(12) (19) (CA) **Demande-Application**

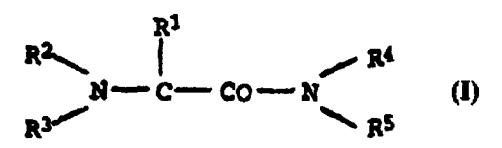
CIPO
CANADIAN INTELLECTUAL
PROPERTY OFFICE

(21) (A1) **2,223,872**

(86) 1996/07/12 (87) 1997/02/13

(72) BUSCHMANN, Ernst, DE

(72) ZIERKE, Thomas, DE


(71) BASF AKTIENGESELLSCHAFT, DE

(51) Int.Cl.⁶ C07K 1/10, C07D 233/64, C07C 323/60, C07D 209/20, C07C 279/14, C07C 237/02, C07C 231/02

(30) 1995/07/28 (19527574.8) DE

(54) PROCEDE DE PREPARATION DE .ALPHA.-(N,N-DIALKYLE)-AMIDES D'ACIDE AMINOCARBOXYLIQUE

(54) THE PREPARATION OF .ALPHA.-(N,N-DIALKYL)-AMINO (SIC) CARBOXAMIDES

(57) L'invention concerne un procédé de préparation de alpha.-(N,N-dialkyle)-amides d'acide aminocarboxylique de la formule (I) dans laquelle les substituants ont la notation mentionnée. Ce procédé se caractérise en ce qu'on fait réagir les acides libres correspondants avec des amines primaires ou secondaires en présence d'anhydrides d'un acide phosphonique d'alcane.

(57) The description relates to a process for producing alpha.-(N,N dialkyl)-amino carboxylic acid amides of formula (I) in which the constituents have the meanings given, in which the corresponding free acids are reacted with primary or secondary amines in the presence of anhydrides of an alkane phosphonic acid.

WELTORGANISATION FÜR GEISTIGES EIGENTUM Integnationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07C 231/02, C07K 1/08, 1/06

(11) Internationale Veröffentlichungsnummer: WO 97/05096

A1 (43) Internationales

Veröffentlichungsdatum:

13. Februar 1997 (13.02.97)

(21) Internationales Aktenzeichen:

PCT/EP96/03075

(22) Internationales Anmeldedatum:

12. Juli 1996 (12.07.96)

(30) Prioritätsdaten:

195 27 574.8

28. Juli 1995 (28.07.95)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen

(72) Erfinder: und

(75) Erfinder/Anmelder (nur für US): BUSCHMANN, Ernst [DE/DE]; Georg-Ludwig-Krebs-Strasse 10, D-67069 Ludwigshafen (DE). ZIERKE, Thomas [DE/DE]; Akazienstrasse 12, D-67459 Böhl-Iggelheim (DE).

(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AU, BG, BR, CA, CN, CZ, HU, IL, JP, KR, MX, NO, NZ, PL, SG, SK, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen

(54) Title: PROCESS FOR PRODUCING α -(N,N DIALKYL)-AMINO CARBOXYLIC ACID AMIDES

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON α -(N,N-DIALKYL)-AMINOCARBONSÄUREAMIDEN

(57) Abstract

The description relates to a process for producing α -(N,N dialkyl)-amino carboxylic acid amides of formula (I) in which the constituents have the meanings given, in which the corresponding free acids are reacted with primary or secondary amines in the presence of anhydrides of an alkane phosphonic acid.

(57) Zusammenfassung

Es wird ein Verfahren zur Herstellung von α-(N,N-Dialkyl)-aminocarbonsäureamiden der Formel (I), in der die Substituenten die angegebene Bedeutung besitzen, beschrieben, welches darin besteht, daß man die entsprechenden freien Säuren mit primären oder sekundären Aminen in Gegenwart von Anhydriden einer Alkanphosphonsäure umsetzt.

The preparation of α -(N,N-dialkyl)-amino [sic] carboxamides

The invention relates to a novel process for the racemization- 5 free linkage of α -(N,N-dialkyl)-amino [sic] acids with amines to give the corresponding carboxamides.

There is interest in α -(N,N-dialkyl)-amino [sic] acids of the formula II

$$R^2$$
 N
 CH
 $COOH$

15

10

as building blocks for the synthesis of numerous natural substances with an interesting profile of pharmacological actions and for active substances structurally derived from these substances (enkephalins: U. Schmidt et al.; Liebigs Ann. Chem.

20 (1985) 1254-1262, dolastatins: G.R. Pettit et al.; Tetrahedron 49 (41) 9151 - 9170, WO 93/23 424). Thus, for example, the antineoplastic active substance dolastatin 10 is prepared from N,N-dimethylvaline (IIa) and a tetrapeptide:

25
$$CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3}$$

The linkage of an N,N-dialkylamino acid such as IIa with peptides 35 is difficult and, in the case of dolastatin 10, gave a yield of only 53 % (J. Poncet et al. Tetrahedron 50, (1994) 5345-5360). This poor result, which leads to loss of a large portion of the valuable tetrapeptide in the dolastatin synthesis, is not surprising according to U. Schmidt et al. (Liebigs Ann. (1985) 40 1254-1262).

U. Schmidt also investigated the linkage of N,N-dimethylamino acids in connection with the synthesis of enkephalins. In this connection, only three methods proved to be useful for activating 45 these amino acids:

1. Activation of the N,N-dimethylamino acid by conversion into the pentafluorophenyl esters:

5
$$\bigcap_{i=0}^{R^1} OH + F \bigcap_{i=0}^{F} CF_3 \bigcap_{i=0}^{R^1} OF \bigcap_{i=0}^{F} F$$

10

40

This method is used, for example, by G.R. Pettit et al.

(J.Am.Chem.Soc. 113 (1991) 6992-6993) for synthesizing dolastatin 15. The starting compound required for this multistage process is pentafluorophenol, a costly reagent which is not available in sufficient quantity for industrial syntheses. Its use moreover leads to fluorine-containing waste which can be disposed of only with difficulty and possibly with formation of dioxins.

20 2. As an alternative, U. Schmidt recommends activation with 3-cyano-4,6-dimethyl-2-pyridinethiol:

- However, the cyanopyridine is not commercially available and must be prepared in a multistage process.
- 3. A third alternative is activation of the dimethylamino acid with diethyl phosphocyanidate (= DEPC) (G.R. Pettit, Tetra-hedron 50 (1994), 42, 12097-12108). This reagent is also not commercially available in the amounts necessary for industrial synthesis. An additional multistage process is necessary. Highly toxic cyanide-containing solutions must be used in the preparation and reaction of DEPC.

There is thus a pressing need for processes which make simple linkage of N,N-dimethylamino acids possible.

However, there is interest not only in peptide linkage of N,N-di-45 methylamino acids but also in peptide couplings with N-benzyl-N-methylamino acids. In this case, the benzyl radical acts as protective group which can easily be eliminated by hydrogenolysis.

Although N-benzyl-N-methylamino acids can easily be prepared as 5 peptide building blocks, they are little used because to date there have been no methods which can be used for racemization-free linkage of these amino acids.

This is why peptides which are partly composed of N-methylamino

10 acids (eg. cyclosporins, dolastatins) are prepared exclusively
using N-acyl-N-methylamino acids (acyl = butoxycarbonyl (BOC),
benzyloxycarbonyl (Z)) which, although more difficult to prepare
than N-benzyl-N-methylamino acids, are less prone to racemization
on linkage (example: Dolestatin 15 synthesis by G.R. Pettit,

15 J. Am. Chem. Soc. 113 (1991) 6692-6693).

A suitable coupling reagent for using N-benzyl-N-methylamino acids would therefore also be desirable.

20 Linkage of carboxylic acids with amines in the presence of anhydrides of alkanephosphonic acids to give the corresponding amides is a familiar process (EP 14 834) which can also be used to prepare peptides (EP 156 280). n-Propanephosphonic anhydride (PPA) is preferably used for this purpose. However, the utilizability of this reagent has been shown only for N-acylamino acids which are not alkylated on the nitrogen.

Numerous coupling reagents are available for such reactions. The utilizability of anhydrides of alkanephosphonic acids for linking 30 N,N-dialkylamino acids of the formula I has not hitherto been investigated.

It was therefore surprising in the context of the problems indicated above that anhydrides of alkanephosphonic acids are very suitable coupling reagents for linking α -(N,N-dialkyl)-amino [sic] acids.

The invention relates to a process for preparing $\alpha\text{-(N,N-di-alkylamino)}$ carboxamides of the formula I

$$\begin{array}{c|c}
R^2 & & R^4 \\
N - CH - CO - N & R^5
\end{array}$$

45

40

where

- R¹ is C₁₋₆-alkyl, C₃₋₇-cycloalkyl, phenyl, benzyl,
 (CH₂)₃NH(C=NH)NH₂, CH₂CONH₂, CH₂CO₂H, CH₂SH, (CH₂)₂CONH₂,
 (CH₂)₂CO₂H, imidazolyl-5-methylene [sic], (CH₂)₄NH₂,
 (CH₂)₂SCH₃, CH₂OH, CH(OH)CH₃ or indolyl-β-methylene [sic],
 where reactive groups are, if required, provided with
 protective groups,
- R^2 is C_{1-6} -alkyl or unsubstituted or substituted benzyl,
- 10 R^3 is C_{1-6} -alkyl or unsubstituted or substituted benzyl, where R^1 and R^3 can be linked together,
- R⁴ and R⁵ are, independently of one another, hydrogen,
 C₁₋₆-alkyl, C₃₋₇-cycloalkyl, phenyl (which can be substituted
 by 1, 2 or 3 fluorine, chlorine or bromine atoms or
 C₁₋₅-alkyl, C₁₋₅-alkoxy or CF₃ groups), an aromatic heterocycle
 (which can be substituted by 1, 2 or 3 fluorine, chlorine or
 bromine atoms or C₁₋₅-alkyl, C₁₋₅-alkoxy or CF₃ groups) or ben zyl (which can be substituted by 1, 2 or 3 fluorine, chlorine
 or bromine atoms or C₁₋₅-alkyl, C₁₋₅-alkoxy or CF₃ groups),
 where R⁴ and R⁵ can additionally be linked together, and where
 NR⁴R⁵ can also be an amino acid residue or peptide residue,
 the carboxyl group and other functional groups possibly being
 blocked with protective groups,

which comprises reacting the corresponding free acids with primary or secondary amines in the presence of anhydrides of an alkanephosphonic acid.

30 Specific mention may be made in particular of the following primary and secondary amines

5

25

- amines such as ammonia, methylamine, ethylamine, propylamine, butylamine, isobutylamine, benzylamine, cyclohexylamine, dimethylamine, diethylamine, benzylmethylamine, dibenzylamine, pyrrolidone [sic], hydroxy- and methylpyrrolidines, piperidine, hydroxy [sic] and methylpiperidines, aniline, N-methylaniline, morpholine, alkylmorpholines, aminopyridine;
- amino acid derivatives such as esters and amides of alanine,
 N-methylalanine, glycine, N-methylglycine, isoleucine,
 N-methylisoleucine, methionine, N-methylmethionine, phenyl-glycin, N-methylphenylglycine, phenylalanine, N-methylphenyl-

alanine, proline, tryptophan, N-methyltryptophan, valine, N-methylvaline, β -alanine, N-methyl- β -alanine;

peptides such as

10

Val-MeVal-OMe, MeVal-Val-OMe, Pro-Val-OMe, Pro-Val-NH2,
Pro-Val-NHBz, Val-MeVal-Val-Pro-OMe, Val-MeVal-Val-Pro-NH2,
Val-MeVal, Val-Pro-NHBz, Val-MeVal-Val-Pro-NHiProp,
Val-MeVal-Pro-ProNH2, Val-MeVal-Pro-Pro-NHBz,
Val-MeVal-Pro-Pro-NHiProp.

Particularly suitable for R^1 as C_{1-6} -alkyl or C_{3-7} -cycloalkyl are: methyl, isopropyl, isobutyl, 1-methylpropyl, cyclopropyl and cyclohexyl.

- 15 The C_{1-6} -alkyl groups specifically mentioned for R^1 are also preferred for R^2 , R^3 , R^4 and R^5 . Cycloalkyl groups which may be particularly mentioned for R^4 and R^5 are cyclopropyl and cyclohexyl.
- 20 Suitable and preferred aromatic heterocycles for R⁴ and R⁵ are thiazole, thiophene and pyridine radicals.

R⁴ and R⁵ can also be connected together by the following [sic] bridges so that R⁴R⁵ is then (CH₂)₄, (CH₂)₅, CH₂CH₂OCH₂CH₂ or 25 (CH₂)₆.

 R^1 and R^2 can be linked together to form, where appropriate, C_1-C_4 -alkyl-substituted pyrrolidines and piperidines.

30 Besides an alkyl group, R^2 can also be an unsubstituted or substituted benzyl radical. Suitable substituents are C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, nitro, CF_3 , Cl, F and Br.

The process according to the invention is thus suitable both for 35 preparing amides of the N,N-dialkylamino acids I and particularly for preparing peptides.

The reaction is carried out at from -10°C to +40°C, preferably from -5°C to room temperature. Suitable coupling reagents are the 40 anhydrides of the straight-chain or branched, or cyclic, alkane-phosphonic acids with chain lengths of from 1 to 8 carbon atoms, preferably propanephosphonic anhydride (PPA). Other examples which may be mentioned are methanephosphonic anhydride, ethane-phosphonic anhydride and butanephosphonic anhydride.

The alkanephosphonic anhydrides can be prepared in a conventional manner as described, for example, in Houben-Weyl, Meth. d. Org. Chem. (1963), Vol. XII/1, page 612.

5 Particularly pure alkanephosphonic anhydrides are expediently used to prepare peptides. Anhydrides of this type can be obtained by reacting pure alkanephosphonic dichlorides with 1 mole of water and subsequently removing the hydrogen chloride which still remains in the product under reduced pressure.

10

The process of German Patent Application 2 811 628 is preferred for preparing these anhydrides. This entails pure alkanephosphonic acids being converted into the anhydrides by thermal elimination of water. Subsequent purification by vacuum distillation may 15 be expedient. The reaction is best carried out in neutral or weakly alkaline medium.

The condensation reaction is expediently carried out in a buffered medium, which can take place by adding aliphatic and cy20 cloaliphatic tertiary bases such as N-methylmorpholine, N-ethylmorpholine, and trialkylamines with up to 6 carbon atoms per alkyl radical. Triethylamine and diisopropylethylamine have proved
particularly useful. Suitable solvents are dimethyl sulfoxide,
DMF, DMA, N-methylpyrrolidone, chloroform, methylene chloride,
25 THF, dioxane and methyl acetate.

The starting materials used to prepare peptides are, besides the N,N-dialkylamino acid or the N-benzyl-N-alkylamino acid and the anhydride of the alkanephosphonic acid, an amino acid or a pep30 tide with a blocked carboxyl group. The carboxyl group can be protected using all protective groups customary in peptide synthesis.

The alkanephosphonic anhydrides are preferably employed in excess 35 (2 to 2.5 mol of alkanephosphonic anhyride per mole of amide linkage to be produced).

The following examples illustrate the process according to the invention.

40

Example 1
Me₂Val-Val-MeVal-Pro-Pro-NHBz x HCl

42.4 g of a 50 % strength solution of n-propanephosphonic anhy45 dride in ethyl acetate were added dropwise over the course of
20 min to a solution of 8.7 g of L-N,N-dimethylvaline, 27.4 g of
Val-MeVal-Pro-Pro-NHBz x HCl and 21.6 g of triethylamine in

100 ml of CH₂Cl₂ at 0 to 65°C. The mixture was stirred in the cold for 1 h and at room temperature overnight. The organic phase was washed with 50 ml of water and concentrated. The residue was dissolved in 50 ml of isopropanol and acidified with 10 ml of 30 % strength isopropanolic HCl. Seeding, addition of 150 ml of methyl tert-butyl ether at 60°C, stirring overnight, filtering with suction, washing with isopropanol and drying resulted in 29.9 g (88.3 %) of Me₂Val-Val-MeVal-Pro-Pro-NHBz x HCl, purity by HPLC percentage area: 99.8 % (no epimer detectable).

10

Example 2
Me₂Val-Val-MeVal-Pro-Pro-NHBz x HCl

84.8 g of a 50 % strength solution of n-propanephosphonic anhy15 dride in ethyl acetate were added dropwise over the course of
45 min to a solution of 21.6 g of dimethylvaline, 54.8 g of ValMeVal-Pro-Pro-NHBz x HCl and 54 g of diisopropylethylamine in
100 ml of CH₂Cl₂ at -75°C. The mixture was stirred in the cold for
1 h and at room temperature overnight. The organic phase was
20 washed with 200 ml of saturated NaCl solution and 100 ml of 10 %
strength NaOH and concentrated. The residue was dissolved in
350 ml of 2-butanol. 25 ml of saturated isopropanolic HCl solution and 200 ml of MTBE were added and, after stirring overnight,
the product was filtered off with suction and dried under reduced
25 pressure to result in 61.4 g (90.5 %) of product, purity by HPLC
percentage area: 99.8 % (no epimer detectable).

Example 3

35

120 g of diisopropylethylamine were added to a solution of 50 g of N-benzyl-N-methylvaline in CH₂Cl₂. 37.7 g of proline methyl ester hydrochloride and 176.8 g of 50 % strength solution of propanephosphonic anhydride in ethyl acetate were added at -55 to 40 5°C. The mixture was stirred in the cold for 1 h and at room temperature overnight. The organic phase was washed with 400 ml of water, 200 ml of 1 N NaOH and twice with water, dried over Na₂SO₄ and concentrated. 49.6 g (65.4 %) of product were obtained, purity by HPLC percentage area: 93.7 %. The content of other dia-45 stereomers was below 1 %.

Example 4

9.9 g of Pro-Pro-NHBz x HCl and 24.3 g of a 50 % strength solution of n-propanephosphonic anhydride in ethyl acetate were 20 added to a solution of 6.5 g of N-benzyl-N-methylvaline and 16.3 g of diisopropylethylamine in methylene chloride at -55°C to 5°C. The mixture was stirred in the cold for 1 h and at room temperature overnight, and the organic phase was washed with water, 1 N NaOH and water, dried over Na₂SO₄ and concentrated. 14.4 g 25 (93.4 %) of product remained, purity by HPLC percentage area: 96.1 %. The content of other diastereomers was below 1 %.

30

35

We claim:

1. A process for preparing α -(N,N-dialkylamino) carboxamides of the formula I

$$\begin{array}{c|c}
R^2 & & \\
N - CH - CO - N \\
R^3 & & R^5
\end{array}$$

where

10

20

- is C₁₋₆-alkyl, C₃₋₇-cycloalkyl, phenyl, benzyl,

 (CH₂)₃NH(C=NH)NH₂, CH₂CONH₂, CH₂CO₂H, CH₂SH, (CH₂)₂CONH₂,

 (CH₂)₂CO₂H, imidazolyl-5-methylene [sic], (CH₂)₄NH₂,

 (CH₂)₂SCH₃, CH₂OH, CH(OH)CH₃ or indolyl-ß-methylene [sic],

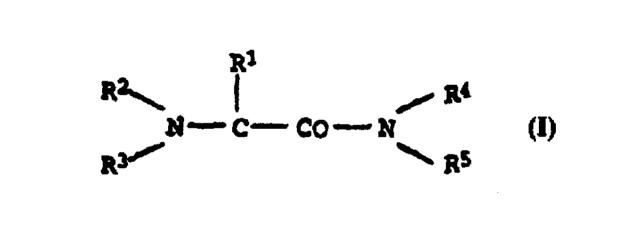
 where reactive groups are, if required, provided with

 protective groups,
 - R^2 is C_{1-6} -alkyl or unsubstituted or substituted benzyl,
 - R^3 is C_{1-6} -alkyl or unsubstituted or substituted benzyl, where R^1 and R^3 can be linked together,
- R4 and R5 are, independently of one another, hydrogen, C_{1-6} -alkyl, C_{3-7} -cycloalkyl, phenyl (which can be substituted by 1, 2 or 3 fluorine, chlorine or bromine atoms or C_{1-5} -alkyl, C_{1-5} -alkoxy or CF_3 groups), an 30 aromatic heterocycle (which can be substituted by 1, 2 or 3 fluorine, chlorine or bromine atoms or C₁₋₅-alkyl, C₁₋₅-alkoxy or CF₃ groups) or benzyl (which can be substituted by 1, 2 or 3 fluorine, chlorine or bromine atoms or C_{1-5} -alkyl, C_{1-5} -alkoxy or CF_3 groups), where R^4 and R^5 can additionally be linked together, and where NR4R5 can also 35 be an amino acid residue or peptide residue, the carboxyl group and other functional groups possibly being blocked with protective groups,
- which comprises reacting the corresponding free acids of the formula II

45
$$R^2 \longrightarrow R^1 \longrightarrow CH \longrightarrow CO \longrightarrow OH$$
 II

with primary or secondary amines of the formula

5


in the presence of anhydrides of an alkanephosphonic acid.

- A process as claimed in claim 1, wherein amino acid derivatives or peptides are used as primary or secondary amines.
 - 3. A process as claimed in claim 1, wherein n-propanephosphonic anhydride is used as alkanephosphonic anhydride.
- 15 4. A process as claimed in claim 1, wherein N,N-dimethyl- and N-benzyl-N-methylamino carboxylic acids are used as α -dialkylamino carboxylic acids.
- 5. A process as claimed in claim 1, wherein N,N-dimethylvaline, N,N-dimethylisoleucine, N-benzyl-N-methylvaline or N-benzyl-N-methylisoleucine is used as α -dialkylamino carboxylic acids.

25

30

35

