wo 20107132718 A2 [T A0EVO O R 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization @T‘?‘S\
tellectual Property /‘:‘.) 0 T 0 O A
. L. ME' (10) International Publication Number
(43) International Publication Date \,!:,: #
18 November 2010 (18.11.2010) WO 2010/132718 A2
(51) International Patent Classification: (74) Agents: PALERMO, Christopher J. et al.; 2055 Gate-
HO04N 7/173 (2006.01) HO04N 7/08 (2006.01) way Place, Suite 550, San Jose, California 95110 (US).
(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/US2010/034808 kind of national protection available). AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(22) International Filing Date:
13 May 2010 (13.05.2010)

(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
. KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(26) Publication Language: Enghsh ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI

(30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
61/177,726 13 May 2009 (13.05.2009) Us SE, G, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN, TR,
61/321,076 5 April 2010 (05.04.2010) Us TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicants (for all designated States except US): COIN- (84) Designated States (unless otherwise indicated, for every
CIDENT.TV , INC. [US/US]; 2835 Ralston Avenue, kind ofregional protection avaz'lable): ARIPO (BW, GH,
Hillsborough, California 94010 (US). REYES, Luis [US/ GM, KE, LR, LS, MW, MZ, NA, 8D, SL, 87, TZ, UG,
US]; 2835 Ralston Avenue, Hillsborough, California ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
94010 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

(72) Inventors; and LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SL SK,

(75) Inventors/Applicants (for US only): KAISER, David H. SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
[US/US]; 2835 Ralston Avenue, Hillsborough, California GW, ML, MR, NE, SN, TD, TG).

94010 (US). SCHWARTZ, Bruce [US/US]; 2835 Ral-)

ston Avenue, Hillsborough, California 94010 (Us). FPublished:

ROSENBERG, Carl [US/US]; 2835 Ralston Avenue, — without international search report and to be republished
Hillsborough, California 94010 (US). upon receipt of that report (Rule 48.2(g))

(54) Title: PLAYING AND EDITING LINKED AND ANNOTATED AUDIOVISUAL WORKS

102 Computer

| 110 Video Linking |
Editor Logic

S ——
2002 Support Library
| 106 Video Editor | \.
| |

| 104 Operating System |

T \

\
i
\

Display unit

2004 Player ;'Contral Server
12

108 Browser

130 Web server

132 File server

122 Video files

124 Graphics files

126 Metadata files

112 Metadata—Capable
Video Player Logic

2006 Accounting Logic

Fig. 20

2008 Script files

(57) Abstract: In one embodiment, a method includes obtaining metadata that relates to a video program and that defines, for one
or more specified time points in the video program, one or more web services to be invoked at those time points; generating and
displaying, on a computer, a video window that is contigured to play the video program; during playing the video program on a
computer, detecting that the video program is playing at one of the time points and determining an identitier of a particular web
service associated with that one of the time points; in response to the detecting, causing the computer to invoke the particular web
service.

WO 2010/132718 PCT/US2010/034808

PLAYING AND EDITING LINKED AND ANNOTATED AUDIOVISUAL WORKS

COPYRIGHT NOTICE

[0001] A portion of the disclosure of this patent document contains material which is subject
to copyright protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and
Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
Copyright © 2008-2010 Coincident. TV, Inc.

TECHNICAL FIELD

[0002] The present disclosure generally relates to video playing, video editing, and
displaying hyperlinked media.

BACKGROUND

[0003] Commercial television broadcasting has been supported by advertising revenue since
its inception. More recently, providers of video programs and video clips in Internet sites have
embedded advertising within video programs or next to video programs in web pages at which
the video programs are viewed. However, a continuing problem involved in these technologies
is that the advertisements are not closely personalized for the viewer. Instead, commercial
broadcasters attempt to define, in terms of rough demographic characteristics, a sub-population
of a mass audience that is expected to be interested in a particular program; advertisers who
believe that their products appeal to the same rough demographic will purchase advertising slots
in the program. Unfortunately, a continuing result of this system is that at least some viewers,
who do not fit the rough demographic, are shown advertisements that are irrelevant to the
viewers’ interests.

[0004] Internet technologies also have attempted to tailor advertisements, displayed in
World Wide Web sites, more closely to the preferences of Internet users, based on collecting
explicitly-specified preference data, based on a user profile, or by inferring preferences through
collecting metadata that is derived as the Internet user selects pages or performs online actions.
However, these technologies are not fully accurate because they rely on algorithms that attempt
to match known characteristics of ads with user preferences that can be only roughly inferred
from the data that the users provide.

[0005] Video editors such as Adobe Premiere Pro and Final Cut Pro enable users to select
multiple video clips, join the clips, and annotate the clips by defining cue points and associating
text notes with the cue points.

[0006] The approaches described in this section are approaches that could be pursued, but

not necessarily approaches that have been previously conceived or pursued. Therefore, unless

1-

WO 2010/132718 PCT/US2010/034808

otherwise indicated, it should not be assumed that any of the approaches described in this
section qualify as prior art merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] In the drawings:

[0008] FIG. 1A illustrates an example arrangement of digital computer elements that can be
used to implement certain embodiments.

[0009] FIG. 1B illustrates a process of creating video programs, which are linked to
metadata, which can control operation of a video player.

[0010] FIG. 1C illustrates a process of playing a video program that is linked to metadata.
[0011] FIG. 2 illustrates an example screen display that the video linking editor logic
generates and causes displaying.

[0012] FIG. 3 graphically illustrates an example video linking arrangement.

[0013] FIG. 4 illustrates a screen display in the Adobe Premiere video editor in which a
video file has been created with the segments and advertisements and appropriate cue points.
[0014] FIG. 5 illustrates a portion of a screen display showing a cue point list for the video
of FIG. 3, FIG. 4.

[0015] FIG. 6 illustrates the metadata panel populated with data for the Start cue point of the
example.

[0016] FIG. 7 illustrates the cue point data configured with values from user input that
create such a cue point.

[0017] FIG. 8§ illustrates a display generated at playback time based on the metadata that has
been created in the present example.

[0018] FIG. 9 illustrates appropriate values of program-wide metadata for the present
example.

[0019] FIG. 10 illustrates an example screen display that includes a directory.

[0020] FIG. 11 illustrates an example screen display that illustrates a player screen that may
be generated and displayed in a computer display unit by metadata-capable video player logic.
[0021] FIG. 12 is a block diagram that illustrates a computer system upon which an
embodiment of the invention may be implemented.

[0022] FIG. 13A illustrates an annotation coupled to a web service providing automated text
messaging in association with an enriched video program.

[0023] FIG. 13B illustrates a frame of an enriched video program as displayed in a player
window.

[0024] FIG. 14 illustrates a frame of a video program having a highlighted service icon.

[0025] FIG. 15A illustrates an annotation that provides a user choice.

WO 2010/132718 PCT/US2010/034808

[0026] FIG. 15B illustrates a frame of a video segment in a sequence for which Audrina is
the featured character.

[0027] FIG. 16 illustrates concurrent playing of an enriched video program and displaying
an associated web page.

[0028] FIG. 17A illustrates an example of playing an enriched audiovisual program with
annotations that implement chapter selections.

[0029] FIG. 17B features a navigation animation, web integration icons, topic launch icons,
and menu access link.

[0030] FIG. 17C illustrates a video window providing a menu of episodes in a collection or
associated with a subscription.

[0031] FIG. 17D illustrates use of annotations to form elements of a main menu page for a
video program subscription.

[0032] FIG. 18A illustrates an example news program in which annotations may be used to
provide a directory or menu of a plurality of news stores, features, segments, or related
information.

[0033] FIG. 18B illustrates the news program of FIG. 18A after a viewer has selected a
program link that is defined using an annotation having an association to a website.

[0034] FIG. 18C illustrates the browser window of FIG. 18B after the scroll bar has been
moved.

[0035] FIG. 19A illustrates playing a video program in which annotations are associated
with multiple different responsive behavior types.

[0036] FIG. 19B illustrates an example of displaying a separate browser window below or
behind the video window of the player window.

[0037] FIG. 20 illustrates an example arrangement of digital computer elements that can be
used to implement certain embodiments with a browser-based player for enriched video
programs.

[0038] FIG. 21 illustrates an example screen display that the video linking editor logic
generates and causes displaying and in which a Cue tab is selected.

[0039] FIG. 22 is a screen display diagram of the Metadata tab of an example Editor
window.

[0040] FIG. 23 is a screen display diagram of an example FEditor window in which an
Annotation tab is selected.

[0041] FIG. 24 is a screen display diagram of an example Editor window in which a Web
tab is selected.

[0042] FIG. 25 is a screen display diagram of an example Editor window in which a Layout

tab is selected.

WO 2010/132718 PCT/US2010/034808

DETAILED DESCRIPTION

[0043] APPENDICES. Document appendices form a part of the disclosure herein and
comprise the following elements: “Language Manual, Cue Point Language”; “C'TV Editor User
Guide”; “Addendum”; Schema Listing (XSD file). The appendices describe example
embodiments and other embodiments may vary from the descriptions in the appendices.

[0044] In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present invention. It will
be apparent, however, that the present invention may be practiced without these specific details.
In other instances, well-known structures and devices are shown in block diagram form in order
to avoid unnecessarily obscuring the present invention. Embodiments are described according
to the following outline, although the following description does not reproduce, as section

headings, each and every item in the outline.

1. Concept summary: Editor; Player; Metadata format
2. Overview of structural context
3. Overview of functional context: Directories; Jump to a destination; Get more

information from a destination; Switching media based on a web service; Modal
story branch; Overlay web content; Provide web points with associated URLs,
graphics and text; Return from the end of a segment
4. Adding cue points and cue point names using a video editor: Overview of creating
cue points; Definitions; endNote
5. Authoring video links using an editor
5.1 Editor GUI overview
5.2 Creating and modifying cue point metadata for particular cue point types
5.2.1 goto Cue Point
5.2.2 gotoAutoReturnButton Cue Point
5.2.3 insertPt Cue Point
5.2.4 modalStoryBranch Cue Point
5.2.5 MXMLOverlay Cue Point
5.2.6 progEnd Cue Point
5.2.77 weblocus Cue Point
5.3 Other language elements and attributes
5.4 Content types
5.5 Automatic creation of cue points
5.6 Directories
5.7 Web Services

5.8 Cue Point Language example

WO 2010/132718 PCT/US2010/034808

6. Playing video and linked media

6.1 Trick play functions, timeline, always-available web link

6.2 Keyboard controls

6.3 Subscription video

7. Implementation details—Hardware overview
ko ok

[0045] 1. CONCEPT SUMMARY
[0046] Various embodiments provide an editor, a player, and a metadata format. In an
embodiment, the editor implements a method of creating, for a video file consisting of multiple
segments, metadata describing one or more display operations, decision operations, branching
operations, video linking operations and web media linking operations, and associating the
metadata with the video file. In an embodiment, the player implements a method of interpreting
the metadata during playback of the video file and performing the operations in coordination
with playback. In an embodiment, the metadata format comprises computer-readable data
storage media encoded with tags and values which when interpreted cause performing particular
display, decision, branching, video linking and web media linking operations. Metadata may
comprise cue point type names for various cue point types, and attribute values associated with
the cue point types that control the particular behavior of the player in performing the
operations.
[0047] 2. OVERVIEW OF STRUCTURAL CONTEXT
[0048] FIG. 1A illustrates an example arrangement of digital computer elements that can be
used to implement certain embodiments. In an embodiment, a computer 102 is coupled directly
or indirectly through one or more networks 120 to a web server 130 and optionally to a file
server 132. In various embodiments, network 120 may comprise a local area network (LAN),
wide area network (WAN), an internetwork, or a combination. Web server 130 hosts one or
more video files, HIML documents, HT'TP servers or application servers, or other web content.
File server 132 stores or hosts video files 122, graphics files 124, and metadata files 126.
[0049] Computer 102 hosts or executes an operating system 104 that supervises /O, storage
management, and execution of application logic. In an embodiment, computer 102 further
comprises a video editor 106. Commercially available examples of video editor 106 include
Adobe Premiere and Final Cut Pro. In an embodiment, computer 102 comprises a browser 108.
Commercially available examples of browser 108 include Firefox, Safari, Chrome and Internet
Explorer.
[0050] In an embodiment, computer 102 is coupled to storage 140, which broadly represents
any data storage device, storage area network (SAN), network attached storage (NAS), or

network file system (NFS) unit or server. Storage 140 may reside on network 120 or on a server

_5-

WO 2010/132718 PCT/US2010/034808

coupled to the network. Storage 140 stores video files 122, graphics files 124, and metadata
files 126.

[0051] In an embodiment, computer 102 further comprises video linking editor logic 110
and metadata-capable video player logic 112. In other embodiments, computer 102 only
comprises player logic 112 and does not have an editor; such an embodiment might be used by
an end user who is viewing video programs that have been prepared by someone else. Thus, the
use of video linking editor logic 110 is not required.

[0052] The video linking editor logic 110 is generally configured to cause one or more
processors in computer 102 to receive user input specifying links between segments of a video
file and other media such as other segments in the same file, other segments of other video files,
graphics files, online content such as web sites or web applications, and other rich media
content; to create representations of the links in metadata; and to store the metadata and link-
related information in the metadata files 126 in association with related video files. For
example, a user of computer 102 may interact with video linking editor logic 110 to select one
or more of the video files 122, from storage 140 or file server 132, create links using editing
functions that the editor logic provides, integrate graphics files 124 and references to content on
web server 130, and then store metadata files 126 either at storage 140 or in file server 132. The
metadata files 126 identify the associated video files 122 and contain metadata defining links
among segments, link types, and link-related information to support novel playback functions
and other user experiences. Other more specific functions of video editor linking logic 110 are
described in other sections herein.

[0053] The metadata-capable video player logic 112 is generally configured to open
metadata files and associated video files, and to play the video files while interpreting and
responding to links and related information and instructions in the associated metadata files.
Other more specific functions of metadata-capable video player logic 112 are described in other
sections herein. The metadata-capable video player logic 112 may be implemented within a web
browser and comprising a browser support library and browser-executable code, such as
JavaScript, that is received in and executed by the browser at the time that an end user selects a
video for playing. The browser support library may be any video playing plug-in component for
a browser. Examples include Macromedia Flash and Silverlight. Alternatively, web browsers
may use the VIDEO tag of HTML version 5 to render video and HITML and JavaScript to
implement the player logic 112. In some embodiments, the player logic 112 may be partially
implemented on server 132 or another server using dynamic AJAX techniques. For example,
the server may convert data defining annotations into HIML to be displayed in the player.
Alternatively, the metadata-capable video player logic 112 is implemented as a standalone

program application that may be installed locally in computer 102. For such native applications

-6-

WO 2010/132718 PCT/US2010/034808

any software development kit (SDK) that is capable of displaying video could be used to
implement the player. Examples include SDKs for Apple Mac OS X, Microsoft WINDOWS,
and Linux.

[0054] Each of the computer 102, video linking editor logic 110 and metadata-capable video
player logic 112 may be implemented in various embodiments using a computer, one or more
application-specific integrated circuits (ASICs) or other digital electronic logic, one or more
computer programs, modules, objects, methods, or other software elements. For example, in one
embodiment computer 102 may comprise a special-purpose computer having particular logic
configured to implement the elements and functions described herein. In another embodiment,
service computer 102 may comprise a general purpose computer as in FIG. 12, loaded with one
or more stored programs which transform the general purpose computer into a particular
machine upon loading and execution.

[0055] 3. OVERVIEW OF FUNCTIONAL CONTEXT AND OPERATION

[0056] In an embodiment, video linking is facilitated by creating, in metadata files
associated with video files, executable instructions and/or descriptive information that are linked
to cue points in the video files. A cue point generally comprises an association of a name to a
position within a video file, wherein the position is typically expressed as a time value or
timestamp. In an embodiment, cue points are created for a particular video file using video
editor 106; the names and values of cue points become part of the video file through
conventional operation of the video editor. Thereafter, user interaction with the video linking
editor logic 110 can create links, operations and link-related metadata information for one or
more of the cue points. At any later time, the metadata-capable video player logic 112 may be
invoked to play the video and to concurrently detect cue points, identify the previously created
metadata information relating to links and operations, and execute the operations.

[0057] FIG. 1B illustrates a process of creating video programs, which are linked to
metadata, which can control operation of a video player. FIG. 1C illustrates a process of playing
a video program that is linked to metadata. In an embodiment, the video linking editor logic 110
is configured to perform at least selected functions of FIG. 1B and the metadata-capable video
player logic 112 is configured to perform the functions of FIG. 1C.

[0058] Referring first to FIG. 1B, in one embodiment, at step 150 a video editor creates and
stores one or more cue points in a video file. Thus, FIG. 1B presumes that at least one video file
has been created and stored on a computer, such as computer 102. Step 150 may comprise a
user interacting with the video editor 106 to create and store named cue points in the video file
as further described herein. Alternatively, step 150 can involve a process or logic in computer
102, or another computer, creating cue points in a video file using programmatic techniques or

electronic communication of messages to the computer.

-7-

WO 2010/132718 PCT/US2010/034808

[0059] In step 152, the computer receives user input identifying a video file. Step 152 may
involve invoking the video linking editor logic 110 and specifying the file name of one of the
video files 122, or specifying the name of one of the metadata files 126, which will include an
internal reference to an associated one or more of the video files.

[0060] At step 154, the video linking editor logic 110 reads the video file, finds or creates an
associated metadata file, displays data for cue points in the video file, and displays any
associated metadata relating to links to other segments or content. If one of the video files 122
is specified at step 152 and no existing metadata file is found, then the video linking editor logic
110 creates a related metadata file. If an existing related metadata file is found, then that file is
read and metadata relating to cue points is displayed on a display unit that is coupled to
computer 102. An example graphical user interface that may be generated to display the
metadata is further described herein in connection with FIG. 2, but the approach of FIG. 1B does
not require that particular GUL.

[0061] At step 156, the computer receives user input specifying, for a particular cue point, a
cue point type. For example, interacting with the GUI of FIG. 2 or through other means, a user
or external computer process or logic selects one of the previously created cue points of the
video file and provides input specifying a cue point type value. At a cue point, any of several
types of operations may be defined to be performed at the time of playback using the metadata-
capable video player logic 112. In this document, a cue point within a video file and the
operations performed at the cue point are sometimes collectively termed a cue point. Cue points
as defined herein can refer to video, coupled video-web contexts or non-temporal web locations
(or “web points,” as further described).

[0062] In an embodiment, cue points enable a user at playback to jump forward and
backward in time in a video, and jump between web content and video content. Since the user
and the environment can change the order in which media is played, the metadata-capable video
player logic 112 maintains data indicating the user’s prior location so that the player can transfer
control to a prior location.

[0063] In an embodiment, web points define an end for web content that specify where to
transfer the user when the user has reached the end of a navigation path. Both video and web
content can be displayed on the screen at the same time, overlaid over web content or using a
picture-in-picture representation, and time can be running or paused. When web content is
displayed, selecting a back operation transfers control to a previously viewed page but when the
earliest page is reached then a subsequent back operation transfers control away from web
content and to the previously viewed video segment. When video is displayed, performing a

back operation returns to the beginning of the current video segment.

WO 2010/132718 PCT/US2010/034808

[0064] FIG. 24 is a screen display diagram of an example Editor window in which a Web
tab is selected. The Web tab 2402 of the example Editor screen display 2102 may be used, in an
embodiment, to create and store web points in association with a video program. In an
embodiment, Web tab 2402 displays a list of all web points that have been defined for the video
program that is previewed in video window 2403. Selecting an Add web point control 2405
causes the editor logic 110 to display a data entry panel 2404 that may receive user input of
parameter values defining attributes of a web point. In an embodiment, attributes include an
interest URL 2406, query string 2408, target cue point, web view layout definition, description,
and thumbnail graphic image.

[0065] In an embodiment, interest URL 2406 refers to an online electronic document that is

loaded and displayed at playback time if the user requests additional information about the data

shown at the web point. In an embodiment, query string 2408 comprises a database query that is
submitted to an online engine if the web point is selected, to generate a search result so that the
user receives current search result information associated with the web point. The target field

defines a target cue point to which the user is directed at playback time after having viewed a

web document associated with the web point. The web view layout definition field identifies a

layout format for the player to be used when displaying web information; in an embodiment, the

layout format is one of the formats shown in FIG. 25, which is described further herein. The
description field is a text description of the web point to display, and the thumbnail graphic
image is a graphic image to display in the player to denote the web point.

[0066] In an embodiment, any of the following operations may be defined in the metadata

for association with a cue point:

e Directory or Annotation—a directory or annotation specifies one or more graphics files, web
services, and associated links; at playback, the graphics files are selectable as hyperlinks to
cause playback of other video segments and the web services may be invoked automatically
to fire database queries, retrieve data, dispatch emails or text messages, or perform other
communication functions as defined in the web services.

e Jump to a destination—metadata can specify that when a particular cue point is reached
during playback, the player should jump to another cue point within the same video file.

The destination cue point may be earlier in time or later in time than the cue point from
which a jump is made.

e (et more information from a destination—metadata can specify that when a particular cue
point is reached during playback, the computer 102 should connect to a web site at web
server 130 and display a web page or invoke a web application. Typically the web site
content is associated with or related to the video content at the cue point, but such an

association is not required.

WO 2010/132718 PCT/US2010/034808

e (Change media under external process control—metadata can specify that when a particular
cue point is reached during playback, the computer 102 should switch to one of several
pieces of media, as determined by a web service, and continue as specified in the media to
which the switch was made.

e Modal story branch—metadata can specify that when a particular cue point is reached during
playback, the computer 102 should switch to one of several pieces of media, determined by
user selection of an image associated with the media.

e Overlay web content—metadata can specify that when a particular cue point is reached
during playback, the computer 102 should display a graphical and interactive overlay. This
overlay is logically and computationally associated with a web service. The web service
maintains databases (both session and persistent) that can be used to influence the course of
playback, for example with an insertPt cue point. In an embodiment, the metadata-capable
video player logic 112 invokes asynchronous web services to control user interaction with
the overlaid web components.

e The video linking editor logic 110 can define and store one or more web points comprising
names with associated URLSs, graphics and text. These web points can substitute for video
cue points. For example, all targets for a user choice cue point can be either video cue points
or web points. In this context web points also define an “end” action to be followed in
circumstances paralleling reaching the end of a video segment.

¢ In an embodiment, video linking editor logic 110 can define and store, in the metadata file,
one or more cue points that include data defining required associated web pages. Such cue
points are termed synchronized attributes or cue point attributes and refer to a specified point
in a video that automatically creates a primary and secondary window. For example, in an
embodiment, any cue point can have an associated web page that is to be displayed while the
cue point is active. In this embodiment, when the video segment defined by the cue point is
being played and the cue point is reached, the associated web page is automatically loaded
and displayed in a browser window that appears conceptually under the video player
window. In this context, “under” refers to Z-axis ordering of video and web content; in an
embodiment, the video content is “over” the web content in the sense that the video content
may obscure certain web content. The size and positioning of the video and web content can
also be specified in association with the cue point using the video linking editor logic. With
this approach, an author can define a video that provides a synchronized display of an
audiovisual work and Internet content such as web pages. The web pages might comprise an
advertisement or other online information that is relevant to a particular event on the TV
program. For example, an author can set a cue point for a time in the video at which a

character appears wearing particular distinctive clothing, and can associate a web page for a

-10-

WO 2010/132718 PCT/US2010/034808

merchant of that clothing with the cue point. Consequently, when the video plays and the
character appears in the video, the merchant’s web page for the associated clothing is
automatically accessed and displayed in a browser window behind the player. As an another
example, a cue point can associate a time in the video at which an actor appears with a
particular web page of the Internet Movie Database (IMDB) service, www.imdb.com, that
contains background, filmography and other details for the actor. This approach may be
economically attractive both to the broadcaster of the video and the associated web site; for
example, the associated web site benefits from an additional page view while the broadcaster
concurrently continues to have a viewer viewing the video. More broadly, this approach
enables events occurring in temporal media such as video to cause automatic changes in
state-based media such as web pages. In an embodiment, creating a synchronized attribute is
performed by selecting the Cue tab 2106 in the editor screen display 2102 (FIG. 21),
selecting a cue point to which a synchronized attribute should be associated, selecting an
Other tab in a Parameters pane, selecting Browse and selecting an appropriate web point.
e Return from the end of segment—metadata can specify that when a particular cue point is
reached during playback, the computer 102 should return to a previous segment from which
a branch was taken. In an embodiment, web-based cue points define an end, even though
web content is a non-temporal media, to specify where to go when the user has reached the
end. Both video content and web content can played or viewed on screen at the same time,
overlaid or picture-in-picture, and time can be running or paused. In an embodiment,
selecting a Back button while viewing web content causes backtracking among hyperlinks in
the manner of a web browser, but when no other prior links exist then a selection of a Back
operation transfers control to the video segment from which the web content was reached. In
content, moving backward in video transfers control to the beginning of the video.
[0067] In an embodiment, metadata-capable video player logic 112 interprets metadata such
that when the user is watching video, a web link to some form of related content is always
available. If the user selects the web link and views the web content, the player displays the
video in a reduced size picture-in-picture form. Further description of the foregoing cue point
types is provided in other sections of this disclosure.
[0068] Referring again to FIG. 1B, at step 158, the video linking editor logic 110 updates the
computer display based on the cue point type to provide input fields and display fields for
metadata values that are associated with the specified cue point type. Thus, a context-sensitive
display of input fields and display fields is provided depending on the cue point type. Step 158
may also include receiving user input that indicates particular metadata values for the input

fields. For example, if the cue point type provided at step 156 is “modal story branch,” then at

-11-

WO 2010/132718 PCT/US2010/034808

step 158 an input is received to specify two or more target cue points that represent branch
destinations.

[0069] At step 160, the video linking editor logic 110 creates and stores the cue point type
and the associated metadata values in the metadata file that is associated with the video file. As
shown in optional step 161, the type and values may be stored in one or more XML script(s)
within one of the metadata files 126. However, XML is not required in all embodiments and the
metadata files 126 may represent cue point names, types and metadata values in other forms that
can be read by the metadata-capable video player logic 112 and used to control linking,
branching, decisions, web interaction, and other content operations when cue points are reached.
[0070] Step 162 represents testing whether a user has requested to exit or discontinue using
the video linking editor logic 110. If no exit request is received then control is transferred to
step 156 or step 158 for the computer to await further user input relating to cue points.
Alternatively the computer may perform an exit operation at step 164, for example, by closing
the video file and metadata file.

[0071] As indicated in step 166, during all operations previously described for FIG. 1B the
method is configured to asynchronously process user input requesting video playback, trick play
functions, or loading other video files or metadata files. Thus, in an embodiment, a playback
mechanism may be integrated into the process so that a user can play and view a video program
or segment while determining what cue point types and values to specify. The playback
mechanism supports non-linear playback of video so that the player can execute branch
operations, play one of a plurality of different alternative video segments at a branch point or
decision point, return to a prior point and continue playing the next segment thereafter, and other
complex operations consistent with the rich media authoring capabilities described herein. At
any time during the process of FIG. 1B, the user may request playing a video segment or
performing trick play functions such as fast forward or rewind. In an embodiment, selecting a
different named cue point at step 156 causes the player mechanism to display a first frame of the
video segment that starts at the selected cue point or to begin playing the video from that point.
[0072] As aresult of the process of FIG. 1B, a video file having internally stored named cue
points becomes associated with a separate metadata file that specifies cue point types and
metadata values relating to control functions for the video file, related networked content, and
other user interactions. The metadata-capable video player logic 112 is configured to play the
video and, as each cue point is reached, perform the control functions based on the cue point
types and metadata values that are specified in the metadata file.

[0073] FIG. 1C broadly represents a process involving opening a stored video file having
one or more video segments and one or more cue points in the video file, and opening a

metadata file that contains an internal reference to the video file; playing a first video segment of

-12-

WO 2010/132718 PCT/US2010/034808

the video file; in response to reaching, during the playing, one of the cue points that are defined
in the video file: receiving from the metadata file one or more metadata values identifying a cue
point type, and one or more values of attributes that are associated with a particular cue point
type, the cue point type and attribute values defining features of an action to perform at the cue
point during playing of the video file; performing the action using the attribute values to
determine and perform particular features, displays, or controls associated with the action.
[0074] In one embodiment of a playback process, at step 170 the computer initiates
executing the metadata-capable video player logic 112. Initiating execution may occur in
response to user input, or in response to an instruction from other hardware logic or computer
processes. For example, a user, logic, or process may select and invoke one of the metadata files
126 or video files 122, and in computer 102 the files may be associated with the metadata-
capable video player logic 112 as an application that is launched when the files are invoked.
[0075] Optionally, in step 172, the metadata-capable video player logic 112 locates any
existing metadata files and displays a list of the metadata files. Fach metadata file may be
represented visually in the list using a still image or other graphics file that is referenced within
the metadata file. Thus, the metadata-capable video player logic 112 may generate a display of
thumbnail images, each image representing an associated metadata file. At step 174, the
metadata-capable video player logic 112 receives user input selecting a metadata file from the
list. For example, the graphic images may comprise selectable links and the user may select one
of the images using a pointing device. Steps 172 and 174 are described as optional because a
selection of a metadata file may be unnecessary if the metadata-capable video player logic 112 is
invoked by a user or process launching one of the metadata files 126 rather than launching or
invoking the metadata-capable video player logic independently.

[0076] In step 176, the selected metadata file is opened. Each of the metadata files 126 is
configured to internally name or reference at least one of the video files 122. Therefore, the
metadata-capable video player logic 112 reads the selected metadata file, identifies the
referenced video file, and opens the referenced video file at step 178.

[0077] At step 180, the metadata-capable video player logic 112 enters a loop that begins
when the video player logic plays the video file that was found and opened at step 178. At step
182, a test is performed to determine whether a cue point has been reached. Step 182 represents
the occurrence of an interrupt or other event indicating that a cue point was reached. As an
alternative to interrupts, step 182 may be implemented by examining stored metadata values
relating to a segment and setting timers that cause generic, non-video events to occur when the
video events would have occurred. The timers are adjusted as the user moves among video
segments and plays video segments, as the amount of time to a given video event changes as a

result of such movement. However, this approach enables content to play correctly even if the

13-

WO 2010/132718 PCT/US2010/034808

cue points have been removed from the video in the course of transmission or transcoding. For
example, preparing video for the YouTube online player results in the YouTube system
discarding the cue points and the present approaches enable video productions to play properly
on YouTube.

The NO control path of step 182 represents continuing playback and waiting until the next cue
point is reached.

[0078] At step 184, when a cue point has been reached, the metadata-capable video player
logic 112 determines the name of the cue point that has been reached. At step 186, based on the
cue point name, the metadata-capable video player logic 112 reads and executes one or more
metadata scripts and/or values associated with the current cue point, based on functions and
behavior configured in the video player logic. Thus, in one embodiment, the metadata-capable
video player logic 112 comprises logic or program instructions that define what functions are
performed for all cue point types, and the metadata files 126 specify cue point types and
attribute values that control how the functions are performed, such as specific video displays,
graphical displays, user interactions, branches, links or other control functions.

[0079] After step 186 control returns to step 180 to continue playing the current video
segment. As a consequence of the processing in step 186, the current video segment after step
186 may be a different video segment than earlier, depending on the cue point type and its
associated metadata values. As with FIG. 1B, during any part of the loop from step 180 to step
186, the process of FIG. 1C and the metadata-capable video player logic 112 may be configured
to asynchronously process user input requesting trick play functions or loading other video files
or metadata files.

[0080] As aresult, the approach of FIG. 1C enables playing a video with a rich set of
controls and user interactions including branching to different video segments automatically,
presenting a user with a branch selection menu and branching to particular video segments in
response to user selection, determining a branch or different video segment using a web service,
presenting web content that is related or associated with a video segment, and other controls and
user interactions. The video file does not require internal modification and can be used with
other players that do not provide the controls and user interactions. The controls and user
interactions can be authored using an editing process as shown for FIG. 1B, enabling video
producers to rapidly create rich video productions without detailed knowledge of programming.
[0081] 4. ADDING CUE POINTS

[0082] 4.1 ADDING CUE POINTS USING A VIDEO EDITOR

[0083] In one embodiment, video linking editor logic 110 uses one or more cue points that
have been previously defined for video files on which the video linking editor logic operates; in

other embodiments as further described herein, cue points may be defined independently of the

-14-

WO 2010/132718 PCT/US2010/034808

video, using the video linking editor logic, and are stored in metadata separate from the video
files. In an embodiment, users create cue points and cue point names using the video editor 106.
For purposes of this document, a “video” is a single piece of video content (a file or a URL)
typically with many cue points; within a video each “segment” begins and ends with a cue point
without any cue points in between. A “compound segment” or “inLine" segment has cue points
within it, i.e., cue points in addition to the beginning and ending cue points. An external video,
specified by a URL, may also contain cue points, and depending upon their organization, these
cue points may be segments or compound segments. The player can refer to internal and
external cuePoints transparently.

[0084] In an embodiment, video editor 106 is used to organize one or more video files into
pieces each having a cue point at the start, at the end, and at any point to or from which the
current time (“head”) can jump. Cue points have an attribute canBeDestination. If this is set to
false, the cue point cannot be a destination of any action which causes the playhead to jump.
Cue points with canBeDestination set to false are typically used as markers for overlaying
annotations but where the author does not want that point in the video to be a destination for a
chapter jump.

[0085] There are also cue points with cue type = “null”. These are used to place markers in
the video at precise points that the author may at some future time want to use. Null cue points
require less processing. For example, when a logger (the first and least expensive person in the
workflow on professional video shoots) logs the shots of the raw footage they can put Null cue
points at every shot without adding undue computational overhead. After rendering, a step that
takes many hours of computation, these cue points are all available and can selectively be
changed into meaningful cue points like “regular” or “insertPt” without re-rendering.

[0086] A user creates one or more cue points as desired using a cue point tool within the
video editor 106. For example, in Premiere, a cue point is created by moving an icon
representing a playback head to a particular point in the video file and selecting “Cue Point.”
[0087] In an embodiment, a last video segment in a video file is supplemented with a
terminal video segment denoted “endNote.” For example, an endNote may comprise short piece
of junk video positioned about two seconds after the last usable video segment. The endNote is
created with zero cue points to prevent confusion with an automatic, invisible cue point that the
video editor 106 automatically inserts at the end of the last piece of media. In an embodiment,
the endNote is positioned about two seconds after the last usable video segment to prevent
reaching the actual end of the video file under certain conditions; user experience has
determined that when the metadata-capable video player logic 112 issues a command to pause or

stop, the virtual head keeps moving for a short time interval.

-15-

WO 2010/132718 PCT/US2010/034808

[0088] 4.2 SOFT CUE POINTS

[0089] In an embodiment, video linking editor logic 110 is configured to enable a user to
define one or more cue points independent of the video for storage in metadata files 126. A cue
point that is defined and stored in metadata, rather than stored within a video segment and
previously created in the video segment using a separate video editor 106, may be termed a
“soft” cue point. Soft cue points allow the user to insert, delete, and change the time of cue
points directly into a video that has already been imported into storage associated with the editor
logic 110.

[0090] In an embodiment, a soft cue point is created using editor logic 110 by selecting the
Cue tab 2106 (FIG. 21) and selecting an add cue point control 2108. Selecting the add control
2108 causes editor logic 110 to create and store metadata for a new cue point at the default time
of 00:00:00:00. Selecting the Description tab enables a user to insert a particular time for the cue
point. The time can be determined by scrolling through the video using the trick play controls
2110.

[0091] In an embodiment, a cue point is a named marker for a particular point in a video
segment. A cue points may comprise a name, a time value indicating the particular point, and
other metadata that defines what actions occur when that point is reached during playing the
video. During playing the video, video player logic 112 continuously compares the time value
of a current position of a logical playback head within a video segment, and determines if the
current time value is equal to any soft cue point that has been previously defined and stored in
the metadata file 126 that is associated with the video segment. When a cue point is reached, the
video player logic 112 performs one or more particular operations that are defined in the
metadata of the cue point.

[0092] In this manner, an author can build a complete interactive video experience from
existing video files without needing to use complex tools like Adobe Premiere or Final Cut to
create cue points. For example, an author can select and use video files that are maintained on a
third party video server or hosting site, such as YouTube, and streamed from that server or site
to an end user using the video player logic 112 at the time of playback. The video files do not
need to have cue points previously defined for and stored in them. Instead, the user uses video
linking editor logic 110 to create cue points and store the created cue points in the metadata files
126. The metadata files 126 can be launched and can invoke the video player logic 112 to cause
the video player logic to invoke streaming the video segments from the third party video server
or hosting site while concurrently performing one or more operations as cue points are reached

in playing the video segments.

-16-

WO 2010/132718 PCT/US2010/034808

[0093] 4.3 EXTERNAL CUE POINTS

[0094] In an embodiment, video linking editor logic 110 is configured to enable a particular
metadata file 126 to reference cue points that are defined in other metadata files 126. In an
embodiment, a cue point may comprise a contained element termed a target, which specifies a
cue point by name and optionally links it with an association attribute. An attribute of a target
may be a cue point reference, which may reference cue points that are in other metadata files. In
an embodiment, a cue point reference is formed as a URL comprising a file location (path), file
name, and a URL fragment that identifies a particular cue point. For example, the cue point
reference “http://www.coincident.tv/cplfiles/foo.cpl#Dad ArrivesHome” identifies a cue point
named “DadArrivesHome” within a metadata file named “foo.cpl” that is stored in the folder or
director “cplfiles” of the “coincident.tv’” domain. In this embodiment, in any metadata file
definition in which a cue point can be a target, for example, as the target of an annotation, insert
point, goto cue point, or directory or user choice entry, that target can be in another file
referenced by relative URL.

[0095] External cue points beneficially enable authors to work with cue points that
otherwise might require multiple other steps to re-define for a particular audiovisual work. For
example, a 2-hour video program might contain dozens of cue points, but a particular author
might wish to reference only a few of the cue points. The author need not re-define the same
cue points in a new metadata file for a new audiovisual project, but can reference previously
defined cue points within other, previously created metadata files. Therefore, the author can
create a cross-linked metadata control structure that can simplify video program development
based on other files or segments.

[0096] 5. AUTHORING VIDEQO LINKS

[0097] 5.1 EDITOR GUI OVERVIEW

[0098] The structure and operation of an embodiment of video linking editor logic 110 is
now described. In an embodiment, video linking editor logic 110 generates and causes
displaying a graphical user interface (GUI) on a computer display unit, and the GUI provides
cue point editing functions that can be used to link video segments and other content in a
plurality of ways. The editor logic 110 is also configured to create and store, based on user
input interacting with the editing functions and providing selections and values, metadata
describing the links. In an embodiment, the metadata comprises one or more scripts expressed
in a Cue Point Language (CPL). In an embodiment, CPL comprises an XML .-based language
that describes non-linear structures in a mixture of video and web media. CPL can be embedded
into digital video content that is available from a plurality of sources such as broadcast, DVR,
DVD, broadband, game consoles. CPL can be associated with web content also. The resulting

metadata may be played back with a CPL-capable player to create a playback experience that

-17-

WO 2010/132718 PCT/US2010/034808

integrates video and interactive web-based graphic elements in such a manner that the sequence
of playback is influenced by user interaction, run-time execution of code embedded in the video,
run-time interaction with code referenced by data embedded in the video, and calls to remote
web services in combination with jump tables authored in the editor and embedded (or
embedded by reference) in the video.

[0099] The CPL may be viewed as an architecture rather than a user interface. For example,
while CPL implements a mechanism for a modal n-way branch, the author can use that
mechanism to provide a video production that is graceful and easy to use, or confusing and user-
hostile. CPL is compatible with a variety of playback platforms, asset locations and video
formats. For example, in emerging systems video content can be viewed using screens that are
attached to processors, disks or network connections. Platforms may consist of computers,
game consoles, set-top boxes, or mobile devices. CPL is format independent with the
assumption that all digital video formats define cue points and have ways to associate events and
text with the cue point. CPL is location independent and can interoperate with video that
originates from any desired source.

[0100] FIG. 2 illustrates an example screen display that the video linking editor logic
generates and causes displaying. In an embodiment, screen display 200 generally comprises a
video window 202, metadata panel 204, cue point list 206, a web point list, an annotation list
and cue point data panel 208.

[0101] Video window 202 is configured to play and show one or more video segments
representing a linked video project and comprises buttons 201 that are configured to receive user
input selecting a playback function and trick play functions such as jumping to different
segments that are forward or backward in time. In this context, a “video project” refers to an
association of a video file and a metadata file.

[0102] Metadata panel 204 receives and displays metadata values that pertain to a project as
a whole. In an embodiment, metadata panel 204 comprises unique id field 212, video file field
214, and web service field 216. The unique id field 212 is configured to receive a name, number,
or other character sequence that uniquely identifies the current video project, and the unique id
value is used in naming the metadata file that the editor creates and associates with a video file
and to coordinate dynamic updates with a server. The video file field 214 displays a name of a
video file that has been loaded using the File menu 205 and previously created with cue points in
a video editor. The name may comprise a pathname in a filesystem accessible to the computer
that is hosting the video linking editor logic 110, a URL identifying video in a web server, or
another form of location identifier specifying a location of video. In an embodiment, selecting
the File menu item 205 initiates a File Open dialog and after a file selection is made the logic

110 displays a value in the video file field 214 and opens and displays the named video file in

18-

WO 2010/132718 PCT/US2010/034808

video window 202. Alternatively, a user may direct logic 110 to load a previously created
metadata file, and in response, the video linking editor logic locates a video file that is
referenced within the metadata file and displays the name of that referenced video file in video
file field 214.

[0103] The web service field 216 is configured to receive user input identifying a web
service in the form of a URL. The specified web service may be hosted on computer 102 or on a
remotely located computer. The web service may comprise a web application or a script file.
The web service provides a control mechanism for interacting with insert points, overlays, and
other types of cue points that are further described in other sections herein.

[0104] Cue point list 206 is configured to display a list of cue points that have been
previously defined in the video that is shown in video window 202. In an embodiment, in
response to user input opening a video file, video linking logic 110 loads and displays the named
video in video window 202 and concurrently reads and displays the cue point data that was
embedded in the video file as a result of creating cue points using the video editor. Cue points
found in the video file are listed in one or more rows 218 of list 206 and each row includes time
of the associated cue point in a time column 220 and a name in name column 222.

[0105] In an embodiment, existing web points in the video are displayed in a separate list,
and cue point annotations are displayed. The form and use of annotations are described more
fully in the section herein entitled ANNOTATIONS and in the Appendix.

[0106] Further, in an embodiment the first cue point in list 206 is automatically selected and
highlighted in the list. Video linking logic 110 is further configured to search for an existing cue
point metadata file that may have been created in an earlier user session with video linking logic
110. If an existing cue point metadata file is found, then cue point data is loaded and the video
linking logic displays, in cue point data panel 208, cue point data for the first cue point in list
206 that was automatically selected and highlighted.

[0107] Cue point data 208 is configured to receive user input specifying one or more
metadata values relating to a particular link or transfer of control associated with one of the cue
points in cue point list 206 that is currently selected or highlighted in the cue point list. In an
embodiment, a user may operate a pointing device such as a mouse or trackball to select other
cue points in list 206 and in response to selection of a different cue point the video linking logic
110 automatically updates cue point data panel 208 to display cue point metadata for the newly
selected cue point.

[0108] Cue point data panel 208 comprises a cue name field 224 and cue time field 226 that
reproduce the data shown in cue point list 206 for a selected cue point. Cue point data panel 208
comprises a cue type combo box 228. Particular types of cue points are described further in

other sections below. Cue point data panel 208 is context-sensitive so that the particular fields

-19-

WO 2010/132718 PCT/US2010/034808

displayed as part of the panel will vary according to the value of the cue type combo box 228
and a content type combo box 230. For example, when the cue type is Regular and the content
type is ad_Inline (referring to an advertisement within a video segment) then the cue point data
208 comprises an interest URL field 232, query string field 234, story text field 236 and story
picture field 238 as shown in the example of FIG. 2.

[0109] Alternatively, the fixed content types represented in FIG. 2 may be omitted and an
author may tag cue points with arbitrary content types as further described in the Appendix.
[0110] The interest URL field 232 is configured to receive user input specifying a website or
other URL to which a viewer may be directed at playback time in response to receiving input
indicating interest in other information relating to the video. The query string field 234 is
configured to receive user input specifying a search engine query string which, at playback time,
the metadata-capable video player logic 112 may submit to an Internet search engine for the
purpose of generating search results in which a viewer may have interest, or that relate to the
video. The story text field 236 is configured to receive user input specifying a story to display to
a viewer using the player logic 112 at the time the video is played. The story picture field 238 is
configured to receive user input specifying a graphics file or still image, and a text string, to
display to the viewer using the player logic 112 at the time the video is played.

[0111] An example of using the video linking editor logic 110 and interacting with the
screen display 200 is now provided. FIG. 3 graphically illustrates an example video linking
arrangement that can be configured using the mechanisms now described. For purposes of
illustrating a clear example, FIG. 3 describes relatively few video segments and cue points; in a
practical embodiment the techniques herein can be used to create video projects having any
number of video segments and cue points.

[0112] The example of FIG. 3 represents a non-linear video program in which the viewer
arrives at a choice point and selects one of three possible videos; at the end of the selected video,
the video project continues with the program. The video project comprises a first program video
segment 302 having a start cue point 312 and ending in a modal story branch cue point 314,
which is configured in video linking editor logic 110 to permit an N-way branch to other video
or content but in the example of FIG. 3 is configured as a three-way branch. A first branch leads
to a first video advertisement 306 relating to hair care products. A second branch leads to a
second advertisement 308 relating to face products. A third branch leads to a second program
video segment 310.

[0113] To create a video project in which the foregoing logical structure is achieved at
playback, a user activates video editor 106 and authors a video project that includes segments
302, 310 and advertisements 306, 308 in the same video file. The user creates and stores a Flash

navigation-type cue point with a name at a plurality of locations in the video file. FIG. 4

20-

WO 2010/132718 PCT/US2010/034808

illustrates a screen display in the Adobe Premiere video editor in which a video file has been
created with the segments and advertisements and appropriate cue points. After creating the cue
points, the user saves the video project in Premiere and encodes the video.

[0114] The user then activates video linking editor logic 110, and in response, the user
interface of FIG. 2 is displayed. The user selects a Load File function in screen display 200 and
selects the video project that was created. In response, the video linking editor logic 110 loads
the specified video file and displays data for cue points that are found in the file. FIG. 5
illustrates a portion of screen display 200 showing cue point list 206 for the video of FIG. 3,
FIG. 4. Assume the user selects the Start cue point. In response, video linking editor logic
displays metadata associated with that cue point in the metadata panel 208. FIG. 6 illustrates the
metadata panel populated with data for the Start cue point of the example. The user may edit the
values in the metadata panel by selecting fields and entering new values, or selecting pull-down
menus.

[0115] Assume that the user wishes to create the modal story branch cue point 314. FIG. 7
illustrates the cue point data 308 configured with values from user input that create such a cue
point. A name may be entered in the Cue Name field. The Cue Time field is not modified and
shows the value obtained from the video file. The cue type is selected as “modalStoryBranch.”
A branch cue type is associated with no content, so the Content Type field is grayed out. A
Targets list identifies possible destinations or targets to which control is transferred at the branch
point. A Background Picture field and Text field receive an identification of a picture to display
to the user in a background area while the user is determining which selection to make, and a
text string that can serve as a prompt.

[0116] FIG. 8§ illustrates a display generated at playback time based on the metadata that has
been created in the present example. The user may create program wide metadata by entering
values in the CPL metadata panel 204. FIG. 9 illustrates appropriate values of program-wide
metadata for the present example. The user may then save the metadata using a Save function in
the File menu 205 of the screen display 200. In an embodiment, selecting the Save function
causes the video linking editor logic 110 to create and store an XML file containing the metadata
and to store the XML file in a same directory or other storage location as the video file that is
referenced in the metadata. In an embodiment, multiple cue point metadata files may reference
and may be associated with a single video file.

[0117] At any point after creating and storing the metadata file, the user may invoke the
video linking editor logic 110, reload the metadata file, modify the cue points, save an updated
metadata file with modified cue point data, and replay the video based on the updated metadata
file. Such updates may be performed without re-encoding the video, because the video file is

maintained entirely separate from the metadata file.

21-

WO 2010/132718 PCT/US2010/034808

[0118] 5.2 CREATING AND MODIFYING CUE POINT METADATA FOR
PARTICULAR CUE TYPES

[0119] 521 GOTO CUE POINT

[0120] In an embodiment, a “goto” cue point may be defined and at playback, the goto cue
point causes a jump to another video segment when the play head reaches the cue point. The
destination location for the jump is defined in a cue point group (“cpGroup”) and discussed

below. In an embodiment, a goto cue point has the following associated metadata:

cueType Goto

contentType “zerolLen”

interestURL Not applicable (NA) as with a zerol.en content type there is no video

immediately following the cue point.

nameCue Any string value

Query Not applicable as with a zerol.en content type there is no video

immediately following the cue point so having a query to associate with

the video is meaningless.

[0121] In an embodiment, a goto cue point has the following elements of interest:

cpGroup a “goto” must have a cpGroup to hold the destination of the
goto; cpGroups can hold multiple targets; a goto uses the first

target in the cpGroup

gotoAutoReturnButton | NA — this contentType=zeroLen meaning that no contiguous
video follows, so putting a gotoAutoReturnButton on it doesn’t

make sense. Besides, it requires a cueType of “goto”.

mxmlInCPL NA (The use of MXML. for other cue point types is further

described below.)

proglevelMetadata If your very first cue point is a goto (at play head time 00:00:00),
you’d include the progl.evelMetadata here (but it seems like an
odd structure to start). See the progl.evelMetadata element
description for more detail.

Story NA

[0122] An example script code excerpt including a goto cue point, which may be included in

a metadata file, is:

<cuePt cueType="goto" interestURL="" nameCue="goSomeWhere" contentType="zeroLen">
<cpGroup>
<targetSeg cuePointName="target ThislsWhere YouGo"></targetSeg>
</cpGroup>

292

WO 2010/132718 PCT/US2010/034808

</cuePt>

[0123] 522 gotoAutoReturnButton cue point

[0124] In an embodiment, a gotoAutoReturnButton cue point supports a mechanism for the
user to obtain more information relating to a particular video. From the gotoAutoReturnButton
until the next cue point, the player causes the video to be overlaid with a graphical button; user
input selecting the button causes the player to perform a goto branch operation to reach another
cue point with an automatic return. In an automatic return, at the end of the “more information”
video segment, the player causes the playhead to jump back, reaching the beginning of a video
segment that just fallows the end of the calling video segment. For example, a first video
segment might comprise a 30-second automobile commercial; 10 seconds into it, the user selects
the “more info” button, jumps to a 5-minute extended commercial about the car; and at the end
of the extended commercial the player jumps back to the programming that followed the original
30 second commercial.

[0125] In an embodiment, the “gotoAutoReturnButton” cue point comprises the following

attributes:

cueType gotoAutoReturnButton

contentType | cannot be zerol.en as the button wouldn’t appear

interestURL | target of the W button (independent of the overlay button)

nameCue Required

Query target of the W button (independent of the overlay button)

[0126] In an embodiment, the following elements are provided:

cpGroup Could be included in order to have a cue point specific directory

gotoAutoReturnButton | An overlay button element used to specify the button text and the
target, itself a cue point

mxmlInCPL NA

proglevelMetadata If this is the first cue point, it must be a cuePtlnitial element and

must contain a progl.evelMetadata element.

Story A story element is required to cause this cue point (and thus the
content that follows it) to be shown in directories (e.g., in an on-
screen chapter menu). A story element has descriptive balloon

text and a still picture to associate it with a cue point.

[0127] In an embodiment, an example script code segment comprises:

<cuePt

cueType="gotoAutoReturnButton" interestURL="http://www.saabusa.com"

03

WO 2010/132718 PCT/US2010/034808

nameCue="A" contentType="ad_Inline">

<gotoAutoReturnButton xCueName="C" xLabel="More about Saab!"/>
</cuePt>
[0128] 523 INSERTPT CUE POINT
[0129] In an embodiment, an insertPt may be used to include one of several pieces of media
at a certain point in time. A selection of one of the pieces of media is made by a call to a web
service. When reached, the cue point at the end of a target piece of media determines what
happens next. The cue point at the end may comprise a returnEnd, goto or progEnd cue point.
[0130] In an embodiment, the media consists of one or more video segments with
cueType="“reg” to begin and a returnEnd, goto or progEnd to end; and one or more web points
with cueType="“weblocus” to begin and a valid cue point name specified in the
gotoWebFocusEndName attribute.
[0131] The group of media points is specified as a cpGroup. The cpGroup must have
uniform endings for the segments it contains. For example, every cue point identifies a contain
segments (or compound segments) and every segment implies an ending cue point. For a
cpGroup, all of the ending cue points are either goto cue points, returnFnd cue points, or
progEnd cue points, or a mixture of these types of segment ending cue points.
[0132] In an embodiment, when the player reaches an insertPt, the player invokes the web
service specified in the progl.evelMetadata element described below with an operation specified
with the cpGroup. The result of this call is used to select which media to display (the “target™).
[0133] For example, assume the user has provided zip code information when registering for
NBC.com, and the user is watching an episode of “Saturday Night Live” using the player
disclosed herein. At an insertPt for a commercial, the player calls a web service to obtain the
user’s zip code. Based on the received zip code value, the player selects from among Bronco,

Escalade and Hummer commercials. In an embodiment, the cpGroup is stated in script code as:

<cuePt cueType="insertPt" interestURL="" nameCue="B" contentType="ad_Inline">
<cpGroup operation="“whichAdByZip”>
<targetSeg association="94010, 94103"
cuePointName="escalade"></targetSeg>
<targetSeg association="94611, 94612, 94708"
cuePointName="hummer"></targetSeg>
<targetSeg association="94617, 95012, 99234, default"
cuePointName="bronco"></targetSeg>
</cpGroup>

</cuePt>

4.

WO 2010/132718 PCT/US2010/034808

[0134] In an embodiment, the cpGroup is a table of targets in which an association attribute
configured as a string is linked to a media point. The result of the web service call, a string, is
tested against the association values until a match is found, and the first match is used. The
matching function implements a many-to-one matching as detailed in the cpGroup element
description. If no match is found then the association= “default” is checked against the table. If
there is no match for the string or for “default”, then nothing is inserted and the video plays on.
[0135] In an embodiment, the end of a video segment is its ending cue point. With
cueType= “returnEnd,” control returns to the calling point. A goto end cue point jumps to
wherever specified and a progkind stops playback. In an embodiment, the end of a cue point
with cueType="weblocus” is explicitly specified. It is reached by user action (“back” or goto

TV). In an embodiment, the insertPt cue point has the following metadata attributes:

cuelype insertPt

contentType | Other than zeroLen; see the discussion in the Attributes section of content

types.

interestURL | Identifies a URL such to which control is transferred upon return from the

insertion if “w” button is selected on the computer keyboard. See the

discussion of cpGroup-interestURL-query cascade.

nameCue Required.

query Identifies a query that is submitted the interestURL upon return from the

insertion if “w” button is selected on the computer keyboard.

[0136] In an embodiment, the cue point has the following elements:

cpGroup A group target elements, with associations(s) and target cuePt(s)

specified by name.

gotoAutoReturnButton | NA. gotoAutoReturnButton requires cueType=

“gotoAutoReturnButton”.
mxmlInCPL NA
proglevelMetadata If this is the first cue point, it must be an element of type

cuePtlnitial and must contain a progl.evelMetadata element.

Story See element description.

[0137] An example of script code using an insertPt cue point is:

<cuePt
cueType="insertPt" interestURL="" nameCue="B" contentType="prog_Inline">

<cpGroup operation="whoAmI">

05

WO 2010/132718 PCT/US2010/034808

<targetSeg cuePointName="D" association="F18t035"></targetSeg>

<targetSeg cuePointName="F, default" association="oldMen">

</targetSeg>

</cpGroup>

</cuePt>

Further description on the details of behavior of the modalStoryBranch and insertPt cue points,

in an embodiment, is provided in the Appendix.

[0138]
[0139]

524 MODAL STORY BRANCH CUE POINT

In an embodiment, a modal story branch cue point causes the player to pause the

video and to present the user with an n-way branch. The user selects an image representing the

cue point to go to that cue point. The cue points can be either video or web points. The type for

the cue points at the end of the targets are (for video) is goto or progEnd. In an embodiment, the

cue point has the following attributes:

cueType modalStoryBranch
contentType Always zerolen
interestURL NA, at zeroLen
nameCue required
Query NA, at zeroLen
[0140] In an embodiment, the cue point has the following elements:
cpGroup A group target elements, with associations(s) and target cuePt(s)

specified by name. Required for a modalStoryBranch.

gotoAutoReturnButton | NA

mxmlInCPL NA

proglevelMetadata If this is the first cue point, it must be an element of type

cuePtlnitial and must contain a progl.evelMetadata element.

Story

See element description.

[0141]

In an embodiment, FIG. § illustrates an example screen display resulting from the use

of a modal story branch cue point and example script code follows.

<cuePt

cueType="modalStoryBranch" interestURL=""nameCue="B" contentType="zeroLen">
<cpGroup backgroundPicLoc="stills/back.jpg"

headerText="Pick your commercial and earn $!$!$!">

<targetSeg association="" cuePointName="X"/>

<targetSeg association="" cuePointName="G"/>

06-

WO 2010/132718 PCT/US2010/034808

<targetSeg association="" cuePointName="1"/>

<targetSeg association="" cuePointName="K"/>

</cpGroup>
</cuePt>
[0142] 525 MXML OVERLAY CUE POINT
[0143] In an embodiment, an MXML. (Macromedia eXtensible Markup Language) overlay
cue point allows use of a web development tool to define overlays with web-aware bindings. An
example development tool is Flex from Adobe Systems, Inc., San Jose, California. Flex
provides for content layout and code within an asynchronous architecture. In an embodiment, in
the MXMIL.Overlay cue point MXML code is passed to the player via the mxmlInCPL element
in the cue point. The code is executed to make the Ul element overlays. For example, the
metadata-capable video player logic 112 is configured to read a MXML user interface markup
language script from the metadata file, parse and interpret the MXML script, and generate and
display one or more overlay graphical elements in the video window of the player GUI based on
the parsing and interpreting.
[0144] User interaction is processed using a web service that is specified in the
proglevelMetadata attribute. User interaction with each component, such as a button, is
handled by invoking an operation within the web service named “on” concatenated with the id
property of the component. In an embodiment, the operation is called with the data relevant to
the component.
[0145] In an embodiment, tags that descend from UIComponent and RadioButtonGroup
within Flex are used. MXML authoring is further described in Adobe developer network

documents relating to Flex. In an embodiment, the cue point has the following attributes:

contentType | some non zerolLen type that you want to overlay

interestURL | This is where does the “W” button takes you. See the discussion of

cpGroup-interestURL-query cascade.

nameCue required

query Where does the “w” button take you? See the discussion of cpGroup-

interestURL-query cascade.

[0146] In an embodiment, the cue point has the following elements:

cpGroup This is not an insertPt or a modalStoryBlock so it’s not clear that

there is a use for a cpGroup here.

gotoAutoReturnButton | NA

mxmlInCPL See the description above and the section on the mxmlInCPL

27-

WO 2010/132718 PCT/US2010/034808

element.

proglevelMetadata If this is the first cue point, it must be an element of type

cuePtlnitial and must contain a progl.evelMetadata element.

Story See element description.
[0147] 5.2.6 PROGEND AND RETURNEND CUE POINTS

[0148] In an embodiment, progEnd end returnEnd cue points define the end of a video

segment and upon reaching the cue points, the player stops playing video and does not provide a
rewind option. There can multiple progEnd’s in a media program.

[0149] In an embodiment, the returnEnd cue point is used at the end of a segment. Reaching
a returnEnd causes a jump to the point that initiated the jump to the start of the segment. In an

embodiment, the returnEnd and progEnd cue points have the following attributes:

contentType zerolLen
interestURL NA
nameCue Required
query NA

[0150] In an embodiment, the cue point has the following elements:

cpGroup NA
gotoAutoReturnButton | NA
mxmllnCPL NA

proglevelMetadata NA

story NA
[0151] 5.2.7 WEBFOCUS CUE POINT

[0152] In an embodiment, a weblFocus cue point can specify a URL for a web point and,

with a story element, associate an image and text (e.g., for a call out) with the web URL.
weblocus cue points can be used as targets in modalStoryBranch cue points and insertPt cue
points. webFocus cue points can appear in directories. webFocus cue points can have a
gotoWebPointEndName attribute value to specify what to show at the “end” of a webFocus.
[0153] In an embodiment, during playback, a user indicates that the user is at the “end” of a
weblocus by selecting a “back™ browser function or by selecting a “I'V” button. If the video
media is in an operational state, the player switches to the video, maintaining the playhead time
and play/pause status. If the video is not in an operational state because, for example, a zerolLen
cue point has been reached, the player executes a goto to the media point specified by the
gotoWebPointEndName.

[0154] In an embodiment, the cue point has the following attributes:

8-

WO 2010/132718 PCT/US2010/034808

cueType webliocus

contentType zerolLen

interestURL The URL that the Weblocus goes to.

nameCue required

query NA

gotoWebPointEndName | A cue point to goto at the end of a
webliocus.

[0155] In an embodiment, the cue point has the following elements:

cpGroup NA

gotoAutoReturnButton | NA
mxmllnCPL NA

proglevelMetadata NA, this element goes in the cuePtlInitial which

cannot be of type webliocus

story webliocus’s generally need stories to be useful
[0156] 5.3 OTHER LANGUAGE ELEMENTS AND ATTRIBUTES

[0157] In an embodiment, the cue point language defined herein has the following elements:

[0158] cuePt elements have the following attributes:

Element Attribute Comments
cuePt nameCue Any string
cuePt contentType ad_Inline, ad_Segment, prog_Inline,

prog_Segment, zeroLen. See note on

contentType(s).

cuePt cueType reg, gotoAutoReturnButton, progEnd, insertPt,
returnEnd, goto, modalStoryBranch, webFocus,

MXMILOverlay

cuePt interestURL a complete, legal URL, including the http:// or
similar. This should be, but is not, checked by a
regular expression; all the regular expressions for

URL’s that I found gave many false negatives.

cuePt query words, no white space, delimited by “+”
cuePt gotoWebPointEn | a cue point name
dName

[0159] In an embodiment, a cue point has the following contained elements:

9.

WO 2010/132718 PCT/US2010/034808

Containing Element | Element Comments

cuePt proglevelMetadata The first cuePt must be a cuePtInitial and

must contain a progl.evelMetadata

cuePt cpGroup optional, at most once; see definition
cuePt gotoAutoReturnButton | optional, at most once; see definition
cuePt story optional, at most once; see definition
cuePt mxmlInCPL optional, at most once; see definition

[0160] In an embodiment, a cpGroup is used anywhere a group of cue points is needed. The
cpGroups are made up of some attributes and a collection of targetSeg elements. A targetSeg
contains a cue point name and an optional association attribute.

[0161] Some cue points, for example insertPt, use cpGroups where each cue point in the
cpGroup has an association that is used to select the cue points. In operation, the player searches
the table to match the string provided as a key with the association attribute and then returns the
cue point name contained in the first match. Thus, a many-to-one matching is performed. The
key may come from a web service as explained in the insertPt cue point section. As an example,

with the following targetSeg’s in a cpGroup:

association cuePointName
Jack A
Jill B
John, Jerry, Jill C
June, default D

[0162] The following matching results would occur:

[0163] J, Jack, ack all match A

[0164] Jill matches B, and never gets to C

[0165] John, Jerry, Jill, ill, Jer, err all match C

[0166] 7777 (or anything or nothing) matches D (because after looking for the string key,
the player attempts to match the string “default” as a key.

[0167] In an embodiment, the cpGroup has the following attributes:

Element Attribute Comments

cpGroup backgroundPicL.oc | This image is used as a background image when the
cpGroup is used in a display, for example in a

modalStoryBlock.

cpGroup headerText This text is used as the Headline when a cpGroup is
used in a display, for example, a modalStoryBlock or a

directory.

cpGroup operation the name of an operation in the web service specified

-30-

WO 2010/132718 PCT/US2010/034808

in the proglevelMetadata that is used to select among

the target segments

[0168] In an embodiment, the cpGroup has the following contained elements:

Containing Element | Element | Comments

cpGroup targetSeg | One to unbounded number;
In a cpGroup it is prudent to have one targetSeg with

association= “default”. See element definition.

[0169] In an embodiment, a targetSeg may be used to specify a cue point name and
optionally associate it with an association attribute. When a group of cue points are needed, e.g.,
a modalStoryBlock where the user makes the choice, the association attribute can be omitted. In
an insertPt the association attribute is needed to determine which cue point to goto. The
association attribute can be of the form “aaa, bbb, ccc” where each substring would match the
cuePointName. See cpGroup for an explanation of how the association attribute is used to select
a cuePointName.

[0170] In an embodiment, the targetSeg has the following elements:

Element Attribute Comments

targetSeg cuePointName | The cue point name; required.

targetSeg association A string associated with the target cue point; optional.

[0171] In an embodiment, a mxmlInCPL element may be used to hold executable MXML
code. There are no sub-elements and attributes defined. Instead, a user can include anything
that descends from the UIComponent in mx:MXML. An example definition is now provided,
followed by comments:
1. <mxmlInCPL>
a. <mx:MXML id="whatever" xmlns:mx="http://www.adobe.com/2006/mxml">
1. <mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml"
width="600"
height="440" id="uberContainer">
2. <mx:Button label=" button 1" id="button1"
click="onMXML(event)"/>
3. </mx:Canvas>
b. </mx:MXML>
2. </mxmlInCPL>

Line Note
1 and 2 | Enclose the MXML with the mxmlInCPL tag.
l.a MXML, an element defined by Adobe; you need line 1.a, as it is, but with

31-

WO 2010/132718 PCT/US2010/034808

whatever id you choose.

l.a.1 Any container (canvas, VBox, etc.) that will contain all the other components.

With the fixed name (remember: quick and dirty) “uberContainer”.

l.a.2 Any id you want for the component and then the operation within the web service
is “on”+ the id. Here you’d build a server side handler with the function name
“onbutton1”. Any event can be handled (here it is “click”™) but all components call

the fixed name “onMXML" as the handler.

[0172] In an embodiment, a proglevelMetadata element is required. It contains data

associated with the overall program. Example attributes include:

Element Attribute Comments

proglevelMetadata | xUniquelD This is a unique id for the program. It could be
used to retrieve dynamically a set of cue points
from the web, updating the entire CPL data and
behavior of the program. Currently television
programs contain a unique ID as specified by
SCTE V-ISAN unique ID that could be used for
this purpose.

proglevelMetadata | xProgl.evelDir true or false. If true, the player will make a
directory of all of the cue points (including

weblocus’s) which have a story element.

proglevelMetadata | xVersionCPL This is a number that specifies the version of CPL
used in this file and embedded in the video. The
XML will report a validation error if the .xsd file
version and this field do not match. The player
will report an error (but not stop) if the player

version and the CPL version don’t match.

proglevelMetadata | xWebServicel.oc | This is the location of the web services used by
cue points such as insertPt and MXMLOverlay.
The operations within the service are specified
separately. The location should match an entry in

services-config.xml.

[0173] Example contained elements include:

Containing Element Element Comments

proglevelMetadata cuePt This is where cue points with
cuelype= “weblocus™ are

defined.

32-

WO 2010/132718 PCT/US2010/034808

[0174] In an embodiment, a story element packages data used to display a cue point (web or

video). Example attributes include:

Element | Attribute Comments
story balloonText A string, used as balloon text in directories, popups, etc.
story picStory The location of the image to represent the cue point; a jpeg,

100 x 100; see the note regarding path specification for

images.

[0175] In an embodiment, a gotoAutoReturnButton element and cue point support a "more

info" operation. Example attributes include:

Element Attribute Comments

gotoAutoReturnButton | xCueName | The target cue, the name of the cue point for the

more info.

gotoAutoReturnButton | xLabel The label for the button.
[0176] 5.6.2 ANNOTATIONS

[0177] In an embodiment, an annotation element is used to display a graphic on screen. The

graphic can be actionable. An annotation element is a graphic object that appears on screen
starting at a cue point; when the next cue point is processed the annotation is removed (although
it could be reapplied). It is used to overlay the display with a graphic while in video view and
may optionally implement a goto behavior in response to a click. The structure of the annotation
element is similar to cuePoints in that it contains the same targetList and story elements. Clicks
on an annotation can cause three things to happen, depending on the value of the clickBehavior

attribute. See the attribute description. Example attributes include:

Element Attribute Comments

annotation | name The type is String. May include white space. Used to

identify the annotation. Required. No default.

annotation | X,y The type is Decimal. The position of the annotation; may be
relative or absolute. 0,0 is upper left, and the coordinate
system is that of the videoSource attribute in the
progl.evelMetadata element. Optional. Default is 10, 90

(and “relative” defaults to true).

annotation | relative The type is Boolean. If true interpret the x, y attributes to
position the graphic as percentages of video coordinate
space; otherwise interpret the values as magnitudes.

Optional. Defaults to “true”.

-33-

WO 2010/132718 PCT/US2010/034808

annotation | alpha The type is decimal, it is optional and the default value is 1.0.
This controls the annotation’s transparency with 0.0 being

completely invisible and 1.0 being completely occluding.

b2 T4

annotation | clickBehavior | The type is string with legal values “goto”, “returnFnd”, and
“decoration”. Optional, defaults to “decoration”.
The behaviors are:
¢ clickBehavior = “decoration”, a click causes nothing
to happen
¢ clickBehavior = “goto”, execute a goto to the cue
point held in the annotation’s target
¢ clickBehavior = “returnEnd”, execute a returnEnd
(changing the playhead and stack accordingly) and
returns to the segment that caused control to transfer
to the segment displaying the annotation.
The third case by example: an insertPt has taken the
playhead into a segment, the segment has an annotation with
clickBehavior = “returnEnd”; a click on the annotation
executes a returnEnd and returns the playhead just after the

initiating insertPt.

annotation | skipOnReturn | Boolean, defaults to “false”. This controls the behavior at
the end of a target segment (assuming there was one) reached
through a user click on an annotation. If true, this causes the
playhead to goto the end of the calling segment; otherwise
the playhead returns mid-segment to the point within the

calling segment from which it was called.

Annotation | story A required image and optional balloon text for the

annotation. See the element description.

Annotation | targetList With clickBehavior = “goto” this one element list contains
the destination. See description of targetList element

description. Meaningless for other clickBehavior values.

[0178] In an embodiment, an audiovisual work may include one or more annotations that
specify interactions available to a viewer. Annotations may comprise graphical images, buttons,
text messages, labels, and other elements that may be displayed in a variety of locations overlaid

on a video segment or near a video player window that is showing a video segment. One or

-34-

WO 2010/132718 PCT/US2010/034808

more annotations may be assigned to a cue point; when the cue point is reached during playing,
the annotations are activated and remain active until the next cue point. Annotations have
flexible attributes relating to where they can be shown, what they can show, and how they
behave. Graphic images associated with annotations may include images such as PNG and
JPEG files, or SWF files or any other files that can be rendered on the system on which the
player logic 112 is hosted.

[0179] In an embodiment, an annotation has one of four types: decoration; goto; returnEnd;
and overlay. (Details of annotation types are disclosed in the Appendix.) Annotations may be
displayed as static graphical images or animated graphics. Annotations may be positioned
anywhere in the video windows that the player logic displays during playing.

[0180] In an embodiment, annotation frames allow placement of an annotation outside of the
video window; an annotation frame can provide a larger area outside the video in which
annotations can appear, without covering up the video. In an embodiment, a user may use the
video linking editor logic 112 to define an annotation frame as a rectangle within which the
video window is placed. If the annotation frame is larger than the video frame, then space is
displayed around the video and annotations can be placed in the resulting space without
obscuring the video. With annotation frames, an author is not required to re-encode a video
segment to create space to place annotations.

[0181] A “goto” annotation may be associated with a target and one of several different
kinds of return behavior; a target specifies where the player branches when a viewer clicks on
the annotation, and the return behavior specifies where the viewer returns after viewing the
video or web page associated with the annotation. For example, the return behavior of a goto
annotation may be set to “Skip.” With skip on return behavior, after a viewer returns from the
annotation’s target video segment or web point, the player skips to the next cue point after the
one that includes the goto annotation.

[0182] An annotation of any type may be configured with modal behavior. A modal cue
point has two different playback modes comprising an initial entry mode and a return or overlay
completion mode. When an annotation is modal, each annotation type causes the video player
logic 112 to operate differently depending upon the then-current mode, as defined by how the
player arrived at the associated cue point. For example, initial entry mode refers to the player
arriving at the cue point via normal program flow, or as the result of a direct jump. In initial
entry mode, the video player logic 112 is configured to display all annotations that are
configured as modal, pause, and wait for the user to select a non-decoration annotation, such as a
“g0oto” annotation or a “returnEnd” annotation. In contrast, return or overlay completion model

occurs when the player returns to the cue point via a returnEnd cue point or annotation after a

-35-

WO 2010/132718 PCT/US2010/034808

jump from it, or when a viewer selects the Continue button to close an overlay data entry form.
(Further details are provided in the Appendix.)

[0183] FIG. 23 is a screen display diagram of an example FEditor window in which an
Annotation tab is selected. In the example, screen display 2102 includes Annotation tab 2302.
Selecting an Add Annotation (+) control causes the editor logic 110 to display a default
annotation name and type in fields 2304; user input may modify the annotation name and type,
so that the annotation may be referenced in other metadata using a convenient name. Editor logic
110 also displays a data entry panel 2306 that may receive values defining particular parameters
of an annotation including screen position values (X position, Y position). Parameters also may
include a text label for the annotation, a graphic image to display as the visible form of the
annotation in the player, and mouse over image. The mouse over image is a different graphic
image to display if a user moves a pointing device over the annotation while using the player
and when the annotation is displayed. A Boolean parameter selected in the editor using a
checkbox may specify whether to display an annotation icon.

[0184] 5.4 CONTENT TYPES

[0185] A content type value associated in metadata with a cue point causes differentiated
operation of the metadata-capable video player logic 112 at the time of playback. In particular,
within the player the content type zeroLen is treated differently than all others (ad_Inline,
segment_Inline, prog_Inline, prog_Segment). For example, ad_Inline and ad_Segment are used
to skip advertising content coming back from an insertPt.

[0186] 5.5 AUTOMATIC CREATION OF CUE POINTS

[0187] In an embodiment, a computer program can create one or more cue points and store
the cue points in a metadata file, rather than a user obtaining cue points from encoded video, or
the user creating the cue points using the video linking editor logic 110. In an embodiment, cue
points can be added, updated or completely replaced dynamically using web applications,
processes, or other computers that are coupled to computer 102. For example, the unique
identifier of a television program, as specified by Society of Cable Telecommunications
Engineers, could be used in an update message providing new cut points.

[0188] In another example, one or more computer programs can access video and other
content databases and use the information gather to generate interactive video experiences based
on the cue point language schema that is defined herein. As one example, a Perl script may be
configured to access YouTube metadata APIs to construct an interactive video experience based
on playing all video matching a particular keyword. In this example, the script may be
configured to issue an HT'TP-based query to a YouTube server, in which the query conforms to
YouTube’s APIs, to retrieve a list of all stored videos that include a particular keyword in the

metadata maintained by YouTube for the stored videos. In response, the YouTube server sends

-36-

WO 2010/132718 PCT/US2010/034808

a responsive dataset. The script may be configured to identify a URL for each video on the
YouTube servers that is identified in the responsive dataset, and to write a metadata file 126 that
specifies an audiovisual program consisting of a concatenation of all the matching videos. The
script could be configured to automatically generate a plurality of annotations, in which each
annotation graphically represents a first frame of a different one of the matching videos. In this
manner, at playback the user would see a visual menu of each matching video and could activate
any desired video by selecting on the image associated with an annotation for one of the videos.
[0189] In another example, a program is configured to receive a user query for a particular
keyword or phrase and to search a database of movie metadata for matches to the user query.
For each match to the user query, an associated database record is selected and retrieved. From
each database record, the program retrieves a URL of a video that is stored in third party hosted
storage, such as YouTube. The program creates and stores a metadata file 126 that plays the
matching videos. For example, the program could be configured to receive a user query to find
all video clips in which a character says “Bond, James Bond”, assuming such phrases are
represented in the database of movie metadata.

[0190] In another example, a computer program may be configured to create multiple
metadata files 126 based on a single video. For example, a Perl script may be configured to
generate multiple versions metadata files 126 for a single video in which each metadata file 126
comprises definitions of annotations for subtitle data in a different language, and the subtitle
data is displayed at playing time using the annotations as the subtitle display widget.
Additionally or alternatively, automatic creation of cue points may take user behavior into
account to create customized cue points for a particular user based upon what is known about the
user’s behavior as represented in server-side stored data. User behavior can include information
what previous cue points have been selected, the elapsed time between selections, whether
certain video segments have been skipped, navigation paths as represented by user selections of
different video segments in succession, etc.

[0191] Thus, embodiments provide flexible means to use output from a database, coupled to
a script or other program, wherein the output is optionally selected based on matching user input
or queries, to result in automatically creating and storing one or more metadata files 126 which,
when played using the video player logic 112, result in displaying enriched interactive videos.
While certain examples have stated that the program may cause displaying a concatenation of
videos matching a query, concatenation is not required. Instead, a program or script may have
any level of complexity and may be configured to write a metadata file consisting of any number
of cue points, annotations, or other information based upon the language description that is
provided herein. In this approach, metadata may be created dynamically and transmitted to the

player over a network connection without storing or saving the metadata in file format. Further,

37-

WO 2010/132718 PCT/US2010/034808

the examples provided herein are merely representative and countless other applications are
possible.

[0192] 5.6 DIRECTORIES

[0193] A directory comprises, in one embodiment, a selectable, scrollable column on the
right part of the video display that appears at cue point boundaries and for a specified period of
time, such as four (4) seconds, in response to a movement of a pointing device. FIG. 10
illustrates an example screen display that includes a directory.

[0194] Player logic 112 attempts to generate and display a cue point specific, non-modal
directory on a cue point by cue point basis. The media points (video and web) within the
directory are specified as a cpGroup and must contain story elements if they are to appear in the
directory. These points can be whatever the author chooses to make them and are an
opportunity to guide the user into interesting, tangentially related information. For example, in a
news show, when a story about Great Britain is shown the directory could contain the related
online encyclopedia entry and several video segments; when the news program shifts to the next
story, the cue point specific directory changes.

[0195] 5.7 WEB SERVICES

[0196] In one embodiment, web services may be implemented using a ColdFusion web
server. In an embodiment, web services are called with two string arguments comprising the
called operation or function and the type of service. The web service returns a string with three
fields comprising an operation specific field (e.g., "serviced" for MXMLOverlay calls), a result,
and the type of service string.

[0197] 5.8 DYNAMIC LAYOUT WITH MULTIPLE RECTANGLES

[0198] In an embodiment, an author may customize the positioning of a video window and a
web window within an overall player window. In an embodiment, dynamic layout is
accomplished through user interaction with the video linking editor logic 110.

[0199] A user selects a Dynamic Layout feature under a Layout tab 2104 of an editor screen
display 2102 as seen in FIG. 21. FIG. 21 illustrates an example screen display that the video
linking editor logic generates and causes displaying. An author selects a window size for the
video to be displayed as part of an enriched video program. For example, a window size may be
1024 pixels wide by 763 pixels tall. Generally, a user selects a new layout control to create a
new layout and assigns a unique name to the new layout. The author selects a Positioning
function and may select one of a plurality of predetermined layouts of the video window, web
window, and static surrounding graphical display space. The user may change the size of the
video window or web video using an Advanced tab function. The user may change dimensions
in pixels for video width, video left position, video horizontal center position, and video right

position. The editor logic stores the changed values in association with the layout name.

-38-

WO 2010/132718 PCT/US2010/034808

Changing numeric values of dimensions later results in changing the position of a video window
when displayed using the player logic. Each layout may have restrictions on repositioning based
on the original layout; in an embodiment, the editor logic 110 prevents the user from entering
data for parameters that do not fit a particular layout.

[0200] FIG. 25 is a screen display diagram of an example Editor window in which a Layout
tab is selected.

[0201] In an embodiment, example Editor window 2102 comprises a Layout tab 2502 that
displays a list of names of selected layouts. Selecting an Add Layout control 2503 causes the
editor logic 110 to add a new layout name to the list. In an embodiment, logic 110 can access
stored data defining a plurality of predefined player window layouts, which are displayed in an
information panel 2504. In each predefined layout, a relative size and position of a video
window to be shown in the player window is indicated by a rectangle having a first color, and a
relative size and position of a web browser window to be shown in the player window is
indicated by a rectangle having a different, second color. In some layouts the video window has
a reduced size as compared to a size of the browser window. In some layouts the video window
is the same size as the browser window. In some layouts a background is defined that is
logically behind or surrounds both the video window and browser window. In some layouts the
video window is laterally or longitudinally adjacent to the browser window. In some layouts the
video window is offset in a corner of the browser window, or centered.

[0202] In an embodiment, selecting a predefined layout from panel 2504 causes editor logic
110 to display an enlarged view 2510 of the selected layout in which the relative size and
position of the browser window 2508 and video window 2506 are shown. The author also can
further customize the layout to obtain different effects using the parameters accessible using an
Advanced tab of the editor window as shown in panel 2504.

[0203] A layout may be linked to a particular cue point. In an embodiment, a user selects a
Cue tab in the editor screen display and selects a cue point to link to the layout. The user may
select a Description tab in a Parameters pane and select a Browse button next to the Web View
Layout and the user may select the Layout that the user created.

[0204] In this approach, an author has control over the location of a video window and web
window. Further, a particular layout that the author deems aesthetically preferable for a
particular combination of video and web content may be injected into the metadata so that the
layout changes appropriately when a particular cue point is reached.

[0205] 5.9 CUE POINT LANGUAGE EXAMPLE

[0206] TABLE 1 presents an example of a complete metadata file of the type that can be
created and stored as one of the metadata files 126.

TABLE 1 - CUE POINT LANGUAGE EXAMPLE

-390.

WO 2010/132718 PCT/US2010/034808

<MediaProgram xsi:noNamespaceSchemal.ocation="CPL_v-10_validator.xsd"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<cuePt nameCue="A" cueType="reg"
interestURL="" contentType="prog_Inline">
<proglevelMetadata xProglevelDir="false" xVersionCPL="-10"
xUniquelD="123">
</proglevelMetadata>

</cuePt>

<cuePt nameCue="B" cueType="insertPt"

interestURL="" contentType="prog_Inline">

<cpGroup>
<targetSeg
association="default" cuePointName="D"></targetSeg>
</cpGroup>
</cuePt>

<cuePt nameCue="C" cueType="progknd"
interestURL="" contentType="zeroLen">

</cuePt>

<cuePt nameCue="D" cueType="reg"
interestURL="" contentType="ad_Segment">

</cuePt>

<cuePt nameCue="E" cueType="returnEnd"
interestURL="" contentType="zeroLen">

</cuePt>

</MediaProgram>

[0207] In an embodiment, the base element is MediaProgram and encloses all other
elements. The element progl.evelMetadata is required and specifies information that applies to
the whole MediaProgram. In the sample code above, in the cue point named B, the cueType is
“insertPt” which jumps to a cue point (in this case D) while establishing a return point. In B, the
target segment is specified within a cpGroup (a cue point group); in this case it has only one
target and the association attribute is “default”. There is nothing to check and there is only one
place to jump. In E, the target segment is a cueType=returnEnd which means it will return to
where it came from (rather than goto another target). Further, anytime that no video
immediately follows a cue point, the cue point has a contentType = “zerol.en” (cue point C is

also zeroLen).

-40-

WO 2010/132718 PCT/US2010/034808

[0208] TABLE 2 presents an example schema for the Cue Point Language.

41-

WO 2010/132718 PCT/US2010/034808

TABLE 2 - EXAMPLE SCHEMA

SR N

-1

P

€*"

windoTurs=s

WERGCoLErs=T0

CEFattriby

KAE I SEQUEencey))
sxsrelepment ret="gUsPL" RO Cours="pnbaunged’

Kurelement ns

< We
«i-—wEd paint < A

defined hepre;
T wge them

42-

WO 2010/132718 PCT/US2010/034808

inourded™

XS 1 &1¥Pert refv="annatation”

< RS TODHIE
elegents

ribpte --»

SO Rged™

o= CREPT i
plexTyses

SRS Lelement

“RRiElemert

s 1At ts

g™ use="ppTinarl” S
="waReterence”

use=" ragul

uze="optionsl” deta

uze="optionel™ defaul

43-

WO 2010/132718 PCT/US2010/034808

nae="Ha kool ngH

gse="optianal® s

rame="coi R

yse="apticnal’ f»

TEXTYDEs

SETLER
$X5 el emeRT

="hezderTaxt” Type

™
>

D SEURRLEN
wx& e ERERtT pretT=

Fayicoups="1"

ATTriDUTE oM
atiribute ass

} Iype="¥srsTrin WEe=
‘cY¥iek8shavior” type="xITlickgeh

SESIRTTEIRUTe name="x"

44-

WO 2010/132718 PCT/US2010/034808

TTEne

rame=":

nage="yi

nane="

use="gpricnal™ >
SEIIRTTEIRUTE
uss="opricnal

uss="optional
use="gpticnal™ />

use="opticnal” />

] o idesRight ty
uss="optional

asame="webHeIght"
"

use="gprignal”

1

i

use="gptionel" /=
nafe="webTog" tyge="X
uss="optional

asane="webBztton

uze="optimnal™

T ebyi g™ Ty

use="gptignal™ =

nage="webHCenter ¥R I5Tring

asame="webLeft" Tyge=

fRpe="peBRIEhT" type="ysistring

exTypes
FEIATTribute name="baTloonTest"” type="nsIistring

use="gpticaal” i

uze="optional™;

toihve rLod

CARsRTIribyte pEne="y

uge="gptional™

-45-

WO 2010/132718 PCT/US2010/034808

pe="NIHE Ty e
torion ba TrersrringTe
renumeration Cragqut
SAUMETATTION ¥ CREoGr
SAUMEVATION BT TrETuy
enume ration 3
enumeratio
ENLME CATT O
Enume ratian
SEEENMMeration

ARG TrRETricTions

SREVE SN
isrsteing™y
v walue="reguls
=" Qe ot

SRS TEIRPIETYgE nEme
R RS =12 o aa g o P {
BRI TIRN N

™o
Rl
A

tign™s

NARsrrEsTrictions
SEKED STl ETYREx

S el R

Referencs

 CasE point, weh o poiat, ssmctation, or

6. PLAYING VIDEO AND LINKED MEDIA (THE COINCIDENT PLAYER)

[0209] 6.1 TRICK PLAY FUNCTIONS, TIMELINE, ALWAYS-AVAILABLE WEB
LINK

[0210] FIG. 11 illustrates an example screen display that illustrates a player screen that may
be generated and displayed in a computer display unit by metadata-capable video player logic.
The video display unit may comprise a computer monitor, video monitor, digital TV, CRT, or
other display unit that is driven from an appropriate output of computer 102.

[0211] In various embodiments, the player screen display may be implemented as an
application that is displayable within a web browser, or using standalone application program
logic; in either case the player is not video specific and will work with various existing video
formats (Flash, Silverlight, QuickTime, etc.) and can be adapted to new video formats as they
are defined.

[0212] FIG. 20 illustrates an example arrangement of digital computer elements that can be

used to implement certain embodiments with a browser-based player for enriched video

-46-

WO 2010/132718 PCT/US2010/034808

programs. In an embodiment, a computer 102 is coupled directly or indirectly through one or
more networks 120 to a web server 130 and optionally to a file server 132. In various
embodiments, network 120 may comprise a local area network (LAN), wide area network
(WAN), an internetwork, or a combination. Web server 130 hosts one or more video files,
HTML documents, HT'TP servers or application servers, or other web content. File server 132
stores or hosts video files 122, graphics files 124, and metadata files 126, which may include or
be associated with HTML and browser executable program code, such as JavaScript code.
Optionally file server 132 stores or hosts script files 2008 that can issue queries to a database
2010 and automatically generate the contents of one or more metadata files 126 based on result
sets received from the database in response to the queries.

[0213] Computer 102 hosts or executes an operating system 104 that supervises I/O, storage
management, and execution of application logic. In an embodiment, computer 102 optionally
comprises a video editor 106; as indicated by broken lines, the video editor may be omitted. In
an embodiment, computer 102 comprises a browser 108 that hosts or can access a support
library 2002. Commercially available examples of support library 2002 include Macromedia
Flash and Silverlight.

[0214] In an embodiment, computer 102 is coupled to storage 140, which broadly represents
any data storage device, storage area network (SAN), network attached storage (NAS), or
network file system (NFS) unit or server. Storage 140 may reside on network 120 or on a server
coupled to the network. Storage 140 stores application programs but is not required to store
video files or metadata files; instead, video files may be received through streaming video
delivery from file server 132 and metadata files 126 may be received on the fly directly to
browser 108 or support library 2002 under control of an instance of metadata-capable video
player logic 112.

[0215] In an embodiment, computer 102 optionally comprises video linking editor logic 110,
which may be omitted entirely as indicated by broken lines. In an embodiment, a separate
player control server 2004 comprises metadata-capable video player logic 112 and may
comprise accounting logic 2006. The metadata-capable video player logic 112 is generally
configured to open metadata files and associated video files, and to play the video files while
interpreting and responding to links and related information and instructions in the associated
metadata files. Other more specific functions of metadata-capable video player logic 112 are
described in other sections herein. In an embodiment, player control server 2004 controls
delivery of instances of the player logic 112 to authorized clients, and in certain embodiments
interactions with accounting logic 2006 determine whether a particular client in the form of
computer 102 can receive an instance of the player logic. Additionally or alternatively,

accounting logic 2006 determines amounts for invoices, other billing, or other charges to a video

47-

WO 2010/132718 PCT/US2010/034808

producer, studio, content owner, or other party that owns or controls the file server 132 and its
contents.

[0216] In another embodiment, computer 102 comprises player logic 112 and does not have
an editor such as editor logic 110; such an embodiment might be used by an end user who is
viewing video programs that have been prepared by someone else, and who does not use a
browser to view video programs based on receiving the player logic over a network from a
server computer as described above.

[0217] In one embodiment, an end user or viewer invokes browser 108 and connects to web
server 130, which offers links to play audiovisual media such as video files 122. The viewer
selects a link for a particular video file 122. In response, the browser 108 downloads from the
file server 132 one or more elements of HTML and browser executable program code, such as
JavaScript code, which the browser executes. Consequently, the browser 108 renders a page in
the display unit of computer 102. The rendered page includes code to invoke an instance of
metadata-capable video player logic 112. The player logic 112 accesses one or more metadata
files 126, and accesses video files 122. The video files 122 may be on file server 132, or stored
in another networked location, or on a third party server or quasi-public hosting site such as
YouTube. Based on instructions in the associated metadata files 126, the player logic 112 then
streams the video files 122 and provides metadata from metadata files 126 to the support library
2002 of browser 108. As a result, one or more of the player screen displays described herein
appears and can play video within the browser 108 in the manner described herein.

[0218] In an embodiment, each time that browser 108 invokes use of the player logic 112
data is recorded at the player control server 2004, or at a third party server site, to indicate the
invocation. Invocation data may include data identifying a referring web site, that is, the web
site at which the end user selected a video for playing, such as web server 130. Invocation data
also may identify a producer of the video, if the producer is different than the owner or operator
of the referring web site.

[0219] In an embodiment, the end user of computer 102 may be denoted a first party; a
second party may own or operate web server 130 at which the first party selects videos for
playing, and the second party may comprise a producer of the videos; and a third party may
owner or operate the player control server 2004 and may control delivery and use of instances of
the player logic 112, and may be entitled to payment from the second party for each use of the
player by the first party or each stream that the player facilitates delivering from the second
party to the first party. Thus, a copy of the player logic 112 or other browser executable code
may be delivered from the third party to first party browsers only a specified maximum number
of times per day, week, month or year in consideration for payment of a specified fee

attributable to each day, week, month or year. In an embodiment, if the specified maximum

48-

WO 2010/132718 PCT/US2010/034808

number of first party video player invocations is reached, then the third party may cease
providing additional first parties with access to the browser executable code that implements or
accesses the player. Additionally or alternatively, the third party may deliver the browser
executable code to an unlimited number of first parties who select videos at the second party’s
web site and may invoice the second party for a variable amount that is based upon or
proportional to the actual number of first parties.

[0220] In this arrangement, the invocation data is recorded in a database that is owned or
operated by the third party. The third party configures one or more computer programs to
periodically analyze or compile invoicing data from the database, based on the number of
streams that the second party delivered using the player or the number of first parties who
connected and used the player. Based on the data analysis or compilation, the third party may
invoice the second party. In all such arrangements, the third party retains control over use of the
metadata-capable video player logic 112 and its use by second party producers or first party end
users, and the third party is entitled to collect fees or revenue from one or more of the second
party and/or the first party in consideration for the use of the metadata-capable video player
logic 112 to provide enriched videos to end users.

[0221] In another embodiment, computer 102, logic 112, and a video display unit may form
a special-purpose computer performing the functions described herein.

[0222] In one embodiment, a player as in FIG. 11 comprises a video display window 1102,
trick play icons 1104, a timeline 1106, and a web hyperlink 1108. The video display window
1102 displays a video segment of a media program. The trick play icons 1104 may be selected
through user input from a pointing device or remote control. In one embodiment, trick play
icons 1104 provide functions for video playback, fast forward at one or more speeds, and rewind
at one or more speeds. Other controls may be provided including an end playback or “eject”
control, an audio volume adjustment control, and a video window size control.

[0223] In an embodiment, the timeline 1106 provides a graphical indication of the player’s
current position within a video segment, the position of cue points, and the relationship of
branches to other cue points and other video segments. For example, in one embodiment the
timeline 1106 graphically displays cue points as dots or circles, branches to other cue points as
arcs, and video segments as straight lines. The lines, dots, and arcs are arranged in a temporal
order so that the first video segment is arranged at the far left side of the display and the last cue
point of the last video segment to which a branch can occur is displayed at the far right. As the
player plays video, a graphical icon in the timeline 1106 moves from left to right in proportion
to the time that has elapsed during playback or the amount of video that has been played. As
cue points are reached and branches are traversed, the player logic 112 modifies the video

display unit to update the timeline to indicate a user’s current logical position in a media

49

WO 2010/132718 PCT/US2010/034808

program as a physical icon shown among the lines, arcs and dots. Therefore, the timeline 1106
enables a user to visually identify upcoming cue points, branches, and branch destinations.
[0224] In an embodiment, web hyperlink 1108 is continuously displayed in the screen
display in an overlay manner over any video program that is shown in video window 1102.
Thus, the web hyperlink 1108 is always available during operation of the player logic 112. In an
embodiment, selecting the web hyperlink 1108 causes the player logic 112 to modify the display
unit so that the video display window 1102 is redisplayed in a reduced size format, for example,
in a small rectangular window at the bottom right corner of the screen display. Further, the
video display window is overlaid on a web browser window that displays web content
associated with the web hyperlink 1108. In this manner, the player logic 112 appears to
generate a picture-in-picture form of display in which the background picture shows web content
and the foreground, reduced size picture shows the video program. The video program
continually runs during such a transition.

[0225] In an embodiment, the screen display of FIG. 11 further comprises a TV button
which, when selected, causes the player logic 112 to restore the video display window 1102 in a
large size as seen in FIG. 11 and to discontinue displaying web content.

[0226] 6.2 KEYBOARD CONTROLS

[0227] In an embodiment, computer 102 uses either a remote control or a computer
keyboard to provide user input to the metadata-capable video player logic 112.

[0228] In an embodiment, user input selecting hot keys on the keyboard results in
controlling playback. In an embodiment, the following key commands cause the metadata-
capable video player logic 112 to perform the following functions:

KEY COMMAND - FUNCTION

B Browse for a file to open

Left arrow | Move one chapter back based on the cue points; this command always lands
on a chapter boundary (unlike “,”). In an embodiment, all back commands
implement a “close” behavior: if the user is within a short time from a
preceding chapter boundary then the user is presumed to be moving to the

previous chapter boundary rather than the current one.

Right arrow | Move one chapter forward

P Play/Pause toggle

, Video Back. If the user is 10 seconds into chapter A and jumped to B, then
a video back command (*,”) before the end of B would cause the logic 112
to move the player head to the point in time that the user started from in A.

Implements “close” as described above.

S Stop

-50-

WO 2010/132718 PCT/US2010/034808

1 Jump back

4 Jump back more

3 Jump forward

6 Jump forward more

7 Fast reverse, each push increments the speed; these are buggy, jumpy
stopgaps

9 Fast forward, each push increments the speed; these are buggy, jumpy
stopgaps

w Move to web. In an embodiment, whenever video is playing a “W”

command causes the player logic 112 to initiate displaying associated web
content, and the video is reduced to a picture-in-picture size. Whenever the
web content is on the screen, a “T'V” button is displayed which when
selected causes moving the user back to full screen video.

When the W button is pushed, if the cue point has an interestURL, it is
used, if not, and if a query exists, it is used as the basis of a search engine
query, if no web specification exists (both interestURL and query attributes
are blank) the W button provides a blank search engine query page. The
appearance of the W button changes to reflect the existence of nothing, a
query, an interestURL or an optional, cue point specific directory to guide
browsing.

[0229] 6.3 PLAYBACK APPLICATIONS

[0230] Various embodiments facilitate production of enriched audiovisual programs that

combine Internet web content and video content. Examples of playback applications are now
described.

[0231] FIG. 13A illustrates an annotation coupled to a web service providing automated text
messaging in association with an enriched video program. In an embodiment, metadata-capable
video player logic 112 displays a player window 1302 on a computer desktop or within a
browser. Player logic 112 is configured to generate the player window 1302 and to facilitate the
functions that are further described herein for FIG. 13A. Player window 1302 includes playing,
segment, and chapter navigation buttons 1310 which when selected cause playing a video
segment, performing trick play functions, or skipping to other defined chapters.

[0232] In an embodiment, buttons 1310 may be associated with an HTML document that
applies a specialized appearance or skin to the buttons 1310. In an embodiment, skinning
buttons 1310 is performed using the editor logic 112 to display editor window 2102 (FIG. 21),
selecting the Metadata tab 2112, selecting a Skin Buttons field and entering an HTML URL.

With button skinning, buttons 1310 may have a different appearance in different videos at

-51-

WO 2010/132718 PCT/US2010/034808

playback; for example, comparing FIG. 13A, FIG. 17A shows buttons 1310 with different styles
and appearance.

[0233] Player window 1302 includes an audio icon 1312 which when selected causes muting
sound from the video and a full screen icon 1314 which when selected causes displaying the
video in full screen mode. In response to appropriately defined annotations and cue points
associated with a video program, which in this example is an excerpt from a program named
“The Hills,” metadata-capable video player logic 112 causes displaying an annotation 1300 that
prompts a viewer to enter a viewer’s name, phone number, and gender in data entry fields 1304,
1306, and using radio buttons. In an embodiment, when a viewer enters values in the fields and
selects the Go button, metadata-capable video player logic 112 temporarily stores the values in
memory for referencing and use by other logic when a particular cue point is reached that calls
for invoking a text messaging function.

[0234] FIG. 13B illustrates a frame of an enriched video program as displayed in a player
window. In an embodiment, player window 1302 as previously seen in FIG. 13A is displaying a
video segment depicting a character 1320 who is using a text messaging device 1322. In the
example of FIG. 13B, player window 1302 further comprises show and character icons 1324,
web site icons 1326, and service icons 1328. In an embodiment, a cue point associated with an
invocation of a web service may be defined for a time point of the frame illustrated in FIG. 13B.
When the video program is played and the frame illustrated in FIG. 13B is reached, the
metadata-capable video player logic 112 is configured to invoke a web service that can retrieve
the stored value of the phone number that was received as user input at FIG. 13A, and dispatch a
specified text message to that phone number. The specified text message may comprise
information appearing to come from character 1320. The video editor linking logic 110 may be
used to define the cue point that can cause a specified text message to be sent automatically
when the cue point is reached during playback.

[0235] In an embodiment, show and character icons 1324 each comprise a graphical image
that is associated with an annotation. In an embodiment, a first one of the show and character
icons 1324 is an annotation associated with a URL for a web site of the show, which in the
example of FIG. 13B is the MTV show “The Hills,” that provides further information about the
show. In an embodiment, second and third ones of the show and character icons 1324 each
comprise annotations that are associated with sequences of video segments relating to the
characters that are depicted in the icons. In the example of FIG. 13B, selecting the “Heidi” icon
causes the metadata-capable video player logic 112 to branch within the associated metadata file
126 to a point associated with a sequence of video segments that feature the character “Heidi.”
Playing the video program then continues with the sequence of segments that feature “Heidi.”

Similarly, selecting the “Audrina” icon causes the metadata-capable video player logic 112 to

-32-

WO 2010/132718 PCT/US2010/034808

branch within the associated metadata file 126 to a point associated with a sequence of video
segments that feature the character “Audrina.”

[0236] In an embodiment, web site icons 1326 provide linkages to Internet sites that feature
social networking and other services. For example, in an embodiment the video linking editor
logic 110 may be used to create an annotation, symbolized by a Twitter icon, which is associated
with the Twitter service and a web service to invoke the Twitter service. Thus, in one example
embodiment, at playing time, when a viewer selects the Twitter icon, the metadata-capable video
player logic 112 generates and displays a new window that contains a feed of Twitter posts
relating to the video program of FIG. 13B. The other web site icons 1326 similarly each
comprise an annotation that is associated in metadata files 126 with a web service, URL or other
reference to executable code that can cause integration and use of the web service that is
represented by the icon.

[0237] In an embodiment, each of the service icons 1328 is an annotation represented by a
graphic image that provides access to an external service or web site. For example, in one
embodiment, a music purchase icon may comprise an annotation that is associated with a web
site that features downloads of songs, as further described herein for FIG. 14. In an
embodiment, a commercial sponsor icon may comprise an annotation that is associated with a
commercial advertising web site or online information about a commercial product.
Additionally or alternatively, the target of an annotation that is displayed as a commercial
sponsor icon may be a video program segment comprising a commercial for a specified product.
In the example of FIG. 13B, selecting the Dos Equis service icon causes the metadata-capable
video player logic 112 to branch to and play a video segment containing a commercial for Dos
Equis brand beer.

[0238] FIG. 14 illustrates a frame of a video program having a highlighted service icon. In
the example of FIG. 14, video window 1302 is displaying a frame 1402 of a program that
includes background music at the time of playback. A first service icon 1404 comprises an
annotation that is associated with a highlighted graphic image as indicated by short lines
radiating from the icon; in contrast, in the example of FIG. 13B, the same one of the service
icons 1328 is not highlighted. In the example of FIG. 14, the highlighted icon signifies that the
song that is then currently playing in the background of the scene of frame 1402 is available for
purchase or downloading. If a viewer selects the first service icon 1404, then in response, the
metadata-capable video player logic 112 accesses and displays a web site that offers the
associated song for downloading or purchase. To implement such a function, an author may use
video linking editor logic 110 to associate a specified web service, URL, or program code with
an annotation and graphic image for the service icons 1328. The URL may be a complex URL

that includes a domain name, service name or script name, and one or more embedded

-53-

WO 2010/132718 PCT/US2010/034808

parameters or attributes. For example, an attribute of the URL may be set equal to a file name
for the song that is known to play at the associated cue point. Thus selecting the first service
icon 1404 causes the metadata-capable video player logic to invoke the URL specified in an
associated annotation, effectively passing the name of the then-currently playing song to a third
party web site, which extracts the song name and can offer the song identified in the parameter
for purchase or downloading.

[0239] FIG. 15A illustrates an annotation that provides a user choice. In the example of FIG.
15A, video window 1302 displays a plurality of annotations 1502 in a video window 1506.
First, second, and third annotations labeled Heidi, Spencer and Audrina are associated with
static graphic images of the named characters and are linked to a target cue point for a sequence
of video segments that feature the associated character. A fourth annotation comprises a
graphical image prompting the user to select one of the characters as a favorite character. In
response to user input selecting one of the first, second or third annotations labeled Heidi,
Spencer or Audrina, metadata-capable video player logic 112 branches within the metadata files
126 to instructions associated with playing a sequence of video segments that feature the
selected character. For example, if Spencer is selected then the metadata-capable video player
logic 112 branches and begins playing a first segment of video featuring the Spencer character,
as represented by the frame of FIG. 13B.

[0240] In an embodiment, when a particular character is selected as a favorite character, then
the video segments featuring that particular character are also authored to include annotations
identifying the other, non-selected characters, for possible future selection. For example, as seen
in FIG. 13B, in a video segment in which Spencer has been selected as featured character, the
show and character icons 1324 display only icons for annotations associated with other
characters, namely Audrina and Heidi.

[0241] In contrast, FIG. 15B illustrates a frame of a video segment in a sequence for which
Audrina is the featured character; therefore, show and character icons 1324 depict Heidi and
Spencer, but not Audrina, and the icons are associated with annotations which, when selected,
cause playing sequences of video segments featuring Heidi or Spencer, respectively. FIG. 15B
also illustrates different service icons 1328 in which a third service icon is associated with a
different commercial product or retailer. Thus, an author using video linking editor logic 110
may define different annotations in the position of service icons 1328 for different commercial
products, merchants, retailers, or other web sites or service providers in association with
different cue points arising at different time points in a program. For example, an annotation
associated with a graphic image or icon depicting a first merchant or product may be associated
with a cue point at the start of a first scene of a video program that somehow involves, uses or

shows the associated product, which a second merchant, product or service may be associated

-34-

WO 2010/132718 PCT/US2010/034808

with a second cue point at another point in the program that shows, uses or involves the second
merchant, product or service.

[0242] FIG. 16 illustrates concurrent playing of an enriched video program and displaying
an associated web page. The video player window 1302 comprises a video window 1602 that is
overlaid on a browser window 1610. The video window 1602, in the example of FIG. 16, is
displayed in reduced size but contains the same navigation icons 1310 as in FIG. 13A. The
video window 1602 is configured to play a streaming video program. The metadata-capable
video player logic 112 is configured to concurrently cause playing a streaming video program in
the video window 1602 and to display a web page 1612 associated with the video.

[0243] For example, an author using the video linking editor logic 110 may define a cue
point at the frame shown in FIG. 16, which is from a title scene in the show “Glee” that depicts
the names of actors who portray characters in the show. At the frame of FIG. 16, the name of
actor “Cory Monteith” is displayed. A cue point may associate the time of that frame with a
URL for an Internet Movie Database (IMDB) page containing information for the named actor.
As the video continues to play in video window 1602, the metadata-capable video player logic
112 may reach other cue points referencing other URLs. At each cue point, the metadata-
capable video player logic 112 accesses a referenced URL and causes the browser window 1610
to display the referenced web page. In this manner, cue points defined for a video segment can
cause web content to be “pushed” to a browser window that underlies the video window.
Content in the browser window thus changes dynamically as the video plays and as specified
cue points are reached by the player.

[0244] The foregoing applications and others provide the capability to display video over
web content or to display web content in association with video in entirely new and different
ways. As a first example, embodiments provide the capability to display video in a “picture in
picture” layout in which a video plays in a video window 1602 that is reduced in size in
comparison to a browser window 1610 that is concurrently showing related web content. The
metadata-capable video player logic 112 is configured to allow the end user to watch video and
scroll web content in the same screen without tabs or special windows. The author of the
metadata files 126 for the program has control of whether the video in video window 1602 plays
or pauses, and what is rendered in the video window 1602 and the browser window 1610.
[0245] For purposes of illustrating a clear example, FIG. 16 shows a first rectangle
comprising video window 1602 and a second rectangle comprising browser window 1610. In
other embodiments, any number of rectangular display areas for video or browser content may
be provided.

[0246] As another example, annotations can be configured so that invoking the Twitter web

site icon 1326 causes the metadata-capable video player logic 112 to display a third rectangle to

-55-

WO 2010/132718 PCT/US2010/034808

the right of the video window 1602, while maintaining a display of the browser window 1610
conceptually behind the other rectangles or windows. The third rectangle displays a feed of
Twitter posts using HI'TP data transfers and rendering of HI'ML within the third rectangle. In
this manner, a streaming video may be played at the same time that an HTML window is
dynamically updated. Both the video window 1602 and the browser window 1610 have equal
conceptual weight within the player window 1302.

[0247] FIG. 17A illustrates an example of playing an enriched audiovisual program with
annotations that implement chapter selections. Player window 1302 displays a graphical
background 1702 that surrounds a video window 1704 that displays a video program, based on
an associated metadata file 126. A plurality of enriched program navigation icons 1708 and
chapter selection images 1706 are displayed over the video in the video window 1704. In an
embodiment, each of the enriched program navigation icons 1708 and chapter selection images
1706 is an annotation as described herein, associated with a particular position, graphic image or
animation, and operational behavior. In an embodiment, enriched program navigation icons
1708 include a Back navigation icon and a Home navigation icon, comprising annotations that
associate static graphical images. Selecting the Back navigation icon causes the metadata-
capable video player logic 112 to branch to a prior video program that was previously played or
a web page that had been previously displayed in a browser window area of the player window
1302. Selecting the Home navigation icon causes the logic 112 to branch to a starting video
segment representing a home position of the video program.

[0248] The chapter selection images 1706 each represent an annotation that is associated
with a branch to a different cue point in the video program associated with a different video
segment for a chapter, episode, or other discrete video element. During playing, selecting one of
the chapter selection images 1706 causes the player logic 112 to branch to and start playing an
associated video segment.

[0249] The example of FIG. 17A indicates an aspect of the flexibility inherent in the concept
of annotations as described herein. Both the icons 1706, 1708 can be represented using
annotations that define different positions, graphic images and operational behavior. However,
even though the annotations are different, an author is not required to learn and use a large
number of different programming techniques; instead, the same features and functions are used
to define all the annotations.

[0250] FIG.17B illustrates playing an audiovisual program in which annotations have
multiple different forms and provide multiple different functions. In an embodiment, player
window 1302 comprises the graphical background 1702, video window 1704, and enriched
program navigation icons 1708 as described for FIG. 17A. Additionally FIG. 17B features a

navigation animation 1710, web integration icons 1712, topic launch icons 1714, and menu

-56-

WO 2010/132718 PCT/US2010/034808

access link 1716. In an embodiment, navigation animation 1710 represents an annotation that is
associated with an animated graphical object and a plurality of cue points for each of a plurality
of characters shown in the animation at different positions within the animation. For example,
during playing, a viewer can use a pointing device to cause a cursor to hover over the navigation
animation 1710, and in response, the navigation animation scrolls graphically left or right in
response to movement of the pointing device. Selecting a particular region showing a particular
character causes the player logic 112 to branch to a chapter of the video program that features
the selected character.

[0251] The web integration icons 1712 each represent an annotation that is associated with a
static graphical image and an interactive operation relating to web content. For example, a
Facebook icon represents an annotation that defines a link to a Facebook page for the program
shown in the video window 1704. During playing the program in the video window 1704,
selecting the Facebook icon causes the player logic 112 to redisplay the video window 1704 in
smaller form and to access and display a Facebook page for the program in a browser window
that is conceptually or logically under the video window 1704. The topic launch icons 1714
represent annotations that define branching behavior to other video program segments relating to
topics such as costumes used on the program or show and the history of the show. Additionally
or alternatively, one or more of the topic launch icons 1714 may be associated with a web page;
thus, selecting one of the topic launch icons can result in either playing a video segment or
displaying web content in a browser window under the video window.

[0252] In an embodiment, menu access link 1716 represents an annotation associated with
branching behavior that causes the player logic 112 to branch to code in a metadata file 126 that
causes displaying a list or menu of a plurality of video program episodes that are collected or
associated with a subscription. In an embodiment, during playing, selecting the menu access
link 1716 causes the player logic 112 to display a video window having the form of FIG. 17C.
[0253] FIG. 17C illustrates a video window providing a menu of episodes in a collection or
associated with a subscription. The nature and use of subscriptions for video programs is further
described below. In an embodiment, video window 1720 comprises a plurality of available
episode icons 1722 and a plurality of unavailable icons 1724. “Available,” in this context,
means released by a producer or program owner for viewing by viewers who have purchased or
otherwise validly accessed a subscription, and “unavailable” means not yet released and
normally planned for the future.

[0254] An available episode icon 1722 represents an annotation that is associated with a
static graphical image representing the particular episode, and associated with branching
behavior that causes the player logic 112 to play the particular episode in video window 1720,

replacing the icons 1722, 1724. An unavailable episode icon 1724 represents an annotation that

-57-

WO 2010/132718 PCT/US2010/034808

is associated with a static graphical image, or decoration, representing the particular episode that
is unavailable. As decorations, unavailable episode icons 1724 are not selectable and not
associated with branching behavior or other action. In an embodiment, the graphic images
associated with unavailable episode icons 1724 may include an episode name and release date
for the purpose of attracting viewer interest in future program material.

[0255] FIG. 17D illustrates use of annotations to form elements of a main menu page for a
video program subscription. In an embodiment, a video window 1730 in a player window
comprises a plurality of the web integration icons 1712 as previously discussed, located in a
different position of the video window 1730. The same annotations may be used to define the
web integration icons 1712 as for FIG. 17C, with different values for screen position attributes.
In an embodiment, video window 1730 further displays a plurality of program link graphics
1732, 1734, which comprise static images each associated with a different animation having
different responsive operational behavior. For example, program link graphics 1732 represent
annotations that are associated with static graphical images and branching behavior to cause the
player logic to branch to metadata in a metadata file 126 that causes playing a bonus episode, or
displaying a menu of other annotations having graphics representing short episodes or all
available episodes. Program link graphic 1734 represents an annotation which when selected
causes branching in the metadata to code that causes the player logic 112 to play a particular
video program episode.

[0256] Thus, multiple different kinds of annotations can be authored and associated with
different graphics, branching behavior, and targets, including static graphics and video
programs. Annotations also can cause playing pages that consist solely of other annotations, to
await selection of one of the annotations to cause other navigation or to cause playing various
program materials.

[0257] FIG. 18A illustrates an example news program in which annotations may be used to
provide a directory or menu of a plurality of news stores, features, segments, or related
information. In an embodiment, the player window comprises a video window 1804 surrounded
by an undecorated background 1802. In other embodiments, background 1802 may carry
advertisements, program logos, or other information. In an embodiment, a plurality of program
links 1806 is arranged in a column 1808 at one side of the video window 1804. Each of the
program links 1806 is associated with an annotation. Each of the annotations defines a position,
graphical image, and behavior in response to selection of the annotation. Each annotation may
be associated with a video program or an Internet site, so that selecting a particular annotation
causes the player logic 112 to either play the associated video program or to access and display

information from the Internet site in a new browser window, depending on the defined

-58-

WO 2010/132718 PCT/US2010/034808

responsive behavior. The graphical images may include a blend of images and text to indicate
what kind of program or site is associated with the program link 1806.

[0258] FIG. 18B illustrates the news program of FIG. 18A after a viewer has selected a
program link 1806 (FIG. 18A) that is defined using an annotation having an association to a
website. During playback, in response to receiving user input that selects a particular program
link 1806 (FIG. 18A) that is defined using an annotation having an association to a website,
player logic 112 obtains a URL for a web page from within the code of metadata files 126 that
defines the annotation, issues an HT'TP request for the URL, and generates a browser window
1810 that renders the resulting HTML. At about the same time, player logic 112 redisplays the
video window 1804 in a reduced size within the player window 1800. The column 1808 of
program links remains displayed in reduced size within the video window 1804.

[0259] The browser window 1810 may include a scroll bar 1814 that is movable in response
to user input from a pointing device such as a mouse, touchpad or trackball. The scroll bar is
scrollable to cause the web page in browser window 1810 to scroll up or down independent of
the video window 1804.

[0260] FIG. 18C illustrates the browser window 1810 of FIG. 18B after the scroll bar has
been moved. While the content of the web page has moved downward in browser window
1810, the position of video window 1804 remains fixed within the player window 1800. In this
approach, the video remains visible and the viewer can retain context for the associated web
page content. At any time, the viewer can select a full screen icon 1816, which is also defined
using an annotation. In response to selecting the full screen icon 1816, player logic 112 causes
the browser window 1810 to close and the video window 1804 is redisplayed to occupy all of
the player window 1800.

[0261] The browser window 1810 may comprise a plurality of browser navigation buttons
1818. In an embodiment, the browser navigation buttons 1818 include forward, backward, and
magnification buttons. Selecting a backward navigation button causes the player logic 112 to
redisplay, in the browser window 1810, a most recently displayed previous web page. If the
most recently displayed previous web page was generated when the player logic 112 was
playing a different video program, then it is possible that using the backward navigation button
may cause displaying a web site that is unrelated to the current video program.

[0262] FIG. 19A illustrates playing a video program in which annotations are associated
with multiple different responsive behavior types. In an embodiment, player window 1900
comprises a video window 1902 that plays a video program. A plurality of annotations defined
in metadata files 126 are associated with graphic images displayed as page links 1904, video

links 1906, and voting buttons 1908. In an embodiment, annotations for page links 1904 are

-59.

WO 2010/132718 PCT/US2010/034808

associated with URLs for web pages that correspond to an individual who is depicted in the page
link.

[0263] Thus, in the example of FIG. 19A a viewer who selects a page link 1904 for fashion
critic Tim Gunn causes the player logic 112 to access and display a web page associated with
Tim Gunn in a separate browser window in the manner shown for FIG. 18B, FIG. 18C. FIG.
19B illustrates an example of displaying a separate browser window 1920 below or behind the
video window 1902 of the player window 1900. As in FIG. 18B, 18C, the browser window is
scrollable independent of the video window 1902, the video window is automatically displayed
in a reduced size representation, and the video window may be restored to fully occupy the
player window 1900 by selecting a full screen icon in the video window.

[0264] If the viewer selects one of the video links 1906, player logic 112 branches within the
code of a metadata file 126 and causes playing an associated video segment. In the example of
FIG. 19A, the associated video segments may comprise commercials or infomercials associated
with brands, products or merchants, but in other embodiments the video segments may be
noncomiercial.

[0265] In an embodiment, voting buttons 1908 also represent annotations that cause the
player logic 112 to invoke a web service that communicates a vote indicated by a particular
voting button to a vote collecting server. Thus, FIG. 19A provides an example of how
annotations may be used to link a viewer through interactive services to Internet servers that
collect information or perform specified actions.

[0266] 6.4 SKINNING VIA HTML BACKGROUND PAGES

[0267] In an embodiment, HTML and HI'TP may be used to display a graphical format,
termed a skin, for the player window 1302, for a background area of the player window 1302,
and for various user interface elements such as annotation icons. In an embodiment, graphical
backgrounds, skins, and UI elements all can be defined for, and thus synchronized at, any one or
more of: video cue points; a metadata file 126 that describes a collection of video segments that
are rendered into a single file; or a folder, directory, or collection of metadata files 126 making
up a complex media presentation.

[0268] For example, an author can configure cue-point level synchronization to show
character background information as different characters come on stage. The author can use
file-level synchronization to have different backgrounds for commercials as compared to
program content. The author can use folder- or directory-level synchronization to change the
color scheme used in backgrounds, windows and other UI elements on an episode-by-episode

basis. In this context, UI elements include annotations and associated graphic images.

-60)-

WO 2010/132718 PCT/US2010/034808

[0269] In an embodiment, a user may specify an HIML file to display in the background as
the video is playing. In an embodiment, specifying a background skin is performed by a user
accessing a Metadata tab 2112 of screen display 2102, as seen in FIG. 21, FIG. 22.

[0270] FIG. 22 is a screen display diagram of the Metadata tab. In an embodiment, a user
enters a URL of an HTML document that contains a background image in a Background HTML
field 2206. The editor logic 110 stores the URL in metadata for the video. At playback time,
the player logic 112 loads the URL and displays the contents as background behind or around
the video window. Background images may include graphics, text, product branding, or other
information.

[0271] Metadata tab 2112 also displays and allows user entry of values for other parameters
for other player functions that are described further herein. As an overview, a Video File field
identifies a filename of a video file with which the user is currently working and that is
associated with the other metadata. A Video Size field identifies a size in pixels of a video
window generated by the player logic 112 and that will display the video program at playback
time. A Web Service field 2202 displays a reference to a web service that can be invoked at one
or more cue points to provide external functions or processing. A Coincident Web Point field
2204 may receive user input of a synchronized web reference to display at a particular cue point.
A Skin Buttons field may receive a reference to an electronic document that defines an
appearance for play and trick play buttons of the player.

[0272] 6.5 SUBSCRIPTION VIDEO

[0273] In an embodiment, video linking editor logic 110 may be used to author and
configure, for playing using metadata-capable player logic 112, a live, refreshable collection of
media with navigation metaphors. A subscription video collection differs from a traditional
magazine or program subscription in that time is an element of authoring; thus, the media
elements that are available to a subscriber change over time. The media elements change over
time not in the sense of an animation, which involves changes frame to frame, but for a season
of a show. In a subscription video collection as provided herein, the subscription may feature
mixed HTML and video content, authored to incorporate additions, deletions and updates over
time.

[0274] In an embodiment, a subscription video collection is authored as at least a first video
segment that comprises a plurality of annotations; each annotation may be represented by a
graphic image or animation which, at playing time, is overlaid on the first video segment. FEach
of the annotations is associated with a different one of a plurality of episodes or clips.

[0275] For example, a show may have 22 planned episodes and at a particular time of year,
there may be 8 of 22 episodes available for viewing to a subscriber. An end user accesses a

subscription at a web site associated with a producer or distributor of the show. The end user

61-

WO 2010/132718 PCT/US2010/034808

presents authentication credentials, such as user name and password, is authenticated and
admitted to the subscription. In response, the metadata-capable video player logic 112 plays a
first video segment that features 8 icons indicating episode names with graphics, and 14 icons
indicating “Episode to be Available in the Future.” The annotations may be authored in the
same single one of the metadata files 126 or may be in multiple different metadata files. For
example, a first metadata file 126 for a show season may contain references to multiple other
metadata files that contain actual annotations for each episode of the show. Selecting a
particular episode to view is an invocation of the annotation associated with that episode and
effectively causes a branch within the associated metadata file 126 to result in playing the
selected video episode.

[0276] 7. IMPLEMENTATION MECHANISMS—HARDWARE OVERVIEW

[0277] According to one embodiment, the techniques described herein are implemented by
one or more special-purpose computing devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include digital electronic devices such as one or
more application-specific integrated circuits (ASICs) or field programmable gate arrays
(FPGAs) that are persistently programmed to perform the techniques, or may include one or
more general purpose hardware processors programmed to perform the techniques pursuant to
program instructions in firmware, memory, other storage, or a combination. Such special-
purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with
custom programming to accomplish the techniques. The special-purpose computing devices
may be desktop computer systems, portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired and/or program logic to implement the
techniques.

[0278] For example, FIG. 12 is a block diagram that illustrates a computer system 1200
upon which an embodiment of the invention may be implemented. Computer system 1200
includes a bus 1202 or other communication mechanism for communicating information, and a
hardware processor 1204 coupled with bus 1202 for processing information. Hardware
processor 1204 may be, for example, a general purpose microprocessor.

[0279] Computer system 1200 also includes a main memory 1206, such as a random access
memory (RAM) or other dynamic storage device, coupled to bus 1202 for storing information
and instructions to be executed by processor 1204. Main memory 1206 also may be used for
storing temporary variables or other intermediate information during execution of instructions to
be executed by processor 1204. Such instructions, when stored in storage media accessible to
processor 1204, render computer system 1200 into a special-purpose machine that is customized

to perform the operations specified in the instructions.

-62-

WO 2010/132718 PCT/US2010/034808

[0280] Computer system 1200 further includes a read only memory (ROM) 1208 or other
static storage device coupled to bus 1202 for storing static information and instructions for
processor 1204. A storage device 1210, such as a magnetic disk or optical disk, is provided and
coupled to bus 1202 for storing information and instructions.

[0281] Computer system 1200 may be coupled via bus 1202 to a display 1212, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device 1214,
including alphanumeric and other keys, is coupled to bus 1202 for communicating information
and command selections to processor 1204. Another type of user input device is cursor control
1216, such as a mouse, a trackball, or cursor direction keys for communicating direction
information and command selections to processor 1204 and for controlling cursor movement on
display 1212. This input device typically has two degrees of freedom in two axes, a first axis
(e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.

[0282] Computer system 1200 may implement the techniques described herein using
customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or programs computer system 1200 to be
a special-purpose machine. According to one embodiment, the techniques herein are performed
by computer system 1200 in response to processor 1204 executing one or more sequences of one
or more instructions contained in main memory 1206. Such instructions may be read into main
memory 1206 from another storage medium, such as storage device 1210. Execution of the
sequences of instructions contained in main memory 1206 causes processor 1204 to perform the
process steps described herein. In alternative embodiments, hard-wired circuitry may be used in
place of or in combination with software instructions.

[0283] The term “storage media” as used herein refers to any media that store data and/or
instructions that cause a machine to operation in a specific fashion. Such storage media may
comprise non-volatile media and/or volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 1210. Volatile media includes dynamic
memory, such as main memory 1206. Common forms of storage media include, for example, a
floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic
data storage medium, a CD-ROM, any other optical data storage medium, any physical medium
with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other
memory chip or cartridge.

[0284] Storage media is distinct from but may be used in conjunction with transmission
media. Transmission media participates in transferring information between storage media. For
example, transmission media includes coaxial cables, copper wire and fiber optics, including the
wires that comprise bus 1202. Transmission media can also take the form of acoustic or light

waves, such as those generated during radio-wave and infra-red data communications.

-63-

WO 2010/132718 PCT/US2010/034808

[0285] Various forms of media may be involved in carrying one or more sequences of one or
more instructions to processor 1204 for execution. For example, the instructions may initially
be carried on a magnetic disk or solid state drive of a remote computer. The remote computer
can load the instructions into its dynamic memory and send the instructions over a telephone line
using a modem. A modem local to computer system 1200 can receive the data on the telephone
line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red
detector can receive the data carried in the infra-red signal and appropriate circuitry can place
the data on bus 1202. Bus 1202 carries the data to main memory 1206, from which processor
1204 retrieves and executes the instructions. The instructions received by main memory 1206
may optionally be stored on storage device 1210 either before or after execution by processor
1204.

[0286] Computer system 1200 also includes a communication interface 1218 coupled to bus
1202. Communication interface 1218 provides a two-way data communication coupling to a
network link 1220 that is connected to a local network 1222. For example, communication
interface 1218 may be an integrated services digital network (ISDN) card, cable modem,
satellite modem, or a modem to provide a data communication connection to a corresponding
type of telephone line. As another example, communication interface 1218 may be a local area
network (LLAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication interface
1218 sends and receives electrical, electromagnetic or optical signals that carry digital data
streams representing various types of information.

[0287] Network link 1220 typically provides data communication through one or more
networks to other data devices. For example, network link 1220 may provide a connection
through local network 1222 to a host computer 1224 or to data equipment operated by an
Internet Service Provider (ISP) 1226. ISP 1226 in turn provides data communication services
through the world wide packet data communication network now commonly referred to as the
“Internet” 1228. Local network 1222 and Internet 1228 both use electrical, electromagnetic or
optical signals that carry digital data streams. The signals through the various networks and the
signals on network link 1220 and through communication interface 1218, which carry the digital
data to and from computer system 1200, are example forms of transmission media.

[0288] Computer system 1200 can send messages and receive data, including program code,
through the network(s), network link 1220 and communication interface 1218. In the Internet
example, a server 1230 might transmit a requested code for an application program through
Internet 1228, ISP 1226, local network 1222 and communication interface 1218.

[0289] The received code may be executed by processor 1204 as it is received, and/or stored

in storage device 1210, or other non-volatile storage for later execution.

-64-

WO 2010/132718 PCT/US2010/034808

[0290] In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. Thus, the sole and exclusive indicator of what is the invention, and is intended
by the applicants to be the invention, is the set of claims that issue from this application, in the
specific form in which such claims issue, including any subsequent correction. Any definitions
expressly set forth herein for terms contained in such claims shall govern the meaning of such
terms as used in the claims. Hence, no limitation, element, property, feature, advantage or
attribute that is not expressly recited in a claim should limit the scope of such claim in any way.
The specification and drawings are, accordingly, to be regarded in an illustrative rather than a
restrictive sense.

CUE POINT LANGUAGE SPECIFICATION
[0291] A Cue Point Language specification, set forth in another document that is
concurrently submitted herewith, forms a part of this patent disclosure.

EDITOR SPECIFICATION

[0292] An editor specification, set forth in another document that is concurrently submitted

herewith, forms a part of this patent disclosure..

-65-

WO 2010/132718 PCT/US2010/034808

CLAIMS

What is claimed is:

1. A non-transitory computer-readable data storage medium storing instructions which,
when executed by one or more processors, cause the one or more processors to perform:

obtaining metadata that relates to a video program and that defines, for one or more
specified time points in the video program, one or more web services to be invoked at those time
points;

generating and displaying, on a computer, a video window that is configured to play the
video program;

obtaining and playing the video program on the computer;

during playing the video program, detecting that the video program is at one of the time
points and determining an identifier of a particular web service associated with that one of the
time points;

in response to the detecting, causing the computer to invoke the particular web service.

2. The computer-readable data storage medium of claim 1, instructions which when
executed cause invoking a particular web service that is configured to obtain a cellular

radiotelephone number and to dispatch a text message to the number.

3. The computer-readable data storage medium of claim 1, instructions which when
executed cause obtaining metadata that further defines a database query, and invoking the
particular web service by submitting the database query to the web service, including invoking
the particular web service that is configured to execute the database query with a database,

determine a result set, and return the result set in a response to the computer.

4. The computer-readable data storage medium of claim 1, instructions which when
executed cause invoking a particular web service that is configured to submit information about

the video program over a network to a social networking service.

5. The computer-readable data storage medium of claim 1, further comprising instructions
which when executed cause obtaining the video program from any of local storage on the

computer, or a first networked server computer that is separate from the computer.

6. The computer-readable data storage medium of claim 1, further comprising instructions
which when executed cause obtaining the video program from any of local storage on the
computer, or a first networked server computer that is separate from the computer, and obtaining

the metadata from a different second networked server computer.

-66-

WO 2010/132718 PCT/US2010/034808

7. A non-transitory computer-readable data storage medium storing instructions which,
when executed by one or more processors, cause the one or more processors to perform:

obtaining metadata that relates to a video program and that defines, for one or more
specified time points in the video program, one or more annotations to be invoked at those time
points, wherein each of the annotations comprises a stored association of a graphical image and
a network location identifier;

during playing the video program on a computer, detecting that the video program is
playing at a particular time point among the time points;

in response to the detecting, causing the computer to display the graphical image
associated with the particular time point, obtain an online electronic document associated with
the network location identifier, and display the online electronic document with the video

program.

8. The computer-readable data storage medium of claim 7, further comprising instructions
which when executed cause the computer, in response to the detecting, to display the video
program in a reduced size video window logically layered above a browser window, and to

display the online electronic document in the browser window concurrently.

0. The computer-readable data storage medium of claim 7, further comprising instructions
which when executed cause obtaining the particular time point that is associated with a song

playing as part of the video program, and in response to the detecting, causing the computer to
display, as the online electronic document, online information about how to obtain or purchase

the song.

10. The computer-readable data storage medium of claim 7, further comprising instructions
which when executed cause obtaining the particular time point that is associated with an
appearance of a person in the video program, and cause the computer, in response to the

detecting, to display, as the online electronic document, online information about the person.

11. The computer-readable data storage medium of claim 7, further comprising instructions
which when executed cause obtaining the online information about the person from a remotely

located server computer over a network.

12. The computer-readable data storage medium of claim 7, further comprising instructions
which when executed cause obtaining, from the metadata, an identifier of an electronic
document for a background for the video window; loading the electronic document over a
network; displaying the electronic document as a background of a player window that includes

the video window.

-67-

WO 2010/132718 PCT/US2010/034808

13. A non-transitory computer-readable data storage medium storing instructions which,
when executed by one or more processors, cause the one or more processors to perform:

obtaining a link to a stored video program;

obtaining metadata that relates to the video program and that defines, for a specified time
point in the video program, one or more annotations to be invoked at the specified time point,
wherein each of the annotations comprises an association of a graphic image and a reference to a
video program segment or an online electronic document;

causing the computer to play the video program from the link;

during playing the video program on a computer, detecting that the video program is
playing at the specified time point;

in response to the detecting, causing the computer to display one or more graphic images
associated with the one or more annotations for the specified time point, obtain input selecting
one of the graphic images, and initiate playing the video program segment that is associated with

the selected one of the graphic images.

14. The computer-readable data storage medium of claim 13, further comprising instructions
which when executed cause the computer, in response to the detecting, to display one or more
graphic images associated with the one or more annotations for the specified time point, obtain
input selecting one of the graphic images, obtain a copy of the online electronic document that is
associated with the selected one of the graphic images, display the video program in a reduced
size video window logically layered above a browser window, and to display the copy of the

online electronic document in the browser window concurrently.

15. The computer-readable data storage medium of claim 13, wherein the video program

segment is in the video program.

16. The computer-readable data storage medium of claim 13, wherein the reference to the

video program segment is a particular time point in the video program.

17. The computer-readable data storage medium of claim 13, wherein the video program

segment is a second video program that is obtainable over a network.

18. The computer-readable data storage medium of claim 13, further comprising instructions
which when executed cause displaying the one or more graphic images associated with the one

or more annotations for the specified time point continuously after the time point is reached.

19. The computer-readable data storage medium of claim 13, further comprising instructions
which when executed cause displaying the one or more graphic images in a border rectangle that

is adjacent to a video rectangle, wherein both the border rectangle and video rectangle are within

-68-

WO 2010/132718 PCT/US2010/034808

a video window of a player window, and wherein the video program plays within the video

rectangle.

20. The computer-readable data storage medium of claim 19, comprising instructions which
when executed cause displaying the one or more graphic images in the border rectangle in a

position laterally adjacent to the video rectangle.

21. The computer-readable data storage medium of claim 13, further causing instructions
which when executed cause the computer to display the one or more graphic images only in
response to determining that a user of the computer is a paid subscriber, authenticated, or

authorized to view the graphic images.

22. The computer-readable data storage medium of claim 13, wherein the graphic images
comprise at least one graphic image that is not selectable and that is associated with a video

program segment that is to be available in the future.

23. The computer-readable data storage medium of claim 13, further comprising instructions
which when executed cause obtaining the video program from any of local storage on the
computer, or a first networked server computer that is separate from the computer, and obtaining

the metadata from a different second networked server computer.

24. A non-transitory computer-readable data storage medium storing instructions which,
when executed by one or more processors, cause the one or more processors to perform:

obtaining a stored video file having one or more video segments and one or more cue
points in the video file;

obtaining a metadata file that contains an internal reference to the video file;

generating and displaying a video window on a display unit;

playing a first video segment of the video file in the video window;

during the playing, in response to reaching a particular cue point among the cue points
that are defined in the video file:

obtaining from the metadata file one or more metadata values identifying for the
particular cue point a cue point type, and one or more values of attributes that are associated
with a particular cue point type, the cue point type and attribute values defining features of an
action to perform at the cue point during playing of the video file;

performing the action using the attribute values to determine and perform particular

features, displays, or controls associated with the action.

-69-

WO 2010/132718 PCT/US2010/034808

25. The storage medium of claim 24, further comprising instructions which when executed
cause generating and displaying in the graphical user interface a graphical directory of the video

file in which each of the cue points is a selectable directory element.

26. The storage medium of claim 24, further comprising instructions which when executed
cause performing the action by playing a second video segment of the video file that begins at a

point other than the cue point.

27. The storage medium of claim 24, further comprising instructions which when executed
cause performing the action by displaying images representing a set of video segments or

networked resources and prompting a selection of one of the video segments or network

resources.
28. The storage medium of claim 27, wherein one of the images represents a web site.
29. The storage medium of claim 24, further comprising instructions which when executed

cause performing the action by automatically selecting from among a plurality of other video
segments defined in the metadata file based upon a result of a call to a web service that is

identified in the metadata file.

30. The storage medium of claim 24, further comprising instructions which when executed
cause performing the action by returning to a different cue point and playing another video

segment starting at the different cue point.

31. The storage medium of claim 24, further comprising instructions which when executed
cause performing the action by displaying a graphical button overlaid in the video window;
receiving user input selecting the graphical button; in response to the user input, playing a
second video segment, then returning to an end of the first video segment and playing a next

video segment after the end of the first video segment.

32. The storage medium of claim 24, further comprising instructions which when executed
cause performing the action by reading a MXML (Macromedia XML) user interface markup
language script from the metadata file, parsing and interpreting the MXML script, and
generating and displaying one or more overlay graphical elements in the video window based on

the parsing and interpreting.

33. The storage medium of claim 24, further comprising instructions which when executed

cause performing the action by automatically pausing the playing the video file, switching to

-70-

WO 2010/132718 PCT/US2010/034808

displaying a web browser interface, connecting to a web site, retrieving one or more web pages,

and displaying the one or more web pages.

34. The storage medium of claim 33, further comprising instructions which when executed
cause, while displaying the web browser interface, receiving user input requesting resuming
video playback, and in response to the user input, automatically switching to displaying the first
video segment in the video window and resuming playing the first video segment at a point at

which the switching to displaying the web browser interface occurred.

35. The storage medium of claim 24, further comprising instructions which when executed
cause playing the first video segment, reaching a modal story branch cue point at a first end of
the first video segment, displaying a plurality of graphic images representing a plurality of
second video segments, receiving user input specifying a selected one of the second video
segments, in response to the user input playing the selected one of the second video segments
until reaching a “goto” type cue point, and playing a third video segment in response to reaching

the “goto” type cue point.

36. The storage medium of claim 24, further comprising instructions which when executed
cause displaying, in the graphical user interface, a timeline that includes a plurality of lines, each
line representing one of the video segments, a plurality of points, each of the points representing
one of the cue points, and one or more arcs, each of the arcs representing a branch from one of

the cue points to one of the video segments.

37. The storage medium of claim 36, further comprising instructions which when executed
cause displaying the arcs in the timeline of the graphical user interface based on the cue point

type of the one of the cue points.

38. The storage medium of claim 24, further comprising instructions which when executed
cause receiving user input requesting related web content, and in response, connecting to a web
site that is identified in the metadata file, retrieving one or more web pages, and displaying the

one or more web pages in the video window while continuing playing the video file.

39. The storage medium of claim 38, further comprising instructions which when executed

cause playing the video file in a reduced size video window that is overlaid on the web pages.

40. A non-transitory computer-readable data storage medium storing instructions which,
when executed by one or more processors, cause the one or more processors to perform:

obtaining first data identifying a stored video file having one or more video segments;

71-

WO 2010/132718 PCT/US2010/034808

creating and storing a list of cue points based upon either user input or predefined cue
points in the video file;

obtaining second data identifying one of the cue points of a first video segment;

obtaining one or more metadata values identifying a cue point type, and one or more
values of attributes that are associated with a particular cue point type, the cue point type and
attribute values defining features of an action to perform at the cue point during playing of the
video file;

storing the first data, second data, and metadata values in association with one another in

a metadata file that references the video file.

41. The data storage medium of claim 40 further comprising instructions which when
executed cause generating and displaying a graphical user interface that comprises all of: a video
player window configured to play the video file; a list of the cue points; a cue point type input
field; and one or more input fields and one or more display fields associated with attributes of

particular cue point types.

42. The storage medium of claim 41, further comprising instructions which when executed
cause generating and displaying in the graphical user interface, at least one of: an annotation
value field configured to receive annotation metadata values that specifies whether a player
should generate and display a selectable graphical image with the video file; a web service field
configured to receive a name of a web service that can control selection among a plurality of

video segments.

43. The storage medium of claim 40, wherein the cue point type and attribute values specify
an operation selected from the group consisting of: displaying a second video segment;
displaying a set of video segments or networked resources and prompting a selection of one of
the video segments or network resources; selecting from among a plurality of other video

segments based upon a result of a call to a web service; and returning to a different cue point.

44. The storage medium of claim 43, further comprising instructions which when executed
cause receiving a web service identifier value that specifies the web service, and storing the web

service identifier value in the metadata file.

45. The storage medium of claim 40, wherein the cue point type and attribute values
represent any of commands to a video player to play a different video file; commands to the
video player to play a different portion of the same video file; commands to a web browser
client to retrieve and display a file from a web server; commands to the video player to display a

menu of user options.

72-

WO 2010/132718 PCT/US2010/034808

46. The storage medium of claim 40, further comprising instructions which when executed

cause playing and displaying the video file during any of the receiving steps.

47. The storage medium of claim 40 further comprising storing the cue point type and

attribute values in the metadata file in extensible markup language (XML) format.

48. The storage medium of claim 40, further comprising instructions which when executed
cause receiving an annotation value and storing the annotation value in the metadata file,
wherein the annotation value specifies whether a player should generate and display a graphical

annotation of the video file in which each of the cue points is a selectable annotation element.

49. The storage medium of claim 40, wherein the cue point type and attribute values specify

playing a second video segment of the video file that begins at a point other than the cue point.

50. The storage medium of claim 40, wherein the cue point type and attribute values specify
displaying images representing a set of video segments or networked resources and prompting a

selection of one of the video segments or network resources.
51. The storage medium of claim 50, wherein one of the images represents a web site.

52. The storage medium of claim 40, wherein the cue point type and attribute values specify
automatically selecting from among a plurality of other video segments defined in the metadata

file based upon a result of a call to a web service that is identified in the metadata file.

53. The storage medium of claim 40, wherein the cue point type and attribute values specify
returning to a different cue point and playing another video segment starting at the different cue

point.

54. The storage medium of claim 40, wherein the cue point type and attribute values specify
displaying a graphical button overlaid in the video window; receiving user input selecting the
graphical button; in response to the user input, playing a second video segment, then returning to
an end of the first video segment and playing a next video segment after the end of the first

video segment.

55. The storage medium of claim 40, wherein the cue point type and attribute values specify
reading a MXML (Macromedia XML) user interface markup language script from the metadata
file, parsing and interpreting the MXML script, and generating and displaying one or more

overlay graphical elements in the video window based on the parsing and interpreting.

73-

WO 2010/132718 PCT/US2010/034808

56. The storage medium of claim 40, wherein the cue point type and attribute values specify
automatically pausing the playing the video file, switching to displaying a web browser
interface, connecting to a web site, retrieving one or more web pages, and displaying the one or

more web pages.

57. A non-transitory computer-readable data storage medium storing instructions which,
when executed by one or more processors, cause the one or more processors to perform:

obtaining first data identifying a stored video file having one or more video segments;

obtaining second data specifying one or more cue points for the video file, wherein each
of the cue points comprises an association of a playback time value, a cue point type, and one or
more values of attributes that are associated with a particular cue point type, wherein the cue
point type and attribute values define an action to perform at the cue point during playing of the
video file, wherein the action includes at least one of: obtaining and displaying a networked
electronic document, and invoking a web service;

storing the first data and second data in association with one another in a metadata file.

58. The storage medium of claim 57, further comprising instructions which when executed
cause:

obtaining annotation data defining an annotation for one or more cue points, wherein the
annotation data comprises an annotation name, annotation type, annotation position, and one or
more of text, a graphical image, and a graphical image to display at the time of a user mouse
over operation, and wherein the annotation defines information for a video player to display over
a video program when the video program is at a particular one of the cue points;

obtaining association data defining an association of the annotation to the particular one
of the cue points;

storing the annotation data and the association data in the metadata file.

59. The storage medium of claim 57, further comprising instructions which when executed
cause:

obtaining web reference data defining an online electronic document for association with
one or more cue points, wherein the web reference data comprises at least a network resource
identifier of an electronic document to display in a browser window of a video player at the time
of that the one or more cue points is reached in playing the video program;

obtaining association data defining an association of the web reference data to at least
one of the cue points;

storing the annotation data and the association data in the metadata file.

74-

WO 2010/132718 PCT/US2010/034808

60. The storage medium of claim 59, further comprising instructions which when executed
cause obtaining, as part of the web reference data, a query string for submitting to an internet

search engine for generating search results in which a viewer may have interest.

61. The storage medium of claim 59, further comprising instructions which when executed
cause obtaining, as part of the web reference data, an interest URL to which a viewer may be
directed at playback time in response to receiving input at a player indicating interest in other

information relating to the video program.

62. The storage medium of claim 59, further comprising instructions which when executed
cause obtaining, as part of the web reference data, a target at which processing should continue
in response to receiving user input indicating closing the electronic document or completing

viewing the electronic document.
63. The storage medium of claim 62, wherein the target comprises a second URL.

64. The storage medium of claim 59, further comprising instructions which when executed
cause obtaining, as part of the web reference data, web view layout data that defines a visual
layout of a browser window and a video window within a player window for use at playback

time to concurrently display both the electronic document and the video program.

65. The storage medium of claim 59, further comprising instructions which when executed
cause obtaining player layout data that defines a visual layout of a player window for use at
playback time to concurrently display both the electronic document and the video program,
wherein the player layout data defines a size and position of a browser window and a video

window within the player window.

66. The storage medium of claim 59, further comprising instructions which when executed
cause obtaining player layout data that defines a visual layout of a player window for use at
playback time to concurrently display both the electronic document and the video program,
wherein the player layout data defines a size and position of a browser window, a video window,

and a background within the player window.

67. The storage medium of claim 66 comprising instructions which when executed cause
obtaining player layout data that defines the video window as reduced size and logically over the

browser window.

-75-

WO 2010/132718 PCT/US2010/034808

68. The storage medium of claim 66 comprising instructions which when executed cause
obtaining player layout data that defines the video window and the browser window as adjacent

and both surrounded by the background.

69. The storage medium of claim 57, further comprising instructions which when executed
cause storing the metadata file in a first location that is different than a second location of the

stored video file.

70. A computer-readable data storage medium storing a metadata file produced by the
process of:

receiving first data identifying a stored video file having one or more video segments and
one or more cue points in the video file;

reading the video file and forming a list of the cue points that are defined in the video
file;

receiving second data identifying one of the cue points of a first video segment of the
video data file;

receiving one or more metadata values identifying a cue point type, and one or more
values of attributes that are associated with a particular cue point type, wherein the cue point
type and attribute values define features of an action to perform at the cue point during playing
of the video file;

storing the first data, second data, and metadata values in association with one another in

a metadata file that references the video file.

71. The storage medium of claim 70, wherein the metadata file further comprises at least one
of: an annotation value that specifies whether a player should generate and display a graphical
annotation of the video file in which each of the cue points is a selectable annotation element; a

name of a web service that can control selection among a plurality of video segments.

72. The storage medium of claim 70, wherein the cue point type and attribute values in the
metadata file specify any selected from the group consisting of: displaying a second video
segment; displaying a set of video segments or networked resources and prompting a selection
of one of the video segments or network resources; selecting from among a plurality of other
video segments based upon a result of a call to a web service; and returning to a different cue

point.

73. The storage medium of claim 72, wherein the metadata file further comprises a web

service identifier value that specifies the web service.

-76-

WO 2010/132718 PCT/US2010/034808

74. The storage medium of claim 70, wherein the cue point type and attribute values
represent any of commands to a video player to play a different video file; commands to the
video player to play a different portion of the same video file; commands to a web client to
retrieve and display a file from a web server; commands to the video player to display a menu of

user options.

75. The storage medium of claim 70 wherein the cue point type and attribute values are

stored in the metadata file in extensible markup language (XML) format.

76. The storage medium of claim 70, wherein the metadata file further comprises the cue
point type and attribute values specifying playing a second video segment of the video file that

begins at a point other than the cue point.

7. The storage medium of claim 70, wherein the metadata file further comprises the cue
point type and attribute values specifying displaying images representing a set of video segments

or networked resources and prompting a selection of one of the video segments or network

resources.
78. The storage medium of claim 78, wherein one of the images represents a web site.
79. The storage medium of claim 70, wherein the metadata file further comprises the cue

point type and attribute values specifying automatically selecting from among a plurality of
other video segments defined in the metadata file based upon a result of a call to a web service

that is identified in the metadata file.

80. The storage medium of claim 70, wherein the cue point type and attribute values specify
returning to a different cue point and playing another video segment starting at the different cue

point.

81. The storage medium of claim 70, wherein the cue point type and attribute values specify
displaying a graphical button overlaid in the video window; receiving user input selecting the
graphical button; in response to the user input, playing a second video segment, then returning to
an end of the first video segment and playing a next video segment after the end of the first

video segment.

82. The storage medium of claim 70, wherein the cue point type and attribute values specify
reading a MXML (Macromedia XML) user interface markup language script from the metadata
file, parsing and interpreting the MXML script, and generating and displaying one or more

overlay graphical elements in the video window based on the parsing and interpreting.

277-

WO 2010/132718 PCT/US2010/034808

83. The storage medium of claim 70, wherein the cue point type and attribute values specify
automatically pausing the playing the video file, switching to displaying a web browser

interface, connecting to a web site, retrieving one or more web pages, and displaying the one or

more web pages.

-78-

PCT/US2010/034808

Vi ‘Old

sojly soydoiy Hz7[

$8/lj DJOPLIIW 9GZI S9jlj 08pIA ZZ1

S8/ly DIOPLIBN 9Z|

wun Aojdsig V 0%l
sojly soiydoiy H71

1/33

WO 2010/132718

sajlf 08pIA ZZ1 WwoysAs bunossdp %01
dordes dlld ZE] (s)y10mpaN Josmoig ol J03ip7 09pIA GOIL
ozl
l |
1oA19S Qoy OS] 21607 4aAbj4 038PI 21bo7 Jojip7
8/qpdp)—D3DPLISW ZT] buiyury ospip 011

Jopndwon 7ol

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

2/33

sejlj ospin J8yjo buippo] ‘suocijouny Abjd XoLi
YoogApjd ooapin burysenbas 1ndur sesn ssao0.4d
AjsnouosyouAsb——suoyjpiado o buling 9g]

eadf} juiod sno payioeds
8yl Y}IM pa)DID0SSD San|pA
D)DpD)aW J0j Spjal) apirold
0} adf} jurod ano ay) uo
paspq Apjdsip uapndwod sajopdn
o1boj Joyipa bunjuil ospiA GGl

+

8df}) juiod ano b Quiod ano
Jojnonaod o uoy ‘buifjiosds jndu
188N SoAl9o08d 193ndwo) 9G]l

A

8s0/0 ¥91

Sk

— e e e s e —_

_\mmko”tom X
\ Y oM T91

N\
~ — Hll\

djlf O8PIA dY) Y}IM PaIDIZOSSD S|
1DY) 3JIj DIDPDJBL BY) Ul SN|DA
»| D)DPD)OW PBIDICOSSD pUD JCA}

N\
\
|

juiod and $9.40)S pub S$9)DBUD
o1boj 4ojips buiyul| 0spiA 0F]

A

JUd]U02

40 sjuswbas 1vyjo o3 syulf
0} buippfs. DIDPDIBUI PB)DIDOSSD
Aup sApjdsip pup ‘sl ospir 8y}
ul sjuiod ano ioj pipp SAb|dsip
‘9/lf D}DPD)}8W PI)DIOOSSD UD
$8)D84D 10 Spulj ‘sjlj 08pIA By}
sppaJ_4ojipa buiyull ospiA FG[

*

ally ospin b bujjuspr 1ndu
13Sn SaA1e08d u8pndwoy ZGJ

+

dlly ospin ayy Ul
sjulod ano e4ow U0 BUO S8.U01S
pupb sS91ps8i2 10}ipa 03pPIA (0G]

gl Old

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

3/33

o1boy soApid
08pIA dY) Ul painbluod uoiAbyseq
pup suonpoun; uo pasoq jujod
8no ay) Y)m pa1pioossp (s)anfoA
pup (s)yduos piopolawl 81noexs

pup sppa.s o1bo| safpjd oapin 9G]

+

swou jurod ano

< payonal

uiod ann 7971
7 $ul AT

SouiwIv)op olbo) soApjd oopin FG1

a

dJlf O3PIA
sApjd o1bo; safpid ospin DI

>4

8Jlj 08pin paouslsjel usd) G717

*

3llj DJDPD}aW pa)osfes usdp) 971

*

1SI] wody 9jij
pjopplaw b bunosies yndui issn

san190a4 21bo) 4aApjd ospin F71

*

sebowi o1ydpib
paous.iajad buisn 3si) sApjdsip
pup sojlj bjppprow buisixo

s8)p20] 21bo| iaApid o8pIN T/]
A

2160/
JoAD|d oapin 9/gpdpo—b)opDISW

bunpnoaxs sajoniul 1a3ndwon 071

ol "OlId

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

4/33

[=1[+]
00Z
85C 95 vsZ ZsC [«]
(] [Foud]
[7 N N\ [Jaumpoig Kioys gic — —
_ 7] ___]wel Aioys coc 10C
_ 7\]buns Kisnp o
_ 714N 1seseiu] e rhe o
(2] ___PUNI—po[W] }USU0) [_ 7 | 201Ad8S goM
[al [Bedadk] eng _ /| |3114 08pIA
_ \ [, |eui en ccey jcey| | 7 |aI enbiun
_ \ \ 1 { Jeswppn anp SWON[swi| [a] on1) K10y00.1(Q
507 o%%msw 90Z syuiod 8ny dI Sw\.h 55 PYOPRIN 1D S0z
057822922922 TS

020 40}lpd 11400

¢ 9Id

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

5/33

juswbas oapiA

wp1b04d puosss JI |—

jurod ano 80@\

sjonpo.ud 9904 7
juswiesiyienpy 8oc

jurod 8no 80,01|\

syonpoJd 9100 JIDH

S JUWRBSNUGAPY 90¢

youpig Aio)s
[DPOW ¥ IS 14015 15

quswbas 0api
wpuboud 1su4 70¢

£ Old

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

6/33

WO 2010/132718

- - - - - - <D ———
G Bid T
o R =10
1 € OPV ¢ g(
=| |[=—=| |=——= .|
— + H | =| |= 1 L]
=) [oy uol paoy| [Poems| [Fsar| ! PV B
| pu3son} 968'8¢C
30D} ¢81°G1 ! - U
! Dy uol PD 1Dy pD 230j| |35 G | OSPA A B®
_W gsn LLe'LL Z 09I ¢ g®
- }4D}s 0 :
|
—— - coppA (He
i
sjuI0g on: a
.._..n_ OI_QO ___ G O mv
/ 20%0:10-00 00:2£:00-00 00-00 00:00 :00 :00

_x |0 ®duanbag :aulpwI|

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

7/33

9 Old

Juiod an)| syabup|

| aumoig K10y

| %01 Kioys

[buns Aienp

/WO MOUSAIIDP3Y) MMM/ / “OHY| qyn 3saUoju]

aulur—boud] owiy) juejuoy

bai|adk] snp

0] awiy an)

}0}S|owbN an)

DIDQ julod an)

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

Z Old

\n

abowi punoibxooq
Joj uonpboof
pup swioN

8/33

jno pafkpib si) os
ua7049z 9q 1Snw
oaf) jusjuoo By

[__iiilng 3spowo) JnoA 3dnpay| 1xs| JappsH

V4

bd"*exopq/s|1ns] aimpaid punoibyoog

EjEx

uxe
Joy
90D}

Juiod enj | s3ebup|

| samo1q Au03g

| 301 Aioys

| Buns Kianp

| 74N 31saum3u]

| swn jusjuon

youplg A1ojs |spow|adk)] anj

11z 1] own an)”

8SW|awpN an)

K

D}DQ }ulod @n)

suonouissp sqissod
s}sl sjebip|

0)Ipe 08piA 8Yy3 buisn
paooyd som jurod ano
Y} adoym Aq psauiwi)ap
SI anjpa s} Ao
ppad sl awi| any ayj

DU JoqUIBLIS]
0] Asp3

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

6 Old

8 Old

9/33

0J"G8—/0Wap]

—~— 7]

s

anJ})

D}DPDISN 1dD

90IAJSS GOM
3lld 03pIA
aI anbiun
K10308.1Q

144

19 48A0)

burpioxs

i0L'§ 40 Siy} Yo1oM
S[p1os8WW0od [iqg 4nok o) [iq inof

ays #Ho l0'$ Ho 018
(=

—

[rig 3soawio) Jnof 82Npay

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

10/33

A
8002

NOILOFTd

\

N\

SUBSTITUTE SHEET (RULE 26)

WO 2010/132718

((gom 10j aryq) yuyy 09pm 0 S)1 9SNDIEG Pau X8} UooIpq 3y} dJoN)
ATof SMaN, S SGd JO pOSIde UD UIYIM S3LI0IS ay) JO 8SDI SIyy Ul A10joaup Y

L OI4

PCT/US2010/034808

11/33

9011

700 0 @ @ o oo =

oLl /\

/

2]

WO 2010/132718

SUBSTITUTE SHEET (RULE 26)

L7
L7 [
Ve
JUspIouI0D
[Mol uodnod japlaj&] [[2]] w}y 19Ap|d™xay~yspy /19Apjd—|dd /3bdi /ay Juaiouioo mmm/ / :dpy []| T ® ﬂ . AU R _V
O _ dieH sjoo] jooypp syounoog AIoysiH MSIA HPT S
%3 E_m_ x0jaul4 D|izoj — Jehkpld ospip jusppuio) O

PCT/US2010/034808

WO 2010/132718

12/33

1244
1SOH

cecl
ANSOMLIN

dSI

cl "Old

LINYFLNT

0scl
YINYFS

h

9icl
T04LNOD
H0SHNO

0ZZl 10071
JINIT rIv A
ASOMLIN FOVAHTLNI 7021
NOILYIINNANWOD M0SS3004d
A A
.Q N N N Y Y
2021
sng
A A A
Y Y Y
geel 011 9021
F0IN3a 80Z1 AMONIN
FOVHOLS WoY NIV

vicl
JOIAIG LNONI

clcl
AVIdSId

SUBSTITUTE SHEET (RULE 26)

vel ‘Old

PCT/US2010/034808
13/33

WO 2010/132718

Lalad]l < [PRI PI] OIS

‘

ﬁ_
M)
N
M

SIDN O o|pwWe{ Q) :iopusy

JJ9qWINN

sybip 4noA yum dn sn XooH ;Mma.uo

ml_l_ H I oy} woJ) sabpssaw }9b 0) Jupy
dHL

N
M)
—

SUBSTITUTE SHEET (RULE 26)

EEE 8GLl41°0°| 48AD|ld ALD@

WO 2010/132718

14/33

PCT/US2010/034808

|

IR
FlG. 13B

o] N
E M)
= 5
[|
z
g;‘ § 5
N
o
M)
0
n
T
T
S
g R—
E 1)|
. s @k
> 3
5 oL
®

SUBSTITUTE SHEET (RULE 26)

WO 2010/132718 PCT/US2010/034808

15/33

o
IRE < @) B
IO B\ [z
g =] K
[N
rf)
g
=)
35)
N
=)
d—
2
- AL
2 N
_ ~
3z TR
v
o \/—\
o)
T \/\—/\’/\\
3 |
—]
[—
9 I
o L
x =
>
—
O
®

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

vel Old

B|[@] AR

19}0DJDYD 9}1JOADS JNOA 103[9S 8sDa|d

YNI¥ANY ¢0S1 43ON3dS IQI3H—
. pe—y, ey,
8 SHRICIRIE
o

YOG
90GT
7051
EEIE 8G114°1°0°L 49AD|d ALD@

SUBSTITUTE SHEET (RULE 26)

WO 2010/132718

17/33

PCT/US2010/034808

5] [x]

[=]]

® CTV Player 1.0.1.r1158

N

~

TGl [¢

LIRS
5
SPENCER
1324
(&)
HEIDI
/_\

JO® Gk

w|
N
.

L] D I[pd][DI]

SUBSTITUTE SHEET (RULE 26)

FlG. 15B

PCT/US2010/034808

WO 2010/132718

18/33

— TR 1) AAOTBOR
uospny uuiy~-aposidd AL (040z) BUOS PUIBO— A oL L
ypejuow £Joo olet TOSpNY Ui ~aposide AL (010z) BT _oposidi- Paydo.boig
UOSpNH_Uuijaposide AL (010Z) OZ 1 _oposidi- I T S
TOSPR UUaposida AL (0107) TC'1§ posidI- =000 RS
UOSp WUy aposidd AL (0107) Z¢1# 9posiaa- —oi0? | = AT
01026007 ‘seposide Zz) uospny uly* 3P, °| <oy Jﬁ OA AQ—
Sae TS PDAPUNOS “1030y :sb Aydoibowyy oy dwnp| SDURDJ AQ—
¢091 .M.____%aos__.._ %&Iﬁmm
PHQRH AJAS WVOO< IX DN PoM -<Inpayds AL SN oI
(Lad ‘v SS:01 ‘0102 YoJoN GZ “TBTTI0Id Wok) Selydn.bou4
IR LN TpIOND—
GHON NAV)) = e T (sapro 6ig) Jlsﬁ_aa&u
ISTANI OL INIL FHL S MON 35000) 905 [\ [oAMD OM] UsoRjeg WOl — JIRG JORDL 2ysasMaN m%
) <<BI0UT 335 UORDUIWIOU | % UM | ol TR
TOIJGANT uo AR 235 yoam siyy Kjupjndod w sbubyd oN UajeWyY]S b 15
"umojawWoy Siy)i SISPISU0d R Hg DLOIA Ul dn ma :myy JUozouy A_m;m
OIJIQAT uo ojul }o0jucd Toba] R TSPIqNd “FIROD MBIA J9D}u0) _w””_vo»
. <<310UI 335 “DpDUDY DA “AI0DD) 7861 KON 11 :upig J0 8joQ %H_
abupyd D
— &) [| (LI by ’
g | T
(6% 1D 935) s0apIA = (S0}0Ud PP | MOUSIPIS | £ [O 935) SO0y m
191 <O P30R Y)iajuojy £o) =
pIsjuoN Aoy

djoH | uibo | 4eysibay

A 0JJqUNI A Ajunwwog) A SOPIA A SAIN A S9N

lIv Jyoioes

asDQD)D(SAOW JOWBYU] Y|

A
B_ _ _ v _ Qﬁ_ EH ||
ANTINO
ALTSHAINN 3HL "9y)| Asnq Jnok 1y o191
v113dv D 0} yoddns pup swoibosd ayonpoug
¢0el [a]

HMEE

8G114°1°0°L 49AD|d ALD

@

9l ‘Old

SUBSTITUTE SHEET (RULE 26)

WO 2010/132718

19/33

PCT/US2010/034808

== |

1702

® CTV Player 1.0.1.r1158

MAD MEN

2

AR B

FiG. 17A

2 9 8EIEA,

SUBSTITUTE SHEET (RULE 26)

WO 2010/132718

PCT/US2010/034808

20/33

| I

[

[©
—
~
b vl

N [
= g
= 28
= ® g
pm g
§<
5
S
SEE]
~| = N
-~
O
S S 20N
= = ™
f o
=1 ~
[} o0
=) —

10 be &5 ¢

-~ (24 gg E'E

= co <3

— T3 =3

< ®©

- O

- ™~
—
2

e/

o

>

|_

)

SUBSTITUTE SHEET (RULE 26)

FlG. 17B

PCT/US2010/034808

WO 2010/132718

21/33

941 OI4

WA
uonpdiosqns
NINAYIN
| uospag
S300SId3 ¥3dAH TV
01/02/% SIqoloAY 8071
¢l ¥3dAH
0¢L|
01/0¢/¥ SIqp|ibAy 01/0¢/% 9IaD[oAY 0L/0¢/+% SIqp[ibAy 01/0¢/+ SIqp|IbAY
¢l ¥3dAH Ll Y3dAH 0l ¥3dAH 6 ¥3dAH
01/0¢/¥ 9IqulibAy 0L/0Z/+% 2IqD[IbAY 01/0¢/¥ SIqolioAY 01/0¢/¥ 9lqoliAy
8 ¥idAH L ¥idAH 9 Y¥3idAH G Y¥3dAH
Yell
| |
01/9/% SIqo[IDAY 01/9/% 3|qoiIbAY P07 [s%3 Jno uT)39 eYoWS
¥ ¥3dAH € YIdAH | 8posid3 JIdAH

IEIE]

8GLII10°L 49AD|d AID@

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

22/33

azlk ©Oid

uojydiiosgns

NANCYI

wiooy SaIpDT
S3A0SId3 M3N

@ S300SId3 ¥3dAH

¥C/1 [AYAL

S300SId3 TIv @ mbzumi
da\

EEE

8Gl14°1°0°) J9ADId ALD@

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

23/33

veL bid

[O][@]

Lal[aa] a [P> DI

aul[0aQ
u Awouosy

Blisad O

lomod JO asnqy
10} poyopadw]
yswabolg psy

— 9081 —

101Ju0) DZDY

JouyaT WP

4NOF
SMIN

Bisad O

Jaays wip
YHM JINOHSMBN 7080

RisadO

8081
2081

HMEE

8G114°1°0°L J9AD|d ALD@

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

gsiL b4

9181~ IEE (<] 4][bb] ONIDO07d SOHM] ---yuswanob sy} seop A|jopxe moy 3ng
|_ L 35010 WV SININMOD | . .
081 buiug ‘yjuow 3oy} 3so| susm sqof
‘ IV M3l | juswuwio) | ‘
o\ o 000‘vZG——140das sqol Joquada(g
julouc3 ININA0D wilb s3I paspajad juswiipda(
_ \ /O\ I 10qp ay} ‘buiuiow Appiaisap
‘01 & %
= ® 1o 5 B
|| = 3 x X08 1001 susayy juol4 Ag
80817 Ul)0} SSO|QO[WiIG 1DY] SBI||D| 19WUIBA0Y Y} MOH

UIBIOUI JjoJd 30110 U0 3 0] SNJ0j SINSal Y :SMON 159107

—_ 181
ﬁ 181 $SOUISN < _W09°}S0dUO}BUILSDA
y SAAIYOLY YouDag @_] HOWV3S
N STVINIY|LYLSI VA | SuvD | Seor 301N9 LNO ONIOD |ONIAIT ¥ SLYV | SI¥0dS | TvIOT | SSINISNE| SNOINIHO | SOLLTIOd | SMAN
O 139 T
S9bpL}IDD SWIDU—PUDIQ JOYJO UD =
SDUNDS alotl %0g or dn- e UPt wu o xeu BUIONPOJIUT

sebod ssow %0z 03 dn

e 1504 uoybulysom 8yl

SUBSTITUTE SHEET (RULE 26)

moN Jo)sibay | ul ubig

[[«] [=]

EIEIE QG114 1°0°l 49AD|d AID @

081 8181

PCT/US2010/034808

WO 2010/132718

25/33

08l bid

[b

[[E][@] [« <Ib]

*A}JISSD|2 0} DILIBYIO sby Adusbp ayy asnopaq
s} ‘Aliis spunos 3oy} JI ¢pekojdwaun Jo pakojdwe
nNoA oJy :paYsSD JoAdU oM AdAUNs A|yjuow ay) Jo)

| ~v181

NOITIIN 9°C POM3IAIS1Ul 9D OUym
8007 o|doad “A|buiysetsiug C_ooA,W_Q_UJO 7
I
"yjuow yooa a|doad
1S01 ss€or swps oyy oy buppy| LM 0ol / D \/\
},UsJD DIDP JOqp|

"*'sJ9|l0g ‘49ouD) X
S0}S9Qsy ‘DWOI[OY}0SON
‘yo1noxo0Ig uLIg
1NoAx0UpAH ‘Buiopay
Zp\ ‘Dy}oA0] ‘sjup|dwi
ID3|Y20) :}NSMDT
(CESIEEINGAERINEE

4]

ofov_ou,os;m._ov_._o; .><QO._. k\o
snsue) ‘SN 00g‘| ayy| >0080IANY \S
0S ‘}n0 paydo}imMs 8D MMW_M_
spjoyssnoy s a|dwps vV GvVOINMOQ
000‘Gl ‘yiuow yoo3

**noA JT ‘Jequinu |pn}op sy} jo sjulod sbobjusosed ¢
uiyyim aup 396 noA susmsup sy} }py} JUSPIILOID %GH o]
uod nok ‘s|doad psjosjes Ajwopupd QOQ‘l 1hogp AsAuns
nok 9ouo——|od [pijuspisaid |puoilbU D 9Yi|——Uuolpjndod
obip| b jo yno pypp 386 03 buKkiy sanok i ‘bunypeds
A||po13s1ip}s “suop aJ4p skains big ||p jsowp moy si siyj

8181

EHEIE

[[o] Co]

8G114°1°0°) J9AD|d ALD@

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

26/33

vél ‘Old

[=]I[] L]l d JIDb][DI]

ANIT30 14dONW
IXSNIALNG SVI0JIN

%) <

YINYVO

ﬂ

N
(o)

m 9061

dIVA
Y330,

ers

INOLLIND
¥IONIJS

3 o

43INOISAd

EEE

8GLI41°0°L 49ADId ALD@

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

27/33

g6l bid

[b

[[B[@] [« < bP]

£ 300SId3
\ooméoz,
ﬁm.cc:mv witl @
< u4
/
L 2061
uung wij m
0261 <~/

41

IN'NNNOWILE

[[«] [=]

HEE

006l

8G114°1°0°) 49AD|Id ALO@

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

28/33

asoqgoDlodg

oc bid

A

saly 3duos 800z

A

o1bo7 bununoody ‘gooz

21bo7 48Ab|4 08PIA
8/qpdp)—D3DPDISK Z[]

7

JOAIBS [04] :ob\ 19A0|d F00Z

So[lj DIDPDISA 9c|

sajy soiydoiy %z

sl 09PN ZZ1

don18s B4 7T

8488 qay OS]

A

e -l
-

yun Aojdsiq

-

WwoysAs bunossdp %01

(s)y10mpaN

ocl

;_\DEQ: podadns 7ooz

Joyp3 0spiA JOI

J9smoug go|f

3607 07PT
buiyury ospin 011

J9)ndwoyn 7Zoi

SUBSTITUTE SHEET (RULE 26)

WO 2010/132718

2106

29/33

PCT/US2010/034808

=

=

N

N

[L<dl[> 1[P1]

N

® CTV{Player 1.0.1.r1158

File Edit Pther

¢|
o)
N
o
£
=]
=z
o0
[] s
© N
E Ve
|=|:\/

o

FlGa. 21

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

30/33

cc Old

suopng ubis

asmoug
MIIA qoM
asmoug
MOIA O9PIA
[*ToY44 * TNLH punoubxopg
asmoJg
¥0C¢C juidod gam juspioulo]
2o1nIeg 6o
YAoY4A4A I EINEGETTY
X 82|15 08pIA
AY'pnojp—mau| 8ji4 08pIA
DIDPDISN

N:NL

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

gc Old

31/33

€01~

auljaw]

OO co:00:00:00

|
JL_1 obowg
|
B
(]
_ 0l vonisod FATT
[0l voiyisod 90%¢
[pJ3uaq
.VOMNJ u&._.
~ QuoIp}duuD | SWoN
-
—_—
S /
Nomw/
\ awop|
/ _ _=o=omo==<_|_|

43410 11P3 3|4

3/ =1

A\

AY$10000IA\S09PIA\DIDQ 2Joysdid\soapin AN\syuewnooq AW\ dsuyo\sbuias pup syuswnaog\ :0-8g1 110" NP3 ALD(@)

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

32/33

ve Old

aulpwI|

OO ¢0:00:00:00

I»

/

i L onz
_ | (35Wox]
r% | (3S#ox)
L~ 0l 0¥ ¢
. 90¥C™
jpJauag
| QluIodqem | awoy
-]
[0} X4
¢c0¥¢
SUDN|

49410 ¥p3 914

3] =]

AV 10000IA\SO9PIA\DIDQ 2.0ySdif4\S0apIA AW\Sjuswnooq AW\dsliyo\sbunies pup syuswndoq\ :0—8GLIL0"L Joup3 ALD(Q)

L-z01Z

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/034808

WO 2010/132718

33/33

gc Old

\
\

[L
¥0G¢
~ L
_ o#sgc__ QWIDN
CJL_||
90G¢ ¢0G¢
"N—015¢
¢0S¢ >
09pIA \ JWDN
/ QORI PM
_ \ 18U} Yp3 o4
EIEE] \ C0LZ MP¥1000aIA\S09PIA\D}DQ 2.10Sdil4\sospiA AN\Sjuewndoq A\ dstiyo\sbunies puo sjuewndog\ :0-gG1LI10"} JoWP3 ALI(QD
_/
806¢

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings

