(51) International Patent Classification 5 : G03G 9/08

(11) International Publication Number: WO 94/06059
(43) International Publication Date: 17 March 1994 (17.03.94)

(21) International Application Number: PCT/NL93/00177
(22) International Filing Date: 2 September 1993 (02.09.93)

(30) Priority data:
07/940,364 3 September 1992 (03.09.92) US
07/985,116 3 December 1992 (03.12.92) US

(72) Inventors: and
(75) Inventors/Applicants (for US only): LANDA, Benzion [CA/CA]; 10010-119 Street, Edmonton, Alberta T5K 1Y8 (CA). BEN-AVRAHAM, Peretz [IL/IL]; Kibowitch 5/27, 76 450 Rehovot (IL). BOSSIDON, Becky [IL/IL]; 1 Rosh Pinna, 58 400 Holon (IL).

(74) Agent: DE BRUIJN, Leendert, C.; Nederlandsch Octroibureau, Scheveningseweg 82, P.O. Box 29720, NL-2502 LS The Hague (NL).

Published
With international search report.
Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHOD FOR MANUFACTURING SPHERICAL PARTICLES

(57) Abstract

A method for producing spherical particles including the steps of: melting together a first material and a second material which are incompatible; applying shear to the melted mixture to create an emulsion of the first material and second materials whereby finely divided spherical blobs of the first material are dispersed in the other material; cooling the dispersion to solidify at least the first material; and removing the second material from the cooled dispersion to yield spherical particles of the first material, preferably by dissolving the second material in a solvent in which the first material is not soluble.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>NE</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IT</td>
<td>Italy</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>JP</td>
<td>Japan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SK</td>
<td>Slovak Republic</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LV</td>
<td>Latvia</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>MC</td>
<td>Monaco</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>ML</td>
<td>Mali</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MN</td>
<td>Mongolia</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
METHOD FOR MANUFACTURING SPHERICAL PARTICLES

FIELD OF THE INVENTION

The present invention relates to the production of small particles, especially in the range of 1-10 micrometers in diameter. Such particles are especially useful for use in liquid or powder toners.

BACKGROUND OF THE INVENTION

Toner materials, whether for liquid or powder toner development, should be tough, abrasion resistant, elastic and have proper electrical properties.

Many methods for the production of micron sized particles for use in liquid and powder toner compositions are known. These methods can be divided into a number of classes.

One type of process produces particles by dissolving a monomer or polymer or a plurality of monomers and/or polymers in a solvent, producing a polymerization reaction to form an insoluble polymer while stirring the solution/dispersion such that the polymer is precipitated as small particles. Example of this type of process are described in U.S. Patents 3,779,924, 4,996,265.

In a second type of process, a polymer or other material is dissolved in a solvent. The solution is combined with a solvent in which the polymer is insoluble and as a result the polymer precipitates out of the solution as small particles. The mixture is stirred during the process to aid in the formation of the particles. Examples of this type of process type are shown in U.S. Patents 3,679,586, 3,718,593, 3,682,825.

In a third production process the particles are produced by crushing or otherwise fracturing a polymer material and then classifying the particles according to size.

In a fourth production process especially suitable for producing liquid toner, polymer particles are wet ground to produce particles. Examples of such processes are found in U.S. Patent 4,794,651.

In a fifth process the polymer is dissolved in a
1 solvent (water or an other solvent) which is then spray
2 dried to produce particles. The particle sizes produced by
3 this process are often too large for toner.
4 U.S. Patent 4,158,634 describes a sixth process a
5 polymer material is dissolved at an elevated temperature in
6 a solvent which is normally solid (at room temperature). The
7 solution is cooled and solidifies. The now solid solvent is
8 then dissolved in a second, liquid (at room temperature)
9 solvent leaving the polymer. The polymer is brushed through
10 a screen to form a polymer powder.
11 U.S. Patent 3,586,654 describes a seventh method for
12 producing toner particles in which a polymer is melted in
13 super-heated water (under high pressure) and shear is
14 supplied to form blobs of melted polymer dispersed in the
15 water. The dispersion is cooled to solidify the polymer as
16 round particles and the particles are separated from the
17 water. Since the water and polymer have such disparate
18 viscosities it is difficult to transmit sufficient shear to
19 form the particles. U.S. Patents 3,422,049, 3,449,291,
20 3,472,801 all describe similar methods of toner particle
21 production.
22 These processes are either incompatible with the toner
23 requirements, hard to control, expensive or are limited in
24 the range of materials which can be produced.

SUMMARY OF THE INVENTION

In accordance with a preferred embodiment of the
26 invention, particles are produced by the process of:
27 melting together first material and a second material
28 which are incompatible (immiscible);
29 applying shear to the melted mixture to create an
30 emulsion of the first material and second materials whereby
31 finely divided spherical blobs of the first material are
32 dispersed in the other material;
33 cooling the dispersion to solidify at least the first
34 material; and
35 separating the first and second material, preferably by
36 dissolving the second material in a solvent in which the
37 first material is not soluble.
Preferably, both the first and second materials are cooled sufficiently to form solids before removing the second material.

Preferably, the first material is a polymer suitable for use as a toner material.

In accordance with one preferred embodiment of the invention the second material is a polymer material, in accordance with a second preferred embodiment of the material the second material is a non-polymer material.

The solvent may be water if the second material is water soluble or the solvent may be a hydrocarbon in which the second material is soluble and the first material is insoluble.

Preferably, the two materials have viscosities, at the temperature at which the step of shearing is performed, which enable the transfer of sufficient shear to the first material to cause it to form blobs of the required size.

Suitable toner materials for the process includes polystyrene, Ionomers such as Surlyn 9020 (du Pont) or Iotek 8030 (EXXON) and polyester and co-polyester material such as, for example, Dynapol 1228 marketed by Hulls as well as blends of polymer materials.

The toner material may have a colorant such as carbon black or pigment dispersed therein before the start of the process of manufacturing the spherical particles.

Suitable second materials include the polymers WSR 301 Polyoxymethylene (UNION CARBIDE), hydroxy propyl cellulose marketed by AQUALON under the trade name KLUCEL which are water soluble and vinyl toluene acrylic co-polymer, marketed by Goodyear under the trade name PLIOLITE VTAC and PLIOWAY EC-1, which is a substituted styrene acrylate copolymer marketed by Goodyear all of which are soluble in hexane. INKOVAR 1150 an aliphatic resin produced by Hercules is also useful as a second material. Caramel (cross-linked sugar) can also be used as the second material, and is inexpensive, non-polluting and water soluble.

In a preferred embodiment of the invention the ratio of toner material to other material is between 10:90 and 40:60.
1 More preferably the ratio is between 15:85 and 30:70. For
2 the presently used materials and shearing methods ratios of
3 15:85 and 20:80 are especially preferred.
4 The step of shearing can be carried out using any
5 suitable shearing apparatus, consistent with the viscosities
6 of the two melted materials. These may include a simple
7 stirrer for relatively low viscosity materials to an
8 extruder or ball mill for high viscosity materials. In one
9 embodiment of the invention a household mixer is used to
10 apply the shear.
11 In a preferred embodiment of the invention the melted
12 material is first extruded through an extruder at a
13 relatively low temperature to form relatively long streamers
14 of the first material distributed in the second material.
15 The material which exits the extruder is further heated and
16 passed through a long relatively thin tube. In this tube the
17 long streamers break up into blobs of first material. During
18 the passage of the material through the tube, which
19 preferably takes between 15 and 45 minutes, the blobs of
20 first material become rounded and the first material, which
21 is present in the composite which exits the tube are nearly
22 spherical.
23 Preferably the composite material is shredded or
24 crushed to speed up the dissolving of the second material.
25 In a preferred embodiment of the invention, particles
26 which are insoluble in the second material but have either a
27 physical or chemical affinity for the molten first material
28 are added to the heated mixture. When this mixture is
29 further mixed, the particles at least partially coat the
30 molten blobs. On cooling, and removal of the second material
31 the particles of the first material are not smooth, but are
32 coated with the insoluble particles.
33 The insoluble particles are preferably used to modify
34 the characteristics of the particles. For example, particles
35 of ACCUFLUOR CFX which is a fluorinated carbon marketed by
36 Allied Chemicals can be added to the molten mixture. This
37 additive adheres to the surface of the molten blobs and
38 enhance the chargeability of the resultant particles and
provide a surface roughness which enhances the squash resistance of a liquid toner image developed using the particles. Other additive particles could be surfactants to reduce the friction between powder toner particles, pigments which coat the particles or other particles which extend from the surface of the polymer and thereby change the morphology of the particles.

BRIEF DESCRIPTION OF THE DRAWING

The invention will be more clearly understood in conjunction with the following description of preferred embodiments of the invention taken together with the following drawing in which:

The Fig. is a schematic illustration of an extrusion apparatus useful for producing particles in accordance with a preferred embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention comprises the formation of particles of a first material by mixing melted first material with a quantity of a second melted material in which the first material is immiscible.

The melted mixture is emulsified by subjecting it to shear forces which cause the first material to form globules ("blobs") of substantially spherical shape in the second material. In order to provide for good transfer of the shear forces, the two materials should have roughly comparable viscosities at the temperature at which the shear is applied and the first material should preferably have a higher surface tension than the second material. It is believed that a ratio of 2:1 in surface tension is preferable, but that ratios of 5:1 or more are also useful in the performance of the invention.

The emulsion is then cooled to solidify the two materials such that small, preferably spherical, particles of the first material are formed in a matrix of the second material. The solid second material is removed by dissolving the solid mixture in a solvent in which the second, but not the first, material is soluble. At this point the remaining round particles of first material are optionally washed and
dried to remove traces of the second material and its solvent.

The size of the particles will depend on the amount of shear force which is applied and, generally speaking, the uniformity of the particles size distribution will depend on the length of time during which the shear forces are applied and to some extent on the method of application. It has been further found that some of the preferred embodiments of the method give excellent narrow distributions of particle size.

Preferably, the particles are substantially spheroidal, however under certain circumstances ellipsoidal or somewhat irregular particles result from the process.

In one preferred embodiment of the method of the invention, the two melted materials are mixed with a wire beater or a single stiff wire which is rotated perpendicular to its axis. This system is preferred for materials which have a relatively low viscosity at the mixing temperature.

A second embodiment of the invention utilizes a two or three roll mill to emulsify the two materials. The materials are melted and fed through the mill a number of times to complete the emulsification. Such method is especially suitable for materials which have a high viscosity at the mixing temperature. The temperature and or the speed of the mill are changed to control the shear rate and hence the particle size.

In a third embodiment of the invention the melted mixture is subjected to ultrasound energy which has the effect of breaking up larger globules of the first material into smaller particles suitable for use as toner. Shear forces are believed to cause the breakup of the particles in this embodiment.

In a fourth, especially preferred, embodiment of the invention the toner and "host" materials are emulsified in the apparatus illustrated schematically in the Fig. In this apparatus an extruder 10 is filled with a mixture of preferably 15-20% toner polymer and 80-85% host material via an entry port 11. The materials are preferably heated in the extruder to a temperature preferably very near their melting
1 points such that the extruded material comprises long,
2 relatively thin, streamers of toner material in the host
3 material. This temperature is not very critical. This
4 extruded mix is then passed through a tube 12 which is
5 preferably from 0.5 to several meters long at a higher
6 temperature than the extrusion process. In a preferred
7 embodiment of the invention, the mix requires between 15
8 minutes and 1.5 hours to traverse the tube. During this
9 traverse, the streamers break up into substantially round
10 blobs having a narrow range of sizes.
11 The resulting mix of spherical toner particles in host
12 material solidifies as it leaves the tube (shown
13 schematically at 13) and the cool, solid material is broken
14 into small pieces shown schematically at 14. A solvent 16 is
15 then used to remove the host material. Generally the
16 particles should be washed several times with the solvent to
17 remove all traces of the host material.
18 In a particular set of experiments 15-20% of pigmented
19 Surlyn 9020 or Iotek 8030 ionomer materials were heated
20 together with PLIOWAY EC-1 material and extruded from the
21 extruder. The mix was passed through a 1.94 cm diameter tube
22 having various lengths of 0.5, 1.0 and 2.0 meters heated to
23 a temperature of about 160°C. The transit time of the
24 material through the tube was of the order of magnitude of
25 one-half to 1 hour. When the exiting material was shredded
26 and the host material was dissolved in hexane substantially
27 round particles of toner material remained.
28 The size of the particles depends on the amount of
29 shear during the passage of the mix through the tube. This
30 in turn depends on the temperature of the tube, the speed at
31 which the materials traverse the tube and the diameter of
32 the tube. Toner particle sizes in the micron, or even sub-
33 micron range can thus be manufactured using essentially the
34 same process by changing the operating parameters.
35 In a further experiment for the production of toner
36 particles suitable for liquid toner and especially for
37 powder toner applications, caramel host material is
38 prepared by loading a planetary mixer with 3650 grams of
white sugar. The sugar is melted and mixed for a total of 4
2 hours at a temperature of 176°C to 180°C. The material is
3 discharged when still warm.
4 Colored toner particle material is prepared by
5 compounding 120 grams of Dynapol S 1228 with 30 grams of BT
6 583D (blue pigment produced by Cookson) in a Brabender Two-
7 Roll Mill heated to 100°C by an oil heating unit. The
8 materials are compounded for about 20 minutes at 65 RPM with
9 a torque of about 45 Nm. The material is discharged while
10 still warm and is shredded after cooling.
11 The toner particles are produced by the following
12 steps:
13 1- 60 g of caramel material and 40 grams of colored
14 shredded toner material are loaded into a small wire mixer
15 heated to about 100°C. The material is mixed for about 20
16 minutes.
17 2- The caramel is dissolved by the addition of warm
18 water to the mixture. The remaining toner particles are
19 washed with additional water to remove all traces of the
20 caramel. The water is removed by washing the toner particles
21 with Isopropanol.
22 3- The Isopropanol is removed by washing the particles
23 with the carrier liquid (Isopar, Penetec, Marcrol, etc.)
24 which is to be used as the carrier liquid in the liquid
25 toner. The solvent replacement is performed by
26 centrifugation and decantation of supernatant followed by
27 redispersion in fresh solvent.
28 The resulting particles as measured in Shimadzu
29 particle size analyzer have an average size of 8.67
30 micrometers.
31 In a preferred embodiment of the invention, particles
32 which are insoluble in the host material but, preferably,
33 have either a physical or chemical affinity for the molten
34 first material, are added to the heated mixture. When the
35 mixture is further mixed, the particles at least partially
36 coat the molten blobs. On cooling and removal of the second
37 material the particles of the first material are not smooth,
38 but are coated with the insoluble particles.
The insoluble particles are preferably used to modify the characteristics of the particles. For example, ACCUFLUOR CFX powder which is a fluorinated carbon marketed by Allied Chemicals can be added to the molten mixture. The powder adheres to the surface of the molten blobs and enhances the chargeability of the resultant particles and provides surface roughness which enhances the squash resistance of a liquid toner image developed using the particles. Other additive particles could be surfactants to reduce the friction between powder toner particles, pigments which coat the particles or other particles which extend from the surface of the polymer and thereby change the morphology of the particles, such as carbon black or carbonate materials.

In a further series of examples, colorant is dispersed in the toner material before the toner material is mixed with the first material.

In one example toner material is prepared by dispersing 56 parts of DYNACOL 8130 and 14 parts of DYNACOL 8150 (copolyesters produced by Hulls) with 10 parts of DESMUCOL 420 (hydroxyl polyurethane produced by Bayer) and 20 parts of BT 5830 (blue pigment produced by Cookson) in a two roll mill heated to 90°C until the material is well dispersed. 200 grams of this toner material is loaded into a metal pot provided with an external metal heater together with 570 grams of INKOVAR 1150 (an aliphatic resin produced by Hercules), 30 grams of Marcol M-80 (EXXON) and Lubrizol-890 (Lubrizol). The Marcol and Lubrizol are added to reduce the viscosity of the mixture and to improve the separation of the toner and INKOVAR.

The material in the pot is heated to a temperature of about 135°C and is mixed in a Kenwood model KM202 electronic mixer. The material is mixed at a slow speed for 5 minutes, at speed 3 for 5 minutes and finally for 5 additional minutes at speed 5 (high speed).

The material is discharged from the pot while still warm and is allowed to cool to room temperature. The material is crushed to small particles and the INKOVAR is removed by repeated washing with Isopar-L, using a
1 mechanical mixer and centrifuge to remove the spheres from
2 the solution of INKOVAR in Isopar. Carrier liquid as desired
3 and charge director are added to for a liquid toner. The
4 particle size as measured by a Shimadzu particle size
5 analyzer is 3.51 micrometers (median).
6 In a second example of this type, a 25% solids
7 dispersion of tentacular particles comprising 80% Surlyn
8 165L and 20% Mogul-L carbon black in Isopar-L is added to a
9 mixture of PLIOWAY EC-1 (600 grams) and Marcol-82 (100
10 grams) preheated to 130° C. The mixture is mixed in the
11 Kenwood mixer at low speed and the temperature is reduced to
12 about 100° C. Mixing is continued at low speed for 70
13 minutes. The resulting material is discharged warm and
14 allowed to cool. The material is crushed and the PLIOWAY is
15 removed by repeated washing with toluene and centrifugation.
16 The toner is washed repeatedly with Isopar-L to remove
17 traces of Toluene. The particle size as measured by a
18 Shimadzu particle size analyzer is 3.01 micrometers
19 (median). It should be noted that the starting toner
20 material is in the form of tentacular toner particles having
21 a size in the 1-2 micrometer range. Methods of producing
22 such toner are well known in the art. Such material was used
23 for convenience only. The starting toner material may be
24 prepared by dispersion of the carbon black in the Surlyn
25 material by a two-roll mill or by any convenient method and
26 pulverizing the resultant product. The Isopar-L has the
27 added effect of solvating the Surlyn at temperatures above
28 room temperature and thus reducing the temperature of the
29 process, since unsolvated Surlyn melts at very high
30 temperatures.
31 A wide variety of materials are useful in the present
32 invention, for example, those materials listed in the
33 summary of invention. In each case one material is chosen
34 for its properties as a toner and the other, host, material
35 is chosen based on its incompatibility with the first
36 material, its melting point and viscosity relative to the
37 first material and cost and pollution factors.
1
2 1. A method for producing spherical particles comprising
3 the steps of:
4 melting together a first material and a second material
5 which are incompatible;
6 applying shear to the melted mixture to create an
7 emulsion of the first material and second materials whereby
8 finely divided spherical blobs of the first material are
9 dispersed in the other material;
10 cooling the dispersion to solidify at least the first
11 material; and
12 removing the second material from the cooled dispersion
13 to yield spherical particles of the first material.
14
15 2. A method according to claim 1 wherein the step of
16 removing comprises the step of dissolving the second
17 material in a solvent in which the first material is not
18 soluble.
19
20 3. A method according to claim 1 or claim 2 wherein the
21 step of cooling includes cooling both the first and second
22 materials sufficiently to form solids before removing the
23 second material.
24
25 4. A method according to any of the preceding claims
26 wherein the second material is a polymer material.
27
28 5. A method according to any of the previous claims
29 wherein the second material is a caramel.
30
31 6. A method according to any of the previous claims
32 wherein the first material comprises a thermoplastic polymer
33 suitable for use as a toner material.
34
35 7. A method according to any of the previous claims
36 wherein the second material is water soluble and the solvent
37 is water.
38

SUBSTITUTE SHEET
8. A method according to any of the previous claims wherein the first and second materials have viscosities, at the temperature at which the step of shearing is performed, which enable the transfer of sufficient shear to the first material to cause it to form blobs of the required size.

9. A method according to any of the previous claims wherein the two materials have a ratio of viscosities at the temperature of the shearing step which is less than 5:1.

10. A method according to claim 9 wherein the ratio is less than 2:1.

11. A method according to any of the previous claims and including the step of adding a powdered insoluble material into the melted emulsion before the step of shearing is completed, whereby the powder adheres to the blobs and thereby coats the resulting particles.

12. A method according to any of the previous claims wherein the first material is a pigmented polymer.
INTERNATIONAL SEARCH REPORT

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 5 G03G9/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 5 G03G C08J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>FR,A,2 262 335 (WIFO AG) 19 September 1975 see the whole document</td>
<td>1,2,4,6, 7,11,12</td>
</tr>
<tr>
<td>Y</td>
<td>EP,A,0 431 375 (E.I. DU PONT DE NEMOURS) 12 June 1991 see claims 1,2,8,9,30-55</td>
<td>1,2,4,6, 7,11,12</td>
</tr>
<tr>
<td>P,A</td>
<td>DATABASE WPI Derwent Publications Ltd., London, GB; AN 92-343949 & JP,A,4 247 464 (MITSUI TOATSU CHEM INC) 3 September 1992 see abstract</td>
<td>1,4,6,12</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

Date of the actual completion of the international search

1 January 1994

Date of mailing of the international search report

18.01.94

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer

Cubas Alcaraz, J
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP, A, O 334 095 (EASTMAN KODAK COMPANY) 27 September 1989 see column 4, line 53 - column 7, line 4; claims 1-14</td>
<td>1, 2, 4, 6, 7, 11, 12</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>FR-A-2262335</td>
<td>19-09-75</td>
<td>DE-A- 2508095</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1450006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 50120632</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 6681590</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2031049</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN-A- 1053620</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 3221971</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 2006535</td>
</tr>
</tbody>
</table>