METHOD OF PRODUCING MOUSE AND HUMAN ENDOSTATIN

Methods for producing mouse and human endostatin are disclosed. Methods for refolding and purifying endostatin from inclusion bodies expressed in bacteria and nucleic acids encoding full-length and truncated forms of endostatin are also disclosed.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
<td>SI</td>
<td>Slovenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
<td>SK</td>
<td>Slovakia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GB</td>
<td>United Kingdom</td>
<td>LV</td>
<td>Latvia</td>
<td>SZ</td>
<td>Swaziland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GE</td>
<td>Georgia</td>
<td>MC</td>
<td>Monaco</td>
<td>TD</td>
<td>Chad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GH</td>
<td>Ghana</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
<td>MG</td>
<td>Madagascar</td>
<td>TJ</td>
<td>Tajikistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
<td>MK</td>
<td>The former Yugoslav</td>
<td>TM</td>
<td>Turkmenistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
<td>ML</td>
<td>Mali</td>
<td>TR</td>
<td>Turkey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
<td>MN</td>
<td>Mongolia</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IL</td>
<td>Israel</td>
<td>MR</td>
<td>Mauritania</td>
<td>UA</td>
<td>Ukraine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IS</td>
<td>Iceland</td>
<td>MW</td>
<td>Malawi</td>
<td>UG</td>
<td>Uganda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IT</td>
<td>Italy</td>
<td>MX</td>
<td>Mexico</td>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>JP</td>
<td>Japan</td>
<td>NE</td>
<td>Niger</td>
<td>UZ</td>
<td>Uzbekistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KE</td>
<td>Kenya</td>
<td>NL</td>
<td>Netherlands</td>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NO</td>
<td>Norway</td>
<td>YU</td>
<td>Yugoslavia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>NZ</td>
<td>New Zealand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RO</td>
<td>Romania</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>RU</td>
<td>Russian Federation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LR</td>
<td>Liberia</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td></td>
<td></td>
<td>SG</td>
<td>Singapore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method of producing mouse and human endostatin

Priority

The present application claims priority under Title 35, United States Code, § 119 of United States Provisional Application Serial No. 60/075,587 filed February 23, 1998.

Field of the invention

Methods for producing mouse and human endostatin are disclosed. Methods for refolding and purifying endostatin from inclusion bodies expressed in bacteria and nucleic acids encoding full-length and truncated forms of endostatin are also disclosed.

Background of the invention

Angiogenesis

Angiogenesis, the growth of new blood vessels, plays an important role in cancer growth and metastasis. In humans, the extent of vasculature in a tumor has been shown to correlate with the patient prognosis for a variety of cancers (Folkman, J., Seminars in Medicine of the Beth Israel Hospital, Boston 333(26): 1757-1763, 1995; Gasparini, G., European Journal of Cancer 32A(14): 2485-2493, 1996; Pluda, J. M., Seminars in Oncology 24(2): 203-218, 1997; Norrby, K., APMIS 105: 417-437, 1997). In normal adults, angiogenesis is limited to well controlled situations, such as wound healing and the female reproductive system (Battegay, E.J., J Mol Med 73:-333-346, 1995; Dvorak, H.F, New Engl J Med, 315: 1650-1659, 1986).

Animal studies suggest that tumors can exist in a dormant state, in which tumor growth is limited by a balance between high rates of proliferation and high rates of apoptosis (Holmgren, L. et al., Nat. Med. (N. Y.) 1(2): 149-153, 1995; Hanahan, D. et al., Cell 86(3): 353-364, 1996). The switch to an angiogenic phenotype allows tumor cells to escape from dormancy and to grow rapidly,
presumably as the result of a decrease in the apoptotic rate of the tumor cells (Bouck, Cancer Cells, 2(6): 179-185, 1990; Dameron et al, Cold Spring Harb Symp Quant Biol, 59: 483-489, 1994). The control of angiogenesis is thought to be a balance between factors which promote new vessel formation and anti-angiogenic factors with suppress the formation of a neovasculature (Bouck, N. et al., Advances in Cancer Research 69: 135-173, 1996; O'Reilly et al., Cell 79(2): 315-328, 1994).

Many angiogenic inhibitors are in clinical development (See Shawver et al., Drug Discovery Today 2(2): 50-63, 1997, and references therein). Polypeptides such as interferon alpha and platelet factor 4 are in clinical trials. Angiostatin, soluble Flt-1 receptor, and bactericidal/permeability increasing protein derivative are in preclinical studies. Monoclonal antibodies such as humanized anti-a,b, antibody (LM609), anti-VEGF, and anti-Flk-1 monoclonal antibody (DC101) are also in preclinical studies. Tecogalan (DS4152), a sulfated polysaccharide-peptidoglycan complex is in clinical trials, and bFGF carbohydrate inhibitor (GM1474) and glycoprotein mimetic inhibitor of bFGF (GL14.2) are in preclinical studies. The antibiotic AGM1470 (TNP470), a fumagillin analog, and Suramin, a polyanionic compound are in clinical trials. Small molecule inhibitors such as urokinase receptor antagonists, inhibitors of phosphatidic acid, inhibitors of Flk-1, and inhibitors of VEGF-Fil binding are all in preclinical studies. Thalidomide, and its analogues, and matrix metalloproteinase inhibitors, such as Batimastat/Marimastat, are in clinical trials. Oligonucleotides, such as ribozymes that target VEGF receptors and VEGF anti-sense oligonucleotides, are also in preclinical trials.
Anti-angiogenic therapy may offer several advantages over conventional chemotherapy for the treatment of cancer. Anti-angiogenic agents have low toxicity in preclinical trials and development of drug resistance has not been observed (Folkman, J., Seminars in Medicine of the Beth Israel Hospital, Boston 333(26): 1757-1763, 1995). As angiogenesis is a complex process, made up of many steps including invasion, proliferation and migration of endothelial cells, it can be anticipated that combination therapies may be most effective. In fact, combinations of chemotherapy with anti-angiogenic therapy have already shown promising results in pre-clinical models (Teicher, B. A. et al., Breast Cancer Research and Treatment 36: 227-236, 1995; Teicher, B. A. et al., European Journal of Cancer 32A(14): 2461-2466, 1996).

Endostatin

Endostatin is a 20 kDa protein derived from the C-terminal fragment of alpha 1 type collagen XVIII. Conditioned cell culture media from a hemangioendothelioma cell line (EOMA) was shown to contain a factor which inhibited endothelial cell proliferation in vitro (O'Reilly et al., Cell 88: 277-285, 1997). The factor responsible for this inhibition was named endostatin. A recombinant form of this protein expressed in baculovirus-infected insect cells inhibited the growth of metastases in the Lewis lung tumor model and an insoluble E. coli derived form of this protein was shown to be efficacious in preventing primary tumor growth in several tumor models (O'Reilly et al., Cell 88: 277-285, 1997; Boehm et al., Nature 390: 404-410, 1997).

Purification and refolding of endostatin

Although many types of expression systems have been developed over the past twenty years, bacterial systems, particularly those based on E. coli, are widely used for the production of proteins on an industrial scale. Vectors which permit high level expression and the ability to carry out fermentations at high cell densities and low cost, have contributed to the extensive development and use of E. coli-based expression systems. One significant problem, however, is the tendency of E. coli to form inclusion bodies which contain the desired recombinant protein. Inclusion body formation necessitates additional downstream processing, such as in vitro refolding, before biologically active proteins can be recovered. The
tendency to form insoluble aggregates does not appear to correlate with factors such as size, hydrophobicity, subunit structure, or the use of fusion domains (Kane J.F. and Harley, D.L., *Tibtech* 6: 95, 1988). Inclusion body formation appears to be determined by the rates of protein synthesis, folding, aggregation, and proteolytic degradation, the solubility and thermodynamics of folding intermediates and native proteins, and the interactions of these species with chaperone proteins (Rainer Rudolph, *In* Protein Engineering: Principles and Practice, Edited by Jeffrey L. Cleland and Charles S. Craik, p 283-298, Wiley-Liss, Inc., New York, New York, 1996).

Inclusion bodies generally form in the cytoplasm of cells expressing a recombinant protein at high levels. They refract light when observed by phase contrast microscopy and thus are sometimes referred to as refractile bodies. The inclusion bodies are characterized by a relatively high specific density and can be pelleted from lysed cells by centrifugation. The formation of inclusion bodies may protect recombinant proteins from proteolysis as they do not easily disintegrate under physiological solvent conditions. High concentrations of denaturants, such as 6 M guanidine hydrochloride or 6-8 M urea, have been commonly used to solubilize the proteins present in inclusion bodies. A variety of inclusion body solubilization protocols have been compared (Fisher, B., Summer, L. and Goodenough, P. *Biotechnol. Bioeng.* 1: 3-13, 1992).

World patent application WO 97/15666 describes the expression, purification, and characterization of endostatin from *E. coli* and baculovirus-infected insect cells. The bacterially-derived endostatin was not refolded into its native state, but was utilized as an insoluble suspension for most of these studies. This disclosure also describes the purification of native endostatin from conditioned media of the murine hemangioendothelioma cell line EOMA.
Endostatin was purified from this conditioned media through classical purification methodology.

No successful attempts at refolding endostatin have been described (O'Reilly et al., Cell 88: 277-285, 1997). The E. coli-derived recombinant endostatin characterized by these authors precipitated following dialysis against PBS. The precipitated (nonrefolded) material could not be tested in vitro because of its insolubility in culture media. A small (unspecified) percentage of the material spontaneously solubilized in the PBS during dialysis. This material had comparable inhibitory activity in endothelial cell activities as both native and soluble baculovirus-derived endostatin. When the E. coli-derived recombinant endostatin was refolded in the presence of 0.1 M sodium phosphate, pH 7.4, 150 mM NaCl, 0.6M urea, 2 mM reduced glutathione, 0.02 mM oxidized glutathione, and 0.5 M arginine at a final concentration of 0.1 mg/ml, over 99% of the protein was lost. This great loss precluded use of this material for in vivo assays. Instead, the authors used the uncharacterized insoluble (nonrefolded) form of endostatin for most of their in vivo studies. The E. coli-derived endostatin precipitate was observed to dissolve gradually over five days and produce a sustained anti-angiogenic effect in chick chorioallantoic membrane (CAM) assays. A suspension of the same material formed a pellet at the site of injection in mice, which resorbed slowly over a 24-48 hour period.

Subsequent studies by the same group demonstrated that drug resistance does not develop when mice bearing lung carcinoma, T241 fibrosarcoma, or B16F10 melanoma are treated with mouse endostatin (Boehm, T., et al., Nature 390: 404-407, 1997). E. coli-derived recombinant murine endostatin was prepared as described earlier (O'Reilly et al., Cell 88: 277-285, 1997) except that bacteria were pelleted and resuspended in 8 M urea, 10 mM beta mercaptoethanol, and 10 mM pH 8.0, and incubated for 1 to 2 hours. Beta mercaptoethanol was eliminated in subsequent steps. Recombinant mouse endostatin was delivered to mice as a suspension in PBS. Mice bearing one of the three tumor types were injected with the purified but poorly soluble endostatin suspension into the subcutaneous dorsa at a site remote from the inoculated tumors. Treatment was stopped when tumors regressed, then allowed to regrow. Tumor growth did not recur after 6, 4, or 2 endostatin treatment cycles, respectfully, when therapy was ended.
Recently, the circulating form of human endostatin was isolated and characterized (Standker et al., *FEBS Letters* 420: 129-133, 1997). High molecular weight peptides (1—20 kDa) were isolated from 2,500 liters of human blood ultrafiltrate (hemofiltrate, HF) obtained from patients with chronic renal insufficiency. Extracts were bound to a preparative cation exchange column and eluted by pH pool fractionation (7 buffers with pH increasing from 3.6 to 9.0). High molecular weigh peptides were detected in pool 8, which was eluted with water, and subsequently purified by reversed-phase HPLC. Aliquots were subjected to matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and the exact molecular mass determined by electrospray mass spectroscopy (ES-MS) was found to be 18,494 Da. Cysteine residues 1-3 and 2-4 in the molecule were found to be linked by disulfide bridges. The final recovery during purification was estimated to be in the range of 20%, resulting in a concentration of >10^{-11} M in hemofiltrate. The resulting concentration of endostatin in patient plasma was estimated to be in the range of 10^{-9} M or higher. It is not known if pool of tissue bound endostatin exists, as was proposed for angiostatin (Kost et al., *Eur J. Biochem.* 236: 682-688, 1996). In vitro biological characterization of the native human endostatin (which was 12 amino acids shorter than mouse endostatin) showed no anti-proliferative activity on different endothelial cell types. The characterization of recombinant forms of human endostatin was not reported. The authors speculate that differences in reported activity of mouse and human forms of endostatin could be due to several factors: (i) the two forms may be isolated from different sources and may have different selectivity, specificity, or efficacy in *in vitro* and *in vivo* assays. (ii) Differences in post-translational modifications found on the peptides may account for the discrepancy in reported activities. (iii) Human endostatin may not necessarily inhibit proliferation of endothelial cells, but indirectly influence other cellular components which are observable only in a complex *in vivo* system.

Summary of the Invention

One object of the invention is to describe a method for expressing high levels of endostatin in bacteria.
Another aspect of the invention is to describe an efficient method by which endostatin inclusion bodies can be solubilized, subsequently refolded, and purified to generate biologically-active material.

Preferably the steps of solubilizing mouse or human endostatin inclusion bodies are carried out at an elevated pH. Preferably the elevated pH in the solubilizing step is carried out at a pH ranging from about pH 9 to about pH 11.5. Even more preferably the elevated pH range is from about pH 10 to about pH 11. Most preferably, the elevated pH is about 10.5.

Preferably the steps of refolding mouse or human endostatin inclusion bodies are carried out at a near-neutral pH. Preferably the near-neutral pH in the solubilizing step is carried out at a pH ranging from about pH 6 to about pH 8.5. Even more preferably the near-neutral pH range for refolding mouse endostatin is from about pH 7.0 to about pH 8.0. Most preferably, near-neutral pH range for refolding mouse endostatin is about pH 7.5. Even more preferably the near-neutral pH range for refolding human endostatin is from about pH 7.0 to about pH 8.0. Most preferably, near-neutral pH range for refolding human endostatin is about pH 7.5.

Preferably, the concentration of endostatin gene product is present at a concentration of from about 0.2 to about 20 mg/ml during the solubilization step. Even more preferably, the concentration is about 2.5 mg/ml.

Preferably, the concentration of endostatin gene product is present at a concentration of from about 0.02 to about 2 mg/ml during the refolding step. Even more preferably, the concentration is about 0.25 mg/ml.

Preferably a denaturant selected from urea and guanidine hydrochloride is used during the solubilization and refolding steps. Even more preferably, the denaturant is urea.

Preferably the concentration of urea is from about 4 M to about 10 M during the solubilization step. Even more preferably, the concentration is about 6 M.

Preferably the concentration of urea is from about 2 M to about 4 M during the refolding step. Even more preferably, the concentration is about 3.5 M.
Preferably the concentration of guanidine hydrochloride is from about 2 M to about 8 M during the solubilization step. Even more preferably, the concentration is about 4 M.

Preferably the concentration of guanidine hydrochloride is from about 0.2 M to about 2 M during the refolding step. Even more preferably, the concentration is about 1.5 M.

Preferably, the solubilization and reducing steps are carried out in the presence of a reducing agent capable of reducing disulfide linkages to sulphydryl groups. Preferably the reducing agent is selected from the group consisting of DTT, BME, cysteine, and reduced glutathione. Even more preferably, the reducing agent is DTT or cysteine.

Preferably, DTT is present at a concentration of from about 2 mM to about 10 mM during the solubilization step. Even more preferably, the concentration is about 5 mM.

Preferably, DTT is present at a concentration of from about 0.5 mM to about 2 mM during the refolding step. Even more preferably, the concentration is about 0.5 mM.

Preferably, reduced glutathione is present at a concentration of from about 5 mM to about 20 mM during the solubilization step. Even more preferably, the concentration is about 10 mM.

Preferably, reduced glutathione is present at a concentration of from about 0.5 mM to about 4 mM during the refolding step. Even more preferably, the concentration is about 1 mM.

Preferably, cysteine is present at a concentration of from about 5 mM to about 20 mM during the solubilization step. Even more preferably, the concentration is about 10 mM.

Preferably, cysteine is present at a concentration of from about 0.5 mM to about 4 mM during the refolding step. Even more preferably, the concentration is about 1 mM.
Preferably, an agent capable of enhancing the interchange of disulfide bonds is present during the refolding step. Preferably the agent is selected from cystine and oxidized glutathione. Even more preferably, the agent is cystine.

Preferably, cystine is present at a concentration of from about 0.2 mM to about 5 mM during the refolding step. Even more preferably, the concentration is about 1 mM.

Preferably disulfide bonds are formed through air oxidation during the refolding step. Preferably, the air oxidation step is carried out from about 12 to about 96 hours. Even more preferably, the air oxidation step is carried out from about 24 to about 72 hours. Most preferably the air oxidation step is carried out about 60 hours.

Preferably refolded endostatin is further purified by a process selected from but not limited to the group consisting of ion-exchange chromatography, hydrophobic interaction chromatography and RP-HPLC.

Preferably the method of expression, solubilization, refolding and purification uses endostatin genes that are either mouse or human. Even more preferably these genes are selected from the group consisting of SEQ ID NOs: 5-9.

Novel proteins of this invention are modified human or mouse endostatin amino acid sequences, and said protein can optionally be immediately preceded by (methionine\(^{1}\)), (alanine\(^{1}\)), (methionine\(^{2}\), alanine\(^{1}\)), (serine\(^{1}\)), (methionine\(^{2}\), serine\(^{1}\), (cysteine\(^{1}\)), or (methionine\(^{2}\), cysteine\(^{1}\)).

Additionally, the present invention relates to recombinant expression vectors comprising nucleotide sequences encoding endostatin, variants and muteins of endostatin, related microbial and eukaryotic expression systems, and processes for making (comprising the steps of expressing, solubilizing, refolding, purifying) these proteins.

Cloning of DNA sequences encoding these proteins may be accomplished by the use of intermediate vectors. Alternatively, one gene can be cloned directly into a vector containing the other gene. Linkers and adapters can be used for joining the DNA sequences, as well as replacing lost sequences, where a restriction site was internal to the region of interest. Thus genetic material (DNA) encoding one
polypeptide, peptide linker, and the other polypeptide is inserted into a suitable
expression vector which is used to transform bacteria, yeast, insect cells or
mammalian cells. The transformed organism or cell line is grown and the protein
isolated by standard techniques. The resulting product is therefore a new protein
which has all or a portion of one protein joined by a linker region to a all or a
portion of second protein.

Another aspect of the present invention includes plasmid DNA vectors for
use in the expression of these proteins. These vectors contain the novel DNA
sequences described above which code for the novel polypeptides of the invention.
Appropriate vectors which can transform microorganisms or cell lines capable of
expressing the proteins include expression vectors comprising nucleotide sequences
coding for the proteins joined to transcriptional and translational regulatory
sequences which are selected according to the host cells used.

Vectors incorporating modified sequences as described above are included
in the present invention and are useful in the production of the proteins. The
vector employed in the method also contains selected regulatory sequences in
operative association with the DNA coding sequences of the invention and which
are capable of directing the replication and expression thereof in selected host
cells.

Methods for producing these proteins is another aspect of the present
invention. The method of the present invention involves culturing suitable cells or
cell lines, which has been transformed with a vector containing a DNA sequence
coding for expression of a novel multi-functional protein. Suitable cells or cell lines
may be bacterial cells. For example, the various strains of *E. coli* are well-known
as host cells in the field of biotechnology. Examples of such strains include *E. coli*
strains JM101 (Yanisch-Perron et al. *Gene* 33: 103-119, 1985) and MON105
(Obukowicz et al., *Applied Environmental Microbiology* 58: 1511-1523, 1992). Also
included in the present invention is the expression of the multi-functional proteins
utilizing a chromosomal expression vector for *E. coli* based on the bacteriophage
Mu (Weinberg et al., *Gene* 126: 25-33, 1993). Various strains of *B. subtilis* may
also be employed in this method. Many strains of yeast cells known to those skilled
in the art are also available as host cells for expression of the polypeptides of the
present invention.
When expressed in the E. coli cytoplasm, the gene encoding the proteins of the present invention may also be constructed such that at the 5' end of the gene codons are added to encode Met²-Ala¹, Met²-Ser¹, Met²-Cys¹, or Met¹ at the N-terminus of the protein. The N termini of proteins made in the cytoplasm of E. coli are affected by post-translational processing by methionine aminopeptidase (Ben Bassat et al., J. Bacteriol. 169:751-757, 1987) and possibly by other peptidases so that upon expression the methionine is cleaved off the N-terminus. The proteins of the present invention may include polypeptides having Met¹, Ala¹, Ser¹, Cys¹, Met²-Ala¹, Met²-Ser¹, or Met²-Cys¹ at the N-terminus. These mutant proteins may also be expressed in E. coli by fusing a secretion signal peptide to the N-terminus. This signal peptide is cleaved from the polypeptide as part of the secretion process.

Definitions

The following is a list of abbreviations and the corresponding meanings as used interchangeably herein:

- g = gram(s)
- HPLC = high performance liquid chromatography
- mg = milligram
- ml = milliliter
- DTT = dithiothreitol
- RT = room temperature
- PBS = phosphate buffered saline

The following is a list of definitions of various terms used herein:

The term "anti-tumor" means possessing an activity which slows or abolishes the growth of, or which kills, or otherwise harms tumors *in vivo*.

The term "native sequence" refers to an amino acid or nucleic acid sequence which is identical to a wild-type or native form of a gene or protein.

The terms "mutant amino acid sequence," "mutant protein", "variant protein", "mutein", or "mutant polypeptide" refer to a polypeptide having an amino acid sequence which varies from a native sequence due to amino acid additions, deletions, substitutions, or any combination thereof, or is encoded by a nucleotide
sequence from an intentionally-made variant derived from a native sequence or chemically synthesized.

The term "endostatin" means a protein fragment of collagen XVIII having anti-angiogenic activity. The activity of said fragments can be determined by the mouse corneal micropocket assay of angiogenesis or by inhibition of endothelial cell growth or migration in vitro. Preferably, mouse endostatin means the sequence depicted in SEQ ID 10, and human endostatin means the sequence depicted in SEQ ID NO 11.

Brief Description of the Figures

Figure 1 shows a schematic of the cloned endostatin fragment

The C-terminal fragment of collagen XVIII is shown. Plasmid pMON24345 (SEQ ID NO: 8) encodes the C-terminal fragment of mouse collagen XVIII, Plasmid pMON20440 (SEQ ID NO: 9) encodes the C-terminal fragment of human collagen XVIII.

Figure 2 shows a schematic of the endostatin refolding procedure

Optimal solubilization conditions in the presence of urea and DTT or cysteine and refolding in the presence of cystine are outlined.

Figure 3 shows mouse endostatin refold products under varying pH conditions

RP-HPLC tracings of mouse endostatin refold products at pH 7.5, pH 8.0, and pH 8.5 in 3.5 M urea.

Figure 4 shows mouse endostatin refold products under varying urea concentrations

RP-HPLC tracings of mouse endostatin refold products at 3.0, 3.5, and 4.0 M urea at pH 7.5.
Figure 5 shows human endostatin refold products under varying pH conditions

RP-HPLC tracings of human endostatin refold products at pH 7.5, pH 8.0, and pH 7.5 in 3.5 M urea.

Figure 6 shows human endostatin refold products under varying urea concentrations

RP-HPLC tracings of human endostatin refold products at 3.0, 3.5, and 4.0 M urea at pH 7.5.

Figure 7 shows the inhibition of HMEC migration by mouse endostatin

Purified mouse endostatin assayed in the HMEC cell migration assay at 15 and 30 ug/ml. Inhibition of migration was observed at both concentrations.

Figure 8 shows the inhibition of CPAE migration by mouse endostatin

Purified mouse endostatin was assayed for inhibition of CPAE migration at 5 and 30 ug/ml. Inhibition of migration was observed at both concentrations.

Figure 9 shows the inhibition of endothelial cell proliferation by mouse endostatin.

Inhibition of endothelial cell proliferation by mouse endostatin. Significant inhibition was observed at 20 ug/ml.

Figure 10 shows the inhibition of endothelial cell proliferation by human endostatin.

Inhibition of endothelial cell proliferation by human endostatin. Significant inhibition was observed at 10 ug/ml of endostatin.

Detailed description of the invention

The following examples will illustrate the invention in greater detail, although it will be understood that the invention is not limited to these specific
examples. Various other examples will be apparent to the person skilled in the art after reading the present disclosure without departing from the spirit and scope of the invention. It is intended that all such other examples be included within the scope of the appended claims.

General methods

Unless noted otherwise, all specialty chemicals were obtained from Sigma, Co. (St. Louis, MO). Restriction endonucleases and T4 DNA ligase were obtained from New England Biolabs (Beverly, MA) or Boehringer Mannheim (Indianapolis, IN) or Promega (Madison, WI).

Strains and plasmids

The bacterial strains used in these studies are listed in Table 1. Plasmids used in or constructed for this study are listed in Table 2.

Transformation of E. coli strains

E. coli strains (Table 1), such as DH5 alpha and DH10B (Life Technologies, Rockville, MD), and TG1 (Amersham Corp., Arlington Heights, IL) are used for transformation of ligation reactions and are the hosts used to prepare plasmid DNA for transfecting mammalian cells. E. coli strains, such as JM101 (Yanisch-Perron et al., Gene, 33: 103-119, 1985) and MON105 (Obukowicz, et al., Appl. and Envr. Mirc., 58: 1511-1523, 1992) can be used for expressing the proteins of the present invention in the cytoplasm or periplasmic space.

DH5 alpha and DH10B subcloning efficiency cells are purchased as competent cells and are ready for transformation using the manufacturer's protocol. E. coli strains JM101 AND MON105 are rendered competent to take up
DNA using a CaCl₂ method. Typically, 20 to 50 mL of cells are grown in LB medium (1% Bacto-tryptone, 0.5% Bacto-yeast extract, 150 mM NaCl) to a density of approximately 1.0 absorbance unit at 600 nanometers (OD600) as measured by a Baush & Lomb Spectronic spectrophotometer (Rochester, NY). The cells are collected by centrifugation and resuspended in one-fifth culture volume of CaCl₂ solution [50 mM CaCl₂, 10 mM Tris-Cl ((10 mM 2-amino-2-(hydroxymethyl) 1,3-propanediol hydrochloride, pH7.4) and are held at 4°C for 30 minutes. The cells are again collected by centrifugation and resuspended in one-tenth culture volume of CaCl₂ solution. Ligated DNA is added to 0.2 mL of these cells, and the samples are held at 4°C for 30-60 minutes. The samples are shifted to 42°C for two minutes and 1.0 mL of LB is added prior to shaking the samples at 37°C for one hour. Cells from these samples are spread on plates (LB medium plus 1.5% Bacto-agar) containing either ampicillin (100 micrograms/mL, µg/mL) when selecting for ampicillin-resistant transformants, or spectinomycin (75 µg/mL) when selecting for spectinomycin-resistant transformants. The plates are incubated overnight at 37°C.

Colonies are picked and inoculated into LB plus appropriate antibiotic (100 µg/mL ampicillin or 75 µg/mL spectinomycin) and are grown at 37°C while shaking.

DNA isolation and characterization

Plasmid DNA can be isolated by a number of different methods and using commercially available kits known to those skilled in the art. Plasmid DNA is isolated using the Promega Wizard™ Miniprep kit (Madison, WI), the Qiagen QIAwells Plasmid isolation kits (Chatsworth, CA) or Qiagen Plasmid Midi or Mini kit. These kits follow the same general procedure for plasmid DNA isolation. Briefly, cells are pelleted by centrifugation (5000 x g), the plasmid DNA released with sequential NaOH/acid treatment, and cellular debris is removed by centrifugation (10000 x g). The supernatant (containing the plasmid DNA) is loaded onto a column containing a DNA-binding resin, the column is washed, and plasmid DNA eluted. After screening for the colonies with the plasmid of interest, the E. coli cells are inoculated into 50-100 ml of LB plus appropriate antibiotic for overnight growth at 37°C in an air incubator while shaking. The purified plasmid DNA is used for DNA sequencing, further restriction enzyme digestion, additional
subcloning of DNA fragments and transfection into *E. coli*, mammalian cells, or other cell types.

Sequence confirmation

Purified plasmid DNA is resuspended in deionized H₂O and its concentration is determined by measuring the absorbance at 260/280 nm in a Bausch and Lomb Spectronic 601 UV spectrometer. DNA samples are sequenced using ABI PRISM™ DyeDeoxy™ terminator sequencing chemistry (Applied Biosystems Division of Perkin Elmer Corporation, Lincoln City, CA) kits (Part Number 401388 or 402078) according to the manufacturer’s suggested protocol, usually modified by the addition of 5% DMSO to the sequencing mixture. Sequencing reactions are performed in a DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT) following the recommended amplification conditions. Samples are purified to remove excess dye terminators with Centri-Sep™ spin columns (Princeton Separations, Adelphia, NJ) and lyophilized. Fluorescent dye labeled sequencing reactions are resuspended in deionized formamide, and sequenced on denaturing 4.75% polyacrylamide-8M urea gels using ABI Model 373A and Model 377 automated DNA sequencers. Overlapping DNA sequence fragments are analyzed and assembled into master DNA contigs using Sequencer DNA analysis software (Gene Codes Corporation, Ann Arbor, MI).

Small-scale expression of endostatin in *E. coli*

E. coli strain MON105 or JM101 harboring the plasmid of interest is grown at 37°C in M9 plus casamino acids medium with shaking in an air incubator Model G25 from New Brunswick Scientific (Edison, NJ). Growth is monitored at OD₆₀₀ until it reaches a value of 1.0, at which time nalidixic acid (10 mg/mL) in 0.1 N NaOH is added to a final concentration of 50 µg/mL. The cultures are then shaken at 37°C for three to four additional hours. A high degree of aeration is maintained throughout the culture period in order to achieve maximal production of the desired gene product. The cells are examined under a light microscope for the presence of inclusion bodies (IB). One mL aliquots of the culture are removed for analysis of protein content by boiling the pelleted cells, treating them with reducing buffer and electrophoresis via SDS-PAGE (see Maniatis et al., “Molecular
Cloning: A Laboratory Manual”, 1982). The culture is centrifuged (5000 x g) to pellet the cells.

Large (10L)-scale expression of endostatin in E. coli

The Endostatin molecules were all scaled up in a 10 L Biostat E™ fermenter (B. Braun Biotech Inc., Allentown PA). The fermentation medium used was M9 salts supplemented with 2% casamino acids (Difco Laboratories, Detroit MI) and glucose. Approximately one milliliter of a thawed culture was transferred to a 3.8 L Fernbach shake flask containing 1.0 L of medium and then incubated at 37°C at a shaker speed of 250 rpm for 12 hours. This shake flask culture was then used to inoculate a 10 L fermenter containing 9.0 L of medium. The fermentation conditions were as follows: agitation = 1000 rpm, sparger airflow rate = 15 liters/min, pH control = 7.0 by the addition of NH₄OH, backpressure = 10 psi, dissolved oxygen control > 30%, and temperature = 37°C. Glucose was initially batched in at 15 g/l and controlled at 2-5 g/l by the addition of a 50% glucose feed stock. The fermentation culture was grown to an initial OD (550 nm) = 12-15 and induced with 50 mg/l nalidixic acid. The fermentation was harvested four hours post induction by continuous-flow centrifugation.

10L scale inclusion body isolation

The cell paste from a 10L fermentation was resuspended in approximately 6.0 L of 50mM Tris/ 150 mM EDTA buffer. The resuspension was passed once through a microfluidizer® (Newton, MA) at 10,000 psi and temperature maintained under 8°C. The recovered homogenate was then spun at 15,000 x G for 25 minutes and mixed to consistency with an Ultr-Turrax mixer. The cell paste resuspension was then homogenized by passing the cell suspension two times through a Microfluidizer™ (Newton, MA) operating at 10,000 psi pressure. The temperature of the homogenate was maintained less than 6°C by collection in a stainless steel container placed in an ice bath. Inclusion bodies were then isolated by centrifugation of the cell homogenate at 15,000 x g for 30 minutes and removal of supernatant. Inclusion bodies were then washed a total of two times by resuspending the inclusion bodies in chilled D.I. and centrifugation at 15,000 x g for 30 minutes. Endostatin inclusion bodies were then frozen at -70°C.
Small-scale isolation of inclusion bodies

The cell pellet from a 330 mL *E. coli* culture is resuspended in 15 mL of sonication buffer (50 mM Tris-HCl, pH 8.0, 1 mM EDTA). These resuspended cells are sonicated using the microtip probe of a Sonicator Cell Disruptor (Model W-375, Heat Systems-Ultrasonics, Inc., Farmingdale, New York). Three rounds of sonication in sonication buffer followed by centrifugation are employed to disrupt the cells and wash the inclusion bodies (IB). The first round of sonication is a 3 minute burst followed by a 1 minute burst, and the final two rounds of sonication are for 1 minute each.

Extraction and refolding of human and mouse proteins from inclusion body pellets

All steps are at 4°C. Mouse endostatin inclusion bodies were dissolved in 6M urea, 5 mM DTT, 50 mM Bis-Tris Propane, pH 10.8 at 2.5 mg/ml endostatin. This solution was stirred for 2 hours and followed by addition of cystine (stock 0.2 M, pH 10.5) to 10 mM. This was mixed for 5 minutes and then diluted to 0.25 mg/ml endostatin in 3.5 M urea, 100 mM Bis-Tris propane, pH 7.0. It was then stirred for 60 hours to complete the refolding of the protein as assessed by reverse-phase HPLC.

Human endostatin inclusion bodies were dissolved in 10 mM cysteine, 6M urea, 50 mM Bis-Tris propane, pH 10.8, at 2.5 mg/ml endostatin. This was stirred for 2 hours followed by addition of 10 mM cystine (stock 0.2 M, pH 10.5) and mixed for 5 minutes. This solution was then diluted to 0.25 mg/ml endostatin in 3.0 M urea, 100 mM Bis-Tris propane, pH 7.5 and stirred for 60 hours to complete the refolding step.

Purification

Purification of mouse or human endostatin was achieved using the same process using acid precipitation followed by column chromatography on a sulfo-propyl-column. The refolded sample was concentrated approximately 10-fold by ultrafiltration and the pH lowered to pH 5.0 with acetic acid. This was then dialyzed extensively against 5 mM acetic acid, pH 5.0. The precipitate was removed by filtration and the filtrate applied to a Pharmacia S-Sepharose HP
column. The column was washed with 1 column volume of equilibrating buffer and
the protein eluted using a 20 column volume gradient of 50 mM phosphate, pH 6.5
to the same buffer containing 0.4 M NaCl. Fractions were analyzed by SDS-gel
electrophoresis and RP-HPLC and pooled and dialyzed against PBS and frozen.

In some cases the folded proteins can be affinity-purified using affinity
reagents such as monoclonal antibodies or receptor subunits attached to a suitable
matrix. Purification can also be accomplished using any of a variety of
chromatographic methods such as: ion exchange, gel filtration or hydrophobic
interaction chromatography or reversed phase HPLC. These and other protein
purification methods are described in detail in Methods in Enzymology, Volume
182 “Guide to Protein Purification,” edited by Murray Deutscher, Academic Press,
San Diego, California, 1990.

Protein characterization

The purified protein is analyzed by RP-HPLC, electrospray mass
spectrometry, amino acid sequencing and SDS-PAGE. The protein quantitation is
done by amino acid composition, RP-HPLC, and Bradford protein determination.
In some cases tryptic peptide mapping is performed in conjunction with
electrospray mass spectrometry to confirm the identity of the protein.

Endothelial cell proliferation assay

The endothelial cell proliferation assay was performed as described by Cao
et al. (J. Biol. Chem. 271: 29461-29467, 1996). Briefly, human dermal
microvascular endothelial cells (HdMVEC, Clonetics) or bovine adrenal cortex
microvascular endothelial cells (BacEnd, Incell, San Antonio, TX) were maintained
in MCDB131 containing 5% heat-inactivated fetal bovine serum (FBS, Hyclone),
antibiotics, 100 ug/ml heparin (Sigma) and 100 ug/ml endothelial mitogen
(Biomedical Technologies). Confluent monolayers at passages 2-5 were dispersed
in 0.05% trypsin and resuspended in complete medium. Five hundred ul of
complete media containing 1.25 x 10^6 cells were seeded into wells of a 24-well
tissue culture plate coated with 0.1% gelatin (Sigma). The cells were incubated
overnight at 37°C/5% CO₂ at which time the media was replaced with 250 ul of
media containing 5% FBS and various concentrations of inhibitors. After 30
minutes of incubation, 250 µl of media containing 1 ng/ml bFGF (R&D Systems) was added and the cells were incubated for an additional 72 hours, at which time they were trypsinized and counted with a Coulter counter.

Endothelial cell migration assay

The endothelial cell migration assay is performed essentially as previously described (Gately et al., Cancer Res. 56:4887-4890, 1996). To determine the ability of endostatin to inhibit the migration of endothelial cells, migration assays were performed in a transwell chamber (Costar) containing 8 mm pore size polycarbonate membranes. The cells utilized in the assay were either human microvascular endothelial cells (Emory University, Atlanta, GA) or bovine pulmonary artery endothelial cells (Monsanto, St. Louis, MO). The cells were starved overnight before use in MCDB131 + 0.1% BSA (human cells) or DMEM + 0.1% BSA (bovine cells), harvested, and resuspended in the same media at 10^6 cells/ml. The lower side of the transwells were coated with 0.1% gelatin for 30 minutes at 37°C before addition of 2 x 10^6 cells to the upper chamber. The transwell was moved to a well containing the chemoattractant (bFGF or VEGF) in the lower chamber. Migration was allowed to occur overnight at 37°C. The membranes were then fixed and stained, and the number of cells that migrated to the lower side of the membrane counted in 3 high powered fields.

Example 1: Construction of pMON24345 (SEQ ID NO: 8) and selection of strains producing high levels of mouse endostatin

Total mouse RNA (Clontech Laboratories Inc, Palo Alto, CA), 5 µg, was mixed with 500 ng of random hexamer primer (Promega Corporation, Madison, WI), heated for 10 min at 65°C, then cooled for 2 min on ice. To the RNA/primer mixture was added 20 units of Rnasin (Promega), SuperScript II buffer, DTT to a final concentration of 0.01 M, dNTP mix (Boehringer) to a final concentration of 0.005 M and 200 units of SuperScript II transcriptase (Life Technologies Inc.). The reaction was incubated at 42°C for 1.5 hours and the enzyme was inactivated by incubating the reaction at 70°C for 5 min. RNA was removed by adding 2 units of E. coli RNase H (Life Technologies Inc.) and incubating the reaction at 37°C for 20 min. Double-stranded DNA was generated by polymerase chain reaction with the addition of dNTPs to a final concentration of 1.6 mM, 50 pmol of 5 prime mouse
endostatin primer (SEQ ID NO: 1), 50 pmol of 3 prime mouse endostatin primer
(SEQ ID NO: 2), High Fidelity PCR buffer, and 2.5 units of High-Fidelity enzyme
(Boehringer). The reaction mixture was incubated at 95°C for 3 min, then cycled
10 times through a 15 second 94°C incubation, a 30 second 50°C incubation, a 4
min. 72°C incubation, then cycled 15 times through a 15 second 94°C incubation,
30 second 50°C incubation, 4 min plus 20 second extension per cycle 72°C
incubation. Finally the reaction was incubated at 72°C for 7 min.

Double-stranded DNA was subcloned into the pCRII vector (Invitrogen) by
adding 1 ul of the PCR reaction to 25 ng of vector, 1 unit of T4 ligase in the ligation
buffer. The ligase reaction was incubated at 12°C overnight. The ligated DNA was
transformed into DH5 alpha competent cells (Life Technologies Inc., Rockville,
MD) and grown on LB amp plates. Two isolates with inserts as determined by
EcoRI digestion were further characterized. The cDNA inserts of the two isolates,
pMON24342 (SEQ ID NO: 5) and pMON24343 (SEQ ID NO: 6), were analyzed by
dNDA sequencing using standard dideoxy technology. To construct the correct
coding DNA sequence both pMON24342 and pMON24343 were digested with ApaI.
The ApaI mouse endostatin DNA fragment and the pMON24342 vector plus 5
prime mouse endostatin coding DNA sequence were isolated using the Qiaex II Gel
Extraction Kit (Qiagen, Germany). The fragments were ligated together in 50 mM
Tris-HCl pH 7.5, 10 mM MgCl2, 50 ug/ml BSA and 1 unit T4 ligase. The
reconstructed plasmid was transformed into DH5 alpha competent cells to
generated pMON24344 (SEQ ID NO: 7). The plasmid pMON24344 was digested
with NcoI and HindIII and the fragment isolated with Qiaex II Gel Extraction Kit.
The pMON24344 NcoI/HindIII fragment with ligated into a NcoI/HindIII-digested
dephosphorylated pMON5723 E. coli expression vector in 50 mM tris pH 7.5, 10
mM MgCl2, 50 ug/ml BSA and 1 unit of T4 ligase. The ligated DNA was
transformed into MON105 and isolates selected on Spec LB plates to generate
pMON24345 (SEQ ID NO: 8). E. coli strain MON105 harboring pMON24345 was
induced with 10 mg/ml nalidixic acid and mouse endostatin expressed in these cells
was monitored by SDS-PAGE.
Example 2: Construction of pMON 20440 (SEQ ID NO: 9) encoding human endostatin

Total human RNA (Clontech Laboratories Inc, Palo Alto, CA), 5 μg, was mixed with 500 ng of random hexamer primer, heated for 10 min at 65°C then cooled for 2 min on ice. To the RNA/primer mixture was added 20 units of Rnasin (Promega), SuperScript II buffer, DTT to a final concentration of 0.01 M, dNTP mix (Boehringer) to a final concentration of 0.005 M and 20 units of SuperScript II transcriptase. The reaction was incubated at 42°C for 1.5 hours and the enzyme was inactivated by incubating the reaction at 70°C for 5 min. RNA was removed by adding 2 units of E. coli RNase H and incubating the reaction at 37°C for 20 min. Double-stranded DNA was generated by polymerase chain reaction with the addition of dNTPs to a final concentration of 1.6 mM, 50 pmol of 5 prime human endostatin primer (SEQ ID NO: 3), 50 pmol of 3 prime human primer (SEQ ID NO: 4), High-Fidelity PCR buffer, and 2.5 units of High-Fidelity enzyme (Boehringer). The reaction mixture was incubated at 95°C for 3 min, then cycled 10 times through a 15 second 94°C incubation, a 30 second 50°C incubation, a 4 min 72°C incubation, then cycled 15 times through a 15 second 94°C incubation, 30 second 50°C incubation, 4 min plus 20 second extension per cycle 72°C incubation. Finally the reaction was incubated at 72°C for 7 min.

The double stranded DNA was digested with NcoI and HindIII and ligated into a NcoI/HindIII digested dephosphorylated pMON2341 E. coli expression vector in 50 mM Tris-HCl pH 7.5, 10 mM MgCl₂, 50 μg/ml BSA and 1 unit of T4 ligase. The ligated DNA was transformed into E. coli strain MON105 and isolates selected on Amp LB plates to generate pMON20440 (SEQ ID NO: 9). E. coli strain MON105 harboring pMON20440 was induced with 10 mg/ml naldixic acid and human endostatin expressed in these cells was monitored by SDS-PAGE.

Example 3: Method for refolding mouse endostatin

All steps are at 4°C. Mouse endostatin inclusion bodies were dissolved in 6M urea, 5 mM DTT, 50 mM Bis-Tris Propane, pH 10.8 at 2.5 mg/ml. This solution was stirred for 2 hours and followed by addition of cystine (stock 0.2 M, pH 10.5) to 10 mM. This was mixed for 5 minutes and then diluted to 0.25 mg/ml endostatin in 3.5 M urea, 100 mM Bis-Tris propane, pH 7.0. It was then stirred for 60 hours.
to complete the refolding of the protein as assessed by reverse-phase HPLC. Other pH conditions and urea concentrations can be used, but at lower efficiency. Figures 3 and 4 show HPLC tracings of mouse endostatin refold products under varying pH conditions and urea concentrations, respectively. Figures 7, 8, and 9 show inhibitory activity of purified mouse endostatin in endothelial cell proliferation and cell migration assays.

Example 4: Method for refolding human endostatin

All steps are at 4°C. Human endostatin inclusion bodies were dissolved in 10 mM cysteine, 6M urea, 50 mM Bis-Tris propane, pH 10.8, at 2.5 mg/ml endostatin. This was stirred for 2 hours followed by addition of 10 mM cystine (stock 0.2 M, pH 10.5) and mixed for 5 minutes. This solution was then diluted to 0.25 mg/ml endostatin in 3.0 M urea, 100 mM Bis-Tris propane, pH 7.5 and stirred for 60 hours to complete the refolding step. Other pH conditions and urea concentrations can be used, but at lower efficiency. Figures 5 and 6 show HPLC tracings of human endostatin refold products under varying pH conditions and urea concentrations, respectively. Figure 10 shows inhibitory activity of purified human endostatin in an endothelial cell proliferation assay.

Those skilled in the art will recognize that the solubilization, refolding, and purification conditions outlined above represent dramatic improvements over published methods for purifying endostatin from bacteria. Production of endostatin on a commercial scale for use in preclinical studies and clinical trials will require vast amounts of soluble properly-refolded material which possesses the desired biological characteristics. Commercial development of endostatin as a therapeutic product requires thoroughly-characterized material that behaves the same in all applications. Soluble, properly-refolded endostatin, therefore, is more desirable than suspensions of insoluble material for *in vitro* assays and for *in vivo* studies of the effectiveness, potency, pharmacokinetics, and pharmacodynamics of this protein. The dramatically-improved process for expressing, solubilizing, refolding, purifying, and characterizing this material outlined in this disclosure will greatly facilitate subsequent studies aimed at developing endostatin, endostatin-fragments, muteins, inserteins, permuteins, or chimeras thereof, or conjugates of these with other anti-angiogenic proteins or small molecules which
are useful as compounds in the treatment of angiogenesis disorders, including cancer.

All references, patents, or applications cited herein are incorporated by reference in their entirety, as if written herein.
Tables

Table 1: Strains

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description or Genotype</th>
<th>Reference/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH5α<sup>TM</sup></td>
<td>F, phi<sup>80</sup> dlacZdeltaM15,
delta(lacZYA-argF)U169, deoR,
recA1, endA1, hsdR17 (rk, mk'),
phoA, supE44, lambda-, thi-,
gyrA96, relA1</td>
<td>Life Technologies, Rockville,
Maryland</td>
</tr>
<tr>
<td>DH10B</td>
<td>F mcrA Δ(mrr-hsdRMS-mcrBC)
*φdlacZΔM15 ΔlacX74 deoR recA1
endA1 araD139 Δ(ara, leu)7697
galU galK λ: rpsL nupG</td>
<td>Life Technologies, Rockville,
Maryland</td>
</tr>
<tr>
<td>MON105</td>
<td>F, lambda-.IN (rrnD, rrnE)1,
(ATCC # 55204)
rpoD, rpoH358</td>
<td>Obukowicz, et al., Appl. and Envir. Micr. 58: 1511-1523, 1992</td>
</tr>
<tr>
<td>TG1</td>
<td>delta(lac-pro), supE, thi-,
hsdD5/F(traD36, proA^B^, lacI^a^,
lacZdeltaM15)</td>
<td>Amersham Corp., Arlington
Heights, Illinois</td>
</tr>
<tr>
<td>Plasmid</td>
<td>SEQ ID</td>
<td>Marker</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>pMON2341</td>
<td></td>
<td>Amp<sup>+</sup></td>
</tr>
<tr>
<td>pMON5723</td>
<td></td>
<td>Spec<sup>+</sup></td>
</tr>
<tr>
<td>pCRII</td>
<td></td>
<td>Amp<sup>+</sup></td>
</tr>
<tr>
<td>pMON24342 #5</td>
<td></td>
<td>Amp<sup>+</sup></td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
pMON24343 #6 Ampa pCR II (TA) cloning vector + PCR fragment encoding mouse endostatin, including the native mouse collagen XVIII C-terminal region. EcoRI fragment in pCRII (Amino acids 1104-1288)

This work

pMON24344 #7 Ampa pCR II (TA) cloning vector + PCR fragment encoding mouse endostatin, including the native mouse collagen XVIII C-terminal region. EcoRI fragment in pCRII (Amino acids 1104-1288)

This work

pMON24345 #8 Specn pMON5723 NcoI/HindIII + NcoI/HindIII fragment of mouse endostatin, including the native mouse collagen XVIII C-terminal region (Amino acids 1104-1288)

This work

pMON20440 #9 Specn pMON2341 NcoI/HindIII + NcoI/HindIII encoding human endostatin, including the native human collagen XVIII C-terminal region

This work
Table 3: SEQ ID Correlation Table

<table>
<thead>
<tr>
<th>SEQ ID No.</th>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ggcggcccctcgctgctcctactcctcagggc;</td>
<td>5 prime PCR primer for mouse endostatin</td>
</tr>
<tr>
<td>2</td>
<td>ggcggccagccctatgattggaagaagggctcattgaag;</td>
<td>3 prime PCR primer for mouse endostatin</td>
</tr>
<tr>
<td>3</td>
<td>GGCCCGCAT CACCCACAG CACCAGACT TCAGCCAGGT GTGCCACTTG GTTGCCTCA</td>
<td>5 prime PCR primer for human endostatin</td>
</tr>
<tr>
<td></td>
<td>ACAGCCCCCT C;</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GCCGGCAAGC TTATTTCTTG GAGCACGTCA GAGACCTCTTT CTCAATGGG AGGACGATOT AGGCCCTGAG GCACGCTGCG;</td>
<td>3 prime PCR primer for human endostatin</td>
</tr>
<tr>
<td>5</td>
<td>pMON42342 EcoRI insert encoding mouse endostatin</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>pMON42343 EcoRI insert encoding mouse endostatin</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>pMON42344 EcoRI insert encoding mouse endostatin</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>pMON42345 EcoRI insert encoding mouse endostatin</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>pMON20440 encoding human endostatin Mouse Endostatin Amino Acid Sequence</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ANTHQDFQPVHLVALNPLSGMRGIRGADDFQCFQQAARA VGLSTGFRALGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLQULYSIVRDAADGRGSPVNLKDEVLPFWWDLFSGSOGGLQQRGARPSFDGQRDV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LQHNPAPQK5SWOQDPSGRRLMESYCTWTETTTAGATQ ASLSSGLRELEQK AASCHNYIVLCIENFSMTSFSK;</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>AHSRDQDPQPVHLVALNPSLGGMRGIRGADDFQCFQQAARA VGLACTGFRALGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLQULYSIVRDRGADRAAAPVNLKDELLFWSMWELFSGSSEG PLKQRGARPSFDGQRDV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LQHNPAPQK5SWOQDPSGRRLMESYCTWTETTAPSATQ ASLSSGLRELEQK AASCHHAYIVLCIENFSMTASKS;</td>
<td></td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET (RULE 26)
Claims

What is claimed is:

1. A method of producing endostatin comprising the steps of:
 (a) culturing host cells that are expressing an endostatin gene;
 (b) recovering the product of said gene expression;
 (c) solubilizing said gene product at an elevated pH;
 (d) refolding said solubilized gene product at about a near-neutral pH; and
 (e) isolating properly folded forms of said gene product.

2. A method of producing endostatin comprising the steps of:
 (a) culturing host cells that are expressing an endostatin gene;
 (b) recovering the product of said gene expression;
 (c) refolding said gene product at about a near neutral pH; and
 (d) isolating properly folded forms of said gene product.

3. The method of claim 1 wherein said elevated pH in the solubilizing step is
 from about pH 9 to about pH 11.5.

4. The method of claim 3 wherein said elevated pH is from about pH 10 to
 about pH 11.

5. The method of claim 4 wherein said elevated pH is about pH 10.5.

6. The method of claim 1 or claim 2 wherein said near-neutral pH in the
 refolding step is from about pH 6 to about pH 8.5.
7. The method of claim 6 wherein said near-neutral pH in the refolding step is from about pH 7.0 to about pH 8.0.

8. The method of claim 7 wherein said near-neutral pH in the refolding step is about pH 7.5.

9. The method of claim 6 wherein said near-neutral pH in the refolding step is from about pH 7.0 to about pH 8.0.

10. The method of claim 9 wherein said near-neutral pH in the refolding step is about pH 7.5.

11. The method of claim 1 or claim 2 wherein urea is present at a concentration of from about 4 M to about 10 M during said solubilization step.

12. The method of claim 11 wherein urea is present at a concentration of about 6 M during said solubilization step.

13. The method of claim 1 or claim 2 wherein urea is present at a concentration of from about 0.5 M to about 5 M during said refolding step.

14. The method of claim 13 wherein urea is present at a concentration of about 3.5 M during said refolding step.

15. The method of claim 1 or claim 2 wherein guanidine hydrochloride is present at a concentration of from about 2 M to about 8 M during said solubilization step.

16. The method of claim 15 wherein guanidine hydrochloride is present at a concentration of about 4 M during said solubilization step.

17. The method of claim 1 or claim 2 wherein guanidine hydrochloride is present at a concentration of from about 0.2 M to about 2 M during said refolding step.

18. The method of claim 17 wherein guanidine hydrochloride is present at a
concentration of about 1.5 M during said refolding step.

19. A method of claim 1 or 2 carried out in a presence of a reducing agent capable of reducing disulfide linkages to sulphydryl groups.

20. A method of claim 19 wherein said reducing agent is selected from the group consisting of DTT, BME, cysteine, and reduced glutathione.

21. The method of claim 20 wherein DTT is present at a concentration of from about 2 mM to about 10 mM during said solubilization step.

22. The method of claim 21 wherein DTT is present at a concentration of about 5 mM during said solubilization step.

23. The method of claim 20 wherein DTT is present at a concentration of from about 0.2 mM to about 2 mM during said refolding step.

24. The method of claim 23 wherein DTT is present at a concentration of about 0.5 mM during said refolding step.

25. The method of claim 20 wherein reduced glutathione is present at a concentration of from about 5 mM to about 20 mM during said solubilization step.

26. The method of claim 25 wherein reduced glutathione is present at a concentration of about 10 mM during said solubilization step.

27. The method of claim 20 wherein reduced glutathione is present at a concentration of from about 1 mM to about 4 mM during said refolding step.

28. The method of claim 27 wherein reduced glutathione is present at a concentration of about 2 mM during said refolding step.
29. The method of claim 20 wherein cysteine is present at a concentration of from about 5 mM to about 20 mM during said solubilization step.

30. The method of claim 29 wherein cysteine is present at a concentration of about 10 mM during said solubilization step.

31. The method of claim 20 wherein cysteine is present at a concentration of from about 0.5 mM to about 4 mM during said refolding step.

32. The method of claim 31 wherein cysteine is present at a concentration of about 1 mM during said refolding step.

33. The method of claim 1 or claim 2 wherein an agent capable of enhancing the interchange of disulfide bonds is present during said refolding step.

34. The method of claim 33 wherein said agent is selected from cystine and oxidized glutathione.

35. The method of claim 34 wherein cystine is present at a concentration of from about 0.2 mM to about 5 mM during said refolding step.

36. The method of claim 35 wherein cystine is present at a concentration of about 1 mM during said refolding step.

37. The method of claim 1 or claim 2 wherein disulfide bonds are formed through air oxidation during said refolding step.

38. The method of claim 37 wherein said air oxidation step is carried out from about 12 hours to about 96 hours.

39. The method of claim 38 wherein said air oxidation step is carried out from about 24 hours to about 72 hours.

40. The method of claim 39 wherein said air oxidation step is carried out for about 60 hours.
41. The method of claim 1 or claim 2 wherein said gene product is present at a concentration of from about 1 to about 20 mg/ml during said solubilization step.

42. The method of claim 41 wherein said gene product is present at a concentration of about 2.5 mg/ml during said solubilization step.

43. The method of claim 1 or claim 2 wherein said gene product is present at a concentration of from about 0.1 to about 5 mg/ml during said refolding step.

44. The method of claim 43 wherein said gene product is present at a concentration of about 0.25 mg/ml during said refolding step.

45. The method of claim 1 or claim 2 which further includes the step of purifying the endostatin by a process selected from the group consisting of ion-exchange chromatography, hydrophobic interaction chromatography and RP-HPLC.

46. The method of claim 1 or claim 2 wherein said endostatin gene is comprised of DNA encoding non-human, animal endostatin.

47. The method of claim 1 or claim 2 wherein said endostatin gene is selected from the group consisting of SEQ ID NO: 5; SEQ ID NO: 6; SEQ ID NO: 7; and SEQ ID NO: 8.

48. The method of claim 1 or claim 2 wherein said endostatin gene is comprised of DNA encoding human endostatin.

49. The method of claim 1 or claim 2 wherein said endostatin gene is comprised of SEQ ID NO: 9.
Figure 1

HTHQDFQPVLHLVAL--

Endostatin

Mouse Collagen XVIII

HSHRDFQPVLHLVAL--

Endostatin

Human Collagen XVIII
Figure 2

SOLUBILIZATION OF IBS IN
6 M UREA, 5 mM DTT (mouse) or 10 mM cysteine (human), pH 10.8
MIX 2 HOURS

ADDITION OF 10 mM CYSTINE,
MIX 5 MINUTES

DILUTE 10-FOLD TO
3.5 M Urea (Mouse) or 3.0 M Urea (Human) and
pH 7.0 (Mouse) or pH 7.5 (Human)
STIR 60 HOURS
Figure 3

pH 7.0

pH 7.5

pH 8.0

SUBSTITUTE SHEET (RULE 26)
Figure 4

2.5M

3.5M

4.5M

SUBSTITUTE SHEET (RULE 26)
Figure 6

2.0M

3.0M

4.0M
Figure 7

Effect of Endostatin on HMEC Migration

![Bar chart showing the effect of Endostatin on HMEC Migration. The chart compares media, VEGF, Endostatin (30ug/ml), and Endostatin (15ug/ml).]
Figure 8

Effect of Endostatin on CPAE Migration

<table>
<thead>
<tr>
<th></th>
<th>Cells/HPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>2</td>
</tr>
<tr>
<td>VEGF</td>
<td>38±7</td>
</tr>
<tr>
<td>Endostatin (30ug/ml)</td>
<td>20±3</td>
</tr>
<tr>
<td>Endostatin (5ug/ml)</td>
<td>24±4</td>
</tr>
</tbody>
</table>
Figure 9

Inhibition of Ba cEND Cell Proliferation by Mouse Endostatin

![Bar Graph]

- Cells
- no bFGF
- bFGF
- 20ug/ml
- 10ug/ml
- 5ug/ml

SUBSTITUTE SHEET (RULE 26)
Figure 10

Inhibition of Ba cEND Cell Proliferation by Human Endostatin

Cells

no bFGF bFGF 10ug/ml 5ug/ml 2.5ug/ml
Sequence Listing

SEQUENCE LISTING

```
<110> Harding, E.I.
       Violand, B.N.

<120> Method of producing mouse and human endostatin

<130> C_3071-0

<150> 60/075,587
<151> 1998-02-23

<160> 11

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 29
<212> DNA
<213> human

<400> 1
gccgccccat ggcctcaact ctacaggac
     29

<210> 2
<211> 38
<212> DNA
<213> human

<400> 2
gccgcccaag ttattatctg gagaaagaggt tcatgag
     38

<210> 3
<211> 71
<212> DNA
<213> human

<400> 3
gccgaccccaat ggcctcaagc cacoagcact tccagcgctt gctcaccacttg gttgggtctca
     60
   acagcccccct 9

<210> 4
<211> 79
<212> DNA
<213> human

<400> 4
gccgcccaag ttattatctg gagacagctca tgaagctgttt ctcattacctg agcacagtgt
     60
   aggcgcgcgt gcagctctgc

<210> 5
<211> 620
<212> DNA
<213> human

<400> 5
gccgccccat ggcctcaact ctaaagtac tctcagccagt gctccaccttg gttgactca
     60
   acacccccct gctcggagct atgcgtgtaa tccgtgagac agaattccag tgcctccagc

<210> 6
<211> 120
<212> DNA
<213> human

<400> 6

cacggccgat cctctctatcc gatgggctct gggccgggtt tggggctctt cctggtctct

<210> 7
<211> 180
<212> DNA
<213> human

<400> 7

catcccttag cagtgccggc gctgctgtaa gggggctgtgt gcctcagcgc aacctgaag

<210> 8
<211> 240
<212> DNA
<213> human

<400> 8

tgcctccccg aactttagct ttgtaggca gaggatatctg gacacacccca gccgccccgct

<210> 9
<211> 300
<212> DNA
<213> human

<400> 9

tgacgagagt gcggccagcc tggcagccca gttggccagag tcggctggag gtttactcatg

<210> 10
<211> 360
<212> DNA
<213> human

<400> 10
	agcctcggag cactgaaact actggggtca cagttccagcc cctctctctgcc gttcagggc

<210> 11
<211> 480
<212> DNA
<213> human
```

SUBSTITUTE SHEET (RULE 26)
ggcagagtgc cgccggtct caccaagcct acatcggtct ctggcatgag aacagttcca
tgactgtcct caagtaataaa gct

<210> 10
<211> 124
<212> PRT
<213> human

400
 Ala His Thr His Asp Val His Val Ala Asn Thr Ser Gly Gly Met Arg
 1 5 10 15
 Gly Arg Gly Ala Asp Cys Ala Arg Ala Val Gly Ser Gly Thr Arg Ala
 20 25 30
 Ser Ser Arg Asp Tyr Ser Val Arg Arg Ala Asp Arg Gly Ser Val Val
 35 40 45
 Asn Lys Asp Val Ser Ser Trp Asp Ser Ser Gly Ser Gly Gly Ala Arg
 50 55 60
 Ser Asp Gly Arg Asp Val Arg His Ala Trp Lys Ser Val Trp His Gly
 65 70 75 80
 Ser Asp Ser Gly Arg Met Ser Tyr Cys Thr Trp Arg Thr Thr Thr
 85 90 95
 Gly Ala Thr Gly Ala Ser Ser Ser Gly Arg Lys Ala Ala Ser Cys His
 100 105 110
 Asn Ser Tyr Val Cys Asn Ser Met Thr Ser Ser Lys
 115 120

<210> 11
<211> 123
<212> PRT
<213> human

400
 Ala His Ser His Arg Asp Val His Val Ala Asn Ser Ser Gly Gly Met
 1 5 10 15
 Arg Gly Arg Gly Ala Asp Cys Ala Arg Ala Val Gly Ala Gly Thr Arg
 20 25 30
 Ala Ser Ser Arg Asp Tyr Ser Val Arg Arg Ala Asp Arg Ala Val
 35 40 45
 Val Asn Lys Asp Ser Ser Gly Ser Gly Ser Lys Gly Ala Arg Ser
 50 55 60
 Asp Gly Lys Asp Val Arg His Thr Trp Lys Ser Val Trp His Gly Ser
 65 70 75 80
 Asp Asn Gly Arg Arg Ser Tyr Cys Thr Trp Arg Thr Ala Ser Ala
 85 90 95
 Thr Gly Ala Ser Ser Gly Arg Gly Ser Ala Ala Ser Cys His His
 100 105 110
 Ala Tyr Val Cys Asn Ser Met Thr Ala Ser Lys
 115 120
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC 6 | C07K14/78 | C12P21/02 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC 6 | C07K | C12P |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 97 15666 A (CHILDRENS MEDICAL CENTER) 1 May 1997 (1997-05-01) cited in the application abstract page 38, line 16 - page 40, line 23 claim 5 —— ——</td>
<td>1, 2, 6-12, 46, 47</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

* "T" later document published after the international filing date or priority date and in conflict with the application but cited to understand the principle or theory underlying the invention
* "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
* "Z" document member of the same patent family

Date of the actual completion of the international search

20 July 1999

Date of mailing of the international search report

03/08/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5116 Patentlaan 2 NL-2280 HV Rijswijk

Tel: (+31-70) 340-2040, Tx: 31 651 epc nl

Fax: (+31-70) 340-3016

Authorized officer

Galli, I
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P,X</td>
<td>DHANABAL ET AL: "Endostatin: Yeast production, mutants, and antitumor effect in renal cell carcinoma" CANCER RESEARCH, vol. 59, no. 1, 1 January 1999 (1999-01-01), pages 189-197, XP002100110 ISSN: 0008-5472 the whole document</td>
<td>1, 2, 6-12, 46, 47</td>
</tr>
<tr>
<td>A</td>
<td>WO 96 40736 A (CELTRIX PHARMA) 19 December 1996 (1996-12-19) abstract page 5, line 24 - page 7, line 25 page 13, line 16 - page 14, line 30 examples 1-5</td>
<td>1-49</td>
</tr>
<tr>
<td>A</td>
<td>WO 97 18233 A (PHARMACIA & UPJOHN AB; GUSTAFSSON JAN GUNNAR (SE); OEHMAN JOHAN (S) 22 May 1997 (1997-05-22) abstract examples 1-3</td>
<td>1-49</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7466696 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1202932 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9801177 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0857210 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 981803 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 321356 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 98648 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 131489 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 607083 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4132189 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 590029 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6599386 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1329157 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 8607526 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3650449 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3689404 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 320387 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 8702673 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0393725 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2061434 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2020498 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 872753 A,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 933868 A,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 92300062 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3018410 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 153496 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 153596 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR 921075 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 62634 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2117325 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4218387 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8024594 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7028745 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 62502895 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LV 5289 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 83609 A,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI 8611796 A,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 752686 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5453363 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5593865 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YU 179686 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 703489 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5957696 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2223495 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1214689 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9703943 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0832098 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 975749 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 323731 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7659696 A</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 9718233 A</td>
<td></td>
<td>CA 2236751 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 982155 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1033073 A,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1132598 A</td>
</tr>
</tbody>
</table>