(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 January 2001 (18.01.2001)

A 0 OO0 0O

(10) International Publication Number

WO 01/04744 A2

(51) International Patent Classification”: GO6F 9/00

(21) International Application Number: PCT/US00/19233

(22) International Filing Date: 13 July 2000 (13.07.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/143,428
09/465,995

13 July 1999 (13.07.1999)
16 December 1999 (16.12.1999)

Us
us

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]J; 901
San Antonio Road, Palo Alto, CA 94303 (US).

(72) Inventors: YE, Tao; 929 E. El Camino Real, #116, Sun-
nyvale, CA 94087 (US). CALDER, Bartley, H.; 4058
Carracci Lane, San Jose, CA 95135 (US). RIVAS, Jesus,
David; 258 28th Street, San Francisco, CA 94131 (US).
COURTNEY, Jonathan, D.; 1623 Koch Lane, San Jose,
CA 95125 (US).

(74) Agent: HEILBRUNN, Elise, R.; Beyer Weaver &
Thomas, LLP, PO. Box 130, Mountain View, CA
94042-0130 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR,BY,BZ, CA, CH,CN, CR, CU, CZ,

DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,

HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR,

LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,

NO,NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,

TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

patent (AM, AZ, BY, KG, KZ,MD, RU, TJ, TM), European

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,

CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

[Continued on next page]

Application
Manager
initialization

(54) Title: METHODS AND APPARATUS FOR IMPLEMENTING INDIVIDUAL CLASS LOADERS

00 0 0O

708 708 Wait for signai
\
Receive signal Construct a class
to download | —» loader for the I~~~ 710
application application
+ ™
Recove sianal| | coasen seciaing 1o
—7 > security constraints of I~ 714
application thne'ylppllclﬂon
712 716~ Start the appiication Application |_ 728
720 718 Wait for signal
Receive signal
to stop the E:;Flg-yﬁ‘:: 722
Clean up th bA i ;‘::
n up the esn destroyed;
724 "‘| application signalsent | 730
o P
)
Dereference the
class loaderfor ~_ 728
the application

associated with the application such that the class loader maintains

WO 01/04744 A2

(57) Abstract: Methods and apparatus for loading and unloading classes associated with an application are disclosed. A class loader
adapted for loading classes associated with an application is constructed. The class loader is employed to load one or more classes

a reference to the one or more classes. The class loader for the

application is then de-referenced such that the class loader is unreachable.

woO 01/04744 A2 N SURENOA 00T O ORI AM AL

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 01/04744 PCT/US00/19233

METHODS AND APPARATUS FOR IMPLEMENTING
INDIVIDUAL CLASS LOADERS

BACKGROUND OF THE INVENTION

1. FIELD OF THE INVENTION

The present invention relates generally to computer software. More
particularly, the present invention relates to methods and apparatus for implementing

a class loader adapted for loading classes associated with an application.

2. DESCRIPTION OF THE RELATED ART

The digital television revolution is one of the most significant events in the
history of broadcast television. With the advent of digital television, high speed data
transfer is possible via satellite, cable and terrestrial television channels. Digital
television will offer users more channels as well as significantly improved video and
audio quality. Most importantly, digital television ushers in the age of true interactive
television. For instance, digital receivers will be able to offer users a variety of
enhanced services, from simple interactive quiz shows, to Internet over the air, and a
mix of television and web-type content. As the market for digital television grows,
content developers are looking for a feature-rich, cost-effective, and reliable software
platform upon which to build the next generation of interactive television services
such as Electronic Programming Guides, Video-On-Demand, and Enhanced

Broadcasting.

10

15

20

25

WO 01/04744 PCT/US00/19233

Java is a leading commercial object-oriented language designed as a portable
language. A Java program can be written and compiled once and run on any
compatible device that supports the JAVA™ PLATFORM. For instance, Java is
incorporated into all major Web browsers. Thus, Java runs on any web-enabled
computer via that computer’s Web browser. As such, it offers great promise as the
software platform for the next generation of set-top boxes and digital televisions.

In object-oriented programming, runtime data are represented by objects.
Each object is defined via its class, which determines the properties of an object. In
other words, objects are individual instances of a class. To run a Java application, the
related classes are loaded into memory. Instances of these classes are then
constructed following the flow of the program. Most object-oriented languages
require that all objects that are created be actively destroyed by the programmer when
they are no longer needed. However, implementations of the Java Virtual Machine
typically automate this process and perform garbage collection to increase the amount
of available memory. Accordingly, objects are deleted or “garbage collected”
automatically by the Java runtime environment when they are no longer referenced.

Although instances of classes that are no longer referenced are removed from
memory through garbage collection, the associated classes are not removed from
memory. Moreover, since Java is a dynamic language, class loading is commonly
performed. However, there is currently no mechanism for unloading the classes, even
when they are no longer needed. As a result, the JAVA PLATFORM will eventually
store a large number of classes.

In the desktop environment, classes need not be unloaded since memory is
relatively unlimited. Moreover, once the browser is turned off (or closed), the classes

are cleared from memory. However, space is a valuable resource in the environment

10

15

20

WO 01/04744 PCT/US00/19233

of embedded systems, particularly in the area of digital television. Moreover, in the
digital television environment, it will be common to run multiple applications. For
instance, when a television viewer changes the channel, each associated service will
likely require that a new application with multiple classes be loaded. As a result,
memory will continually be allocated to the loaded classes until the limited amount of
memory is consumed. Once the memory is consumed, it will be impossible to run
any further applications. It will therefore be desirable to monitor the memory
utilization and remove those classes that are no longer needed by the applications.
This is particularly important since it will be undesirable to reboot the television in
the event of an error.

In view of the above, there is a need for improved ways to manage storage of

classes in memory.

SUMMARY

The present invention enables classes to be dynamically unloaded from
memory when they are no longer needed. This is accomplished, in part, through the
use of an individual class loader associated with each application. In this manner,
memory consumption within a digital television is managed to make better use of
limited memory resources.

According to one aspect of the invention, an application manager is adapted
for constructing a class loader for an application. For instance, a specialized class
loader may be constructed (e.g., instantiated) to load classes associated with an
application that is to be loaded via a digital television receiver. Accordingly, the class

loader is employed to load one or more classes associated with the application.

10

15

20

WO 01/04744 PCT/US00/19233
According to another aspect of the invention, an application manager is
adapted for monitoring and managing execution of the application and de-referencing
the constructed class loader when execution of an application ends or when execution

of the application is terminated (e.g., by a signal). Thus, when the application
manager determines that the application has terminated, the classes are unloaded since
they are no longer needed. This is accomplished, in part, by de-referencing the class
loader for the application such that the class loader becomes unreachable. Since the
class loader is the last to maintain a reference to the classes that it has loaded into the
execution environment, these classes become unreachable when the class loader is de-
referenced, provided no other instances in the runtime environment reference the
classes. Accordingly, when garbage collection is performed, the classes are
effectively unloaded.

According to yet another aspect of the invention, the present invention is
implemented on a JAVA PLATFORM. The JAVA PLATFORM provides an ideal
development and deployment platform for this emerging class of interactive services.
The Java programming language provides content developers with a high degree of
control and flexibility of the “look and feel” of their applications, enabling them to
deliver the most dynamic and compelling interactive television experiences to their
audience. The garbage collection process is leveraged to shift the burden of memory
allocation and memory management from the programmer to the platform. In
addition, interactive television applications written in the Java programming language
offer security, extensibility, and portability across a diverse array of television
receivers, saving content developers time and money getting their interactive

applications to market.

WO 01/04744 PCT/US00/19233
The present invention utilizes individual class loaders to load and unload
classes associated with each application. Through the de-referencing of the
appropriate class loaders when it is determined that the associated classes are no
longer needed, the garbage collection process is leveraged to maximize the amount of
5 available memory. This is particularly important in systems having limited memory,

such as in a digital television receiver.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further advantages thereof, may best be
10 understood by reference to the following description taken in conjunction with the

accompanying drawings in which:

FIG. 1 is a block diagram illustrating a system in which the present invention
may be implemented.
15 FIG. 2 is a block diagram illustrating one embodiment of the invention during
the loading of classes.
FIG. 3 is a block diagram illustrating one embodiment of the invention during
execution of an application.
FIG. 4 1s a block diagram illustrating one embodiment of the invention upon
20 completion of execution of the application.
FIG. 5 is a block diagram illustrating one embodiment of the invention after

one round of garbage collection is completed.

WO 01/04744 PCT/US00/19233
FIG. 6 is a process flow diagram illustrating one method of executing an
application on a digital TV receiver according to one embodiment of the invention.
FIG. 7 is a process flow diagram illustrating one method of implementing an
application manager to unload classes during execution of an application as shown in
5 FIG. 6 according to one embodiment of the invention.

FIG. 8 is a block diagram illustrating a typical, general-purpose computer

system suitable for implementing the present invention.

DETAILED DESCRIPTION OF THE PREFERRED

10 EMBODIMENTS

In the following description, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It will be apparent,
however, to one skilled in the art, that the present invention may be practiced without
some or all of these specific details. In other instances, well known process steps

15 have not been described in detail in order not to unnecessarily obscure the present

invention.

An invention is described herein that enables classes to be unloaded
dynamically. More particularly, classes may each be represented by a class object,
which includes the definition of the associated class. Therefore, the terms “class” and

20 *“class object” are used interchangeably throughout.

The invention is described within the context of a digital television and digital
television receiver. FIG. 1 is a block diagram illustrating an exemplary digital

television receiver. As shown, a signal is received via antenna 102 and tuned by tuner

10

15

20

25

WO 01/04744 PCT/US00/19233
module 104, producing MPEG?2 transport stream 106. De-multiplexer 108 then
produces encrypted MPEG stream 110 including a video stream 112, an audio stream
114, and a data stream 116. These three streams are then processed by conditional
access subsystem 118. For instance, the conditional access subsystem 118 may utilize
key management information 120 as well as decryption information 122 (e.g.,
decryption algorithms). The conditional access subsystem 118 produces decrypted
MPEG streams 123 including a video stream 124 and audio stream 125 as well as
data 126, all of which are decrypted. A decoder 128 then processes the decrypted
MPEG stream 123, and forwards the decoded video data to frame buffer 130 and
transmits the decoded audio data to speaker 132.

A Java Virtual Machine (JVM) is one platform that may be used to implement
the present invention by processing information received by a digital television
receiver such as that illustrated in FIG. 1. More particularly, when the data 126 is
processed, it could contain Java applications that are composed of many classes. It is
therefore desirable to load and unload classes dynamically to minimize the memory
consumption in a digital television or digital television receiver (or set-top box),
which is typically limited in memory.

The present invention enables the loading and unloading of classes for each
application through the instantiation of an individual class loader for each application.
FIG. 2 is a block diagram illustrating one embodiment of the invention. As shown, an
application manager 202 is provided to manage the loading of classes as well as the
execution of applications on the platform. One method of implementing the
application manager 202 will be described in further detail with reference to FIG. 7.
More particularly, the loading of classes is managed, in part, through'the creation of

an individual class loader for each application. Thus, the application manager 202

10

15

20

WO 01/04744 PCT/US00/19233
instantiates a first class loader 204 adapted for loading classes associated with a first
application (APP1). Similarly, the application manager 202 instantiates a second
class loader 206 adapted for loading classes associated with a second application
(APP2). The application manager 202 and the class loaders 204 and 206 are stored in
amemory 208. The class loaders 204 and 206 then load classes for the respective
applications. More particularly, as shown, the first application class loader 204 loads
a first set of classes 210 associated with the first application and the second
application class loader 206 loads a second set of classes 212 associated with the
second application. In this manner, the first and second sets of application classes
210 and 212 are loaded into execution environment 214 (e.g., JVM). Once loaded,
the classes may be accessed during execution of each of the applications.

Referring now to FIG. 3, a block diagram illustrating one embodiment of the
invention upon completion of the class loading process is presented. FIG. 3 is, for
example, associated with execution of first and second applications by the JVM. As
shown, the application manager 202 maintains a link (e.g., reference) to the first
application class loader 204 as well as to the second application class loader 206. In
addition, the first application class loader 204 maintains a link (e.g., reference) to the
first set of application classes 302. Similarly, the second application class loader 206
maintains a link (e.g., reference) to the second set of application classes 304. For
example, each link may be implemented through the use of a pointer. The application
manager 202 continues to reference all of the class loaders 204 and 206 during
execution of the respective applications. In addition, the class loaders 204 and 206
reference the application classes 302 and 304, respectively, during execution of the

respective applications. In one implementation, the first and second sets of

10

15

20

WO 01/04744 PCT/US00/19233
application classes are stored in a JVM stack residing in memory (e.g., memory 200).
As an example, the memory may be Random Access Memory (RAM).

When execution of one of the applications ends or the application is stopped
prior to completion, the application manager 202 de-references the appropriate class
loader. FIG. 4 is a block diagram illustrating one embodiment of the invention
following completion of execution of the second application. When execution of the
second application ends or is stopped prematurely, the application manager 202 de-
references the second application loader 206. In other words, the application manager
202 removes the link to the second application loader as shown at 402. For example,
the original reference variable to the second application loader 206 may be set to null.
For instance, a reference variable to the second application loader 206 may be set to
null After the second class loader 206 is de-referenced, the second class loader 206
becomes an unreachable object in memory. As described above, when an object (i.e.,
instance of a class) or a class has no reference to it, it is “unreachable” and will
therefore be garbage collected. Since the second class loader 206, as the last
reference to the second set of application classes 304 and associated instances, is
unreachable, garbage collection 406 subsequently removes the associated classes 304
(e.g., class objects) as well as all instances of the classes 304 (i.e., objects), since they
are also unreachable at the moment. Thus, classes referenced by the de-referenced
class loader 206 are garbage collected and the allocated memory is returned to the
available memory pool. Additional details on the JVM, including “unreachability”
and garbage collection, are contained in “The Java Virtual Machine Specification”,
Second Edition, Lindholm, Yellin, ISBN 0-201-43294-3, which is hereby

incorporated by reference.

10

15

20

25

WO 01/04744 PCT/US00/19233

After garbage collection is completed, all unreachable classes and objects are
no longer resident in memory. As shown in FIG. 5, once garbage collection is
performed on the system shown in FIG. 4, the unreachable class loader, unreachable
classes and associated instances are deleted from memory. As a result, only the first
application loader 204 and the first set of classes 304 remain. Consequently, the
invention serves to free up memory resources in a dynamic manner so that the limited
memory resources (€.g., of the digital television receiver) can be better utilized.

FIG. 6 is a process flow diagram illustrating one method of executing an
application transmitted via a digital TV receiver according to one embodiment of the
invention. The process begins at block 602 and at block 604 the digital television
receiver is turned on. The Java™ environment is then started at block 606. An
application manager is then constructed at block 608 and run at block 610.

A variety of digital television services may be received by a digital television
receiver such as that illustrated in FIG. 1. In addition to receiving a multitude of
channels, these services could range from interactive television, to near video-on-
demand, to specialized programming. When a service is selected by a user at block
612, an application associated with the selected service may be received via the digital
television receiver at block 614. For instance, when the user selects a Disney service,
there might be a Disney application that is received for enhanced viewing experience.

The application manager is responsible for monitoring and managing the
execution of the application. For instance, the application manager is signaled to load
and execute the application at block 616. When a start signal is received (e.g., via the
digital television receiver) at block 618 to start the application, the application
manager is signaled to start the application at block 620. The application executes

until a stop signal is received (e.g., via the digital television receiver) at block 622,

10

10

15

20

25

WO 01/04744 PCT/US00/19233

and the application manager is signaled to stop the application at block 624. The
process ends at block 626.

The application manager may be implemented in a variety of ways to ensure
that classes that are loaded are unloaded when they are no longer needed by an
application. FIG. 7 is a process flow diagram illustrating one method of
implementing an application manager to unload classes during execution of an
application as shown in FIG. 6 according to one embodiment of the invention. The
process begins at block 702 and at block 704, the application manager performs
initialization as appropriate. In addition, the application manager is responsible for
managing execution of one or more applications. Thus, the application manager waits
for a signal (e.g., via the television receiver) as shown in FIG. 6 prior to blocks 614

and 616 indicating that the application manager is to load an application (e.g.,

received from the broadcast data stream), start an application, or stop an application.

The application manager therefore waits for such a signal as shown at block 706.
When the application manager receives a load signal indicating that the application
manager is to load the application at block 708, the application manager constructs a
class loader for the application 710. As described above, the class loader is designed
to load one or more classes associated with the application. When the application
manager receives a start signal at block 712, the application manager employs the
appropriate class loader to load the application classes associated with the application
at block 714. For instance, the application classes may be loaded according to
security constraints of the application. Thus, the class loader can perform appropriate
security checks to determine if the application can be loaded. The application
manager then begins execution of the application at block 716 and waits at block 718

until the application ends or until the application is terminated prior to its completion.

11

10

15

20

25

WO 01/04744 PCT/US00/19233

The application manager recognizes the termination or completion of an application
through the receipt of a signal or message from the application or other process
indicating that execution of the application is terminated.

When the application manager receives a stop signal to stop execution of the
application prior to its completion as shown at block 720, the application is destroyed
(e.g., deleted) at block 722. Cleanup associated with the destroyed application is then
performed at block 724. The class loader for the application is then de-referenced at
block 726.

If the application completes execution at block 728, the application sends a
signal (e.g., from the application or the broadcast environment via the receiver) to the
application manager to initiate cleanup of the application. For instance, any files
associated with the application are deleted and any associated threads are removed. In
addition, any data used for bookkeeping such as references to each application may be
deleted when no longer needed. The process then continues at block 724 to cleanup
the application and de-reference the class loader for the application at block 726. In
other words, de-referencing may be accomplished by removing a link between the
class loader and the application manager by setting a pointer (e.g., reference variable
associated with the application manager) to the class loader to null. As another
example, the class loader may be marked as unreachable. Since the class loader is the
last to maintain a reference to the classes that it has loaded into the execution
environment, these classes become unreachable when the class loader is de-
referenced. Accordingly, when garbage collection is performed, the classes are
effectively unloaded.

Garbage collection may be performed in a variety of ways to unload classes

associated with a de-referenced class loader. For instance, garbage collection may be

12

10

15

20

WO 01/04744 PCT/US00/19233

performed in two separate passes. In the first pass, garbage collection may search for
all objects and classes that are unreachable. At this time, it may be determined that
the class loader is unreachable, as well as the classes loaded by it. The classes
associated with the unreachable class loader may be marked as unreachable at this
time. Moreover, since the class loader is unreachable, garbage collection frees up the
memory allocated to the de-referenced class loader. In the second pass, the classes
loaded by the now non-existing class loader that were marked as unreachable in the
previous pass will be found and removed from memory.

The present invention may be implemented on any suitable computer system.
FIG. 8 illustrates a typical, general-purpose computer system 1002 suitable for
implementing the present invention. The computer system may take any suitable
form. For example, the computer system may be integrated with a digital television

receiver or set top box.

Computer system 1030 or, more specifically, CPUs 1032, may be arranged to
support a virtual machine, as will be appreciated by those skilled in the art. The
computer system 1002 includes any number of processors 1004 (also referred to as
central processing units, or CPUs) that may be coupled to memory devices including
primary storage device 1006 (typically a read only memory, or ROM) and primary
storage device 1008 (typically a random access memory, or RAM). As is well known
in the art, ROM acts to transfer data and instructions uni-directionally to the CPUs
1004, while RAM is used typically to transfer data and instructions in a bi-directional
manner. Both the primary storage devices 1006, 1008 may include any suitable
computer-readable media. The CPUs 1004 may generally include any number of

Processors.

13

10

15

20

WO 01/04744 | PCT/US00/19233

A secondary storage medium 1010, which is typically a mass memory device,
may also be coupled bi-directionally to CPUs 1004 and provides additional data
storage capacity. The mass memory device 1010 is a computer-readable medium that
may be used to store programs including computer code, data, and the like. Typically,
the mass memory device 1010 is a storage medium such as a hard disk which is
generally slower than primary storage devices 1006, 1008.

The CPUs 1004 may also be coupled to one or more input/output devices
1012 that may include, but are not limited to, devices such as video monitors, track
balls, mice, keyboards, microphones, touch-sensitive displays, transducer card
readers, magnetic or paper tape readers, tablets, styluses, voice or handwriting
recognizers, or other well-known input devices such as, of course, other computers.
Finally, the CPUs 1004 optionally may be coupled to a computer or
telecommunications network, e.g., an internet network or an intranet network, using a
network connection as shown generally at 1014. With such a network connection, it
is contemplated that the CPUs 1004 might receive information from the network, or
might output information to the network in the course of performing the above-
described method steps. Such information, which is often represented as a sequence
of instructions to be executed using the CPUs 1004, may be received from and
outputted to the network, for example, in the form of a computer data signal
embodied in a carrier wave.

The present invention enables classes to be unloaded when it is determined
that they are no longer needed. Through the use of an individual class loader for each
application, classes are effectively loaded and unloaded when the classes are no

longer needed (e.g., when the application ends or is terminated). Moreover, through

14

10

15

WO 01/04744

PCT/US00/19233
the use of customized class loaders, an added level of security is provided to prevent
unauthorized applications from being loaded and executed.

Although illustrative embodiments and applications of this invention are
shown and described herein, many variations and modifications are possible which
remain within the concept, scope, and spirit of the invention, and these variations
would become clear to those of ordinary skill in the art after perusal of this
application. For instance, the present invention is described as enabling classes to be
unloaded within the context of a digital television receiver. However, the present
invention may be used to load and unload classes in other contexts. Moreover,
although the present invention is described as being implemented on a JAVA
PLATFORM, it may also be implemented on a variety of platforms or contexts in
which object-oriented languages are used. Thus, “unreachability” may refer generally
to the unavailability of those entities that are “de-referenced”. Moreover, the above
described process blocks are illustrative only. Therefore, the loading and unloading
of classes may be performed using alternate process blocks. Accordingly, the present
embodiments are to be considered as illustrative and not restrictive, and the invention
1s not to be limited to the details given herein, but may be modified within the scope

and equivalents of the appended claims.

15

10

15

20

25

30

WO 01/04744 PCT/US00/19233

CLAIMS

What is claimed is:

1. A method of loading and unloading classes associated with an application, the
method comprising:

constructing a class loader for the application, the class loader being adapted
for loading classes associated with the application;

employing the class loader to load one or more classes associated with the
application such that the class loader maintains a reference to the one or more classes;
and

de-referencing the class loader for the application such that the class loader

becomes unreachable.

2. The method as recited in claim 1, wherein de-referencing the class loader

includes marking the class loader as unreachable.

3. The method as recited in claim 1, wherein de-referencing includes setting a

reference to the class loader to null.

4. The method as recited in claim 1, wherein de-referencing the class loader is

performed when the one or more classes are no longer needed.
5. The method as recited in claim 1, wherein the application is a Java program.
6. The method as recited in claim 1, further comprising:

executing the application;

wherein de-referencing the class loader is performed when execution of the

application is terminated.

7. The method as recited in claim 1, further comprising:

destroying the application;

16

10

15

20

25

30

WO 01/04744 PCT/US00/19233

wherein de-referencing the class loader for the application is performed when

the application is destroyed.

8. The method as recited in claim 1, further comprising:
performing garbage collection to delete the one or more classes referenced by

the de-referenced class loader.

9. The method as recited in claim 1, further comprising:

marking the de-referenced class loader as unreachable.

10. The method as recited in claim 1, further comprising:
marking the one or more classes referenced by the de-referenced class loader

as unreachable.

11. The method as recited in claim 8, wherein performing garbage collection to
delete the one or more classes referenced by the de-referenced class loader comprises:
determining that the class loader is unreachable;
ascertaining that the unreachable class loader has one or more classes
associated therewith; and

marking the one or more classes as unreachable.

12. The method as recited in claim 11, further comprising:
freeing memory associated with the class loader; and

freeing memory associated with the one or more classes.

13. The method as recited in claim 1, further comprising:
searching for all objects and classes that are unreachable; and
deleting the unreachable objects and classes from associated memory

locations.

14. The method as recited in claim 1, further comprising:
releasing memory consumed by the de-referenced class loader and associated

classes.

17

10

15

20

25

30

WO 01/04744 PCT/US00/19233

15. The method as recited in claim 14, wherein releasing memory consumed by
the de-referenced class loader and associated classes comprises:

marking the class loader as unreachable;

searching for unreachable objects in memory;

deleting the unreachable class loader from an associated memory location;

ascertaining that the unreachable class loader has one or more associated
classes;

marking the one or more associated classes as unreachable;

searching for unreachable classes in memory; and

deleting the one or more associated classes from associated memory locations.

16. The method as recited in claim 15, wherein deleting the unreachable class
loader from an associated memory location is performed in a first pass and deleting
the one or more associated classes from associated memory locations is performed in

a second pass.

17. A method of loading and unloading classes associated with multiple
applications, the method comprising:

constructing a class loader for each one of a plurality of applications such that
each one of a plurality of class loaders is adapted for loading classes associated with
one of the plurality of applications;

employing one or more of the plurality of class loaders to load one or more
classes associated with the corresponding application such that the one or more of the
class loaders each maintain a reference to the classes associated with the
corresponding application; and

rendering the one or more of the plurality of class loaders unreachable when

the corresponding application has completed its operation.

18. The method as recited in claim 17, wherein rendering the one or more of the
plurality of class loaders unreachable comprises de-referencing the one or more of the
plurality of class loaders.

19. The method as recited in claim 17, further comprising:

18

10

15

20

25

30

WO 01/04744

PCT/US00/19233

performing garbage collection to delete classes referenced by the unreachable

class loaders.

20. A method of loading and unloading classes associated with an application, the
method comprising:

receiving a load signal indicating that an application is to be loaded,;

constructing a class loader for the application, the class loader being adapted
for loading classes associated with the application;

receiving a start signal indicating that the application is to be started;

employing the class loader to load one or more classes associated with the
application such that the class loader maintains a reference to the one or more classes
and

de-referencing the class loader for the application such that the class loader

becomes unreachable.

21. The method as recited in claim 20, wherein constructing the class loader is
performed in response to receiving the load signal and employing the class loader to
load one or more classes associated with the application is performed in response to

receiving the start signal.

22. The method as recited in claim 20, further comprising:

receiving a stop signal indicating that the application is to be stopped.

23. The method as recited in claim 22, wherein de-referencing the class loader is

performed when the stop signal is received.

24. The method as recited in claim 20, wherein de-referencing the class loader is
performed when execution of the application completes or when execution of the
application is terminated by an application manager responsible for constructing the

class loader.

25. A method of loading classes associated with one or more applications, the

method comprising:

19

10

15

20

25

30

WO 01/04744 PCT/US00/19233

(2) constructing an application manager adapted for constructing a class loader
for an application and de-referencing the constructed class loader when execution of
the application ends or when execution of the application is terminated, the class
loader being adapted for loading classes associated with the application;

(b) receiving an application;

(c) employing the application manager to construct a class loader for the
received application; and

(d) employing the class loader to load one or more classes associated with the

application such that the class loader maintains a reference to the one or more classes.

26. The method as recited in claim 25, further comprising:
employing the application manager to de-reference the class loader for the

application such that the class loader is unreachable.

27. The method as recited in claim 25, further comprising repeating steps (b), (c),

and (d) for each application received.

28. The method as recited in claim 27, further comprising de-referencing a class
loader associated with an application when execution of the application ends or

execution of the application is terminated.

29. A system for loading and unloading classes associated with one or more
applications, the system comprising:

a plurality of class loaders, each one of the plurality of class loaders being
adapted for loading classes associated with one of a plurality of applications; and

an application manager adapted for employing one of the plurality of class
loaders to load classes associated with one of the plurality of applications and adapted
for de-referencing the one of the plurality of class loaders in response to a

predetermined condition.
30. A system for loading classes associated with one or more applications, the
system comprising:

a memory; and

20

10

15

20

25

30

WO 01/04744 PCT/US00/19233

a processor, the processor in conjunction with the memory implementing an
application manager adapted for constructing a class loader for an application, the
class loader being adapted for loading classes associated with the application, the
application manager operating to de-reference the constructed class loader when
execution of the application ends or when execution of the application is terminated

by the application manager.

31. The system as recited in claim 30, further comprising:
a first class loader adapted for loading classes associated with a first

application.

32. The system as recited in claim 31, wherein the application manager is linked

to the first class loader.

33. The system as recited in claim 31, further including:
a memory storing therein a first set of classes associated with the first application;

wherein the first class loader is linked to the first set of classes.

34. The system as recited in claim 30, wherein the system is a digital television.

35. The system as recited in claim 30, wherein the system is a digital television

receiver.

36. A digital television receiver for loading and unloading classes associated with
one or more applications, the system comprising:

a plurality of class loaders, each one of the plurality of class loaders being
adapted for loading classes associated with one of a plurality of applications; and

an application manager adapted for employing one of the plurality of class
loaders to load classes associated with one of the plurality of applications and adapted
for de-referencing the one of the plurality of class loaders in response to a

predetermined condition.

21

10

15

20

25

30

WO 01/04744 PCT/US00/19233

37. Inadigital television, a system for loading classes associated with one or more
applications, the system comprising:

a memory; and

a processor, the processor in conjunction with the memory implementing an
application manager adapted for constructing a class loader for an application, the
class loader being adapted for loading classes associated with the application, the
application manager operating to de-reference the constructed class loader when
execution of the application ends or when execution of the application is terminated

by the application manager.

38. A computer program product adapted for causing a processor to load and
unload classes associated with an application, the computer program product
comprising:

a computer-readable medium storing thereon computer-readable instructions,
including;

instructions for constructing a class loader for the application, the class loader
being adapted for loading classes associated with the application;

instructions for employing the class loader to load one or more classes
associated with the application such that the class loader maintains a reference to the
one or more classes; and

instructions for de-referencing the class loader for the application such that the

class loader is unreachable.

39. A computer program product adapted for causing a processor to load classes
associated with one or more applications, the computer program product comprising:

a computer-readable medium storing thereon computer-readable instructions,
including:

instructions for constructing an application manager adapted for constructing a
class loader for an application and de-referencing the constructed class loader when
execution of the application ends or when execution of the application is terminated,
the class loader being adapted for loading classes associated with the application;

instructions for receiving an application;

22

WO 01/04744 PCT/US00/19233

instructions for employing the application manager to construct a class loader
for the received application;
instructions for employing the class loader to load one or more classes
associated with the application such that the class loader maintains a reference to the
5 one or more classes; and
instructions for de-referencing the class loader for the application such that the

class loader is unreachable.

23

PCT/US00/19233

WO 01/04744

1/8

| Old

el ™~ uondAioeQg

v/O

jauueyo yoeg

021 ~+ juswabeuep Aoy —— >
zel
/_mv_mmam ozl
\ \eeq w 103j9S XNIN aun)
— i 0Ll
/ gelb i /@p& 801 vol
/ /
Jaygngawel 4 JapooaQg <+— XNW-° ¢— 9|NPOJA 1dun
: .« N Aﬂ T N-ad — ° pPo 1 AJ\
0 8z (opne)-—vi1
A el (08pin)—TL
Emm.hm. E&m\.ﬁmnsm weals EmmEm
93dW SS800Y O3dN podsuel]
pajdAioeg jeuonipuod pajdAiouy Z93dN
N w N w euusjuy
€zl 81l oLl 901 {
z01

SUBSTITUTE SHEET (RULE 26)

WO 01/04744 PCT/US00/19233

2/8
Memory
208
Application 202
Manager
App1 SN App2
Classes\\ -7 T~ e / Classes
Application 1 Application 2

Class Loader [204 2067 Glass Loader

__App1 App2
210 Classes\‘ /Zlasses 212

Execution Environment
(e.g., JVM)
214

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 01/04744

PCT/US00/19233

3/8
Application
Manager 202
Application 1 204 Application 2
Class Loader | ~ Class Loader
302 304
App1 Classes App2 Classes
FIG. 3

SUBSTITUTE SHEET (RULE 26)

~ 206

WO 01/04744 PCT/US00/19233
4/8
Application .
Manager 202
T T 402
Application 1 Application 2
Class Loader [~204 Class Loader |~ 206
302 304
App1 Classes App2 Classes
Garbage
Collection
Process
406
FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 01/04744

5/8

Application
Manager

Application 1

Class Loader [204

302

/

App1 Classes

FIG. 5

SUBSTITUTE SHEET (RULE 26)

~ 202

PCT/US00/19233

WO 01/04744

PCT/US00/19233

~— 616

~— 620

6/8
Turn on digital
TV receiver - 604
Start Java
Environment - 606
Construct Application
Manager ™~ 608
Run Application
Manager ™~ 610
Service is selected by ~_ 612
user
Receive application Signal application
614 . associated with the |—{ manager to download
selected service the application
. . Signal application
Receive signal to
618 o — manager to start the
start the application application
L Signal application
622 Rectet:;ea&gl?caalt}(gnstop — manager to stop the
PP application

~— 624

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 01/04744 PCT/US00/19233
718
Application
Initialization ~— 704
708 706 Wait for signal
Receive signal Construct a class
— todownload —» loader for the ~~— 710
application application
o Load the application
R?geélyaeﬁstlﬁgal classes according to
> licati > security constraints of ~— 714
app;:a lon the application
712 L Application
716 "\ Start the application —» ends ~— 728
720 718 - Wait for signal
Receive signal
to stop the —» Des}!’oytjche ~— 722
application appiication
Y
+ Application has
Clean up the been destroyed;
724 application ‘ signalsent | 730
+ to cleanup
Dereference the
class loader for [~ 726

the application

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 01/04744

1002

8/8

[— 1012

[1010

Secondary
Storage

PCT/US00/19233

/0
I r 1004
[1006
Primary
' Storage
N PROCESSORS [1008
<« RAM

I [- 1014

Network

FIG. 8

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

