotide microsatellites wherein the PCR reaction mixture includes concentrations of dNTPs from 0.5 mM to 2.0 mM, and concentrations of sorbitol, betaine, or mixtures thereof, at a concentration of 1.5 to 3.5 M. In further embodiments of the methods of the invention, PCR is employed to amplify one or more mono-, di-, tri-, tetra- or pentanucleotide microsatellites wherein the PCR reaction mixture includes concentrations of dNTPs from 1.0 mM to 2.0 mM, and concentrations of sorbitol, betaine, or mixtures thereof, at a concentration of 2.0 to 3.0 M.

In accordance with the embodiments of the methods of the invention, the addition of betaine and/or sorbitol to the reactions is effective in reducing stutter to between 90% and 20% of the amount of stutter observed in the absence of betaine and/or sorbitol. In some embodiments, the amount of stutter observed with the addition of betaine and/or sorbitol is reduced to 90% or less than the amount observed in the absence of betaine and/or sorbitol. In some embodiments, the amount of stutter observed with the addition of betaine and/or sorbitol is reduced to 80% or less than the amount observed without the addition of betaine and/or sorbitol. In other embodiments, the amount of stutter observed with the addition of betaine and/or sorbitol is reduced to 70% or less than the amount observed without the addition of betaine and/or sorbitol. In other embodiments, the amount of stutter observed with the addition of betaine and/or sorbitol is reduced to 60% or less than the amount observed without the addition of betaine and/or sorbitol. In other embodiments, the amount of stutter observed with the addition of betaine and/or sorbitol is reduced to 50% or less than the amount observed without the addition of betaine and/or sorbitol. In other embodiments, the amount of stutter observed with the addition of betaine and/or sorbitol is reduced to 40% or less than the amount observed without the addition of betaine and/or sorbitol. In other embodiments, the amount of stutter observed with the addition of betaine and/or sorbitol is reduced to 30% or less than the amount observed without the addition of betaine and/or sorbitol. In other embodiments, the amount of stutter observed with the addition of betaine and/or sorbitol is reduced to 20% or less than the amount observed without the addition of betaine and/or sorbitol. The reduction of stutter is measured by determining the percent stutter in the presence of additive (+A), and in the absence of additive (−A), and performing the following calculation (+A)/(−A)×100. Percent stutter is determined, for example, by the peak height of the stutter signal over the peak height of the allele signal times 100. Alternatively, percent stutter is determined by peak width at half peak height of the stutter signal over the peak width at half peak height of the allele signal times 100. In other embodiments, percent stutter is determined by area of the peak of the stutter signal over area of the peak of the allele signal times 100. Any other method of determining percent stutter in the presence of the additive (i.e., sorbitol and/or betaine) relative to the percent stutter in the absence of the additive may be used, and the percent reduction determined.

In further embodiments of the invention, methods are provided in which a sample containing nucleic acid that is suspected of containing one or more microsatellites (e.g., mononucleotide microsatellites, dinucleotide microsatellites, trimonucleotide microsatellites, tetranucleotide and/or pentanucleotide microsatellites having a G+C content of 50% or less) is contacted with an enzyme that polymerizes nucleotides in the presence of an amount of betaine and/or sorbitol to effectively reduce observed stutter relative to the amount of stutter observed in the absence of betaine and/or sorbitol, and amplifying at least one nucleobase sequence containing at least one microsatellite of the nucleic acid contained in the sample.

In further embodiments of the invention, PCR reactions as described herein are employed to amplify fragments from at least one microsatellite region. In certain embodiments, the fragments are amplified with a detectable tag (e.g., a fluorophore-tagged primer) or with a hybridization enhancer, e.g., a minor groove binder. Where more than one microsatellite region is to be amplified, detectable tags are selected such that different products are easily distinguished. As an example, but not by way of limitation, different colored fluorophores may be used to amplify different microsatellites. Furthermore, the same color fluorophore may be used to amplify fragments containing microsatellites that generate fragments of different sizes which are readily discernable, e.g., by electrophoretic separation. The PCR products can be analyzed in on a sieving or non-sieving medium. In some embodiments of the invention, for example, the PCR products are analyzed by capillary electrophoresis as described in Wenz, H. et al. (1998) Genome Res. 8:69–80. In other embodiments of the invention, for example, the PCR products are analyzed by slab gel electrophoresis as described in Christensen, M. et al. (1999) Scand. J. Clin. Lab. Invest. 59(3):167–177. Fragments may be analyzed by chromatography (e.g., size exclusion chromatography (SEC)).

In certain embodiments, the methods of the invention decrease the number or intensity of stutter bands, or shadow bands, on standard gels. Thus, the methods of the invention provide for more simplified and more accurate interpretation of banding patterns on gels, with increased resolution of bands. Accordingly, for some embodiments of the invention, the PCR reactions may be analyzed on agarose or polyacrylamide gels using standard techniques. In accordance with the embodiments of the invention, the use of sorbitol or betaine in the analysis of microsatellites by PCR provides a marked enhancement in the diagnostic capabilities of microsatellites in mono-, di-, tri-, tetra- and pentanucleotide-repeat microsatellites.

In some embodiments, the invention provides kits. In some embodiments, the kits of the invention contain a concentrated stock solution of sorbitol and/or betaine for addition to the PCR reactions such that sorbitol and/or betaine is diluted to be present in an amount of 1.5 to 3.5 M in the PCR. Typically, the sorbitol and/or betaine is diluted to be present in an amount of 2 to 3 M. In addition to the sorbitol and/or betaine solution, the kits may contain at least one of the following reagents: dNTPs (either separately or as a mixture), DNA polymerase, buffer, and primers to amplify microsatellites. The kits may also contain conventional kit components, such as instructions for use.

Microsatellite markers that exhibit a high degree of polymorphism are exploited in many important applications. Recently, the A-repeat BAT loci have been used in studying microsatellite instability (MSI) which correlates with certain cancers (Chen et al. (1995) Cancer Res. 55:174–180; Ionov et al. (1993) Nature 363:558–561 De La Chapelle (1999) Eur. J. Hum. Genet. 7:407–408). However, due to the small allelic size differences in these markers and stutter during PCR, it has been difficult to determine whether the DNA samples are homozygous or heterozygous. Additionally, polymorphic variations at these loci in individuals of different ethnic origins supports the need to define the different allelic profiles and frequencies (Pyatt et al. (1999) Am. J. Pathol. 155:349–353).
Detection of genetic disorders associated with aberrant microsatellites is an application of the methods of the invention. Samples may be taken from tissues or individuals suspected of harboring aberrant microsatellites in their DNA and the DNA may be amplified by PCR in the presence of an sufficient amount of betaine and/or sorbitol under conditions sufficient to reduce stutter relative to observed stutter in the absence of betaine and/or sorbitol for microsatellites with a G+C content of 50% or less. The resulting PCR products may be compared to PCR products from normal tissue, or tissue from normal individuals, and variation assessed. Aberrant microsatellites may indicate a propensity to develop a genetically-based disorder, or may indicate the presence of a genetically-based disease. Such disorders include, but are not limited to cancer, pre-cancerous conditions (e.g., colorectal and breast cancer), and Friedrich’s ataxia. As an example, but not by way of limitation, colorectal cancer may be diagnosed using the method of the invention by amplification of BAT-25 and BAT-26 poly-A repeat microsatellites in the 50C10, 52H10 and/or apoD genetic locus in the presence of a sufficient amount of sorbitol and/or betaine. As another non-limiting example, Friedrich’s ataxia may be detected by amplifying the GAA/TTIC microsatellite region of the frataxin gene.

In a specific embodiment, PCR amplification reactions may be set up to amplify a mononucleotide repeat using the BAT-25 or BAT-26 markers. BAT-26 and BAT-25 once were thought to exist as single alleles in the genomes of most people. BAT-26 once was thought to contain a region of 26 repeats A bases in 95% of the population (de la Chapelle (1999) *Eur. J. Hum. Genet.* 7:407–408), and polymorphisms in this region has been associated with colorectal tumors. Application of the present invention shows that these and other BAT loci are more polymorphic than originally thought and allows accurate determination of their true allelic size range. The PCR reactions may be set up such that one or more loci may be examined. Useful loci are 50C10, 52H10 and apoD. Sense and antisense primers for each of these loci are: 50C10 sense, 5’-cct aat gtt ccg agg tgg-3’ (SEQ ID NO: 1); 50C10 antisense, 5’-cct tca tgg gtc tgg get t-3’ (SEQ ID NO: 2); 52H10 sense, 5’-cct tct cta tta aat aag tga a-3’ (SEQ ID NO: 3); 52H10 antisense, 5’-cct cat aat tta ctc aac aca tcg t-3’ (SEQ ID NO: 4); apoD sense, 5’-cct gat gca aca cgt ctc gct-3’ (SEQ ID NO: 5); apoD antisense, 5’-ggc taa ggg ctc gat g-3’ (SEQ ID NO: 6); BAT-10, 5’-FAM gat aat atca ttg tga cag cag tga gat ggc ggc g-3’ (SEQ ID NO: 7) and 5’-gac gat gga gat ggt gtc-3’ (SEQ ID NO: 8) (Parsons et al. (1995) *Cancer Res.* 55:5548–5550); BAT-16, 5’-FAM tcc act gtt gtt tta ggc gat g-3’ (SEQ ID NO: 9) and 5’-aag cgc tac tct ctc ccc cag tct-3’ (SEQ ID NO: 10) (Zhou et al. (1997) *Oncogene* 15:1713–1718); BAT-25, 5’-FAM tccct cca agg atg taa gtc-3’ (SEQ ID NO: 11) and 5’-tct gca ttt tta ctc tgg ctg-3’ (SEQ ID NO: 12) (Parsons et al. (1995) *Cancer Res.* 55:5548–5550); BAT-26, 5’-FAM tga cta ctt gtt act tct ctc gca-3’ (SEQ ID NO: 13) and 5’-aaat cca aag gag gga gga ggt-3’ (SEQ ID NO: 14) (Parsons et al. (1995) *Cancer Res.* 55:5548–5550); BAT-34C4 F, 5’-FAM acctc ggg ggt act tcc tct-3’ (SEQ ID NO: 15) and 5’-aaat cca aag gag gga gga ggt-3’ (SEQ ID NO: 16) (Zhou et al. (1997) *Oncogene* 15:1713–1718). The sense primers of each of these loci may be tagged with a different fluorophore to readily distinguish the PCR products. The PCR reactions may be setup as follows: 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 4.5 mM MgCl2, 1.0 mM each of dATP, dGTP, dCTP, and dTTP, 2.5 U Taq DNA polymerase and 0.2 M sorbitol. The reaction may then proceed as follows: 94°C for 1 minutes, and 28 cycles of 94°C for 15 seconds, 60°C for 3 minutes and 65°C for 5 minutes.

PCR reactions are then analyzed by denaturing samples and separating using a capillary electrophoresis protocol in an ABI PRISM® 310 genetic analyzer, or by separating on a 4% agarose acrylamide, 8 M urea gel, prepared for an ABI 377 Automated Fluorescence DNA Sequencer. Sequence data may be analyzed with GeneScan Software from Applied Biosystems. Alteration in the size of the amplified fragment as compared to normal, control tissues or samples could be indicative of cancer or a predisposition to developing cancer.

The methods of the invention are also useful in such applications as genetic mapping (linkage analysis). Linkage analysis may be accomplished, for example, by using a panel of primers to amplify a set of loci containing microsatellites that have a G+C content of 50% or less in the presence of a sufficient amount of betaine and/or sorbitol to reduce the observation of stutter from that observed in the absence of betaine and/or sorbitol. Genetic loci such as D3S1358; VWA; D16S539; D8S1179; D21S11; D18S51; D19S433; TH01; FGA; D7S820; D13S317; D5S818; CSF1PO; TPX; hypoxanthine phosphoribosyltransferase (primers: 5’-atg cca cag cag aat ctc acct ccc-3’ (SEQ ID NO:17) and 5’-cag ttc tgt ctt acc tgt cgg-3’ (SEQ ID NO:18); intestinal fatty acid-binding protein (primers: 5’-gta tca gtt tca tag ggt ccc c-3’ (SEQ ID NO:19) and 5’-cag ttc gtt ctt ctt att gtc cgg c-3’ (SEQ ID NO:20)); recognition/ surface antigen (primers: 5’-ttg gat gca cac caa ggt gaa ctt g-3’ (SEQ ID NO:21) and 5’-cgg gaa aag tgg tgc agg ggt g-3’ (SEQ ID NO:22)); c-fms proto-oncogene for CFS-1 receptor (primers: acc ctt cag ctc cag agg acc agg act agg c-3’ (SEQ ID NO:23) and 5’-tac ccc aca cca ctc gac ctc ccc-3’ (SEQ ID NO:24)); tyrosine hydroxylase (primers: gtc gga gca gat cag ctg gga taa ggt ggt gtc gtt-3’ (SEQ ID NO:25) and 5’-att caa gga tgt ctt ggt ggt c-3’ (SEQ ID NO:26)); pancreatic phospholipase A2 (primers: 5’-ggt tgt caa ggt cag gtt ggt agg a-3’ (SEQ ID NO:27) and 5’-ttg act act tat gtc cga gga t-3’ (SEQ ID NO:28)); coagulation factor XIII (primers: 5’-gag gtt gca ggt gct ttg cac cca-3’ (SEQ ID NO:29) and 5’-cct cgg aat ccc gag cca gca c-3’ (SEQ ID NO:30)); aromatase cytochrome P450 (primers: 5’-ggt aag cag cag ctt att ccc caa ggt cgc g-3’ (SEQ ID NO:31) and 5’-gct ctt cgg aag cct cag ggt cgg-3’ (SEQ ID NO:32)); lipoprotein lipase (primers: 5’-ctt aag aac gtt cgg agg atg c-3’ (SEQ ID NO:33) and 5’-gtt aag tcc gaa gga gga tgg ggt ctc-3’ (SEQ ID NO:34)); c-fes/fps proto-oncogene (primers: 5’-gct tgt ta ttc att cag taa gg ggg c-3’ (SEQ ID NO:35) and 5’-gtt ctt ctt ctt ctc ctt ctc ctt ctc-3’ (SEQ ID NO:36)); and unknown fragment (primers 5’-aga ggt tgt cgg cgc ggg atg ctt ggg ggt ctc-3’ (SEQ ID NO:37) and 5’-gaa gct cca cca gga ggag cgc gtc-3’ (SEQ ID NO:38)).
ful in these applications, since multiple microsatellite tests that have matching probabilities of one in several billion individuals are now available. Examples of microsatellite containing alleles which can be used for paternity, forensic and other personal identification are D3S1338; VWA; D16S539; D8S1179; D21S11; D18S51; D19S433; TH01; FGA; D7S820; D13S317; D5S818; CSF1PO; TPOX; hypoxanthine phosphoribosyltransferase (primers: 5'-agt cca cag ata ata atc atc ccc-3' (SEQ ID NO:17) and 5'-ctc tcc aga ata gtt aga tgt agg-3' (SEQ ID NO:18)); intestinal fatty acid-binding protein (primers: 5'-gta gta tca gtt tca tag gtt cac c-3' (SEQ ID NO:19) and 5'-cag ttc gtt ttc att gtc tgt ccc-3' (SEQ ID NO:20)); recognition/surface antigen (primers: 5'-tg ggg tgc gaa gaa gat gga aat gca ggt agg-3' (SEQ ID NO:21) and 5'-cca gga agt tga ggc cca gta tca cct-3' (SEQ ID NO:22)); c-fms proto-oncogene for CFS-1 receptor (primers: ttc att tca cta gca agg act age-3' (SEQ ID NO:23) and 5'-tcc cta ccc cca cta agg acg gtt tga gaa gga -3' (SEQ ID NO:24)); tyrosine hydroxylase (primers: gag ggg tca aat ggt ccc gat tat-3' (SEQ ID NO:25) and 5'-ttc cca gga gct gag-3' (SEQ ID NO:26)); pancreatic phospholipase A-2

(primers: 5'-gtg tgt aag ctc cat gat ggt aag-3' (SEQ ID NO:27) and 5'-tg ggg ttc act ctc tgt gtt cca ggc gtc t-3' (SEQ ID NO:28)); coagulation factor XIII (primers: 5'-gag gtt gca ctc ggc cag tgt ctt ggc cca-3' (SEQ ID NO:29) and 5'-tcc gtc att cat gcc ggc aca-3' (SEQ ID NO:30)); aromatase cytochrome P-450 (primers: 5'-gtg aag cag gta ctt cag tag cta a-3' (SEQ ID NO:31) and 5'-ggt ctc aag aca ggt cag cgt cag-3' (SEQ ID NO:32)); lipoprotein lipase (primers: 5'-ctc aag cag agt ggg atg ata tag-3' (SEQ ID NO:33) and 5'-gtg aac tga ggc agg cag cag tgt tga ctt-3' (SEQ ID NO:34)); c-fes/fps proto-oncogene (primers: 5'-gct gtt taa ttc att tag gga agg cag c-3' (SEQ ID NO:35) and 5'-gta gtc cca gct act tgt cta ctc-3' (SEQ ID NO:36)); and unknown fragment (primers 5'-aga gtt tcc aag gac ggg acg ccc gaa tgt gga agg gta ctc ggg cca ctc tgg ggg cct c-3' (SEQ ID NO:38)). Genotyping methods used for human identification may also be applied to plant and animal breeding, using appropriate genetic loci.

Table 1 provides additional genetic loci with tetranucleotide microsatellites having a G+C content of 50% or less which are useful in personal identification, particularly forensic analysis.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetranucleotide Microsatellites</td>
</tr>
<tr>
<td>Locus</td>
</tr>
<tr>
<td>D381358</td>
</tr>
<tr>
<td>VWA</td>
</tr>
<tr>
<td>D16S539</td>
</tr>
<tr>
<td>AP01</td>
</tr>
<tr>
<td>D8S1179</td>
</tr>
<tr>
<td>D121011</td>
</tr>
<tr>
<td>D10851</td>
</tr>
<tr>
<td>AACTBP2</td>
</tr>
<tr>
<td>THO1</td>
</tr>
<tr>
<td>FGA</td>
</tr>
<tr>
<td>D5S820</td>
</tr>
<tr>
<td>D138317</td>
</tr>
<tr>
<td>D8S919</td>
</tr>
<tr>
<td>CSF1PO</td>
</tr>
<tr>
<td>TPOX</td>
</tr>
<tr>
<td>CD4</td>
</tr>
<tr>
<td>CYRB04</td>
</tr>
<tr>
<td>F13A01</td>
</tr>
<tr>
<td>F13B</td>
</tr>
<tr>
<td>FABP</td>
</tr>
<tr>
<td>FES/FPS</td>
</tr>
<tr>
<td>HPRF8</td>
</tr>
<tr>
<td>LPL</td>
</tr>
<tr>
<td>Pent a D</td>
</tr>
<tr>
<td>Pent a E</td>
</tr>
<tr>
<td>PLAZAI</td>
</tr>
<tr>
<td>D381565</td>
</tr>
<tr>
<td>D218124</td>
</tr>
<tr>
<td>D381359</td>
</tr>
<tr>
<td>D381744</td>
</tr>
<tr>
<td>D58477</td>
</tr>
<tr>
<td>D80347</td>
</tr>
<tr>
<td>D80639</td>
</tr>
<tr>
<td>D98320</td>
</tr>
<tr>
<td>D1082325</td>
</tr>
<tr>
<td>D110408</td>
</tr>
<tr>
<td>D110554</td>
</tr>
<tr>
<td>D126391</td>
</tr>
<tr>
<td>D1281090</td>
</tr>
<tr>
<td>D1082355</td>
</tr>
<tr>
<td>D1082849</td>
</tr>
<tr>
<td>D208161</td>
</tr>
<tr>
<td>D22663</td>
</tr>
<tr>
<td>DXS6807</td>
</tr>
<tr>
<td>D198433</td>
</tr>
<tr>
<td>D1082325</td>
</tr>
</tbody>
</table>
Personal identification tests may be performed on any specimen that contains nucleic acid such as bone, hair, blood, tissue and the like. DNA may be extracted from the specimen and a panel of primers to amplify a set of microsatellites used to amplify DNA in the presence of an effective amount of sorbitol and/or betaine to reduce stutter from the specimen to generate a set of amplified fragments. In forensic testing, the specimen’s microsatellite amplification pattern is compared with a known sample the presumptive victim (the presumed matching source) or is compared to the pattern of amplified microsatellites derived from the presumptive victim’s family members (e.g., the mother and father) wherein the same set of microsatellites is amplified in the presence of an effective amount of betaine and/or sorbitol to reduce stutter using the same primers. The pattern of microsatellite amplification may be used to confirm or rule out the identity of the victim. In paternity testing, the specimen is generally from the child and the comparison is made to the microsatellite pattern from the presumptive father, and may include matching with the microsatellite pattern from the child’s mother. The pattern of microsatellite amplification may be used to confirm or rule out the identity of the father. The panel may include microsatellites with a G+C content of 50% or less such as, for example, D3S1358; vWA; D16S539; D8S1179; D21S11; D18S51; D19S433; TH01; FGA; D7S820; D13S317; D5S818; CSF1PO; TPOX; hypoxanthine phosphoribosyltransferase; intestinal fatty acid-binding protein; recognition/surface antigen; c-fms proto-oncogene for CFS1 receptor; tyrosine hydroxylase; pancreatic phospholipase A-2; coagulation factor XIII; aromatase cytochrome P-450; lipoprotein lipase; c-fes/fps proto-oncogene; and unknown fragment. PCR conditions include 5–10 ng genomic DNA, 10 pmol each fluorophore-tagged primer, 2.5 M sorbitol, 1 mM each dNTP, 5 mM MgCl₂, 50 mM KCl, 10 mM Tris-HCl, 5 U DNA polymerase. PCR cycle conditions may be 1 min 94°C, followed by 30 cycles of 20 seconds at 94°C, 3 minutes at 50°C, 3 minutes at 60°C, followed by 1 cycle of 10 minutes at 60°C. The products are examined by capillary electrophoresis coupled with GeneScan 310 analysis.

Dimoducleotide microsatellites are also used in paternity testing for cattle, dogs, horses and other animals (Primmer et al. (1995) Mol. Ecol. 4:493–498). In a clinical setting, microsatellite markers can be used to monitor the degree of donor engraftment in bone marrow transplants. In hospitals, microsatellite markers are useful in specimen matching tracking. More recently, microsatellite markers have also entered other fields of science such as population biology studies on human racial and ethnic group differences (Goldstein et al. (1995) Proc. Natl. Acad. Sci. USA 92:6723–6727) and on variation in animal and plant taxa (Bruford et al. (1993)Curr. Biol. 3:939–943).

Reduction in stutter bands in accordance with the present invention is useful in all of the above applications, which are illustrative and not limiting, because, inter alia, the interpretation of the data is facilitated by the method of the invention. The methods of the invention may be used in conjunction with the methods described in the references cited herein, the disclosure of each of which is incorporated herein by reference in its entirety. In particular, the methods of the invention will simplify analyses of forensic samples, and therefore find particular utility in the forensic field.

The invention will be further described using the following actual examples, which are merely illustrative of some embodiments of the invention. The examples should not be construed in any way to limit the scope of the invention, which is defined by the appended claims.

EXAMPLES

Example 1

PCR reactions were used to amplify DNA fragments containing mono-, di-, or tetranucleotide microsatellites in the presence of or absence of betaine or sorbitol (FIGS. 1–6). The 50 μl reactions contained 20 mM Tris, 20 mM ammonium sulfate, 4.5 mM magnesium sulfate 1 mM each of dATP, dGTP, dCTP and dTTP, 12 pmol oligonucleotide primers, 2 ng human genomic DNA template, 5U AmpliTaq Gold® DNA polymerase in water. Reactions contained 3.0 M, 2.5 M, or 2.0 M betaine or 2.0 M sorbitol. The reaction conditions were as follows: 95°C for 11 minutes, followed by 28 cycles of 94°C for 30 seconds, 55°C for 4 minutes and 69°C for 6 minutes, followed by incubation at 60°C for 45 minutes. Following PCR, samples were mixed with ROX fluorescent size marker (Applied Biosystems). Samples were denatured and separated using a protocol for capillary electrophoresis prepared for an ABI 310 Automated Genetic Analyzer according to the manufacturer’s specifications. Fragment analysis data was analyzed with GeneScan Software from Applied Biosystems. For each set of peaks observed (see FIGS. 1–4), each peak corresponds to a fluorescence labeled, single stranded DNA molecule. The position of the peak on the x axis corresponds to the migration time, and therefore, the length of the DNA molecule. The height of each peak corresponds to the relative amount of PCR product for this length, as determined by relative fluorescence intensity measured in arbitrary units. A stutter peak for a mononucleotide repeat (Aₙ), for example, is found to the left of the main peak (where the “main peak” is the allele). For a dinucleotide repeat (CAₙ), of D6S1581, the stutter peak is found two base pairs to the left of the allele peak. For a (CTTT)ₙ tetranucleotide repeat of FGA, the stutter peak is four base pairs to the left of the allele peak. A reduction in the height of the stutter peak relative to the main peak is indicative of a reduction in stutter. When measuring stutter reduction, the height of the stutter peak over the height of the main peak×100 provides the percent stutter. If there are multiple stutter peaks, they are not taken collectively. Rather the height of the main stutter peak over the height of the allele peak×100 gives the percent stutter. The results for the reactions with betaine, sorbitol, and control samples (no betaine or sorbitol) are shown in FIGS. 1–7 and are summarized in Table 2:

TABLE 2

<table>
<thead>
<tr>
<th>Microsatellite</th>
<th>Control</th>
<th>+ Betaine</th>
<th>Control</th>
<th>+ Sorbitol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mononucleotide</td>
<td>175</td>
<td>65 (-65%)</td>
<td>173</td>
<td>62 (-65%)</td>
</tr>
<tr>
<td>Dinucleotide</td>
<td>28</td>
<td>14 (-50%)</td>
<td>49</td>
<td>35.5 (-30%)</td>
</tr>
<tr>
<td>Tetranucleotide</td>
<td>6.1</td>
<td>3.0 (-50%)</td>
<td>7.5</td>
<td>3.1 (-60%)</td>
</tr>
</tbody>
</table>

* percent stutter = Peak height of stutter signal/peak height of allele signal x 100; Percentage in parentheses is percent reduction of stutter of modified conditions over control.

The reference works, patents, patent applications, and scientific literature, and other printed publications, including accession numbers to GenBank database sequences, that are referred to herein are hereby incorporated by reference in their entirety.

As those skilled in the art will appreciate, numerous changes and modifications may be made to the embodiments of the invention without departing from the spirit of the invention. It is intended that all such variations fall within the scope of the invention.
<160> NUMBER OF SEQ ID NOS: 48

<210> SEQ ID NO 1
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 1
ccaaggtta tgcgaggt

<210> SEQ ID NO 2
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 2
cgttcatcg tcggggtt

<210> SEQ ID NO 3
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 3
ccttaactgt ctcttataaa ga

<210> SEQ ID NO 4
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 4
cocoaattct catacacatt gt

<210> SEQ ID NO 5
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 5
catggtgcac caqgtctgqt t

<210> SEQ ID NO 6
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 6
ggctaggtga agcatagagt

<210> SEQ ID NO 7
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 7
cagttggtgca cactgggtggc t
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 7

gatata tag cattataaca ctg

<210> SEQ ID NO: 8
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 8

gacacacag gaagt gttct g

<210> SEQ ID NO: 9
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 9

tccactgtgt ctttattagg

<210> SEQ ID NO: 10
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 10

asacgtact ctctc acacac

<210> SEQ ID NO: 11
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 11

tgcctctac gactgt aagt

<210> SEQ ID NO: 12
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 12

tgctacttt tactatggt c

<210> SEQ ID NO: 13
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 13

ttcgactttt tactatggt c
TGACTACTTT TGACTCCTTG ACCC

SEQ ID NO 14
LENGTH: 21
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer
SEQUENCE: 14

ACCCATCAAC ATCTTTACCC

SEQ ID NO 15
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer
SEQUENCE: 15

AACCCTGAGG ATTCATCTC

SEQ ID NO 16
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer
SEQUENCE: 16

AACAAAGCA GACCCATCT

SEQ ID NO 17
LENGTH: 24
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer
SEQUENCE: 17

ATGCAACA GAATACACAT CCCCC

SEQ ID NO 18
LENGTH: 24
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer
SEQUENCE: 18

CCCTCCAGA TATTTGATG TAGG

SEQ ID NO 19
LENGTH: 25
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer
SEQUENCE: 19

GTTAGTACG TTTCTAGGG TCACC

SEQ ID NO 20
LENGTH: 24
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Primer

SEQUENCE: 20

cagttgccctcctggtctgctag
tccgacgtcgtcatcag

SEQ ID NO: 21
LENGTH: 24
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 21

ttgaagtgcgaagctgacctgagc
ttatctggcctatctggctc

SEQ ID NO: 22
LENGTH: 24
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 22

cagsgaagttggctgcaagtaag

SEQ ID NO: 23
LENGTH: 24
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 23

aaccgagctcgtgcaagctcag

SEQ ID NO: 24
LENGTH: 24
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 24

ttcagcaaacagctgacagtctctc

SEQ ID NO: 25
LENGTH: 24
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 25
gtggctggcttggtaacactcagcagttc
ttatctggtctagtctggtctgctag
tccgacgtcgtcatcag

SEQ ID NO: 26
LENGTH: 24
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 26

atccaaaggtatatcggcctgctag
<210> SEQ ID NO 27
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 27
ggttgtaagc tccatgaggt tags

<210> SEQ ID NO 28
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 28
ttgagcactt actatggtcc aggct

<210> SEQ ID NO 29
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 29
gagttgacctt gcagctt gcaa

<210> SEQ ID NO 30
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 30
tccctgaaac atcctagagc gaca

<210> SEQ ID NO 31
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 31
ggtaagcagt tacatgatagtactaag

<210> SEQ ID NO 32
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 32
gttacagtg gcaagaagtgct ag

<210> SEQ ID NO 33
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 33
gttacagtga gcaagagctcg tgag
<400> SEQUENCE: 33
cgtgaccaaggtatgtggtgcatatag

<210> SEQ ID NO: 34
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 34
ggtactgagcgagctgtgcct

<210> SEQ ID NO: 35
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 35
gcttgttaactctgtgaggtcagc

<210> SEQ ID NO: 36
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 36
gtacctgacgaatgtgctgatc

<210> SEQ ID NO: 37
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 37
agaagttactactgacgagatag

<210> SEQ ID NO: 38
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 38
gaagttcatacaagatggtaggttcg

<210> SEQ ID NO: 39
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 39
tctatctgcttcttctactctcttac

<210> SEQ ID NO: 40
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE: Primer
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 40
tatatctac tatatatatc tatatatatc tatata ta

<211> SEQ ID NO 41
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE: Primer
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 41
tatatggtc tatatatata tatatatata tatata atata

<211> SEQ ID NO 42
<211> LENGTH: 12
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE: Primer
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 42
tatatggtc ta

<211> SEQ ID NO 43
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE: Primer
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 43
tatatggtc tgtcta

<211> SEQ ID NO 44
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE: Primer
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 44
tatatggtc tgtcttgtcta

<211> SEQ ID NO 45
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE: Primer
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 45
tatatggtc tgtcttgtcta

<211> SEQ ID NO 46
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE: Primer
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 46
What is claimed is:

1. A method for reducing stutter in the amplification of a microsatellite comprising the steps of:
 (a) providing a sample comprising said microsatellite, said microsatellite having a G+C content of 50% or less;
 (b) contacting said sample with at least one enzyme having nucleic acid polymerase activity; and
 (c) incubating said sample with said enzyme, in the presence of at least two primers, for a time and under conditions sufficient to amplify said microsatellite; wherein said incubating step is performed in the presence of an amount of an additive selected from the group consisting of sorbitol, betaine and mixtures thereof, wherein said additive is effective to reduce said stutter relative to the amount of stutter observed in the absence of said additive.

2. A method for reducing stutter in the amplification of a mononucleotide microsatellite comprising the steps of:
 (a) providing a sample comprising said mononucleotide microsatellite, said mononucleotide microsatellite having a G+C content of 50% or less;
 (b) contacting said sample with at least one enzyme having nucleic acid polymerase activity; and
 (c) incubating said sample with said enzyme, in the presence of at least two primers, for a time and under conditions sufficient to amplify said mononucleotide microsatellite; wherein said incubating step is performed in the presence of an amount of an additive selected from the group consisting of sorbitol, betaine and mixtures thereof, wherein said additive is effective to reduce said stutter relative to the amount of stutter observed in the absence of said additive.

3. The method of claim 2 wherein said stutter is reduced to 60% or less the amounts of stutter obtained in the absence of said additive.

4. The method of claim 2 wherein said additive is present at a concentration of 1.5 to 3.5 M.

5. The method of claim 2 wherein said additive is present at a concentration of 2.0 to 3.0 M.

6. A method for reducing stutter in the amplification of a dinucleotide microsatellite comprising the steps of:
 (a) providing a sample comprising said dinucleotide microsatellite, said dinucleotide microsatellite having a G+C content of 50% or less;
 (b) contacting said sample with at least one enzyme having nucleic acid polymerase activity; and
 (c) incubating said sample with said enzyme for a time and under conditions sufficient to amplify said microsatellite; wherein said incubating step is performed in the presence of an amount of an additive selected from the group consisting of sorbitol, betaine and mixtures thereof, wherein said additive is effective to reduce said stutter relative to the amount of stutter observed in the absence of said additive.

7. The method of claim 6 wherein said dinucleotide microsatellite comprises a repeat selected from the group consisting of CATG and CTAG.

8. The method of claim 6 wherein said stutter is reduced to 60% or less the amount of stutter obtained in the absence of said additive.

9. The method of claim 6 wherein said additive is present at a concentration of 1.5 to 3.5 M.

10. The method of claim 6 wherein said additive is present at a concentration of 2.0 to 3.0 M.

11. A method for reducing stutter in the amplification of a trinucleotide microsatellite comprising the steps of:
 (a) providing a sample comprising said trinucleotide microsatellite, said trinucleotide microsatellite having a G+C content of 50% or less;
 (b) contacting said sample with at least one enzyme having nucleic acid polymerase activity; and
 (c) incubating said sample with said enzyme for a time and under conditions sufficient to amplify said microsatellite; wherein said incubating step is performed in the presence of an amount of an additive selected from the group consisting of sorbitol, betaine and mixtures thereof, wherein said additive is effective to reduce said stutter relative to the amount of stutter observed in the absence of said additive.
12. The method of claim 11 wherein said trinucleotide microsatellite comprises a repeat of GAA/TTC.
13. The method of claim 11 wherein said trinucleotide microsatellite has a G+C content of 40% or less.
14. The method of claim 11 wherein said stutter is reduced to 60% or less the amount of stutter obtained in the absence of said additive.
15. The method of claim 11 wherein said additive is present at a concentration of 1.5 to 3.5 M.
16. The method of claim 11 wherein said additive is present at a concentration of 2.0 to 3.0 M.
17. A method for reducing stutter in the amplification of a tetranucleotide microsatellite comprising the steps of:
(a) providing a sample comprising said tetranucleotide microsatellite, said tetranucleotide microsatellite having a G+C content of 50% or less;
(b) contacting said sample with at least one enzyme having nucleic acid polymerase activity; and
(c) incubating said sample with said enzyme, in the presence of at least two primers, for a time and under conditions sufficient to amplify said microsatellite wherein said incubating step is performed in the presence of an amount of an additive selected from the group consisting of sorbitol, betaine and mixtures thereof, wherein said additive is effective to reduce said stutter relative to the amount of stutter observed in the absence of said additive.
18. The method of claim 17 wherein said tetranucleotide microsatellite comprises a repeat selected from the group consisting of TCTA/AGTA, AGAA/TCTC, AAGG/CTGG, AATG/CATT, TCTG/GAGA, TTGC/GGAA, and TAGG/CCTA.
19. The method of claim 17 wherein said tetranucleotide microsatellite has a G+C content of 40% or less.
20. The method of claim 17 wherein said stutter is reduced to 60% or less the amount of stutter obtained in the absence of said additive.
21. The method of claim 17 wherein said additive is present at a concentration of 1.5 to 3.5 M.
22. The method of claim 17 wherein said additive is present at a concentration of 2.0 to 3.0 M.
23. A method for reducing stutter in the amplification of a pentanucleotide microsatellite comprising the steps of:
(a) providing a sample comprising said pentanucleotide microsatellite, said pentanucleotide microsatellite having a G+C content of 50% or less;
(b) contacting said sample with at least one enzyme having nucleic acid polymerase activity; and
(c) incubating said sample with said enzyme, in the presence of at least two primers, for a time and under conditions sufficient to amplify said microsatellite wherein said incubating step is performed in the presence of an amount of an additive selected from the group consisting of sorbitol, betaine and mixtures thereof, wherein said additive is effective to reduce said stutter relative to the amount of stutter observed in the absence of said additive.
24. The method of claim 23 wherein said pentanucleotide microsatellite comprises a AAAGA/TCTTTT repeat.
25. The method of claim 23 wherein said pentanucleotide microsatellite has a G+C content of 40% or less.
26. The method of claim 23 wherein said stutter is reduced to 60% or less the amount of stutter obtained in the absence of said additive.
27. The method of claim 23 wherein said additive is present at a concentration of 1.5 to 3.5 M.
28. The method of claim 23 wherein said additive is present at a concentration of 2.0 to 3.0 M.
29. The method of claim 1 wherein said microsatellite has a G+C content of 40% or less.
30. The method of claim 1 wherein said microsatellite has a G+C content of 30% or less.
31. The method of claim 1 wherein said microsatellite has a G+C content of 20% or less.
32. The method of claim 1 wherein said microsatellite has a G+C content of 10% or less.
33. The method of claim 1 wherein said stutter is reduced to 90% or less the amount of stutter obtained in the absence of said additive.
34. The method of claim 1 wherein said stutter is reduced to 90% or less the amount of stutter obtained in the absence of said additive.
35. The method of claim 1 wherein said stutter is reduced to 70% or less the amount of stutter obtained in the absence of said additive.
36. The method of claim 1 wherein said stutter is reduced to 60% or less the amount of stutter obtained in the absence of said additive.
37. The method of claim 1 wherein said stutter is reduced to 50% or less the amount of stutter obtained in the absence of said additive.
38. The method of claim 1 wherein said stutter is reduced to 40% or less the amount of stutter obtained in the absence of said additive.
39. The method of claim 1 wherein said stutter is reduced to 30% or less the amount of stutter obtained in the absence of said additive.
40. The method of claim 1 wherein said stutter is reduced to 30% or less the amount of stutter obtained in the absence of said additive.
41. The method of claim 1 wherein said incubating step is performed in the presence of a set of at least four dNTPs, said set comprising a first dNTP corresponding to dATP, a second dNTP corresponding to dCTP, said third dNTP corresponding to dGTP and fourth dNTP corresponding to dTTP wherein each of said dNTPs is present at a concentration of at least 0.5 mM.
42. The method of claim 41 wherein said dNTPs is present at said concentration of at least 0.5 mM.
43. The method of claim 41 wherein said dNTPs is present at said concentration of 1.0 to 3.0 M.
44. A method comprising the steps of:
(a) providing a sample comprising a nucleic acid that contains one or more microsatellites selected from the group consisting of mononucleotide microsatellites, dinucleotide microsatellites, trinucleotide microsatellites, tetranucleotide microsatellites and pentanucleotide microsatellites; and
(b) amplifying at least one nucleic acid sequence of said nucleic acid to form an amplified microsatellite, said nucleic acid sequence comprising at least one of said microsatellites, said amplified microsatellite having a G+C content of 50% or less wherein said amplifying step is performed in the presence of an additive selected from the group consisting of betaine, sorbitol and mixtures thereof.
45. The method of claim 44 wherein at least one of said amplified microsatellites is 40% or less.
46. The method of claim 44 wherein at least one of said amplified microsatellites is 30% or less.
47. The method of claim 44 wherein at least one of said amplified microsatellites is 20% or less.
48. The method of claim 44 wherein the G+C content of at least one of said amplified microsatellites is 10% or less.
49. The method of claim 44 wherein said amplifying step comprises contacting said nucleobase sequence with an enzyme having a polymerase activity.
50. The method of claim 49 wherein the enzyme having polymerase activity is selected from the group consisting of AmpliTaq Gold® DNA polymerase; AmpliTaq® DNA Polymerase; AmpliTaq® DNA Polymerase, Stoffel fragment; rTh DNA Polymerase; rTh DNA Polymerase XL; Tae, Bst DNA polymerase large fragment from Bacillus stearothermophilus; Vent and Vent Exo- from Thermococcus litoralis; Tma from Thermotoga maritima; Deep Vent and Deep Vent Exo- and Pfu from Pyrococcus; and mutants, variants and derivatives thereof.
51. The method of claim 44 wherein said amplified microsatellite is a mononucleotide microsatellite.
52. The method of claim 51 wherein said additive is betaine.
53. The method of claim 51 wherein said additive is sorbitol.
54. The method of claim 44 wherein said amplified microsatellite is a dinucleotide microsatellite.
55. The method of claim 54 wherein said additive is betaine.
56. The method of claim 54 wherein said additive is sorbitol.
57. The method of claim 44 wherein said amplified microsatellite is a trimononucleotide microsatellite.
58. The method of claim 44 wherein said amplified microsatellite is a tetranucleotide microsatellite.
59. The method of claim 44 wherein said amplified microsatellite is a pentanucleotide microsatellite.
60. The method of claim 44 wherein said amplified microsatellite is an oligo-A microsatellite.
61. The method of claim 44 wherein said amplifying step is performed in the presence of a set of at least four dNTPs, said set comprising a first dNTP corresponding to dATP, a second dNTP corresponding to dGTP, a third dNTP corresponding to dCTP and a fourth dNTP corresponding to dTTP, wherein each of said dNTPs is present at a concentration of at least 0.5 mM.
62. The method of claim 44 wherein said amplifying step is performed in the presence of a set of at least four dNTPs, said set comprising a first dNTP corresponding to dATP, a second dNTP corresponding to dGTP, a third dNTP corresponding to dCTP and a fourth dNTP corresponding to dTTP, wherein each of said dNTPs is present at a concentration of at least 1 mM.
63. The method of claim 44 wherein said additive is present at a concentration of 1.5 to 3.5 M.
64. The method of claim 44 wherein said additive is present at a concentration of 2.0 to 3.0 M.
65. A method comprising the steps of:
(a) providing a sample comprising a nucleic acid that contains one or more microsatellites selected from the group consisting of mononucleotide microsatellites, dinucleotide microsatellites, trinucleotide microsatellites, tetranucleotide microsatellites, pentanucleotide microsatellites and hexanucleotide microsatellites; and
(b) amplifying at least one nucleobase sequence of said nucleic acid to produce an amplified microsatellite, said nucleobase sequence comprising at least one of said microsatellites; said amplified microsatellite having a G+C content of 50% or less; wherein said amplifying step is performed in the presence of an additive selected from the group consisting of betaine, sorbitol and mixtures thereof in an amount of 1.5 to 3.5 M, and in the presence of a set at least four dNTPs, said set comprising a first dNTP corresponding to dATP, a second dNTP corresponding to dGTP, a third dNTP corresponding to dCTP and a fourth dNTP corresponding to dTTP, wherein each of said dNTPs is present at a concentration of at least 0.5 mM.
66. A method for performing polymerase chain reaction amplification of a microsatellite selected from the group consisting of monomeric microsatellites, dinucleotide microsatellites, trinucleotide microsatellites, tetranucleotide microsatellites and pentanucleotide microsatellites, said microsatellite having a G+C content of 50% or less, said method comprising the step of contacting said microsatellite, in the presence of at least two primers, with a polymerase in the presence of an amount of an additive effective to reduce the amount of stutter arising from said amplification, relative to the amount of such stutter observed in the absence of said additive; wherein said additive is selected from the group consisting of betaine, sorbitol and mixtures thereof.
67. The method of claim 66 wherein said polymerase is selected from the group consisting of AmpliTaq Gold® DNA polymerase; AmpliTaq® DNA Polymerase; AmpliTaq® DNA Polymerase, Stoffel fragment; rTh DNA Polymerase; rTh DNA Polymerase XL; Tae, Bst DNA polymerase large fragment from Bacillus stearothermophilus; Vent and Vent Exo- from Thermococcus litoralis; Tma from Thermotoga maritima; Deep Vent and Deep Vent Exo- and Pfu from Pyrococcus; and mutants, variants and derivatives thereof.
68. The method of claim 66 wherein said contacting is performed in the presence of a set of at least four dNTPs, said set comprising a first dNTP corresponding to dATP, a second dNTP corresponding to dGTP, a third dNTP corresponding to dCTP and a fourth dNTP corresponding to dTTP, wherein each of said dNTPs is present at a concentration of at least 0.5 mM.
69. The method of claim 66 wherein said contacting is performed in the presence of a set of at least four dNTPs, said set comprising a first dNTP corresponding to dATP, a second dNTP corresponding to dGTP, a third dNTP corresponding to dCTP and a fourth dNTP corresponding to dTTP, wherein each of said dNTPs is present at a concentration of at least 1 mM.
70. The method of claim 66 wherein said additive is present at a concentration of 1.5 to 3.5 M.
71. The method of claim 66 wherein said additive is present at a concentration of 2.0 to 3.0 M.
72. A composition comprising:
(a) a nucleic acid sequence comprising a microsatellite, said microsatellite having a G+C content of 50% or less, said microsatellite being selected from the group consisting of monomeric microsatellites, dinucleotide microsatellites, trinucleotide microsatellites, tetranucleotide microsatellites and pentanucleotide microsatellites;
(b) at least two primers, each of said primers having a sequence that is substantially complementary to a portion of said nucleic acid sequence that is adjacent to said microsatellite;
(c) at least one enzyme having nucleic acid polymerase activity; and
(d) an additive selected from the group consisting of betaine, sorbitol and mixtures thereof.
73. The composition of claim 72 further comprising a set of at least four dNTPs, said set comprising a first dNTP
corresponding to dATP, a second dNTP corresponding to
dGTP, a third dNTP corresponding to dCTP and a fourth
dNTP corresponding to dTTP, wherein each of said dNTPs
is present at a concentration of at least 0.5 mM.

74. The composition of claim 72 further comprising a set
of at least four dNTPs, said set comprising a first dNTP
corresponding to dATP, a second dNTP corresponding to
dGTP, a third dNTP corresponding to dCTP and a fourth
dNTP corresponding to dTTP, wherein each of said dNTPs
is present at a concentration of at least 1 mM.

75. The method of claim 72 wherein said additive is
present at a concentration of 1.5 to 3.5 M.

76. The method of claim 72 wherein said additive is
present at a concentration of 2.0 to 3.0 M.

* * * * *

* * * * *

* * * * *
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

(Claim 1) In column 37, line 29, before “microsatellite” please insert --polymorphic--;

(Claim 2) In column 37, line 45, before “mononucleotide” please insert --polymorphic--;

(Claim 6) In column 38, line 28, before “dinucleotide” please insert --polymorphic--;

(Claim 11) In column 38, line 53, before “trinucleotide” please insert --polymorphic--;

(Claim 13) In column 39, line 4, please delete “of less” and insert --or less--;

(Claim 17) In column 39, line 13, please delete “tetranucleotide” and insert --polymorphic tetranucleotide--;

(Claim 23) In column 39, line 42, before “pentanucleotide” please insert --polymorphic--;

(Claim 44) In column 40, line 48, before “microsatellites” please insert --polymorphic--;

(Claim 48) In column 41, line 1, please delete “wherin” and insert --wherein--;

(Claim 65) In column 41, line 56, before “microsatellites” please insert --polymorphic--;

(Claim 66) In column 42, line 9, before “microsatellite” please insert --polymorphic--;
(Claim 72) In column 42, line 51, before “microsatellite” please insert --polymorphic--;

Signed and Sealed this

Twenty-ninth Day of May, 2007

JON W. DUDAS
Director of the United States Patent and Trademark Office