C. H. Ziese

TOOL FOR CHANGING FLUORESCENT LAMP TUBES

Filed Sept. 9, 1952
UNITED STATES PATENT OFFICE

2,658,786

TOOL FOR CHANGING FLUORESCENT LAMP TUBES

Carl H. Ziese, Oklahoma City, Okla.

Application September 9, 1953, Serial No. 308,611

4 Claims. (Cl. 294—20)

1. A tool for changing fluorescent lamp tubes comprising:
 extending to opposite sides of the handle. Elongated sleeves 12 and 13
 are mounted in end to end relationship on one longitudinal edge of
 the housing 11 at the outer open end of the housing and
 are disposed in end to end relationship with their adjacent ends spaced apart and their outer
 distal ends projecting substantially equal distances beyond the corresponding ends of
 the housing 11. A curved finger 14 projects radially from the sleeve 12 at the outer end of the sleeve
 and in a direction away from the housing 11 and a corresponding curved finger 15 projects from
 the sleeve 13 at the outer end of this sleeve and also in a direction away from the housing. A
 shaft 16 extends through and is rotatable in the sleeves 12 and 13 and curved fingers 17 and 18
 project perpendicularly from this shaft one at each end thereof and are respectively opposed to
 the curved fingers 14 and 15. The fingers 17 and 18 are somewhat longer than the fingers 14 and
 15 and all of the fingers are accurately curved longitudinally thereof to fit closely around and
 grasp a fluorescent light tube 19 of well known
 construction. These fingers are formed of stiff metal wire or small rods and are covered with an
 elastic material, such as rubber, in order that the fingers may obtain as firm a grasp as possible on a
 lamp tube without breaking or damaging the tube.

 An arm 29 projects radially from the shaft 16 between the adjacent ends of the sleeves 12 and
 13 and extends from the shaft transversely of the housing 11 toward the side of the housing remote
 from the sleeves 12 and 13. A hand lever 21 of generally L-shape, is pivotally mounted inter-
 mediate its length by a pivot pin 22 on one end of a bracket 23 secured to the handle 10 at the
 end of the handle remote from the housing 11 and extending outwardly of respectively opposite
 sides of the handle. The lever 21 has one leg 24 extending from the pivot pin 22 partly across the
 adjacent open end of the tubular handle 10 and a leg 25 longer than the leg 24 extending from the pivot
 pin 22 along the handle 10 in spaced relationship to the handle. A tension element, such as
 the flexible cable 28, connects the arm 29 at its outer end to the hand lever 21 at the distal
 end of the arm 24 of this lever, so that hand pressure on the leg 25 of the lever 21 moving this leg
toward the handle 10 will force the fingers 17 and 18 toward the correspondingly opposed fingers 14
and 15 to firmly grasp a lamp tube between the opposed fingers.

 A coiled torsion spring 28 surrounds the shaft 16 between the adjacent ends of the sleeves 12
and 13 and is connected at one end to the arm 20 and at its other end to the adjacent side wall of the housing 11 to resiliently urge the shaft 10 to turn in a direction to move the fingers 11 and 13 apart from the opposed fixed fingers 14 and 15. A wire band or loop 30 of elongated rectangular shape is pivotally connected at one end to the bracket 23 at a location spaced from the pivot pin 22 and is movable over the end of the bracket 23 adjacent the pivot pin 22 and along the adjacent portion of the leg 25 of the hand lever 21, the portion of the leg 25 being externally serrated in the portion thereof adjacent the pivot pin 22, as indicated at 31. When the hand lever 25 has been moved toward the handle 10 to firmly grasp a lamp between the opposed fingers 11 and 14 and 15, the hand lever may be locked in this position by swinging the loop 30 about its pivot connection with the bracket 23 until the free end of the loop is engaged in a serration 31 on the hand lever 25 at a location to hold the hand lever in its tube-grasping position relative to the handle 10.

Bearing structures in the form of hollow bosses 32 and 33 project outwardly from the relatively opposite sides of the housing 11 at a location spaced from the handle 10 to provide bearing apertures or bores and a pivot pin 34 extends through these bosses and has its axis disposed substantially perpendicular to a plane which is disposed medially of the interior of the housing 11 and includes the longitudinal center line of the handle 10.

Tubular guides 35 and 36 are pivotally mounted intermediate their length on the pivot pin 34 and are disposed one at each side of the housing 11 in substantially parallel relationship to each other. A longitudinally curved strut 37 extends between and interconnects the guides 35 and 36 at the ends of the guides at the side of the pivot pin 34 remote from the handle 10 and a U-shaped rod 38 having substantially parallel legs 39 and 40 and a bight portion 41 interconnecting the legs at corresponding ends thereof has its legs 39 and 40 slidably received in the tubular guides 35 and 36 respectively and its bight portion 41 spaced from the ends of the tubular guides remote from the handle 10 of the tool.

Both of the legs 39 and 40 have a length greater than the length of the tubular guides 35 and 36 and extend entirely through these guides and the leg 39 is longer than the leg 40 and has at its end remote from the bight portion 41 a substantially perpendicularly disposed end portion 42 which constitutes a pusher formation which engages an end 43 of a lamp tube fixture 44 when the bight portion 41 of the U-shaped rod is moved toward the adjacent ends of the guides 35 and 36 and, with a lamp tube 49 grasped between the fingers 14, 15, 16 and 17, forces the lamp tube longitudinally away from the end 43 of the fixture, so that the terminals 44 on the corresponding end of the lamp tube are forced out of the corresponding sockets 45 in the adjacent end of the fixture and the lamp tube can be moved downwardly out of the associated fixture.

The pivot pin 46 extends through the housing 11 at a location adjacent the handle 10 and spaced from the outer end of the housing and a bell crank lever 47 is disposed within the housing and pivotally mounted intermediate its length on the pivot pin 46. This bell crank lever has a leg 48 extending from the pivot pin 46 to a location adjacent the outer end of the housing 11 and a link 49 connects the bell crank leg 48 at its distal end to the bight portion 41 of the rod 38, this link passing through an aperture 50 in the adjacent end wall of the housing 11. The bell crank lever 47 has a second leg 51 shorter than the leg 48 extending from the pivot pin 46 inwardly of the tubular handle 10 and a second hand lever 52 of L-shape is pivotally mounted intermediate its length on the bracket 23 at the end of the bracket remote from the lever 21 by a pivot pin 53 extending through the corresponding end of the bracket. This hand lever 52 has a leg 54 extending from the pivot pin 53 inwardly of the adjacent end of the handle 10 and has a second leg 55 longer than the leg 54 which extends from the pivot pin 53 along the handle 10 at the side of the handle opposite the hand lever 21. A tension element in the form of a flexible cable 56 connects the bell crank lever leg 51 at its distal end to the hand lever 54 at the distal end of this helical spring 58 which is disposed medially and respectively connected to the housing 11 for movement of the lever 52 toward the handle 10 will move the bight portion 41 of the U-shaped rod 38 toward the adjacent ends of the tubular guides 35 and 36 and force the pusher formation 42 of the rod against the adjacent end of the lamp tube fixture 44 which is disposed within the housing 11 and extends through the bight portion 41 of the rod 38 away from the adjacent ends of the tubular guides 35 and 36 to retract the pusher element 42 of the rod 38.

The guide tubes 35 and 36 and the legs 39 and 40 of the rod 38 are inclined outwardly of the housing 11 from the bight portion 41 of the rod 38 remote to the pusher formation 42 thereon and, when pressure is first applied to the leg 55 of the hand lever 52, this inclination of the rod 38 causes the pusher formation 42 to tend to move in a direction away from the housing and toward the top of the lamp tube fixture 44. As pressure is continued on the hand lever 52 the pusher formation 42 is brought into engagement with the adjacent end of the fixture near the top of the fixture and between the top of the fixture and the upper surface of the tube 11, so that separating pressure between the lamp tube and the corresponding end of the fixture is properly applied.

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiment is, therefore, to be considered in all respects as being illustrative and not limitation the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are, therefore, intended to be embraced therein.

What is claimed is:

1. A lamp tube changing tool comprising an elongated tubular handle, a hollow housing on one end of said handle extending to respectively
opposite sides of the handle, elongated sleeves fixedly secured on said housing in end to end relationship with each other and extending longitudinally of the outer end of said housing with their adjacent ends spaced apart, a shaft extending through said sleeve and rotatable therein, curved fingers projecting radially from said shaft one at each end thereof in a direction away from the housing, said fingers being disposed elongated sleeves fixedly secured on said housing in end to end relationship, a guide element pivotally mounted on said handle adjacent said sleeve formation and extending along the latter, a rod slidably mounted in said guide and having on one end a pusher formation adapted to engage an end of a lamp tube fixture, a second hand lever pivotally mounted on said handle at a location spaced from said sleeve formation, and means connecting said second hand lever to said rod for movement of the rod by said second hand lever in a direction to exert a separating force between one end of a lamp tube and the adjacent end of an associated fixture.

3. A tool for changing fluorescent light tubes comprising an elongated handle, a sleeve structure extending transversely of and secured to said handle at one end of the latter, tube grasping fingers projecting substantially perpendicularly from said sleeve structure one at each end thereof, a shaft extending through and rotatable in said sleeve structure, tube grasping fingers projecting substantially perpendicularly from said sleeve structure to grasp a light tube, a first manually operated means mounted on said handle at a location spaced from said tube structure, means connecting said shaft to said first manually operated means for movement of the shaft carried fingers toward the sleeve carried fingers upon operation of said first manually operated means, a guide structure supported on said handle and extending longitudinally of said sleeve structure in spaced relationship thereto, a pusher element slidably mounted in said guide structure and having on one end a pusher formation disposed outwardly of the tube grasping fingers at the adjacent ends of said sleeve structure and said shaft, a second manually operated means mounted on said handle at a location spaced from said sleeve structure, and means connecting said pusher element to said second manually operated means for imparting longitudinal movement to said pusher element in a direction to exert a separating force between one end of a light tube grasped by said fingers and the adjacent end of an associated tube receiving structure upon operation of said second manually operated means.

4. A tool for changing fluorescent light tubes comprising an elongated handle, a sleeve structure extending transversely of and secured to said handle at one end of the latter, tube grasping fingers projecting substantially perpendicularly from said sleeve structure one at each end thereof, a shaft extending through and rotatable in said sleeve structure, tube grasping fingers projecting substantially perpendicularly from said sleeve structure to grasp a light tube, a first manually operated means mounted on said handle at a location spaced from said sleeve structure, means connecting said shaft to said first manually operated means for movement of the shaft carried fingers toward the sleeve carried fingers upon operation of said first manually operated means, a guide structure supported on said handle and extending longitudinally of said sleeve structure in spaced relationship thereto, a pusher element slidably mounted in said guide structure and having on one end a pusher formation disposed outwardly of the tube grasping fingers.
at the adjacent ends of said sleeve structure and said shaft, a second manually operated means mounted on said handle at a location spaced from said sleeve structure, and means connecting said pusher element to said second manually operated means for imparting longitudinal movement to said pusher element in a direction to exert a separating force between one end of a light tube grasped by said fingers and the adjacent end of an associated tube receiving fixture upon operation of said second manually operated means, said guide structure being pivotally supported on said handle for rocking movements about an axis at right angles to the axis of said shaft.

CARL H. ZIESE.

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>674,627</td>
<td>Dinges</td>
<td>May 21, 1901</td>
</tr>
<tr>
<td>1,024,968</td>
<td>Beslinger</td>
<td>Apr. 30, 1912</td>
</tr>
</tbody>
</table>