(54) 发明名称
柔性和/或可伸缩的衬底上的组件布局

(57) 摘要
根据一个方面，本发明提供了一种在可伸缩衬底上布局组件的方法，包括以下步骤：提供具有可伸缩衬底层的衬底，提供柔性薄膜，该柔性薄膜包括多个柔性薄膜组件的整体式布置(20)，每个柔性薄膜组件都包括用于电子/光学接入的所述柔性薄膜组件的组件垫；对应于所述整体式布置中的所述组件垫，在所述可伸缩衬底层上提供间内互连轨迹；对齐所述衬底和所述柔性薄膜以便在卷轴的制造工艺中使用；通过所述衬底和所述柔性薄膜的层压，在所述轨迹和所述整体式组件布置的组件垫之间提供电子/光学通孔连接；以及使所述柔性薄膜组件的整体式布置机械地分离以便提供多个彼此机械分离的组件，以便在所述可伸缩衬底层上布置电子/光学互连组件系统。本发明的益处是：其可以在多薄膜系统的制造工艺中使用。
1. 一种在可伸缩衬底上生产多个不可伸缩薄膜器件组件的电子/光学互连组件系统的方法，包括以下步骤：

提供具有可伸缩衬底 (1) 的衬底 (10)；

提供不可伸缩柔性薄片 (6)，所述不可伸缩柔性薄片 (6) 包括多个柔性薄片组件 (2) 的整体式布置 (20)，每个所述柔性薄片组件 (2) 都包括用于电子/光学接收到所述柔性薄片组件 (2) 的组件垫 (7)；

对应于所述整体式布置 (20) 中的所述组件垫 (7)，在所述可伸缩衬底层 (1) 上提供面内互连轨迹 (3)；

对应所述衬底 (10) 和所述柔性薄片 (6)，以便在基于卷的制造工艺中使用；

通过所述衬底 (10) 和所述柔性薄片 (6) 的层压，在所述轨迹 (3) 和所述整体式布置 (20) 的组件垫 (7) 之间提供电子/光学通孔连接；以及

使所述柔性薄片组件 (2) 的整体式布置 (20) 机械地分离，以便在所述可伸缩衬底层 (1) 上提供多个彼此机械分离的组件 (2)，由此形成互连组件系统 (111)，所述互连组件系统 (111) 包括所述可伸缩衬底层 (1) 以及在所述可伸缩衬底层 (1) 上提供的所述机械分离的组件 (2)，所述互连组件系统由此恢复了伸缩性，而不失去其电子/光学功能。

2. 根据权利要求 1 所述的方法，其中，所述整体式布置 (20) 是通过在所述薄片组件 (2) 之间在所述柔性薄片 (6) 中提供切口 (21) 来机械分离的。

3. 根据权利要求 1 所述的方法，其中，所述整体式布置 (20) 是通过在所述柔性薄片 (6) 中沿预定的稀薄处 (21) 撕裂来机械分离的，由此所述互连组件系统得以拉伸，而不损失其电子/光学功能。

4. 根据权利要求 1 所述的方法，其中，所述整体式布置 (20) 是通过移除在所述薄片组件之间薄片互连区域 (21) 来机械分离的。

5. 根据权利要求 4 所述的方法，其中，在后续的层压步骤中，将另一柔性薄片 (6) 与所述可伸缩衬底层 (1) 上的所述互连组件系统 (111) 层压在一起，所述另一柔性薄片包括与所述互连区域对齐的另外薄片组件。

6. 根据权利要求 1 所述的方法，其中，所述整体式布置 (20) 是通过将所述柔性薄片组件 (2) 从薄片制造衬底释放来机械分离的。

7. 根据权利要求 1 所述的方法，其中，所述可伸缩衬底层 (1) 上的面内互连轨迹 (3) 是通过经由释放衬里的传递来提供的，所述释放衬里上布置有预先图案化的轨迹。

8. 根据权利要求 1 所述的方法，其中，所述衬底包括不可伸缩的牺牲层，所述不可伸缩的牺牲层在层压后被移除。

9. 根据权利要求 1 所述的方法，其中，所述电子/光学通孔连接是通过布置在所述可伸缩衬底层 (1) 上的互连固态附着层 (4) 来提供的，所述互连固态附着层 (4) 具有对应于所述互连轨迹 (3) 的在面外布置的互连。

10. 根据权利要求 9 所述的方法，其中，所述固态附着层 (4) 提供有布置在孔中的导电膏。

11. 根据权利要求 9 所述的方法，其中，所述固态附着层 (4) 在转换区域内具有可变的导电特性，以便通过热转换或由光子实现的转换形成导电结构。
柔性或或可伸缩的衬底上的组件布局

技术领域
0001 本发明涉及用于柔性或或可伸缩的衬底上的组件布局的方法和系统。

背景技术
0002 例如为了高密度应用，在柔性或或可伸缩载体上布局和连接多个分立的电子组件是困难并且耗时的事情。此外，这不容易在卷对卷工艺（roll to roll process）中实现。
0003 另一方面，基于薄片（foil）的器件仅仅表现出有限的柔韧性，并且在本质上是不可伸缩的。这意味着可能需要将这些器件切成片，并且连接到载体，以允许高度柔韧或可伸缩的应用。
0004 用于在可伸缩衬底中嵌入导电材料的制造方法和设备是已知的。举例而言，在牺牲层上提供可伸缩衬底。为了本发明的目的，可伸缩衬底是可伸缩的衬底，并且在物理或机械力之类的某些力的影响下可以伸缩，而不因此失去其基本功能。衬底可以包括：金属线、互连线、电子组件、芯片等等。所有的组成部分一起形成复合衬底。如果这种复合衬底在其至少一部分中至少具有一定柔韧性，那么这种复合衬底是柔性的。由于这种方法以及通过这种方法制造出的设备密切相关，所以一起对它们进行描述。
0005 本发明还涉及机械地组装多薄片系统的领域，即柔性层压电子或光学系统。在这些多薄片系统中的一种特定类型中，所谓的“薄片内系统”（systems-in-foil），每个薄片可以具有某种电学或光学功能，如显示功能、电池功能或太阳能板功能。薄片上系统具有多种应用，例如，在照明以及可重用和一次性传感器领域中。
0006 例如，通过使用诸如目前在纸张印刷行业中使用的生产过程，可以以低成本和大尺寸来大量制造这些薄片。薄片可以在不同的位置上制造，并且系统可以安装在中心位置上。
0007 在一个方面，本发明旨在提供一种简单的卷对卷兼容并且有成本效益的方法，以将基于分立薄片的设备大量布局在柔性或或可伸缩载体上。

发明内容
0008 根据一个方面，本发明提供了在可伸缩衬底上布局组件的方法，包括以下步骤：提供具有可伸缩衬底的衬底；提供柔性薄片，该柔性薄片包括多个柔性薄片组件的整体式布置，每个柔性薄片组件都包括用于电子/光学接入到所述柔性薄片组件的组件；对应于所述整体式布置中的所述组件，提供用于电子/光学接入到所述柔性薄片组件的组件，对应于所述整体式布置中的所述组件；在所述可伸缩衬底层上提供面内连接结构，对应于所述整体式布置中的所述组件；通过所述衬底和所述柔性薄片的层压，在所述结构和所述整体式组件布置的组件之间提供电子/光学通孔连接，以及使用所述柔性薄片组件的整体式组件布局机械地分离以便提供多个彼此机械分离的组件，以便在所述可伸缩衬底层上布置电子/光学互连组件系统。
0009 本发明的一个益处是在多薄片系统的传统制造工艺（比如卷对卷、卷对片或者片对片工艺）中使用。根据下文关于本发明的优选实施例的详细描述，并且结合附
附图说明

[0010] 图 1 示出了制造方法的第一制造步骤；
[0011] 图 2 示出了制造方法的后续制造步骤；
[0012] 图 3 示出了通孔形成步骤；
[0013] 图 4 示出了对齐步骤；
[0014] 图 5 示出了压层步骤；
[0015] 图 6 示出了进一步的制造步骤；
[0016] 图 7 示出了图 6 示出的在可伸缩衬底层上的电子 / 光学组件的细节方面；
[0017] 图 8 示出了在可伸缩衬底层上产生电子 / 光学互连组件系统的一系列示意性的步骤；以及
[0018] 图 9 示出了示例性产品。

具体实施方式

[0019] 本发明涉及一种用于将组件布局在可伸缩衬底上的方法。组件被制造为所谓的功能型薄片器件。根据本发明，该功能型薄片器件可用在光掩模系统中。这些器件可以象征性地表征为“柔性层压电子或光学薄片器件”。典型地，这种功能型薄片器件包括至少一个电子和 / 或光学（在后文表示为电子 / 光学）功能电路。进一步，典型地，功能型薄片系统包括至少一个连接件（connection pad），该至少一个连接件连接到至少要一个功能性电路。因此，功能型薄片可以被认为是其自身之内的多层器件。

[0020] 这些薄片的典型示例可以在如下的现有出版物中查询到：

[0021] 更详细地，图 1 示出了制造方法的第一制造步骤。提供了衬底 10，其具有可伸缩衬底层 1（后文还表示为可伸缩载体 1），以及包括电接触路径和 / 或轨迹 3。这些将被用于功能组件 2 的驱动和 / 或读取（见随后附图）。可伸缩衬底的示例在 EP1746869 中公开。其中，在管除牺牲层之后，可以在可伸缩衬底上引入额外的组件组。或者，可以提供布置有导电轨迹（导电纱线）的织物。在本发明涉及在可伸缩衬底 1 上布局组件的方法的同时，在生产期间，牺牲衬底（未示出）可以包括不可伸缩牺牲层。因此，可以提供具有可伸缩衬底层 1 的衬底 10，并且可选择地，该衬底包括不可伸缩的牺牲层，该不可伸缩的牺牲层在层压后被移除。此外，可伸缩的衬底层包括面内互连轨迹 3，互连轨迹 3 与要布局在其上的组件对应。
[0023] 图 2 举例出了制造方法的制造步骤，其中，附着层 4 被特别地应用于需要放置器件或组件 2 的某些位置。这可以通过各种方法来实现。举例而言，附着层 4 可通过使用某种其他图案化方法来印刷或应用，或者其可以预先图案化并且经由释放衬里 (release liner)（未示出）来传递。因此，再在具有导电轨迹的可伸缩或者高柔性载体 1 上应用相对刚性的附着层 4。例如，通过印刷，或者通过经由释放带 (release tape) 来传递预先图案化的轨迹图案。特别地，通过经由释放衬里（在其上布局有预先图案化的轨迹）的传递，可以在可伸缩衬底层 1 上提供内互连轨迹 3。

[0024] 图 3 举例出了通孔形成步骤，其中，可以穿过附着层 4 来提供互连（通孔）5。或者，在可伸缩衬底 1 上提供层 4 之前，可以在附着层 4 内预先形成通孔 5。

[0025] 优选地，(已固化的) 附着物 4 比载体 1 柔性差，并且有可能比基于薄片的组件 2 要硬。由于这一点，附着物 4 和组件 2 之间的互连上的机械应力减少了。互连可以经由附着层 4 来实现。或者，固态附着层在转换区域内具有可变的导电性，以便通过热 / 红外 (foton) 转换形成导电结构。按照同一申请人在 PCT/NL2009/050389 以及 PCT/ NL2008/050750 中所公开的图案化方法，导电附着物可以是各向同性或各向异性的，这些文档可以引用的方式并入发明。

[0026] 可以用于形成固态附着层 4 的附着物的示例为环氧树脂和丙烯酸酯，但是也可以是诸如乙烯 - 醚酸乙烯酯 (EVA) 以及改性聚丙烯等类似的热塑性聚合物。热塑性聚合物可以包括压敏粘合剂、热硬化粘合剂和 / 或热塑性粘合剂，附着层 4 的厚度可以在大约 5～50 微米之间变化。

[0027] 图 4 举例出了对齐步骤。在该步骤中，载体 1 和柔性薄片 6 对齐，以便用于基于卷的制造工艺。这种基于卷的对齐的示例在同一申请人的欧洲专利（申请号 08152794）中公开，这里通过引用并入本文。柔性薄片 6 包括多个柔性薄片组件 2 的整体式布置 20；柔性薄片 6 的每个都包括组件件 7（见图 7），以用于电子 / 光学接合到柔性薄片组件。柔性薄片组件 2 的整体式布置 20 是通过至少一个机械连接经由衬底层或组件 2 之间的公共薄片 (common foil) 来限定的。典型地，组件 2 是在其中公共层限定了用于实现组件结构的平面结构的过程中的产生的。典型地，平面结构是在卷对卷工艺中产生的。作为整体式布置 20 的一部分，互连区域 21 限定了组件 2 之间的区域。这些区域 21 不具有器件功能，并且可以为了组件 2 的机械分离而被移除或被切割。区域 21 可以覆盖相当大的间距或者是小到单个切口。

[0028] 图 5 举例出了层压步骤。依据该步骤，将包括组件 2 的薄片 6 足够准确地层压到载体 1，使得可以与载体 1 电互连。因此，通过载体 1 和柔性薄片 6 的层压，在轨迹和整体式组件布置的组件件之间提供电子 / 光学通孔连接。

[0029] 图 6 举例出了进一步的制造步骤。在该步骤中，可以移除 (A) 不包含任何功能的中间区域 21，以便恢复组装系统 111 中的柔性或伸缩性。这可以以各种方法来实现，例如：

[0030] (1) 在层压前对薄片 6 进行穿孔。因此，举例而言，通过沿着在柔性薄片中预定的稀薄处 21 撕裂，可以机械地分离整体式布置。

[0031] (2) 可以对薄片进行层压，并且在层压后（例如通过激光切割），移除多余的部分。因此，举例而言，整体式布置 20 可以通过在薄片组件 2 之间提供切口 21 来在机械地分离。虽然单个切割轨迹足以提供机械分离，在一实施例中，整体式布置是通过移除薄片组件之间的薄片互连区域 21 来在机械地分离的。在这些互连区域中，在后续步骤中，可以提
供额外的薄片器件或组件。

3) 作为进一步实例，同一申请人的专利申请 PCT/IL0905/00611(其以引用方式并在本发明)公开了一种制造方法，其中，薄片器件制造成可与载体衬底(如图7所示)在机械上分离。在产品薄片6上制造所谓的无薄片(foilless)器件，器件2非常薄并且有些脆弱。在这种情况下，一些较小的机械应力将没有粘附和连接到表面的材料释放。因此，仅有一些机械作用可以足够移除非粘附部分，并且因此，可选择地，整体式布局可以通过将柔性薄片组件从薄片制备衬底释放来机械地分离。

4) 在释放衬里6上时，基于薄片的器件2被预先图案化、层压并且互连到载体1。图7示出了图6示出的在可伸缩衬底层1上的电子/光学组件2的细节方面。互连可以经由附着层4来实现，例如，通过其中在布置于可伸缩衬底层1上的互连固态附着层4中提供电子/光学通孔互连5这样一种处理来实现，互连层4因此具有与互连轨迹3对应的面外布置的互连5。作为一个示例，固态附着层4可以提供有布局在通孔中的导电膏(conductive paste)。

5) 图8示出了一种特殊情形，其中，可伸缩衬底被层压100，切割200和拉伸300；

6) 利用高度可伸缩“有线”衬底来层压高密度、坚硬/牢固的器件薄片6；

7) 切除200不包含器件2的薄片条带。

8) 拉伸300有线衬底1以便获得扩大的面积。拉伸的区域还可以用作扩散通道，例如针对绷带（bandage）应用中的水分，因为湿气不能穿透器件区域2，但是可以穿透可拉伸的中间区域（例如，通过具有额外的穿孔）。针对各种类型的器件和/或组件，可以重复该过程，以便产生多堆叠（multistack）配置或在平面上对齐的各种组件。因此，在后续的层压步骤中，另一柔性薄片可以与可伸缩衬底层上的互连组件层压在一起，该另一柔性薄片包括与互连区域对齐的其他薄片组件。

或者，组件可以按照高密度整体式布置20来制造在薄片6，并且使用上述方法置于可伸缩载体1上。在切割/释放之后，可以对载体1进行拉伸，以便产生具有均匀组件的大区域应用。对于制造一致的传感器阵列（比如，“智能绷带”）而言，这是特别关注的。

在不同的组件之间，延展的程度可以改变，因此提供一种用于分配组件的构件，这些组件是在最终承载材料上的预定位置处等距地产生的（因此，更加有效）。

具有不同表面结构的薄片的实例为OLED薄片或有机光电薄片（OPD）。不同的表面结构可以防止这些薄片彼此直接熔融在对方上。在这种情况下，附着层可以分离薄片，并且允许具有彼此之间不相同的邻接表面结构的两个功能薄片进行堆叠。不同表面结构的另一原因可以是仅局部地应用于薄片的层。例如，为了防止OLED受外部环境干扰，OLED薄片可以局部覆盖有柔性/无机透明阻挡层。

可以通过向附着剂提供添加物来丰富附着剂的功能。举例而言，可以向附着剂添加光学扩散材料，以改善附着层的光导特性，从而例如使来自OLED薄片的光很好地结合到光电二极管薄片上。丰富附着层的另一示例是通过吸水剂与附着剂混合，以使得水远离水敏薄片（例如，OLED薄片）。附着剂还可以向多薄片系统提供机械完整性。将这些薄片直接熔在一起可能在薄片间提供不充足的凝聚，并且导致薄片系统散开。附着层可以提供凝聚，以便将薄片系统保持在一起。

可以使用的导电材料的示例为导电膏，例如热固化或者紫外固化的银或铜，但是
也可以是碳填充环氧树脂或丙烯酸酯。此外，也有可能使用晶粒（seed）材料并且从晶粒中产生的（无电镀）金属导体来填充孔洞。

【0044】实例1：智能绷带传感器

多薄片系统的一个示例是用于现场监控伤口愈合的智能绷带传感器。在一实施例中，聚氨酯衬底（作为指示值，具有高达500％拉伸性）可以用作智能绷带应用的载体。因此，在可拉伸面积扩大到未拉伸面积值的200％、300％、500％时，器件的功能不受影响。

【0046】作为一个实例，可以制造脉搏血氧计传感器设备，该脉搏血氧计传感器设备具有可伸缩衬底并且包括在不可伸缩柔性薄片上制造的多个基于反射的OLED和OPD。典型地，这种柔性薄片不能够在不失去其电子-光学功能的前提下伸缩超过200％，并且在具有低于20％的面积扩大时，可能会碎裂。

【0047】目前，组件为OLED和OPD，然而，当这些组件被制造为产品薄片时（如上文所解释的），印刷的无源器件（如电阻器、电容器）或者这些的组合也可以按照类似的方式放置。

【0048】图9示出了作为三薄片系统的智能绷带传感器，该三薄片系统包括三个功能性薄片81、82和83。这三个薄片81、82和83经由两层粘合剂来进行层压并且电连接。在图9中，薄片之间的附着层不可见。第一薄片81是OLED薄片，该OLED薄片包括具有印刷的有机发二极管（OLED）的聚环二甲酸乙二醇酯（PEN）。为了防止OLED受到周围环境影响，可以用局部地用柔性-无机/透明阻挡层来覆盖OLED。第二薄片82为“光电二极管薄片”，该“光电二极管薄片”包括具有印刷有机光电二极管的PEN层。类似OLED，光电二极管也对环境影响敏感，并且OLED层也可以被柔性-无机透明阻挡层覆盖。第三薄片83为安装有驱动组件的“驱动薄片”。驱动薄片包括铜层和聚酰亚胺层。众所周知的，聚酰亚胺层是不可伸缩的并且扩大5-25％时碎裂，然而，在聚酰亚胺层碎裂前，电子-光学器件功能早就已经失去了。OLED薄片81和光电薄片82两者的电连接到驱动薄片83。传感器是通过如本文所公开的制造工艺来制造的，特别是根据层压-切割和拉伸步骤100-300来制造的。在该实例中，第一互连84将OLED薄片81连接到驱动薄片83，并且第二互连85将光电薄片82连接到驱动薄片83。第一互连85穿过光电薄片82。

【0049】本文所给出的详细附图、具体示例和特定的公式仅仅是出于说明目的。除非另有说明或者在物理上不可行，否则说明书应理解为明确地公开了所公开实施例以及其他实施例的任何特征。可以应用可伸缩材料（例如通过纺丝的硅树脂），或者，例如乳胶、聚氨酯、所有诸如氯基丁二烯橡胶（NBR）热塑弹性体（TPE）之类的橡胶的任何可伸缩材料。TPE归为基于聚烯烃（TPE-O）、聚酯（TPE-E）、聚酰胺（TPE-U）、聚酰胺（TPE-A）以及聚苯乙烯（TPE-S）的主要成员。此外，可伸缩衬底可以是可伸缩织物。

【0050】此外，在不背离所附权利要求中所描述的本发明范围的前提下，可以对示例性实施例的设计、操作条件和布置进行其他替换、修改、改变以及省略。