

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2014351557 B2

(54) Title
Cell

(51) International Patent Classification(s)
C12N 5/0783 (2010.01) **C07K 14/725** (2006.01)
A61K 39/00 (2006.01) **C07K 16/28** (2006.01)
C07K 14/705 (2006.01) **C07K 16/30** (2006.01)

(21) Application No: **2014351557** (22) Date of Filing: **2014.11.21**

(87) WIPO No: **WO15/075469**

(30) Priority Data

(31) Number	(32) Date	(33) Country
1410934.2	2014.06.19	GB
1320573.7	2013.11.21	GB

(43) Publication Date: **2015.05.28**

(44) Accepted Journal Date: **2019.04.18**

(71) Applicant(s)
UCL Business PLC

(72) Inventor(s)
Pule, Martin;Kong, Khai;Cordoba, Shaun

(74) Agent / Attorney
Pairman IP, P.O. Box 33252, Christchurch, 8244, NZ

(56) Related Art
E. LANITIS ET AL, "Chimeric Antigen Receptor T Cells with Dissociated Signaling Domains Exhibit Focused Antitumor Activity with Reduced Potential for Toxicity In Vivo", CANCER IMMUNOLOGY RESEARCH, 2013, 1(1):43-53

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/075469 A1

(43) International Publication Date

28 May 2015 (28.05.2015)

(51) International Patent Classification:

A61K 39/00 (2006.01) *C07K 16/28* (2006.01)
C07K 14/725 (2006.01) *C07K 16/30* (2006.01)
C07K 14/705 (2006.01) *C12N 5/0783* (2010.01)

(74) Agent: **HOLLIDAY, Louise**; D Young & Co LLP, 120 Holborn, London, EC1N 2DY (GB).

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/GB2014/053452

(22) International Filing Date:

21 November 2014 (21.11.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

1320573.7 21 November 2013 (21.11.2013) GB
1410934.2 19 June 2014 (19.06.2014) GB

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

WO 2015/075469 A1

(54) Title: CELL

(57) **Abstract:** The present invention provides a cell which co-expresses a first chimeric antigen receptor (CAR) and second CAR at the cell surface, each CAR comprising: (i) an antigen-binding domain; (ii) a spacer (iii) a trans-membrane domain; and (iv) an endodomain wherein the antigen binding domains of the first and second CARs bind to different antigens, wherein the spacer of the first CAR is different to the spacer of the second CAR and wherein one of the first or second CARs is an activating CAR comprising an activating endodomain and the other CAR is an inhibitory CAR comprising a ligation-off inhibitory endodomain.

5

CELL

FIELD OF THE INVENTION

10 The present invention relates to a cell which comprises more than one chimeric antigen receptor (CAR). The cell may be capable of specifically recognising a target cell, due to a differential pattern of expression (or non-expression) of two or more antigens by the target cell.

BACKGROUND TO THE INVENTION

15 A number of immunotherapeutic agents have been described for use in cancer treatment, including therapeutic monoclonal antibodies (mAbs), immunoconjugated mAbs, radioconjugated mAbs and bi-specific T-cell engagers.

20 Typically these immunotherapeutic agents target a single antigen: for instance, Rituximab targets CD20; Mylotarg targets CD33; and Alemtuzumab targets CD52.

However, it is relatively rare for the presence (or absence) of a single antigen effectively to describe a cancer, which can lead to a lack of specificity.

25 Most cancers cannot be differentiated from normal tissues on the basis of a single antigen. Hence, considerable “on-target off-tumour” toxicity occurs whereby normal tissues are damaged by the therapy. For instance, whilst targeting CD20 to treat B-cell lymphomas with Rituximab, the entire normal B-cell compartment is depleted, whilst targeting CD52 to treat chronic lymphocytic leukaemia, the entire lymphoid compartment is depleted, whilst targeting CD33 to treat acute myeloid leukaemia, the entire myeloid compartment is damaged etc. The predicted problem of “on-target off-tumour” toxicity has been borne out by clinical trials. For example, an approach targeting ERBB2 caused death to a patient with colon cancer metastatic to the lungs and liver. ERBB2 is over-expressed in colon cancer in some patients, 35 but it is also expressed on several normal tissues, including heart and normal vasculature.

40 For some cancers, targeting the presence of two cancer antigens may be more selective and therefore effective than targeting one. For example, B-chronic lymphocytic leukaemia (B-CLL) is a common leukaemia which is currently treated by targeting CD19. This treats the lymphoma but also depletes the entire B-cell compartment such that the treatment has a considerable toxic effect. B-CLL has an unusual phenotype in that CD5 and CD19 are co-

5 expressed. By targeting only cells which express CD5 and CD19, it would be possible to considerably reduce on-target off-tumour toxicity.

There is thus a need for immunotherapeutic agents which are capable of more targeting to reflect the complex pattern of marker expression that is associated with many cancers.

10

Chimeric Antigen Receptors (CARs)

Chimeric antigen receptors are proteins which graft the specificity of a monoclonal antibody (mAb) to the effector function of a T-cell. Their usual form is that of a type I transmembrane domain protein with an antigen recognizing amino terminus, a spacer, a transmembrane domain all connected to a compound endodomain which transmits T-cell survival and activation signals (see Figure 1A).

20 The most common form of these molecules are fusions of single-chain variable fragments (scFv) derived from monoclonal antibodies which recognize a target antigen, fused via a spacer and a trans-membrane domain to a signaling endodomain. Such molecules result in activation of the T-cell in response to recognition by the scFv of its target. When T cells express such a CAR, they recognize and kill target cells that express the target antigen. 25 Several CARs have been developed against tumour associated antigens, and adoptive transfer approaches using such CAR-expressing T cells are currently in clinical trial for the treatment of various cancers.

30 However, the use of CAR-expressing T cells is also associated with on-target, off tumour toxicity. For example, a CAR-based approach targeting carboxy anyhydrase-IX (CAIX) to treat renal cell carcinoma resulted in liver toxicity which is thought to be caused by the specific attack on bile duct epithelial cells (Lamers et al (2013) Mol. Ther. 21:904-912).

Dual targeting CAR approaches

35 In order to address the problem of “on target, off tumour” toxicity, CAR T cells have been developed with dual antigen specificity. In the “dual targeting” approach, two complementary CARs are co-expressed in the same T-cell population, each directed to a distant tumour target and engineered to provide complementary signals.

40 Wlikie et al (2012 J Clin Immunol 32:1059-1070) describe a dual targeting approach in which ErbB2- and MUC1-specific CARs are co-expressed. The ErbB2-specific CAR provided the CD3ζ signal only and the MUC1-specific CAR provided the CD28 co-stimulatory signal only.

5 It was found that complementary signalling occurred in the presence of both antigens, leading to IL-2 production. However, IL-2 production was modest when compared to control CAR-engineered T cells in which signaling is delivered by a fused CD28+CD3 ζ endodomain.

10 A similar approach was described by Kloss et al (2013 *Nature Biotechnol.* 31:71-75) in which a CD-19 specific CAR was used which provides a CD3 ζ -mediated activation signal in combination with a chimeric co-stimulatory receptor specific for PSMA. With this 'co-CAR' design, the CAR T-cell receives an activation signal when it encounters a target cell with one antigen, and a co-stimulatory signal when it encounters a target cell with the other antigen, and only receives both activatory and co-stimulatory signals upon encountering target cells 15 bearing both antigens.

20 This represents an early attempt at restricting CAR activity to only a target cell bearing two antigens. This approach however is limited: although CAR T-cell activity will be greatest against targets expressing both antigens, CAR T-cells will still kill targets expressing only antigen recognized by the activatory CAR; further, co-stimulation results in prolonged effects 25 on T-cells which last long after release of target cell. Hence, activity against single-antigen positive T-cells equal to that against double-positives might be possible for example in a situation where single-positive tissues are adjacent to, or in a migratory path from double positive tumour.

25

There is thus a need for improved CAR-based therapeutic approaches with reduced on-target off-tumour toxicity where T-cell activation is wholly restricted to target cells which express both antigens.

30 **DESCRIPTION OF THE FIGURES**

Figure 1: (a) Generalized architecture of a CAR: A binding domain recognizes antigen; the spacer elevates the binding domain from the cell surface; the trans-membrane domain anchors the protein to the membrane and the endodomain transmits signals. (b) to (d): 35 Different generations and permutations of CAR endodomains: (b) initial designs transmitted ITAM signals alone through Fc ϵ R1- γ or CD3 ζ endodomain, while later designs transmitted additional (c) one or (d) two co-stimulatory signals in cis.

Figure 2: Schematic diagram illustrating the invention

40 The invention relates to engineering T-cells to respond to logical rules of target cell antigen expression. This is best illustrated with an imaginary FACS scatter-plot. Target cell

5 populations express both, either or neither of antigens "A" and "B". Different target populations (marked in red) are killed by T-cells transduced with a pair of CARs connected by different gates. With OR gated receptors, both single-positive and double-positive cells will be killed. With AND gated receptors, only double-positive target cells are killed. With AND NOT gating, double-positive targets are preserved while single-positive targets

10

Figure 3: Creation of target cell populations

SupT1 cells were used as target cells. These cells were transduced to express either CD19, CD33 or both CD19 and CD33. Target cells were stained with appropriate antibodies and analysed by flow cytometry.

15

Figure 4: Cassette design for an OR gate

A single open reading frame provides both CARs with an in-frame FMD-2A sequence resulting in two proteins. Signal1 is a signal peptide derived from IgG1 (but can be any effective signal peptide). scFv1 is the single-chain variable segment which recognizes CD19 (but can be a scFv or peptide loop or ligand or in fact any domain which recognizes any desired arbitrary target). STK is the CD8 stalk but may be any suitable extracellular domain. CD28tm is the CD28 trans-membrane domain but can be any stable type I protein transmembrane domain and CD3Z is the CD3 Zeta endodomain but can be any endodomain which contains ITAMs. Signal2 is a signal peptide derived from CD8 but can be any effective signal peptide which is different in DNA sequence from signal1. scFv recognizes CD33 but as for scFv1 is arbitrary. HC2CH3 is the hinge-CH2-CH3 of human IgG1 but can be any extracellular domain which does not cross-pair with the spacer used in the first CAR. CD28tm' and CD3Z' code for the same protein sequence as CD28tm and CD3Z but are codon-wobbled to prevent homologous recombination.

20

Figure 5: Schematic representation of the chimeric antigen receptors (CARs) for an OR gate Stimulatory CARs were constructed consisting of either an N-terminal A) anti-CD19 scFv domain followed by the extracellular hinge region of human CD8 or B) anti-CD33 scFv domain followed by the extracellular hinge, CH2 and CH3 (containing a pva mutation to reduce FcR binding) region of human IgG1. Both receptors contain a human CD28 transmembrane domain and a human CD3 Zeta (CD247) intracellular domain. "S" depicts the presence of disulphide bonds.

25

Figure 6: Expression data showing co-expression of both CARs on the surface of one T-cell.

30

Figure 7: Functional analysis of the OR gate

5 Effector cells (5×10^4 cells) expressing the OR gate construct were co-incubated with a varying number of target cells and IL-2 was analysed after 16 hours by ELISA. The graph displays the average maximum IL-2 secretion from a chemical stimulation (PMA and ionomycin) of the effector cells alone and the average background IL-2 from effector cells without any stimulus from three replicates.

10

Figure 8: Cartoon showing both versions of the cassette used to express both AND gates Activating and inhibiting CARs were co-expressed once again using a FMD-2A sequence. Signal1 is a signal peptide derived from IgG1 (but can be any effective signal peptide). scFv1 is the single-chain variable segment which recognizes CD19 (but can be a scFv or peptide loop or ligand or in fact any domain which recognizes any desired arbitrary target). STK is the CD8 stalk but may be any non-bulky extracellular domain. CD28tm is the CD28 trans-membrane domain but can be any stable type I protein transmembrane domain and CD3Z is the CD3 Zeta endodomain but can be any endodomain which contains ITAMs. Signal2 is a signal peptide derived from CD8 but can be any effective signal peptide which is different in DNA sequence from signal1. scFv recognizes CD33 but as for scFv1 is arbitrary. HC2CH3 is the hinge-CH2-CH3 of human IgG1 but can be any bulky extracellular domain. CD45 and CD148 are the transmembrane and endodomains of CD45 and CD148 respectively but can be derived from any of this class of protein.

25 **Figure 9:** Schematic representation of the protein structure of chimeric antigen receptors (CARs) for the AND gates

The stimulatory CAR consisting of an N-terminal anti-CD19 scFv domain followed by the extracellular stalk region of human CD8, human CD28 transmembrane domain and human CD3 Zeta (CD247) intracellular domain. Two inhibitory CARs were tested. These consist of 30 an N-terminal anti-CD33 scFv domain followed by the extracellular hinge, CH2 and CH3 (containing a pva mutation to reduce FcR binding) region of human IgG1 followed by the transmembrane and intracellular domain of either human CD148 or CD45. "S" depicts the presence of disulphide bonds.

35 **Figure 10:** Co-expression of activation and inhibitory CARs

BW5147 cells were used as effector cells and were transduced to express both the activation anti-CD19 CAR and one of the inhibitory anti-CD33 CARs. Effector cells were stained with CD19-mouse-Fc and CD33-rabbit-Fc and with appropriate secondary antibodies and analysed by flow cytometry.

40

Figure 11: Functional analysis of the AND gates

5 Effector cells (5×10^4 cells) expressing activation anti-CD19 CAR and the inhibitory anti-CD33 CAR with the A) CD148 or B) CXD45 intracellular domain were co- incubated with a varying number of target cells and IL-2 was analysed after 16hours by ELISA. The graph displays the maximum IL-2 secretion from a chemical stimulation (PMA and Ionomycin) of the effector cells alone and the background IL-2 from effector cells without any stimulus from 10 three replicates.

Figure 12: Cartoon showing three versions of the cassette used to generate the AND NOT gate

Activating and inhibiting CARs were co-expressed once again using a FMD-2A sequence. 15 Signal1 is a signal peptide derived from IgG1 (but can be any effective signal peptide). scFv1 is the single-chain variable segment which recognizes CD19 (but can be a scFv or peptide loop or ligand or in fact any domain which recognizes any desired arbitrary target). STK is the human CD8 stalk but may be any non-bulky extracellular domain. CD28tm is the 20 CD28 trans-membrane domain but can be any stable type I protein transmembrane domain and CD3Z is the CD3 Zeta endodomain but can be any endodomain which contains ITAMs. Signal2 is a signal peptide derived from CD8 but can be any effective signal peptide which is different in DNA sequence from signal1. scFv recognizes CD33 but as for scFv1 is arbitrary. muSTK is the mouse CD8 stalk but can be any spacer which co-localises but does not cross-pair with that of the activating CAR. dPTPN6 is the phosphatase domain of PTPN6. 25 LAIR1 is the transmembrane and endodomain of LAIR1. 2Aw is a codon-wobbled version of the FMD-2A sequence. SH2-CD148 is the SH2 domain of PTPN6 fused with the phosphatase domain of CD148.

Figure 13: Schematic representation of the chimeric antigen receptors (CARs) for the NOT 30 AND gates

A) A stimulatory CAR consisting of an N-terminal anti-CD19 scFv domain followed by the stalk region of human CD8, human CD28 transmembrane domain and human CD247 intracellular domain. B) An inhibitory CAR consisting of an N-terminal anti-CD33 scFv domain followed by the stalk region of mouse CD8, transmembrane region of mouse CD8 35 and the phosphatase domain of PTPN6. C) an inhibitory CAR consisting of an N-terminal anti-CD33 scFv domain followed by the stalk region of mouse CD8 and the transmembrane and intracellular segments of LAIR1. D) An inhibitory CAR identical to previous CAR except it is co-expressed with a fusion protein of the PTPN6 SH2 domain and the CD148 phosphatase domain.

40

Figure 14: Functional analysis of the NOT AND gate

5 Effector cells (5×10^4 cells) expressing the A) full length SHP-1 or B) truncated form of SHP-1 were co- incubated with a varying number of target cells and IL-2 was analysed after 16 hours by ELISA. The graph displays the average maximum IL-2 secretion from a chemical stimulation (PMA and Ionomycin) of the effector cells alone and the average background IL-2 from effector cells without any stimulus from three replicates.

10

Figure 15: Amino acid sequence of an OR gate

Figure 16: Amino acid sequence of a CD148 and a CD145 based AND gate

15 **Figure 17:** Amino acid sequence of two AND NOT gates

Figure 18: Dissection of AND gate function

A. The prototype AND gate is illustrated on the right and its function in response to CD19, CD33 single and CD19, CD33 double positive targets is shown on the left. B. The scFvs are swapped so the activating endodomain is triggered by CD33 and the inhibitory endodomain is activated by CD19. This AND gate remains functional despite this scFv swap. C. The CD8 mouse stalk replaced Fc in the spacer of the inhibitory CAR. With this modification, the gate fails to respond to either CD19 single positive or CD19, CD33 double positive targets.

25 **Figure 19:** Expression of target antigens on artificial target cells

A. Shows flow cytometry scatter plots CD19 vs CD33 of the original set of artificial target cells derived from SupT1 cells. From left to right: double negative SupT1 cells, SupT1 cells positive for CD19, positive for CD33 and positive for both CD19 and CD33. B. Shows flow cytometry scatter plots CD19 vs GD2 of the artificial target cells generated to test the CD19 AND GD2 gate: From left to right: negative SupT1 cells, SupT1 cells expressing CD19, SupT1 cells transduced with GD2 and GM3 synthase vectors which become GD2 positive and SupT1 cells transduced with CD19 as well as GD2 and GM3 synthase which are positive for both GD2 and CD19. C. Shows flow cytometry scatter plots of CD19 vs EGFRvIII of the artificial targets generated to test the CD19 AND EGFRvIII gate. From left to right: negative SupT1 cells, SupT1 cells expressing CD19, SupT1 cells transduced with EGFRvIII and SupT1 cells transduced with both CD19 and EGFRvIII. D. Shows flow cytometry scatter plots of CD19 vs CD5 of the artificial targets generated to test the CD19 AND CD5 gate. From left to right: negative 293T cells, 293T cells transduced with CD19, 293T cells transduced with CD5, 293T cells transduced with both CD5 and CD19 vectors.

40

Figure 20: Generalizability of the AND gate

5 A. Cartoon of AND gate modified so the second CAR's specificity is changed from the original specificity of CD33, to generate 3 new CARs: CD19 AND GD2, CD19 AND EGFRvIII, CD19 AND CD5. B. CD19 AND GD2 AND gate: Left: expression of AND gate is shown recombinant CD19-Fc staining (x-axis) for the CD19 CAR, versus anti-human-Fc staining (Y-axis) for the GD2 CAR. Right: function in response to single positive and double positive targets. C. CD19 AND EGFRvIII AND gate: Left: expression of AND gate is shown recombinant CD19-Fc staining (x-axis) for the CD19 CAR, versus anti-human-Fc staining (Y-axis) for the EGFRvIII CAR. Right: function in response to single positive and double positive targets. D. CD19 AND CD5 AND gate: Left: expression of AND gate is shown recombinant CD19-Fc staining (x-axis) for the CD19 CAR, versus anti-human-Fc staining (Y-axis) for the CD5 CAR. Right: function in response to single positive and double positive targets.

Figure 21: Function of the AND NOT gates

Function of the three implementations of an AND NOT gate is shown. A cartoon of the gates tested is shown to the right, and function in response to single positive and double positive targets is shown to the left. A. PTPN6 based AND NOT gate whereby the first CAR recognizes CD19, has a human CD8 stalk spacer and an ITAM containing activating endodomain; is co-expressed with a second CAR that recognizes CD33, has a mouse CD8 stalk spacer and has an endodomain comprising of a PTPN6 phosphatase domain. B. ITIM based AND NOT gate is identical to the PTPN6 gate, except the endodomain is replaced by the endodomain from LAIR1. C. CD148 boosted AND NOT gate is identical to the ITIM based gate except an additional fusion between the PTPN6 SH2 and the endodomain of CD148 is expressed. All three gates work as expected with activation in response to CD19 but not in response to CD19 and CD33 together.

Figure 22: Dissection of PTPN6 based AND NOT gate function

The original PTPN6 based AND NOT gate is compared with several controls to demonstrate the model. A cartoon of the gates tested is shown to the right, and function in response to single positive and double positive targets is shown to the left. A. Original AND NOT gate whereby the first CAR recognizes CD19, has a human CD8 stalk spacer and an ITAM containing activating endodomain; is co-expressed with a second CAR recognizes CD33, has a mouse CD8 stalk spacer and has an endodomain comprising of a PTPN6 phosphatase domain. B. AND NOT gate modified so the mouse CD8 stalk spacer is replaced with an Fc spacer. C AND NOT gate modified so that the PTPN6 phosphatase domain is replaced with the endodomain from CD148. Original AND NOT gate (A.) functions as expected triggering in response to CD19, but not in response to both CD19 and CD33.

5 The gate in **B**. triggers both in response to CD19 along or CD19 and CD33 together. The gate in **C**. does not trigger in response to one or both targets.

Figure 23: Dissection of LAIR1 based AND NOT gate

Functional activity against CD19 positive, CD33 positive and CD19, CD33 double-positive targets is shown. **A.** Structure and activity of the original ITIM based AND NOT gate. This gate is composed of two CARs: the first recognizes CD19, has a human CD8 stalk spacer and an ITAM containing endodomain; the second CAR recognizes CD33, has a mouse CD8 stalk spacer and an ITIM containing endodomain. **B** Structure and activity of the control ITIM based gate where the mouse CD8 stalk spacer has been replaced by an Fc domain. This gate is composed of two CARs: the first recognizes CD19, has a human CD8 stalk spacer and an ITAM containing endodomain; the second CAR recognizes CD33, has an Fc spacer and an ITIM containing endodomain. Both gates respond to CD19 single positive targets, while only the original gate is inactive in response to CD19 and CD33 double positive targets.

20

Figure 24: Kinetic segregation model of CAR logic gates

Model of kinetic segregation and behaviour of AND gate, NOT AND gate and controls. CARs recognize either CD19 or CD33. The immunological synapse can be imagined between the blue line, which represents the target cell membrane and the red line, which represents the T-cell membrane. '45' is the native CD45 protein present on T-cells. 'H8' is a CAR ectodomain with human CD8 stalk as the spacer. 'Fc' is a CAR ectodomain with human HCH2CH3 as the spacer. 'M8' is a CAR ectodomain with murine CD8 stalk as the spacer. '19' represents CD19 on the target cell surface. '33' represents CD33 on the target cell surface. The symbol ' \oplus ' represents an activating endodomain containing ITAMS. The symbol ' \ominus ' represents a phosphatase with slow kinetics - a 'ligation on' endodomain such as one comprising of the catalytic domain of PTPN6 or an ITIM. The symbol ' \emptyset ' represents a phosphatase with fast kinetics - a 'ligation off' endodomain such as the endodomain of CD45 or CD148. This symbol is enlarged in the figure to emphasize its potent activity.

(a) Shows the postulated behaviour of the functional AND gate which comprises of a pair of CARs whereby the first CAR recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; and the second CAR recognizes CD33, has an Fc spacer and a CD148 endodomain;

(b) Shows the postulated behaviour of the control AND gate. Here, the first CAR recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; and the second CAR recognizes CD33, but has a mouse CD8 stalk spacer and a CD148 endodomain;

5 (c) Shows the behaviour of a functional AND NOT gate which comprises of a pair of CARs whereby the first CAR recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; and the second CAR recognizes CD33, has a mouse CD8 stalk spacer and a PTPN6 endodomain;

10 (d) Shows the postulated behaviour of the control AND NOT gate which comprises of a pair of CARs whereby the first CAR recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; and the second CAR recognizes CD33, but has an Fc spacer and a PTPN6 endodomain;

15 In the first column, target cells are both CD19 and CD33 negative. In the second column, targets are CD19 negative and CD33 positive. In the third column, target cells are CD19 positive and CD33 negative. In the fourth column, target cells are positive for both CD19 and CD33.

Figure 25: Design of APRIL-based CARs.

20 The CAR design was modified so that the scFv was replaced with a modified form of A proliferation-inducing ligand (APRIL), which interacts with BCMA, TACI and proteoglycans, to act as an antigen binding domain: APRIL was truncated so that the 25 proteoglycan binding amino-terminus is absent. A signal peptide was then attached to truncated APRIL amino-terminus to direct the protein to the cell surface. Three CARs were generated with this APRIL based binding domain: A. In the first CAR, the human CD8 stalk domain was used as a spacer domain. B. In the second CAR, the hinge from IgG1 was used 30 as a spacer domain. C. In the third CAR, the hinge, CH2 and CH3 domains of human IgG1 modified with the pva/a mutations described by Hombach et al (2010 Gene Ther. 17:1206-1213) to reduce Fc Receptor binding was used as a spacer (henceforth referred as Fc-pvaa). In all CARs, these spacers were connected to the CD28 transmembrane domain and then to a tripartite endodomain containing a fusion of the CD28, OX40 and the CD3-Zeta endodomain (Pule et al, Molecular therapy, 2005: Volume 12; Issue 5; Pages 933-41).

Figure 26: Annotated Amino acid sequence of the above three APRIL-CARS

35 A: Shows the annotated amino acid sequence of the CD8 stalk APRIL CAR; B: Shows the annotated amino acid sequence of the APRIL IgG1 hinge based CAR; C: Shows the annotated amino acid sequence of the APRIL Fc-pvaa based CAR.

Figure 27: Expression and ligand binding of different APRIL based CARs

40 A. The receptors were co-expressed with a marker gene truncated CD34 in a retroviral gene vector. Expression of the marker gene on transduced cells allows confirmation of transduction. B. T-cells were transduced with APRIL based CARs with either the CD8 stalk

5 spacer, IgG1 hinge or Fc spacer. To test whether these receptors could be stably expressed on the cell surface, T-cells were then stained with anti-APRIL-biotin/Streptavidin APC and anti-CD34. Flow-cytometric analysis was performed. APRIL was equally detected on the cell surface in the three CARs suggesting they are equally stably expressed. C. Next, the capacity of the CARs to recognize TACI and BCMA was determined. The transduced T-cells
10 were stained with either recombinant BCMA or TACI fused to mouse IgG2a Fc fusion along with an anti-mouse secondary and anti-CD34. All three receptor formats showed binding to both BCMA and TACI. A surprising finding was that binding to BCMA seemed greater than to TACI. A further surprising finding was that although all three CARs were equally expressed, the CD8 stalk and IgG1 hinge CARs appeared better at recognizing BCMA and
15 TACI than that with the Fc spacer.

Figure 28: Function of the different CAR constructs.

Functional assays were performed with the three different APRIL based CARs. Normal donor peripheral blood T-cells either non-transduced (NT), or transduced to express the
20 different CARs. Transduction was performed using equal titer supernatant. These T-cells were then CD56 depleted to remove non-specific NK activity and used as effectors. SupT1 cells either non-transduced (NT), or transduced to express BCMA or TACI were used as targets. Data shown is mean and standard deviation from 5 independent experiments. A. Specific killing of BCMA and TACI expressing T-cells was determined using Chromium release. B. Interferon- μ release was also determined. Targets and effectors were co-cultured at a ratio of 1:1. After 24 hours, Interferon- μ in the supernatant was assayed by ELISA. C. Proliferation / survival of CAR T-cells were also determined by counting number of CAR T-cells in the same co-culture incubated for a further 6 days. All 3 CARs direct responses against BCMA and TACI expressing targets. The responses to BCMA were greater than for
25 TACI.
30

Figure 29: AND gate functionality in primary cells

PBMCs were isolated from blood and stimulated using PHA and IL-2. Two days later the cells were transduced on retronectin coated plates with retro virus containing the
35 CD19:CD33 AND gate construct. On day 5 the expression level of the two CARs translated by the AND gate construct was evaluated via flow cytometry and the cells were depleted of CD56+ cells (predominantly NK cells). On day 6 the PBMCs were placed in a co-culture with target cells at a 1:2 effector to target cell ratio. On day 8 the supernatant was collected and analysed for IFN-gamma secretion via ELISA.

5 **Figure 30:** A selection / hierarchy of possible spacer domains of increasing size is shown. The ectodomain of CD3-Zeta is suggested as the shortest possible spacer, followed by the
(b) the IgG1 hinge. (c) murine or human CD8 stalk and the CD28 ectodomains are
considered intermediate in size and co-segregate. (d) The hinge, CH2 and CH3 domain of
IgG1 is bigger and bulkier, and (e) the hinge, CH2, CH3 and CH4 domain of IgM is bigger
10 still. Given the properties of the target molecules, and the epitope of the binding domains on
said target molecules, it is possible to use this hierarchy of spacers to create a CAR
signaling system which either co-segregates or segregates apart upon synapse formation.

15 **Figure 31:** Design rules for building logic gated CAR T-cells.

15 OR, AND NOT and AND gated CARs are shown in cartoon format with the target cell on top,
and the T-cell at the bottom with the synapse in the middle. Target cells express arbitrary
target antigens A, and B.

20 T-cells express two CARs which comprise of anti-A and anti-B recognition domains, spacers
and endodomains. An OR gate requires (1) spacers simply which allow antigen recognition
and CAR activation, and (2) both CARs to have activatory endodomains; An AND NOT gate
requires (1) spacers which result in co-segregation of both CARs upon recognition of both
antigens and (2) one CAR with an activatory endodomain, and the other whose endodomain
comprises or recruits a weak phosphatase; An AND gate requires (1) spacers which result in
25 segregation of both CARs into different parts of the immunological synapse upon recognition
of both antigens and (2) one CAR with an activatory endodomain, and the other whose
endodomain comprises of a potent phosphatase.

SUMMARY OF ASPECTS OF THE INVENTION

30 The present inventors have developed a panel of "logic-gated" chimeric antigen receptor
pairs which, when expressed by a cell, such as a T cell, are capable of detecting a particular
pattern of expression of at least two target antigens. If the at least two target antigens are
arbitrarily denoted as antigen A and antigen B, the three possible options are as follows:

35 "OR GATE" – T cell triggers when either antigen A or antigen B is present on the target cell
"AND GATE" – T cell triggers only when both antigens A and B are present on the target cell
"AND NOT GATE" – T cell triggers if antigen A is present alone on the target cell, but not if
both antigens A and B are present on the target cell

5 Engineered T cells expressing these CAR combinations can be tailored to be exquisitely specific for cancer cells, based on their particular expression (or lack of expression) of two or more markers.

10 Thus in a first aspect, the present invention provides a cell which co-expresses a first chimeric antigen receptor (CAR) and second CAR at the cell surface, each CAR comprising:

- (i) an antigen-binding domain;
- (ii) a spacer
- (iii) a trans-membrane domain; and
- (iv) an intracellular T cell signaling domain (endodomain)

15 wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein the spacer of the first CAR is different to the spacer of the second CAR, such that the first and second CARs do not form heterodimers, and wherein one of the first or second CARs is an activating CAR comprising an activating intracellular T cell signaling domain and the other CAR is an inhibitory CAR comprising a "ligation-off" (as 20 defined herein) inhibitory intracellular T cell signaling domain.

The cell may be an immune effector cell, such as a T-cell or natural killer (NK) cell. Features mentioned herein in connection with a T cell apply equally to other immune effector cells, such as NK cells.

25 The spacer of the first CAR may have a different length and/or charge and/or shape and/or configuration and/or glycosylation to the spacer of the second CAR, such that when the first CAR and the second CAR bind their respective target antigens, the first CAR and second CAR become spatially separated on the T cell. Ligation of the first and second CARs to their 30 respective antigens causes them to be compartmentalized together or separately in the immunological synapse resulting in control of activation. This may be understood when one considers the kinetic separation model of T-cell activation (see below).

35 The first spacer or the second spacer may comprise a CD8 stalk and the other spacer may comprise the hinge, CH2 and CH3 domain of an IgG1.

In the present invention, which relates to the "AND" gate, one of the first or second CARs is 40 an activating CAR comprising an activating endodomain, and the other CAR is a "ligation-off" inhibitory CAR comprising an inhibitory endodomain. The ligation-off inhibitory CAR inhibits T-cell activation by the activating CAR in the absence of inhibitory CAR ligation, but does not significantly inhibit T-cell activation by the activating CAR when the inhibitory CAR is ligated.

5 Since the spacer of the first CAR has a different length and/or charge and/or shape and/or configuration and/or glycosylation from the spacer of the second CAR, when both CARs are ligated they segregate. This causes the inhibitory CAR to be spatially separated from the activating CAR, so that T cell activation can occur. T cell activation therefore only occurs in response to a target cell bearing both cognate antigens.

10

The inhibitory endodomain may comprise all or part of the endodomain from a receptor-like tyrosine phosphatase, such as CD148 or CD45.

15 The antigen-binding domain of the first CAR may bind CD5 and the antigen-binding domain of the second CAR may bind CD19. This is of use in targeting chronic lymphocytic leukaemia (CLL). This disease can be treated by targeting CD19 alone, but at the cost of depleting the entire B-cell compartment. CLL cells are unusual in that they co-express CD5 and CD19. Targeting this pair of antigens with an AND gate will increase specificity and reduce toxicity.

20

In a second aspect, the present invention provides a nucleic acid sequence encoding both the first and second chimeric antigen receptors (CARs) as defined in the first aspect of the invention.

25 The nucleic acid sequence according may have the following structure: AgB1-spacer1-TM1-endo1-coexpr-AgB2-spacer2-TM2-endo2

in which

AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR;

30 spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR;

TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR;

endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR;

coexpr is a nucleic acid sequence allowing co-expression of two CARs (e.g. a cleavage site);

AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR;

35 spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR;

TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR;

endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR;

which nucleic acid sequence, when expressed in a T cell, encodes a polypeptide which is cleaved at the cleavage site such that the first and second CARs are co-expressed at the T

40 cell surface.

5 The nucleic acid sequence allowing co-expression of two CARs may encode a self-cleaving peptide or a sequence which allows alternative means of co-expressing two CARs such as an internal ribosome entry sequence or a 2nd promoter or other such means whereby one skilled in the art can express two proteins from the same vector.

10 Alternative codons may be used in regions of sequence encoding the same or similar amino acid sequences, in order to avoid homologous recombination.

In a third aspect, the present invention provides a kit which comprises

15 (i) a first nucleic acid sequence encoding the first chimeric antigen receptor (CAR) as defined in the first aspect of the invention, which nucleic acid sequence has the following structure:

AgB1-spacer1-TM1-endo1

in which

20 AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR; TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR; endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR; and

25 (ii) a second nucleic acid sequence encoding the second chimeric antigen receptor (CAR) as defined in the first aspect of the invention, which nucleic acid sequence has the following structure:

AgB2-spacer2-TM2-endo2

30 AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR; TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR.

35 In a fourth aspect, the present invention provides a kit comprising: a first vector which comprises the first nucleic acid sequence as defined above; and a second vector which comprises the first nucleic acid sequence as defined above.

The vectors may be plasmid vectors, retroviral vectors or transposon vectors. The vectors may be lentiviral vectors.

5 In a fifth aspect, the present invention provides a vector comprising a nucleic acid sequence according to the second aspect of the invention. The vector may be a lentiviral vector.

The vector may be a plasmid vector, a retroviral vector or a transposon vector.

10 In a sixth aspect, the present invention involves co-expressing more than two CARs in such a fashion that a complex pattern of more than two antigens can be recognized on the target cell.

15 In a seventh aspect, the present invention provides a method for making a T cell according to the first aspect of the invention, which comprises the step of introducing one or more nucleic acid sequence (s) encoding the first and second CARs; or one or more vector(s) as defined above into a T cell.

20 The T cell may be from a sample isolated from a patient, a related or unrelated haematopoietic transplant donor, a completely unconnected donor, from cord blood, differentiated from an embryonic cell line, differentiated from an inducible progenitor cell line, or derived from a transformed T cell line.

25 In an eighth aspect, the present invention provides a pharmaceutical composition comprising a plurality of T cells according to the first aspect of the invention.

In a ninth aspect, the present invention provides a method for treating and/or preventing a disease, which comprises the step of administering a pharmaceutical composition according to the eighth aspect of the invention to a subject.

30

The method may comprise the following steps:

(i) isolation of a T cell as listed above.

(ii) transduction or transfection of the T cells with one or more nucleic acid sequence(s) encoding the first and second CAR or one or more vector(s) comprising such nucleic acid sequence(s); and

(iii) administering the T cells from (ii) to the subject.

The disease may be a cancer.

40 In a tenth aspect, the present invention provides a pharmaceutical composition according to the eighth aspect of the invention for use in treating and/or preventing a disease.

5

The disease may be a cancer.

In an eleventh aspect, the present invention provides use of a T cell according to the first aspect of the invention in the manufacture of a medicament for treating and/or preventing a disease.

The disease may be a cancer.

The present invention also provides a nucleic acid sequence which comprises:

- 15 a) a first nucleotide sequence encoding a first chimeric antigen receptor (CAR);
- b) a second nucleotide sequence encoding a second CAR;
- c) a sequence encoding a self-cleaving peptide positioned between the first and second nucleotide sequences, such that the two CARs are expressed as separate entities.

20 Alternative codons may be used in one or more portion(s) of the first and second nucleotide sequences in regions which encode the same or similar amino acid sequence(s).

The present invention also provides a vector and a cell comprising such a nucleic acid.

25 The kinetic-segregation based AND gate of the present invention offers a significant technical advantage to the previously described "co-CAR", i.e. the dual targeting approach in which two antigens are recognized by two CARs which supply either an activating or a co-stimulating signal to the T-cell.

30 With the co-CAR approach, although greatest activity might be expected against target cells bearing both antigens, considerable activity against tissues bearing only antigen recognized by the activating CAR can be expected. This activity can be expected to be at least that of a first-generation CAR. First generation CARs have resulted in considerable toxicity: for instance biliary toxicity was observed in clinical testing of a first generation CAR recognizing

35 Carbonic anhydrase IX which was unexpectedly expressed on biliary epithelium (Rotterdam ref). Notably, terminally differentiated effectors do not require or respond to co-stimulatory signals, so any terminally differentiated CAR T-cells would act maximally despite the absence of a co-stimulatory CAR signal.

40 Further, co-stimulatory signals lead to long-lasting effects on the T-cell population. These effects long outlast the T-cell / target synapse interaction. Consequently, CAR T-cells which

5 become fully activated within the tumour and migrate could have maximally potent activity against single-antigen bearing normal tissues. This "spill-over" effect may be most pronounced in tissues within, near or which drain from the tumour. In fact, strategies based on the concept of the activity of a first generation CAR being enhanced by co-stimulatory signals engaged not CAR activation but through a distinct receptor, have been proposed and
10 tested (Rossig, Blood. 2002 Mar 15;99(6):2009-16.).

The co-CAR approach hence can be expected to result at best to a reduction but not abolition of toxicity towards single antigen expressing normal tissue. The present invention uses kinetic segregation at the immunological synapse formed between the T-cell / target
15 cell to regulate T-cell triggering itself. Consequently tight absolute control of triggering in the absence of the second antigen is achieved. Hence the totality of T-cell activation is restricted to target cells expressing both antigens, the AND gate should function irrespective of the effector cell type or differentiation state, and no "spill-over" effect AND gate T-cell activation is possible.

20

FURTHER ASPECTS OF THE INVENTION

The present invention also relates to the aspects listed in the following numbered paragraphs:

25

1. A T cell which co-expresses a first chimeric antigen receptor (CAR) and second CAR at the cell surface, each CAR comprising:

- (i) an antigen-binding domain;
- (ii) a spacer
- 30 (iii) a trans-membrane domain; and
- (iv) an endodomain

wherein the antigen binding domains of the first and second CARs bind to different antigens, wherein the spacer of the first CAR is different to the spacer of the second CAR and wherein one of the first or second CARs is an activating CAR comprising an activating endodomain
35 and the other CAR is either an activating CAR comprising an activating endodomain or an inhibitory CAR comprising a ligation-on or ligation-off inhibitory endodomain.

2. A T cell according to paragraph 1, wherein the spacer of the first CAR has a different length and/or charge and/or size and/or configuration and/or glycosylation of the spacer of
40 the second CAR, such that when the first CAR and the second CAR bind their respective

5 target antigens, the first CAR and second CAR become spatially separated on the T cell membrane.

3. A T cell according to paragraph 2, wherein either the first spacer or the second spacer comprises a CD8 stalk and the other spacer comprises the hinge, CH2 and CH3 10 domain of IgG1.

4. A T cell according to paragraph 1, wherein both the first and second CARs are activating CARs.

15 5. A T cell according to paragraph 4, wherein one CAR binds CD19 and the other CAR binds CD20.

20 6. A T cell according to paragraph 2 or 3, wherein one of the first or second CARs is an activating CAR comprising an activating endodomain, and the other CAR is an inhibitory CAR comprising a ligation-off inhibitory endodomain, which inhibitory CAR inhibits T-cell activation by the activating CAR in the absence of inhibitory CAR ligation, but does not significantly inhibit T-cell activation by the activating CAR when the inhibitory CAR is ligated.

25 7. A T cell according to paragraph 6, wherein the inhibitory endodomain comprises all or part of the endodomain from CD148 or CD45.

8. A T cell according to paragraph 6 or 7, wherein the antigen-binding domain of the first CAR binds CD5 and the antigen-binding domain of the second CAR binds CD19.

30 9. A T cell according to paragraph 1 wherein the first and second spacers are sufficiently different so as to prevent cross-pairing of the first and second CARs but are sufficiently similar to result in co-localisation of the first and second CARs following ligation.

35 10. A T cell according to paragraph 9, wherein one of the first or second CARs is an activating CAR comprising an activating endodomain, and the other CAR is an inhibitory CAR comprising a ligation-on inhibitory endodomain, which inhibitory CAR does not significantly inhibit T-cell activation by the activating CAR in the absence of inhibitory CAR ligation, but inhibits T-cell activation by the activating CAR when the inhibitory CAR is ligated.

5 11. A T cell according to paragraph 10, wherein the ligation-on inhibitory endodomain comprises at least part of a phosphatase.

12. A T cell according to paragraph 11, wherein the ligation-on inhibitory endodomain comprises all or part of PTPN6.

10

13. A T cell according to paragraph 10, wherein the ligation-on inhibitory endodomain comprises at least one ITIM domain.

14. A T cell according to paragraph 13, wherein activity of the ligation-on inhibitory endodomain is enhanced by co-expression of a PTPN6-CD45 or -CD148 fusion protein.

15. A T cell according to any of paragraphs 10 to 14, wherein the CAR comprising the activating endodomain comprises an antigen-binding domain which binds CD33 and the CAR which comprises the ligation-on inhibitory endodomain comprises an antigen-binding domain which binds CD34.

20 16. A T cell which comprises more than two CARs as defined in the preceding paragraphs such that it is specifically stimulated by a cell, such as a T cell, bearing a distinct pattern of more than two antigens.

25

17. A nucleic acid sequence encoding both the first and second chimeric antigen receptors (CARs) as defined in any of paragraphs 1 to 16.

30 18. A nucleic acid sequence according to paragraph 17, which has the following structure:

AgB1-spacer1-TM1-endo1-coexpr-AbB2-spacer2-TM2-endo2

in which

35 AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR;

spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR;

TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR;

endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR;

coexpr is a nucleic acid sequence enabling co-expression of both CARs

40 AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR;

spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR;

5 TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR; which nucleic acid sequence, when expressed in a T cell, encodes a polypeptide which is cleaved at the cleavage site such that the first and second CARs are co-expressed at the T cell surface.

10

19. A nucleic acid sequence according to paragraph 18, wherein coexpr encodes a sequence comprising a self-cleaving peptide.

15 20. A nucleic acid sequence according to paragraph 18 or 19, wherein alternative codons are used in regions of sequence encoding the same or similar amino acid sequences, in order to avoid homologous recombination.

21. A kit which comprises

20 (i) a first nucleic acid sequence encoding the first chimeric antigen receptor (CAR) as defined in any of paragraphs 1 to 16, which nucleic acid sequence has the following structure:

AgB1-spacer1-TM1-endo1

in which

25 AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR; TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR; endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR; and

30 (ii) a second nucleic acid sequence encoding the second chimeric antigen receptor (CAR) as defined in any of paragraphs 1 to 16, which nucleic acid sequence has the following structure:

AgB2-spacer2-TM2-endo2

35 AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR; TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR.

40 22. A kit comprising: a first vector which comprises the first nucleic acid sequence as defined in paragraph 21; and a second vector which comprises the first nucleic acid sequence as defined in paragraph 21.

5

23. A kit according to paragraph 22, wherein the vectors are integrating viral vectors or transposons.

10 24. A vector comprising a nucleic acid sequence according to any of paragraphs 17 to 20.

25. A retroviral vector or a lentiviral vector or a transposon according to paragraph 24.

15 26. A method for making a T cell according to any of paragraphs 1 to 16, which comprises the step of introducing: a nucleic acid sequence according to any of paragraphs 17 to 20; a first nucleic acid sequence and a second nucleic acid sequence as defined in paragraph 21; and/or a first vector and a second vector as defined in paragraph 22 or a vector according to paragraph 24 or 25, into a T cell.

20 27. A method according to paragraph 24, wherein the T cell is from a sample isolated from a subject.

25 28. A pharmaceutical composition comprising a plurality of T cells according to any of paragraphs 1 to 16.

29. A method for treating and/or preventing a disease, which comprises the step of administering a pharmaceutical composition according to paragraph 28 to a subject.

30 30. A method according to paragraph 29, which comprises the following steps:

30 (i) isolation of a T cell-containing sample from a subject;

(ii) transduction or transfection of the T cells with: a nucleic acid sequence according to any of paragraphs 17 to 20; a first nucleic acid sequence and a second nucleic acid sequence as defined in paragraph 21; a first vector and a second vector as defined in paragraph 22 or 23 or a vector according to paragraph 24 or 25; and

35 (iii) administering the T cells from (ii) to a the subject.

31. A method according to paragraph 29 or 30, wherein the disease is a cancer.

32. A pharmaceutical composition according to paragraph 28 for use in treating and/or 40 preventing a disease.

5 33. The use of a T cell according to any of paragraphs 1 to 16 in the manufacture of a medicament for treating and/or preventing a disease.

DETAILED DESCRIPTION

10 CHIMERIC ANTIGEN RECEPTORS (CARs)

CARs, which are shown schematically in Figure 1, are chimeric type I trans-membrane proteins which connect an extracellular antigen-recognizing domain (binder) to an intracellular signalling domain (endodomain). The binder is typically a single-chain variable 15 fragment (scFv) derived from a monoclonal antibody (mAb), but it can be based on other formats which comprise an antibody-like antigen binding site. A spacer domain is usually necessary to isolate the binder from the membrane and to allow it a suitable orientation. A common spacer domain used is the Fc of IgG1. More compact spacers can suffice e.g. the stalk from CD8 α and even just the IgG1 hinge alone, depending on the antigen. A trans-20 membrane domain anchors the protein in the cell membrane and connects the spacer to the endodomain.

Early CAR designs had endodomains derived from the intracellular parts of either the γ chain 25 of the Fc ϵ R1 or CD3 ζ . Consequently, these first generation receptors transmitted immunological signal 1, which was sufficient to trigger T-cell killing of cognate target cells but failed to fully activate the T-cell to proliferate and survive. To overcome this limitation, compound endodomains have been constructed: fusion of the intracellular part of a T-cell 30 co-stimulatory molecule to that of CD3 ζ results in second generation receptors which can transmit an activating and co-stimulatory signal simultaneously after antigen recognition. The co-stimulatory domain most commonly used is that of CD28. This supplies the most potent 35 co-stimulatory signal - namely immunological signal 2, which triggers T-cell proliferation. Some receptors have also been described which include TNF receptor family endodomains, such as the closely related OX40 and 41BB which transmit survival signals. Even more potent third generation CARs have now been described which have endodomains capable of transmitting activation, proliferation and survival signals.

CAR-encoding nucleic acids may be transferred to T cells using, for example, retroviral 40 vectors. Lentiviral vectors may be employed. In this way, a large number of cancer-specific T cells can be generated for adoptive cell transfer. When the CAR binds the target-antigen, this results in the transmission of an activating signal to the T-cell it is expressed on. Thus

5 the CAR directs the specificity and cytotoxicity of the T cell towards tumour cells expressing the targeted antigen.

10 The first aspect of the invention relates to a T-cell which co-expresses a first CAR and a second CAR such that a T-cell can recognize a desired pattern of expression on target cells in the manner of a logic gate as detailed in the truth tables: table 1, 2 and 3.

Both the first and second (and optionally subsequent) CARs comprise:

15 (i) an antigen-binding domain;
 (ii) a spacer;
 (iii) a transmembrane domain; and
 (iii) an intracellular domain.

Table 1: Truth Table for CAR OR GATE

Antigen A	Antigen B	Response
Absent	Absent	No activation
Absent	Present	Activation
Present	Absent	Activation
Present	Present	Activation

20

Table 2: Truth Table for CAR AND GATE

Antigen A	Antigen B	Response
Absent	Absent	No activation
Absent	Present	No Activation
Present	Absent	No Activation
Present	Present	Activation

Table 3: Truth Table for CAR AND NOT GATE

Antigen A	Antigen B	Response
Absent	Absent	No activation
Absent	Present	No Activation
Present	Absent	Activation
Present	Present	No Activation

25

5

The first and second CAR of the T cell of the present invention may be produced as a polypeptide comprising both CARs, together with a cleavage site.

SEQ ID No. 1 to 5 give examples of such polypeptides, which each comprise two CARs.

10 The CAR may therefore comprise one or other part of the following amino acid sequences, which corresponds to a single CAR.

SEQ ID No 1 is a CAR OR gate which recognizes CD19 OR CD33

15 SEQ ID No 2 Is a CAR AND gate which recognizes CD19 AND CD33 using a CD148 phosphatase

SEQ ID No 3 Is an alternative implementation of the CAR AND GATE which recognizes CD19 AND CD33 which uses a CD45 phosphatase

SEQ ID No 4 Is a CAR AND NOT GATE which recognizes CD19 AND NOT CD33 based on PTPN6 phosphatase

20 SEQ ID No 5 Is an alternative implementation of the CAR AND NOT gate which recognizes CD19 AND NOT CD33 and is based on an ITIM containing endodomain from LAIR1

SEQ ID No 6. Is a further alternative implementation of the CAR AND NOT gate which recognizes CD19 AND NOT CD33 and recruits a PTPN6-CD148 fusion protein to an ITIM containing endodomain.

25

SEQ ID No. 1

MSLPVTALLLPLALLLHAARPDIQMTQTTSSLASLGDRVТИCRASQDISKYLNWYQQKPD
GTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTK
LEITKAGGGGGSGGGGSGGGGSGGGSEVKLQESGPLVAPSQSLSVTCTVSGVSLPDYG

30 VSWIRQPPRKGLEWLGVIWGSETYYNSALKSRLTIKDNSKSQVFLKMNSLQTDDTAIYYC
AKHYYYGGSYAMDYWGQGTSVTVSSDPTTPAPRPPPTPAPTIASQPLSLRPEACRPAAGG
AVHTRGLDFACDIFWVLVVGVLACYSLLVTVAIFIIFWVRRVKFSRSADAPAYQQGQNQL
YNELNLGRREYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE
RRRGKGHDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLTCGDVEENPGPMAVPTQ

35 VLGLLLLWLT DARCDIQMTQSPSSLASVGDRVТИCRASEDIYFNLVWYQQKPGKAPKLLI
YDTNRLADGVPSRFSGSGSGTQYTLTISSLQPEDFATYYCQHYKNYPLTFGQGTKLEIKRS
GGGGSGGGSGGGSGGGSRSEVQLVESGGGLVQPGGSLRLSCAASGFTLSNYGMH
WIRQAPGKGLEWVSSISLNGGSTYYRDSVKGRFTISRDNAKSTLYLQMNSLRAEDTAVYYC
AAQDAYTGGYFDYWGQGTLTVSSMDPAEPKSPDKHTCPCPAPPVAGPSVFLPPKPK

40 DTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSLTVL
HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPVYTLPPSRDELTKNQVSLTCLVK

5 GFYPSDIAVEWESNGQPENNYKTPPVLDSDGSFFYSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGKKDPFWVLVVGVLACYSLLVTVAIFIIFWVRSRVKFSRSADAPA
YQQGQNQLYNELNLGRREYDVLDRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEA
YSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR

10 SEQ ID No. 2

MSLPVTALLPLALLHAARPDIQMTQTTSSLASLGDRVТИSCRASQDISKYLWYQQKPD
GTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGTK
LEITKAGGGGGGGGGGGGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYG
VSWIRQPPRKGLEWLGVIWGSETYYNSALKSRLTIKDNSKSQVFLKMNSLQTDDTAIYYC
15 AKHYYYGGSYAMDYWGQGTSVTVSSDPTTPAPRPPPTPAPTIASQPLSLRPEACRPAAGG
AVHTRGLDFACDIFWVLVVGVLACYSLLVTVAIFIIFWVRRVFKFSRSADAPAYQQGQNQL
YNENLGRREYDVLDRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE
RRRGKGHDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLTCGDVEENPGPMAVPTQ
VLGLLLLWLTNDARCDIQMTQSPSSLASVGDRVТИCRASEDIYFNLWVYQQKPGKAPKLLI
20 YDTNRLADGVPSRFSGSGSGTQYTLTISSLQPEDFATYYCQHYKNYPLTFGQGKLEIKRS
GGGGSGGGGGGGGGGGGGSRSEVQLVESGGGLVQPGGSLRLSCAASGFTLSNYGMH
WIRQAPGKGLEWVSSISLNGGTYRDSVKGRTISRDNAKSTLYLQMNSLRAEDTAVYYC
AAQDAYTGGYFDYWGQGTLTVSSMDPAEPKSPDKTHTCPCPAPPVAGPSVFLFPPKPK
DTLMIARTPEVTCVVVDVSHEDPEVKFNWVVDGVEVHNAKTPREEQYNSTYRVSVLTVL
25 HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPVYTLPPSRDELTKNQVSLTCLVK
GFYPSDIAVEWESNGQPENNYKTPPVLDSDGSFFYSKLTVDKSRWQQGNVFSCSVMHE
ALHNHYTQKSLSLSPGKKDPKAVFGCIFGALVITVGGFIFWRKKRKDAKNNEVSFSQIKPK
KSKLIRVENFEAYFKKQQADSNCGFAEYEDLKLVGISQPKYAAELAENRGKNRYNNVLPY
DISRVKLSVQTHSTDDYINANYMPGYHSKKDFATQGPLNLTQDFWRMVWEKNVYAIIMLT
30 KCVEQGRTKCEEYWPSKQAQDYGDITVAMTSEIVLPEWTIRDFTVKNIQTSESHPLRQFHF
TSWPDHGVPD TDLLINFYLVRDYMKQSPPESPILVHCSAGVGRGTFAIDRLIYQIENEN
TVDVYGIYDLRMHRPLMVQTEDQYVFLNQCVLDIVRSQKDSKVDLIYQNTTAMTIYENLAP
VTTFGKTNGYIA

35 SEQ ID No. 3

MSLPVTALLPLALLHAARPDIQMTQTTSSLASLGDRVТИSCRASQDISKYLWYQQKPD
GTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGTK
LEITKAGGGGGGGGGGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYG
VSWIRQPPRKGLEWLGVIWGSETYYNSALKSRLTIKDNSKSQVFLKMNSLQTDDTAIYYC
40 AKHYYYGGSYAMDYWGQGTSVTVSSDPTTPAPRPPPTPAPTIASQPLSLRPEACRPAAGG
AVHTRGLDFACDIFWVLVVGVLACYSLLVTVAIFIIFWVRRVFKFSRSADAPAYQQGQNQL

5 YNELNLGRREEYDVLKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE
 RRRGKGHDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCGDVEENPGPMAVPTQ
 VLGLLLLWLT DARCDIQMTQSPSSLSASVGDRVITCRASEDIYFNLWVYQQKPGKAPKLLI
 YDTNRLADGVPSRFSGSGSGTQYTLTISSLQPEDFATYYCQHYKNYPLTFGQGTKLEIKRS
 GGGGSGGGSGGGSGGGSRSEVQLVESGGLVQPGGSLRLSCAASGFTLSNYGMH
 10 WIRQAPGKGLEWVSSISLNGGSTYYRDSVKGRFTISRDNAKSTLYLQMNSLRAEDTAVYYC
 AAQDAYTGGYFDYWGQGTLTVSSMDPAEPKSPDKHTCPCPAPPVAGPSVFLPPKPK
 DTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTPREEQYNSTYRVSVLTVL
 HQDWLNGKEYKCKVSNKALPAPIEKTIKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVK
 GFYPSDIAVEWESNGQPENNYKTPVLDSDGSFFLYSKLTVDKSRWQQGVFSCSVMHE
 15 ALHNHYTQKSLSLSPGKKDPKALIAFLAFLIIVTSIALLVLYKIYDLHKKRSCNLDEQQELVER
 DDEKQLMNVEPIHADILLETYKRKIADEGRLFLAEFQSIPRVFSKFPIKEARKPFNQNKNRYV
 DILPYDYNRVELSEINGDAGSNYINASYIDGFKEPRKYIAAQGPRDETVDFFWRMIWEQKAT
 VIVMVTRCEEGNRNKCAEYWPSMEEGTRAFGDVVKINQHKRCPDYIIQKLNIVNKKEKAT
 GREVTHIQFTSWPDHGVPEDPHLLLKLRRLVNAFSNFFSGPIVHCSAGVGRGTGYIGIDA
 20 MLEGLEAENKVDVYGYVVKLRRQRCLMVQVEAQYILIHQALVEYNQFGETEVNLSELHPYL
 HNMKKRDPPSEPSPLEAEFQRLPSYRSWRTQHIGNQEENKSKNRNSNVIPYDYNRVPPLKH
 ELEMSKESEHDSDESSDDSDSEEPSKYINASFIMSYWKPEVMIAAQGPLKETIGDFWQMI
 FQRKVVKVIVMLTELKHGDQEICAQYWGEKGKTYGDIEVDLKDTDKSSTYLRVFLRHSKR
 KDSRTVYQYQYTNWSVEQLPAEPKELISMIQVVKQKLPQKNSSEGNHHKSTPLIHC RDG
 25 SQQTGIFCALLNLLESAETEEVDIFQVVKALRKARPGMVSTFEQYQFLYDVIASTYPAQNG
 QVKKNNHQEDKIEFDNEVDVKVQDANCVNPLGAPEKLPEAKEQAEGSEPTSGTEGPEHSV
 NGPASPALNQGS

SEQ ID No. 4

30 MSLPVTALLLPLALLHAARPDIQMTQTTSSLASLGDRVITCRASQDISKYLNWYQQKPD
 GTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQQNTLPYTFGGGT
 LEITKAGGGGGSGGGGGSGGGGGSEVKLQESGPLVAPSQSLSVTCTVSGVSLPDYG
 VSWIRQPPRKGLEWLGVIWGSETYYNSALKSRLTIIDNSKSQVFLKMNSLQTDDTAIYYC
 AKHYYGGSYAMDYWGQGTSVTSSDPTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG
 35 AVHTRGLDFACDIFWVLVVGVLACYSLLVTVAIFI FWVRRVKFSRSADAPAYQQQCNQL
 YNELNLGRREEYDVLKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE
 RRRGKGHDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCGDVEENPGPMAVPTQ
 VLGLLLLWLT DARCDIQMTQSPSSLSASVGDRVITCRASEDIYFNLWVYQQKPGKAPKLLI
 YDTNRLADGVPSRFSGSGSGTQYTLTISSLQPEDFATYYCQHYKNYPLTFGQGTKLEIKRS
 40 GGGGSGGGGGSGGGGGSGGGSRSEVQLVESGGLVQPGGSLRLSCAASGFTLSNYGMH
 WIRQAPGKGLEWVSSISLNGGSTYYRDSVKGRFTISRDNAKSTLYLQMNSLRAEDTAVYYC

5 AAQDAYTGGYFDYWGQGTLVTVSSMDPATTKPVLRTPSPVHPTGTSQPQRPEDCRPRG
SVKGTGLDFACDIYWAPLAGICVALLLSLIITLICYHRSRKRVCKSGGGSFWEEFESLQKQEV
KNLHQRLEGQRPENKGKNRYKNILPFDHSRVLQGRDSNIPGSDYINANYIKNQLLGPDENA
KTYIASQGCLEATVNDFWQMAWQENSRVIVMTTREVEKGRNKCVPYWPEVGMQRAYGPY
SVTNCGEHDTTEYKLRTLQVSPLDNGDLIREIWHYQYLSWPDHGPSEPGVLSFLDQINQ
10 RQESLPHAGPIIVHCSAGIGRTGTIIVIDMLMENISTKGLDCDIDIQKTIQMVRAQRSGMVQTE
AQYKFIYVAIAQFIETTKKKL

SEQ ID No. 5

MSLPVTALLPLALLHAARPDIQMTQTTSSLASLGDRVТИSCRASQDISKYNWYQQKPD
15 GTVKLLIYHTSRLHSGVPSRFSGSGGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGTK
LEITKAGGGGGGGGGGGGGGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYG
VSWIRQPPRKGLEWLGVIWGSETYYNSALKSRLTIKDNSKSQVFLKMNSLQTDDTAIYYC
AKHYYYGGSYAMDYWGQGTSVTVSSDPTTPAPRPPPTPAPTIASQPLSLRPEACRPAAGG
AVHTRGLDFACDIFWVLVVVGGVLACYSLLVTVAIFIIFWVRRVKFSRSADAPAYQQGQNQL
20 YNELNLGRREEYDVLKDRRGRDPEMGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE
RRRGKGHDGLYQGLSTATKDTYDALHMQLPPRRAEGRGSLLTCGDVEENPGPMAVPTQ
VLGLLLLWLTNDARCDIQMTQSPSSLASVGDRVТИCRASEDIYFNLVWYQQKPGKAPKLLI
YDTNRLADGVPSRFSGSGGTQYTLTISSLQPEDFATYYCQHYKNYPLTFGQGTKLEIKRS
GGGGSGGGGGGGGGGGGGSRSEVQLVESGGGLVQPGGSLRLSCAASGFTLSNYGMH
25 WIRQAPGKGLEWVSSISLNGGSTYYRDSVKGRFTISRDNAKSTLYLQMNSLRAEDTAVYYC
AAQDAYTGGYFDYWGQGTLVTVSSMDPATTKPVLRTPSPVHPTGTSQPQRPEDCRPRG
SVKGTGLDFACDILIGVSVFLFCLLLLVLFCLHRQNQIKQGPPRSKDEEQKPQQRPDLAVID
VLERTADKATVNGLPEKDRETDTSALAAGSSQEVTYAQQLDHWALTQRTARAVSPQSTKPM
AESITYAAVARH

30

SEQ ID No. 6

MSLPVTALLPLALLHAARPDIQMTQTTSSLASLGDRVТИSCRASQDISKYNWYQQKPD
GTVKLLIYHTSRLHSGVPSRFSGSGGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGTK
LEITKAGGGGGGGGGGGGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYG
35 VSWIRQPPRKGLEWLGVIWGSETYYNSALKSRLTIKDNSKSQVFLKMNSLQTDDTAIYYC
AKHYYYGGSYAMDYWGQGTSVTVSSDPTTPAPRPPPTPAPTIASQPLSLRPEACRPAAGG
AVHTRGLDFACDIFWVLVVVGGVLACYSLLVTVAIFIIFWVRRVKFSRSADAPAYQQGQNQL
YNELNLGRREEYDVLKDRRGRDPEMGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE
RRRGKGHDGLYQGLSTATKDTYDALHMQLPPRRAEGRGSLLTCGDVEENPGPMAVPTQ
40 VLGLLLLWLTNDARCDIQMTQSPSSLASVGDRVТИCRASEDIYFNLVWYQQKPGKAPKLLI
YDTNRLADGVPSRFSGSGGTQYTLTISSLQPEDFATYYCQHYKNYPLTFGQGTKLEIKRS

5 GGGGSGGGSGGGSGGGSRSEVQLVESGGLVQPGGLRLSCAASGFTLSNYGMH
WIRQAPGKGLEWVSSISLNGGSTYYRDSVKGRFTISRDNAKSTLYLQMNSLRAEDTAVYYC
AAQDAYTGGYFDYWGQGTLTVSSMDPATTTPVLRTPSPVHPTGTSPQRPEDCRPRG
SVKGTGLDFACDILIGVSVFLCCLLLVLFCLHRQNQIKQGPPRSKDEEQKPQQRPDLA
VLERTADKATVNGLPEKDRETDTSALAAGSSQEVTYAQLDHWALTQRTARAVSPQSTKPM
10 AESITYAAVARHRAEGRGSLTCGDVEENPGPWYGHMSGGQAETLLQAKGEPEWTFLVR
ESLSQPGDFVLSVLSQPKAGPGSPLRVTHIKVMCEGGRTVGGLETFDSLTDLVEHFKKT
GIEEASGAFVYLRQPYSGGGSFEAYFKQQADSNCGFAEYEDLKLVGISQPKYAAELAE
NRGKNRYNNVLPYDISRVKLSVQTHSTDDYINANYMPGYHSKKDFIATQGPLPNTLKDFWR
MWWEKNVYAIIMLTKCQEGRKCEYWPSKQADYGDITVAMTSEIVLPEWTIRDFTVKNI
15 QTSESHPLRQFHFTSWPDHGVPDTTDLLINFYLVRDYMKQSPPESPILVHCSAGVGRGT
FIAIDRLIYQIENENTVDVYGYVYDLRMHRPLMVQTEDQYVFLNQCVLDIVRSQKDSKV
QNTTAMTIYENLAPVTTFGKTNGYIASGS

20 The CAR may comprise a variant of the CAR-encoding part of the sequence shown as SEQ
ID No. 1, 2, 3, 4, 5 or 6 having at least 80, 85, 90, 95, 98 or 99% sequence identity, provided
that the variant sequence is a CAR having the required properties.

25 Methods of sequence alignment are well known in the art and are accomplished using
suitable alignment programs. The % sequence identity refers to the percentage of amino
acid or nucleotide residues that are identical in the two sequences when they are optimally
aligned. Nucleotide and protein sequence homology or identity may be determined using
standard algorithms such as a BLAST program (Basic Local Alignment Search Tool at the
National Center for Biotechnology Information) using default parameters, which is publicly
available at <http://blast.ncbi.nlm.nih.gov>. Other algorithms for determining sequence identity
30 or homology include: LALIGN (<http://www.ebi.ac.uk/Tools/psa/lalign/>) and
<http://www.ebi.ac.uk/Tools/psa/lalign/nucleotide.html>), AMAS (Analysis of Multiply Aligned
Sequences, at <http://www.compbio.dundee.ac.uk/Software/Amas/amas.html>), FASTA
<http://www.ebi.ac.uk/Tools/ssss/fasta/> Clustal Omega
<http://www.ebi.ac.uk/Tools/msa/clustalo/>), SIM (<http://web.expasy.org/sim/>), and EMBOSS
35 Needle (http://www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html).

CAR LOGICAL OR GATE

40 In this embodiment, the antigen binding domains of the first and second CARs of the present
invention bind to different antigens and both CARs comprise an activating endodomain. Both
CARs have different spacer domains to prevent cross-pairing of the two different receptors.
A T cell can hence be engineered to activate upon recognition of either or both antigens.

5 This is useful in the field of oncology as indicated by the Goldie-Coldman hypothesis: sole targeting of a single antigen may result in tumour escape by modulation of said antigen due to the high mutation rate inherent in most cancers. By simultaneously targeting two antigens, the probability of such escape is exponentially reduced.

10 Various tumour associated antigens are known as shown in the following Table 4. For a given disease, the first CAR and second CAR may bind to two different TAAs associated with that disease. In this way, tumour escape by modulating a single antigen is prevented, since a second antigen is also targeted. For example, when targeting a B-cell malignancy, both CD19 and CD20 can be simultaneously targeted. In this embodiment, it is important

15 that the two CARs do not heterodimerize.

TABLE 4

Cancer type	TAA
Diffuse Large B-cell Lymphoma	CD19, CD20
Breast cancer	ErbB2, MUC1
AML	CD13, CD33
Neuroblastoma	GD2, NCAM
B-CLL	CD19, CD52
Colorectal cancer	Folate binding protein, CA-125

KINETIC SEGREGATION MODEL

20 Subsequent pairing of CARs to generate the AND gate and the AND NOT gate are based on the kinetic segregation model (KS) of T-cell activation. This is a functional model, backed by experimental data, which explains how antigen recognition by a T-cell receptor is converted into down-stream activation signals. Briefly: at the ground state, the signalling components on the T-cell membrane are in dynamic homeostasis whereby dephosphorylated ITAMs are favoured over phosphorylated ITAMs. This is due to greater activity of the transmembrane CD45/CD148 phosphatases over membrane-tethered kinases such as lck. When a T-cell engages a target cell through a T-cell receptor (or CAR) recognition of cognate antigen, tight immunological synapses form. This close juxtapositioning of the T-cell and target membranes excludes CD45/CD148 due to their large ectodomains which cannot fit into the

25 synapse. Segregation of a high concentration of T-cell receptor associated ITAMs and kinases in the synapse, in the absence of phosphatases, leads to a state whereby phosphorylated ITAMs are favoured. ZAP70 recognizes a threshold of phosphorylated ITAMs and propagates a T-cell activation signal. This advanced understanding of T-cell

30

5 activation is exploited by the present invention. In particular, the invention is based on this understanding of how ectodomains of different length and/or bulk and/or charge and/or configuration and/or glycosylation result in differential segregation upon synapse formation.

THE CAR LOGICAL AND GATE

10 In this embodiment, one CAR comprises an activating endodomain and one CAR comprises an inhibitory endodomain whereby the inhibitory CAR constitutively inhibits the first activating CAR, but upon recognition of its cognate antigen releases its inhibition of the activating CAR. In this manner, a T-cell can be engineered to trigger only if a target cell expresses both cognate antigens. This behaviour is achieved by the activating CAR comprising an activating 15 endodomain containing ITAM domains for example the endodomain of CD3 Zeta, and the inhibitory CAR comprising the endodomain from a phosphatase able to dephosphorylate an ITAM (e.g. CD45 or CD148). Crucially, the spacer domains of both CARs are significantly different in size and/or shape and/or charge etc. When only the activating CAR is ligated, the inhibitory CAR is in solution on the T-cell surface and can diffuse in and out of the synapse 20 inhibiting the activating CAR. When both CARs are ligated, due to differences in spacer properties, the activating and inhibiting CAR are differentially segregated allowing the activating CAR to trigger T-cell activation unhindered by the inhibiting CAR.

25 This is of considerable utility in the field of cancer therapy. Currently, immunotherapies typically target a single antigen. Most cancers cannot be differentiated from normal tissues on the basis of a single antigen. Hence, considerable "on-target off-tumour" toxicity occurs whereby normal tissues are damaged by the therapy. For instance, whilst targeting CD20 to treat B-cell lymphomas with Rituximab, the entire normal B-cell compartment is depleted. For instance, whilst targeting CD52 to treat chronic lymphocytic leukaemia, the entire 30 lymphoid compartment is depleted. For instance, whilst targeting CD33 to treat acute myeloid leukaemia, the entire myeloid compartment is damaged etc. By restricting activity to a pair of antigens, much more refined targeting, and hence less toxic therapy can be developed. A practical example is targeting of CLL which expresses both CD5 and CD19. Only a small proportion of normal B-cells express both antigens, so the off-target toxicity of 35 targeting both antigens with a logical AND gate is substantially less than targeting each antigen individually.

40 The design of the present invention is a considerable improvement on previous implementation as described by Wilkie *et al.* ((2012). *J. Clin. Immunol.* **32**, 1059–1070) and then tested *in vivo* (Kloss *et al* (2013) *Nat. Biotechnol.* **31**, 71–75). In this implementation, the first CAR comprises of an activating endodomain, and the second a co-stimulatory

5 domain. This way, a T-cell only receives an activating and co-stimulatory signal when both antigens are present. However, the T-cell still will activate in the sole presence of the first antigen resulting in the potential for off-target toxicity. Further, the implementation of the present invention allows for multiple compound linked gates whereby a cell can interpret a complex pattern of antigens.

10

TABLE 5

Cancer Type	Antigens
Chronic Lymphocytic Leukaemia	CD5, CD19
Neuroblastoma	ALK, GD2
Glioma	EGFR, Vimentin
Multiple myeloma	BCMA, CD138
Renal Cell Carcinoma	Carbonic anhydrase IX, G250
T-ALL	CD2, N-Cadherin
Prostate Cancer	PSMA, hepsin (or others)

THE CAR LOGICAL AND NOT GATE

15 In this embodiment, one CAR comprises an activating endodomain and one CAR comprises an inhibitory endodomain such that this inhibitory CAR is only active when it recognizes its cognate antigen. Hence a T-cell engineered in this manner is activated in response to the sole presence of the first antigen but is not activated when both antigens are present. This invention is implemented by inhibitory CARs with a spacer that co-localise with the first CAR but either the phosphatase activity of the inhibitory CAR should not be so potent that it 20 inhibits in solution, or the inhibitory endodomain in fact recruits a phosphatase solely when the inhibitory CAR recognizes its cognate target. Such endodomains are termed “ligation-on” or semi-inhibitory herein.

25 This invention is of use in refining targeting when a tumour can be distinguished from normal tissue by the presence of tumour associated antigen and the loss of an antigen expressed on normal tissue. The AND NOT gate is of considerable utility in the field of oncology as it allows targeting of an antigen which is expressed by a normal cell, which normal cell also expresses the antigen recognised by the CAR comprising the activating endodomain. An 30 example of such an antigen is CD33 which is expressed by normal stem cells and acute myeloid leukaemia (AML) cells. CD34 is expressed on stem cells but not typically expressed on AML cells. A T-cell recognizing CD33 AND NOT CD34 would result in destruction of leukaemia cells but sparing of normal stem cells.

5

Potential antigen pairs for use with AND NOT gates are shown in Table 6.

TABLE 6

Disease	TAA	Normal cell which expresses TAA	Antigen expressed by normal cell but not cancer cell
AML	CD33	stem cells	CD34
Myeloma	BCMA	Dendritic cells	CD1c
B-CLL	CD160	Natural Killer cells	CD56
Prostate cancer	PSMA	Neural Tissue	NCAM
Bowel cancer	A33	Normal bowel epithelium	HLA class I

10 COMPOUND GATES

The kinetic segregation model with the above components allows compound gates to be made e.g. a T-cell which triggers in response to patterns of more than two target antigens. For example, it is possible to make a T cell which only triggers when three antigens are present (A AND B AND C). Here, a cell expresses three CARs, each recognizing antigens A, B and C. One CAR is excitatory and two are inhibitory, which each CAR having spacer domains which result in differential segregation. Only when all three are ligated, will the T-cell activate. A further example: (A OR B) AND C: here, CARs recognizing antigens A and B are activating and have spacers which co-localise, while CAR recognizing antigen C is inhibitory and has a spacer which results in different co-segregation. A further example (A AND NOT B) AND C: Here CAR against antigen A has an activating endodomain and co-localises with CAR against antigen B which has a conditionally inhibiting endodomain. CAR against antigen C has a spacer who segregates differently from A or B and is inhibitory. In fact, ever more complex boolean logic can be programmed with these simple components of the invention with any number of CARs and spacers.

25

SIGNAL PEPTIDE

The CARs of the T cell of the present invention may comprise a signal peptide so that when the CAR is expressed inside a cell, such as a T-cell, the nascent protein is directed to the endoplasmic reticulum and subsequently to the cell surface, where it is expressed.

30

5 The core of the signal peptide may contain a long stretch of hydrophobic amino acids that has a tendency to form a single alpha-helix. The signal peptide may begin with a short positively charged stretch of amino acids, which helps to enforce proper topology of the polypeptide during translocation. At the end of the signal peptide there is typically a stretch 10 of amino acids that is recognized and cleaved by signal peptidase. Signal peptidase may cleave either during or after completion of translocation to generate a free signal peptide and a mature protein. The free signal peptides are then digested by specific proteases.

The signal peptide may be at the amino terminus of the molecule.

15 The signal peptide may comprise the SEQ ID No. 7, 8 or 9 or a variant thereof having 5, 4, 3, 2 or 1 amino acid mutations (insertions, substitutions or additions) provided that the signal peptide still functions to cause cell surface expression of the CAR.

SEQ ID No. 7: MGTSLLCWMALCLLGADHADG

20 The signal peptide of SEQ ID No. 7 is compact and highly efficient. It is predicted to give about 95% cleavage after the terminal glycine, giving efficient removal by signal peptidase.

SEQ ID No. 8: MSLPVTALLPLALLLHAARP

25 The signal peptide of SEQ ID No. 8 is derived from IgG1.

SEQ ID No. 9: MAVPTQVLGLLLLWLTDARC

30 The signal peptide of SEQ ID No. 9 is derived from CD8.

The signal peptide for the first CAR may have a different sequence from the signal peptide of the second CAR (and from the 3rd CAR and 4th CAR etc).

35 **ANTIGEN BINDING DOMAIN**

The antigen binding domain is the portion of the CAR which recognizes antigen. Numerous antigen-binding domains are known in the art, including those based on the antigen binding site of an antibody, antibody mimetics, and T-cell receptors. For example, the antigen-binding domain may comprise: a single-chain variable fragment (scFv) derived from a 40 monoclonal antibody; a natural ligand of the target antigen; a peptide with sufficient affinity

5 for the target; a single domain antibody; an artificial single binder such as a Darpin (designed ankyrin repeat protein); or a single-chain derived from a T-cell receptor.

The antigen binding domain may comprise a domain which is not based on the antigen binding site of an antibody. For example the antigen binding domain may comprise a 10 domain based on a protein/peptide which is a soluble ligand for a tumour cell surface receptor (e.g. a soluble peptide such as a cytokine or a chemokine); or an extracellular domain of a membrane anchored ligand or a receptor for which the binding pair counterpart is expressed on the tumour cell.

15 Examples 11 to 13 relate to a CAR which binds BCMA, in which the antigen binding domain comprises APRIL, a ligand for BCMA.

The antigen binding domain may be based on a natural ligand of the antigen.

20 The antigen binding domain may comprise an affinity peptide from a combinatorial library or a *de novo* designed affinity protein/peptide.

SPACER DOMAIN

CARs comprise a spacer sequence to connect the antigen-binding domain with the 25 transmembrane domain and spatially separate the antigen-binding domain from the endodomain. A flexible spacer allows the antigen-binding domain to orient in different directions to facilitate binding.

In the T cell of the present invention, the first and second CARs comprise different spacer 30 molecules. For example, the spacer sequence may, for example, comprise an IgG1 Fc region, an IgG1 hinge or a human CD8 stalk or the mouse CD8 stalk. The spacer may alternatively comprise an alternative linker sequence which has similar length and/or domain spacing properties as an IgG1 Fc region, an IgG1 hinge or a CD8 stalk. A human IgG1 spacer may be altered to remove Fc binding motifs.

35

Examples of amino acid sequences for these spacers are given below:

SEQ ID No. 10 (hinge-CH₂CH₃ of human IgG1)

AEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIAARTPEVTCVVVDVSHEDPEVKFN

40 WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTS

5 KAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPPVL
DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKD

SEQ ID No. 11 (human CD8 stalk):

TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAHVTRGLDFACDI

10

SEQ ID No. 12 (human IgG1 hinge):

AEPKSPDKTHTCPPCPKDPK

SEQ ID No. 13 (CD2 ectodomain)

15 KEITNALETWGALGQDINLDIPSFQMSDDIDDIKWEKTSKKKIAQFRKEKETFKEKDTYKLF
KNGTLKIKHLKTDQQDIYKVSIVDTKGKNVLEKIFDLKIQERVSKPKISWTCINTTLTCEVMNG
TDPELNLYQDGKHLKLSQRVITHKWTTSLSAFKCTAGNKVSKESSVEPVSCP
EKGLD

20 SEQ ID no. 14 (CD34 ectodomain)

SLDNNGTATPELPTQGTFNSNVSTNVSYQETTPSTLGSTSLHPVSQHGNEATTNITETTVKF
TSTSVITSVYGNNTSSVQSQTSVISTVFTTPANVSTPETTLKPSLSPGNVSDLSTTSLATS
PTKPYTSSSPILSDIKAEIKCSGIREVKLTQGICLEQNKTSSCAEFKKDRGEGLARVLCGEEQ
ADADAGAQVCSLLAQSEVRPQCLLLVLANRTEISSKLQLMKKHQSDLKKLGILDTEQDVA
25 SHQSYSQKT

Since CARs are typically homodimers (see Figure 1a), cross-pairing may result in a heterodimeric chimeric antigen receptor. This is undesirable for various reasons, for example: (1) the epitope may not be at the same "level" on the target cell so that a cross-paired CAR may only be able to bind to one antigen; (2) the VH and VL from the two different scFv could swap over and either fail to recognize target or worse recognize an unexpected and unpredicted antigen. For the "OR" gate and the "AND NOT" gate, the spacer of the first CAR is sufficiently different from the spacer of the second CAR in order to avoid cross-pairing. The amino acid sequence of the first spacer may share less than 50%, 30%, 40% or 20% identity at the amino acid level with the second spacer.

In other aspects of the invention (for example the AND gate) it is important that the spacer of the first CAR has a different length, and/or charge and/or shape and/or configuration and/or glycosylation, such that when both first and second CARs bind their target antigen, the difference in spacer charge or dimensions results in spatial separation of the two types of CAR to different parts of the membrane to result in activation as predicted by the kinetic

5 separation model. In these aspects, the different length, shape and/or configuration of the spacers is carefully chosen bearing in mind the size and binding epitope on the target antigen to allow differential segregation upon cognate target recognition. For example the IgG1 Hinge, CD8 stalk, IgG1 Fc, ectodomain of CD34, ectodomain of CD45 are expected to differentially segregate.

10

Examples of spacer pairs which differentially segregate and are therefore suitable for use with the AND gate are shown in the following Table:

Stimulatory CAR spacer	Inhibitory CAR spacer
Human-CD8STK	Human-IgG-Hinge-CH2CH3
Human-CD3z ectodomain	Human-IgG-Hinge-CH2CH3
Human-IgG-Hinge	Human-IgG-Hinge-CH2CH3
Human-CD28STK	Human-IgG-Hinge-CH2CH3
Human-CD8STK	Human-IgM-Hinge-CH2CH3CD4
Human-CD3z ectodomain	Human-IgM-Hinge-CH2CH3CD4
Human-IgG-Hinge	Human-IgM-Hinge-CH2CH3CD4
Human-CD28STK	Human-IgM-Hinge-CH2CH3CD4

15 In other aspects of the invention (for example the AND NOT gate), it is important that the spacer be sufficiently different as to prevent cross-pairing, but to be sufficiently similar to co-localise. Pairs of orthologous spacer sequences may be employed. Examples are murine and human CD8 stalks, or alternatively spacer domains which are monomeric – for instance the ectodomain of CD2.

20

Examples of spacer pairs which co-localise and are therefore suitable for use with the AND NOT gate are shown in the following Table:

Stimulatory CAR spacer	Inhibitory CAR spacer
Human-CD8aSTK	Mouse CD8aSTK
Human-CD28STK	Mouse CD8aSTK
Human-IgG-Hinge	Human-CD3z ectodomain
Human-CD8aSTK	Mouse CD28STK
Human-CD28STK	Mouse CD28STK
Human-IgG-Hinge-CH2CH3	Human-IgM-Hinge-CH2CH3CD4

25 All the spacer domains mentioned above form homodimers. However the mechanism is not limited to using homodimeric receptors and should work with monomeric receptors as long as the spacer is sufficiently rigid. An example of such a spacer is CD2 or truncated CD22.

5 TRANSMEMBRANE DOMAIN

The transmembrane domain is the sequence of the CAR that spans the membrane.

A transmembrane domain may be any protein structure which is thermodynamically stable in
10 a membrane. This is typically an alpha helix comprising of several hydrophobic residues. The transmembrane domain of any transmembrane protein can be used to supply the transmembrane portion of the invention. The presence and span of a transmembrane domain of a protein can be determined by those skilled in the art using the TMHMM algorithm (<http://www.cbs.dtu.dk/services/TMHMM-2.0/>). Further, given that the
15 transmembrane domain of a protein is a relatively simple structure, i.e a polypeptide sequence predicted to form a hydrophobic alpha helix of sufficient length to span the membrane, an artificially designed TM domain may also be used (US 7052906 B1 describes synthetic transmembrane components).

20 The transmembrane domain may be derived from CD28, which gives good receptor stability.

ACTIVATING ENDODOMAIN

The endodomain is the signal-transmission portion of the CAR. After antigen recognition, receptors cluster, native CD45 and CD148 are excluded from the synapse and a signal is
25 transmitted to the cell. The most commonly used endodomain component is that of CD3-zeta which contains 3 ITAMs. This transmits an activation signal to the T cell after antigen is bound. CD3-zeta may not provide a fully competent activation signal and additional co-stimulatory signaling may be needed. For example, chimeric CD28 and OX40 can be used with CD3-Zeta to transmit a proliferative / survival signal, or all three can be used together.

30 Where the T cell of the present invention comprises a CAR with an activating endodomain, it may comprise the CD3-Zeta endodomain alone, the CD3-Zeta endodomain with that of either CD28 or OX40 or the CD28 endodomain and OX40 and CD3-Zeta endodomain.

35 Any endodomain which contains an ITAM motif can act as an activation endodomain in this invention. Several proteins are known to contain endodomains with one or more ITAM motifs. Examples of such proteins include the CD3 epsilon chain, the CD3 gamma chain and the CD3 delta chain to name a few. The ITAM motif can be easily recognized as a tyrosine separated from a leucine or isoleucine by any two other amino acids, giving the signature
40 YxxL/I. Typically, but not always, two of these motifs are separated by between 6 and 8 amino acids in the tail of the molecule (YxxL/Ix(6-8)YxxL/I). Hence, one skilled in the art can

5 readily find existing proteins which contain one or more ITAM to transmit an activation signal. Further, given the motif is simple and a complex secondary structure is not required, one skilled in the art can design polypeptides containing artificial ITAMs to transmit an activation signal (see WO 2000063372, which relates to synthetic signalling molecules).

10 The transmembrane and intracellular T-cell signalling domain (endodomain) of a CAR with an activating endodomain may comprise the sequence shown as SEQ ID No. 15, 16 or 17 or a variant thereof having at least 80% sequence identity.

SEQ ID No. 15 comprising CD28 transmembrane domain and CD3 Z endodomain

15 FWVLVVVGVLACYSLLVTVAIFIIFWVRRVKFSRSADAPAYQQGQNQLYNELNLGRREYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR

20 SEQ ID No. 16 comprising CD28 transmembrane domain and CD28 and CD3 Zeta endodomains

FWVLVVVGVLACYSLLVTVAIFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPP RDFAAYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR

25 SEQ ID No. 17 comprising CD28 transmembrane domain and CD28, OX40 and CD3 Zeta endodomains.

FWVLVVVGVLACYSLLVTVAIFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPP RDFAAYRSRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKIRVKFSRSADAPAYQQG 30 QNQLYNELNLGRREYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIG MKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR

35 A variant sequence may have at least 80%, 85%, 90%, 95%, 98% or 99% sequence identity to SEQ ID No. 15, 16 or 17, provided that the sequence provides an effective transmembrane domain and an effective intracellular T cell signaling domain.

"LIGATION-OFF" INHIBITORY ENDODOMAIN

In the embodiment referred above as the AND gate, one of the CARs comprises an inhibitory endodomain such that the inhibitory CAR inhibits T-cell activation by the activating 40 CAR in the absence of inhibitory CAR ligation, but does not significantly inhibit T-cell

5 activation by the activating CAR when the inhibitory CAR is ligated. This is termed a "ligation-off" inhibitory endodomain.

In this case, the spacer of the inhibitory CAR is of a different length, charge, shape and/or configuration and/or glycosylation from the spacer of the activating CAR, such that when 10 both receptors are ligated, the difference in spacer dimensions results in isolation of the activating CARs and the inhibitory CARs in different membrane compartments of the immunological synapse, so that the activating endodomain is released from inhibition by the inhibitory endodomain.

15 The inhibitory endodomains for use in a ligation-off inhibitory CAR may therefore comprise any sequence which inhibits T-cell signaling by the activating CAR when it is in the same membrane compartment (i.e. in the absence of the antigen for the inhibitory CAR) but which does not significantly inhibit T cell signaling when it is isolated in a separate part of the membrane from the inhibitory CAR.

20 The ligation-off inhibitory endodomain may be or comprise a tyrosine phosphatase, such as a receptor-like tyrosine phosphatase. An inhibitory endodomain may be or comprise any tyrosine phosphatase that is capable of inhibiting the TCR signalling when only the stimulatory receptor is ligated. An inhibitory endodomain may be or comprise any tyrosine 25 phosphatase with a sufficiently fast catalytic rate for phosphorylated ITAMs that is capable of inhibiting the TCR signalling when only the stimulatory receptor is ligated.

30 For example, the inhibitory endodomain of an AND gate may comprise the endodomain of CD148 or CD45. CD148 and CD45 have been shown to act naturally on the phosphorylated tyrosines up-stream of TCR signalling.

CD148 is a receptor-like protein tyrosine phosphatase which negatively regulates TCR signaling by interfering with the phosphorylation and function of PLC γ 1 and LAT.

35 CD45 present on all hematopoietic cells, is a protein tyrosine phosphatase which is capable of regulating signal transduction and functional responses, again by phosphorylating PLC γ 1.

40 An inhibitory endodomain may comprise all or part of a receptor-like tyrosine phosphatase. The phosphatase may interfere with the phosphorylation and/or function of elements involved in T-cell signalling, such as PLC γ 1 and/or LAT.

5 The transmembrane and endodomain of CD45 and CD148 is shown as SEQ ID No. 18 and No.19 respectively.

SEQ ID 18 - CD45 trans-membrane and endodomain sequence

ALIAFLAFLIIVTSIALLVVLKYIYDLHKKRSCNLDEQQELVERDDEKQLMNVEPIHADILLETYK
10 RKIADEGRLFLAEFQSIPRVFSKFPIKEARKPFNQNKNRYVDILPYDYNRVELSEINGDAGSN
YINASYIDGFKEPRKYIAAQGPRDETVDFFWRMIWEQKATVIVMVTCEEGNRNKCAEYWP
SMEEGTRAFFGDVVKINQHKRCPDYIIQKLNIVNKKEKATGREVTHIQFTSWPDHGVPEDPH
LLLKLRRRVNAFSNFFSGPIVHCSAGVGRGTYIGIDAMLEGLEAENKVDVYGYVVKLRRQ
RCLMVQVEAQYILIHQALVEYNQFGETEVNLSELHPYLHNMKKRDPSEPSPLEAEFQRLP
15 SYRSWRTQHIGNQEENKSKNRNSNIPYDYNRVPLKHELEMSKESEHDSDESSDDDSDE
EPSKYINASFIMSYWKPEVMIAAQGPLKETIGDFWQMIFQRKVKVIVMLTELKGHDQEICAQ
YWGEKGKQTYGDIEDVLKDTDKSSTYTLRVFELRHSKRKDSRTVYQYQYTNWSVEQLPAEP
KELISMIQVVKQKLPQKNSSEGKHHKSTPLIHCRDGSQQTGIFCALLNLLESAETEEVVDI
FQVVKALRKARPGMVSTFEQYQFLYDVIASTYPAQNGQVKNNHQEDKIEFDNEVDKVKQ
20 DANCVNPLGAPEKLPEAKEQAEGSEPTSGTEGPEHSVNGPASPALNQGS

SEQ ID 19 - CD148 trans-membrane and endodomain sequence

AVFGCIFGALIVTVGGFIFWRKKRDAKNNEVSFSQIKPKKSKLIRVENFEAYFKKQQADSN
CGFAEYEDLKLVGISQPKYAAELAENRGKNRYNNVLPYDISRVKLSVQTHSTDDYINANYM
25 PGYHSKKDFIATQGPLPNTLKDFWRMVWEKNVYAIIMLTKCVEQGRTKCEEWPSKQAQD
YGDITVAMTSEIVLPEWTIRDFTVKNIQTSESHPLRQFHFTSWPDHGVPDTTDLLINFRLV
DYMKQSPPESPILVHCSAGVGRGTYFIAIDRLIYQIENENTDVYGYDLMHRPLMVQTED
QYVFLNQCVL DIVRSQKDSKVDLIYQNTTAMTIYENLAPVTTFGKTNGYIA

30 An inhibitory CAR may comprise all or part of SEQ ID No 18 or 19 (for example, it may comprise the phosphatase function of the endodomain). It may comprise a variant of the sequence or part thereof having at least 80% sequence identity, as long as the variant retains the capacity to basally inhibit T cell signalling by the activating CAR.

35 Other spacers and endodomains may be tested for example using the model system exemplified herein. Target cell populations can be created by transducing a suitable cell line such as a SupT1 cell line either singly or doubly to establish cells negative for both antigens (the wild-type), positive for either and positive for both (e.g. CD19-CD33-, CD19+CD33-, CD19-CD33+ and CD19+CD33+). T cells such as the mouse T cell line BW5147 which
40 releases IL-2 upon activation may be transduced with pairs of CARs and their ability to function in a logic gate measured through measurement of IL-2 release (for example by

5 ELISA). For example, it is shown in Example 4 that both CD148 and CD45 endodomains can function as inhibitory CARs in combination with an activating CAR containing a CD3 Zeta endodomain. These CARs rely upon a short/non-bulky CD8 stalk spacer on one CAR and a bulky Fc spacer on the other CAR to achieve AND gating. When both receptors are ligated, the difference in spacer dimensions results in isolation of the different receptors in
10 different membrane compartments, releasing the CD3 Zeta receptor from inhibition by the CD148 or CD45 endodomains. In this way, activation only occurs once both receptors are activated. It can be readily seen that this modular system can be used to test alternative spacer pairs and inhibitory endodomains. If the spacers do not achieve isolation following
15 ligation of both receptors, the inhibition would not be released and so no activation would occur. If the inhibitory endodomain under test is ineffective, activation would be expected in the presence of ligation of the activating CAR irrespective of the ligation status of the inhibitory CAR.

“LIGATION-ON” ENDODOMAIN

20 In the embodiment referred above as the AND NOT gate, one of the CARs comprises a “ligation-on” inhibitory endodomain such that the inhibitory CAR does not significantly inhibit T-cell activation by the activating CAR in the absence of inhibitory CAR ligation, but inhibits T-cell activation by the activating CAR when the inhibitory CAR is ligated.
25 The “ligation-on” inhibitory endodomain may be or comprise a tyrosine phosphatase that is incapable of inhibiting the TCR signalling when only the stimulatory receptor is ligated.

30 The “ligation-on” inhibitory endodomain may be or comprise a tyrosine phosphatase with a sufficiently slow catalytic rate for phosphorylated ITAMs that is incapable of inhibiting the TCR signalling when only the stimulatory receptor is ligated but it is capable of inhibiting the TCR signalling response when concentrated at the synapse. Concentration at the synapse is achieved through inhibitory receptor ligation.

35 If a tyrosine phosphatase has a catalytic rate which is too fast for a “ligation-on” inhibitory endodomain, then it is possible to tune-down the catalytic rates of phosphatase through modification such as point mutations and short linkers (which cause steric hindrance) to make it suitable for a “ligation-on” inhibitory endodomain.

40 In this first embodiment the endodomain may be or comprise a phosphatase which is considerably less active than CD45 or CD148, such that significant dephosphorylation of ITAMS only occurs when activating and inhibitory endodomains are co-localised. Many

5 suitable sequences are known in the art. For example, the inhibitory endodomain of a NOT AND gate may comprise all or part of a protein-tyrosine phosphatase such as PTPN6.

10 Protein tyrosine phosphatases (PTPs) are signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. The N-terminal part of this PTP contains two tandem Src homolog (SH2) domains, which act as protein phospho-tyrosine binding domains, and mediate the interaction of this PTP with its substrates. This PTP is expressed primarily in hematopoietic cells, and functions as an important regulator of multiple signaling pathways in hematopoietic cells.

15

The inhibitor domain may comprise all of PTPN6 (SEQ ID No. 20) or just the phosphatase domain (SEQ ID No. 21).

SEQ ID 20 – sequence of PTPN6

20 MVRWFHRDLSGLDAETLLKGRGVHGSFLARPSRKKNQGDFSLSVRVGDQVTHIRIQNSGDF
YDLYGGEKFATLTELVEYYTQQQGVLDQRDGTIIHLKYPLNCSDPTSERWYHGHMSGGQA
ETLLQAKGEPWTFLVRESLSQPGDFVLSVLSQPKAGPGSPLRVTHIKVMCEGGRTVGG
LETFDSLTDLVEHFKKTGIEEASGAFVYLRQPYATRVNAADIENRVLELNKKQESEDTAKA
GFWEEFESLQKQEVKNLHQRLEGQRPENKGKNRYKNILPFDHSRVILQGRDSNIPGSDYIN
25 ANYIKNQLLGPDENAKTYIASQGCLEATVNDFWQMAWQENSRVIVMTTREVEKGRNKCVP
YWPEVGMQRAYGPYSVTNCGEHDTTEYKLRTLQVSPLDNGDLIREIWHYQYLSWPDHGV
PSEPGGVLSFLDQINQRQESLPHAGPIIVHCSAGIGRTGTIIVIDMLMENISTKGLDCDIDIQKT
IQMVRAQRSGMVQTEAQYKFIYVAIAQFIETTKKKLEVLQSQKGQESEYGNITYPPAMKNAH
AKASRTSSKHKEDVYENLHTKNKREEVKKKQRSADKEKSKGSLKRK

30

SEQ ID 21 – sequence of phosphatase domain of PTPN6

FWEEFESLQKQEVKNLHQRLEGQRPENKGKNRYKNILPFDHSRVILQGRDSNIPGSDYINA
NYIKNQLLGPDENAKTYIASQGCLEATVNDFWQMAWQENSRVIVMTTREVEKGRNKCVPY
WPEVGMQRAYGPYSVTNCGEHDTTEYKLRTLQVSPLDNGDLIREIWHYQYLSWPDHGV
35 SEP GGVL SFLDQINQRQESLPHAGPIIVHCSAGIGRTGTIIVIDMLMENISTKGLDCDIDIQKT
QMVR AQRSGMVQTEAQYKFIYVAIAQF

40 A second embodiment of a ligation-on inhibitory endodomain is an ITIM (Immunoreceptor Tyrosine-based Inhibition motif) containing endodomain such as that from CD22, LAIR-1, the Killer inhibitory receptor family (KIR), LILRB1, CTLA4, PD-1, BTLA etc. When phosphorylated, ITIMs recruits endogenous PTPN6 through its SH2 domain. If co-localised

5 with an ITAM containing endodomain, dephosphorylation occurs and the activating CAR is inhibited.

An ITIM is a conserved sequence of amino acids (S/I/V/LxYxxI/V/L) that is found in the cytoplasmic tails of many inhibitory receptors of the immune system. One skilled in the art 10 can easily find protein domains containing an ITIM. A list of human candidate ITIM-containing proteins has been generated by proteome-wide scans (Staub, et al (2004) *Cell. Signal.* 16, 435–456). Further, since the consensus sequence is well known and little secondary structure appears to be required, one skilled in the art could generate an artificial ITIM.

15

ITIM endodomains from PDCD1, BTLA4, LILRB1, LAIR1, CTLA4, KIR2DL1, KIR2DL4, KIR2DL5, KIR3DL1 and KIR3DL3 are shown in SEQ ID 22 to 31 respectively

SEQ ID 22 PDCD1 endodomain

20 CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPCVPEQTEYATI
VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL

SEQ ID 23 BTLA4

25 KIQRRWKRTQSQQGLQENSSGQSFFVRNKKVRRAPLSEGPHSLGCYNPMMEDGISYTL
RFPEMNIPRTGDAESSEMQRPPPDCDDTVTYSALHKRQVGDYENVIPDFPEDEGIHYSELI
QFGVGERPQAQENVDYVILKH

SEQ ID 24 LILRB1

30 LRHRRQGKHWSTQRKADFQHPAGAVGPEPTDRGLQWRSSPAADAQEENLYAAVKHTQ
PEDGVEMDTRSPHDEDPQAVTYAEVKHSRPRREMASPPSPLSGEFLDTKDRQAEEDRQM
DTEAAASEAPQDVTYAQLHSLTLRREATEPPPSQEGPSPA VPSIYATLAIH

SEQ ID 25 LAIR1

35 HRQNQIKQGPPRSKDEEQKPQQRPDALDVLERTADKATVNGLPEKDRETDTSALAAGSS
QEVTYAQLDHWALTQRTARAVSPQSTKPMAESITYAAVARH

SEQ ID 26 CTLA4

FLLWILAAVSSGLFFYSFLLTAVSLSKMLKKRSPLTTGVYVKMPPTEPECEKQFQPYFIPIN

40 SEQ ID 27 KIR2DL1

GNSRHLHVIGTSVVIIPFAILFFLLHRWCANKKNAVVMQEPAGNRTVNREDSDEQDP

5 QEVYTQLNHCVFTQRKITRPSQRPKTPPTDIIVYTELPNAESRSKVVSCP

SEQ ID 28 KIR2DL4

GIARHLHAVIRYSVAILFTILPFFLLHRWCSKKKENAAVMNQEPAHGRTVNREDSDEQDPQ
EVTYAQLDHCIFTQRKITGPSQRSPKTPPTDTVCIELPNAEPRALSPAHEHHSQALMGSSRE
10 TTALSQTQLASSNVPAAGI

SEQ ID 29 KIR2DL5

TGIRRHLHILIGTSVAILFIILFFFLLHCCCSNKNAAVMDQEPAHGRTVNREDSDDQDPQEV
TYAQLDHCVFTQTKITSPSQRPKTPPTDTTMYMELPNAKPRSLSPAHKHHSQALRGSSRET
15 TALSQNRVASSHVPAAGI

SEQ ID 30 KIR3DL1

KDPRHLHILIGTSVIIIFILLFFFLLHLWCSNKNAAVMDQEPAHGRTVNREDSDDQDPQEV
TYAQLDHCVFTQRKITRPSQRPKTPPTDTILYTELPNAKPRSKVVSCP

20

SEQ ID 31 KIR3DL3

KDPGNSRHLHVLIGTSVVIIPFAILLFFFLLHRWCANKNAVVMDQEPAHGRTVNREDSDDQDPQEV
PQEVTYAQLNHCVFTQRKITRPSQRPKTPPTDTSV

25 A third embodiment of a ligation-on inhibitory endodomain is an ITIM containing endodomain co-expressed with a fusion protein. The fusion protein may comprise at least part of a protein-tyrosine phosphatase and at least part of a receptor-like tyrosine phosphatase. The fusion may comprise one or more SH2 domains from the protein-tyrosine phosphatase. For example, the fusion may be between a PTPN6 SH2 domain and CD45 endodomain or
30 between a PTPN6 SH2 domain and CD148 endodomain. When phosphorylated, the ITIM domains recruit the fusion protein bring the highly potent CD45 or CD148 phosphatase to proximity to the activating endodomain blocking activation.

SEQUENCES of fusion proteins are listed 32 and 33

35

SEQ ID 32 PTPN6-CD45 fusion protein

WYHGHMSGGQAETLLQAKGEPTFLVRESLSQPGDFVLSVLSQPKAGPGSPLRVTHIKV
MCEGGGRYTVGGLETFDSLTDLVEHFKKTGIEEASGAFVYLRQPYKIYDLHKKRSCNLDEQQ
ELVERDDEKQLMNVEPIHADILLETYKRKIADEGRLFLAEFQSIPRVFSKFPPIKEARKPFNQN
40 KNRYVDILPYDYNRVELSEINGDAGSNYINASYIDGFKEPRKYIAAQGPRDETVDDFWRMIW
EQKATVIVMVTRCEEGNRNKCAEYWPSMEEGTRAFGDVVVKINQHKRCPDYIIQKLNIVNK

5 KEKATGREVTHIQFTSWPDHGVPEDPHLLKLRRRVNAFSNFFSGPIVHCSAGVGRGTY
IGIDAMLEGLEAENKVDVYGYVVKLRRQRCLMVQVEAQYILIHQALVEYNQFGETEVNLSEL
HPYLHNMKKRDPSEPSPLEAEFQLRLPSYRSWRTQHIGNQEENKSKNRNSNVIPYDYNRV
LKHELEMSKESEHDSDESSDDSDSEEPSKYINASFIMSYWKPEVMIAAQGPLKETIGDFMI
QRKVKVIVMLTELKHGDQEICAQYWGEKGKQTYGDIEVDLKDTDKSSTYTLRVFELRHSKRK
10 DSRTVYQQYQYTNWSVEQLPAEPKELISMIQVVKQKLPQKNSSEGKHHKSTPLLIHCRDGS
QQTGIFCALLNLLESATEEEVVDIFQVVKALRKARPGMVSTFEQYQFLYDVIASTYPAQNGQ
VKKNNHQEDKIEFDNEVDVKVQDANCVNPLGAPEKLPEAKEQAEGSEPTSGTEGPEHSVN
GPASPALNQGS

15 SEQ ID 33 PTPN6-CD148 fusion

ETLLQAKGEPWTFLVRESLSQPGDFVLSVLSQPKAGPGSPLRVTHIKVMCEGGRTVGG
LETFDSLTDLVEHFKKTGIEEASGAFVYLRQPYRKKRKDAKNNEVSFSQIKPKKSKLIRVENF
EAYFKKQQADSNCGFAEYEDLKLVGISQPKYAAELAENRGKNRYNNVLPYDISRVKLSVQ
THSTDDYINANYMPGYHSKKDFIATQGPLPNTLKDFWRMVWEKNVYAIIMLTKCVEQGRTK
20 CEEYWPSKQAQDYGDITVAMTSEIVLPEWTIRDFTVKNIQTSESHPLRQFHFTSWPDHGVP
DTTDLLINFRLVRYDYMKQSPPESPILVHCSAGVGRGTFIAIDRLIYQIENENTDVYGIVYD
LRMHRPLMVQTEDQYVFLNQCVLIDIVRSQKDSKVDLIYQNTTAMTIYENLAPVTTFGKTNGY
IA

25 A ligation-on inhibitory CAR may comprise all or part of SEQ ID No 20 or 21. It may comprise all or part of SEQ ID 22 to 31. It may comprise all or part of SEQ ID 22 to 31 co-expressed with either SEQ ID 32 or 33. It may comprise a variant of the sequence or part thereof having at least 80% sequence identity, as long as the variant retains the capacity to inhibit T cell signaling by the activating CAR upon ligation of the inhibitory CAR.

30 As above, alternative spacers and endodomains may be tested for example using the model system exemplified herein. It is shown in Example 5 that the PTPN6 endodomain can function as a semi-inhibitory CAR in combination with an activating CAR containing a CD3 Zeta endodomain. These CARs rely upon a human CD8 stalk spacer on one CAR and a mouse CD8 stalk spacer on the other CAR. The orthologous sequences prevent cross pairing. However, when both receptors are ligated, the similarity between the spacers results in co-segregation of the different receptors in the same membrane compartments. This results in inhibition of the CD3 Zeta receptor by the PTPN6 endodomain. If only the activating CAR is ligated the PTPN6 endodomain is not sufficiently active to prevent T cell activation. In this way, activation only occurs if the activating CAR is ligated and the inhibitory CAR is not ligated (AND NOT gating). It can be readily seen that this modular

5 system can be used to test alternative spacer pairs and inhibitory domains. If the spacers do not achieve co-segregation following ligation of both receptors, the inhibition would not be effective and so activation would occur. If the semi-inhibitory endodomain under test is ineffective, activation would be expected in the presence of ligation of the activating CAR irrespective of the ligation status of the semi-inhibitory CAR.

10

CO-EXPRESSION SITE

The second aspect of the invention relates to a nucleic acid which encodes the first and second CARs.

15 The nucleic acid may produce a polypeptide which comprises the two CAR molecules joined by a cleavage site. The cleavage site may be self-cleaving, such that when the polypeptide is produced, it is immediately cleaved into the first and second CARs without the need for any external cleavage activity.

20 Various self-cleaving sites are known, including the Foot-and-Mouth disease virus (FMDV) 2a self-cleaving peptide, which has the sequence shown as SEQ ID No. 34:

SEQ ID No. 34

RAEGRGSLLTCGDVEENPGP.

25

The co-expressing sequence may be an internal ribosome entry sequence (IRES). The co-expressing sequence may be an internal promoter.

CELL

30

The first aspect of the invention relates to a cell which co-expresses a first CAR and a second CAR at the cell surface.

35 The cell may be any eukaryotic cell capable of expressing a CAR at the cell surface, such as an immunological cell.

In particular the cell may be an immune effector cell such as a T cell or a natural killer (NK) cell

40 T cells or T lymphocytes are a type of lymphocyte that play a central role in cell-mediated immunity. They can be distinguished from other lymphocytes, such as B cells and natural

5 killer cells (NK cells), by the presence of a T-cell receptor (TCR) on the cell surface. There are various types of T cell, as summarised below.

10 Helper T helper cells (TH cells) assist other white blood cells in immunologic processes, including maturation of B cells into plasma cells and memory B cells, and activation of cytotoxic T cells and macrophages. TH cells express CD4 on their surface. TH cells become activated when they are presented with peptide antigens by MHC class II molecules on the surface of antigen presenting cells (APCs). These cells can differentiate into one of several subtypes, including TH1, TH2, TH3, TH17, Th9, or TFH, which secrete different cytokines to facilitate different types of immune responses.

15 Cytotoxic T cells (TC cells, or CTLs) destroy virally infected cells and tumor cells, and are also implicated in transplant rejection. CTLs express the CD8 at their surface. These cells recognize their targets by binding to antigen associated with MHC class I, which is present on the surface of all nucleated cells. Through IL-10, adenosine and other molecules 20 secreted by regulatory T cells, the CD8+ cells can be inactivated to an anergic state, which prevent autoimmune diseases such as experimental autoimmune encephalomyelitis.

25 Memory T cells are a subset of antigen-specific T cells that persist long-term after an infection has resolved. They quickly expand to large numbers of effector T cells upon re-exposure to their cognate antigen, thus providing the immune system with "memory" against past infections. Memory T cells comprise three subtypes: central memory T cells (TCM cells) and two types of effector memory T cells (TEM cells and TEMRA cells). Memory cells may be either CD4+ or CD8+. Memory T cells typically express the cell surface protein CD45RO.

30 Regulatory T cells (Treg cells), formerly known as suppressor T cells, are crucial for the maintenance of immunological tolerance. Their major role is to shut down T cell-mediated immunity toward the end of an immune reaction and to suppress auto-reactive T cells that escaped the process of negative selection in the thymus.

35 Two major classes of CD4+ Treg cells have been described — naturally occurring Treg cells and adaptive Treg cells.

40 Naturally occurring Treg cells (also known as CD4+CD25+FoxP3+ Treg cells) arise in the thymus and have been linked to interactions between developing T cells with both myeloid (CD11c+) and plasmacytoid (CD123+) dendritic cells that have been activated with TSLP.

5 Naturally occurring Treg cells can be distinguished from other T cells by the presence of an intracellular molecule called FoxP3. Mutations of the FOXP3 gene can prevent regulatory T cell development, causing the fatal autoimmune disease IPEX.

10 Adaptive Treg cells (also known as Tr1 cells or Th3 cells) may originate during a normal immune response.

The T cell of the invention may be any of the T cell types mentioned above, in particular a CTL.

15 Natural killer (NK) cells are a type of cytolytic cell which forms part of the innate immune system. NK cells provide rapid responses to innate signals from virally infected cells in an MHC independent manner

20 NK cells (belonging to the group of innate lymphoid cells) are defined as large granular lymphocytes (LGL) and constitute the third kind of cells differentiated from the common lymphoid progenitor generating B and T lymphocytes. NK cells are known to differentiate and mature in the bone marrow, lymph node, spleen, tonsils and thymus where they then enter into the circulation.

25 The CAR cells of the invention may be any of the cell types mentioned above.

30 CAR- expressing cells , such as CAR-expressing T or NK cells, may either be created ex vivo either from a patient's own peripheral blood (1st party), or in the setting of a haematopoietic stem cell transplant from donor peripheral blood (2nd party), or peripheral blood from an unconnected donor (3rd party).

35 The present invention also provide a cell composition comprising CAR expressing T cells and/or CAR expressing NK cells according to the present invention. The cell composition may be made by tranducing or transfecting a blood-sample ex vivo with a nucleic acid according to the present invention.

40 Alternatively, CAR-expressing cells may be derived from ex vivo differentiation of inducible progenitor cells or embryonic progenitor cells to the relevant cell type, such as T cells. Alternatively, an immortalized cell line such as a T-cell line which retains its lytic function and could act as a therapeutic may be used.

5 In all these embodiments, CAR cells are generated by introducing DNA or RNA coding for the CARs by one of many means including transduction with a viral vector, transfection with DNA or RNA.

10 A CAR T cell of the invention may be an *ex vivo* T cell from a subject. The T cell may be from a peripheral blood mononuclear cell (PBMC) sample. T cells may be activated and/or expanded prior to being transduced with CAR-encoding nucleic acid, for example by treatment with an anti-CD3 monoclonal antibody.

A CAR T cell of the invention may be made by:

15 (i) isolation of a T cell-containing sample from a subject or other sources listed above; and

(ii) transduction or transfection of the T cells with one or more nucleic acid sequence(s) encoding the first and second CAR.

20 The T cells may then be purified, for example, selected on the basis of co-expression of the first and second CAR.

NUCLEIC ACID SEQUENCES

25 The second aspect of the invention relates to one or more nucleic acid sequence(s) which codes for a first CAR and a second CAR as defined in the first aspect of the invention.

The nucleic acid sequence may comprise one of the following sequences, or a variant thereof

30 SEQ ID 35 OR gate
SEQ ID 36 AND gate using CD45
SEQ ID 37 AND gate using CD148
SEQ ID 38 AND NOT gate using PTPN6 as endodomain
35 SEQ ID 39 AND NOT gate using LAIR1 endodomain
SEQ ID 40 AND NOT gate using LAIR1 and PTPN6 SH2 fusion with CD148 phosphatase

SEQ ID No. 35:

>MP13974.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-HCH2CH3pvaa-

40 CD28tmZw

5 ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCTGGCCCTGCTGCTGCACGCCGCC
AGACCAGACATCCAGATGACCCAGACCACCAGCAGCCTGAGCGCCAGCCTGGCGAC
CGGGTGACCATCAGCTGCAGAGCCAGGCCAGGACATCAGCAAGTACCTGAACCTGGTACC
AGCAGAAGCCCGACGGCACCGTGAAGCTGCTGATCTACCACACCAGCCGGCTGCACA
GCGGCGTGCCCAGCCGGTTCAGCGGCAGCGGCAGCGGCACCGACTACAGCCTGACC
10 ATCAGCAACCTGGAGCAGGAGGACATGCCACCTACTTCTGCCAGCAGGGCAACACCC
TGCCCTACACCTTCGGAGGCAGGCCACCAAGCTGGAGATACCAAGGCCGGAGGCAGGAG
GCTCTGGCGGAGGCAGGCTCTGGCGGAGGCAGGCTCTGGCGGAGGCAGGCGAGGT
GAAGCTGCAGGAGTCTGGCCCAGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGAC
CTGCACCGTGAGCGCGTGAAGCCTGCCCAGTACGGCGTGAAGCTGGATCAGGCAGCC
15 CCCACGGAAGGGCTGGAGTGGCTGGCGTGAATCTGGGCAGCGAGACCACCTACTA
CAACAGCGCCCTGAAGAGCCGGCTGACCATCATCAAGGACAACAGCAAGAGGCCAGGT
GTTCTGAAGATGAACAGCCTGCAGACGACACCGCCATCTACTACTGCGCCAAG
CACTACTACTATGGCGGCAGCTACGCTATGGACTACTGGGCCAGGGCACCAACACCGCGCC
20 ACCATCGCGTCGCAGCCCTGTCCCTGCGCCCAGAGCGTGCCTGTGATATCTTGGTGCTGGT
GGCGCAGTGCACACGAGGGGCTGGACTTCGCCTGTGATATCTTGGTGCTGGT
GGTGGTTGGTGAGTCCTGGCTTGCTATAGCTTGCTAGTAACAGTGGCCTTATTATT
TCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCAGACGCCCGCGTACAGCAGG
GCCAGAACAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGGAGTACGATGTTT
25 GGACAAGAGACGTGGCCGGGACCTGAGATGGGGAAAGCCGAGAAGGAAGAAC
CTCAGGAAGGCCTGTACAATGAACCTGCAGAAAGATAAGATGGCGGAGGCCTACAGTGA
GATTGGGATGAAAGCGAGCGCCGGAGGGCAAGGGCACGATGGCCTTACCGAGG
GTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTCACATGCAGGCCCTGCCTCC
TCGCAGAGCCGAGGGCAGGGGAAGTCTTAAACATGCGGGGACGTGGAGGAAAATCC
30 CGGGCCCATGGCCGTGCCACTCAGGTCTGGGTTGTGCTACTGTGGCTTACAGAT
GCCAGATGTGACATCCAGATGACACAGTCTCCATCTCCCTGTCTGCATCTGCGAGA
TCGCGTACCATCACCTGTCGAGCAAGTGAGGACATTATTAAATTAGTGTGGTATCA
GCAGAAACCAGGAAAGGCCCTAACGCTCTGATCTGATACAAATCGCTGGCAGAT
GGGGTCCCATACGGTTCAGTGGCTCTGGATCTGGCACACAGTATACTCTAACATAA
35 GTAGCCTGCAACCCGAAGATTCGCAACCTATTATTGTCAACACTATAAGAATTATCCGC
TCACGTTGGTCAGGGGACCAAGCTGGAAATCAAAGATCTGGTGGCGGAGGGTCAG
GAGGCAGGAGGCAGCGGAGGCAGGCTGGCTCGGGAGGCAGGCTCGAGATCTGAGGTG
CAGTTGGTGGAGTCTGGGGCGGCTTGGTGCAGCCTGGAGGGTCCCTGAGGCTCTCC
TGTGCAGCCTCAGGATTCACTCTCAGTAATTATGGCATGCACTGGATCAGGCAGGCTC
40 CAGGGAAAGGGTCTGGAGTGGGTCTCGTCTATTAGTCTTAATGGTGGTAGCACTTACTAT
CGAGACTCCGTGAAGGGCCGATTCACTATCTCCAGGGACAATGCAAAAGCACCCTCT

5 ACCTTCAAATGAATAGTCTGAGGGCCGAGGACACGGCCGTCTATTACTGTGCAGCACA
GGACGCTTATACTGGGAGGTTACTTGTATTACTGGGGCCAAGGAACGCTGGTCACAGTC
TCGTCTATGGATCCGCCGAGCCAAATCTCCTGACAAAACACACATGCCACCCT
GCCAGCACCTCCCCTGGCCGGCCGTAGTCTTCTCTTCCCCAAAACCCAAGGA
CACCCCTCATGATCGCCCAGGACCCCTGAGGTACATGCGTGGTGGACGTGAGCCA
10 CGAAGACCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC
AAGACAAAGCCGGGGAGGAGCAGTACAACACAGCACGTACCGTGTGGTCAGCGTCCTC
ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACA
AAGCCCTCCCAGCCCCATCGAGAAAACCATCTCCAAAGCCAAGGGCAGCCCCGAGA
ACCACAGGTGTACACCCCTGCCCATCCGGATGAGCTGACCAAGAACCAAGGTCAAG
15 CCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATGCCGTGGAGTGGAGAG
CAATGGGCAACCGGAGAACAACTACAAGACCACGCCCTCCGTGCTGGACTCCGACGG
CTCCTCTTCCCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGAAAC
GTCTTCTCATGCTCCGTGATGCATGAGGCCCTGCACAATCACTATAACCCAGAAATCTCT
GAGTCTGAGCCCAGGCAAGAAGGACCCCAAGTTCTGGGTCTGGTGGTGGAGG
20 CGTGCTGGCCTGTTACTCTCCTGGTGACCGTGGCCTCATCATCTTGGTGCCT
CCCGGGTGAAGTTCTCGCTTGCGATGCCCTACAGCAGGGCCAGAACATCA
GCTGTACAATGAACCTGGCAGGCAGGAGTACGACGTGCTGGATAAGCG
GAGAGGCAGAGACCCCGAGATGGCGGCAAACACGGCGAAAAATCCCCAGGAGG
GAECTATAACGAGCTGCAGAAGGACAAATGGCCGAGGCCTATTCCGAGATCGGCAT
25 GAAGGGAGAGAGAACACGCGGAAAGGGCACGACGGCCTGTATCAGGGATTGTCCAC
CGCTACAAAAGATACATATGATGCCCTGCACATGCAGGCCCTGCCACCCAGATGA

SEQ ID No. 36

>MP14802.SFG.aCD19fmc63_clean-CD8STK-CD28tmZ-2A-aCD33glx-HCH2CH3pvaa-
30 dCD45
ATGAGCCTGCCGTACCGCCCTGCTGCTGCCCTGGCCCTGCTGCTGCACGCCGCC
AGACCAGACATCCAGATGACCCAGACCACAGCAGCCTGAGCGCCAGCCTGGCGAC
CGGGTGACCATCAGCTGCAGAGCCAGGACATCAGCAAGTACCTGAACTGGTACC
AGCAGAAGCCGACGGCACCGTGAAGCTGCTGATCTACCAACACCAGCCGGCTGCACA
35 GCGCGTCCCAGCCGGTCAGCGGCAGCGCAGCGGACCGACTACAGCCTGACC
ATCAGCAACCTGGAGCAGGAGGACATGCCACCTACTTCTGCCAGCAGGGAACACCC
TGCCCTACACCTCGGAGGCAGGACCAAGCTGGAGATACCAAGGCCGGAGGCAGGAG
GCTCTGGCGGAGGCAGGCTCTGGCGGAGGCGCTCTGGCGGAGGCCAGCGAGGT
GAAGCTGCAGGAGTCTGGCCCAGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGAC
40 CTGCACCGTGAGCGCGTGAGCCTGCCACTACGGCGTGAGCTGGATCAGGCAGCC
CCCACGGAAGGCCCTGGAGTGGCTGGCGTGATCTGGGGCAGCGAGACCACCTACTA

5 CAACAGCGCCCTGAAGAGCCGGCTGACCATCATCAAGGACAACAGCAAGAGGCCAGGT
GTT CCTGAAGATGAACAGCCTGCAGACCGACGACACCGCCATCTACTACTGCGCCAAG
CACTACTACTATGGCGGCAGCTACGCTATGGACTACTGGGCCAGGGCACCGCGTG
ACCGTGAGCTCAGATCCCACCACGACGCCAGCGCCGACCACCAACACCGGCC
ACCATCGCGTCGCAGCCCTGTCCCTGCGCCAGAGGCGTGCCGCCAGCGGCC
10 GGGCGCAGTGCACACGAGGGGCTGGACTTCGCCTGTGATATCTTTGGGTGCTGGT
GGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTTGCTAGTAACAGTGGCCTTATTATT
TCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCAGACGCCCGCGTACCGCAGG
GCCAGAACAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTT
GGACAAGAGACGTGGCCGGACCCCTGAGATGGGGGAAAGCCGAGAAGGAAGAAC
15 CTCAGGAAGGCCTGTACAATGAAC TG CAGAAAGATAAGATGGCGGAGGCCTACAGTGA
GATTGGGATGAAAGGCGAGCGCCGGAGGGCAAGGGCACGATGGCCTTACCA
GTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTCACATGCAGGCCCTGCCTCC
TCGCAGAGCCGAGGGCAGGGGAAGTCTTCAACATGCAGGGGACGTGGAGGAAAATCC
CGGGCCCATGGCGTGCCTACTCAGGTCTGGGTTGTTGCTACTGTGGCTTACAGAT
20 GCCAGATGTGACATCCAGATGACACAGTCTCCATCTCCCTGTCTGCATCTGCGGAGA
TCGCGTACCATCACCTGTCGAGCAAGTGAGGACATTATTAAATTAGTGTGGTATCA
GCAGAAACCAGGAAAGGCCCTAACGCTCTGGATCTGGCACACAGTATACTCTAAC
GGGGTCCCATACGGTTAGTGGCTCTGGATCTGGCACACAGTATACTCTAAC
GTAGCCTGCAACCGAAGATTGCAACCTATTATTGTCAACACTATAAGAATTATCCGC
25 TCACGTTCGGTCAAGGGACCAAGCTGGAAATCAAAGATCTGGTGGCGGAGGGTCAG
GAGGCGGAGGCAGCGGAGGCCTGGCTCGGGAGGCAGGCTGAGATCTGAGGTG
CAGTTGGTGGAGTCTGGGGCGGCTTGGTCAGCCTGGAGGGTCCCTGAGGCTCTCC
TGTGCAGCCTCAGGATTCACTCTCAGTAATTATGGCATGCAGTGGATCAGGCAGGCTC
CAGGGAAAGGGCTGGAGTGGGTCTCGTCTATTAGTCTTAATGGTGGTAGCAGTACTAT
30 CGAGACTCCGTGAAGGGCGATTCACTATCTCAGGGACAATGCAAAAGCACCCCT
ACCTTCAAATGAATAGTCTGAGGGCGAGGACACGGCGTCTATTACTGTGCAGCACA
GGACGCTTATACGGAGGTACTTGATTACTGGGCCAGGAACGCTGGTCACAGTC
TCGTCTATGGATCCCGCCGAGCCAAATCTCCTGACAAAACCTCACACATGCCACC
GCCAGCACCTCCCGTGGCGGGCGTCAGTCTTCCCTTCCCCAAAACCCAAGGA
35 CACCCCTCATGATCGCCCGGACCCCTGAGGTACATGCGTGGTGGACGTGAGCCA
CGAAGACCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC
AAGACAAAGCCGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTC
ACCGTCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACA
AAGCCCTCCCAGCCCCATCGAGAAAACCATCTCCAAAGCCAAGGGCAGCCCCGAGA
40 ACCACAGGTGTACACCCTGCCCATCCGGATGAGCTGACCAAGAACCGAGTCAG
CCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATGCCGTGGAGTGGAGAG

5 CAATGGGCAACCGGAGAACAACTACAAGACCACGCCCTCCCGTGCTGGACTCCGACGG
CTCCTTCTCCTCTACAGCAAGCTACCGTGAGGACAGAGCAGGTGGCAGCAGGGAAAC
GTCTTCTCATGCTCCGTGATGCATGAGGCCCTGCACAATCACTATAACCCAGAAATCTCT
GAGTCTGAGCCCAGGCAAGAAGGACCCCAAGGCAGTGATAGCATTCTGGCATTCTG
ATTATTGTGACATCAATAGCCCTGCTTGTCTACAAAATCTATGATCTACATAAGA
10 AAAGATCCTGCAATTAGATGAACAGCAGGAGCTTGTGAAAGGGATGATGAAAAACAA
CTGATGAATGTGGAGCCAATCCATGCAGATATTGTGAAACTTATAAGAGGAAGAT
TGCTGATGAAGGAAGACTTTCTGGCTGAATTTCAGAGCATCCCGCGGGTGTTCAGCA
AGTTTCCTATAAGGAAGCTCGAAAGCCCTTAACCAGAATAAAAACCGTTATGTTGACA
TTCTTCCTTATGATTATAACCCTGTTGAACTCTCTGAGATAAACGGAGATGCAGGGTCAA
15 ACTACATAAAATGCCAGCTATTGATGGTTCAAAGAACCCAGGAAATACATTGCTGCAC
AAGGTCCCAGGGATGAAACTGTTGATGATTCTGGAGGATGATTGGGAAACAGAAAGC
CACAGTTATTGTCATGGTCACTCGATGTGAAGAAGGAAACAGGAACAAGTGTGCAGAAT
ACTGGCCGTCAATGGAAGAGGGCACTCGGGCTTGGAGATGTTGTTGAAAGATCAA
CCAGCACAAAAGATGTCCAGATTACATCATTGAGATAACATTGAAATAAAAAGA
20 AAAAGCAACTGGAAGAGAGGTGACTCACATTGAGTCAGTCACCAGCTGCCAGACCACGGG
GTGCCTGAGGATCCTCACTGCTCCTCAAACGTAGAAGGCCTGGAAGGCCAGAACAAAGTGGATGTT
ATTCTTCAGTGGTCCCATTGTTGCACTGCAGTGCTGGTGTGGCGCACAGGAAC
CTATATCGGAATTGATGCCATGCTAGAAGGCCTGGAAGGCCAGAACAAAGTGGATGTT
ATGGTTATGTTGTCAGCTAAGGCGACAGAGATGCCTGATGGTTCAAGTAGAGGCCCA
25 GTACATCTTGATCCATCAGGCTTGGGAATACAATCAGTTGGAGAAACAGAAAGTGA
ATTGTCTGAATTACATCCATATCTACATAACATGAAGAAAAGGGATCCACCCAGTGAGC
CGTCTCCACTAGAGGCTGAATTCCAGAGACTCCTCATATAGGAGCTGGAGGACACA
GCACATTGGAAATCAAGAAGAAAATAAAAGTAAAACAGGAATTCTAATGTCATCCCATA
TGACTATAACAGAGTGCCACTAAACATGAGCTGGAAATGAGTAAAGAGAGTGAGCATG
30 ATTCAGATGAATCCTCTGATGATGACAGTGATTGAGGAACCAAGCAAATACATCAAT
GCATCTTTATAATGAGCTACTGGAAACCTGAAGTGATGATTGCTGCTCAGGGACACT
GAAGGAGACCATTGGTACTTTGGCAGATGATCTCCAAAGAAAAGTCAAAGTTATTG
TTATGCTGACAGAACTGAAACATGGAGACCAGGAAATCTGTGCTCAGTACTGGGAGA
AGGAAAGCAAACATATGGAGATATTGAAGTTGACCTGAAAGACACAGACAAATCTCAA
35 CTTATACCCCTCGTCTTGAACGTGAGACATTCCAAGAGGAAAGACTCTCGAACTGTG
TACCACTACCAATATACAAACTGGAGTGAGCAGCTCCTGCAGAACCCAGGAATT
AATCTCTATGATTCAAGTCGTCAAACAAAAACTCCCCAGAAGAATTCTCTGAAGGGAA
ACAAGCATCACAAGAGTACACCTACTCATTCACTGCAGGGATGGATCTCAGCAAACG
GGAATATTGTGCTTGTAAATCTCTTAGAAAGTGCAGGAAACAGAAGAGGAGTAGTGG
40 TATTTTCAAGTGGTAAAGCTACGCAAAGCTAGGCCAGGCATGGTTCCACATTG
AGCAATATCAATTCTATGACGTCAATTGCCAGCACCTACCTGCTCAGAATGGACAA

5 GTAAAGAAAAACAACCATCAAGAAGATAAAATTGAATTGATAATGAAGTGGACAAAGTA
AAGCAGGATGCTAATTGTGTTAATCCACTTGGTCCCCAGAAAAGCTCCCTGAAGCAA
GGAACAGGCTGAAGGTTCTGAACCCACGAGTGGCACTGAGGGGCCAGAACATTCTGTC
AATGGTCCTGCAAGTCCAGCTTAAATCAAGGTTCATAG

10 SEQ ID No. 37:

>MP14801.SFG.aCD19fmc63_clean-CD8STK-CD28tmZ-2A-aCD33glx-HCH2CH3pvaa-
dCD148

ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCTGGCCCTGCTGCTGCACGCCGCC
AGACCAGACATCCAGATGACCCAGACCACCCAGCAGCCTGAGCGCCAGCCTGGCGAC

15 CGGGTGACCATCAGCTGCAGAGCCAGGCCAGGACATCAGCAAGTACCTGAACGGTACC
AGCAGAAGCCCAGGGCACCGTGAAGCTGCTGATCTACCACACCAGCCGGCTGCACA
GCGCGTGCCCAGCCGGTTCAGCGGCAGCGGCAGCGGACCGACTACAGCCTGACC
ATCAGCAACCTGGAGCAGGAGGACATGCCACCTACTTCTGCCAGCAGGGCAACACCC

TGCCCTACACCTTCGGAGGGCGGACCAAGCTGGAGATACCAAGGCCGGAGGGCGGAG

20 GCTCTGGCGGAGGCAGGCTCTGGCGGAGGCAGGCTCTGGCGGAGGCAGGCTGAGCGAGGT
GAAGCTGCAGGAGTCTGGCCCAGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGCAC
CTGCACCGTGAGCGCGTGAGCCTGCCACTACGGCGTGAGCTGGATCAGGCAGCC
CCCACGGAAGGCCCTGGAGTGGCTGGCGTGATCTGGGGCAGCGAGACCACCTACTA

CAACAGCGCCCTGAAGAGCCGGCTGACCATCATCAAGGACAACAGCAAGAGCCAGGT

25 GTTCCTGAAGATGAACAGCCTGCAGACCGACGACACCGCCATCTACTACTGCGCCAAG
CACTACTACTATGGCGGCAGCTACGCTATGGACTACTGGGCCAGGGCACCAGCGTG
ACCGTGAGCTCAGATCCCACCACGACGCCAGCGCCGGACCAACACCGCGCC
ACCATCGCGTCGCAGCCCTGTCCTGCCAGAGCGTGCCGGCAGCGCGGG

GGCGCAGTGCACACGAGGGGCTGGACTTCGCGTGTGATATCTTTGGGTGCTGGT

30 GGTGGTTGGAGTCCTGGCTTGCTATAGCTTAGTAACAGTGGCCTTATTATT
TCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCAGACGCCCGCGTACAGCAGG
GCCAGAACAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGGAGTACGATGTTT
GGACAAGAGACGTGGCCGGACCCTGAGATGGGGGAAAGCCGAGAAGGAAGAAC

CTCAGGAAGGCCTGTACAATGAACCTGCAGAAAGATAAGATGGCGGAGGCCTACAGTGA

35 GATTGGATGAAAGCGAGCGCCGGAGGGCAAGGGCACGATGGCCTTACAGG
GTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTCACATGCAGGCCCTGCCTCC
TCGCAGAGCCGAGGGCAGGGAGTCTTCTAACATGCCGGACGTGGAGGAAAATCC
CGGGCCCATGGCGTCCCCTCAGGTCTGGGTTTTGCTACTGTGGCTTACAGAT

GCCAGATGTGACATCCAGATGACACAGTCTCCATCTCCCTGTCTGCATCTGCGAGA

40 TCGCGTACCATCACCTGCGAGCAAGTGAGGACATTATTAAATTAGTGTGGTATCA
GCAGAAACCAGGAAAGGCCCTAACGCTCCTGATCTGATACAAATCGCTGGCAGAT

5 GGGTCCCACCGGTTAGTGGCTCTGGATCTGGCACACAGTATACTCTAACATAA
GTAGCCTGCAACCCGAAGATTCGCAACCTATTATTGTCAACACTATAAGAATTATCCGC
TCACGTTGGTCAGGGGACCAAGCTGGAAATCAAAGATCTGGTGGCGGAGGGTCAG
GAGGCGGAGGCAGCGGAGGCAGCTGGCTCGGGAGGCAGGCTCGAGATCTGAGGTG
CAGTTGGTGGAGTCTGGGGCGGCTGGTCAGCCTGGAGGGCCCTGAGGCTCTCC
10 TGTGCAGCCTCAGGATTCACTCTCAGTAATTATGGCATGCAGTGGATCAGGCAGGCTC
CAGGGAAAGGTCTGGAGTGGGTCTCGTCTATTAGTCTTAATGGTGGTAGCAGTACTAT
CGAGACTCCGTGAAGGGCCGATTCACTATCTCCAGGGACAATGCAAAAGCACCCCT
ACCTTCAAATGAATAGTCTGAGGGCCGAGGACACGGCGTCTATTACTGTGCAGCACA
GGACGCTTACGGGAGGTTACTTGATTACTGGGCCAAGGAACGCTGGTCACAGTC
15 TCGTCTATGGATCCCAGGCCAAATCTCCTGACAAAACACACATGCCACCCT
GCCAGCACCTCCCGTGGCCGGCCCGTCACTCTCCCTCTCCCCCAAAACCCAAGGA
CACCTCATGATCGCCCAGCCCTGAGGTACATGCGTGGTGGACGTGAGCCA
CGAAGACCCCTGAGGTCAAGTTCACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC
AAGACAAAGCCGGAGGAGCAGTACAACACAGCACGTACCGTGTGGTCAGCGTCCTC
20 ACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACA
AAGCCCTCCCAGCCCCATCGAGAAAACCATCTCAAAGCCAAGGGCAGCCCCGAGA
ACCACAGGTGTACACCCTGCCCCATCCGGATGAGCTGACCAAGAACCAAGGTCA
CCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATGCCGTGGAGTGGAGAG
CAATGGCAACCGGAGAACAACTACAAGACCACGCCCTCCGTGCTGGACTCCGACGG
25 CTCCTTCTCCTTACAGCAAGCTACCGTGGACAAGAGCAGGTGGCAGCAGGGAAAC
GTCTTCTCATGCTCCGTATGCATGAGGCCCTGCACAATCACTATACCCAGAAATCTCT
GAGTCTGAGCCCAGGCAAGAAGGACCCCAAGGCAGTTGGCTGTATCTTGGTGC
CTGGTTATTGTGACTGTGGAGGCTTACCTGGAGAAAGAAGAGGAAAGATGCAA
GAATAATGAAGTGTCTTCTCAAATTAAACCTAAAAATCTAAGTTAATCAGAGTGG
30 GAATTGGAGGCCTACTTCAAGAACGAGCAAGCTGACTCCAACGTGGTTCGCAGAG
GAATACGAAGATCTGAAGCTTGGATTAGTCAACCTAAATATGCAGCAGAACTGGC
TGAGAATAGAGGAAAGAACGCTATAATAATGTTCTGCCCTATGATATTCCGTGTCAA
ACTTCGGTCCAGACCCATTCAACGGATGACTACATCAATGCCAACTACATGCCGTGGCT
ACCACTCCAAGAAAGATTTATTGCCACACAAGGACCTTACCGAACACTTGAAGATT
35 TTTGGCGTATGGTTGGAGAAAATGTATATGCCATCATTATGTTGACTAAATGTGTTG
AACAGGGAAAGAACCAATGTGAGGAGTATTGCCCTCAAGCAGGCTCAGGACTATGG
AGACATAACTGTGGCAATGACATCAGAAATTGTTCTCCGAATGGACCACAGAGATT
TCACAGTAAAAATATCCAGACAAGTGAGAGTCACCCCTCTGAGACAGTCCATTCC
TCCTGGCCAGACCACGGTGTCCGACACCACTGACCTGCTCATCAACTCCGGTACC
40 TCGTTCGTGAATGAGCAGAGTCCTCCGAATGCCATTGATCGTCTCATCTACAGATAG
GCTGGGGCGGAAGGACGGCACTTCATTGCCATTGATCGTCTCATCTACAGATAG

5 AGAATGAGAACACCGTGGATGTATGGGATTGTATGACCTTCGAATGCATAGGCCT
TTAATGGTGCAGACAGAGGACCAGTATGTTTCCTCAATCAGTGTGTTGGATATTGTC
AGATCCCAGAAAGACTCAAAAGTAGATCTTATCTACCAGAACACAACGTCAATGACAAT
CTATGAAAACCTTGCGCCCGTGACCACATTGGAAAGACCAATGGTTACATCGCCTAA

10 SEQ ID No. 38

>16076.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-muCD8STK-tm-dPTPN6
ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCTGGCCCTGCTGCTGCACGCCGCC
AGACCAGACATCCAGATGACCCAGACCACAGCAGCCTGAGCGCCAGCCTGGCGAC
CGGGTACCACATCAGCTGCAGAGCCAGGCCAGGACATCAGCAAGTACCTGAACGGTACC
15 AGCAGAACGCCCAGGGCACCGTGAAGCTGCTGATCTACCACACCAGCCGGCTGCACA
GCGGCGTGCCCAGCCGGTTCAGCGGCAGCGGCAGCGGACACTACAGCCTGACC
ATCAGCAACCTGGAGCAGGAGGACATGCCACCTACTTCTGCCAGCAGGGAACACCC
TGCCCTACACCTTCGGAGGGCGGACCAAGCTGGAGATACCAAGGCCGGAGGGCGGAG
GCTCTGGCGGAGGGCGGCTCTGGCGGAGGCCTCTGGCGGAGGGCGGAGCGAGGT
20 GAAGCTGCAGGAGTCTGGCCCAGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGAC
CTGCACCGTGAGCGCGTGAGCCTGCCACTACGGCGTGAGCTGGATCAGGCAGCC
CCCACGGAAGGGCCTGGAGTGGCTGGCGTGTGATCTGGGGCAGCGAGACCACCTACTA
CAACAGCGCCCTGAAGAGGCCGCTGACCATCATCAAGGACAACAGCAAGAGCCAGGT
GTTCTGAAGATGAACAGCCTGCAGACCGACGACCCATCTACTACTGCGCCAAG
25 CACTACTACTATGGCGGCAGCTACGCTATGGACTACTGGGCCAGGGCACCGCGTG
ACCGTGAGCTCAGATCCCACCAACGACGCCAGCGCCGACCAACACCGCGGCC
ACCATCGCGTCCGAGCCCTGTCCTGCCAGAGCGTGCCGGCAGCGGGCGGG
GGCGCAGTCACACGAGGGGCTGGACTTCGCCTGTGATATCTTGGGTGCTGGT
GGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTGCTAGTAACAGTGGCCTTATTATT
30 TCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCAGACGCCCGCGTACCGAGG
GCCAGAACAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGGAGTACGATGTTT
GGACAAGAGACGTGGCCGGACCCCTGAGATGGGGAAAGCCGAGAAGGAAGAAC
CTCAGGAAGGCCTGTACAATGAACACTGCAGAAAGATAAGATGGCGGAGGCCTACAGTGA
GATTGGGATGAAAGGCAGCGCCGGAGGGCAAGGGGACGATGGCCTTACCGAGG
35 GTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTCACATGCAGGCCCTGCCTCC
TCGCAGAGCCGAGGGCAGGGGAAGTCTTCTAACATGCCGGGACGTGGAGGAAAATCC
CGGGCCCATGCCGTGCCACTCAGGTCTGGGTTGTTGCTACTGTGGCTTACAGAT
GCCAGATGTGACATCCAGATGACACAGTCTCCATCTCCGTCTGCATCTGCGGAGA
TCGCGTCAACCACCTGTCGAGCAAGTGAGGACATTATTAAATTAGTGTGGTATCA
40 GCAGAAACCAGGAAAGGCCCTAACGCTCCTGATCTATGATACAAATCGCTGGCAGAT
GGGTCCCACCGGTTAGTGGCTCTGGATCTGGCACACAGTATACTCTAACATAA

5 GTAGCCTGCAACCGAAGATTCGCAACCTATTATTGTCAACACTATAAGAATTATCCGC
TCACGTTCGGTCAAGGGACCAAGCTGGAAATCAAAAGATCTGGTGGCGGAGGGTCAG
GAGGCAGGAGGCAGCGAGGCAGGCTGGCTGGGAGGCAGGCTGAGATCTGAGGTG
CAGTTGGTGGAGTCTGGGGCGGCTGGTGCAGCCTGGAGGGCCCTGAGGCTCTCC
TGTGCAGCCTCAGGATTCACTCTCAGTAATTATGGCATGCACTGGATCAGGCAGGCTC
10 CAGGAAAGGGCTGGAGTGGGTCTCGTCTATTAGTCTTAATGGTAGCAGTACTTACTAT
CGAGACTCCGTGAAGGGCCGATTCACTATCTCCAGGGACAATGCAAAAGCACCCCT
ACCTCAAATGAATAGTCTGAGGGCCGAGGACACGCCGTCTATTACTGTGCAGCACA
GGACGCTTACGGGAGGTTACTTGATTACTGGGCCAAGGAACGCTGGTCACAGTC
TCGTCTATGGATCCCACCACAAACCAAGCCCCTGCTGCCGGACCCAAAGCCCTGTGC
15 ACCCTACCGGACCAGCCAGCCTCAGAGACCCGAGGACTGCCGGCCTGGGCAGC
GTGAAGGGACCAGGCTGGACTTCGCTGCGACATCTACTGGCACCTCTGGCGGA
ATATGCGTGGCACTGCTGCTGAGCCTCATCATCACCTGATCTGTTATACCGAAGCCG
CAAGCGGGTGTGAAAAGTGGAGGCGGAAGCTCTGGAGGAGTTGAGAGTTGCA
GAAGCAGGAGGTGAAGAACTGCACCAGCGTCTGGAAGGGCAGCGGCCAGAGAACAA
20 GGGCAAGAACCGCTACAAGAACATTCTCCCTTGACCACAGCCAGTGATCCTGCAG
GGACGGGACAGTAACATCCCCGGTCCGACTACATCAATGCCAATCACATCAAGAAC
AGCTGCTAGGCCCTGATGAGAACGCTAACGACCTACATGCCAGCCAGGGCTGTCTGGA
GGCCACGGTCAATGACTCTGGCAGATGGCGTGGCAGGAGAACAGCCGTGTCATCGT
CATGACCACCCGAGAGGTGGAGAAAGGCCGAACAAATGCGTCCATACTGGCCCGA
25 GGTGGGCATGCAGCGTCTTATGGCCCTACTCTGTGACCAACTGCCGGGAGCATGA
CACAAACCGAATACAAACTCCGTACCTACAGGTCTCCCCGCTGGACAATGGAGACCTG
ATTGGGAGATCTGGCATTACCACTGAGCTGGCCCGACCACGGGCTCCAGT
GAGCCTGGGGTGTCTCAGCTTCCGGACAGATCAACCAGCGGCCAGGAAAGTCTG
CCTCACGCAGGGCCATCATCGTCACTGCAGCGCCGGCATGGCCGCACAGGCACC
30 ATCATTGTCATCGACATGCTCATGGAGAACATCTCCACCAAGGGCTGGACTGTGACAT
TGACATCCAGAAGACCATCCAGATGGTGCAGGCCAGCGCTGGCATGGCAGAC
GGAGGCGCAGTACAAGTTCATCTACGTGGCCATGCCAGTTATTGAAACCACTAAG
AAGAAGCTGTGA

35 SEQ ID No. 39

>MP16091.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-muCD8STK-LAIR1tm-endo
ATGAGCCTGCCGTGACGCCCTGCTGCTGCCCTGCCCTGCTGCTGCACGCCGCC
AGACCAGACATCCAGATGACCCAGACCACCGAGCAGCAGCCTGAGCGCCAGCCTGGCGAC
CGGGTGACCATCAGCTGCAGAGCCAGGCCAGGACATCAGCAAGTACCTGAACGGTACC
40 AGCAGAAGCCGACGGCACCGTGAAGCTGCTGATCTACACACCAGCCGGCTGCACA
CGGGCGTGCCAGCCGGTTCAGCGGCAGCGGCAGCGGACCGACTACAGCCTGACC

5 ATCAGCAACCTGGAGCAGGAGGACATGCCACCTACTTCTGCCAGCAGGGAACACCC
TGCCTACACCTCGGAGGCAGGACCAAGCTGGAGATCACCAAGGCCGGAGGCAGGAG
GCTCTGGCGGAGGCAGGCTCTGGCGGAGGCAGGCTCTGGCGGAGGCAGGAGGT
GAAGCTGCAGGAGTCTGGCCCAGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGAC
CTGCACCGTGAGCGCGTGAGCCTGCCGACTACGGCGTGAGCTGGATCAGGCAGCC
10 CCCACGGAAGGGCTGGAGTGGCTGGCGTGATCTGGGCAGCGAGACCACCTACTA
CAACAGCGCCCTGAAGAGCCGGCTGACCATCATCAAGGACAACAGCAAGAGCCAGGT
GTTCTGAAGATGAACAGCCTGCAGACCGACGACACCACCATCTACTACTGCGCCAAG
CACTACTACTATGGCGGCAGCTACGCTATGGACTACTGGGCCAGGGCACCAGCGTG
ACCGTGAGCTCAGATCCCACGACGCCAGCGCCGACCACCAACACCGCGCCC
15 ACCATCGCGTCGCAGCCCTGTCCCTGCGCCCAGAGGCAGGCCAGCGGGCGGG
GGGCCAGTGCACACGAGGGGCTGGACTTCGCTGTGATATCTTTGGGTGCTGGT
GGTGGTTGGTGGAGTCCTGGCTGCTAGCTTAGTAAACAGTGGCCTTATTATT
TCTGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCAGACGCCCGCGTACCGAGG
GCCAGAACCAAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTT
20 GGACAAGAGACGTGGCCGGACCTGAGATGGGGGAAAGCCGAGAACAGAAC
CTCAGGAAGGCCTGTACAATGAACCTGCAGAAAGATAAGATGGCGGAGGCCTACAGTGA
GATTGGGATGAAAGCGAGCGCCGGAGGGCAAGGGCACGATGGCCTTACCAAGG
GTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTCACATGCAGGCCCTGCCTCC
TCGCAGAGCCGAGGGCAGGGAAAGTCTTCTAACATGCAGGGGACGTGGAGGAAAATCC
25 CGGGCCCATGGCGTCCCCACTCAGGTCTGGGTTGTGCTACTGTGGCTTACAGAT
GCCAGATGTGACATCCAGATGACACAGTCTCCATCTTCCCTGTCTGCATCTGCGAGA
TCGCGTACCATCACCTGTCGAGCAAGTGAAGGACATTATTAAATTAGTGTGGTATCA
GCAGAACCAAGGAAAGGCCCTAACGCTCTGATCTATGATAACAAATCGCTGGCAGAT
GGGTCCCCTACCGGTTCACTGGCTCTGGATCTGGCACACAGTATACTCTAACATAA
30 GTAGCCTGCAACCCGAAGATTCGCAACCTATTATTGTCAACACTATAAGAATTATCCGC
TCACGTTCGGTCAAGGGACCAAGCTGGAAATCAAAAGATCTGGTGGCGGAGGGTCAG
GAGGCAGGAGGCAGCGGAGGCAGGCTGGCTCGGGAGGCAGGCTCGAGATCTGAGGTG
CAGTTGGTGGAGTCTGGGGCGGCTGGTGCAGCCTGGAGGGCCCTGAGGCTCTCC
TGTGCAGCCTCAGGATTCACTCTCAGTAATTATGGCATGCACTGGATCAGGCAGGCTC
35 CAGGGAAAGGTCTGGAGTGGTCTCGTCTATTAGTCTTAATGGTGGTAGCACTTACTAT
CGAGACTCCGTGAAGGGCCGATTCACTATCTCAGGGACAATGCAAAAGCACCCCTCT
ACCTTCAAATGAATAGTCTGAGGGCCGAGGACACGCCGTCTTACTGTGCAGCACA
GGACGCTTACGGAGGTTACTTGATTACTGGGCCAAGGAACGCTGGTCACAGTC
TCGTCTATGGATCCCGCCACCACAACCAAGGCCGTGCTGCCGGACCCCAAGCCCTGTGC
40 ACCCTACCGGACCCAGCCAGCCTCAGAGACCCGAGGACTGCCGGCTCGGGCAGC
GTGAAGGGCACCGGCCTGGACTTCGCTGCGACATTCTCATGGGTCTCAGTGGTCT

5 TCCTCTTCTGTCTCCTCCTGGTCCTCTGCCTCCATGCCAGAACATCAGATAAG
CAGGGGCCCGAGAACAGAAGGACGAGGAGCAGAACGCCACAGCAGAGGCCTGACCT
GGCTGTTGATGTTCTAGAGAGGACAGCAGAACAGGCCACAGTCATGGACTCCTGAG
AAGGACCGGGAGACCGACACCAGCAGGCCCTGGCTGCAGGGAGTTCCCAGGAGGTGAC
GTATGCTCAGCTGGACCACTGGCCCTCACACAGAGGACAGCCCAGGGCTGTGCCCC
10 ACAGTCCACAAAGCCCATGGCCAGTCCATCACGTATGCAGCCGTTGCCAGACACTGA

SEQ ID no. 40

>MP16092.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-muCD8STK-LAIR1tm-
endo-2A-PTPN6_SH2-dCD148

15 ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCTGGCCCTGCTGCTGCACGCCGCC
AGACCAGACATCCAGATGACCCAGACCACCCAGCAGCCTGAGCGCCAGCCTGGCGAC
CGGGTGACCATCAGCTGCAGAGCCAGGCCAGGACATCAGCAAGTACCTGAACGGTACC
AGCAGAAGCCGACGGCACCGTGAAGCTGCTGATCTACCCACACCAGCCGGCTGCACA
GCGCGTGCCAGCCGGTCAGCGGCAGCGGCAGCGGACCTACAGCCTGACC
20 ATCAGCAACCTGGAGCAGGAGGACATGCCACCTACTTCTGCCAGCAGGGAACACCC
TGCCCTACACCTCGGAGGCAGGCCACCAAGCTGGAGATACCAAGGCCGGAGGCAGGAG
GCTCTGGCGGAGGCAGGCTCTGGCGGAGGCAGGCTCTGGCGGAGGCAGGCTGAGCGAGGT
GAAGCTGCAGGAGTCTGGCCCAGGCCTGGCTGGCCCCAAGCCAGAGCCTGAGCGTGAC
CTGCACCGTGAGCGCGTGAGCCTGAGCCTGCCACTACGGCGTGAGCTGGATCAGGCAGCC
25 CCCACGGAAGGCCCTGGAGTGGCTGGCGTGATCTGGGCAGCGAGACCACCTACTA
CAACAGCGCCCTGAAGAGGCCGGCTGACCATCATCAAGGACAACAGCAAGAGGCCAGGT
GTTCTGAAGATGAACAGCCTGCAGACCGACGACACCAGCCATCTACTACTGCGCCAAG
CACTACTACTATGGCGGCAGCTACGCTATGGACTACTGGGCCAGGGCACCAGCGTG
ACCGTGAGCTCAGATCCCACCAACGACGCCAGCGCCGACCAACACCCGGCGCCC
30 ACCATCGCGTCGCAGCCCTGTCCCTGCAGGCCAGAGGCAGGCCAGCGGGGG
GGCGCAGTGCACACGAGGGGCTGGACTTCGCCTGTGATATCTTGGTGCTGGT
GGTGGTTGGAGTCCTGGCTTGCTATAGCTTAGTAAAGTGGCCTTATTATT
TCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCAGACGCCCGCGTACAGCAGG
GCCAGAACAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTT
35 GGACAAGAGACGTGGCCGGACCCCTGAGATGGGGGAAAGCCAGAACAGGAACC
CTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATAAGATGGCGGAGGCCTACAGTG
GATTGGGATGAAAGGCAGCGCCGGAGGGCAAGGGCACGATGCCCTTACCGAG
GTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTCACATGCAGGCCCTGCCTCC
TCGCAGAGCCGAGGGCAGGGAAAGTCTTAACATGCAGGGACGTGGAGGAAAATCC
40 CGGGCCCATGGCCGTGCCACTCAGGTCTGGGTTGCTACTGTGGCTTACAGAT
GCCAGATGTGACATCCAGATGACACAGTCTCCATCTCCCTGTCTGCATCTCGGAGA

5 TCGCGTACCATCACCTGTCGAGCAAGTGAGGACATTTATTTAATTAGTGTGGTATCA
GCAGAAACCAGGAAAGGCCCCTAAGCTCCTGATCTATGATAACAAATCGCTGGCAGAT
GGGGTCCCATCACGGTTAGTGGCTCTGGATCTGGCACACAGTATACTCTAACCATAA
GTAGCCTGCAACCCGAAGATTGCAACCTATTATTGTCAACACTATAAGAATTATCCGC
10 TCACGTTCGGTCAAGGGACCAAGCTGGAAATCAAAAGATCTGGTGGCGGAGGGTCAG
GAGGC GGAGGCAGCGGAGGCGGTGGCTCGGGAGGC GGAGGCTCGAGATCTGAGGTG
CAGTTGGTGGAGTCTGGGGCGGCTTGGTGCAGCCTGGAGGGCCCTGAGGCTCTCC
TGTGCAGCCTCAGGATTCACTCTCAGTAATTATGGCATGC ACTGGATCAGGCAGGCTC
CAGGGAAAGGGCTGGAGTGGGTCTCGTCTATTAGTCTTAATGGTGGTAGC ACTTACTAT
CGAGACTCCGTGAAGGGCCGATTCACTATCTCCAGGGACAATGCAAAAGCACCCCT
15 ACCTTCAAATGAATAGTCTGAGGGCCGAGGACACGGCCGTCTATTACTGTGCAGCACA
GGACGCTTATACGGGAGGTTACTTGATTACTGGGCCAAGGAACGCTGGTCACAGTC
TCGTCTATGGATCCGCCACCACAACCAAGCCC GTGCTGC GGACCCCAAGCCCTGTGC
ACCC TACCGGCACCAGCCAGCCTCAGAGACCCGAGGA CTGCCGGCCTCGGGCAGC
GTGAAGGGCACCGGCCTGGACTTCGCCTGCGACATTCTCATCGGGTCTCAGTGGTCT
20 TCCTCTTCTGTCTCCTCCTGGCCTCTGCCTCCATGCCAGAATCAGATAAAG
CAGGGGCCCCCAGAAGCAAGGACGAGGAGCAGAAGGCCACAGCAGAGGCCTGACCT
GGCTGTTGATGTTCTAGAGAGGACAGCAGACAAGGCCACAGTCATGGACTCCTGAG
AAGGACCGGGAGACCGACACCAGCGCCCTGGCTGCAGGGAGTTCCCAGGAGGTGAC
GTATGCTCAGCTGGACCCTGGCCCTCACACAGAGGACAGCCC GGCTGTGTC
25 ACAGTCCACAAAGCCCATGGCCGAGTCCATCACGTATGCAGCCGTTGCCAGACACAGG
GCAGAAGGAAGAGGTAGCCTGCTGACTTGCGGGACGTGGAAGAGAACCCAGGGCCA
TGGTATCATGGCCACATGTCTGGCGGGCAGGCAGAGACGCTGCTGCAGGCCAAGGGC
GAGCCCTGGACGTTCTTGTGCGTGAGAGCCTCAGCCAGCCTGGAGACTCGTGC
CTGTGCTCAGTGACCAGCCCAGGCTGGCCAGGCTCCCCGCTCAGGGTACCCACA
30 TCAAGGT CATGTGCGAGGGTGGACGCTACACAGTGGTGGTTGGAGACCTCGACAG
CCTCACGGACCTGGTGGAGCATTCAAGAAGACGGGATTGAGGAGGCCTCAGGCGC
CTTGCTTACCTGCGGCAGCGTACAGCGGTGGCGGTGGCAGCTTGAGGCTACTTC
AAGAACGAGCAAGCTGACTCCA ACTGTGGTTCGCAGAGGAATACGAAGATCTGAAGC
TTGTTGGAATTAGTCAACCTAAATATGCAGCAGAACTGGCTGAGAATAGAGGAAAGAAT
35 CGCTATAATAATGTTCTGCCCTATGATATTCCGTGCAAACCTTCGGTCCAGACCCAT
TCAACGGATGACTACATCAATGCCAACTACATGCCGGTACCAACTCCAAGAAAGATT
TATTGCCACACAAGGACCTTACCGAACACTTGAAGATTTGGCGTATGGTTGG
AGAAAAATGTATATGCCATCATTATGTTGACTAAATGTGTTGAAACAGGGAAAGAACCAAAT
GTGAGGAGTATTGGCCCTCCAAGCAGGCTCAGGACTATGGAGACATAACTGTGGCAAT
40 GACATCAGAAATTGTTCTCCGGAATGGACCATCAGAGATTACAGTGA
AGACAAGTGAGAGTCACCCCTCTGAGACAGTTCCATTACCTCCTGGCCAGACCACGG

5 TGTTCCCGACACCACTGACCTGCTCATCAACTTCCGGTACCTCGTCGTGACTACATGA
AGCAGAGTCCTCCGAATGCCGATTCTGGTGCATTGCAGTGCTGGGTCGGAAGGA
CGGGCACTTCATTGCCATTGATCGTCTCATCTACCAAGATAGAGAACACCGTG
GATGTGTATGGGATTGTGTATGACCTTCGAATGCATAGGCCTTAATGGTCAGACAGA
GGACCAGTATGTTTCCTCAATCAGTGTGTTGGATATTGTCAGATCCCAGAAAGACTC
10 AAAAGTAGATCTTATCTACCAAGAACACAACGCAATGACAATCTATGAAAACCTTGC
CGTGACCACATTGGAAAGACCAATGGTACATGCCAGCGGTAGCTAA

15 The nucleic acid sequence may encode the same amino acid sequence as that encoded by SEQ ID No. 35, 36, 37, 38, 39 or 40, but may have a different nucleic acid sequence, due to the degeneracy of the genetic code. The nucleic acid sequence may have at least 80, 85, 90, 95, 98 or 99% identity to the sequence shown as SEQ ID No. 35, 36, 37, 38, 39 or 40, provided that it encodes a first CAR and a second CAR as defined in the first aspect of the invention.

20 VECTOR

The present invention also provides a vector, or kit of vectors which comprises one or more CAR-encoding nucleic acid sequence(s). Such a vector may be used to introduce the nucleic acid sequence(s) into a host cell so that it expresses the first and second CARs.

25

The vector may, for example, be a plasmid or a viral vector, such as a retroviral vector or a lentiviral vector, or a transposon based vector or synthetic mRNA.

The vector may be capable of transfecting or transducing a T cell.

30

PHARMACEUTICAL COMPOSITION

The present invention also relates to a pharmaceutical composition containing a plurality of CAR-expressing cells, such as T cells or NK cells according to the first aspect of the invention. The pharmaceutical composition may additionally comprise a pharmaceutically acceptable carrier, diluent or excipient. The pharmaceutical composition may optionally comprise one or more further pharmaceutically active polypeptides and/or compounds. Such a formulation may, for example, be in a form suitable for intravenous infusion.

40 METHOD OF TREATMENT

5 The T cells of the present invention may be capable of killing target cells, such as cancer cells. The target cell may be recognisable by a defined pattern of antigen expression, for example the expression of antigen A AND antigen B; the expression of antigen A OR antigen B; or the expression of antigen A AND NOT antigen B or complex iterations of these gates.

10

T cells of the present invention may be used for the treatment of an infection, such as a viral infection.

15 T cells of the invention may also be used for the control of pathogenic immune responses, for example in autoimmune diseases, allergies and graft-vs-host rejection.

20 T cells of the invention may be used for the treatment of a cancerous disease, such as bladder cancer, breast cancer, colon cancer, endometrial cancer, kidney cancer (renal cell), leukemia, lung cancer, melanoma, non-Hodgkin lymphoma, pancreatic cancer, prostate cancer and thyroid cancer.

It is particularly suited for treatment of solid tumours where the availability of good selective single targets is limited.

25 T cells of the invention may be used to treat: cancers of the oral cavity and pharynx which includes cancer of the tongue, mouth and pharynx; cancers of the digestive system which includes oesophageal, gastric and colorectal cancers; cancers of the liver and biliary tree which includes hepatocellular carcinomas and cholangiocarcinomas; cancers of the respiratory system which includes bronchogenic cancers and cancers of the larynx; cancers 30 of bone and joints which includes osteosarcoma; cancers of the skin which includes melanoma; breast cancer; cancers of the genital tract which include uterine, ovarian and cervical cancer in women, prostate and testicular cancer in men; cancers of the renal tract which include renal cell carcinoma and transitional cell carcinomas of the uterus or bladder; brain cancers including gliomas, glioblastoma multiforme and medulloblastomas; cancers of 35 the endocrine system including thyroid cancer, adrenal carcinoma and cancers associated with multiple endocrine neoplasm syndromes; lymphomas including Hodgkin's lymphoma and non-Hodgkin lymphoma; Multiple Myeloma and plasmacytomas; leukaemias both acute and chronic, myeloid or lymphoid; and cancers of other and unspecified sites including neuroblastoma.

40

5 Treatment with the T cells of the invention may help prevent the escape or release of tumour cells which often occurs with standard approaches.

The invention will now be further described by way of Examples, which are meant to serve to assist one of ordinary skill in the art in carrying out the invention and are not intended in any 10 way to limit the scope of the invention.

EXAMPLES

Example 1 - Creation of target cell populations

15 For the purposes of proving the principle of the invention, receptors based on anti-CD19 and anti-CD33 were arbitrarily chosen. Using retroviral vectors, CD19 and CD33 were cloned. These proteins were truncated so that they do not signal and could be stably expressed for prolonged periods. Next, these vectors were used to transduce the SupT1 cell line either 20 singly or doubly to establish cells negative for both antigen (the wild-type), positive for either and positive for both. The expression data are shown in Figure 3.

Example 2 - Design and function of the OR gate

25 To construct the OR gate, a pair of receptors recognizing CD19 and CD33 were co-expressed. Different spacers were used to prevent cross-pairing. Both receptors had a trans-membrane domain derived from CD28 to improve surface stability and an endodomain derived from that of CD3 Zeta to provide a simple activating signal. In this way, a pair of independent 1st generation CARs were co-expressed. The retroviral vector cassette used to 30 co-express the sequences utilizes a foot-and-mouth 2A self-cleaving peptide to allow co-expression 1:1 of both receptors. The cassette design is shown in Figure 4, and the protein structures in Figure 5. The nucleotide sequence of homologous regions was codon-wobbled to prevent recombination during retroviral vector reverse transcription.

Example 3 - Testing the OR gate

Expression of both CARs was tested on the T-cell surface by staining with cognate antigen fused to Fc. By using different species of Fc domains (mouse for CD19 and rabbit for CD33), co-expression of both CARs was determined on the cell surface by staining with

5 different secondary antibodies conjugated with different fluorophores. This is shown in Figure 6.

Functional testing was then carried out using the mouse T-cell line BW5147. This cell line releases IL2 upon activation allowing a simple quantitative readout. These T-cells were co-cultured with increasing amounts of the artificial target cells described above. T-cells responded to target cells expressing either antigen, as shown by IL2 release measured by ELISA. Both CARs were shown to be expressed on the cell surfaces and the T-cells were shown to respond to either or both antigens. These data are shown in Figure 7.

15 **Example 4 - Design and function of the AND gate**

The AND gate combines a simple activating receptor with a receptor which basally inhibits activity, but whose inhibition is turned off once the receptor is ligated. This was achieved by combining a standard 1st generation CAR with a short / non-bulky CD8 stalk spacer and a 20 CD3 Zeta endodomain with a second receptor with a bulky Fc spacer whose endodomain contained either CD148 or CD45 endodomains. When both receptors are ligated, the difference in spacer dimensions results in isolation of the different receptors in different membrane compartments, releasing the CD3 Zeta receptor from inhibition by the CD148 or CD45 endodomains. In this way, activation only occurs once both receptors are activated. 25 CD148 and CD45 were chosen for this as they function in this manner natively: for instance, the very bulky CD45 ectodomain excludes the entire receptor from the immunological synapse. The expression cassette is depicted in Figure 8 and the subsequent proteins in Figure 9.

30 Surface staining for the different specificity showed that both receptor pairs could be effectively expressed on the cell surface shown in Figure 10. Function in BW5147 shows that the T-cell is only activated in the presence of both antigens (Figure 11).

35 **Example 5: Demonstration of Generalizability of the AND gate**

To ensure that the observations were not a manifestation of some specific characteristic of CD19 / CD33 and their binders which had been used, the two targeting scFvs were swapped such that now, the activation (ITAM) signal was transmitted upon recognition of CD33, rather than CD19; and the inhibitory (CD148) signal was transmitted upon recognition of CD19, 40 rather than of CD33. Since CD45 and CD148 endodomains are considered to be functionally similar, experimentation was restricted to AND gates with CD148 endodomain. This should

5 still result in a functional AND gate. T-cells expressing the new logic gate were challenged with targets bearing either CD19 or CD33 alone, or both. The T-cells responded to targets expressing both CD19 and CD33, but not to targets expressing only one or none of these antigens. This shows that the AND gate is still functional in this format (Figure 18B).

10 On the same lines, it was sought to establish how generalizable our AND gate is: the AND gate should be generalizable across different targets. While there may be lesser or greater fidelity of the gate given relative antigen density, cognate scFv binding kinetics and precise distance of the scFv binding epitope, one would expect to see some AND gate manifestations with a wide set of targets and binders. To test this, three additional AND

15 gates were generated. Once again, experimentation was restricted to the CD148 version of the AND gate. The second scFv from the original CD148 AND gate was replaced with the anti-GD2 scFv huK666 (SEQ ID 41 and SEQ ID 42), or with the anti-CD5 scFv (SEQ ID 43 and SEQ ID 44), or the anti-EGFRvIII scFv MR1.1 (SEQ ID 45 AND SEQ ID 46) to generate the following CAR AND gates: CD19 AND GD2; CD19 AND CD5; CD19 AND EGFRvIII. The

20 following artificial antigen expressing cell lines were also generated: by transducing SupT1, and our SupT1.CD19 with GM3 and GD2 synthases SupT1.GD2 and SupT1.CD19.GD2 were generated. By transducing SupT1 and SupT1.CD19 with a retroviral vector coding for EGFRvIII SupT1.EGFRvIII and SupT1.CD19.EGFRvIII were generated. Since CD5 is expressed on SupT1 cells, a different cell line was used to generate the target cells: 293T

25 cells were generated which express CD19 alone, CD5 alone and both CD5 and CD19 together. Expression was confirmed by flow-cytometry (Figure 19). T-cells expressing the three new CAR AND gates were challenged with SupT1.CD19 and respective cognate double positive and single positive target cells. All three AND gates demonstrated reduced activation by the double positive cell lines in comparison with the single positive targets

30 (Figure 20). This demonstrates generalizability of the AND gate design to arbitrary targets and cognate binders.

Example 6: Experimental proof of Kinetic segregation model of CAR AND gate

35 The aim was to prove the model that differential segregation caused by different spacers is the central mechanism behind the ability to generate these logic CAR gates. The model is that if only the activating CAR is ligated, the potent inhibiting 'ligation off' type CAR is in solution in the membrane and can inhibit the activating CAR. Once both CARs are ligated, if both CAR spacers are sufficiently different, they will segregate within the synapse and not

40 co-localize. Hence, a key requirement is that the spacers are sufficiently different. If the model is correct, if both spacers are sufficiently similar so they co-localize when both

5 receptors are ligated, the gate will fail to function. To test this, the "bulky" Fc spacer in the original CAR we replaced with a murine CD8 spacer. It was predicted that this has the similar length, bulk and charge as human CD8 but so should not cross-pair with it. Hence, the new gate had a first CAR which recognizes CD19, a human CD8 stalk spacer and an activatory endodomain; while the second CAR recognizes CD33, has a mouse CD8 stalk 10 spacer and a CD148 endodomain (Figure 18C). T-cells were transduced to express this new CAR gate. These T-cells were then challenged with SupT1 cells expressing CD19 alone, CD33 alone or CD19 and CD33 together. T-cells did not respond to SupT1 cells expressing either antigen alone as per the original AND gate. However, CAR T-cells failed to respond to SupT1 cells expressing both antigens, thereby confirming the model (Figure 18C). A 15 functional AND gate requires both CARs to have spacers sufficiently different so that they do not co-localize within an immunological synapse (Figure 23A and B).

Example 7 - Design and function of an AND NOT gate

20 Phosphatases such as CD45 and CD148 are so potent that even a small amount entering an immunological synapse can inhibit ITAM activation. This is the basis of inhibition of the logical AND gate. Other classes of phosphatases are not as potent e.g. PTPN6 and related phosphatases. It was predicted that a small amount of PTPN6 entering a synapse by diffusion would not inhibit activation. In addition, it was predicted that if an inhibitory CAR 25 had a sufficiently similar spacer to an activating CAR, it could co-localize within a synapse if both CARs were ligated. In this case, large amounts of the inhibitory endodomain would be sufficient to stop the ITAMS from activating when both antigens were present. In this way, an AND NOT gate could be created.

30 For the NOT AND gate, the second signal needs to "veto" activation. This is done by bringing an inhibitory signal into the immunological synapse, for example by bringing in the phosphatase of an enzyme such as PTPN6. We hence generated an initial AND NOT gate as follows: two CARs co-expressed whereby the first recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; co-expressed with an anti-CD33 CAR with a 35 mouse CD8 stalk spacer and an endodomain comprising of the catalytic domain of PTPN6 (SEQ ID 38, Figure 13 A with B). A suitable cassette is shown in Figure 12 and preliminary functional data are shown in Figure 14.

40 In addition, an alternative strategy was developed for generating an AND NOT gate. Immune Tyrosinase Inhibitory Motifs (ITIMs) are activated in a similar manner to ITAMS, in that they become phosphorylated by lck upon clustering and exclusion of phosphatases.

5 Instead of triggering activation by binding ZAP70, phosphorylated ITIMs recruit phosphatases like PTPN6 through their cognate SH2 domains. An ITIM can function as an inhibitory endodomain, as long as the spacers on the activating and inhibiting CARs can co-localize. To generate this construct, an AND NOT gate was generated as follows: two CARs co-expressed - the first recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; co-expressed with an anti-CD33 CAR with a mouse CD8 stalk spacer and an ITIM containing endodomain derived from that of LAIR1 (SEQ ID 39, Figure 13 A with C).

10

A further, more complex AND NOT gate was also developed, whereby an ITIM is enhanced by the presence of an additional chimeric protein: an intracellular fusion of the SH2 domain 15 of PTPN6 and the endodomain of CD148. In this design three proteins are expressed - the first recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; co-expressed with an anti-CD33 CAR with a mouse CD8 stalk spacer and an ITIM containing endodomain derived from that of LAIR1. A further 2A peptide, allows co-expression of the PTPN6-CD148 fusion (SEQ ID 40, Figure 13 A and D). It was predicted that these AND NOT 20 gates would have a different range of inhibition: PTPN6-CD148 > PTPN6 >> ITIM.

T-cells were transduced with these gates and challenged with targets expressing either CD19 or CD33 alone, or both CD19 and CD33 together. All three gates responded to targets expressing only CD19, but not targets expressing both CD19 and CD33 together (Figure 25 21), confirming that all three of the AND NOT gates were functional.

Example 8: Experimental proof of Kinetic segregation model of PTPN6 based AND NOT gate.

30 The model of the AND NOT gate centres around the fact that the nature of the spacers used in both CARs is pivotal for the correct function of the gate. In the functional AND NOT gate with PTPN6, both CAR spacers are sufficiently similar that when both CARs are ligated, both co-localize within the synapse so the high concentration even the weak PTPN6 is sufficient 35 to inhibit activation. If the spacers were different, segregation in the synapse will isolate the PTPN6 from the ITAM allowing activation disrupting the AND NOT gate. To test this, a control was generated replacing the murine CD8 stalk spacer with that of Fc. In this case, the test gate consisted of two CARs, the first recognizes CD19, has a human CD8 stalk spacer and an ITAM endodomain; while the second CAR recognizes CD33, has an Fc spacer and an endodomain comprising of the phosphatase from PTPN6. This gate activates 40 in response to CD19, but also activates in response to CD19 and CD33 together (Figure 22B, where function of this gate is compared with that of the original AND NOT, and the

5 control AND gate variant described in Example 6). This experimental data proves the model that for a functional AND NOT gate with PTPN6, co-localizing spacers are needed.

Example 9: Experimental proof of kinetic segregation model of ITIM based AND NOT gate.

10 Similar to the PTPN6 based AND NOT gate, the ITIM based gate also requires co-localization in an immunological synapse to function as an AND NOT gate. To prove this hypothesis, a control ITIM based gate was generated as follows: two CARs co-expressed - the first recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; co-expressed with an anti-CD33 CAR with an Fc spacer and an ITIM containing endodomain
15 derived from that of LAIR1. The activity of this gate was compared with that of the original ITIM based AND NOT gate. In this case, the modified gate activated in response to targets expressing CD19, but also activated in response to cells expressing both CD19 and CD33. These data indicate that ITIM based AND NOT gates follow the kinetic segregation based model and a correct spacer must be selected to create a functional gate (Figure 23B).

20

Example 10: Summary of model of CAR logic gates generated by kinetic segregation

Based on current understanding of the kinetic-segregation model and the experimental data described herein, a summary of the model for a two-CAR gate is presented in Figure 24.
25 The Figure shows a cell expressing two CARs, each recognizing a different antigen. When either or both CARs recognize a target antigen on a cell, a synapse forms and native CD45 and CD148 are excluded from the synapse due to the bulk of their ectodomain. This sets the stage for T-cell activation. In the case that the target cell bears only one cognate antigen, the cognate CAR is ligated and the cognate CAR segregates into the synapse. The unligated
30 CAR remains in solution on the T-cell membrane and can diffuse in and out of the synapse so that an area of high local concentration of ligated CAR with low concentration of unligated CAR forms. In this case, if the ligated CAR has an ITAM and the non-ligated CAR has 'ligation off' type inhibitory endodomain such as that of CD148, the amount of non-ligated CAR is sufficient to inhibit activation and the gate is off. In contrast, in this case, if the
35 ligated CAR has an ITAM and the non-ligated CAR has a 'ligation on' type inhibitory endodomain such as PTPN6, the amount of non-ligated CAR is insufficient to inhibit and the gate is on. When challenged by a target cell bearing both cognate antigens, both cognate CARs are ligated and form part of an immunological synapse. Importantly, if the CAR spacers are sufficiently similar, the CARs co-localize in the synapse but if the CAR spacers
40 are sufficiently different the CARs segregate within the synapse. In this latter case, areas of membrane form whereby high concentrations of one CAR are present but the other CAR is

5 absent. In this case since segregation is complete, even if the inhibitory endodomain is a 'ligation off' type, the gate is on. In the former case, areas of membrane form with high concentrations of both CARs mixed together. In this case, since both endodomains are concentrated, even if the inhibitory endodomain is 'ligation on' type, the gate is off. By 10 selecting the correct combination of spacer and endodomain logic can be programmed into a CAR T-cell.

Based on our work above, we have established a series of design rules to allow generation of logic-gated CARs (illustrated in figure 31). To generate an "antigen A OR antigen B" gated CAR T-cell, anti-A and anti-B CARs must be generated such that (1) each CAR has a 15 spacer which simply allows antigen access and synapse formation such that the CAR functions, and (2) Each CAR has an activating endodomain; To generate an "antigen A AND NOT B" gated CAR T-cell, anti-A and anti-B CARs must be generated such that (1) both CARs have spacers which do not cross-pair, but which will allow the CARs to co-segregate upon recognition of both cognate antigens on the target cell, (2) and one CAR has an 20 activating endodomain, while the other CAR has an endodomain which comprises or recruits a weak phosphatase (e.g. PTPN6); (3) To generate an "antigen A AND antigen B" gated CAR T-cell, anti-A and anti-B CARs must be generated such that (1) one CAR has a spacer sufficiently different from the other CAR such that both CARs will not co-segregate upon 25 recognition of both cognate antigens on the target cell, (2) one CAR has an activating endodomain, while the other car has an endodomain which comprises of a potent phosphatase (e.g. that of CD45 or CD148). The correct spacers to achieve the desired effect can be selected from a set of spacers with known size/shape etc as well as taking into consideration size/shape etc of the target antigen (for instance see figure 30) and the 30 location of the cognate epitope on the target antigen.

SEQ ID No 41: SFG.aCD19-CD8STK-CD28tmZ-2A-aGD2-HCH2CH3pvaa-dCD148
MSLPVTALLPLALLLHAARPDIQMTQTTSSLSASLGDRVТИSCRASQDISKYLNWYQQKPDGTVKLL
IYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITKAGGGGSG
GGGGGGGGGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPRKGLEWLGVWGS
ETTYYNSALKSRLTIKDNSKSQVFLKMNSIQTDDTAIYYCAKHYGGSYAMDYWGQGTSVTVSSDP
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAHVTRGLDFACDI FWVLVVVGGVLACYSLLVTVAF
II FWVRRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLKRRGRDPEMGGKPRRKNPQEGLYNEL
QDKKMAEAYSEIGMKGERRRGKGDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCGDVEENP
GPMETDTLLLWVLLWVPGSTGQVQLQESGPGLVKPSQTLSITCTVSGFSIASYNIHWVRQPPGKGLE
40 WLGVIWAGGSTNYNSALMSRLTISKDNSKNQVFLKMSSLTAADTAVYYCAKRSDDYSWFAYWGQGTLV
TVSSGGGGGGGGGGSENQMTQSPSSLASVGDRVMTCRASSSVSSSYLHWYQQKSGKAPKVWI
YSTSNLASGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQQYSGYPITFGQGTKVEIKRSDPAEPKS
PDKTHTCPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK
TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREGQVYTLPPSRD

5 ELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS
 CSVMHEALHNHYTQKSLSLSPGKKDPKAVFGCIFGALVIVTGGFIWFRKKRKDAKNNEVSFSQIKPK
 KSKLIRVENFEAYFKQQADSNCGFAEEYEDLKLVGIQPKYAAELAENRGKNRYYNNVLPYDISRVKL
 SVQTHSTDDYINANYMPGYHSKKDFIATQGPLNLTDFWRMVWEKNVYAIIMLTKVEQGRTKCEY
 10 WPSKQAAQDYGDITVAMTSEIVLPEWTIRDFTVKNIQTSESHPLRQFHFTSWPDHGVPDTDLLINFY
 LVRDYMKQSPPEPILVHCSAGVGRGTFIAIDRLIYQIENENTVDVYDLYVFLRMHRPLMVQTEDQY
 VFLNQCVLDIVRSQKDSKVDLIYQNTTAMTIYENLAPVTTFGKTNGYIA

SEQ ID No. 42: SFG.aCD19-CD8STK-CD28tmZ-2A-aGD2-HCH2CH3pvaa-dCD148
 ATGAGCCTGCCGTGACCGCCCTGCTGCTGCCCTGGCCCTGCTGCTGCACGCCGCCAGACAGACAT
 15 CCAGATGACCCAGACCACCAGCAGCCTGAGCGCCAGCCTGGCGACCGGGTGACCATCAGCTGCAGAG
 CCAGCCAGGACATCAGCAAGTACCTGAACCTGGTACCGAGCAGAAGCCCACGGCACCGTGAAGCTGCTG
 ATCTACCACACCAGCCGGCTGCACAGCGCGTGCCCAGCCGGTCAGCGGCAGCGGCAGCGGCACCGA
 CTACAGCCTGACCATCAGAACCTGGAGCAGGAGGACATGCCACCTACTTCTGCCAGCAGGGCAACA
 CCCGCCCTACACCTCGGAGGCAGCAAGCTGGAGATCACCAAGGCCGGAGGCCGGAGGCTCTGGC
 20 GGAGGCGGCTCTGGCGGAGGCCGGCTCTGGCGGAGGCCGGCAGCAGGGTAAGCTGCAGGAGTCTGGCC
 AGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGACCTGACCGTGAGCGCGTGAGCCTGCCGACT
 ACGCGTGAGCTGGATCAGGCAGCCCCACGGAAGGGCCTGGAGTGGCTGGCGTGATCTGGGCAGC
 GAGACCACCTACTACAACAGGCCCTGAAGAGCGGCTGACCATCATCAAGGACAACAGCAAGAGCCA
 GGTGTTCCCTGAAGATGAACAGCCTGCAGACCGACACGCCATCTACTACTGCGCCAAGCACTACT
 25 ACTATGGCGGCAGCTACGCTATGGACTACTGGGCCAGGGCACCAGCGTGACCGTGAGCTCAGATCCC
 ACCACGACGCCAGCGCCGCACCACCAACACCGGCCACCACATCGCGTCGAGCCCCTGCTCCCTGCG
 CCCAGAGCGTGCCGGCCAGCGCGGGGGCGCAGTGCACAGGAGGGCTGGACTTCGCTGTGATA
 TCTTTGGGTGCTGGTGGTGGAGTCTGGCTTGCTATAGCTGCTAGTAACAGTGGCTTT
 ATTATTTCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCAGACGCCCGTACCAAGGGCCA
 30 GAACCAAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTGGACAAGAGACGTG
 GCCGGGACCCCTGAGATGGGGAAAGCCGAGAAGGAAGAACCTCAGGAAGGCTGTACAATGAACCTG
 CAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGCAAGGG
 GCACGATGCCCTTACCAAGGGCTCAGTACAGCCACCAAGGACACCTACGACGCCCTCACATGCAGG
 CCCGCCCTCGCAGAGCCGAGGGCAGGGAAAGTCTTAACATGCCGGACGTGGAGGAAAATCCC
 35 GGGCCCATGGAGACCACCCCTGCTGCTGTGGGTGCTGCTGCTGTGGTGCCAGGCAGCACGGCCA
 GGTGCAGCTGCAGGAGTCTGGCCAGGCCTGGTGAAGCCCAGCCAGACCCCTGAGCATCACCTGCA
 CGTGAGCGCTTCAGCCTGGCCAGCTAACACATCCACTGGTGCGGCAGCCCCCAGGCAAGGGCTGGAG
 TGGCTGGCGTGATCTGGCTGGCGCAGCACCAACTAACAGCGCCCTGATGAGCGGCTGACAGCCGCC
 CAGCAAGGACAACAGCAAGAACCCAGGTGTTCTGAAGATGAGCAGCTGACAGCCGCCACCCGCC
 40 TGTACTACTGCCAAGCGGAGCGACTACAGCTGGTTCGCCACTGGGCCAGGGCACCCCTGGTG
 ACCGTGAGCTCTGGCGGAGGCCGGCTCTGGCGGAGGCCGGCTCTGGCGGAGGCCGGCAGCGAGAACAGAT
 GACCCAGAGCCCCAGCAGCTTGAGCGCCAGCGTGCGGAGCCGGTGACCATGACCTGCAAGGCCAGCA
 GCAGCGTGAGCAGCTACCTGCACTGGTACCAAGCAGAAGAGCGGCAAGGCCCAAAGGTGTGGATC
 TACAGCACCAACCTGGCCAGCGCGTGCCAGCCGGTTCAGCGGCAGCGGCCAGCGGACCGACTA
 45 CACCCCTGACCATCAGCAGCCTGCAGCCGAGGACTTCGCCACCTACTACTGCCAGCAGTACAGCGGCT
 ACCCCATCACCTCGGCCAGGGCACCAAGGTGGAGATCAAGCGGTGGATCCGCCAGGCCAAATCT
 CCTGACAAAAACTCACACATGCCAACCGTGGCCAGCACCTCCGTGGCGGCCGGTCAAGTCTCCTCTT
 CCCCCCAAAACCAAGGACACCCCTCATGATGCCGGACCCCTGAGGTACATCGTGTTGGTG
 TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG
 50 ACAAAAGCCGCGGGAGGGAGCAGTACAACACAGCACGTACCGTGTGGTCAAGCGTCCCTCACCGTCTGCACCA
 GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCAAACAAAGCCCTCCAGGCCCAATCGAGA
 AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAACAGGTGTACACCCTGCCCAATCCCAGGAT

5 GAGCTGACCAAGAACCAAGGTAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGT
 GGAGTGGGAGAGCAATGGCAACCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG
 GCTCCTTCTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGAACGTCTTCTCA
 TGCTCCGTGATGCATGAGGCCCTGCACAATCACTATAACCCAGAAATCTCTGAGTCTGAGGCCAGGCAA
 GAAGGACCCAAGGGGTTTGGCTATCTTGGTGCCTGGTTATTGTGACTGTGGGAGGCTTCA
 10 TCTTCTGGAGAAAGAAGAGGAAAGATGCAAAGAATAATGAAGTGTCTTTCTCAAATTAAACCTAAA
 AAATCTAAGTTAATCAGAGTGGAGAATTGAGGCCACTTCAAGAACGAGCAAGCTGACTCCAACCTG
 TGGGTTCGCAGAGGAATCGAAGAGATCTGAAGCTTGGAAATTAGTCACACCTAAATATGCAGCAGAAC
 TGGCTGAGAATAGAGGAAAGAATCGCTATAATAATGTTCTGCCCTATGATATTCCCGTGTCAAACCTT
 15 TCGGTCCAGACCCATTCAACGGATGACTACATCAATGCCAATCACATGCCCTGGTACCAACTCCAAGAA
 AGATTTTATTGCCACACAAGGACCTTACCGAACACTTGAAGATTGGCGTATGGTTGGGAGA
 AAAATGTATATGCCATCATTATGTTGACTAAATGTGTTGAACAGGGAGAACCAAATGTGAGGAGTAT
 TGGCCCTCCAAGCAGGCTCAGGACTATGGAGACATAACTGTGGCAATGACATCAGAAATTGTTCTTCC
 GGAATGGACCACATCAGAGATTACAGTAAAAATATCCAGACAAGTGAGAGTCACCTCTGAGACAGT
 TCCATTTCACCTCCTGGCCAGACCACGGTGTCCGACACCACTGACCTGCTCATCAACTCCGGTAC
 20 CTCGTTCGTGAACATGAAGCAGAGTCCTCCGAATGCCGATTCTGGTGCATTGCAGTGCTGGG
 CGGAAGGACGGGCACTTCATGCCATTGATCGTCTCATCTACCAGATAGAGAACACCGTG
 ATGTGTATGGGATTGTGTATGACCTCGAATGCATAGGCCTTAATGGTGCAGACAGAGGACAGTAT
 GTTTCTCAATCAGTGTGTTGGATATTGTCAGATCCCAGAAAGACTCAAAGTAGATCTTATCTA
 CCAGAACACAACGCAATGACAATCTATGAAAACCTTGCGCCGTGACCACATTGGAAAGACCAATG
 25 GTTACATGCCCTAA

SEQ ID No. 43: SFG.aCD19-CD8STK-CD28tmZ-2A-aCD5-HCH2CH3pvaa-dCD148

MSLPVTLALLPLALLLHAARPDIQMTQTTSSLSASLGDRVТИSCRASQDISKYLNWYQQKPDGTVKLL
 IYHTSRLHSGVPSRFSRGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITKAGGGGSG
 30 GGGGGGGGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPRKGLELGVIWGS
 ETTYYNSALKSRLTIKDNSKSQVFLKMNSLQTDATIYYCAKHYGGSYAMDYWGQGTSVTVSSDP
 TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAHVTRGLDFACDIFWVLVVVGGVLACYSLLVTVAF
 II FWVRRVKFSRSADAPAYQQQNQLYNELNLGRREYDVLKRRGRDPEMGGKPRRKNPQEGLYNEL
 QKDKMAEAYSEIGMKGERRRGKGDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCGDVEENP
 35 GPMETDTLLWVLLWVPGSTGQVTLKESGPGLKPSQTLSTCSFSGFSLSTSGMGVGWIRQPSKG
 LEWLAHIWDDDVYYNPSLKNQLTISKDASRDQVFLKITNLDTADTATYYCVRRATGTGFDYWGQGT
 TLTVSSGGGSGGGGGGGSNIVMTQSHKFMSTSVGDRVSIACKASQDVGTAVAWYQQKPGQSPKLL
 IYWTSTRHTGVPDFRTGSGSGTDFTLTITNVQSEDLADYFCHQNSYNTFGSGTRLELKRSDPAEPKS
 PDKTHTCPCPAPPVAGPSVFLFPPPKDTLMIARTPEVTCVVVDVSHEDEPEVKFNWYVDGVEVHNAK
 40 TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREGVYTLPPSRD
 ELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS
 CSVMHEALHNHYTQKSLSLSPGKKDPKAVFGCIFGALIVTVGGFIFWRKKRKDAKNNEVSFSQIKPK
 KSKLIRVENFEAYFKQQADSNCGFAEEYEDLKLVGISQPKYAAELAENRGKNRYNNVLPYDISRVKL
 SVQTHSTDDYINANYMPGYHSKKDFIATQGPLNLTQDFWRMVWEKNVYAIIMLTKCQEGRKTCEY
 45 WPSKQAQDYGDITVAMTSEI1VPEWTIRDFTVKNIQTSESHPLRQFHFTSWPDHGVPDTDLLINFY
 LVRDYMKQSPPESPILVHCSAGVGRGTFAIDRLIYQIENENTVDVYGIVYDLRMHRPLMVQTEDQY
 VFLNQCVLDIVRSQKDSKVDLIYQNTTAMTIYENLAPVTTFGKTNGYIA

50 **SEQ ID No. 44:** SFG.aCD19-CD8STK-CD28tmZ-2A-aCD5-HCH2CH3pvaa-dCD148
 ATGAGCCTGCCGTGACGCCCTGCTGCTGCCCTGGCCCTGCTGCTGCACGCCAGACAGACAT
 CCAGATGACCCAGACCACCAAGCAGCAGCCTGAGCGCCAGCCTGGCGACCGGGTGACCACAGCTGCAGAG

5 CCAGCCAGGACATCAGCAAGTACCTGAACCTGGTACCGAGCAGAAGCCGACGGCACCGTGAAGCTGCTG
ATCTACCACACCAGCGGCTGCACAGCGCGTGCAGCCAGCGGTTCAGCGGCAGCGGCAGCGGCACCGA
CTACAGCCTGACCATCAGCAACCTGGAGCAGGAGGACATGCCACCTACTTCTGCCAGCAGGGCAACA
CCCTGCCCTACACCTCGGAGGCAGGACCAAGCTGGAGATCACCAAGGCCGGAGGCGGAGGCTCTGGC
GGAGGCGGCTCTGGCGAGGCGGCTCTGGCGAGGCAGCAGCGAGGTGAAGCTGCAGGAGTCTGGCC
10 AGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGACCTGACCGTGAGCGCGTGAGCCTGCCGACT
ACGGCGTGANCTGGATCAGGCAGCCCCACGGAAGGGCTGGAGTGGCTGGCGTGTCTGGGAGC
GAGACCACCTACTACAACAGCGCCCTGAAGAGCGGCTGACCATCATCAAGGACAACAGCAAGAGCCA
GGTGTTCCTGAAGATGAACAGCCTGCAGACCGACACCGCATCTACTACTGCGCCAAGCACTACT
ACTATGGCGGCAGCTACGCTATGGACTACTGGGGCCAGGGCACCAGCGTGACCGTGAGCTCAGATCCC
15 ACCACGACGCCAGCGCCGCACCACCAACACCGGCCACCACATCGCTCGAGCCCTGTCCCTGCG
CCCAGAGCGTGCCGCCAGCGCGGGGGCGCAGTGCACACGAGGGGCTGGACTTCGCGTGTGATA
TCCTTGGGTGCTGGTGGTGGTGGAGTCCTGGCTTGCTATAGCTGCTAGTAACAGTGGCCTT
ATTATTTCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGAGACGCCCGCTACCAGCAGGGCCA
GAACCAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTGGACAAGAGACGTG
20 GCCGGGACCCCTGAGATGGGGGAAAGCCGAGAAGGAAGAACCTCAGGAAGGCCTGTACAATGAAC TG
CAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGGGATGAAAGGCAGCGCCGGAGGGCAAGGG
GCACGATGCCCTTACCAAGGGCTCAGTACAGCCACCAAGGACACCTACGACGCCCTCACATGCAGG
CCCTGCCCTCGCAGAGCCGAGGGCAGGGAAAGTCTCTAACATGCCGGACGTGGAGGAAAATCCC
GGGCCCATGGAGACCACCCCTGCTGCTGTGGTGCTGCTGTGGTGCCCGCAGCACCGGCCA
25 GGTGACCCCTGAAGGAGAGCGGTCCCGCATCCTGAAGCCAGCCAGACCCCTGAGCCTGACCTGAGCT
TCAGCGGCTTCAGCCTGAGCACCAGCGCATGGCGTGGCTGGATTGGCAGCCCAGCGCAAGGGC
CTGGAGTGGCTGGCCACATCTGGTGGGACGACGTGTACTACAACCCAGCCTGAAGAACCGAGCT
GACCATCAGCAAGGAGCGCCAGCCGGACCAGGTGTTCTGAAGATCACCAACCTGGACACCAGCACA
CCGCCACCTACTACTGCGTGCGCGCCGGCACCGCACCGCTCGACTACTGGGGCCAGGGCACC
30 ACCCTGACCGTGAGCAGCGGTGGCGGTGGCAGCGCGCGGAGCGGAGGTGGCAGCAACAT
CGTGATGACCCAGAGCCACAAGTTCATGAGCACCAGCGTGGCGACCAGGTGAGCATTGCCCTGCAAGG
CCAGCCAGGACGTGGCACCGCCGTGGCTGGTACAGCAGAAGCCTGGCAGAGCCCCAAGCTGCTG
ATCTACTGGACCAAGCACCCGGCACCCGGCGTCCCCGACCGGTTCACCGGCAGCGGCAGCGGCACCGA
CTTCACCCCTGACCATCACCAACGTGCAGAGCGAGGACCTGCCGACTACTCTGCCACCAAGTACAACA
35 GCTACAACACCTCGGCAGCGGCACCCGGCTGGAGCTGAAGCGGTGGATCCCGCCGAGCCCCAAATCT
CCTGACAAAACCTCACACATGCCAACCGTGGCCACCGACCTCCGTGGCGCCGGCCGTGAGTCTCCTCTT
CCCCCCTAACCCAAGGACACCCCTCATGATGCCCGGACCCCTGAGGTACATGCCGTGGTGGAGGACG
TGAGCCACGAAGACCCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG
ACAAAGCCCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCTGCACCA
40 GGAACCTGGCTGAATGGCAAGGAGTACAAGTGCAGGCTCAACAAAGCCCTCCAGCCCCATCGAGA
AAACCATCTCAAAGCCAAAGGGCAGCCCCGAGAACCCACAGGTGTACCCCTGCCCTCCGGAT
GAGCTGACCAAGAACCGAGGTACGCCTGACCTGCCGTGGTAAAGGCTTCTATCCAGCGACATGCCGT
GGAGTGGGAGAGCAATGGCAACCGGAGAACAAACTACAAGACCACGCCCTCCCGTGTGGACTCCGACG
GCTCCTTCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGAAACGTCTTCTCA
45 TGCTCCGTGATGCATGAGGCCCTGCACAATCACTATACCCAGAAATCTCTGAGTCTGAGCCAGGCAA
GAAGGACCCAAGGCAGGGTTTGGCTGTATCTTGGTGCCTGGTTATTGTGACTGTGGAGGCTTCA
TCTTCTGGAGAAAGAAGAGGAAAGATGCAAAGAATAATGAAGTGTCTTCTCAAATTAAACCTAAA
AAATCTAAGTTAATCAGAGTGGAGAATTGAGGCCTACTCAAGAACGAGCAAGCTGACTCCAAC
TGGGTTCGCAGAGGAATCGAAGATCTGAAGCTTGGATTAGTCACCTAAATATGCAGCAGAAC
50 TGGCTGAGAATAGAGGAAAGAACGCTATAATAATGTTCTGCCCTATGATATTCCCGTGTCAAAC
TCGGTCCAGACCCATTCAACGGATGACTACATCAATGCCAACTACATGCCCTGGCTACCACCCAAGAA
AGATTATTGCCACACAAGGACCTTACCGAACACTTGAAGGATTGGCGTATGGTTGGGAGA

5 AAAATGTATATGCCATCATTATGTTGACTAAATGTGTTGAACAGGGAAAGAACCAAATGTGAGGAGTAT
 TGCCCTCCAAGCAGGCTCAGGACTATGGAGACATAACTGTGGCAATGACATCAGAAATTGTTCTCC
 GGAATGGACCATCAGAGATTCACAGTGAAAATATCCAGACAAGTGAGAGTCACCCCTGAGACAGT
 TCCATTCACCTCCTGGCCAGACCACGGTCTCCGACACCACTGACCTGCTCATCAACTCCGGTAC
 CTCGTTCGTGAACATGAAGCAGAGTCCTCCGAATGCCGATTCTGGTGCATTGCAGTGCTGGGGT
 10 CGGAAGGACGGGCACTTCATGCCATTGATCGTCTCATCTACAGATAGAGAATGAGAACACCGTGG
 ATGTGTATGGGATTGTGTATGACCTCGAATGCATAGGCCTTAATGGTGCAGACAGAGGACAGTAT
 GTTTCTCAATCAGTGTGTTGGATATTGTCAGATCCCAGAAAGACTCAAAGTAGATCTTATCTA
 CCAGAACACAACGCAATGACAATCTATGAAACCTGCGCCCGTGACCACATTGAAAGACCAATG
 GTTACATCGCCTAA

15 SEQ ID No. 45: SFG.aCD19-CD8STK-CD28tmZ-2A-aEGFRvIII-HCH2CH3pvaadCD148
 MSLPVTA
 LLLPLA
 LLLHAAR
 PDIQMTQ
 TSSLSA
 LGDRVT
 ISCRASQ
 DISKYL
 NWYQQK
 PDGT
 VKL
 IYHT
 SRLHSG
 VPSRF
 SGSG
 TDYSL
 ISNLEQ
 EDIATY
 FCQQ
 GNTLP
 YTFGG
 GTKLEIT
 KAGGGG
 SSGGG
 SGGG
 SEVKL
 QESGP
 GLVAPS
 QSLSV
 TCTV
 GSVSL
 PDYGV
 SWIRQ
 PPRKG
 LEWL
 GVIW
 GWS
 ETYY
 NSALK
 SRLT
 IKD
 NSKSQ
 VFLKM
 NSLQ
 TDD
 TAIYY
 CAKH
 YYGG
 SYAMD
 YWGQ
 GTSV
 SS
 DPT
 TTP
 AP
 PRP
 TPA
 TIAS
 QPL
 SLR
 PEAC
 RPA
 AGGA
 VHTR
 GLFAC
 DIF
 FWL
 VV
 GVL
 ACY
 SLL
 VT
 VAF
 II
 FWV
 RRV
 KFS
 RSD
 ADAP
 PAY
 QQQ
 QNQ
 LYN
 E
 NL
 GR
 REE
 YD
 VLD
 KRR
 RDPE
 MGG
 KPR
 RKN
 PEG
 LY
 NEL
 Q
 KDK
 MAE
 AY
 SE
 IGM
 KG
 ERR
 RG
 K
 HD
 GLY
 Q
 GL
 ST
 AT
 K
 DT
 Y
 DAL
 HM
 Q
 AL
 P
 R
 RA
 E
 G
 R
 GS
 S
 L
 T
 C
 G
 D
 V
 E
 E
 N
 P
 GPMET
 DT
 LLL
 W
 V
 L
 L
 W
 V
 P
 G
 S
 T
 G
 Q
 V
 K
 L
 Q
 S
 G
 G
 G
 L
 V
 K
 P
 G
 A
 S
 L
 K
 L
 S
 C
 V
 T
 S
 G
 F
 T
 F
 R
 K
 F
 G
 M
 S
 W
 V
 R
 Q
 T
 S
 D
 K
 R
 L
 E
 W
 V
 A
 S
 I
 S
 T
 G
 G
 Y
 N
 T
 Y
 Y
 S
 D
 N
 V
 K
 G
 R
 F
 T
 I
 S
 R
 E
 N
 A
 K
 N
 T
 L
 Y
 L
 Q
 M
 S
 S
 L
 K
 S
 E
 D
 T
 A
 L
 Y
 Y
 C
 T
 R
 G
 Y
 S
 S
 T
 S
 Y
 A
 M
 D
 Y
 W
 G
 Q
 G
 T
 T
 V
 T
 V
 S
 G
 G
 G
 S
 G
 G
 G
 S
 D
 I
 E
 L
 T
 Q
 S
 P
 A
 S
 L
 V
 A
 T
 G
 E
 K
 V
 T
 I
 R
 C
 M
 T
 S
 D
 I
 D
 D
 D
 M
 N
 W
 Y
 Q
 Q
 K
 P
 G
 E
 P
 P
 K
 F
 L
 I
 S
 E
 G
 N
 T
 L
 R
 P
 G
 V
 P
 S
 R
 F
 S
 S
 G
 T
 G
 T
 D
 F
 V
 F
 T
 I
 E
 N
 T
 L
 S
 E
 D
 V
 G
 D
 Y
 Y
 C
 L
 Q
 S
 F
 N
 V
 P
 L
 T
 F
 G
 D
 G
 T
 K
 L
 E
 I
 K
 R
 S
 D
 P
 A
 E
 P
 K
 S
 P
 D
 K
 T
 H
 T
 C
 P
 P
 C
 P
 A
 P
 P
 V
 A
 G
 P
 S
 V
 F
 L
 F
 P
 P
 K
 P
 K
 D
 T
 L
 M
 I
 A
 R
 T
 P
 E
 V
 C
 V
 V
 D
 V
 S
 H
 E
 D
 P
 E
 V
 K
 F
 N
 W
 Y
 V
 D
 G
 V
 E
 V
 H
 N
 A
 K
 P
 R
 E
 E
 Q
 Y
 N
 S
 T
 Y
 R
 V
 V
 S
 V
 L
 T
 V
 L
 H
 Q
 D
 W
 L
 N
 G
 K
 E
 Y
 K
 C
 V
 S
 N
 K
 A
 L
 P
 A
 I
 E
 K
 T
 I
 S
 K
 A
 G
 Q
 P
 R
 E
 P
 Q
 V
 Y
 T
 L
 P
 S
 R
 D
 E
 L
 T
 K
 N
 Q
 V
 S
 L
 T
 C
 L
 V
 K
 G
 F
 Y
 P
 S
 D
 I
 A
 V
 E
 W
 E
 S
 N
 G
 Q
 P
 E
 N
 N
 Y
 K
 T
 T
 P
 V
 L
 D
 S
 G
 F
 F
 L
 Y
 S
 K
 L
 T
 V
 D
 K
 S
 R
 W
 Q
 Q
 G
 N
 V
 F
 S
 C
 V
 M
 H
 E
 A
 L
 H
 N
 Y
 T
 Q
 K
 S
 L
 S
 L
 S
 P
 G
 K
 K
 D
 P
 K
 A
 V
 F
 G
 C
 I
 F
 G
 A
 L
 V
 I
 V
 T
 V
 G
 G
 F
 I
 F
 W
 R
 K
 K
 R
 K
 D
 A
 K
 N
 N
 E
 V
 S
 F
 S
 Q
 I
 K
 P
 K
 K
 S
 K
 L
 I
 R
 V
 E
 A
 Y
 F
 K
 K
 Q
 Q
 A
 D
 S
 N
 C
 G
 F
 A
 E
 Y
 E
 D
 L
 K
 L
 V
 G
 I
 S
 Q
 P
 K
 Y
 A
 A
 E
 L
 A
 E
 N
 R
 G
 K
 N
 R
 Y
 N
 N
 V
 L
 P
 Y
 D
 I
 R
 V
 K
 L
 S
 V
 Q
 T
 H
 S
 T
 D
 D
 Y
 I
 N
 A
 N
 Y
 M
 P
 G
 Y
 H
 S
 K
 K
 D
 F
 I
 A
 T
 Q
 G
 P
 L
 P
 N
 L
 K
 D
 F
 W
 R
 M
 V
 W
 E
 K
 N
 V
 Y
 A
 I
 I
 M
 L
 T
 K
 C
 V
 E
 Q
 G
 R
 T
 K
 C
 E
 E
 Y
 W
 P
 S
 K
 Q
 A
 Q
 D
 Y
 G
 D
 I
 T
 V
 A
 M
 T
 S
 E
 I
 V
 L
 P
 E
 W
 T
 I
 R
 D
 F
 T
 V
 K
 N
 I
 Q
 T
 S
 E
 S
 H
 P
 L
 R
 Q
 F
 H
 F
 T
 S
 W
 P
 D
 H
 G
 V
 P
 D
 T
 D
 L
 L
 I
 N
 F
 R
 Y
 L
 V
 R
 D
 Y
 M
 K
 Q
 S
 P
 P
 E
 S
 P
 I
 L
 V
 H
 C
 S
 A
 G
 V
 G
 R
 T
 G
 F
 I
 A
 I
 D
 R
 L
 I
 Y
 Q
 I
 E
 N
 E
 N
 T
 V
 D
 V
 Y
 G
 I
 V
 Y
 D
 L
 R
 M
 H
 R
 P
 L
 M
 V
 Q
 T
 E
 D
 Q
 Y
 V
 F
 L
 N
 Q
 C
 V
 L
 D
 I
 V
 R
 S
 Q
 K
 D
 S
 K
 V
 D
 L
 I
 Y
 Q
 N
 T
 T
 A
 M
 T
 I
 Y
 E
 N
 L
 A
 P
 V
 T
 F
 G
 K
 T
 N
 G
 Y
 I
 A

40 SEQ ID No. 46: SFG.aCD19-CD8STK-CD28tmZ-2A-aEGFRvIII-HCH2CH3pvaadCD148
 ATGAGCCTGCCGTGACCGCCCTGCTGCTGCCCTGCCCTGCTGCTGCACGCCGCCAGACCACAT
 CCAGATGACCCAGACCACCAAGCAGCCTGAGCGCCAGCCTGGCGACCGGGTACCATCAGCTGCAGAG
 CCAGCCAGACATCAGCAAGTACCTGAACGGTACCAAGCAGCCAGGGCAGCGACCGTGAAGCTGCTG
 ATCTACCAACACCAGCCGGCTGCACAGCCGGTGCAGCCGGTTCAAGCCAGCGCAGCGCAGCGCAGCG
 45 CTACAGCCTGACCATCAGCAACCTGGAGCAGGAGACATGCCACCTACTTCTGCCAGCAGGGCAACA
 CCCTGCCCTACACCTCGAGGGCAGCAAGCTGGAGATCACCAAGGCCGGAGGCAGGGCTCTGGC
 GGAGGGCGCTCTGGCGAGGGCGCTCTGGCGAGGGCGAGCGAGGTGAAGCTGCAGGAGTCTGGGCC
 AGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTACCTGCACCGTGAGCGCGTGAGCCTGCCGACT
 ACAGCGTGAGCTGGATCAGGCAGCCCCACGGAAGGGCTGGAGTGGCTGGCGTGATCTGGGCAGC
 50 GAGACCACCTACTACAACAGCGCCCTGAAGAGCCGGCTGACCATCATCAAGGACAACAGCAAGAGCCA
 GGTGTTCTGAAGATGAACAGCCTGCAGACCGACACCACCATCTACTACTGCGCCAAGCAACTACT
 ACTATGGCGGCAGCTACGCTATGGACTACTGGGCCAGGGCACCAGCGTGAGCGTCAAGCTCAGATCCC

5 ACCACGACGCCAGCGCCCGACCAACACCGCGCCCACCATCGCGTCGCAGCCCCCTGTCCCTGCG
CCCAGAGCGTGCCGGCCAGCGGGGGGGCGCAGTGCACACGAGGGGGCTGGACTTCGCCTGTGATA
TCCTTGGGTGCTGGTGGTGGAGTCCTGGCTATAGCTGCTAGTAACAGTGGCCTT
ATTATTTCTGGGTGAGGAGAGTGAAGTTCACTAGCAGGAGCGCAGACGCCCGCGTACCGAGGGCCA
GAACCAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGGAGTACGATGTTGGACAAGAGACGTG
10 GCCGGGACCTGAGATGGGGAAAGCCGAGAAGGAAGAACCTCAGGAAGGCCTGTACAATGAACCTG
CAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGGGATGAAAGGGCAGCAGCCGGAGGGCAAGGG
GCACGATGCCCTTACCAAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTCACATGCAGG
CCCTGCCTCCTCGCAGAGCCGAGGGAGTCTTAACATGCAGGGACGTGGAGGAAAATCCC
GGGCCATGGAGACCGACACCCTGCTGCTGGGTGCTGCTGTGGGTGCCCGCAGCACCGGCCA
15 GGTGAAGCTGCAGCAGAGCGGGAGGCCTGGTAAGCCCGCGCCAGCCTGAAGCTGAGCTGCGTGA
CCAGCGGCTTCACCTCCGAAGTTCGGCATGAGCTGGTGCAGACCAGCGACAAGCGGCTGGAG
TGGGTGCCAGCATCAGCACCGCGGCTACAACACCTACTACAGCAGAACGTGAAGGGCGGTTCAC
CATCAGCCGGAGAACCCAAGAACACCCCTGTACCTGCAGATGAGCAGCCTGAAGAGCGAGGACACCG
CCCTGTACTACTGCACCCGGGCTACAGCAGCACCAGCTACGCTATGGACTACTGGGCCAGGGCACC
20 ACCGTGACAGTGAGCAGCAGGGAGGAGGAGGAGTGGTGGGGTGGATCTGGCGAGGTGGCAGCGACAT
CGAGCTGACCCAGAGCCCCGCCAGCCTGAGCGTGCCACCGCGAGAACGGTACCATCCGGTGCATGA
CCAGCACCGACATCGACGACATGAACCTGAGTACCGAGCAGAACGGCAGGCCAAAGTTCCTG
ATCAGCGAGGGCAACACCCTGCGGCCGGCTGCCAGCCGGTTCACAGCAGCAGGGCACCGCACCGA
CTTCGTGTTCACCATCGAGAACACCCCTGAGCGAGGACGTGGCGACTACTACTGCCTGCAGAGCTTCA
25 ACGTGCCCTGACCTCGGCAGGGACCAAGCTGGAGATCAAGCGGTCGGATCCCGCCAGGCCAAA
TCTCCTGACAAAACACATGCCCACCGTGCCAGCACCTCCGTGGCGGCCGTCACTTCC
CTTCCCCCAAAACCAAGGACACCCCTCATGATGCCCGGACCCCTGAGGTACATGCGTGGTGG
ACGTGAGCCACGAAGACCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC
AAGACAAAGCCGGAGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCCTACCGTCTGCA
30 CCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCAGCCCCCATCG
AGAAAACCATCTCCAAAGCCAAGGGCAGCCCCGAGAACACAGGTGTACACCCCTGCCCATCCGG
GATGAGCTGACCAAGAACCAGGTACGCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGC
CGTGGAGTGGAGAGCAATGGCAACCGGAGAACAAACTACAAGACCACGCCTCCGTGCTGGACTCCG
ACGGCTCCTCTTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGAACGTCTC
35 TCATGCTCCGTGATGCATGAGGCCCTGCACAATCACTACACTACCCAGAAATCTTGAGTCTGAGCAGGCCAGG
CAAGAAGGACCCAAAGCGGTTTGGCTGTATCTTGGTGCCTGGTTATTGTGACTGTGGAGGCT
TCATCTTCTGGAGAAAGAGGAAAGATGCAAAGAATAATGAAGTGTCTTTCTCAAATTAAACCT
AAAAAAATCTAAGTTAATCAGAGTGGAGAATTGGAGGCCTACTTCAAGAACGAGCAAGCTGACTCCAA
CTGTGGGTCGCAGAGGAATACGAAGATCTGAAGCTTGGAAATTAGTCACCTAAATATGCAGCAG
40 AACTGGCTGAGAATAGAGGAAAGAATCGCTATAATAATGTTCTGCCCTATGATATTCCCGTGTCAA
CTTCGGTCCAGACCCATTCAACGGATGACTACATCAATGCCAACTACATGCCTGGCTACCAACTCCAA
GAAAGATTTATTGCCACACAAGGACCTTACCGAACACTTGGAAAGATTTGGCGTATGGTTGG
AGAAAAATGTATATGCCATCATTATGTTGACTAAATGTGTTGAACAGGGAGAACCAAATGTGAGGAG
TATTGCCCTCCAAGCAGGCTCAGGACTATGGAGACATAACTGTGGCAATGACATCAGAAATTGTTCT
45 TCCGAATGGACCATCAGAGATTCACAGTGAAAAATATCCAGACAAAGTGAGAGTCACCCCTGAGAC
AGTTCCATTTCACCTCCTGGCCAGACCACGGTGTCCCGACACCACTGACCTGCTCATCAACTCCGG
TACCTCGTCTGACTACATGAAGCAGAGTCCTCCGAATGCCGATTCTGGTGCATTGAGTGTGG
GGTCGGAAGGACGGCACTTCAATTGCCATTGATCGTCTCATCTACCAAGATAGAGAACACCG
TGGATGTGATGGGATTGTGATGACCTCGAATGCATAGGCCTTAATGGTGCAGACAGAGGACCA
50 TATGTTTCTCAACTCAGTGTGTTGGATATTGTCAGATCCCAGAAAGACTCAAAAGTAGATCTTAT
CTACCAGAACACAACGCAATGACAATCTATGAAAACCTTGCAGCCGTGACCACATTGGAAAGACCA
ATGGTTACATCGCCTAA

5

Example 11: Design and construction of APRIL based CARs.

APRIL in its natural form is a secreted type II protein. The use of APRIL as a BCMA binding domain for a CAR requires conversion of this type II secreted protein to a type I membrane bound protein and for this protein to be stable and to retain binding to BCMA in this form. To generate candidate molecules, the extreme amino-terminus of APRIL was deleted to remove binding to proteoglycans. Next, a signal peptide was added to direct the nascent protein to the endoplasmic reticulum and hence the cell surface. Also, because the nature of spacer used can alter the function of a CAR, three different spacer domains were tested: an APRIL based CAR was generated comprising (i) a human IgG1 spacer altered to remove Fc binding motifs; (ii) a CD8 stalk; and (iii) the IgG1 hinge alone (cartoon in Figure 25 and amino acid sequences in Figure 26). These CARs were expressed in a bicistronic retroviral vector (Figure 27A) so that a marker protein – truncated CD34 could be co-expressed as a convenient marker gene.

Example 12: Expression and function of APRIL based CARs.

The aim of this study was to test whether the APRIL based CARs which had been constructed were expressed on the cell surface and whether APRIL had folded to form the native protein. T-cells were transduced with these different CAR constructs and stained using a commercially available anti-APRIL mAb, along with staining for the marker gene and analysed by flow-cytometry. The results of this experiment are shown in Figure 27B where APRIL binding is plotting against marker gene fluorescence. These data show that in this format, the APRIL based CARs are expressed on the cell surface and APRIL folds sufficiently to be recognized by an anti-APRIL mAb.

Next, it was determined whether APRIL in this format could recognize BCMA and TACI. Recombinant BCMA and TACI were generated as fusions with mouse IgG2a-Fc. These recombinant proteins were incubated with the transduced T-cells. After this, the cells were washed and stained with an anti-mouse fluorophore conjugated antibody and an antibody to detect the marker gene conjugated to a different fluorophore. The cells were analysed by flow cytometry and the results are presented in Figure 27C. The different CARs were able to bind both BCMA and TACI. Surprisingly, the CARs were better able to bind BCMA than TACI. Also, surprisingly CARs with a CD8 stalk or IgG1 hinge spacer were better able to bind BCMA and TACI than CAR with an Fc spacer.

Example 13: APRIL based chimeric antigen receptors are active against BCMA expressing cells

5 T-cells from normal donors were transduced with the different APRIL CARs and tested against SupT1 cells either wild-type, or engineered to express BCMA and TACI. Several different assays were used to determine function. A classical chromium release assay was performed. Here, the target cells (the SupT1 cells) were labelled with ^{51}Cr and mixed with effectors (the transduced T-cells) at different ratio. Lysis of target cells was determined by
10 counting ^{51}Cr in the co-culture supernatant (Figure 28A shows the cumulative data).

In addition, supernatant from T-cells cultured 1:1 with SupT1 cells was assayed by ELISA for Interferon-gamma (Figure 28B shows cumulative data). Measurement of T-cell expansion after one week of co-culture with SupT1 cells was also performed (Figure 28C). T-cells were
15 counted by flow-cytometry calibrated with counting beads. These experimental data show that APRIL based CARs can kill BCMA expressing targets. Further, these data show that CARs based on the CD8 stalk or IgG1 hinge performed better than the Fc-pvaa based CAR.

Example 14: Functional analysis of the AND gate in primary cells

20 PBMCs were isolated from blood and stimulated using PHA and IL-2. Two days later the cells were transduced on retronectin coated plates with retro virus containing the CD19:CD33 AND gate construct. On day 5 the expression level of the two CARs translated by the AND gate construct was evaluated via flow cytometry and the cells were depleted of
25 CD56+ cells (predominantly NK cells). On day 6 the PBMCs were placed in a co-culture with target cells at a 1:2 effector to target cell ratio. On day 8 the supernatant was collected and analysed for IFN-gamma secretion via ELISA (Figure 29).

These data demonstrate that the AND gate functions in primary cells.

30 All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred
35 embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology, cell biology or related fields are intended to be within the scope of the following claims.

EDITORIAL NOTE

2014351557

Please note that there is no page
78. The claim pages start at 79 to

82

CLAIMS

1. A T cell which co-expresses a first chimeric antigen receptor (CAR) and second CAR at the cell surface, each CAR comprising:

- (i) an antigen-binding domain;
- (ii) a spacer
- (iii) a trans-membrane domain; and
- (iv) an endodomain

wherein the antigen binding domains of the first and second CARs bind to different antigens, wherein the spacer of the first CAR is different to the spacer of the second CAR and wherein one of the first or second CARs is an activating CAR comprising an activating endodomain and the other CAR is an inhibitory CAR comprising a ligation-off inhibitory endodomain.

2. A T cell according to claim 1, wherein the spacer of the first CAR has a different length and/or charge and/or size and/or configuration and/or glycosylation of the spacer of the second CAR, such that when the first CAR and the second CAR bind their respective target antigens, the first CAR and second CAR become spatially separated on the T cell membrane.

3. A T cell according to claim 2, wherein either the first spacer or the second spacer comprises a CD8 stalk and the other spacer comprises the hinge, CH2 and CH3 domain of IgG1.

4. A T cell according to claim 2 or 3, wherein the inhibitory endodomain comprises all or part of the endodomain from CD148 or CD45.

5. A T cell according to claim 4, wherein the antigen-binding domain of the first CAR binds CD5 and the antigen-binding domain of the second CAR binds CD19.

6. A T cell which comprises more than two CARs as defined in the preceding claims such that it is specifically stimulated by a cell, such as a T cell, bearing a distinct pattern of more than two antigens.

7. A nucleic acid sequence encoding both the first and second chimeric antigen receptors (CARs) as defined in any of claims 1 to 6.

8. A nucleic acid sequence according to claim 7, which has the following structure:

AgB1-spacer1-TM1-endo1-coexpr-AbB2-spacer2-TM2-endo2

in which

AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR;
spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR;

TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR;
endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR;
coexpr is a nucleic acid sequence enabling co-expression of both CARs

AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR;
spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR;

TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR;
endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR;
which nucleic acid sequence, when expressed in a T cell, encodes a polypeptide which is
cleaved at the cleavage site such that the first and second CARs are co-expressed at the T
cell surface.

9. A nucleic acid sequence according to claim 8, wherein coexpr encodes a sequence
comprising a self-cleaving peptide.

10. A nucleic acid sequence according to claim 9 wherein alternative codons are used in
regions of sequence encoding the same or similar amino acid sequences, in order to avoid
homologous recombination.

11. A kit which comprises

(i) a first nucleic acid sequence encoding the first chimeric antigen receptor (CAR) as
defined in any of claims 1 to 6, which nucleic acid sequence has the following structure:

AgB1-spacer1-TM1-endo1

in which

AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR;

spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR;

TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR;
endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR; and

(ii) a second nucleic acid sequence encoding the second chimeric antigen receptor
(CAR) as defined in any of claims 1 to 7, which nucleic acid sequence has the following
structure:

AgB2-spacer2-TM2-endo2

AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR; TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR.

12. A kit comprising: a first vector which comprises the first nucleic acid sequence as defined in claim 11; and a second vector which comprises the second nucleic acid sequence as defined in claim 11.

13. A kit according to claim 12, wherein the vectors are integrating viral vectors or transposons.

14. A vector comprising a nucleic acid sequence according to any of claims 7 to 10.

15. A retroviral vector or a lentiviral vector or a transposon according to claim 14.

16. A method for making a T cell according to any of claim 1 to 6, which comprises the step of introducing: a nucleic acid sequence according to any of claims 7 to 10; a first nucleic acid sequence and a second nucleic acid sequence as defined in claim 11; and/or a first vector and a second vector as defined in claim 12 or a vector according to claim 14 or 15, into a T cell.

17. A method according to claim 16, wherein the T cell is from a sample isolated from a subject.

18. A pharmaceutical composition comprising a plurality of T cells according to any of claims 1 to 6.

19. A method for treating and/or preventing a disease, which comprises the step of administering a pharmaceutical composition according to claim 18 to a subject.

20. A method according to claim 19, which comprises the following steps:

(i) isolation of a T cell-containing sample from a subject;

(ii) transduction or transfection of the T cells with: a nucleic acid sequence according to any of claims 7 to 10; a first nucleic acid sequence and a second nucleic acid sequence as

defined in claim 11; a first vector and a second vector as defined in claim 12 or 13 or a vector according to claim 14 or 15; and

(iii) administering the T cells from (ii) to the subject.

21. A method according to claim 19 or 20, wherein the disease is a cancer.

22. A pharmaceutical composition according to claim 18 for use in treating and/or preventing a disease.

23. The use of a T cell according to any of claims 1 to 6 in the manufacture of a medicament for treating and/or preventing a disease.

24. A natural killer (NK) cell which co-expresses a first chimeric antigen receptor (CAR) and second CAR at the cell surface, each CAR comprising:

- (i) an antigen-binding domain;
- (ii) a spacer
- (iii) a trans-membrane domain; and
- (iv) an endodomain

wherein the antigen binding domains of the first and second CARs bind to different antigens, wherein the spacer of the first CAR is different to the spacer of the second CAR and wherein one of the first or second CARs is an activating CAR comprising an activating endodomain and the other CAR is an inhibitory CAR comprising a ligation-off inhibitory endodomain.

25. A cell composition comprising CAR expressing T cells according to claim 1 and/or CAR expressing NK cells according to claim 25 made by transducing a blood-sample ex vivo with a nucleic acid encoding the first and second CARs

1/32

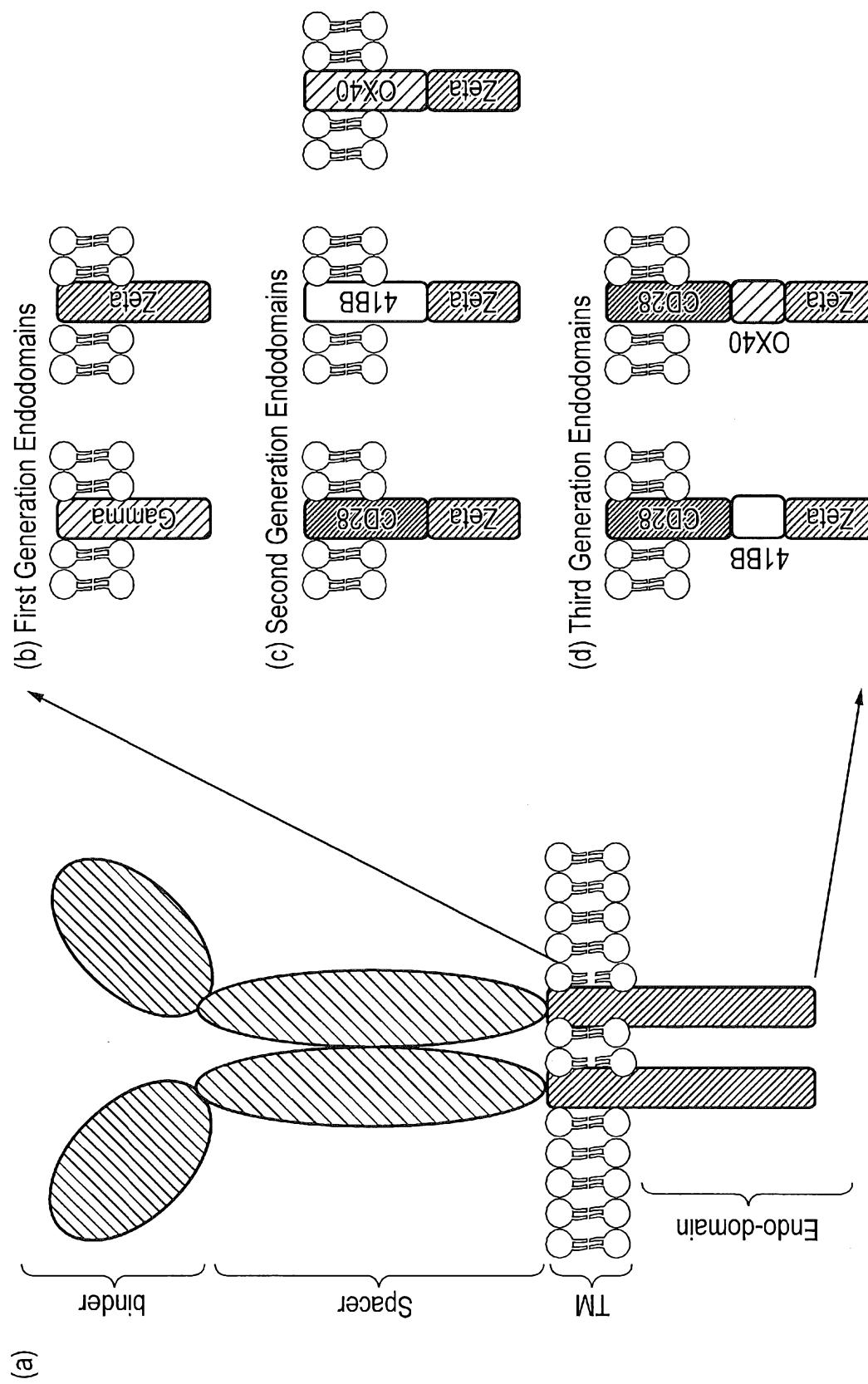


FIG. 1

2/32

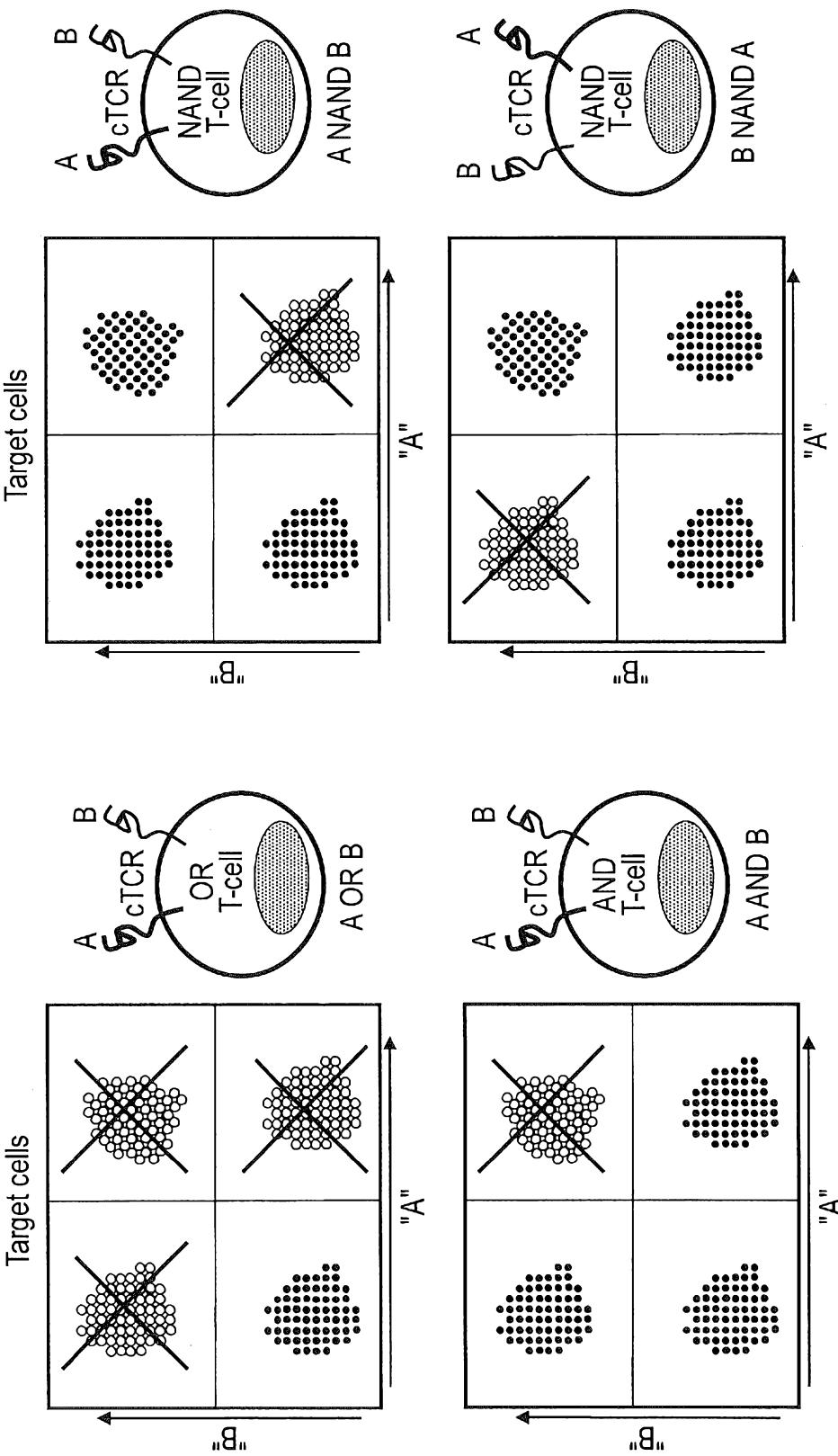


FIG. 2

3/32

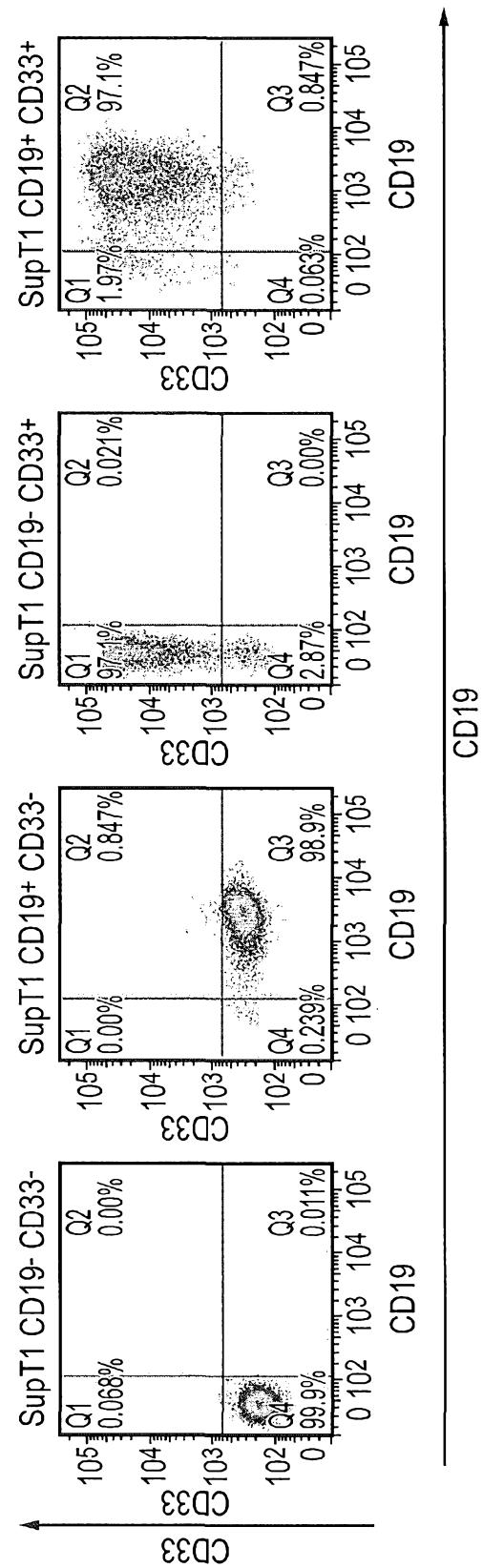


FIG. 3

4/32

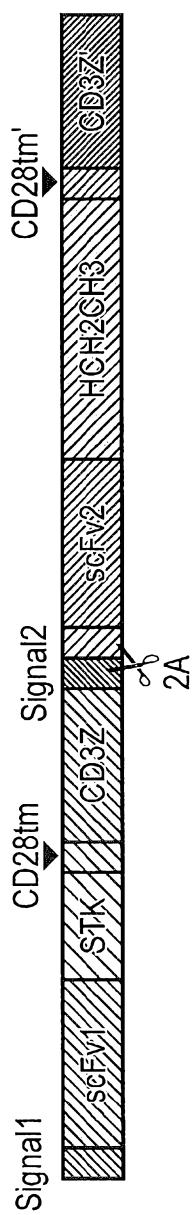


FIG. 4

5/32

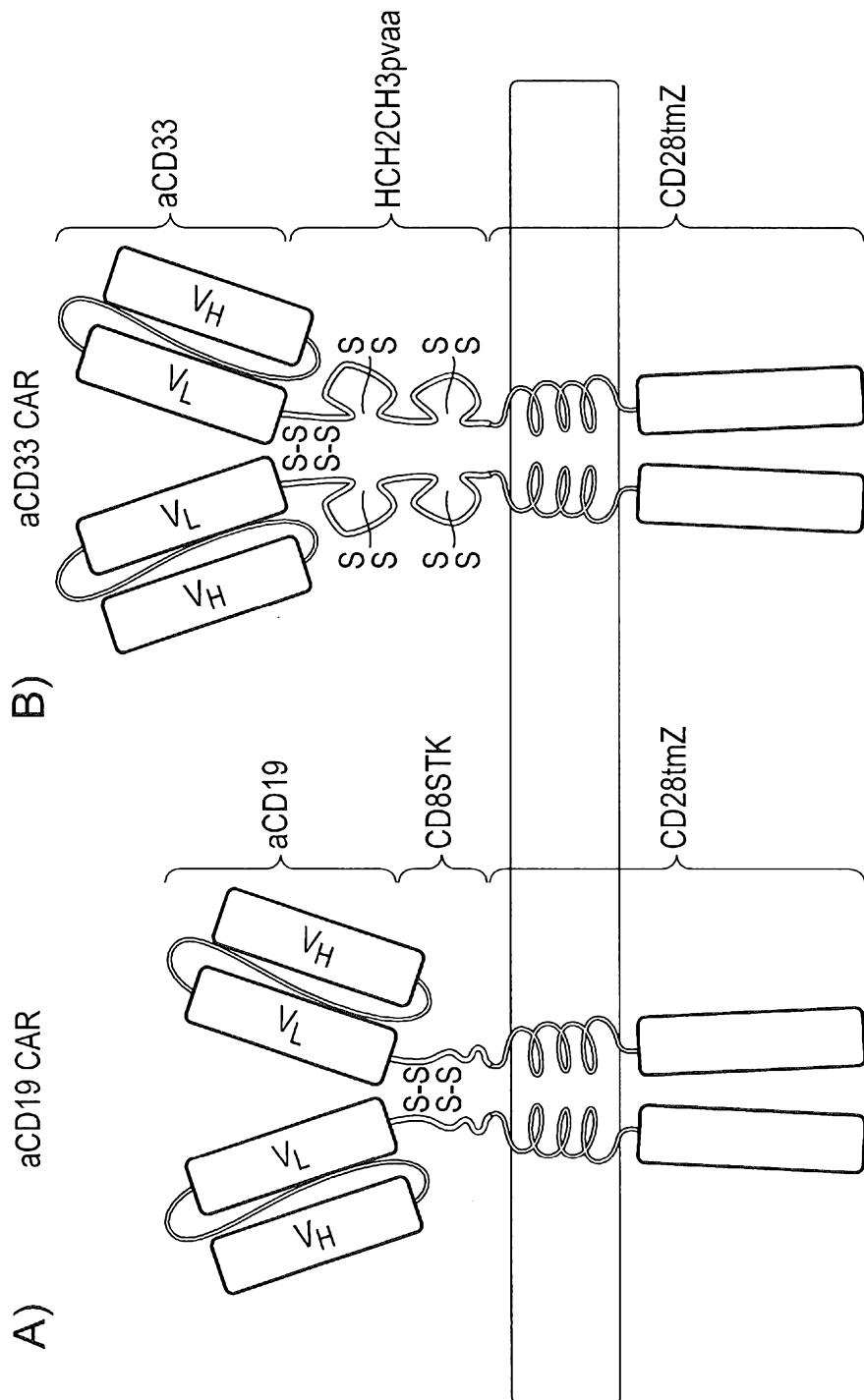


FIG. 5

6/32

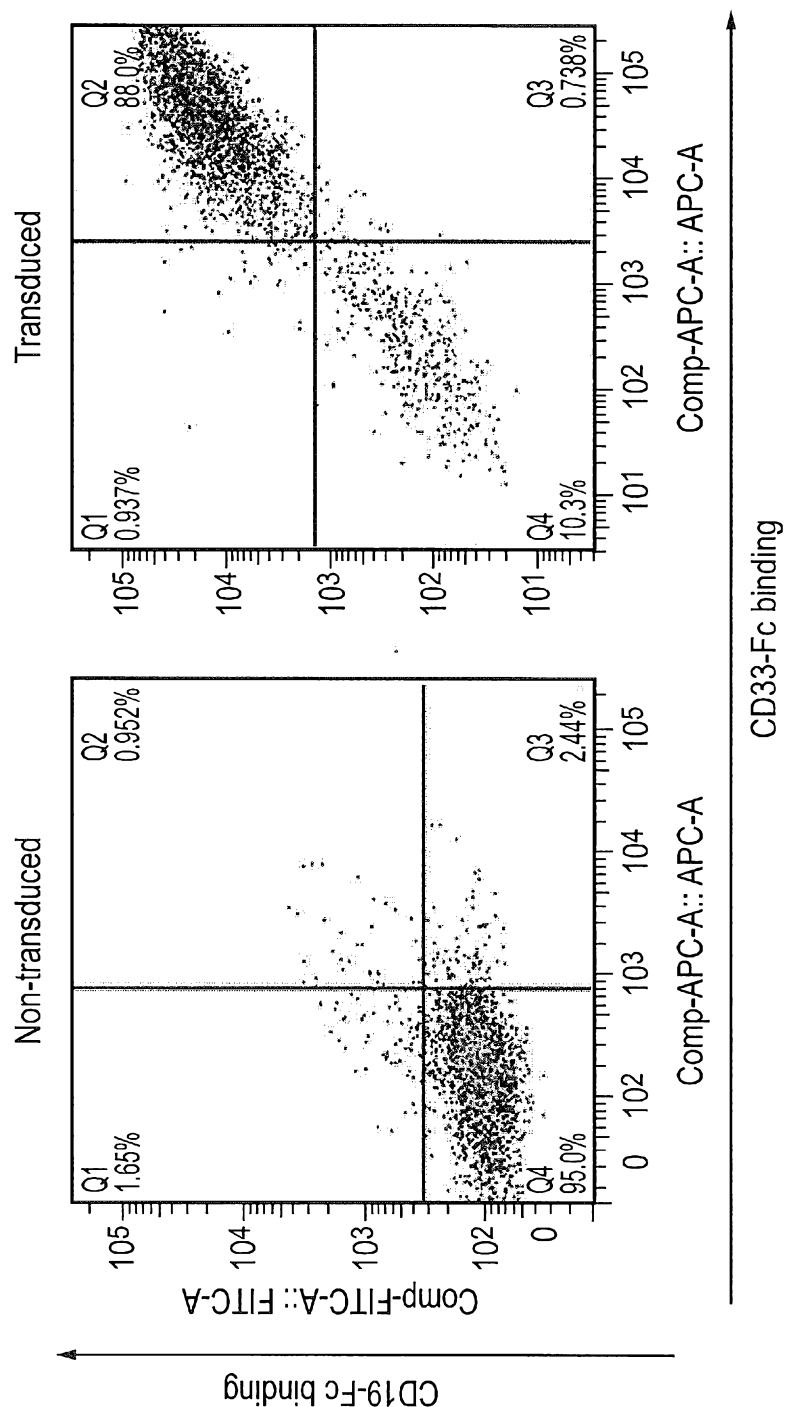


FIG. 6

7/32

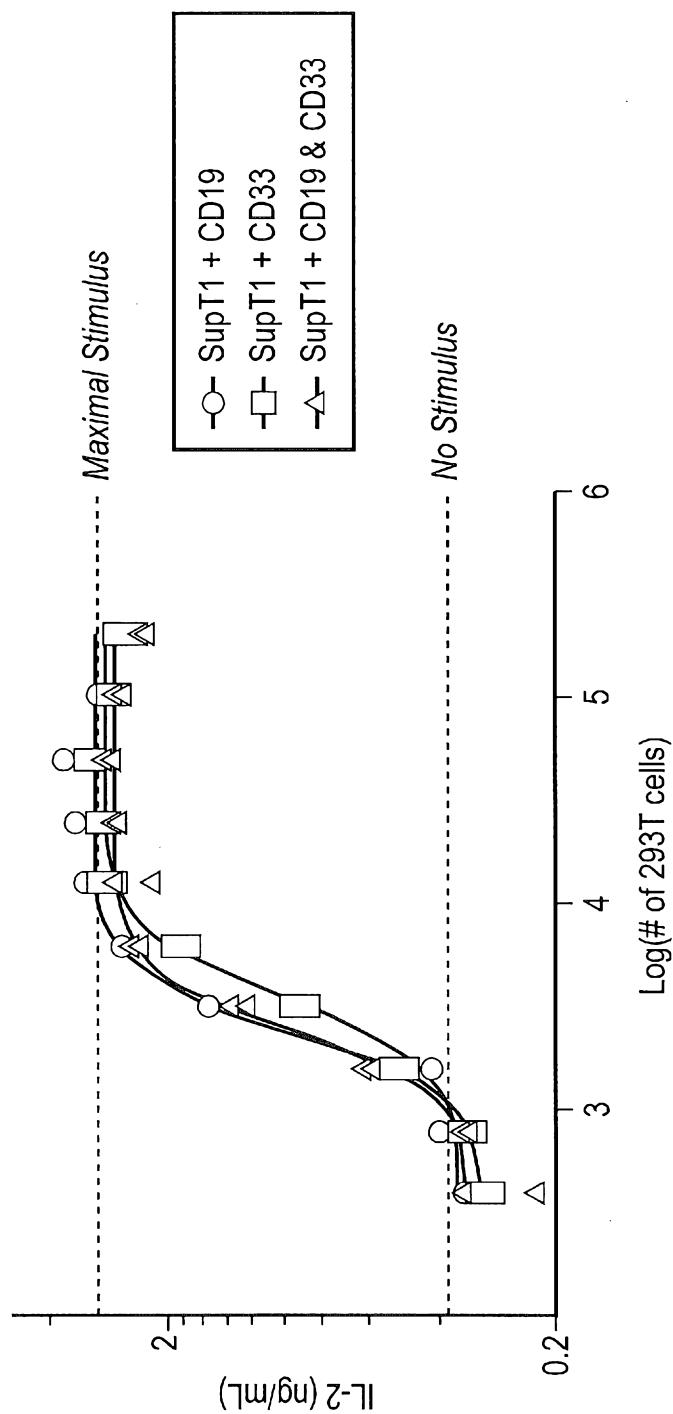


FIG. 7

8/32

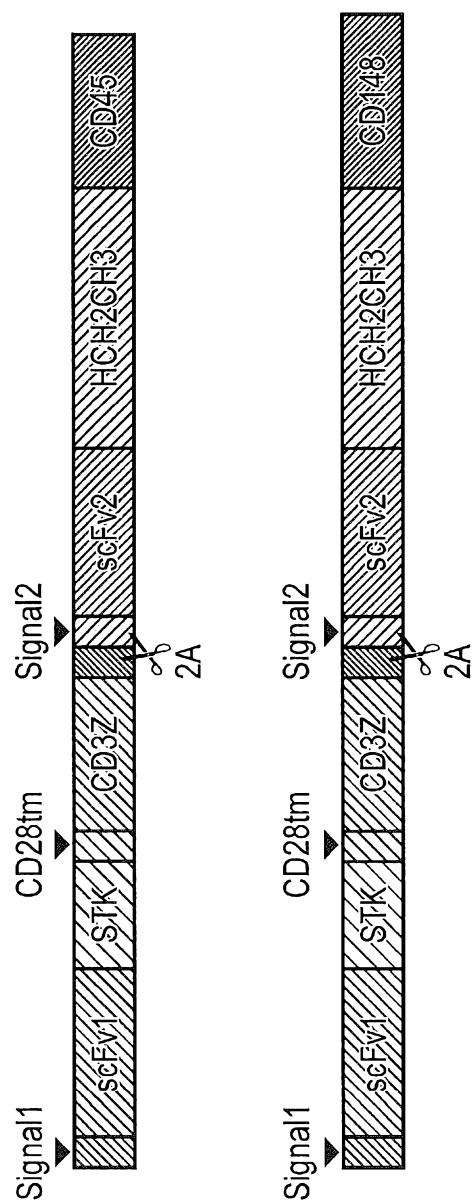


FIG. 8

9/32

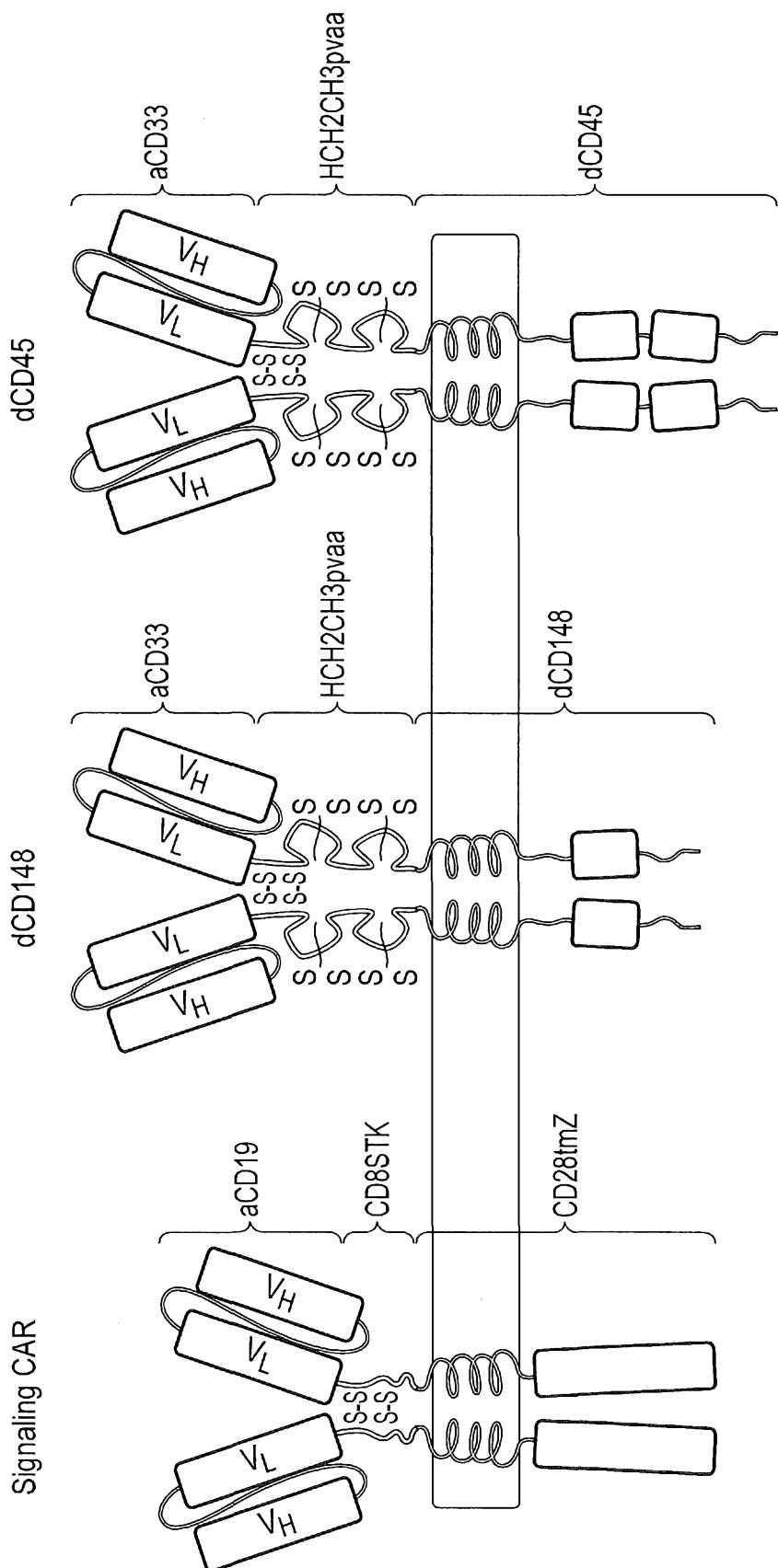


FIG. 9

10/32

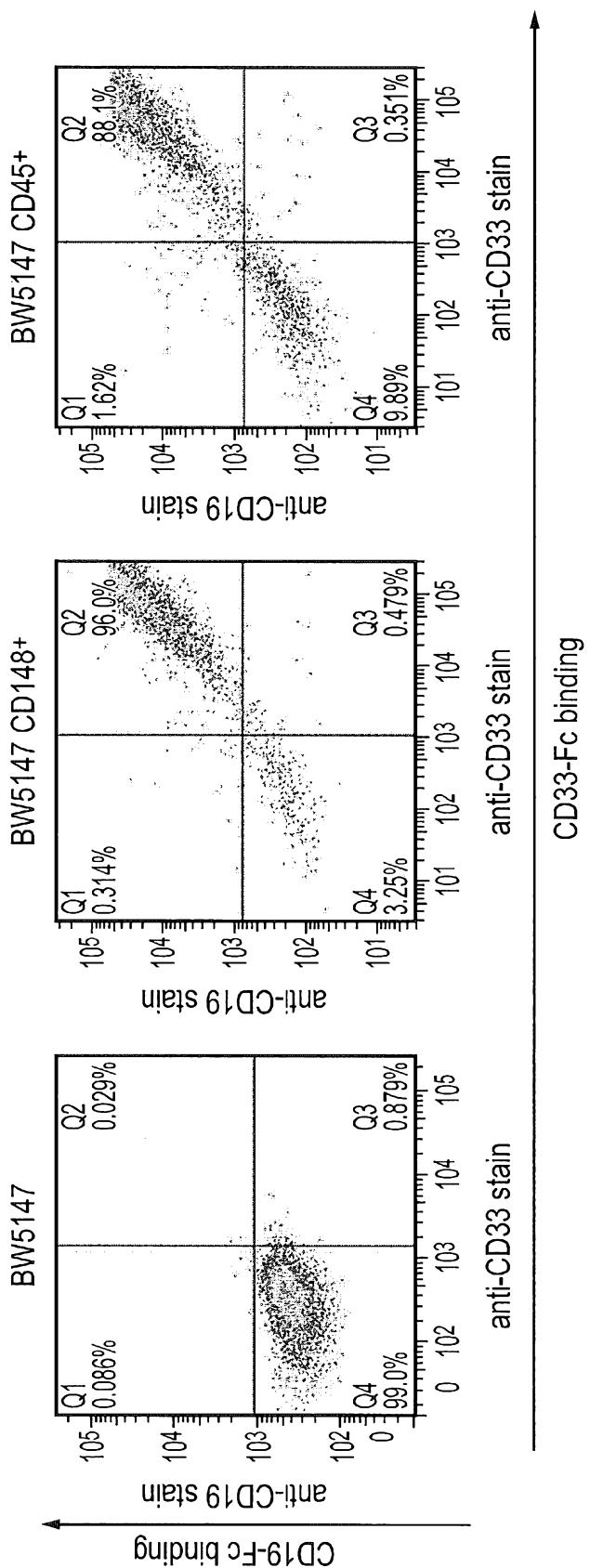


FIG. 10

11/32

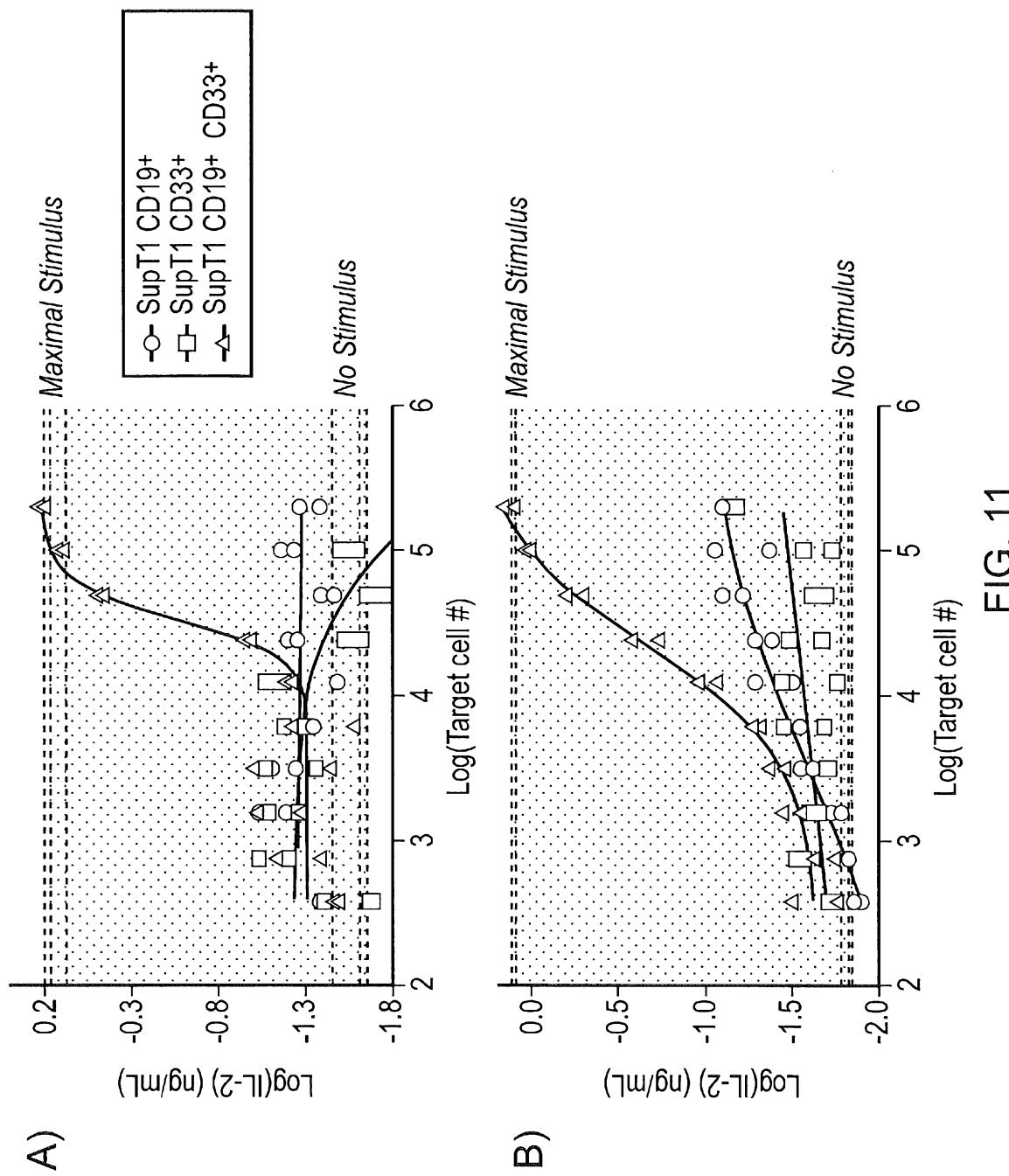


FIG. 11

12/32

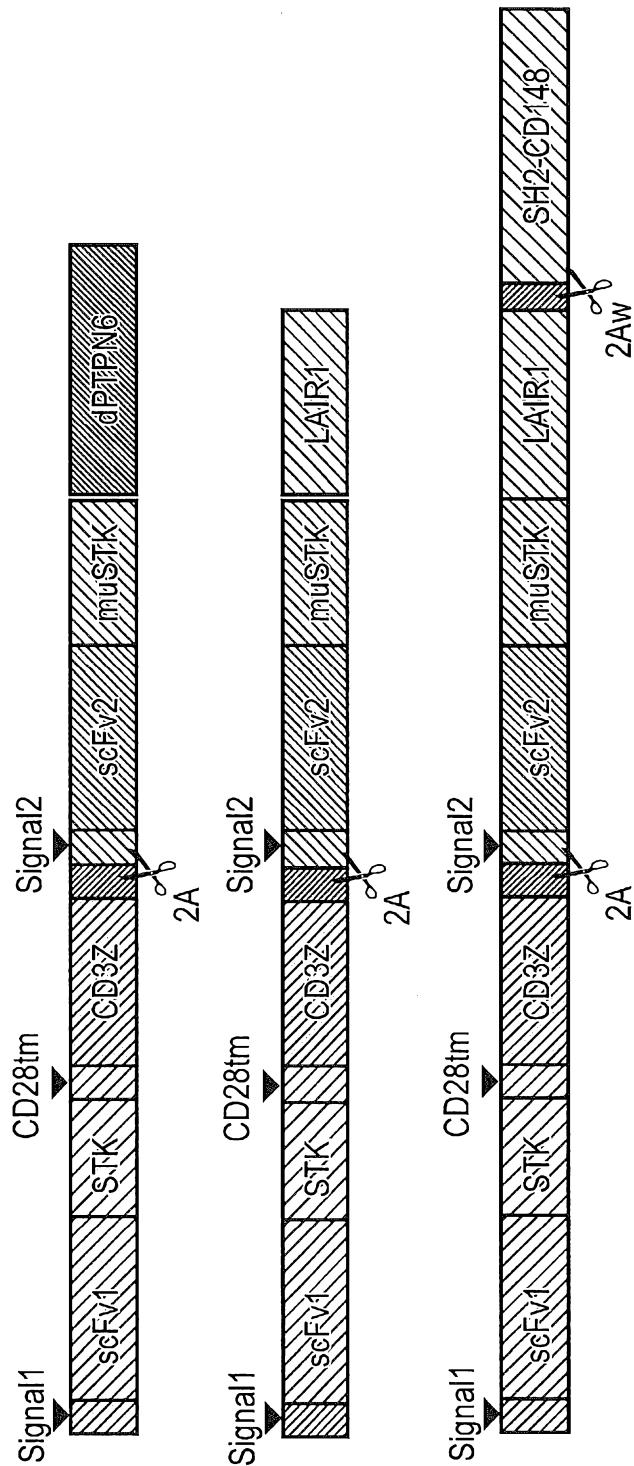


FIG. 12

13/32

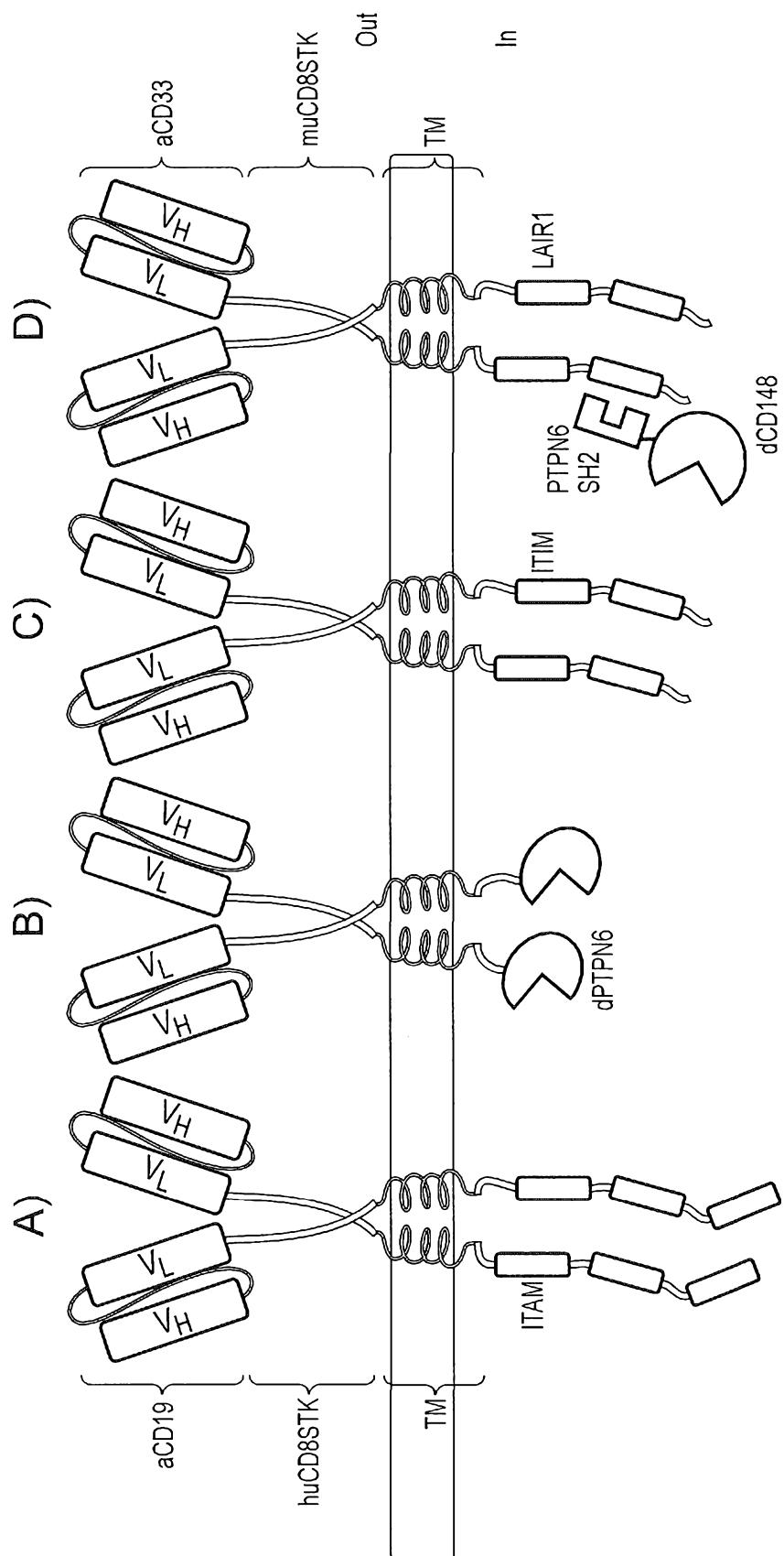


FIG. 13

14/32

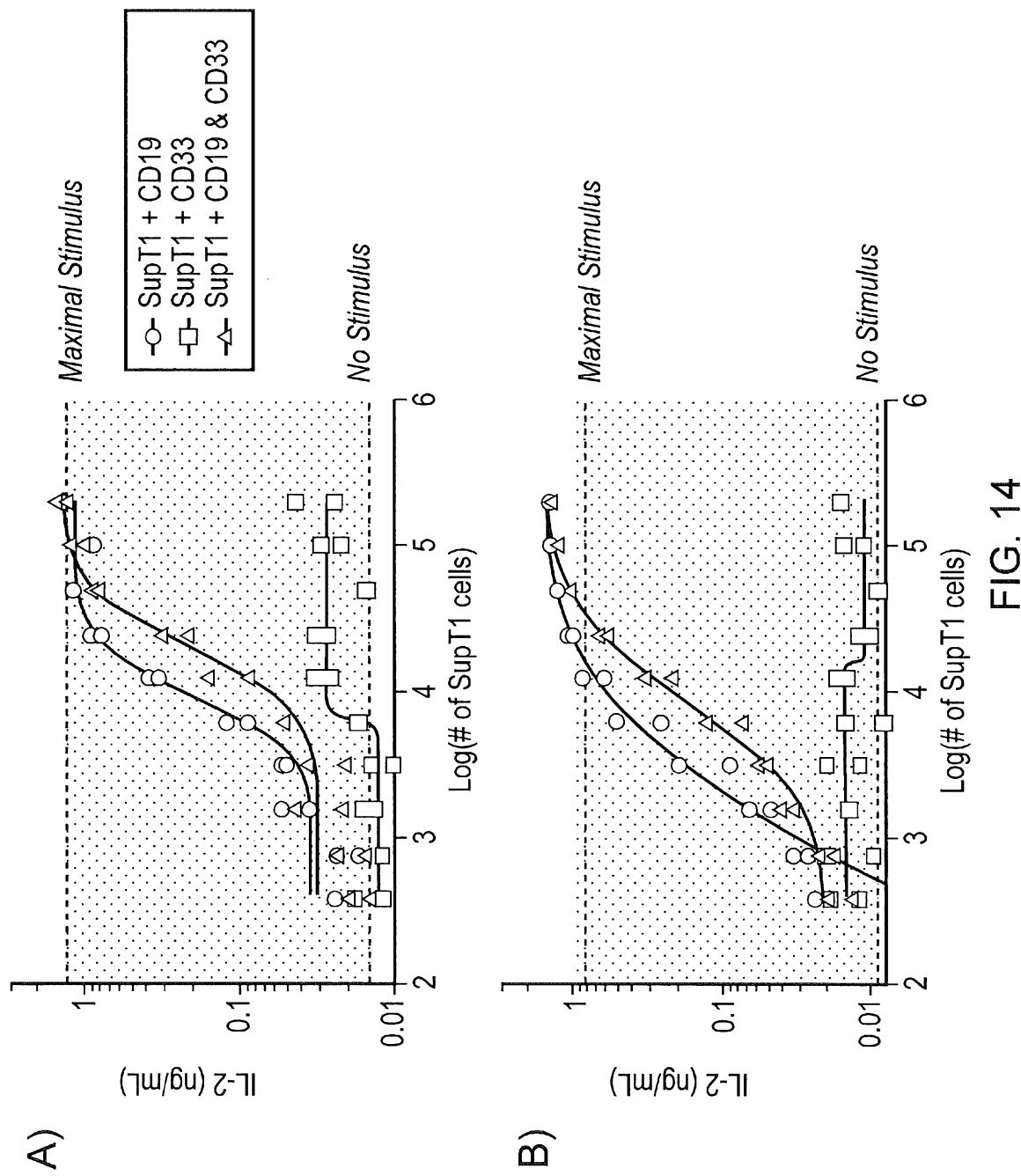


FIG. 14

15/32

>MP13974.SFG.aCD19fmc63_clean-CD8STK-CD28tmZ-2A-aCD33glx-HCH2CH3pva-a-CD28tmZw

MSLPVTALLPLALLLHAARPDIQMTQTTSSLSASLGDRVТИSCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF
 SGSGSGTDYSLTISNLSEQEDIATYFCQQGNTLPYTFGGGTKEITKAGGGGSGGGGGGGGGGGSEVKLQESGPGLVAPSC
 SLSVTCTVSGVSLPDYGVSWIROPKRKGLEWLGVIGSETTYNSALKSRLTIIKDNNSKSQVFLKMNSLQTDATIYYCAKY
 YYGGSYAMDYWGQGTSTVSSDP~~SDP~~APPRPPR~~APPRPPR~~APR~~APR~~ASG~~ASG~~PF~~PF~~AGC~~AGC~~AAAGGAV~~AAAGGAV~~YJRG~~YJRG~~IDEASD~~IDEASD~~FWV~~FWV~~LVVVGGV~~LVVVGGV~~ACY
 SLLVTVAIFIIFWVRRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVL~~D~~KRRGRDPEMGGK~~P~~RRK~~N~~PQEGLYNELQDKMAE
 AYSEIGMKGERRRGKGDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCGDVEENPGPMAVPTQVLGLLLWLTDARO
 D~~I~~OMTOSPSSLSASVGDRVТИCRASEDLYENLWYQQKE~~K~~AKF~~K~~LLT~~T~~ETNRLADGV~~V~~ESRFSGSG~~G~~TO~~T~~Y~~T~~LT~~T~~ISIOPED~~E~~
 ATYYCOHYKNYPLTEGQGT~~K~~LET~~K~~RSGGGGSGGGGGGGSRSE~~V~~OLVESGG~~G~~LVOPCGS~~S~~RLSCAASG~~G~~FTLSNYGMH
 W~~I~~ROAPGKGLEW~~W~~SSLSLNGC~~C~~STYYRDSVKGRFT~~T~~SRDN~~A~~KST~~I~~YLOMNS~~N~~IRAEDTAVYYC~~C~~AAQDAYTGGYFD~~Y~~W~~Q~~GT~~T~~IV~~V~~
 S~~S~~MDP~~P~~AEPKSPDK~~T~~HTCPPCPAPPVAGPSVFLFPPKPKDTI~~I~~ARTPEVTCVVVDVSHEDPEV~~V~~KFNWYVDG~~V~~E~~V~~HNA~~K~~TPR~~E~~
 EQYNSTYRVVSVLTVLHQDWLNGKEY~~K~~C~~K~~V~~N~~K~~A~~LP~~A~~PIE~~K~~T~~I~~SKAKGQ~~Q~~PREPQVYTL~~P~~PSR~~D~~ELTK~~N~~Q~~V~~SL~~T~~CLV~~K~~G~~F~~Y~~P~~SD~~D~~
 I~~A~~VEWE~~W~~ESNG~~G~~OPENNYK~~T~~TP~~P~~V~~L~~SDG~~S~~FFLYSK~~L~~TV~~D~~K~~S~~R~~W~~Q~~Q~~GN~~V~~F~~S~~C~~V~~M~~H~~EA~~L~~H~~N~~HY~~T~~Q~~K~~SL~~S~~SP~~G~~K~~K~~DP~~K~~FW~~V~~LV~~V~~VG~~G~~
 G~~V~~L~~A~~C~~Y~~SL~~L~~VT~~V~~AF~~I~~IFW~~V~~R~~S~~R~~V~~K~~F~~S~~R~~S~~A~~DA~~P~~YQQGQNQLYNELNLGRREEYDVL~~D~~KRRGRDPEMGGK~~P~~RRK~~N~~PQEGLYNELQDKMAE
 AYSEIGMKGERRRGKGDGLYQGLSTATKDTYDALHMQALPPR

Region	Description
Signal1	Signal peptide 1
scFv1	scFv 1 – anti-CD19
SDP	Linker and chain break
STK	CD8alpha stalk
CD28tmZ	CD28 transmembrane domain and CD3 Zeta endodomain
FMD-2A	Foot-and-mouth disease 2A peptide
Signal2	Signal peptide 2
scFv2	scFv 2 – anti-CD33
MDP	Linker and chain break
HCH2CH3	Hinge, CH2 and CH3 of human IgG1
CD28tmZ	CD28 transmembrane domain and CD3 Zeta endodomain

FIG. 15

16/32

>MP14801.SFG.aCD19fmc63_clean-CD8STK-CD28tmZ-2A-aCD33glx-HCH2CH3pvaa-dCD148

MSLPVTALLPLALLHAARPDIQMTQTTSSLSASLGDRVТИCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF
 SGSGSGTDSLTISNLEQEDIATYFCQQGNTLPYTFFGGTKEITKAGGGGGGGGGGGGGGGGGSEVKLQESGPGLVAPSO
 SLSVTCTVSGVSLPDYGVSWIOPPRKGLELGVWIGSETTYNSALKSRLTIIKDNKSQVFLKMNSLQTDDTAIYYCAKHY
 YYGGSYAMDYWGQGTSVTVSSDPIRTPAPRPPRIPAPRPAQSOPTSIRPFAAGGAVHTRGDEACDIFWVLVVVGGVLACY
 SLLVTVAIFI FWVRRVFKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLKRRGRDPEMGGKPRRKNPQEGLYNELOQDKMAE
 DYEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPFRRAEGRGSLLTCGDVEENPGMAVPTQVLGLLLLWLT
 DARC
 D10MTQSPSSLSASVGDRVTTICRASEDLYFNLNWYQQKPGKAPKLLIYDTPNRLADGVPSSRGSGSGTQYTLTISL
 SLOPEDF
 ATYYCQHYKNYPLTEGQGKLEIKRSGGGGGGGGGGGGGGGSRSEVOLVESGGGLVOPPGSIRLS
 CAAASGFTLSNYGMH
 WLRQAPGKGLEWVSSISINGGTYRDSVKGRETLSRDNAKSTLYLOMNSLRAEDTAVYYCAAQDAYTGGYFDYWGQGTLVTV
 SSMMDPAEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIA
 RTPEVTCVVDVSHEDPEVFKFNWYVDGVEVHN
 AAKTKPRE
 EQYNSTYRVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPVYTLPPSRDELT
 KNQVSLTCLVKGFYPSD
 LAVEWESENQOPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQOGNVFSCVMHEALHNHYTOKSLSLSPGKKDPKAVFGCIFG
 ALVIVTVGGFIFWRKKRKDAKNNEVSFSQIKPKSKLIRVENFEAYFKKQADSNCGFAEAEYEDLKL
 VGISQPKYAAELAENR
 GKNRYNNVLPYDISRVKLSVQTHSTDYINANYPGYHSKKDFIATQGPLNTLKDFWRMVWEK
 NVYAIIMLTKC
 VEQGRTKC
 EYWP
 SKQADYGDITVAMTSEIVLPEWTIRDFTVKNIQTSESHPLQFH
 TSWPDHGVPTTDLL
 INF
 RYLV
 RDYMKQS
 PPE
 SPILV
 HCSAGV
 GRTGTFIA
 IDRLIYQ
 IENENT
 DVY
 GIVY
 DLRM
 HRLM
 LV
 QV
 FNL
 QC
 VLD
 I
 VRS
 QK
 DSK
 VD
 LIYQ
 NT
 TT
 AMT
 IEN
 LAP
 VTT
 FG
 K
 T
 NGY
 IA

MP14802. SFG.aCD19fmc63_clean-CD8STK-CD28tmZ-2A-aCD33glx-HCH2CH3pvaa-dCD45

MSLPVTALLPLALLHAARPDIQMTQTTSSLSASLGDRVТИCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF
 SGSGSGTDSLTISNLEQEDIATYFCQQGNTLPYTFFGGTKEITKAGGGGGGGGGGGGGGGGGSEVKLQESGPGLVAPSO
 SLSVTCTVSGVSLPDYGVSWIOPPRKGLELGVWIGSETTYNSALKSRLTIIKDNKSQVFLKMNSLQTDDTAIYYCAKHY
 YYGGSYAMDYWGQGTSVTVSSDPIRTPAPRPPRIPAPRPAQSOPTSIRPFAAGGAVHTRGDEACDIFWVLVVVGGVLACY
 SLLVTVAIFI FWVRRVFKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLKRRGRDPEMGGKPRRKNPQEGLYNELOQDKMAE
 DYEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPFRRAEGRGSLLTCGDVEENPGMAVPTQVLGLLLLWLT
 DARC
 D10MTQSPSSLSASVGDRVTTICRASEDLYFNLNWYQQKPGKAPKLLIYDTPNRLADGVPSSRGSGSGTQYTLTISL
 SLOPEDF
 ATYYCQHYKNYPLTEGQGKLEIKRSGGGGGGGGGGGGGSRSEVOLVESGGGLVOPPGSIRLS
 CAAASGFTLSNYGMH
 WLRQAPGKGLEWVSSISINGGTYRDSVKGRETLSRDNAKSTLYLOMNSLRAEDTAVYYCAAQDAYTGGYFDYWGQGTLVTV
 SSMMDPAEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIA
 RTPEVTCVVDVSHEDPEVFKFNWYVDGVEVHN
 AAKTKPRE
 EQYNSTYRVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPVYTLPPSRDELT
 KNQVSLTCLVKGFYPSD
 LAVEWESENQOPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQOGNVFSCVMHEALHNHYTOKSLSLSPGKKDPKALIAFLAE
 LIVTSIALLVLYK1YDLHKKRSCNLDEQQELVERDDEKQLMNVEPIHADILLETYKRKIADEGRLFLAEFQSI
 PRVFSKFP
 I
 KEARKP
 FNQN
 KRY
 VDIL
 PYD
 N
 R
 V
 E
 L
 S
 E
 I
 N
 G
 D
 A
 G
 S
 N
 Y
 I
 N
 A
 S
 Y
 I
 D
 G
 F
 K
 E
 P
 R
 K
 Y
 I
 A
 A
 Q
 G
 P
 R
 D
 E
 T
 V
 D
 D
 F
 W
 R
 M
 I
 W
 E
 Q
 K
 A
 T
 V
 I
 V
 M
 V
 T
 R
 C
 E
 E
 G
 N
 R
 N
 K
 C
 A
 E
 Y
 W
 P
 S
 M
 E
 E
 G
 T
 R
 A
 F
 G
 D
 V
 V
 V
 K
 I
 N
 Q
 H
 K
 R
 C
 P
 D
 Y
 I
 I
 Q
 K
 L
 N
 I
 V
 N
 K
 K
 E
 K
 A
 T
 G
 R
 E
 V
 T
 H
 I
 Q
 F
 T
 S
 W
 P
 D
 H
 G
 V
 P
 E
 D
 P
 H
 L
 L
 K
 L
 R
 N
 A
 F
 S
 N
 F
 S
 G
 P
 I
 V
 V
 H
 C
 S
 A
 G
 V
 G
 R
 T
 G
 T
 Y
 I
 G
 I
 D
 A
 M
 L
 E
 G
 L
 E
 A
 N
 K
 V
 D
 V
 Y
 G
 Y
 V
 V
 K
 L
 R
 Q
 C
 L
 M
 V
 Q
 V
 E
 A
 Q
 Y
 I
 L
 I
 H
 Q
 A
 L
 V
 E
 Y
 N
 Q
 F
 G
 E
 T
 E
 V
 N
 L
 S
 E
 L
 H
 P
 Y
 L
 H
 N
 M
 K
 R
 D
 P
 P
 S
 P
 L
 E
 A
 F
 Q
 R
 L
 P
 S
 Y
 R
 S
 W
 R
 T
 Q
 H
 I
 G
 N
 Q
 E
 E
 N
 K
 S
 K
 N
 R
 N
 S
 V
 I
 P
 Y
 D
 Y
 N
 R
 V
 P
 L
 K
 H
 E
 L
 M
 S
 K
 E
 E
 H
 D
 S
 D
 E
 D
 D
 S
 D
 S
 E
 E
 P
 S
 K
 Y
 I
 N
 A
 S
 F
 I
 M
 S
 Y
 W
 K
 P
 E
 V
 M
 I
 A
 A
 Q
 G
 P
 L
 K
 E
 T
 I
 G
 D
 F
 W
 Q
 M
 I
 F
 Q
 R
 K
 V
 K
 V
 I
 V
 M
 L
 T
 E
 L
 K
 H
 G
 D
 Q
 E
 I
 C
 A
 Q
 Y
 W
 G
 E
 G
 K
 Q
 T
 Y
 G
 D
 I
 E
 V
 D
 L
 K
 D
 K
 S
 S
 T
 Y
 T
 L
 R
 V
 F
 E
 L
 R
 H
 S
 K
 R
 K
 D
 S
 R
 T
 V
 Y
 Q
 Y
 Q
 T
 N
 W
 S
 V
 E
 Q
 L
 P
 A
 E
 P
 K
 E
 L
 I
 S
 M
 I
 Q
 V
 V
 K
 Q
 K
 L
 P
 Q
 K
 N
 S
 S
 E
 G
 N
 K
 H
 K
 S
 P
 L
 L
 E
 I
 H
 C
 R
 D
 G
 S
 Q
 Q
 T
 G
 I
 F
 C
 A
 L
 L
 N
 L
 L
 E
 A
 T
 E
 E
 V
 V
 D
 I
 F
 Q
 V
 V
 K
 A
 L
 R
 K
 A
 P
 G
 M
 V
 S
 T
 F
 E
 Q
 Y
 Q
 F
 L
 Y
 D
 V
 I
 A
 S
 T
 P
 A
 Q
 N
 G
 Q
 V
 K
 K
 N
 N
 H
 Q
 E
 D
 K
 I
 E
 F
 D
 I
 N
 E
 V
 D
 K
 V
 Q
 D
 A
 N
 C
 V
 N
 P
 L
 G
 A
 P
 E
 K
 L
 P
 E
 A
 G
 S
 E
 P
 T
 S
 G
 T
 E
 G
 P
 E
 H
 S
 V
 N
 G
 P
 A
 S
 P
 A
 L
 N
 Q
 G
 S

Region	Description
Signal1	Signal peptide 1
scFv1	scFv 1 – anti-CD19
SDP	Linker and chain break
CD8	CD8alpha stalk
CD28tmZ	CD28 transmembrane domain and CD3 Zeta endodomain
FMD-2A	Foot-and-mouth disease 2A peptide
Signal2	Signal peptide 2
scFv2	scFv 2 – anti-CD33
MDP	Linker and chain break
CH2CH3	Hinge, CH2 and CH3 of human IgG1
CD148 / dCD45	Trans-membrane and endo-domains of CD148 and CD45

FIG. 16

17/32

>16076.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-muCD8STK-tm-dPTPN6

MSLPVTALLPLALLHAAREDIQMTQTTSSLSASLGRVTISCRASQDISHKYLNWYQQKPDGTVKLIIYHTSRLHSGVPSRFSGSGS3
GTDYSLTISNLEQEDIATYFCQQGNLIPYTFGGGTKEITKAGGGGGGGGGGGGGSEVKLQESGPGVLA
VSLPDYGVSWIOPRKRKLEWLGVWGESETTYNSALKSRLITIKDNSKSQVPLKMNLSLQD
SVTVSSDPHTNPAPRREPRPARTIASCRISRPEACRPA
GAVHTRGIDFACDIIFWVLV
VGGVLACYSLLTV
VAFITI
FWVRRV
KFSP
SADAPAYQOGQNL
YNE
LN
LGRREYD
VLDKRR
RDP
EMCGK
P
FRR
K
N
P
Q
E
G
L
Y
N
E
L
O
K
D
K
M
A
E
A
Y
S
E
I
G
M
K
G
E
R
R
G
K
H
D
G
L
Y
Q
G
L
S
I
T
A
T
K
D
T
Y
D
A
L
H
M
Q
A
L
P
R
P
F
R
A
E
G
R
G
S
L
I
C
G
D
V
E
E
N
P
G
M
A
V
T
Q
V
L
G
L
L
L
L
W
L
T
D
A
R
C
D
I
Q
M
T
P
O
S
S
L
S
A
S
V
G
D
R
V
I
L
T
C
R
A
S
E
D
I
Y
E
N
I
E
W
V
Y
O
O
K
P
G
K
P
K
L
I
I
Y
D
T
N
R
L
A
D
G
V
P
S
R
F
S
G
G
S
G
T
Y
T
I
T
I
S
L
O
P
E
D
F
T
Y
C
O
H
Y
K
N
Y
P
T
H
G
O
T
K
L
E
I
T
K
G
S
G
G
G
G
G
S
R
S
E
V
O
L
V
E
S
G
G
L
V
O
P
G
C
R
I
L
S
C
A
S
G
F
T
I
S
N
Y
G
H
W
I
R
O
M
C
K
G
L
E
W
N
S
I
L
N
G
C
S
T
Y
R
D
S
V
K
H
T
I
S
R
D
N
A
K
S
P
L
Y
L
O
M
S
I
R
A
E
T
A
V
Y
C
A
A
Q
D
A
V
I
C
G
Y
E
D
Y
W
G
Q
G
P
L
V
T
V
S
M
D
P
A
T
R
R
E
W
T
P
S
P
H
E
R
G
T
I
S
Q
O
P
R
P
E
D
G
P
R
G
S
V
K
C
I
G
E
D
F
A
G
D
I
Y
W
A
P
L
A
G
I
C
V
A
L
L
S
L
I
I
T
L
I
C
Y
H
R
S
R
K
R
V
C
K
S
G
G
G
F
W
E
F
E
S
L
Q
K
Q
E
V
K
N
L
H
Q
R
E
G
Q
R
P
E
N
K
G
N
R
Y
K
N
I
L
P
F
D
H
S
R
V
I
L
Q
G
R
D
S
N
I
P
G
S
D
Y
I
N
A
N
Y
I
K
N
Q
L
L
G
P
D
E
N
A
K
T
Y
I
A
S
Q
G
C
L
E
A
T
V
N
D
F
W
Q
M
A
W
Q
E
N
S
R
V
I
V
M
T
T
R
E
V
E
K
G
R
N
K
C
V
P
Y
W
P
E
V
G
M
Q
R
A
Y
G
P
Y
S
V
T
N
C
G
E
H
D
T
T
E
Y
K
L
R
L
Q
V
S
P
L
D
N
G
D
L
I
R
E
I
W
H
Y
Q
Y
L
S
W
P
D
H
G
V
P
S
E
P
G
G
V
L
S
F
L
D
Q
I
N
Q
R
O
E
S
L
P
H
A
G
P
I
I
V
H
C
S
A
I
G
R
T
G
T
I
V
I
D
M
L
I
M
E
N
I
S
T
K
G
L
D
C
D
I
Q
K
T
I
Q
M
V
R
A
Q
R
S
G
M
V
Q
T
E
A
Q
Y
K
F
I
V
A
I
Q
F
I
E
T
K
K
K
L

>MP16091.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-muCD8STK-LAIR1tm-endo

MSLPVTALLPLALLHAAREDIQMOTQTSSLSASLGDRVТИSCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFGSGSGS
GTDYSLTISNLQEEDIATYFCQQGNTLPYTFGGGTKEITKAGGGGGGGGGGGGGGGSEVKLQESGPGLVAPSQSLSVTCTVSC
VSLPDYGVSWIOPRPRKGLEWLGVWGESETTYNSALKSRLTIKDNSKSOFLKMNSLOQDDTAIYCYCAKHYGGSYAMDYWGOGI
SVTVSSDPTTTTPAPRPREPARTIASCPDSRPEACRPAAGAVHTRGEDFAGDIFWVLUVVGGVLACYSSLTVAFIIFWVRRVKFSP
SADAPAYQQGQNONLYNEINLNGRREEYDVLDKRGRDPMECGKPRRKNPQEGLYNELOKDKMAEAYSEIGMKGERRRGKHDGLYQGLS
TATKDTYDALHMQALPPrAERGRGSLLTCDGVEENPGEMAVPTQVLGLLLLWLTDARCGDQTMOTQDSESSLSASVGDRVPTICRASEDITY
FENLVWYOOKPCKAKLILYDTNRLADGVEPSRSGSGSGCTOYTITLSSQPEDEATYYCOHYHKNYTFIPTFGQTKLMEKSGGGGSCGGG
SCGGGSGGGGSRSEVOIYESGGGLVOPCGSIRLISCAASFTLSNYGMHWIPTQFCCKCLEWVSSLSINCGCTTYYRDSVKGRFTJSRDNA
KSTLILQMSLRAEDTAVYYCAAQDAYTCGGYFDYWGOGITVIVSSMDPATTTKEVERTPSRPHPTGTSQPORPFDCEERGSVKGTTGNS
FACIILIGSVVFLFCCLLVLFCILRQNQIKQGPPRSKDEEQKPOQRPDLAUDVLERADKATVNLPEKDRETDTSALAAGSSQEV
TYAQLDHWALTORTARAVSPQSTKPMAESITYAAVARH

>MP16092.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-muCD8STK-LAIR1tm-endo-2A-PTPN6_SH2-dCD148

Region	Description
Signal1	Signal peptide 1
scFv1	scFv 1 – anti-CD19
SDP	Linker and chain break
STK	Human CD8alpha stalk
CD28tm2	CD28 transmembrane domain and CD3 Zeta endodomain
FMD-2A	Foot-and-mouth disease 2A peptide
Signal2	Signal peptide 2
scFv2	scFv 2 – anti-CD33
MDP	Linker and chain break
STK	Mouse CD8alpha stalk
HLAIR1	Hinge, CH2 and CH3 of human IgG1
dPTPN6	Phosphatase domain of PTPN6
FMD-2A'	Foot-and-mouth disease 2A peptide codon wobbled
PTPN6-SH2	SH2 domain of PTPN6
SGGGGS	Serine glycine linker and chain break
dCD148	Phosphatase domain of CD148

FIG. 17

18/32

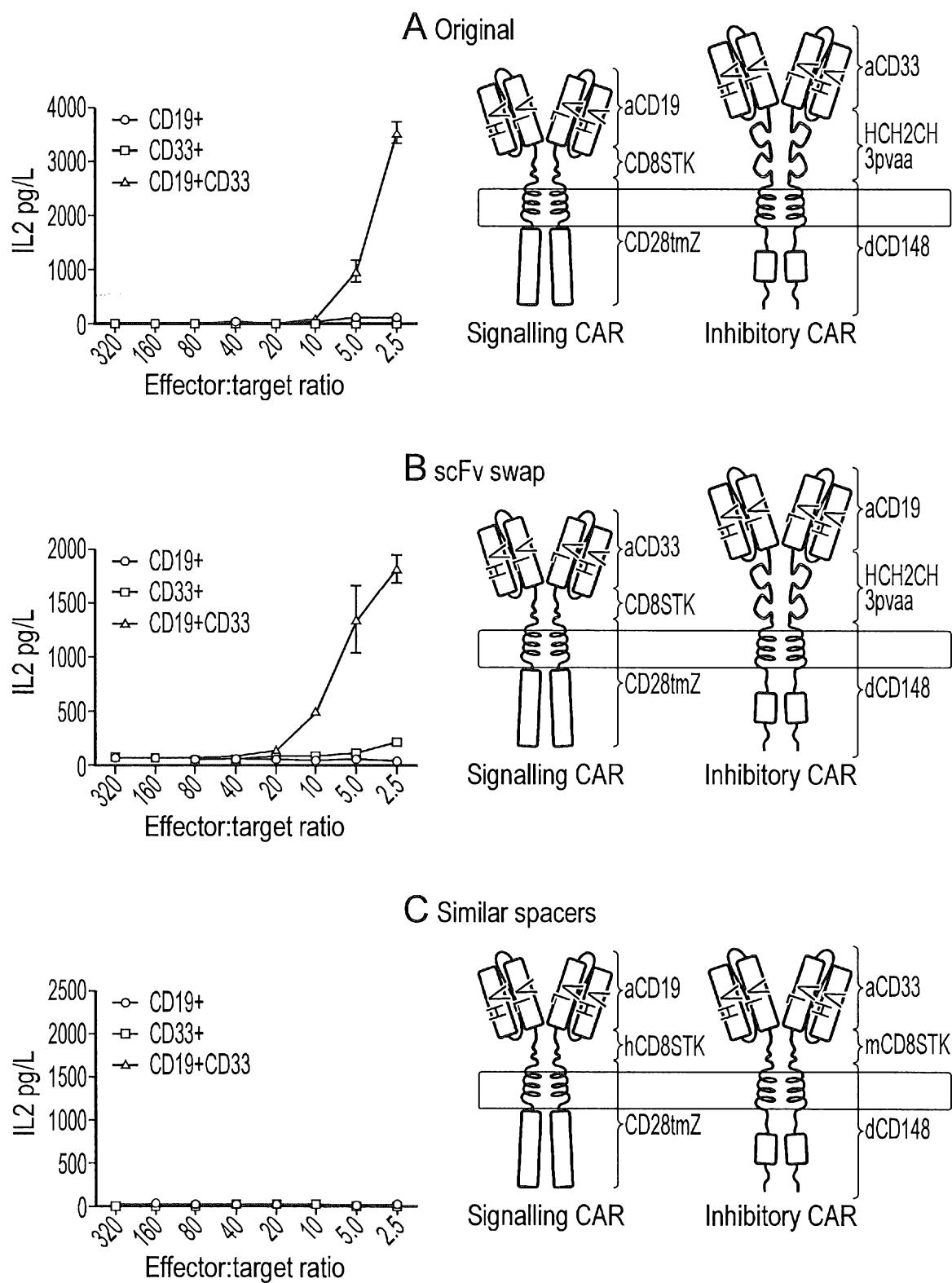


FIG. 18

19/32

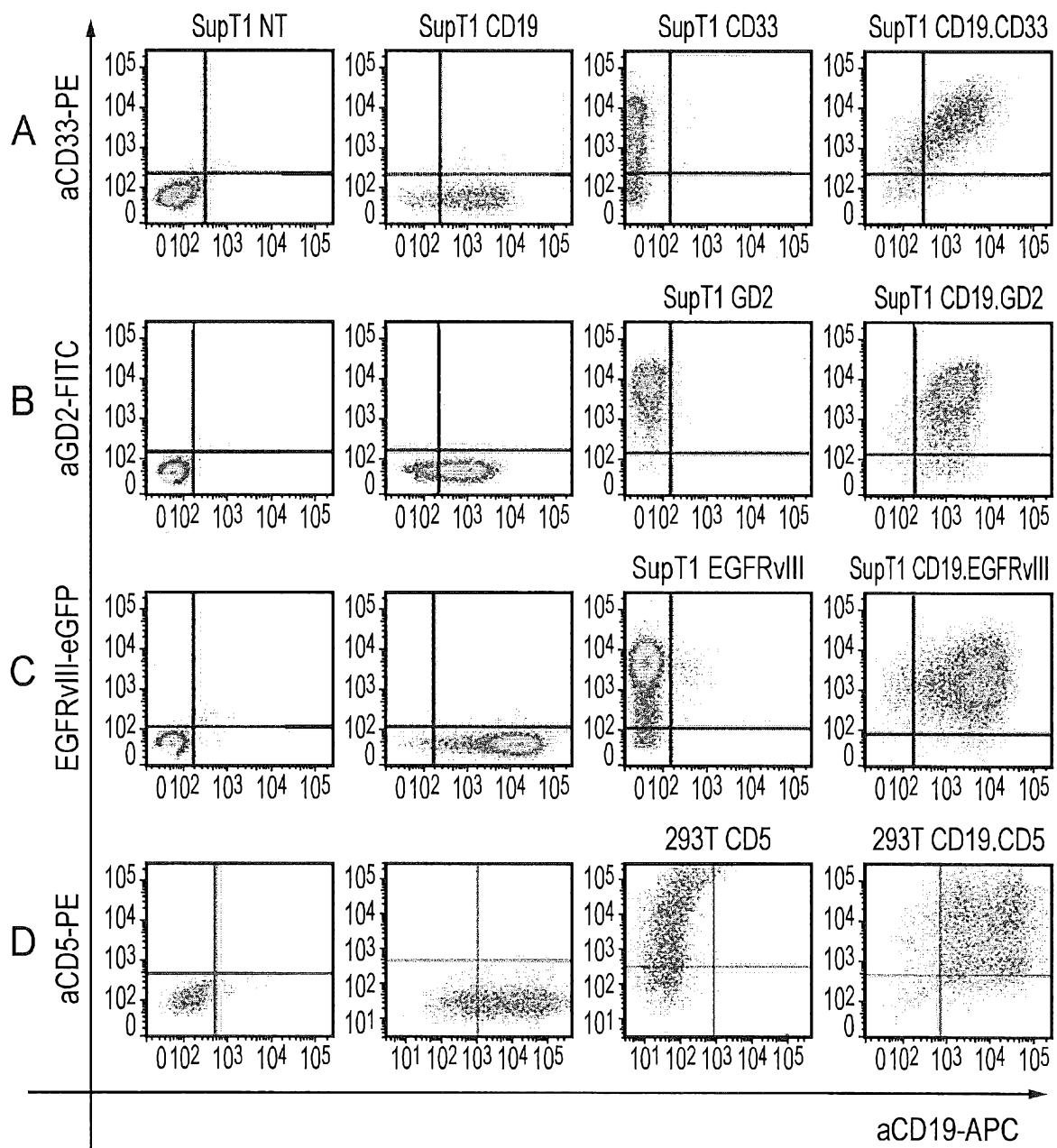
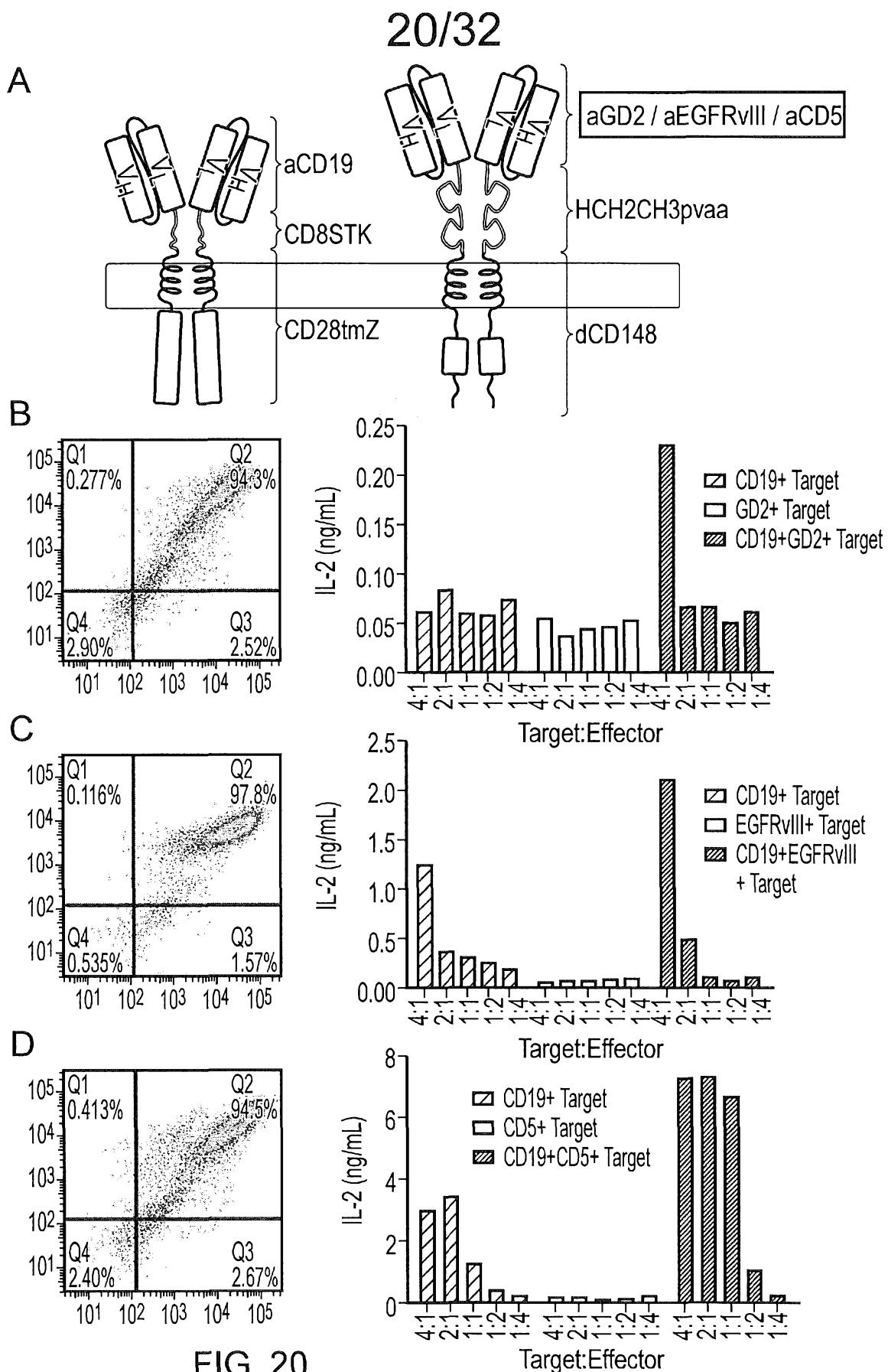



FIG. 19

FIG. 20

21/32

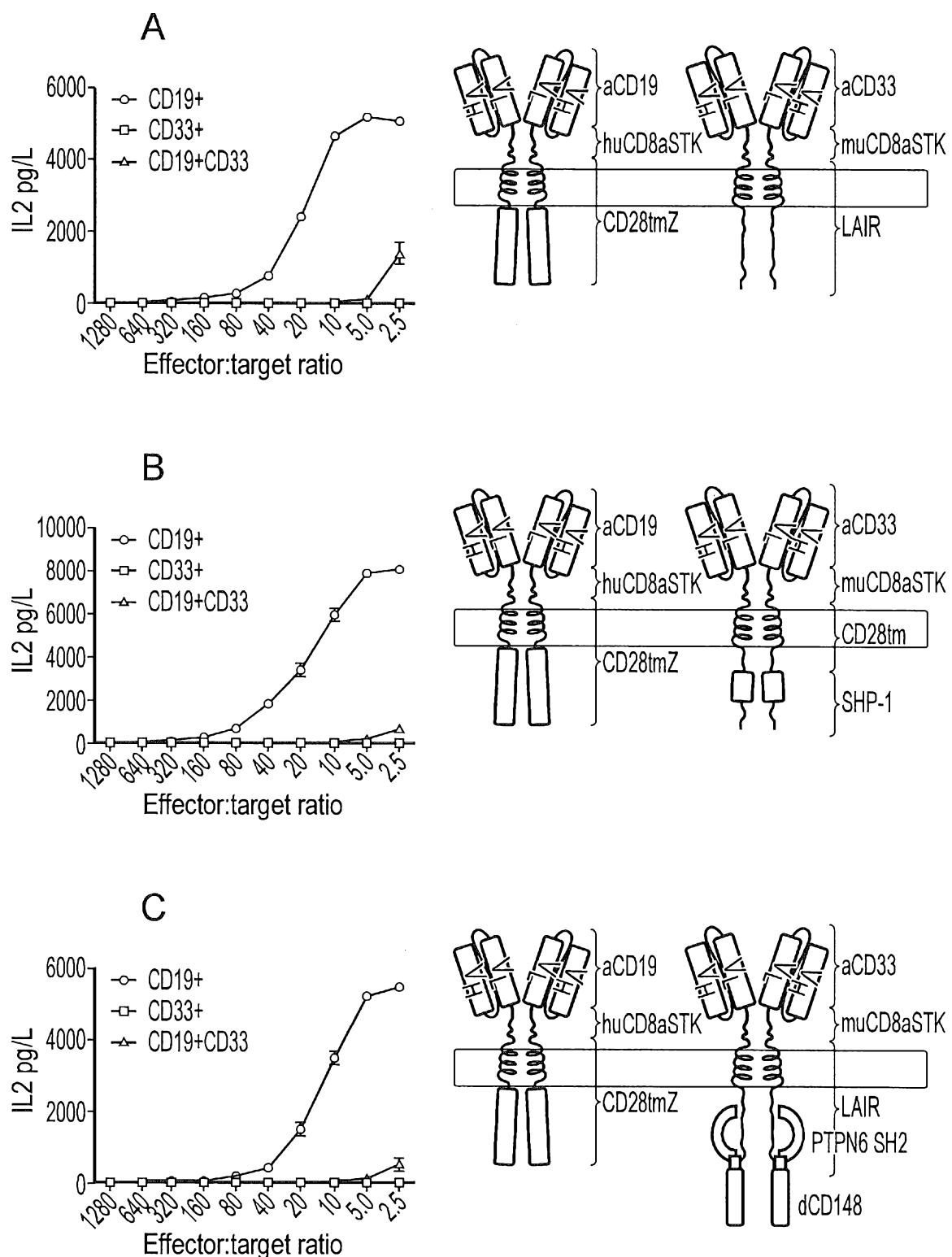


FIG. 21

22/32

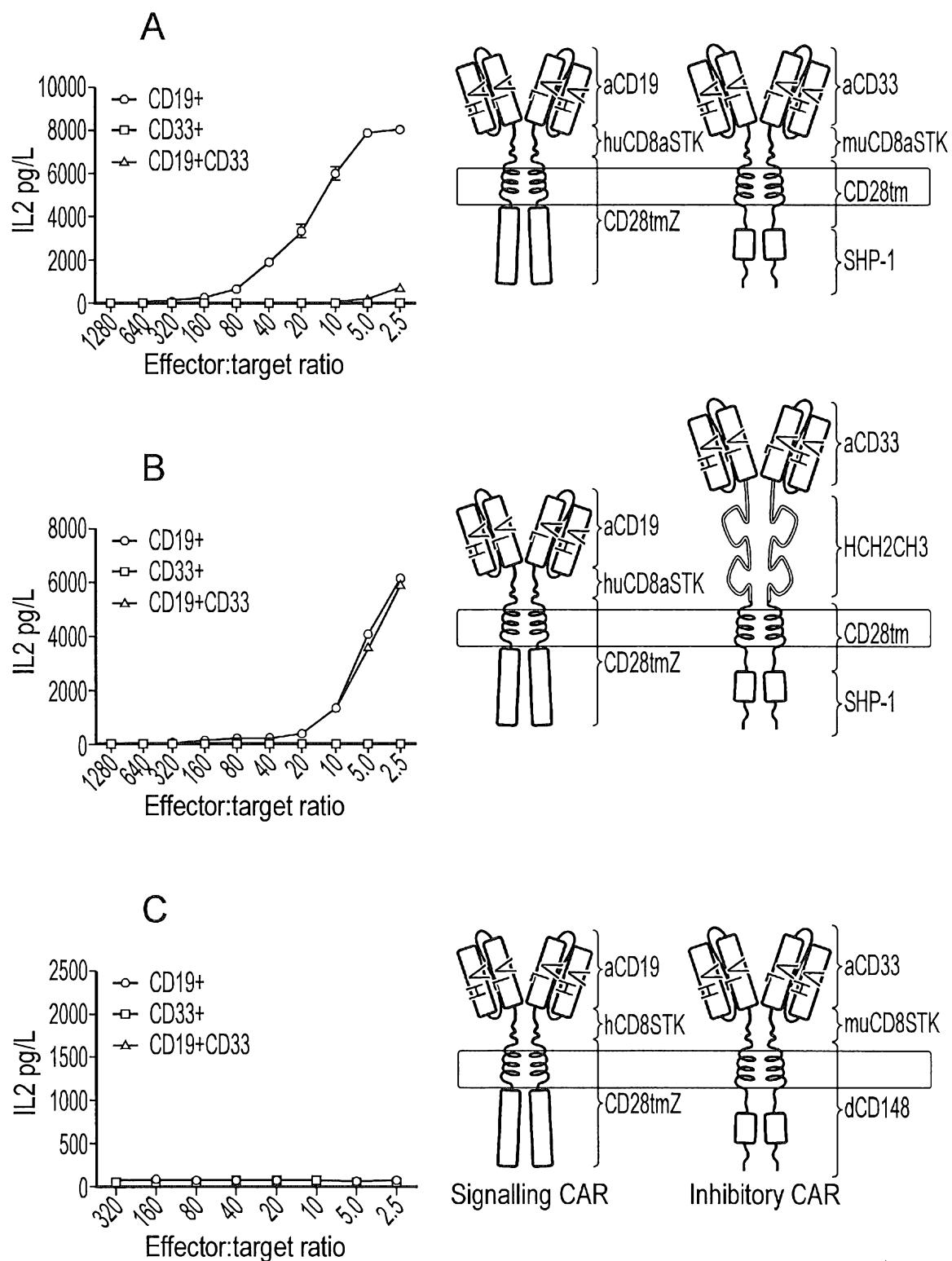


FIG. 22

23/32

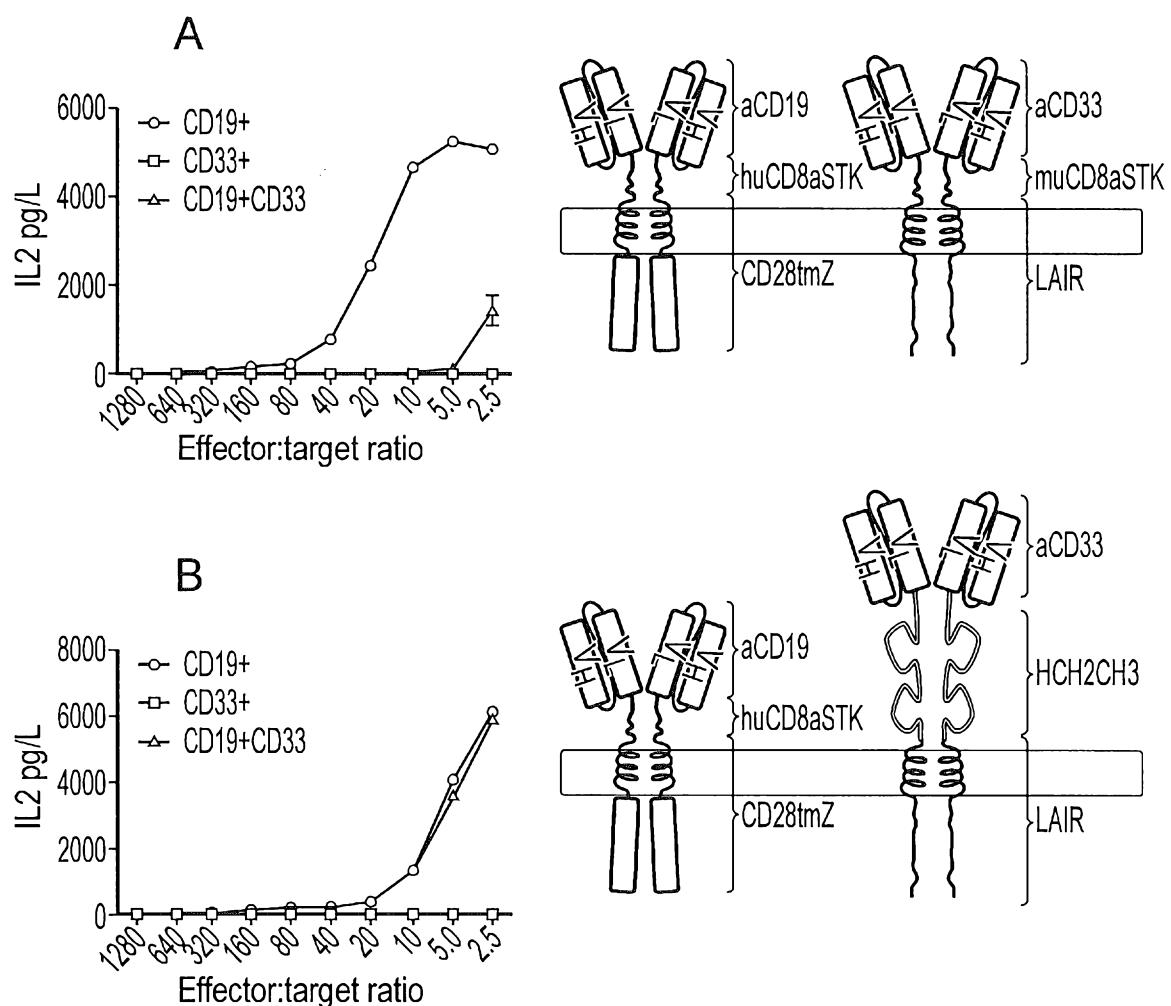


FIG. 23

24/32

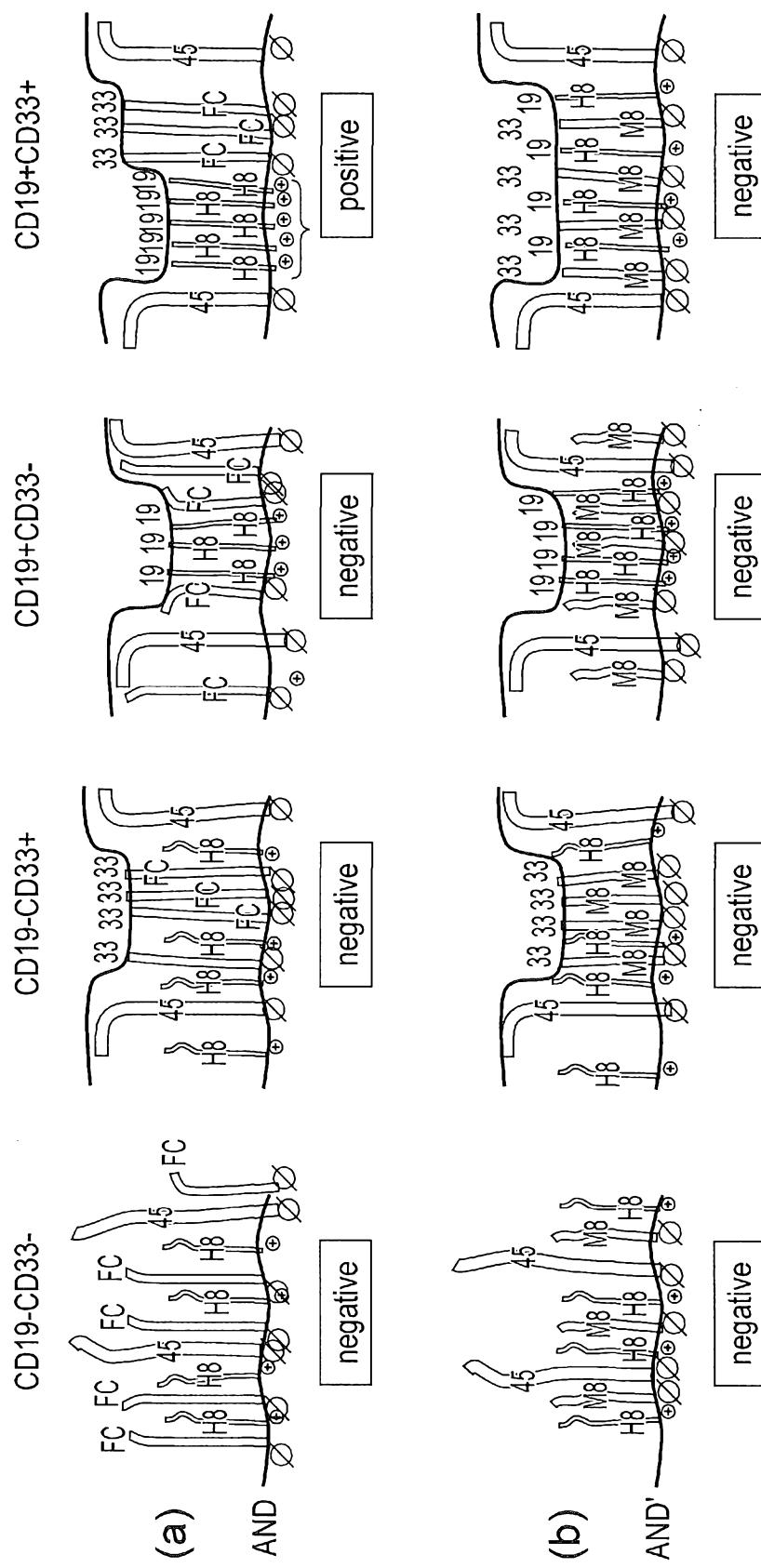


FIG. 24

25/32

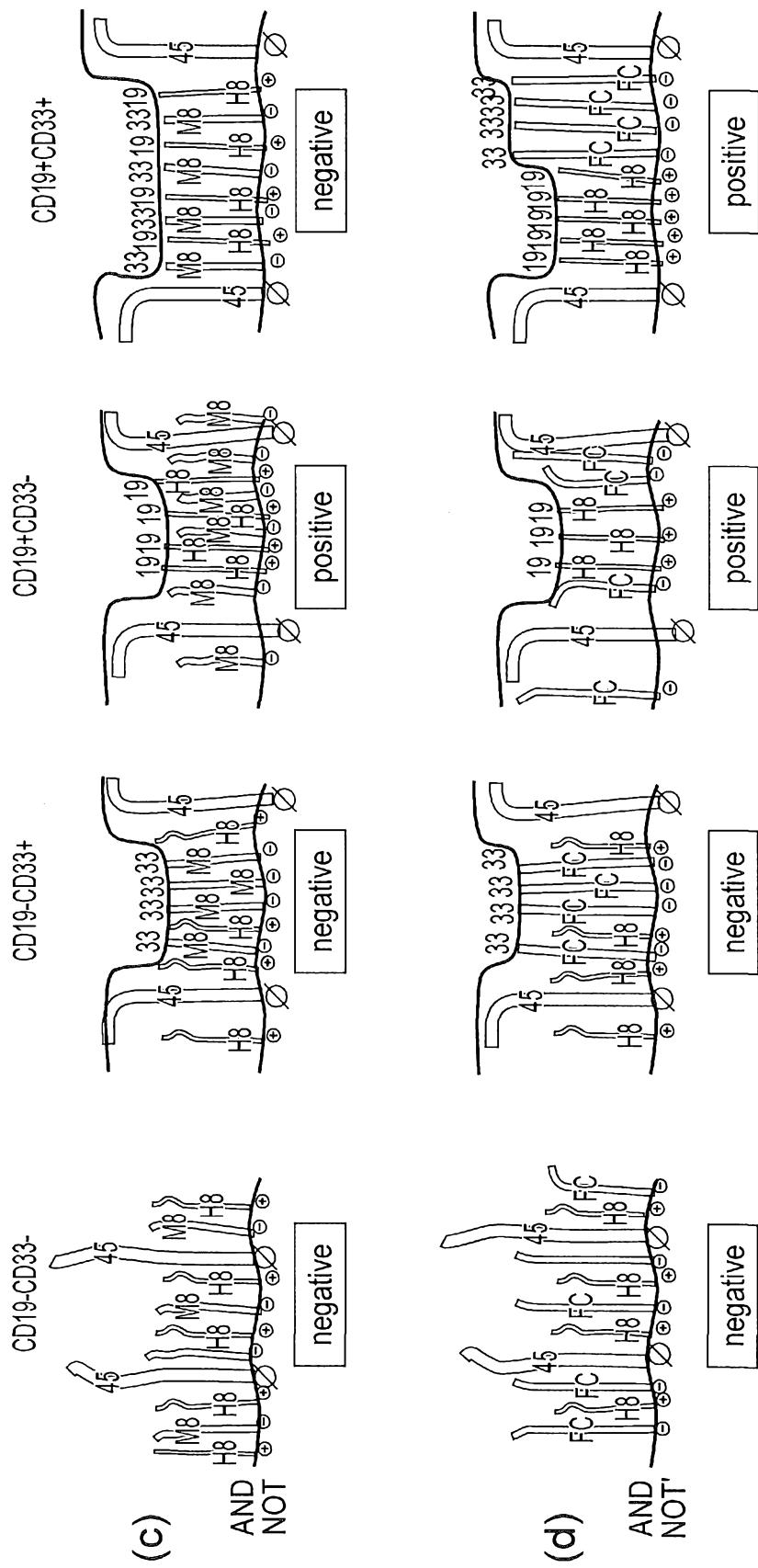


FIG. 24 (Continued)

26/32



FIG. 25

27/32

A

```

METDTLLLWVLLWVPGSTG|SVLHLVPINATSKDDSDVTEVMWQPALRRGRGLQAQGYGVRQDAGVY
LLYSQVLFQDVTFTMGQVVSREGQGRQETLFRCIRSMPSHPDRAYNSCYSAGVFHLHQGDILSVIIPR
ARAKLNLSPHGTFLGFVKL|SGGGSDPFTTPAPRPP|PAPTTIASOPLSLRPEACRPAAGGAVHTRGLDE
|||FWVLVVVGGVLACYSLLTVAFIIFWVRSKRSRLHSDYMNMTPRRPGPTRKHYQPYAPPRDFA
AYRSRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKIRVKFSRSADAPAYQQGQNQLYNELNLGR
REYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGDGLYQGLSTA
|TKDTYDALHMQALPPR

```

B

```

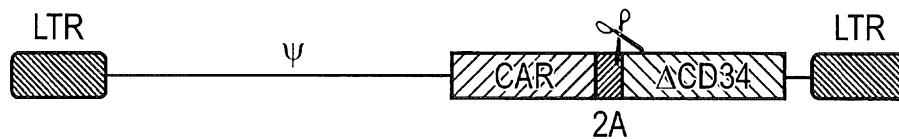
METDTLLLWVLLWVPGSTG|SVLHLVPINATSKDDSDVTEVMWQPALRRGRGLQAQGYGVRQDAGVY
LLYSQVLFQDVTFTMGQVVSREGQGRQETLFRCIRSMPSHPDRAYNSCYSAGVFHLHQGDILSVIIPR
ARAKLNLSPHGTFLGFVKL|SGGGSDPAEPKSPDKFHTCPPCPKDPKF|FWVLVVVGGVLACYSLLTVAF
|||FWVRSKRSRLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRDQRLPPDAHKPPGGGSFRTPI
QEEQADAHSTLAKIRVKFSRSADAPAYQQGQNQLYNELNLGRREYDVLDKRRGRDPEMGGKPRRKNP
|QEGLYNELQKDKMAEAYSEIGMKGERRRGKGDGLYQGLSTATKDTYDALHMQALPPR

```

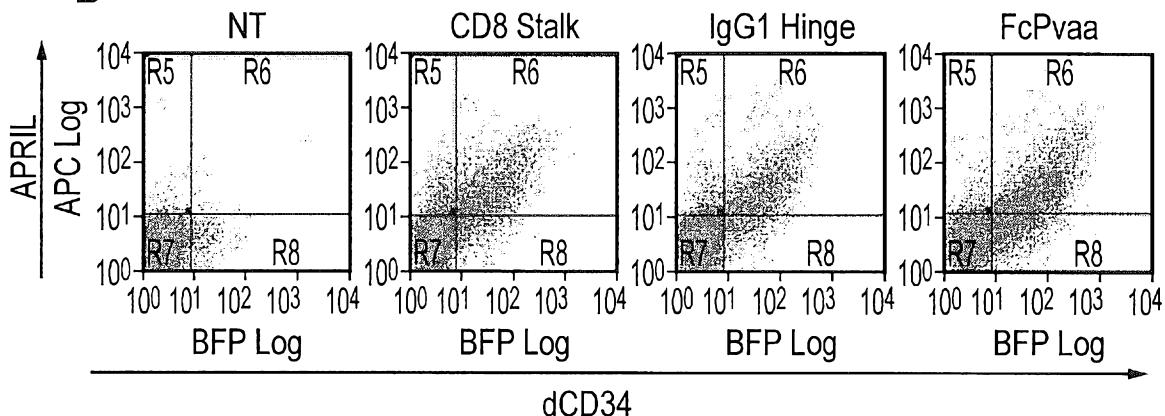
C

```

METDTLLLWVLLWVPGSTG|SVLHLVPINATSKDDSDVTEVMWQPALRRGRGLQAQGYGVRQDAGVY
LLYSQVLFQDVTFTMGQVVSREGQGRQETLFRCIRSMPSHPDRAYNSCYSAGVFHLHQGDILSVIIPR
ARAKLNLSPHGTFLGFVKL|SGGGSDPAEPKSPDKFHTCPPCPAPPVAGPSVFLFPPKPKDTLMVARTP
|EVTCVVVDVSHEDPEVKENWYVDGVEVHNAKTKPREEQYNSTYRWSVLTIVLHQDWLNGKEYKCKVSN
|KALPAPTEKTISKAKGOPREPOVYTLPPSRDELTKNOVSLTCLVKGFYPSDIAVEWESENOPENNYKT
|PPPVLDSDGSEFLYSLTVDKSPRNOOGNVECSVMHEALHNHYTOKSISLSPGKKDPKF|FWVLVVVGGV
|LACYSLLTVAFIIFWVRSKRSRLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRDQRLPPDAH
|KPPGGGSFRTPIQEEQADAHSTLAKIRVKFSRSADAPAYQQGQNQLYNELNLGRREYDVLDKRRGRD
|PEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGDGLYQGLSTATKDTYDALHMQALP
|PR


```

Signal Peptide	Efficient signal peptide
dAPRIL	Truncated APRIL
Spacer	Either hinge-CH2CH3 of human IgG1, human CD8 α stalk and human IgG1 hinge
TM and endodomain	Compound endodomain comprising of the CD28TM domain, CD28 endodomain and OX40 and CD3-Zeta endodomains


FIG. 26

28/32

A

B

C

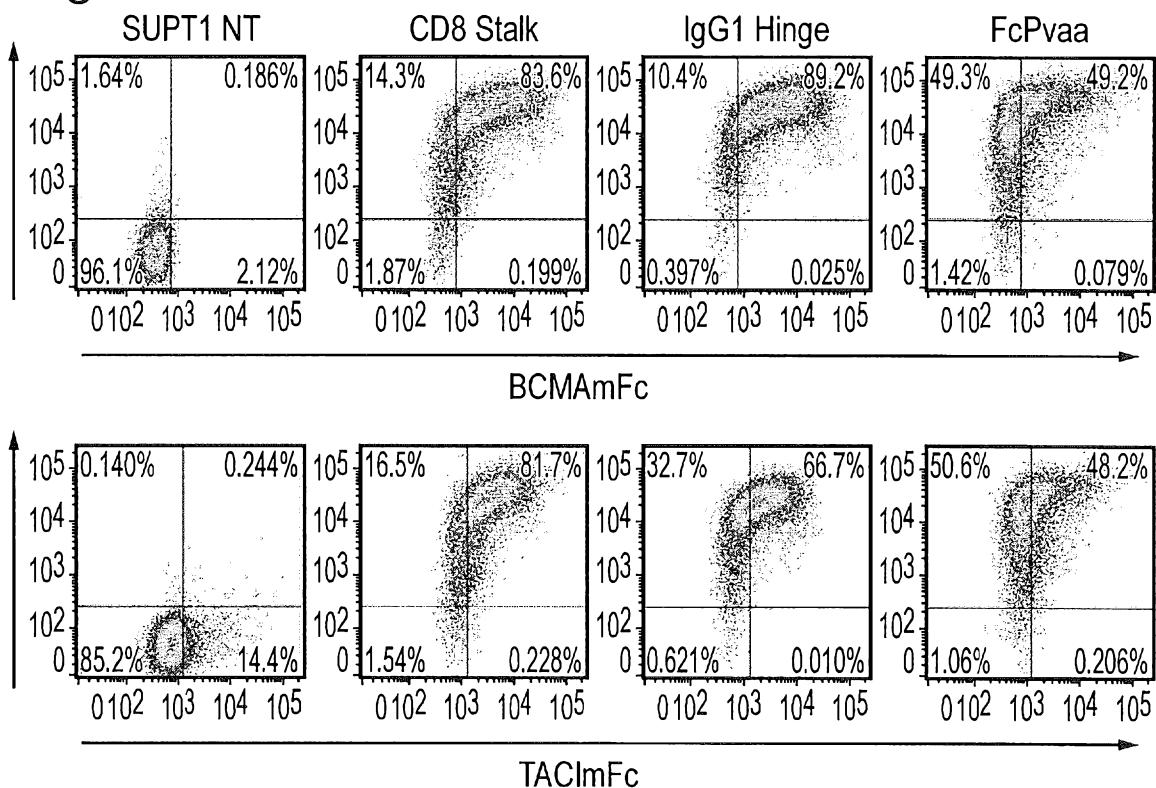


FIG. 27

29/32

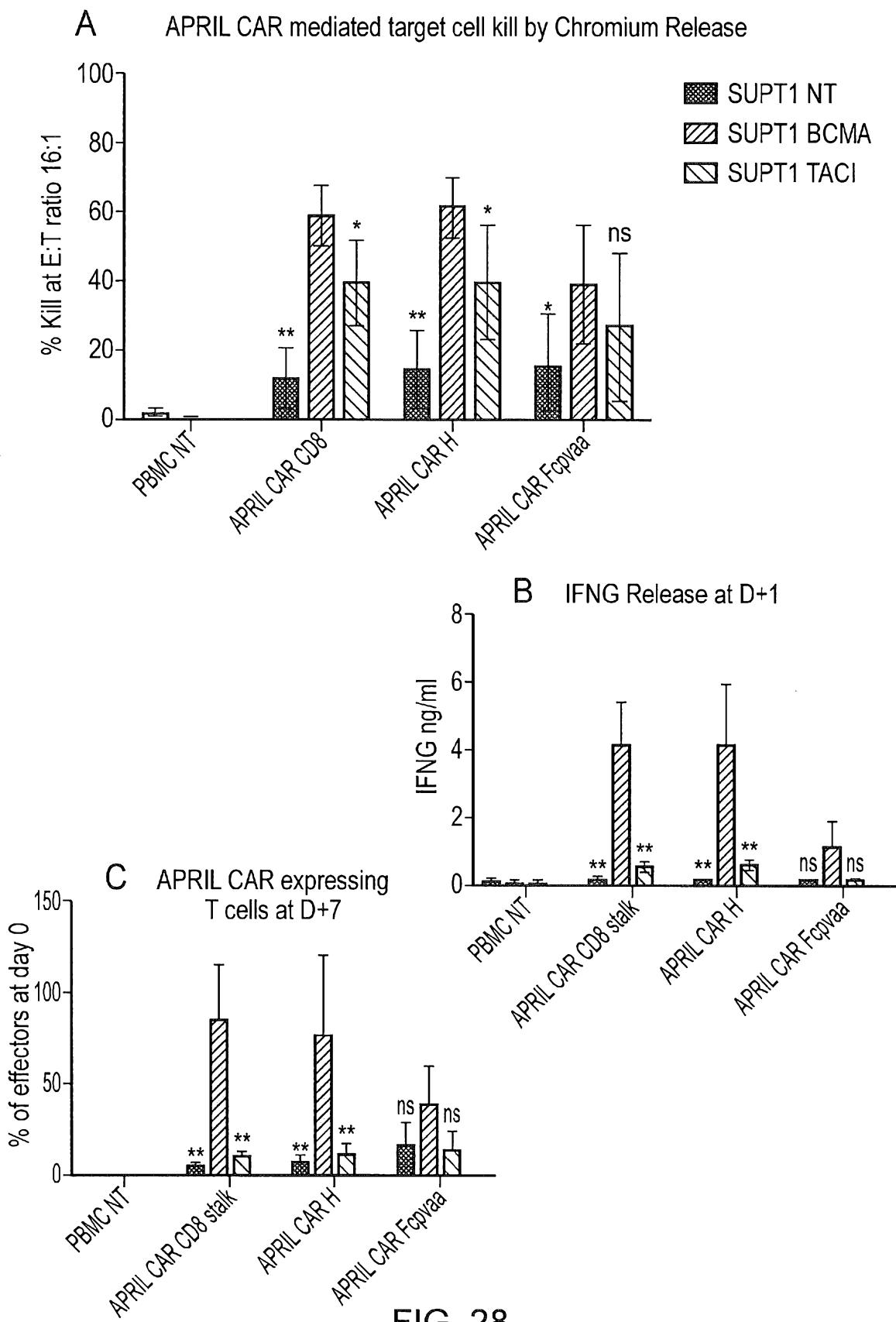


FIG. 28

30/32

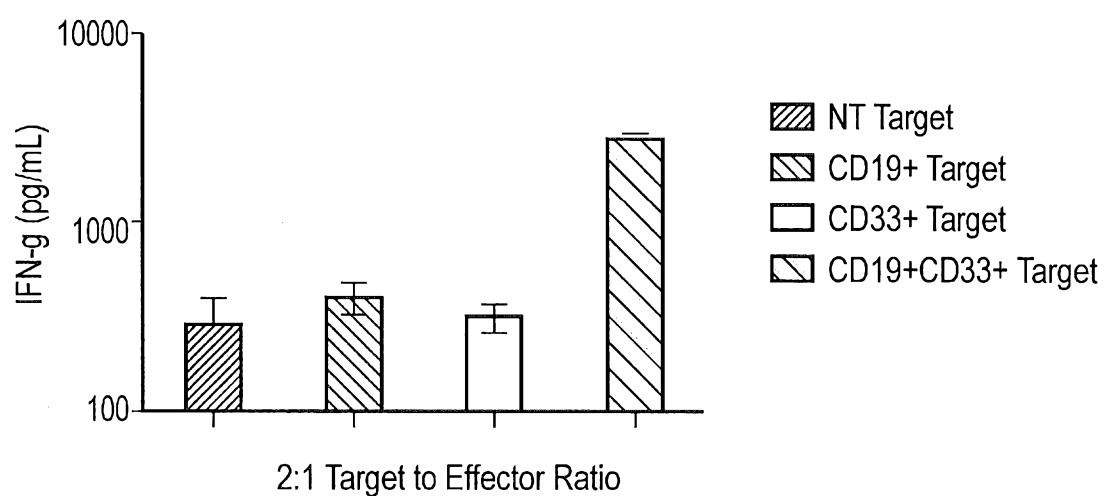


FIG. 29

31/32

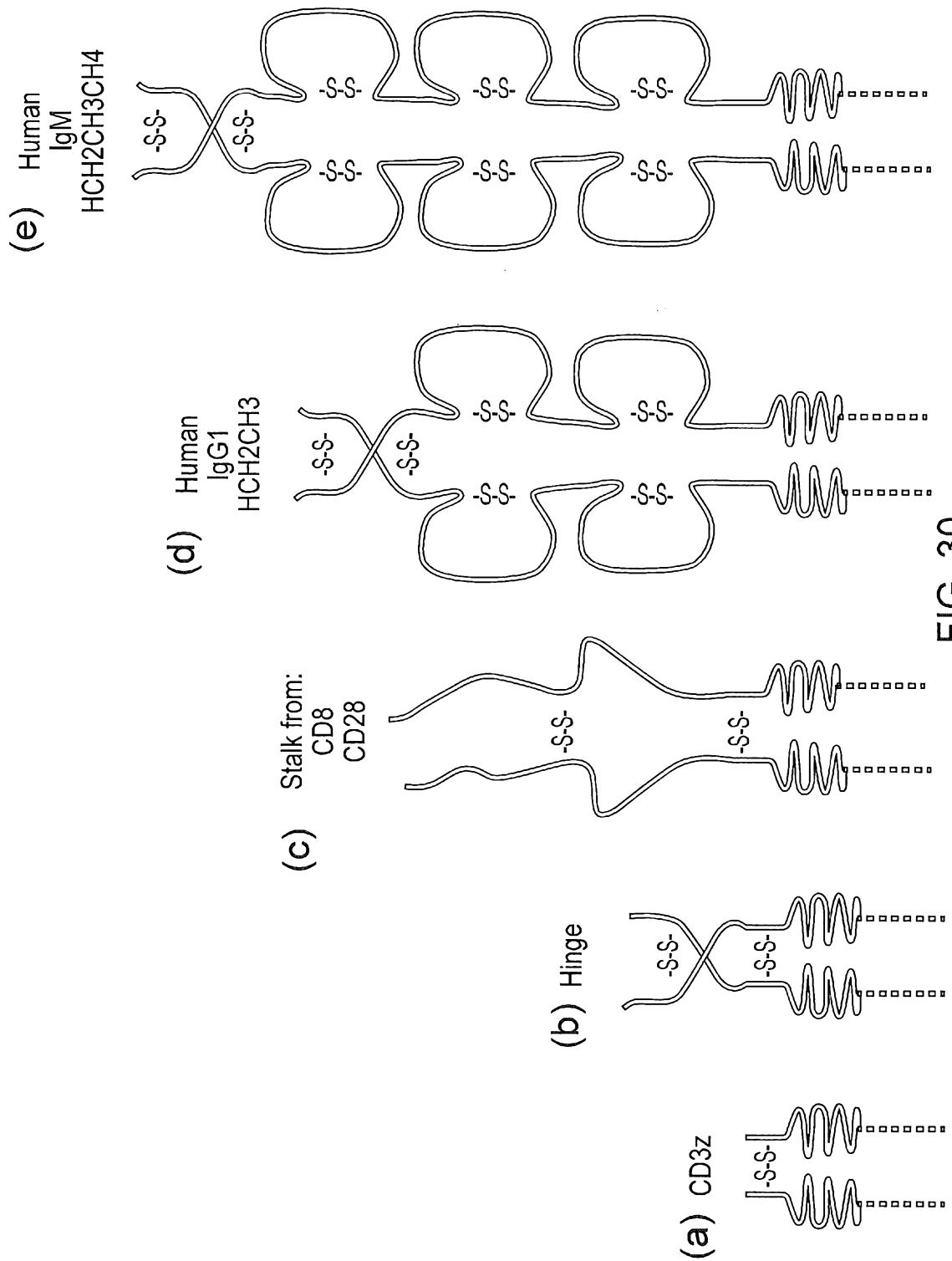


FIG. 30

32/32

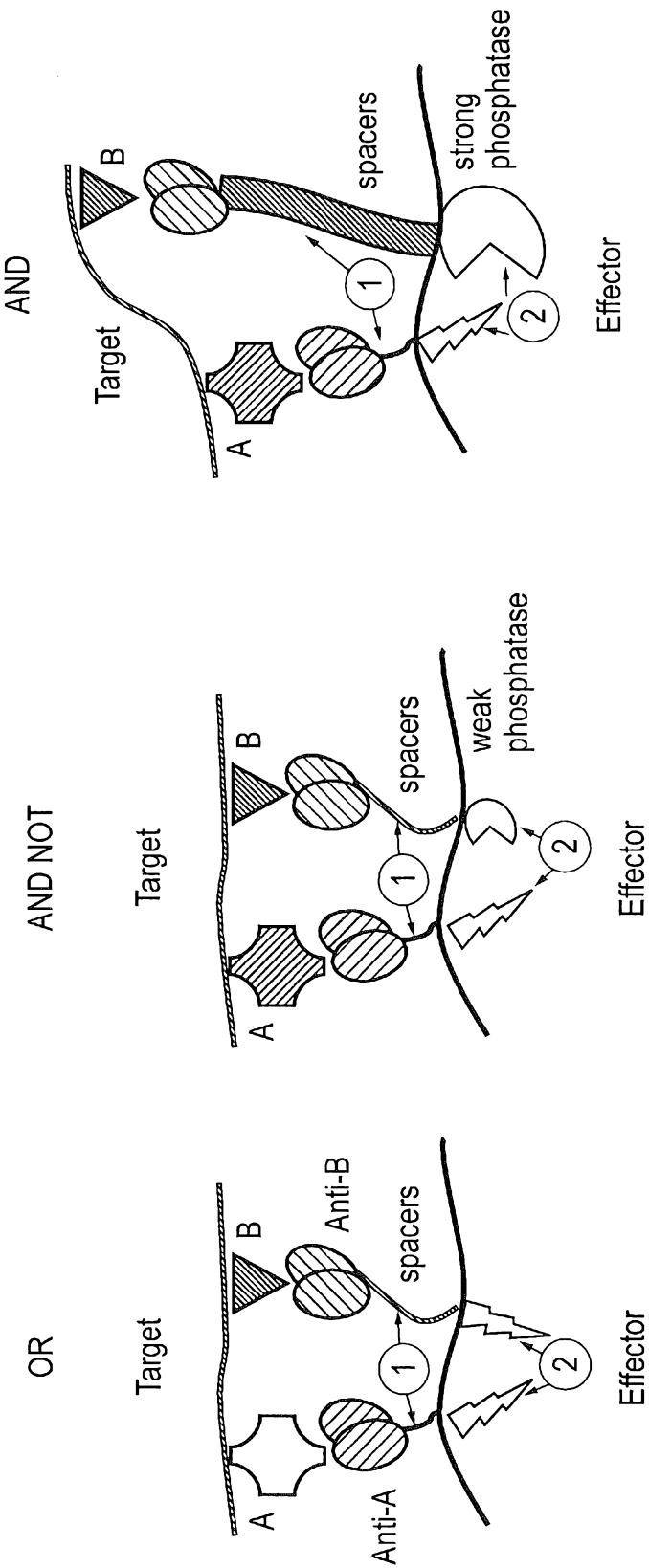


FIG. 31

pctgb2014053452-seq1.txt
SEQUENCE LISTING

<110> UCL Business PLC

<120> T cell

<130> P103294PCT1

<150> GB 1410934.2

<151> 2014-06-19

<160> 53

<170> PatentIn version 3.5

<210> 1

<211> 1129

<212> PRT

<213> Artificial sequence

<220>

<223> Chimeric antigen receptor (CAR)

<400> 1

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu
1 5 10 15

His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
20 25 30

Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45

Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr
50 55 60

Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro
65 70 75 80

Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95

Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110

Asn Thr Leu Pro Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125

Lys Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
130 135 140

Ser Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly
145 150 155 160

pctgb2014053452-seq1.txt

Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175

Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190

Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr
195 200 205

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser
210 215 220

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr
225 230 235 240

Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255

Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro
260 265 270

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
275 280 285

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
290 295 300

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp
305 310 315 320

Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335

Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg
340 345 350

Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
355 360 365

Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
370 375 380

Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro
385 390 395 400

Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala

pctgb2014053452-seq1.txt

405

410

415

Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430

Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
435 440 445

Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly
450 455 460

Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala
465 470 475 480

Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr Asp Ala
485 490 495

Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510

Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr
515 520 525

Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
530 535 540

Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe
545 550 555 560

Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser Leu
565 570 575

Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr
580 585 590

Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly
595 600 605

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly
610 615 620

Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Leu
625 630 635 640

Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe
645 650 655

pctgb2014053452-seq1.txt

Thr Leu Ser Asn Tyr Gly Met His Trp Ile Arg Gln Ala Pro Gly Lys
660 665 670

Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685

Tyr Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala
690 695 700

Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
705 710 715 720

Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735

Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro
740 745 750

Ala Glu Pro Lys Ser Pro Asp Lys Thr His Thr Cys Pro Pro Cys Pro
755 760 765

Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
770 775 780

Lys Asp Thr Leu Met Ile Ala Arg Thr Pro Glu Val Thr Cys Val Val
785 790 795 800

Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val
805 810 815

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
820 825 830

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
835 840 845

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala
850 855 860

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
865 870 875 880

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
885 890 895

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
900 905 910

pctgb2014053452-seq1.txt

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
915 920 925

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
930 935 940

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe
945 950 955 960

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
965 970 975

Ser Leu Ser Leu Ser Pro Gly Lys Lys Asp Pro Lys Phe Trp Val Leu
980 985 990

Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val Thr Val
995 1000 1005

Ala Phe Ile Ile Phe Trp Val Arg Ser Arg Val Lys Phe Ser Arg
1010 1015 1020

Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr
1025 1030 1035

Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp
1040 1045 1050

Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg
1055 1060 1065

Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys
1070 1075 1080

Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg
1085 1090 1095

Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
1100 1105 1110

Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro
1115 1120 1125

Arg

<210> 2
<211> 1350

pctgb2014053452-seq1.txt

<212> PRT
<213> Artificial sequence

<220>
<223> Chimeric antigen receptor (CAR)

<400> 2

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu
1 5 10 15

His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
20 25 30

Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45

Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr
50 55 60

Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro
65 70 75 80

Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95

Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110

Asn Thr Leu Pro Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125

Lys Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
130 135 140

Ser Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly
145 150 155 160

Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175

Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190

Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr
195 200 205

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser
210 215 220

pctgb2014053452-seq1.txt

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr
225 230 235 240

Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255

Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro
260 265 270

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
275 280 285

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
290 295 300

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp
305 310 315 320

Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335

Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg
340 345 350

Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
355 360 365

Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
370 375 380

Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro
385 390 395 400

Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
405 410 415

Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430

Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
435 440 445

Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly
450 455 460

Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala
465 470 475 480

pctgb2014053452-seq1.txt

Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr Asp Ala
485 490 495

Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510

Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr
515 520 525

Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
530 535 540

Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe
545 550 555 560

Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser Leu
565 570 575

Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr
580 585 590

Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly
595 600 605

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly
610 615 620

Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Leu
625 630 635 640

Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe
645 650 655

Thr Leu Ser Asn Tyr Gly Met His Trp Ile Arg Gln Ala Pro Gly Lys
660 665 670

Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685

Tyr Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala
690 695 700

Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
705 710 715 720

Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
Page 8

pctgb2014053452-seq1.txt

725

730

735

Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro
 740 745 750

Ala Glu Pro Lys Ser Pro Asp Lys Thr His Thr Cys Pro Pro Cys Pro
 755 760 765

Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
 770 775 780

Lys Asp Thr Leu Met Ile Ala Arg Thr Pro Glu Val Thr Cys Val Val
 785 790 795 800

Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val
 805 810 815

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
 820 825 830

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
 835 840 845

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala
 850 855 860

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
 865 870 875 880

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
 885 890 895

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
 900 905 910

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
 915 920 925

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
 930 935 940

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe
 945 950 955 960

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
 965 970 975

pctgb2014053452-seq1.txt

Ser Leu Ser Leu Ser Pro Gly Lys Lys Asp Pro Lys Ala Val Phe Gly
980 985 990

Cys Ile Phe Gly Ala Leu Val Ile Val Thr Val Gly Gly Phe Ile Phe
995 1000 1005

Trp Arg Lys Lys Arg Lys Asp Ala Lys Asn Asn Glu Val Ser Phe
1010 1015 1020

Ser Gln Ile Lys Pro Lys Lys Ser Lys Leu Ile Arg Val Glu Asn
1025 1030 1035

Phe Glu Ala Tyr Phe Lys Lys Gln Gln Ala Asp Ser Asn Cys Gly
1040 1045 1050

Phe Ala Glu Glu Tyr Glu Asp Leu Lys Leu Val Gly Ile Ser Gln
1055 1060 1065

Pro Lys Tyr Ala Ala Glu Leu Ala Glu Asn Arg Gly Lys Asn Arg
1070 1075 1080

Tyr Asn Asn Val Leu Pro Tyr Asp Ile Ser Arg Val Lys Leu Ser
1085 1090 1095

Val Gln Thr His Ser Thr Asp Asp Tyr Ile Asn Ala Asn Tyr Met
1100 1105 1110

Pro Gly Tyr His Ser Lys Lys Asp Phe Ile Ala Thr Gln Gly Pro
1115 1120 1125

Leu Pro Asn Thr Leu Lys Asp Phe Trp Arg Met Val Trp Glu Lys
1130 1135 1140

Asn Val Tyr Ala Ile Ile Met Leu Thr Lys Cys Val Glu Gln Gly
1145 1150 1155

Arg Thr Lys Cys Glu Glu Tyr Trp Pro Ser Lys Gln Ala Gln Asp
1160 1165 1170

Tyr Gly Asp Ile Thr Val Ala Met Thr Ser Glu Ile Val Leu Pro
1175 1180 1185

Glu Trp Thr Ile Arg Asp Phe Thr Val Lys Asn Ile Gln Thr Ser
1190 1195 1200

Glu Ser His Pro Leu Arg Gln Phe His Phe Thr Ser Trp Pro Asp
1205 1210 1215

pctgb2014053452-seq1.txt

His Gly Val Pro Asp Thr Thr Asp Leu Leu Ile Asn Phe Arg Tyr
1220 1225 1230

Leu Val Arg Asp Tyr Met Lys Gln Ser Pro Pro Glu Ser Pro Ile
1235 1240 1245

Leu Val His Cys Ser Ala Gly Val Gly Arg Thr Gly Thr Phe Ile
1250 1255 1260

Ala Ile Asp Arg Leu Ile Tyr Gln Ile Glu Asn Glu Asn Thr Val
1265 1270 1275

Asp Val Tyr Gly Ile Val Tyr Asp Leu Arg Met His Arg Pro Leu
1280 1285 1290

Met Val Gln Thr Glu Asp Gln Tyr Val Phe Leu Asn Gln Cys Val
1295 1300 1305

Leu Asp Ile Val Arg Ser Gln Lys Asp Ser Lys Val Asp Leu Ile
1310 1315 1320

Tyr Gln Asn Thr Thr Ala Met Thr Ile Tyr Glu Asn Leu Ala Pro
1325 1330 1335

Val Thr Thr Phe Gly Lys Thr Asn Gly Tyr Ile Ala
1340 1345 1350

<210> 3
<211> 1717
<212> PRT
<213> Artificial sequence

<220>
<223> Chimeric antigen receptor (CAR)

<400> 3

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu
1 5 10 15

His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
20 25 30

Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45

Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr
50 55 60

pctgb2014053452-seq1.txt

Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro
65 70 75 80

Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95

Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110

Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125

Lys Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
130 135 140

Ser Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly
145 150 155 160

Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175

Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190

Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr
195 200 205

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser
210 215 220

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr
225 230 235 240

Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255

Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro
260 265 270

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
275 280 285

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
290 295 300

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp
305 310 315 320

pctgb2014053452-seq1.txt

Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335

Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg
340 345 350

Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
355 360 365

Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
370 375 380

Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro
385 390 395 400

Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
405 410 415

Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430

Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
435 440 445

Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly
450 455 460

Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala
465 470 475 480

Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr Asp Ala
485 490 495

Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510

Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr
515 520 525

Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
530 535 540

Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe
545 550 555 560

Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser Leu
565 570 575

pctgb2014053452-seq1.txt

Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr
580 585 590

Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly
595 600 605

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly
610 615 620

Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu
625 630 635 640

Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe
645 650 655

Thr Leu Ser Asn Tyr Gly Met His Trp Ile Arg Gln Ala Pro Gly Lys
660 665 670

Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685

Tyr Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala
690 695 700

Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
705 710 715 720

Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735

Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro
740 745 750

Ala Glu Pro Lys Ser Pro Asp Lys Thr His Thr Cys Pro Pro Cys Pro
755 760 765

Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
770 775 780

Lys Asp Thr Leu Met Ile Ala Arg Thr Pro Glu Val Thr Cys Val Val
785 790 795 800

Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val
805 810 815

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
Page 14

pctgb2014053452-seq1.txt
820 825 830

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
835 840 845

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala
850 855 860

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
865 870 875 880

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
885 890 895

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
900 905 910

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
915 920 925

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
930 935 940

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe
945 950 955 960

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
965 970 975

Ser Leu Ser Leu Ser Pro Gly Lys Lys Asp Pro Lys Ala Leu Ile Ala
980 985 990

Phe Leu Ala Phe Leu Ile Ile Val Thr Ser Ile Ala Leu Leu Val Val
995 1000 1005

Leu Tyr Lys Ile Tyr Asp Leu His Lys Lys Arg Ser Cys Asn Leu
1010 1015 1020

Asp Glu Gln Gln Glu Leu Val Glu Arg Asp Asp Glu Lys Gln Leu
1025 1030 1035

Met Asn Val Glu Pro Ile His Ala Asp Ile Leu Leu Glu Thr Tyr
1040 1045 1050

Lys Arg Lys Ile Ala Asp Glu Gly Arg Leu Phe Leu Ala Glu Phe
1055 1060 1065

pctgb2014053452-seq1.txt

Gln Ser Ile Pro Arg Val Phe Ser Lys Phe Pro Ile Lys Glu Ala
1070 1075 1080

Arg Lys Pro Phe Asn Gln Asn Lys Asn Arg Tyr Val Asp Ile Leu
1085 1090 1095

Pro Tyr Asp Tyr Asn Arg Val Glu Leu Ser Glu Ile Asn Gly Asp
1100 1105 1110

Ala Gly Ser Asn Tyr Ile Asn Ala Ser Tyr Ile Asp Gly Phe Lys
1115 1120 1125

Glu Pro Arg Lys Tyr Ile Ala Ala Gln Gly Pro Arg Asp Glu Thr
1130 1135 1140

Val Asp Asp Phe Trp Arg Met Ile Trp Glu Gln Lys Ala Thr Val
1145 1150 1155

Ile Val Met Val Thr Arg Cys Glu Glu Gly Asn Arg Asn Lys Cys
1160 1165 1170

Ala Glu Tyr Trp Pro Ser Met Glu Glu Gly Thr Arg Ala Phe Gly
1175 1180 1185

Asp Val Val Val Lys Ile Asn Gln His Lys Arg Cys Pro Asp Tyr
1190 1195 1200

Ile Ile Gln Lys Leu Asn Ile Val Asn Lys Lys Glu Lys Ala Thr
1205 1210 1215

Gly Arg Glu Val Thr His Ile Gln Phe Thr Ser Trp Pro Asp His
1220 1225 1230

Gly Val Pro Glu Asp Pro His Leu Leu Leu Lys Leu Arg Arg Arg
1235 1240 1245

Val Asn Ala Phe Ser Asn Phe Phe Ser Gly Pro Ile Val Val His
1250 1255 1260

Cys Ser Ala Gly Val Gly Arg Thr Gly Thr Tyr Ile Gly Ile Asp
1265 1270 1275

Ala Met Leu Glu Gly Leu Glu Ala Glu Asn Lys Val Asp Val Tyr
1280 1285 1290

Gly Tyr Val Val Lys Leu Arg Arg Gln Arg Cys Leu Met Val Gln
1295 1300 1305

pctgb2014053452-seq1.txt

Val Glu Ala Gln Tyr Ile Leu Ile His Gln Ala Leu Val Glu Tyr
1310 1315 1320

Asn Gln Phe Gly Glu Thr Glu Val Asn Leu Ser Glu Leu His Pro
1325 1330 1335

Tyr Leu His Asn Met Lys Lys Arg Asp Pro Pro Ser Glu Pro Ser
1340 1345 1350

Pro Leu Glu Ala Glu Phe Gln Arg Leu Pro Ser Tyr Arg Ser Trp
1355 1360 1365

Arg Thr Gln His Ile Gly Asn Gln Glu Glu Asn Lys Ser Lys Asn
1370 1375 1380

Arg Asn Ser Asn Val Ile Pro Tyr Asp Tyr Asn Arg Val Pro Leu
1385 1390 1395

Lys His Glu Leu Glu Met Ser Lys Glu Ser Glu His Asp Ser Asp
1400 1405 1410

Glu Ser Ser Asp Asp Asp Ser Asp Ser Glu Glu Pro Ser Lys Tyr
1415 1420 1425

Ile Asn Ala Ser Phe Ile Met Ser Tyr Trp Lys Pro Glu Val Met
1430 1435 1440

Ile Ala Ala Gln Gly Pro Leu Lys Glu Thr Ile Gly Asp Phe Trp
1445 1450 1455

Gln Met Ile Phe Gln Arg Lys Val Lys Val Ile Val Met Leu Thr
1460 1465 1470

Glu Leu Lys His Gly Asp Gln Glu Ile Cys Ala Gln Tyr Trp Gly
1475 1480 1485

Glu Gly Lys Gln Thr Tyr Gly Asp Ile Glu Val Asp Leu Lys Asp
1490 1495 1500

Thr Asp Lys Ser Ser Thr Tyr Thr Leu Arg Val Phe Glu Leu Arg
1505 1510 1515

His Ser Lys Arg Lys Asp Ser Arg Thr Val Tyr Gln Tyr Gln Tyr
1520 1525 1530

Thr Asn Trp Ser Val Glu Gln Leu Pro Ala Glu Pro Lys Glu Leu
1535 1540 1545

pctgb2014053452-seq1.txt

Ile Ser Met Ile Gln Val Val Lys Gln Lys Leu Pro Gln Lys Asn
1550 1555 1560

Ser Ser Glu Gly Asn Lys His His Lys Ser Thr Pro Leu Leu Ile
1565 1570 1575

His Cys Arg Asp Gly Ser Gln Gln Thr Gly Ile Phe Cys Ala Leu
1580 1585 1590

Leu Asn Leu Leu Glu Ser Ala Glu Thr Glu Glu Val Val Asp Ile
1595 1600 1605

Phe Gln Val Val Lys Ala Leu Arg Lys Ala Arg Pro Gly Met Val
1610 1615 1620

Ser Thr Phe Glu Gln Tyr Gln Phe Leu Tyr Asp Val Ile Ala Ser
1625 1630 1635

Thr Tyr Pro Ala Gln Asn Gly Gln Val Lys Lys Asn Asn His Gln
1640 1645 1650

Glu Asp Lys Ile Glu Phe Asp Asn Glu Val Asp Lys Val Lys Gln
1655 1660 1665

Asp Ala Asn Cys Val Asn Pro Leu Gly Ala Pro Glu Lys Leu Pro
1670 1675 1680

Glu Ala Lys Glu Gln Ala Glu Gly Ser Glu Pro Thr Ser Gly Thr
1685 1690 1695

Glu Gly Pro Glu His Ser Val Asn Gly Pro Ala Ser Pro Ala Leu
1700 1705 1710

Asn Gln Gly Ser
1715

<210> 4
<211> 1114
<212> PRT
<213> Artificial sequence

<220>
<223> Chimeric antigen receptor (CAR)

<400> 4

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu
1 5 10 15

pctgb2014053452-seq1.txt

His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
20 25 30

Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45

Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr
50 55 60

Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro
65 70 75 80

Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95

Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110

Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125

Lys Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
130 135 140

Ser Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly
145 150 155 160

Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175

Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190

Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr
195 200 205

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser
210 215 220

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr
225 230 235 240

Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Ser Tyr Ala
245 250 255

Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro
260 265 270

pctgb2014053452-seq1.txt

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
275 280 285

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
290 295 300

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp
305 310 315 320

Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335

Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg
340 345 350

Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
355 360 365

Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
370 375 380

Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro
385 390 395 400

Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
405 410 415

Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430

Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
435 440 445

Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly
450 455 460

Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala
465 470 475 480

Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr Asp Ala
485 490 495

Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510

Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr
Page 20

pctgb2014053452-seq1.txt
515 520 525

Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
530 535 540

Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe
545 550 555 560

Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser Leu
565 570 575

Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr
580 585 590

Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly
595 600 605

Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly
610 615 620

Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Leu
625 630 635 640

Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe
645 650 655

Thr Leu Ser Asn Tyr Gly Met His Trp Ile Arg Gln Ala Pro Gly Lys
660 665 670

Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685

Tyr Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala
690 695 700

Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
705 710 715 720

Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735

Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro
740 745 750

Ala Thr Thr Thr Lys Pro Val Leu Arg Thr Pro Ser Pro Val His Pro
755 760 765

pctgb2014053452-seq1.txt

Thr Gly Thr Ser Gln Pro Gln Arg Pro Glu Asp Cys Arg Pro Arg Gly
770 775 780

Ser Val Lys Gly Thr Gly Leu Asp Phe Ala Cys Asp Ile Tyr Trp Ala
785 790 795 800

Pro Leu Ala Gly Ile Cys Val Ala Leu Leu Leu Ser Leu Ile Ile Thr
805 810 815

Leu Ile Cys Tyr His Arg Ser Arg Lys Arg Val Cys Lys Ser Gly Gly
820 825 830

Gly Ser Phe Trp Glu Glu Phe Glu Ser Leu Gln Lys Gln Glu Val Lys
835 840 845

Asn Leu His Gln Arg Leu Glu Gly Gln Arg Pro Glu Asn Lys Gly Lys
850 855 860

Asn Arg Tyr Lys Asn Ile Leu Pro Phe Asp His Ser Arg Val Ile Leu
865 870 875 880

Gln Gly Arg Asp Ser Asn Ile Pro Gly Ser Asp Tyr Ile Asn Ala Asn
885 890 895

Tyr Ile Lys Asn Gln Leu Leu Gly Pro Asp Glu Asn Ala Lys Thr Tyr
900 905 910

Ile Ala Ser Gln Gly Cys Leu Glu Ala Thr Val Asn Asp Phe Trp Gln
915 920 925

Met Ala Trp Gln Glu Asn Ser Arg Val Ile Val Met Thr Thr Arg Glu
930 935 940

Val Glu Lys Gly Arg Asn Lys Cys Val Pro Tyr Trp Pro Glu Val Gly
945 950 955 960

Met Gln Arg Ala Tyr Gly Pro Tyr Ser Val Thr Asn Cys Gly Glu His
965 970 975

Asp Thr Thr Glu Tyr Lys Leu Arg Thr Leu Gln Val Ser Pro Leu Asp
980 985 990

Asn Gly Asp Leu Ile Arg Glu Ile Trp His Tyr Gln Tyr Leu Ser Trp
995 1000 1005

Pro Asp His Gly Val Pro Ser Glu Pro Gly Gly Val Leu Ser Phe
1010 1015 1020

pctgb2014053452-seq1.txt

Leu Asp Gln Ile Asn Gln Arg Gln Glu Ser Leu Pro His Ala Gly
1025 1030 1035

Pro Ile Ile Val His Cys Ser Ala Gly Ile Gly Arg Thr Gly Thr
1040 1045 1050

Ile Ile Val Ile Asp Met Leu Met Glu Asn Ile Ser Thr Lys Gly
1055 1060 1065

Leu Asp Cys Asp Ile Asp Ile Gln Lys Thr Ile Gln Met Val Arg
1070 1075 1080

Ala Gln Arg Ser Gly Met Val Gln Thr Glu Ala Gln Tyr Lys Phe
1085 1090 1095

Ile Tyr Val Ala Ile Ala Gln Phe Ile Glu Thr Thr Lys Lys Lys
1100 1105 1110

Leu

<210> 5
<211> 918
<212> PRT
<213> Artificial sequence

<220>
<223> Chimeric antigen receptor (CAR)

<400> 5

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu
1 5 10 15

His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
20 25 30

Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45

Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr
50 55 60

Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro
65 70 75 80

Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95

pctgb2014053452-seq1.txt

Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110

Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125

Lys Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
130 135 140

Ser Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly
145 150 155 160

Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175

Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190

Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr
195 200 205

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser
210 215 220

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr
225 230 235 240

Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255

Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro
260 265 270

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
275 280 285

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
290 295 300

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp
305 310 315 320

Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335

Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg
340 345 350

pctgb2014053452-seq1.txt

Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
355 360 365

Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
370 375 380

Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro
385 390 395 400

Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
405 410 415

Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430

Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
435 440 445

Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly
450 455 460

Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala
465 470 475 480

Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr Asp Ala
485 490 495

Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510

Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr
515 520 525

Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
530 535 540

Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe
545 550 555 560

Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser Leu
565 570 575

Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr
580 585 590

Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly
595 600 605

pctgb2014053452-seq1.txt

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly
610 615 620

Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu
625 630 635 640

Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe
645 650 655

Thr Leu Ser Asn Tyr Gly Met His Trp Ile Arg Gln Ala Pro Gly Lys
660 665 670

Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685

Tyr Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala
690 695 700

Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
705 710 715 720

Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735

Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro
740 745 750

Ala Thr Thr Thr Lys Pro Val Leu Arg Thr Pro Ser Pro Val His Pro
755 760 765

Thr Gly Thr Ser Gln Pro Gln Arg Pro Glu Asp Cys Arg Pro Arg Gly
770 775 780

Ser Val Lys Gly Thr Gly Leu Asp Phe Ala Cys Asp Ile Leu Ile Gly
785 790 795 800

Val Ser Val Val Phe Leu Phe Cys Leu Leu Leu Val Leu Phe Cys
805 810 815

Leu His Arg Gln Asn Gln Ile Lys Gln Gly Pro Pro Arg Ser Lys Asp
820 825 830

Glu Glu Gln Lys Pro Gln Gln Arg Pro Asp Leu Ala Val Asp Val Leu
835 840 845

Glu Arg Thr Ala Asp Lys Ala Thr Val Asn Gly Leu Pro Glu Lys Asp
Page 26

850 855 pctgb2014053452-seq1.txt
860

Arg Glu Thr Asp Thr Ser Ala Leu Ala Ala Gly Ser Ser Gln Glu Val
865 870 875 880

Thr Tyr Ala Gln Leu Asp His Trp Ala Leu Thr Gln Arg Thr Ala Arg
885 890 895

Ala Val Ser Pro Gln Ser Thr Lys Pro Met Ala Glu Ser Ile Thr Tyr
900 905 910

Ala Ala Val Ala Arg His
915

<210> 6
<211> 1363
<212> PRT
<213> Artificial sequence

<220>
<223> Chimeric antigen receptor (CAR)

<400> 6

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu
1 5 10 15

His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
20 25 30

Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45

Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr
50 55 60

Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro
65 70 75 80

Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95

Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110

Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125

Lys Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
130 135 140

pctgb2014053452-seq1.txt

Ser Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly
145 150 155 160

Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175

Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190

Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr
195 200 205

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser
210 215 220

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr
225 230 235 240

Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255

Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro
260 265 270

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
275 280 285

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
290 295 300

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp
305 310 315 320

Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335

Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg
340 345 350

Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
355 360 365

Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
370 375 380

Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro

pctgb2014053452-seq1.txt

385	390	395	400
Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala			
405	410	415	
Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His			
420	425	430	
Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp			
435	440	445	
Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly			
450	455	460	
Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala			
465	470	475	480
Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr Asp Ala			
485	490	495	
Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser			
500	505	510	
Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr			
515	520	525	
Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu			
530	535	540	
Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe			
545	550	555	560
Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser Leu			
565	570	575	
Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr			
580	585	590	
Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly			
595	600	605	
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly			
610	615	620	
Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu			
625	630	635	640

pctgb2014053452-seq1.txt

Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe
645 650 655

Thr Leu Ser Asn Tyr Gly Met His Trp Ile Arg Gln Ala Pro Gly Lys
660 665 670

Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685

Tyr Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala
690 695 700

Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
705 710 715 720

Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735

Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro
740 745 750

Ala Thr Thr Thr Lys Pro Val Leu Arg Thr Pro Ser Pro Val His Pro
755 760 765

Thr Gly Thr Ser Gln Pro Gln Arg Pro Glu Asp Cys Arg Pro Arg Gly
770 775 780

Ser Val Lys Gly Thr Gly Leu Asp Phe Ala Cys Asp Ile Leu Ile Gly
785 790 795 800

Val Ser Val Val Phe Leu Phe Cys Leu Leu Leu Val Leu Phe Cys
805 810 815

Leu His Arg Gln Asn Gln Ile Lys Gln Gly Pro Pro Arg Ser Lys Asp
820 825 830

Glu Glu Gln Lys Pro Gln Gln Arg Pro Asp Leu Ala Val Asp Val Leu
835 840 845

Glu Arg Thr Ala Asp Lys Ala Thr Val Asn Gly Leu Pro Glu Lys Asp
850 855 860

Arg Glu Thr Asp Thr Ser Ala Leu Ala Ala Gly Ser Ser Gln Glu Val
865 870 875 880

Thr Tyr Ala Gln Leu Asp His Trp Ala Leu Thr Gln Arg Thr Ala Arg
885 890 895

pctgb2014053452-seq1.txt

Ala Val Ser Pro Gln Ser Thr Lys Pro Met Ala Glu Ser Ile Thr Tyr
900 905 910

Ala Ala Val Ala Arg His Arg Ala Glu Gly Arg Gly Ser Leu Leu Thr
915 920 925

Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Trp Tyr His Gly His Met
930 935 940

Ser Gly Gly Gln Ala Glu Thr Leu Leu Gln Ala Lys Gly Glu Pro Trp
945 950 955 960

Thr Phe Leu Val Arg Glu Ser Leu Ser Gln Pro Gly Asp Phe Val Leu
965 970 975

Ser Val Leu Ser Asp Gln Pro Lys Ala Gly Pro Gly Ser Pro Leu Arg
980 985 990

Val Thr His Ile Lys Val Met Cys Glu Gly Arg Tyr Thr Val Gly
995 1000 1005

Gly Leu Glu Thr Phe Asp Ser Leu Thr Asp Leu Val Glu His Phe
1010 1015 1020

Lys Lys Thr Gly Ile Glu Glu Ala Ser Gly Ala Phe Val Tyr Leu
1025 1030 1035

Arg Gln Pro Tyr Ser Gly Gly Gly Ser Phe Glu Ala Tyr Phe
1040 1045 1050

Lys Lys Gln Gln Ala Asp Ser Asn Cys Gly Phe Ala Glu Glu Tyr
1055 1060 1065

Glu Asp Leu Lys Leu Val Gly Ile Ser Gln Pro Lys Tyr Ala Ala
1070 1075 1080

Glu Leu Ala Glu Asn Arg Gly Lys Asn Arg Tyr Asn Asn Val Leu
1085 1090 1095

Pro Tyr Asp Ile Ser Arg Val Lys Leu Ser Val Gln Thr His Ser
1100 1105 1110

Thr Asp Asp Tyr Ile Asn Ala Asn Tyr Met Pro Gly Tyr His Ser
1115 1120 1125

Lys Lys Asp Phe Ile Ala Thr Gln Gly Pro Leu Pro Asn Thr Leu
1130 1135 1140

pctgb2014053452-seq1.txt

Lys Asp Phe Trp Arg Met Val Trp Glu Lys Asn Val Tyr Ala Ile
1145 1150 1155

Ile Met Leu Thr Lys Cys Val Glu Gln Gly Arg Thr Lys Cys Glu
1160 1165 1170

Glu Tyr Trp Pro Ser Lys Gln Ala Gln Asp Tyr Gly Asp Ile Thr
1175 1180 1185

Val Ala Met Thr Ser Glu Ile Val Leu Pro Glu Trp Thr Ile Arg
1190 1195 1200

Asp Phe Thr Val Lys Asn Ile Gln Thr Ser Glu Ser His Pro Leu
1205 1210 1215

Arg Gln Phe His Phe Thr Ser Trp Pro Asp His Gly Val Pro Asp
1220 1225 1230

Thr Thr Asp Leu Leu Ile Asn Phe Arg Tyr Leu Val Arg Asp Tyr
1235 1240 1245

Met Lys Gln Ser Pro Pro Glu Ser Pro Ile Leu Val His Cys Ser
1250 1255 1260

Ala Gly Val Gly Arg Thr Gly Thr Phe Ile Ala Ile Asp Arg Leu
1265 1270 1275

Ile Tyr Gln Ile Glu Asn Glu Asn Thr Val Asp Val Tyr Gly Ile
1280 1285 1290

Val Tyr Asp Leu Arg Met His Arg Pro Leu Met Val Gln Thr Glu
1295 1300 1305

Asp Gln Tyr Val Phe Leu Asn Gln Cys Val Leu Asp Ile Val Arg
1310 1315 1320

Ser Gln Lys Asp Ser Lys Val Asp Leu Ile Tyr Gln Asn Thr Thr
1325 1330 1335

Ala Met Thr Ile Tyr Glu Asn Leu Ala Pro Val Thr Thr Phe Gly
1340 1345 1350

Lys Thr Asn Gly Tyr Ile Ala Ser Gly Ser
1355 1360

pctgb2014053452-seq1.txt

<211> 21
<212> PRT
<213> Artificial sequence

<220>
<223> Signal peptide

<400> 7

Met Gly Thr Ser Leu Leu Cys Trp Met Ala Leu Cys Leu Leu Gly Ala
1 5 10 15

Asp His Ala Asp Gly
20

<210> 8
<211> 21
<212> PRT
<213> Artificial sequence

<220>
<223> Signal peptide

<400> 8

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu
1 5 10 15

His Ala Ala Arg Pro
20

<210> 9
<211> 20
<212> PRT
<213> Artificial sequence

<220>
<223> Signal peptide

<400> 9

Met Ala Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr
1 5 10 15

Asp Ala Arg Cys
20

<210> 10
<211> 234
<212> PRT
<213> Artificial sequence

<220>
<223> Spacer (hinge-CH2CH3 of human IgG1)

<400> 10

pctgb2014053452-seq1.txt

Ala Glu Pro Lys Ser Pro Asp Lys Thr His Thr Cys Pro Pro Cys Pro
1 5 10 15

Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
20 25 30

Lys Asp Thr Leu Met Ile Ala Arg Thr Pro Glu Val Thr Cys Val Val
35 40 45

Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val
50 55 60

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
65 70 75 80

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
85 90 95

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala
100 105 110

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
115 120 125

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
130 135 140

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
145 150 155 160

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
165 170 175

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
180 185 190

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe
195 200 205

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
210 215 220

Ser Leu Ser Leu Ser Pro Gly Lys Lys Asp
225 230

<210> 11
<211> 46
<212> PRT

pctgb2014053452-seq1.txt

<213> Artificial sequence

<220>

<223> Spacer (human CD8 stalk)

<400> 11

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
1 5 10 15

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
20 25 30

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile
35 40 45

<210> 12

<211> 20

<212> PRT

<213> Artificial sequence

<220>

<223> Spacer (human IgG1 hinge)

<400> 12

Ala Glu Pro Lys Ser Pro Asp Lys Thr His Thr Cys Pro Pro Cys Pro
1 5 10 15

Lys Asp Pro Lys
20

<210> 13

<211> 185

<212> PRT

<213> Artificial sequence

<220>

<223> Spacer (CD2 ectodomain)

<400> 13

Lys Glu Ile Thr Asn Ala Leu Glu Thr Trp Gly Ala Leu Gly Gln Asp
1 5 10 15

Ile Asn Leu Asp Ile Pro Ser Phe Gln Met Ser Asp Asp Ile Asp Asp
20 25 30

Ile Lys Trp Glu Lys Thr Ser Asp Lys Lys Lys Ile Ala Gln Phe Arg
35 40 45

Lys Glu Lys Glu Thr Phe Lys Glu Lys Asp Thr Tyr Lys Leu Phe Lys
50 55 60

pctgb2014053452-seq1.txt

Asn Gly Thr Leu Lys Ile Lys His Leu Lys Thr Asp Asp Gln Asp Ile
65 70 75 80

Tyr Lys Val Ser Ile Tyr Asp Thr Lys Gly Lys Asn Val Leu Glu Lys
85 90 95

Ile Phe Asp Leu Lys Ile Gln Glu Arg Val Ser Lys Pro Lys Ile Ser
100 105 110

Trp Thr Cys Ile Asn Thr Thr Leu Thr Cys Glu Val Met Asn Gly Thr
115 120 125

Asp Pro Glu Leu Asn Leu Tyr Gln Asp Gly Lys His Leu Lys Leu Ser
130 135 140

Gln Arg Val Ile Thr His Lys Trp Thr Thr Ser Leu Ser Ala Lys Phe
145 150 155 160

Lys Cys Thr Ala Gly Asn Lys Val Ser Lys Glu Ser Ser Val Glu Pro
165 170 175

Val Ser Cys Pro Glu Lys Gly Leu Asp
180 185

<210> 14

<211> 259

<212> PRT

<213> Artificial sequence

<220>

<223> Spacer (CD34 ectodomain)

<400> 14

Ser Leu Asp Asn Asn Gly Thr Ala Thr Pro Glu Leu Pro Thr Gln Gly
1 5 10 15

Thr Phe Ser Asn Val Ser Thr Asn Val Ser Tyr Gln Glu Thr Thr Thr
20 25 30

Pro Ser Thr Leu Gly Ser Thr Ser Leu His Pro Val Ser Gln His Gly
35 40 45

Asn Glu Ala Thr Thr Asn Ile Thr Glu Thr Thr Val Lys Phe Thr Ser
50 55 60

Thr Ser Val Ile Thr Ser Val Tyr Gly Asn Thr Asn Ser Ser Val Gln
65 70 75 80

Ser Gln Thr Ser Val Ile Ser Thr Val Phe Thr Thr Pro Ala Asn Val
Page 36

Ser Thr Pro Glu Thr Thr Leu Lys Pro Ser Leu Ser Pro Gly Asn Val
 100 105 110

Ser Asp Leu Ser Thr Thr Ser Thr Ser Leu Ala Thr Ser Pro Thr Lys
 115 120 125

Pro Tyr Thr Ser Ser Ser Pro Ile Leu Ser Asp Ile Lys Ala Glu Ile
 130 135 140

Lys Cys Ser Gly Ile Arg Glu Val Lys Leu Thr Gln Gly Ile Cys Leu
 145 150 155 160

Glu Gln Asn Lys Thr Ser Ser Cys Ala Glu Phe Lys Lys Asp Arg Gly
 165 170 175

Glu Gly Leu Ala Arg Val Leu Cys Gly Glu Glu Gln Ala Asp Ala Asp
 180 185 190

Ala Gly Ala Gln Val Cys Ser Leu Leu Leu Ala Gln Ser Glu Val Arg
 195 200 205

Pro Gln Cys Leu Leu Leu Val Leu Ala Asn Arg Thr Glu Ile Ser Ser
 210 215 220

Lys Leu Gln Leu Met Lys Lys His Gln Ser Asp Leu Lys Lys Leu Gly
 225 230 235 240

Ile Leu Asp Phe Thr Glu Gln Asp Val Ala Ser His Gln Ser Tyr Ser
 245 250 255

Gln Lys Thr

<210> 15
 <211> 140
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> CD28 transmembrane domain and CD3 Z endodomains

<400> 15

Phe Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu
 1 5 10 15

Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe
 20 25 30

pctgb2014053452-seq1.txt

Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu
35 40 45

Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp
50 55 60

Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys
65 70 75 80

Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala
85 90 95

Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Gly Lys
100 105 110

Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr
115 120 125

Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
130 135 140

<210> 16

<211> 180

<212> PRT

<213> Artificial Sequence

<220>

<223> CD28 transmembrane domain and CD28 and CD3 Zeta endodomains

<400> 16

Phe Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu
1 5 10 15

Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser
20 25 30

Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr Pro Arg Arg Pro Gly
35 40 45

Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala
50 55 60

Ala Tyr Arg Ser Arg Val Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala
65 70 75 80

Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg
85 90 95

pctgb2014053452-seq1.txt

Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu
100 105 110

Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn
115 120 125

Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met
130 135 140

Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly
145 150 155 160

Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala
165 170 175

Leu Pro Pro Arg
180

<210> 17

<211> 216

<212> PRT

<213> Artificial Sequence

<220>

<223> CD28 transmembrane domain and CD28, OX40 and CD3 Zeta endodomains

<400> 17

Phe Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu
1 5 10 15

Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser
20 25 30

Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr Pro Arg Arg Pro Gly
35 40 45

Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala
50 55 60

Ala Tyr Arg Ser Arg Asp Gln Arg Leu Pro Pro Asp Ala His Lys Pro
65 70 75 80

Pro Gly Gly Ser Phe Arg Thr Pro Ile Gln Glu Glu Gln Ala Asp
85 90 95

Ala His Ser Thr Leu Ala Lys Ile Arg Val Lys Phe Ser Arg Ser Ala
100 105 110

pctgb2014053452-seq1.txt

Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu
115 120 125

Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly
130 135 140

Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu
145 150 155 160

Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser
165 170 175

Glu Ile Gly Met Lys Gly Glu Arg Arg Gly Lys Gly His Asp Gly
180 185 190

Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu
195 200 205

His Met Gln Ala Leu Pro Pro Arg
210 215

<210> 18

<211> 729

<212> PRT

<213> Artificial Sequence

<220>

<223> CD45 transmembrane and endodomain

<400> 18

Ala Leu Ile Ala Phe Leu Ala Phe Leu Ile Ile Val Thr Ser Ile Ala
1 5 10 15

Leu Leu Val Val Leu Tyr Lys Ile Tyr Asp Leu His Lys Lys Arg Ser
20 25 30

Cys Asn Leu Asp Glu Gln Gln Glu Leu Val Glu Arg Asp Asp Glu Lys
35 40 45

Gln Leu Met Asn Val Glu Pro Ile His Ala Asp Ile Leu Leu Glu Thr
50 55 60

Tyr Lys Arg Lys Ile Ala Asp Glu Gly Arg Leu Phe Leu Ala Glu Phe
65 70 75 80

Gln Ser Ile Pro Arg Val Phe Ser Lys Phe Pro Ile Lys Glu Ala Arg
85 90 95

Lys Pro Phe Asn Gln Asn Lys Asn Arg Tyr Val Asp Ile Leu Pro Tyr
Page 40

pctgb2014053452-seq1.txt
100 105 110

Asp Tyr Asn Arg Val Glu Leu Ser Glu Ile Asn Gly Asp Ala Gly Ser
115 120 125

Asn Tyr Ile Asn Ala Ser Tyr Ile Asp Gly Phe Lys Glu Pro Arg Lys
130 135 140

Tyr Ile Ala Ala Gln Gly Pro Arg Asp Glu Thr Val Asp Asp Phe Trp
145 150 155 160

Arg Met Ile Trp Glu Gln Lys Ala Thr Val Ile Val Met Val Thr Arg
165 170 175

Cys Glu Glu Gly Asn Arg Asn Lys Cys Ala Glu Tyr Trp Pro Ser Met
180 185 190

Glu Glu Gly Thr Arg Ala Phe Gly Asp Val Val Val Lys Ile Asn Gln
195 200 205

His Lys Arg Cys Pro Asp Tyr Ile Ile Gln Lys Leu Asn Ile Val Asn
210 215 220

Lys Lys Glu Lys Ala Thr Gly Arg Glu Val Thr His Ile Gln Phe Thr
225 230 235 240

Ser Trp Pro Asp His Gly Val Pro Glu Asp Pro His Leu Leu Leu Lys
245 250 255

Leu Arg Arg Arg Val Asn Ala Phe Ser Asn Phe Phe Ser Gly Pro Ile
260 265 270

Val Val His Cys Ser Ala Gly Val Gly Arg Thr Gly Thr Tyr Ile Gly
275 280 285

Ile Asp Ala Met Leu Glu Gly Leu Glu Ala Glu Asn Lys Val Asp Val
290 295 300

Tyr Gly Tyr Val Val Lys Leu Arg Arg Gln Arg Cys Leu Met Val Gln
305 310 315 320

Val Glu Ala Gln Tyr Ile Leu Ile His Gln Ala Leu Val Glu Tyr Asn
325 330 335

Gln Phe Gly Glu Thr Glu Val Asn Leu Ser Glu Leu His Pro Tyr Leu
340 345 350

pctgb2014053452-seq1.txt

His Asn Met Lys Lys Arg Asp Pro Pro Ser Glu Pro Ser Pro Leu Glu
355 360 365

Ala Glu Phe Gln Arg Leu Pro Ser Tyr Arg Ser Trp Arg Thr Gln His
370 375 380

Ile Gly Asn Gln Glu Glu Asn Lys Ser Lys Asn Arg Asn Ser Asn Val
385 390 395 400

Ile Pro Tyr Asp Tyr Asn Arg Val Pro Leu Lys His Glu Leu Glu Met
405 410 415

Ser Lys Glu Ser Glu His Asp Ser Asp Glu Ser Ser Asp Asp Asp Ser
420 425 430

Asp Ser Glu Glu Pro Ser Lys Tyr Ile Asn Ala Ser Phe Ile Met Ser
435 440 445

Tyr Trp Lys Pro Glu Val Met Ile Ala Ala Gln Gly Pro Leu Lys Glu
450 455 460

Thr Ile Gly Asp Phe Trp Gln Met Ile Phe Gln Arg Lys Val Lys Val
465 470 475 480

Ile Val Met Leu Thr Glu Leu Lys His Gly Asp Gln Glu Ile Cys Ala
485 490 495

Gln Tyr Trp Gly Glu Gly Lys Gln Thr Tyr Gly Asp Ile Glu Val Asp
500 505 510

Leu Lys Asp Thr Asp Lys Ser Ser Thr Tyr Thr Leu Arg Val Phe Glu
515 520 525

Leu Arg His Ser Lys Arg Lys Asp Ser Arg Thr Val Tyr Gln Tyr Gln
530 535 540

Tyr Thr Asn Trp Ser Val Glu Gln Leu Pro Ala Glu Pro Lys Glu Leu
545 550 555 560

Ile Ser Met Ile Gln Val Val Lys Gln Lys Leu Pro Gln Lys Asn Ser
565 570 575

Ser Glu Gly Asn Lys His His Lys Ser Thr Pro Leu Leu Ile His Cys
580 585 590

Arg Asp Gly Ser Gln Gln Thr Gly Ile Phe Cys Ala Leu Leu Asn Leu
595 600 605

pctgb2014053452-seq1.txt

Leu Glu Ser Ala Glu Thr Glu Glu Val Val Asp Ile Phe Gln Val Val
610 615 620

Lys Ala Leu Arg Lys Ala Arg Pro Gly Met Val Ser Thr Phe Glu Gln
625 630 635 640

Tyr Gln Phe Leu Tyr Asp Val Ile Ala Ser Thr Tyr Pro Ala Gln Asn
645 650 655

Gly Gln Val Lys Lys Asn Asn His Gln Glu Asp Lys Ile Glu Phe Asp
660 665 670

Asn Glu Val Asp Lys Val Lys Gln Asp Ala Asn Cys Val Asn Pro Leu
675 680 685

Gly Ala Pro Glu Lys Leu Pro Glu Ala Lys Glu Gln Ala Glu Gly Ser
690 695 700

Glu Pro Thr Ser Gly Thr Glu Gly Pro Glu His Ser Val Asn Gly Pro
705 710 715 720

Ala Ser Pro Ala Leu Asn Gln Gly Ser
725

<210> 19
<211> 362
<212> PRT
<213> Artificial Sequence

<220>
<223> CD148 transmembrane and endodomain

<400> 19

Ala Val Phe Gly Cys Ile Phe Gly Ala Leu Val Ile Val Thr Val Gly
1 5 10 15

Gly Phe Ile Phe Trp Arg Lys Lys Arg Lys Asp Ala Lys Asn Asn Glu
20 25 30

Val Ser Phe Ser Gln Ile Lys Pro Lys Lys Ser Lys Leu Ile Arg Val
35 40 45

Glu Asn Phe Glu Ala Tyr Phe Lys Lys Gln Gln Ala Asp Ser Asn Cys
50 55 60

Gly Phe Ala Glu Glu Tyr Glu Asp Leu Lys Leu Val Gly Ile Ser Gln
65 70 75 80

pctgb2014053452-seq1.txt

Pro Lys Tyr Ala Ala Glu Leu Ala Glu Asn Arg Gly Lys Asn Arg Tyr
85 90 95

Asn Asn Val Leu Pro Tyr Asp Ile Ser Arg Val Lys Leu Ser Val Gln
100 105 110

Thr His Ser Thr Asp Asp Tyr Ile Asn Ala Asn Tyr Met Pro Gly Tyr
115 120 125

His Ser Lys Lys Asp Phe Ile Ala Thr Gln Gly Pro Leu Pro Asn Thr
130 135 140

Leu Lys Asp Phe Trp Arg Met Val Trp Glu Lys Asn Val Tyr Ala Ile
145 150 155 160

Ile Met Leu Thr Lys Cys Val Glu Gln Gly Arg Thr Lys Cys Glu Glu
165 170 175

Tyr Trp Pro Ser Lys Gln Ala Gln Asp Tyr Gly Asp Ile Thr Val Ala
180 185 190

Met Thr Ser Glu Ile Val Leu Pro Glu Trp Thr Ile Arg Asp Phe Thr
195 200 205

Val Lys Asn Ile Gln Thr Ser Glu Ser His Pro Leu Arg Gln Phe His
210 215 220

Phe Thr Ser Trp Pro Asp His Gly Val Pro Asp Thr Thr Asp Leu Leu
225 230 235 240

Ile Asn Phe Arg Tyr Leu Val Arg Asp Tyr Met Lys Gln Ser Pro Pro
245 250 255

Glu Ser Pro Ile Leu Val His Cys Ser Ala Gly Val Gly Arg Thr Gly
260 265 270

Thr Phe Ile Ala Ile Asp Arg Leu Ile Tyr Gln Ile Glu Asn Glu Asn
275 280 285

Thr Val Asp Val Tyr Gly Ile Val Tyr Asp Leu Arg Met His Arg Pro
290 295 300

Leu Met Val Gln Thr Glu Asp Gln Tyr Val Phe Leu Asn Gln Cys Val
305 310 315 320

Leu Asp Ile Val Arg Ser Gln Lys Asp Ser Lys Val Asp Leu Ile Tyr
325 330 335

pctgb2014053452-seq1.txt

Gln Asn Thr Thr Ala Met Thr Ile Tyr Glu Asn Leu Ala Pro Val Thr
340 345 350

Thr Phe Gly Lys Thr Asn Gly Tyr Ile Ala
355 360

<210> 20
<211> 595
<212> PRT
<213> Artificial sequence

<220>
<223> sequence of PTPN6

<400> 20

Met Val Arg Trp Phe His Arg Asp Leu Ser Gly Leu Asp Ala Glu Thr
1 5 10 15

Leu Leu Lys Gly Arg Gly Val His Gly Ser Phe Leu Ala Arg Pro Ser
20 25 30

Arg Lys Asn Gln Gly Asp Phe Ser Leu Ser Val Arg Val Gly Asp Gln
35 40 45

Val Thr His Ile Arg Ile Gln Asn Ser Gly Asp Phe Tyr Asp Leu Tyr
50 55 60

Gly Gly Glu Lys Phe Ala Thr Leu Thr Glu Leu Val Glu Tyr Tyr Thr
65 70 75 80

Gln Gln Gln Gly Val Leu Gln Asp Arg Asp Gly Thr Ile Ile His Leu
85 90 95

Lys Tyr Pro Leu Asn Cys Ser Asp Pro Thr Ser Glu Arg Trp Tyr His
100 105 110

Gly His Met Ser Gly Gly Gln Ala Glu Thr Leu Leu Gln Ala Lys Gly
115 120 125

Glu Pro Trp Thr Phe Leu Val Arg Glu Ser Leu Ser Gln Pro Gly Asp
130 135 140

Phe Val Leu Ser Val Leu Ser Asp Gln Pro Lys Ala Gly Pro Gly Ser
145 150 155 160

Pro Leu Arg Val Thr His Ile Lys Val Met Cys Glu Gly Gly Arg Tyr
165 170 175

pctgb2014053452-seq1.txt

Thr Val Gly Gly Leu Glu Thr Phe Asp Ser Leu Thr Asp Leu Val Glu
180 185 190

His Phe Lys Lys Thr Gly Ile Glu Glu Ala Ser Gly Ala Phe Val Tyr
195 200 205

Leu Arg Gln Pro Tyr Tyr Ala Thr Arg Val Asn Ala Ala Asp Ile Glu
210 215 220

Asn Arg Val Leu Glu Leu Asn Lys Lys Gln Glu Ser Glu Asp Thr Ala
225 230 235 240

Lys Ala Gly Phe Trp Glu Glu Phe Glu Ser Leu Gln Lys Gln Glu Val
245 250 255

Lys Asn Leu His Gln Arg Leu Glu Gly Gln Arg Pro Glu Asn Lys Gly
260 265 270

Lys Asn Arg Tyr Lys Asn Ile Leu Pro Phe Asp His Ser Arg Val Ile
275 280 285

Leu Gln Gly Arg Asp Ser Asn Ile Pro Gly Ser Asp Tyr Ile Asn Ala
290 295 300

Asn Tyr Ile Lys Asn Gln Leu Leu Gly Pro Asp Glu Asn Ala Lys Thr
305 310 315 320

Tyr Ile Ala Ser Gln Gly Cys Leu Glu Ala Thr Val Asn Asp Phe Trp
325 330 335

Gln Met Ala Trp Gln Glu Asn Ser Arg Val Ile Val Met Thr Thr Arg
340 345 350

Glu Val Glu Lys Gly Arg Asn Lys Cys Val Pro Tyr Trp Pro Glu Val
355 360 365

Gly Met Gln Arg Ala Tyr Gly Pro Tyr Ser Val Thr Asn Cys Gly Glu
370 375 380

His Asp Thr Thr Glu Tyr Lys Leu Arg Thr Leu Gln Val Ser Pro Leu
385 390 395 400

Asp Asn Gly Asp Leu Ile Arg Glu Ile Trp His Tyr Gln Tyr Leu Ser
405 410 415

Trp Pro Asp His Gly Val Pro Ser Glu Pro Gly Gly Val Leu Ser Phe
420 425 430

pctgb2014053452-seq1.txt

Leu Asp Gln Ile Asn Gln Arg Gln Glu Ser Leu Pro His Ala Gly Pro
435 440 445

Ile Ile Val His Cys Ser Ala Gly Ile Gly Arg Thr Gly Thr Ile Ile
450 455 460

Val Ile Asp Met Leu Met Glu Asn Ile Ser Thr Lys Gly Leu Asp Cys
465 470 475 480

Asp Ile Asp Ile Gln Lys Thr Ile Gln Met Val Arg Ala Gln Arg Ser
485 490 495

Gly Met Val Gln Thr Glu Ala Gln Tyr Lys Phe Ile Tyr Val Ala Ile
500 505 510

Ala Gln Phe Ile Glu Thr Thr Lys Lys Leu Glu Val Leu Gln Ser
515 520 525

Gln Lys Gly Gln Glu Ser Glu Tyr Gly Asn Ile Thr Tyr Pro Pro Ala
530 535 540

Met Lys Asn Ala His Ala Lys Ala Ser Arg Thr Ser Ser Lys His Lys
545 550 555 560

Glu Asp Val Tyr Glu Asn Leu His Thr Lys Asn Lys Arg Glu Glu Lys
565 570 575

Val Lys Lys Gln Arg Ser Ala Asp Lys Glu Lys Ser Lys Gly Ser Leu
580 585 590

Lys Arg Lys
595

<210> 21
<211> 272
<212> PRT
<213> Artificial sequence

<220>
<223> sequence of phosphatase domain of PTPN6

<400> 21

Phe Trp Glu Glu Phe Glu Ser Leu Gln Lys Gln Glu Val Lys Asn Leu
1 5 10 15

His Gln Arg Leu Glu Gly Gln Arg Pro Glu Asn Lys Gly Lys Asn Arg
20 25 30

pctgb2014053452-seq1.txt

Tyr Lys Asn Ile Leu Pro Phe Asp His Ser Arg Val Ile Leu Gln Gly
35 40 45

Arg Asp Ser Asn Ile Pro Gly Ser Asp Tyr Ile Asn Ala Asn Tyr Ile
50 55 60

Lys Asn Gln Leu Leu Gly Pro Asp Glu Asn Ala Lys Thr Tyr Ile Ala
65 70 75 80

Ser Gln Gly Cys Leu Glu Ala Thr Val Asn Asp Phe Trp Gln Met Ala
85 90 95

Trp Gln Glu Asn Ser Arg Val Ile Val Met Thr Thr Arg Glu Val Glu
100 105 110

Lys Gly Arg Asn Lys Cys Val Pro Tyr Trp Pro Glu Val Gly Met Gln
115 120 125

Arg Ala Tyr Gly Pro Tyr Ser Val Thr Asn Cys Gly Glu His Asp Thr
130 135 140

Thr Glu Tyr Lys Leu Arg Thr Leu Gln Val Ser Pro Leu Asp Asn Gly
145 150 155 160

Asp Leu Ile Arg Glu Ile Trp His Tyr Gln Tyr Leu Ser Trp Pro Asp
165 170 175

His Gly Val Pro Ser Glu Pro Gly Gly Val Leu Ser Phe Leu Asp Gln
180 185 190

Ile Asn Gln Arg Gln Glu Ser Leu Pro His Ala Gly Pro Ile Ile Val
195 200 205

His Cys Ser Ala Gly Ile Gly Arg Thr Gly Thr Ile Ile Val Ile Asp
210 215 220

Met Leu Met Glu Asn Ile Ser Thr Lys Gly Leu Asp Cys Asp Ile Asp
225 230 235 240

Ile Gln Lys Thr Ile Gln Met Val Arg Ala Gln Arg Ser Gly Met Val
245 250 255

Gln Thr Glu Ala Gln Tyr Lys Phe Ile Tyr Val Ala Ile Ala Gln Phe
260 265 270

<210> 22
<211> 97
<212> PRT

pctgb2014053452-seq1.txt

<213> Artificial sequence

<220>

<223> PDCD1 endodomain

<400> 22

Cys Ser Arg Ala Ala Arg Gly Thr Ile Gly Ala Arg Arg Thr Gly Gln
1 5 10 15

Pro Leu Lys Glu Asp Pro Ser Ala Val Pro Val Phe Ser Val Asp Tyr
20 25 30

Gly Glu Leu Asp Phe Gln Trp Arg Glu Lys Thr Pro Glu Pro Pro Val
35 40 45

Pro Cys Val Pro Glu Gln Thr Glu Tyr Ala Thr Ile Val Phe Pro Ser
50 55 60

Gly Met Gly Thr Ser Ser Pro Ala Arg Arg Gly Ser Ala Asp Gly Pro
65 70 75 80

Arg Ser Ala Gln Pro Leu Arg Pro Glu Asp Gly His Cys Ser Trp Pro
85 90 95

Leu

<210> 23

<211> 141

<212> PRT

<213> Artificial sequence

<220>

<223> BTLA4 endodomain

<400> 23

Lys Leu Gln Arg Arg Trp Lys Arg Thr Gln Ser Gln Gln Gly Leu Gln
1 5 10 15

Glu Asn Ser Ser Gly Gln Ser Phe Phe Val Arg Asn Lys Lys Val Arg
20 25 30

Arg Ala Pro Leu Ser Glu Gly Pro His Ser Leu Gly Cys Tyr Asn Pro
35 40 45

Met Met Glu Asp Gly Ile Ser Tyr Thr Thr Leu Arg Phe Pro Glu Met
50 55 60

Asn Ile Pro Arg Thr Gly Asp Ala Glu Ser Ser Glu Met Gln Arg Pro
65 70 75 80

pctgb2014053452-seq1.txt

Pro Pro Asp Cys Asp Asp Thr Val Thr Tyr Ser Ala Leu His Lys Arg
85 90 95

Gln Val Gly Asp Tyr Glu Asn Val Ile Pro Asp Phe Pro Glu Asp Glu
100 105 110

Gly Ile His Tyr Ser Glu Leu Ile Gln Phe Gly Val Gly Glu Arg Pro
115 120 125

Gln Ala Gln Glu Asn Val Asp Tyr Val Ile Leu Lys His
130 135 140

<210> 24
<211> 168
<212> PRT
<213> Artificial sequence

<220>
<223> LILRB1 endodomain

<400> 24

Leu Arg His Arg Arg Gln Gly Lys His Trp Thr Ser Thr Gln Arg Lys
1 5 10 15

Ala Asp Phe Gln His Pro Ala Gly Ala Val Gly Pro Glu Pro Thr Asp
20 25 30

Arg Gly Leu Gln Trp Arg Ser Ser Pro Ala Ala Asp Ala Gln Glu Glu
35 40 45

Asn Leu Tyr Ala Ala Val Lys His Thr Gln Pro Glu Asp Gly Val Glu
50 55 60

Met Asp Thr Arg Ser Pro His Asp Glu Asp Pro Gln Ala Val Thr Tyr
65 70 75 80

Ala Glu Val Lys His Ser Arg Pro Arg Arg Glu Met Ala Ser Pro Pro
85 90 95

Ser Pro Leu Ser Gly Glu Phe Leu Asp Thr Lys Asp Arg Gln Ala Glu
100 105 110

Glu Asp Arg Gln Met Asp Thr Glu Ala Ala Ser Glu Ala Pro Gln
115 120 125

Asp Val Thr Tyr Ala Gln Leu His Ser Leu Thr Leu Arg Arg Glu Ala
130 135 140

pctgb2014053452-seq1.txt

Thr Glu Pro Pro Pro Ser Gln Glu Gly Pro Ser Pro Ala Val Pro Ser
145 150 155 160

Ile Tyr Ala Thr Leu Ala Ile His
165

<210> 25
<211> 101
<212> PRT
<213> Artificial sequence

<220>
<223> LAIR1 endodomain

<400> 25

His Arg Gln Asn Gln Ile Lys Gln Gly Pro Pro Arg Ser Lys Asp Glu
1 5 10 15

Glu Gln Lys Pro Gln Gln Arg Pro Asp Leu Ala Val Asp Val Leu Glu
20 25 30

Arg Thr Ala Asp Lys Ala Thr Val Asn Gly Leu Pro Glu Lys Asp Arg
35 40 45

Glu Thr Asp Thr Ser Ala Leu Ala Ala Gly Ser Ser Gln Glu Val Thr
50 55 60

Tyr Ala Gln Leu Asp His Trp Ala Leu Thr Gln Arg Thr Ala Arg Ala
65 70 75 80

Val Ser Pro Gln Ser Thr Lys Pro Met Ala Glu Ser Ile Thr Tyr Ala
85 90 95

Ala Val Ala Arg His
100

<210> 26
<211> 62
<212> PRT
<213> Artificial sequence

<220>
<223> CTLA4 endodomain

<400> 26

Phe Leu Leu Trp Ile Leu Ala Ala Val Ser Ser Gly Leu Phe Phe Tyr
1 5 10 15

Ser Phe Leu Leu Thr Ala Val Ser Leu Ser Lys Met Leu Lys Lys Arg
20 25 30

pctgb2014053452-seq1.txt

Ser Pro Leu Thr Thr Gly Val Tyr Val Lys Met Pro Pro Thr Glu Pro
35 40 45

Glu Cys Glu Lys Gln Phe Gln Pro Tyr Phe Ile Pro Ile Asn
50 55 60

<210> 27
<211> 111
<212> PRT
<213> Artificial sequence

<220>
<223> KIR2DL1 endodomain

<400> 27

Gly Asn Ser Arg His Leu His Val Leu Ile Gly Thr Ser Val Val Ile
1 5 10 15

Ile Pro Phe Ala Ile Leu Leu Phe Phe Leu Leu His Arg Trp Cys Ala
20 25 30

Asn Lys Lys Asn Ala Val Val Met Asp Gln Glu Pro Ala Gly Asn Arg
35 40 45

Thr Val Asn Arg Glu Asp Ser Asp Glu Gln Asp Pro Gln Glu Val Thr
50 55 60

Tyr Thr Gln Leu Asn His Cys Val Phe Thr Gln Arg Lys Ile Thr Arg
65 70 75 80

Pro Ser Gln Arg Pro Lys Thr Pro Pro Thr Asp Ile Ile Val Tyr Thr
85 90 95

Glu Leu Pro Asn Ala Glu Ser Arg Ser Lys Val Val Ser Cys Pro
100 105 110

<210> 28
<211> 143
<212> PRT
<213> Artificial sequence

<220>
<223> KIR2DL4 endodomain

<400> 28

Gly Ile Ala Arg His Leu His Ala Val Ile Arg Tyr Ser Val Ala Ile
1 5 10 15

Ile Leu Phe Thr Ile Leu Pro Phe Phe Leu Leu His Arg Trp Cys Ser
Page 52

20

pctgb2014053452-seq1.txt
25 30

Lys Lys Lys Glu Asn Ala Ala Val Met Asn Gln Glu Pro Ala Gly His
35 40 45

Arg Thr Val Asn Arg Glu Asp Ser Asp Glu Gln Asp Pro Gln Glu Val
50 55 60

Thr Tyr Ala Gln Leu Asp His Cys Ile Phe Thr Gln Arg Lys Ile Thr
65 70 75 80

Gly Pro Ser Gln Arg Ser Lys Arg Pro Ser Thr Asp Thr Ser Val Cys
85 90 95

Ile Glu Leu Pro Asn Ala Glu Pro Arg Ala Leu Ser Pro Ala His Glu
100 105 110

His His Ser Gln Ala Leu Met Gly Ser Ser Arg Glu Thr Thr Ala Leu
115 120 125

Ser Gln Thr Gln Leu Ala Ser Ser Asn Val Pro Ala Ala Gly Ile
130 135 140

<210> 29

<211> 143

<212> PRT

<213> Artificial sequence

<220>

<223> KIR2DL5 endodomain

<400> 29

Thr Gly Ile Arg Arg His Leu His Ile Leu Ile Gly Thr Ser Val Ala
1 5 10 15

Ile Ile Leu Phe Ile Ile Leu Phe Phe Phe Leu Leu His Cys Cys Cys
20 25 30

Ser Asn Lys Lys Asn Ala Ala Val Met Asp Gln Glu Pro Ala Gly Asp
35 40 45

Arg Thr Val Asn Arg Glu Asp Ser Asp Asp Gln Asp Pro Gln Glu Val
50 55 60

Thr Tyr Ala Gln Leu Asp His Cys Val Phe Thr Gln Thr Lys Ile Thr
65 70 75 80

Ser Pro Ser Gln Arg Pro Lys Thr Pro Pro Thr Asp Thr Thr Met Tyr
85 90 95

pctgb2014053452-seq1.txt

Met Glu Leu Pro Asn Ala Lys Pro Arg Ser Leu Ser Pro Ala His Lys
100 105 110

His His Ser Gln Ala Leu Arg Gly Ser Ser Arg Glu Thr Thr Ala Leu
115 120 125

Ser Gln Asn Arg Val Ala Ser Ser His Val Pro Ala Ala Gly Ile
130 135 140

<210> 30

<211> 111

<212> PRT

<213> Artificial sequence

<220>

<223> KIR3DL1 endodomain

<400> 30

Lys Asp Pro Arg His Leu His Ile Leu Ile Gly Thr Ser Val Val Ile
1 5 10 15

Ile Leu Phe Ile Leu Leu Phe Phe Leu Leu His Leu Trp Cys Ser
20 25 30

Asn Lys Lys Asn Ala Ala Val Met Asp Gln Glu Pro Ala Gly Asn Arg
35 40 45

Thr Ala Asn Ser Glu Asp Ser Asp Glu Gln Asp Pro Glu Glu Val Thr
50 55 60

Tyr Ala Gln Leu Asp His Cys Val Phe Thr Gln Arg Lys Ile Thr Arg
65 70 75 80

Pro Ser Gln Arg Pro Lys Thr Pro Pro Thr Asp Thr Ile Leu Tyr Thr
85 90 95

Glu Leu Pro Asn Ala Lys Pro Arg Ser Lys Val Val Ser Cys Pro
100 105 110

<210> 31

<211> 97

<212> PRT

<213> Artificial sequence

<220>

<223> KIR3DL3 endodomain

<400> 31

Lys Asp Pro Gly Asn Ser Arg His Leu His Val Leu Ile Gly Thr Ser
Page 54

1 5 10 15

Val Val Ile Ile Pro Phe Ala Ile Leu Leu Phe Phe Leu Leu His Arg
20 25 30

Trp Cys Ala Asn Lys Lys Asn Ala Val Val Met Asp Gln Glu Pro Ala
35 40 45

Gly Asn Arg Thr Val Asn Arg Glu Asp Ser Asp Glu Gln Asp Pro Gln
50 55 60

Glu Val Thr Tyr Ala Gln Leu Asn His Cys Val Phe Thr Gln Arg Lys
65 70 75 80

Ile Thr Arg Pro Ser Gln Arg Pro Lys Thr Pro Pro Thr Asp Thr Ser
85 90 95

Val

<210> 32
<211> 807
<212> PRT
<213> Artificial sequence

<220>
<223> PTPN6-CD45 fusion protein

<400> 32

Trp Tyr His Gly His Met Ser Gly Gly Gln Ala Glu Thr Leu Leu Gln
1 5 10 15

Ala Lys Gly Glu Pro Trp Thr Phe Leu Val Arg Glu Ser Leu Ser Gln
20 25 30

Pro Gly Asp Phe Val Leu Ser Val Leu Ser Asp Gln Pro Lys Ala Gly
35 40 45

Pro Gly Ser Pro Leu Arg Val Thr His Ile Lys Val Met Cys Glu Gly
50 55 60

Gly Arg Tyr Thr Val Gly Gly Leu Glu Thr Phe Asp Ser Leu Thr Asp
65 70 75 80

Leu Val Glu His Phe Lys Lys Thr Gly Ile Glu Glu Ala Ser Gly Ala
85 90 95

Phe Val Tyr Leu Arg Gln Pro Tyr Lys Ile Tyr Asp Leu His Lys Lys
100 105 110

pctgb2014053452-seq1.txt

Arg Ser Cys Asn Leu Asp Glu Gln Gln Glu Leu Val Glu Arg Asp Asp
115 120 125

Glu Lys Gln Leu Met Asn Val Glu Pro Ile His Ala Asp Ile Leu Leu
130 135 140

Glu Thr Tyr Lys Arg Lys Ile Ala Asp Glu Gly Arg Leu Phe Leu Ala
145 150 155 160

Glu Phe Gln Ser Ile Pro Arg Val Phe Ser Lys Phe Pro Ile Lys Glu
165 170 175

Ala Arg Lys Pro Phe Asn Gln Asn Lys Asn Arg Tyr Val Asp Ile Leu
180 185 190

Pro Tyr Asp Tyr Asn Arg Val Glu Leu Ser Glu Ile Asn Gly Asp Ala
195 200 205

Gly Ser Asn Tyr Ile Asn Ala Ser Tyr Ile Asp Gly Phe Lys Glu Pro
210 215 220

Arg Lys Tyr Ile Ala Ala Gln Gly Pro Arg Asp Glu Thr Val Asp Asp
225 230 235 240

Phe Trp Arg Met Ile Trp Glu Gln Lys Ala Thr Val Ile Val Met Val
245 250 255

Thr Arg Cys Glu Glu Gly Asn Arg Asn Lys Cys Ala Glu Tyr Trp Pro
260 265 270

Ser Met Glu Glu Gly Thr Arg Ala Phe Gly Asp Val Val Val Lys Ile
275 280 285

Asn Gln His Lys Arg Cys Pro Asp Tyr Ile Ile Gln Lys Leu Asn Ile
290 295 300

Val Asn Lys Lys Glu Lys Ala Thr Gly Arg Glu Val Thr His Ile Gln
305 310 315 320

Phe Thr Ser Trp Pro Asp His Gly Val Pro Glu Asp Pro His Leu Leu
325 330 335

Leu Lys Leu Arg Arg Arg Val Asn Ala Phe Ser Asn Phe Phe Ser Gly
340 345 350

Pro Ile Val Val His Cys Ser Ala Gly Val Gly Arg Thr Gly Thr Tyr
Page 56

pctgb2014053452-seq1.txt
355 360 365

Ile Gly Ile Asp Ala Met Leu Glu Gly Leu Glu Ala Glu Asn Lys Val
370 375 380

Asp Val Tyr Gly Tyr Val Val Lys Leu Arg Arg Gln Arg Cys Leu Met
385 390 395 400

Val Gln Val Glu Ala Gln Tyr Ile Leu Ile His Gln Ala Leu Val Glu
405 410 415

Tyr Asn Gln Phe Gly Glu Thr Glu Val Asn Leu Ser Glu Leu His Pro
420 425 430

Tyr Leu His Asn Met Lys Lys Arg Asp Pro Pro Ser Glu Pro Ser Pro
435 440 445

Leu Glu Ala Glu Phe Gln Arg Leu Pro Ser Tyr Arg Ser Trp Arg Thr
450 455 460

Gln His Ile Gly Asn Gln Glu Glu Asn Lys Ser Lys Asn Arg Asn Ser
465 470 475 480

Asn Val Ile Pro Tyr Asp Tyr Asn Arg Val Leu Lys His Glu Leu Glu
485 490 495

Met Ser Lys Glu Ser Glu His Asp Ser Asp Glu Ser Ser Asp Asp Asp
500 505 510

Ser Asp Ser Glu Glu Pro Ser Lys Tyr Ile Asn Ala Ser Phe Ile Met
515 520 525

Ser Tyr Trp Lys Pro Glu Val Met Ile Ala Ala Gln Gly Pro Leu Lys
530 535 540

Glu Thr Ile Gly Asp Phe Met Ile Gln Arg Lys Val Lys Val Ile Val
545 550 555 560

Met Leu Thr Glu Leu Lys His Gly Asp Gln Glu Ile Cys Ala Gln Tyr
565 570 575

Trp Gly Glu Gly Lys Gln Thr Tyr Gly Asp Ile Glu Val Asp Leu Lys
580 585 590

Asp Thr Asp Lys Ser Ser Thr Tyr Thr Leu Arg Val Phe Glu Leu Arg
595 600 605

pctgb2014053452-seq1.txt

His Ser Lys Arg Lys Asp Ser Arg Thr Val Tyr Gln Tyr Gln Tyr Thr
610 615 620

Asn Trp Ser Val Glu Gln Leu Pro Ala Glu Pro Lys Glu Leu Ile Ser
625 630 635 640

Met Ile Gln Val Val Lys Gln Lys Leu Pro Gln Lys Asn Ser Ser Glu
645 650 655

Gly Asn Lys His His Lys Ser Thr Pro Leu Leu Ile His Cys Arg Asp
660 665 670

Gly Ser Gln Gln Thr Gly Ile Phe Cys Ala Leu Leu Asn Leu Leu Glu
675 680 685

Ser Ala Glu Thr Glu Glu Val Val Asp Ile Phe Gln Val Val Lys Ala
690 695 700

Leu Arg Lys Ala Arg Pro Gly Met Val Ser Thr Phe Glu Gln Tyr Gln
705 710 715 720

Phe Leu Tyr Asp Val Ile Ala Ser Thr Tyr Pro Ala Gln Asn Gly Gln
725 730 735

Val Lys Lys Asn Asn His Gln Glu Asp Lys Ile Glu Phe Asp Asn Glu
740 745 750

Val Asp Lys Val Lys Gln Asp Ala Asn Cys Val Asn Pro Leu Gly Ala
755 760 765

Pro Glu Lys Leu Pro Glu Ala Lys Glu Gln Ala Glu Gly Ser Glu Pro
770 775 780

Thr Ser Gly Thr Glu Gly Pro Glu His Ser Val Asn Gly Pro Ala Ser
785 790 795 800

Pro Ala Leu Asn Gln Gly Ser
805

<210> 33
<211> 434
<212> PRT
<213> Artificial sequence

<220>
<223> PTPN6-CD148 fusion protein

<400> 33

Glu Thr Leu Leu Gln Ala Lys Gly Glu Pro Trp Thr Phe Leu Val Arg
Page 58

pctgb2014053452-seq1.txt

1

5

10

15

Glu Ser Leu Ser Gln Pro Gly Asp Phe Val Leu Ser Val Leu Ser Asp
20 25 30

Gln Pro Lys Ala Gly Pro Gly Ser Pro Leu Arg Val Thr His Ile Lys
35 40 45

Val Met Cys Glu Gly Gly Arg Tyr Thr Val Gly Gly Leu Glu Thr Phe
50 55 60

Asp Ser Leu Thr Asp Leu Val Glu His Phe Lys Lys Thr Gly Ile Glu
65 70 75 80

Glu Ala Ser Gly Ala Phe Val Tyr Leu Arg Gln Pro Tyr Arg Lys Lys
85 90 95

Arg Lys Asp Ala Lys Asn Asn Glu Val Ser Phe Ser Gln Ile Lys Pro
100 105 110

Lys Lys Ser Lys Leu Ile Arg Val Glu Asn Phe Glu Ala Tyr Phe Lys
115 120 125

Lys Gln Gln Ala Asp Ser Asn Cys Gly Phe Ala Glu Glu Tyr Glu Asp
130 135 140

Leu Lys Leu Val Gly Ile Ser Gln Pro Lys Tyr Ala Ala Glu Leu Ala
145 150 155 160

Glu Asn Arg Gly Lys Asn Arg Tyr Asn Asn Val Leu Pro Tyr Asp Ile
165 170 175

Ser Arg Val Lys Leu Ser Val Gln Thr His Ser Thr Asp Asp Tyr Ile
180 185 190

Asn Ala Asn Tyr Met Pro Gly Tyr His Ser Lys Lys Asp Phe Ile Ala
195 200 205

Thr Gln Gly Pro Leu Pro Asn Thr Leu Lys Asp Phe Trp Arg Met Val
210 215 220

Trp Glu Lys Asn Val Tyr Ala Ile Ile Met Leu Thr Lys Cys Val Glu
225 230 235 240

Gln Gly Arg Thr Lys Cys Glu Glu Tyr Trp Pro Ser Lys Gln Ala Gln
245 250 255

pctgb2014053452-seq1.txt

Asp Tyr Gly Asp Ile Thr Val Ala Met Thr Ser Glu Ile Val Leu Pro
260 265 270

Glu Trp Thr Ile Arg Asp Phe Thr Val Lys Asn Ile Gln Thr Ser Glu
275 280 285

Ser His Pro Leu Arg Gln Phe His Phe Thr Ser Trp Pro Asp His Gly
290 295 300

Val Pro Asp Thr Thr Asp Leu Leu Ile Asn Phe Arg Tyr Leu Val Arg
305 310 315 320

Asp Tyr Met Lys Gln Ser Pro Pro Glu Ser Pro Ile Leu Val His Cys
325 330 335

Ser Ala Gly Val Gly Arg Thr Gly Thr Phe Ile Ala Ile Asp Arg Leu
340 345 350

Ile Tyr Gln Ile Glu Asn Glu Asn Thr Val Asp Val Tyr Gly Ile Val
355 360 365

Tyr Asp Leu Arg Met His Arg Pro Leu Met Val Gln Thr Glu Asp Gln
370 375 380

Tyr Val Phe Leu Asn Gln Cys Val Leu Asp Ile Val Arg Ser Gln Lys
385 390 395 400

Asp Ser Lys Val Asp Leu Ile Tyr Gln Asn Thr Thr Ala Met Thr Ile
405 410 415

Tyr Glu Asn Leu Ala Pro Val Thr Thr Phe Gly Lys Thr Asn Gly Tyr
420 425 430

Ile Ala

<210> 34
<211> 20
<212> PRT
<213> Foot-and-mouth disease virus

<400> 34

Arg Ala Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu
1 5 10 15

Asn Pro Gly Pro
20

pctgb2014053452-seq1.txt

<210> 35
<211> 3390
<212> DNA
<213> Artificial sequence

<220>
<223> Nucleic acid sequences coding for CARs
(MP13974.SFG.acD19fmc63-CD8STK-CD28tmZ-2A-aCD33g1x-HCH2CH3pvaa-CD
28tmZw)

<400> 35
atgagcctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca cgccgccaga 60
ccagacatcc agatgaccca gaccaccagc agcctgagcg ccagcctggg cgaccgggtg 120
accatcagct gcagagccag ccaggacatc agcaagtacc tgaactggta ccagcagaag 180
cccgacggca ccgtgaagct gctgatctac cacaccagcc ggctgcacag cggcgtgccc 240
agccggttca gcggcagcgg cagcggcacc gactacagcc tgaccatcag caacctggag 300
caggaggaca tcgcccaccta cttctgccag cagggcaaca ccctgcccata cacttcgg 360
ggcggcacca agctggagat caccaaggcc ggaggcggag gctctggcgg aggccgctct 420
ggcggaggcg gctctggcgg aggccgcagc gaggtgaagc tgcaggagtc tggcccaggc 480
ctggtggccc caagccagag cctgagcgtg acctgcaccg tgagcggcgt gagcctgccc 540
gactacggcg tgagctggat caggcagccc ccacggaagg gcctggagtg gctggcgtg 600
atctggggca gcgagaccac ctactacaac agcgcctga agagccggct gaccatcatc 660
aaggacaaca gcaagagcca ggtgttcctg aagatgaaca gcctgcagac cgacgacacc 720
gccatctact actgcgccaa gcactactac tatggcggca gctacgctat ggactactgg 780
ggccagggca ccagcgtgac cgtgagctca gatcccacca cgacgcgcagc gccgcgacca 840
ccaacacccgg cgccccaccat cgcgtcgca cccctgtccc tgcgcccaga ggcgtgcccgg 900
ccagcggcgg ggggcgcagt gcacacgagg gggctggact tcgcctgtga tatctttgg 960
tgctgggtgg tggttgggtgg agtcctggct tgctatagtc tgcttagtaac agtggccctt 1020
attattttct gggtgaggag agtgaagttc agcaggagcg cagacgcccc cgcgtaccag 1080
cagggccaga accagctcta taacgagctc aatctaggac gaagagagga gtacgatgtt 1140
ttggacaaga gacgtggccg ggaccctgag atggggggaa agccgagaag gaagaaccct 1200
caggaaggcc tgtacaatga actgcagaaa gataagatgg cggaggccta cagtgagatt 1260
gggatgaaag gcgagcgccg gagggcaag gggcacgtg gccttacca gggctcagt 1320
acagccacca aggacaccta cgacgcctt cacatgcagg ccctgcctcc tcgcagagcc 1380
gagggcaggg gaagtcttct aacatgcggg gacgtggagg aaaatcccg gcccatggcc 1440
gtgcccactc aggtcctggg gttgttgcta ctgtggctta cagatgccag atgtgacatc 1500
cagatgacac agtctccatc ttccctgtct gcatctgtcg gagatcgcgt caccatcacc 1560

pctgb2014053452-seq1.txt	
tgtcgagcaa	1620
gtgaggacat	
ttatTTAAT	
ttagtgttgt	
atcagcagaa	
accagggaaag	
gcccctaagg	1680
tcctgatcta	
tgatacaaAT	
cgTTGGCAG	
atggggTCCC	
atcacggttc	
agtggctctg	1740
gatctggcac	
acagtataCT	
ctaaccataa	
gtagcctgca	
acccgaagat	
ttcgcaacct	1800
attattgtca	
acactataAG	
aattatCCGc	
tcacgttCGG	
tcaggggacc	
aagctggaaa	1860
tcaaaaagatc	
tggTGGCgga	
gggtcaggag	
gcggaggcag	
cggaggcggt	
ggctcggag	1920
gcggaggctc	
gagatCTGAG	
gtgcagTTGG	
tggagtCTGG	
gggcggCTTG	
gtgcagcCTG	1980
gagggtCCCT	
gaggctCTCC	
tgtgcagCCT	
caggattcac	
tctcagtaat	
tatggcatgc	2040
actggatcaG	
gcaggctCCA	
gggaagggtc	
tggagtgggt	
ctcgTCTATT	
agtcttaATG	2100
gtggtagcac	
ttactatcga	
gactCCGTGA	
agggccgatt	
cactatCTCC	
agggacaATG	2160
caaaaAGCAC	
cctctacCTT	
caaATGAATA	
gtctgaggGC	
cgaggacacG	
gccgtctatt	2220
actgtgcAGC	
acaggacGCT	
tatacggag	
gttactttGA	
ttactgggC	
caaggaACGC	2280
tggTcacAGT	
ctcgTCTATG	
gatcccGCCG	
agcccaaATC	
tcctgacaaa	
actcacacAT	2340
gcccacCGTG	
cccagcacCT	
cccgtggCCG	
gcccgTCAGT	
cttcctCTTC	
cccccaAAAC	2400
ccaaggacAC	
cctcatgATC	
gcccggACCC	
ctgaggtcac	
atgcgtggTG	
gtggacgtGA	2460
gccacgaAGA	
ccctgaggTC	
aagttcaACT	
ggtacgtGGA	
cggcgtggAG	
gtgcataATG	2520
ccaagacaAA	
gccgcggAG	
gagcagtaca	
acagcacGTA	
ccgtgtggTC	
agcgtcCTCA	2580
ccgtcCTGCA	
ccaggactGG	
ctgaatGGCA	
aggagtacAA	
gtgcaaggTC	
tccaacAAAG	2640
ccctcccAGC	
ccccatcGAG	
aaaaccatCT	
ccaaAGCCA	
agggcagccc	
cgagaaccAC	2700
aggtgtacAC	
cctgccccCA	
tcccggatG	
agctgaccaa	
gaaccaggTC	
agcctgacCT	2760
gcctggTCAA	
aggcttCTAT	
cccagcGACA	
tcgcccgtGA	
gtgggagAGC	
aatgggcaAC	2820
cggagaacAA	
ctacaagACC	
acgcctCCG	
tgctggACTC	
cgacggCTCC	
ttcttcTCT	2880
acagcaAGCT	
caccgtggAC	
aagagcaggT	
ggcagcaggG	
gaacgtCTTC	
tcatgCTCCG	2940
tgatgcatGA	
ggccctgcAC	
aatcaCTATA	
cccagaaATC	
tctgagTCTG	
agcccaggCA	3000
agaaggacCC	
caagttCTGG	
gtcctggTGG	
tggtgggAGG	
cgtgctggCC	
tgTTACTCTC	3060
tcctggTgAC	
cgtggcCTTC	
atcatTTTT	
gggtgcgcTC	
ccgggtGAAG	
ttttctcgCT	3120
ctgcccgtAC	
cccagcCTAT	
cagcaggGCC	
agaatcAGCT	
gtacaatGAA	
ctgaacctGG	3180
gcaggcggGA	
ggagtacGAC	
gtgctggATA	
agcggagagg	
cagagacCCC	
gagatgggcG	3240
gcaaaccACG	
gCGcaAAAAT	
ccccaggAGG	
gactctataA	
cgagctgcAG	
aaggacaAAA	3300
tggccgaggC	
ctattccGAG	
atcggcatGA	
agggagAGAG	
aagacgcggA	
aaggGCCACG	3360
acggcctgTA	
tcagggattG	
tccaccgCTA	
caaaagatac	
atatgatGCC	
ctgcacatGC	3390
aggccctgCC	
acccagatGA	

pctgb2014053452-seq1.txt

<210> 36
<211> 5154
<212> DNA
<213> Artificial Sequence

<220>
<223> Nucleic acid sequences coding for CARs
(MP14802.SFG.acD19fmc63_clean-CD8STK-CD28tmZ-2A-aCD33g1x-HCH2CH3p
vaa-dCD45)

<400> 36
atgagcctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca cgccgccaga 60
ccagacatcc agatgaccca gaccaccaggc agcctgagcg ccagcctggg cgaccgggtg 120
accatcagct gcagagccag ccaggacatc agcaagtacc tgaactggta ccagcagaag 180
cccgacggca ccgtgaagct gctgatctac cacaccaggcc ggctgcacag cggcgtgccc 240
agccggttca gcggcagcgg cagcggcacc gactacagcc tgaccatcag caacctggag 300
caggaggaca tcgcccaccta cttctgccag cagggcaaca ccctgcccata cacttcgga 360
ggcggcacca agctggagat caccaaggcc ggaggcggag gctctggcgg aggccgctct 420
ggcggaggcg gctctggcgg aggccgcagc gaggtgaagc tgcaggagtc tggcccaggc 480
ctgggtggccc caagccagag cctgagcgtg acctgcaccg tgagcggcgt gagcctgccc 540
gactacggcg tgagctggat caggcagccc ccacggaagg gcctggagtg gctggcgtg 600
atctggggca gcgagaccac ctactacaac agcgcctga agagccggct gaccatcatc 660
aaggacaaca gcaagagcca ggtgttcctg aagatgaaca gcctgcagac cgacgacacc 720
gccatctact actgcgccaa gcactactac tatggcggca gctacgctat ggactactgg 780
ggccaggggca ccagcgtgac cgtgagctca gatcccacca cgacgcgcagc gccgcgacca 840
ccaacacccgg cgccccaccat cgcgtcgac cccctgtccc tgcgcccaga ggcgtgcccgg 900
ccagcggcgg ggggcgcagt gcacacgagg gggctggact tcgcctgtga tatctttgg 960
tgctgggtgg tggttgggtgg agtcctggct tgctatact tgcttagtaac agtggccctt 1020
attattttct gggtgaggag agtgaagttc agcaggagcg cagacgcccc cgcgtaccag 1080
cagggccaga accagctcta taacgagctc aatctaggac gaagagagga gtacgatgtt 1140
ttggacaaga gacgtggccg ggaccctgag atggggggaa agccgagaag gaagaaccct 1200
caggaaggcc tgtacaatga actgcagaaa gataagatgg cggaggccta cagtgagatt 1260
gggatgaaag gcgagcgccg gagggcaag gggcacgtg gcctttacca gggctcagt 1320
acagccacca aggacaccta cgacgcctt cacatgcagg ccctgcctcc tcgcagagcc 1380
gagggcaggg gaagtcttct aacatgcggg gacgtggagg aaaatcccg gcccatggcc 1440
gtgcccactc aggtcctggg gttgttgcta ctgtggctta cagatgccag atgtgacatc 1500
cagatgacac agtctccatc ttccctgtct gcatctgtcg gagatcgcgt caccatcacc 1560

pctgb2014053452-seq1.txt

tgtcgagcaa	gtgaggacat	ttatTTtaat	ttagtgttgt	atcagcagaa	accaggaag	1620
gcccctaagc	tcctgatcta	tgatacaaAT	cgTTggcag	atggggTccc	atcacggttc	1680
agtggctctg	gatctggcac	acagtataCT	ctaaccataa	gtagcctgca	acccgaagat	1740
ttcgcaacct	attattgtca	acactataAG	aattatccgc	tcacgttCGG	tcaggggacc	1800
aagctggaaa	tcaaaagatc	tggTggcgga	gggtcaggag	gcggaggcag	cggaggcggt	1860
ggctcggag	gcggaggctc	gagatCTgag	gtgcagTTgg	tggagtctgg	gggcggcttg	1920
gtgcagcctg	gagggtccct	gaggctctcc	tgtcagcct	caggattcac	tctcagtaat	1980
tatggcatgc	actggatcaG	gcaggctcca	gggaagggtc	tggagtgggt	ctcgTctatt	2040
agtcttaatg	gtggtagcac	ttactatcga	gactccgtga	agggccgatt	cactatctcc	2100
agggacaatg	caaaaagcac	cctctacctt	caaATgaata	gtctgagggc	cgaggacacg	2160
gccgtctatt	actgtgcagc	acaggacgct	tatacggag	gttactttga	ttactgggc	2220
caaggaacgc	tggTcacagt	ctcgTctatg	gatcccggc	agccaaATc	tcctgacaaa	2280
actcacacat	gcccacCGtg	cccagcacct	cccgtggccg	gcccgTcagt	cttcctcttc	2340
cccccaaaac	ccaaggacac	cctcatgatc	gcccggaccc	ctgaggtcac	atgcgtggtg	2400
gtggacgtga	gccacgaaga	ccctgaggTC	aagttcaact	ggtacgtgga	cggcgtggag	2460
gtgcataatg	ccaagacaAA	gccgcggag	gagcagtaca	acagcacgta	ccgtgtggTC	2520
agcgtcctca	ccgtcctgca	ccaggactgg	ctgaatggca	aggagtacaa	gtcaaggTC	2580
tccaacaaag	ccctcccagc	ccccatcgag	aaaaccatct	ccaaagccaa	agggcagccc	2640
cgagaaccac	aggtgtacac	cctgccccca	tcccggatg	agctgaccaa	gaaccaggTC	2700
agcctgacct	gcctggTcaa	aggcttctat	cccagcgaca	tcgcccgtgga	gtggagagc	2760
aatggcaac	cggagaacaa	ctacaagacc	acgcctccc	tgctggactc	cgacggctcc	2820
ttcttcctct	acagcaagct	caccgtggac	aagagcaggt	ggcagcaggg	gaacgtcttc	2880
tcatgctccg	tgatgcatga	ggccCTgcac	aatcactata	cccagaaATC	tctgagtctg	2940
agcccaggca	agaaggaccc	caaggcactg	atagcatttc	tggcatttct	gattattgtg	3000
acatcaatag	ccctgTTgt	tgttctctac	aaaatctatg	atctacataa	gaaaagatcc	3060
tgcaatttag	atgaacagca	ggagcttGTT	gaaagggatg	ataaaaaaca	actgatgaat	3120
gtggagccaa	tccatgcaga	tatTTgttg	gaaacttata	agaggaagat	tgctgatgaa	3180
ggaagacttt	ttctggctga	atTCAGAGC	atcccgggg	tgttcagcaa	gtttcctata	3240
aaggaagctc	gaaagccctt	taaccagaat	aaaaaccgtt	atgttgacat	tcttcTTtat	3300
gattataacc	gtgttgaact	ctctgagata	aacggagatg	cagggtaaaa	ctacataaat	3360
gccagctata	ttgatggTTT	caaagaaccc	aggaaataca	ttgctgcaca	aggtcccagg	3420
gatgaaactg	ttgatgattt	ctggaggatg	atTTgggaac	agaaagccac	agttattgtc	3480

pctgb2014053452-seq1.txt

atggtcactc	gatgtgaaga	aggaaacagg	aacaagtgt	cagaatactg	gccgtcaatg	3540
gaagagggc	ctcgggctt	tggagatgtt	gttgtaaaga	tcaaccagca	caaaagatgt	3600
ccagattaca	tcattcagaa	attgaacatt	gtaaataaaa	aagaaaaagc	aactggaaga	3660
gaggtgactc	acattcagtt	caccagctgg	ccagaccacg	gggtgcctga	ggatcctcac	3720
ttgctcctca	aactgagaag	gagagtgaat	gccttcagca	atttttcag	tggtcccatt	3780
gtggtgact	gcagtgctgg	tgttgggcgc	acaggaacct	atatcgaat	tgatgccatg	3840
ctagaaggcc	tggaagccga	gaacaaagtg	gatgtttatg	gttatgttgc	caagctaagg	3900
cgacagagat	gcctgatgg	tcaagtagag	gcccagtaca	tcttgatcca	tcaggctttg	3960
gtggaataca	atcagtttg	agaaacagaa	gtgaatttgc	ctgaattaca	tccatatcta	4020
cataacatga	agaaaaggga	tccaccagt	gagccgtctc	cactagaggc	tgaattccag	4080
agacttcctt	catataggag	ctggaggaca	cagcacattg	gaaatcaaga	agaaaataaa	4140
agtaaaaaca	ggaattctaa	tgtcatccca	tatgactata	acagagtgc	acttaaacat	4200
gagctggaaa	ttagttaaga	gagtgagcat	gattcagatg	aatcctctga	tgatgacagt	4260
gattcagagg	aaccaagcaa	atacatcaat	gcatttta	taatgagcta	ctggaaacct	4320
gaagtgatga	ttgctgctca	gggaccactg	aaggagacca	ttggtgactt	ttggcagatg	4380
atcttccaaa	gaaaagtcaa	agttattgtt	atgctgacag	aactgaaaca	tggagaccag	4440
gaaatctgt	ctcagactg	gggagaagga	aagcaaacat	atggagatat	tgaagttgac	4500
ctgaaagaca	cagacaaatc	ttcaacttat	acccttcgtg	tcttgaact	gagacattcc	4560
aagagggaaag	actctcgaac	tgtgtaccag	taccaatata	caaactggag	tgtggagcag	4620
cttcctgcag	aacccaagga	attaatctct	atgattcagg	tcgtcaaaca	aaaacttccc	4680
cagaagaatt	cctctgaagg	gaacaagcat	cacaagagta	cacccctact	cattcactgc	4740
agggatggat	ctcagcaaac	ggaaatattt	tgtgcttgc	taaatctctt	agaaagtgcg	4800
gaaacagaag	aggttagtgg	tattttcaa	gtggtaaaag	ctctacgcaa	agctaggcca	4860
ggcatggttt	ccacattcga	gcaatatcaa	ttcctataatg	acgtcattgc	cagcacctac	4920
cctgctcaga	atggacaagt	aaagaaaaac	aaccatcaag	aagataaaat	tgaatttgat	4980
aatgaagtgg	acaaagtaaa	gcaggatgct	aattgtgtt	atccacttgg	tgccccagaa	5040
aagctccctg	aagcaaagga	acaggctgaa	ggttctgaac	ccacgagtgg	cactgagggg	5100
ccagaacatt	ctgtcaatgg	tcctgcaagt	ccagtttaa	atcaaggttc	atag	5154

<210> 37
<211> 4053
<212> DNA
<213> Artificial Sequence

pctgb2014053452-seq1.txt

<220>

<223> Nucleic acid sequences coding for CARS
(MP14801.SFG.acD19fmc63_clean-CD8STK-CD28tmZ-2A-acD33g1x-HCH2CH3p
vaa-dCD148)

<400> 37
atgagctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca cgccgccaga 60
ccagacatcc agatgaccca gaccaccaggc agcctgagcg ccagcctggg cgaccgggtg 120
accatcagct gcagagccag ccaggacatc agcaagtacc tgaactggta ccagcagaag 180
cccgacggca ccgtgaagct gctgatctac cacaccagcc ggctgcacag cggcgtgccc 240
agccggttca gcggcagcgg cagcggcacc gactacagcc tgaccatcag caacctggag 300
caggaggaca tcgcccaccta cttctgccag cagggcaaca ccctgcccata cacttcgga 360
ggcggcacca agctggagat caccaaggcc ggaggcggag gctctggcgg aggcggctct 420
ggcggaggcg gctctggcgg aggcggcagc gaggtgaagc tgcaggagtc tggcccaggc 480
ctgggtggccc caagccagag cctgagcgtg acctgcaccgc tgagcggcgt gaggcctgccc 540
gactacggcg tgagctggat caggcagccc ccacggaagg gcctggagtg gctggcgtg 600
atctggggca gcgagaccac ctactacaac agcgcctga agagccggct gaccatcatc 660
aaggacaaca gcaagagcca ggtgttcctg aagatgaaca gcctgcagac cgacgacacc 720
gccatctact actgcgc当地 gcactactac tatggcggca gctacgctat ggactactgg 780
ggccaggc当地 ccagcgtgac cgtgagctca gatcccacca cgacgcccagc gccgc当地 840
ccaacaccgg cgcccaccat cgcgtc当地 cccctgtccc tgc当地caga ggc当地ccgg 900
ccagcggc当地 gggc当地cagc gcacacgagg gggctggact tc当地ctgtga tatctttgg 960
gtgctggtgg tggctggtgg agtc当地ctggct tgctatagct tgctagtaac agtggc当地ttt 1020
attattttct gggtaaggag agtgaagttc agcaggagcg cagacgcccc cgcttaccag 1080
cagggccaga accagctcta taacgagctc aatctaggac gaagagagga gtacgatgtt 1140
ttggacaaga gacgtggccg ggaccctgag atgggggaa agccgagaag gaagaaccct 1200
caggaaggcc tgtacaatga actgc当地aaa gataagatgg cggaggccta cagtgagatt 1260
gggatgaaag gcgagc当地ccg gagggcaag gggcacgatg gc当地tttacca gggtaaggc当地 1320
acagccacca aggacaccta cgacgcccc cacatgcagg ccctgc当地cc tc当地cagagcc 1380
gagggc当地ggg gaagtcttct aacatgc当地ggg gacgtggagg aaaatccgg gccc当地tggcc 1440
gtgccc当地ctc aggtc当地tggg gttgtgctta ctgtggctta cagatgc当地gg atgtgacatc 1500
cagatgacac agtctccatc ttccctgtct gcatctgtcg gagatgc当地gtt caccatcacc 1560
tgtc当地gacaa gtgaggacat ttatttaat ttagtgtggt atcagcagaa accaggaaag 1620
gccc当地taagc tc当地tgc当地tctttaat tgatacaat cgcttggc当地gg atggggc当地cc atc当地acggttc 1680
agtggc当地tctg gatctggc当地ac acagtataact ctaaccataa gtgc当地tgc当地a accc当地gaagat 1740

pctgb2014053452-seq1.txt

ttcgcaacct attattgtca acactataag aattatccgc tcacgttcgg tcaggggacc	1800
aagctggaaa tcaaaaagatc tgggtggcgga gggtcaggag gcggaggcag cggaggcggt	1860
ggctcggag gcggaggctc gagatctgag gtgcagttgg tggagtctgg gggcggcttg	1920
gtgcagcctg gagggtccct gaggctctcc tgtgcagcct caggattcac tctcagtaat	1980
tatggcatgc actggatcag gcaggctcca gggaaagggtc tggagtgggt ctcgtctatt	2040
agtcttaatg gtggtagcac ttactatcga gactccgtga agggccgatt cactatctcc	2100
agggacaatg caaaaagcac cctctacctt caaatgaata gtctgagggc cgaggacacg	2160
gccgtctatt actgtgcagc acaggacgct tatacggag gttactttga ttactgggc	2220
caaggaacgc tggtcacagt ctcgtctatg gatcccggcc agcccaaatc tcctgacaaa	2280
actcacacat gccaccgtg cccagcacct cccgtggccg gcccgtagt cttcctcttc	2340
cccccaaaac ccaaggacac cctcatgatc gcccggaccc ctgaggtcac atgcgtggtg	2400
gtggacgtga gccacgaaga ccctgaggtc aagttcaact ggtacgtga cggcgtggag	2460
gtgcataatg ccaagacaaa gccgcggag gagcagtaca acagcacgta ccgtgtggtc	2520
agcgtcctca ccgtcctgca ccaggactgg ctgaatggca aggagtacaa gtgcaagggtc	2580
tccaacaaag ccctcccagc ccccatcgag aaaaccatct ccaaagccaa agggcagccc	2640
cgagaaccac aggtgtacac cctgccccca tcccggatg agctgaccaa gaaccaggtc	2700
agcctgacct gcctggtcaa aggcttctat cccagcgaca tcgcccgtgga gtggagagc	2760
aatggcaac cggagaacaa ctacaagacc acgcctccc tgctggactc cgacggctcc	2820
ttcttcctct acagcaagct caccgtggac aagagcaggt ggcagcaggg gaacgtcttc	2880
tcatgctccg tcatgcatga ggcctgcac aatcaactata cccagaaatc tctgagtctg	2940
agcccaggca agaaggaccc caaggcggtt tttggctgta tctttggc cctggttatt	3000
gtgactgtgg gaggcttcat cttctggaga aagaagagga aagatgcaaa gaataatgaa	3060
gtgtcccttt ctcaaattaa acctaaaaaa tctaagttaa tcagagtggaa gaattttgag	3120
gcctacttca agaagcagca agctgactcc aactgtgggt tcgcagagga atacgaagat	3180
ctgaagcttgc ttggatttgc tcaacctaaa tatgcagcag aactggctga gaatagagga	3240
aagaatcgct ataataatgt tctgcctat gatatttccc gtgtcaaact ttccgtccag	3300
accatttcaaa cggatgacta catcaatgcc aactacatgc ctggctacca ctccaaagaaa	3360
gattttatttgc ccacacaagg acctttaccg aacactttga aagattttg gcgtatgggt	3420
tgggagaaaa atgtatatgc catcattatg ttgactaaat gtgttgaaca ggaaagaacc	3480
aaatgtgagg agtattggcc ctccaaagcag gctcaggact atggagacat aactgtggca	3540
atgacatcag aaattgttct tccggaatgg accatcagag atttcacagt gaaaaatatc	3600

pctgb2014053452-seq1.txt

cagacaagt	agagtcaccc	tctgagacag	ttccatttca	cctcctggcc	agaccacgg	3660
gttcccgaca	ccactgaccc	gctcatcaac	ttccggta	tcgttgcgt	ctacatgaag	3720
cagagtcc	ccgaatcgcc	gattctgg	cattgcagt	ctggggtcgg	aaggacgggc	3780
actttcatt	ccattgatcg	tctcatctac	cagatagaga	atgagaacac	cgtggatgt	3840
tatggatt	tgtatgaccc	tcgaatgcat	aggccttta	tggcagac	agaggaccag	3900
tatgtttcc	tcaatcagtg	tgtttggat	attgtcagat	cccagaaaga	ctcaaaagta	3960
gatcttatct	accagaacac	aactgcaatg	acaatctatg	aaaaccttgc	gcccgtgacc	4020
acatttggaa	agaccaatgg	ttacatcgcc	taa			4053
<210> 38						
<211> 3345						
<212> DNA						
<213> Artificial Sequence						
<220>						
<223> Nucleic acid sequences coding for CARs (16076.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33g1x-muCD8STK-tm-dPTP N6)						
<400> 38						
atgagcctgc	ccgtgaccgc	cctgctgctg	cccctggccc	tgctgctgca	cgccgcccaga	60
ccagacatcc	agatgaccca	gaccaccaggc	agcctgagcg	ccagcctggg	cgaccgggt	120
accatcagct	gcagagccag	ccaggacatc	agcaagtacc	tgaactggta	ccagcagaag	180
cccgacggca	ccgtgaagct	gctgatctac	cacaccagcc	ggctgcacag	cggcgtgccc	240
agccggttca	gcggcagcgg	cagcggcacc	gactacagcc	tgaccatcag	caacctggag	300
caggaggaca	tcgcccaccta	tttctgcccag	cagggcaaca	ccctgcccata	cacttcgg	360
ggcggcacca	agctggagat	caccaaggcc	ggaggcggag	gctctggcgg	aggcggct	420
ggcggaggcg	gctctggcgg	aggcggcagc	gaggtgaagc	tgcaggagtc	tggcccaggc	480
ctggtggccc	caagccagag	cctgagcgt	acctgcacc	tgagcggcgt	gagcctgccc	540
gactacggcg	tgagctggat	caggcagccc	ccacggaagg	gcctggagtg	gctggcgt	600
atctggggca	gcgagaccac	ctactacaac	agcgcctga	agagccggct	gaccatcatc	660
aaggacaaca	gcaagagcca	ggtgttcctg	aagatgaaca	gcctgcagac	cgacgacacc	720
gccatctact	actgcgcaa	gcactactac	tatggcggca	gctacgctat	ggactactgg	780
ggccaggggca	ccagcgtgac	cgtgagctca	gatcccacca	cgacgcccagc	gccgcgacca	840
ccaacaccgg	cgcccaccat	cgcgtcgcag	cccctgtccc	tgcgcccaga	ggcgtgccgg	900
ccagcggcgg	ggggcgcagt	gcacacgagg	gggctggact	tcgcctgtga	tatctttgg	960
gtgctggtgg	tggttggtgg	agtccctggct	tgctatacg	tgcttagtaac	agtggcctt	1020
attattttct	gggtgaggag	agtgaagttc	agcaggagcg	cagacgcccc	cgcgtaccag	1080

pctgb2014053452-seq1.txt

cagggccaga accagctcta taacgagctc aatctaggac gaagagagga gtacgatgtt	1140
ttggacaaga gacgtggccg ggaccctgag atgggggaa agccgagaag gaagaaccct	1200
caggaaggcc tgtacaatga actgcagaaa gataagatgg cgaggcccta cagttagatt	1260
gggatgaaag gcgagcgccg gagggcaag gggcacatg gccttacca gggctcagt	1320
acagccacca aggacaccta cgacgccctt cacatgcagg ccctgcctcc tcgcagagcc	1380
gagggcaggg gaagtcttct aacatgcggg gacgtggagg aaaatcccgg gcccatggcc	1440
gtgcccactc aggtcctggg gttgttgcta ctgtggctta cagatgccag atgtgacatc	1500
cagatgacac agtctccatc ttccctgtct gcatctgtcg gagatgcgt caccatcacc	1560
tgtcgagcaa gtgaggacat ttatTTaat tttagtgtggt atcagcagaa accaggaaag	1620
gcccctaagc tcctgatcta tgatacaaat cgcttggcag atggggtccc atcacggttc	1680
agtggctctg gatctggcac acagtatact ctaaccataa gtagcctgca acccgaagat	1740
ttcgcaacct attattgtca acactataag aattatccgc tcacgttcgg tcaggggacc	1800
aagctggaaa tcaaaagatc tggtggcggg gggtcaggag gcggaggcag cggaggcggt	1860
ggctcggag gcggaggctc gagatctgag gtgcagttgg tggagtctgg gggcggcttg	1920
gtgcagcctg gagggtccct gaggctctcc tgtgcagcct caggattcac tctcagtaat	1980
tatggcatgc actggatcag gcaggctcca gggaaagggtc tggagtgggt ctgcgtctatt	2040
agtcttaatg gtggtagcac ttactatcga gactccgtga agggccgatt cactatctcc	2100
agggacaatg caaaaagcac cctctacctt caaatgaata gtctgagggc cgaggacacg	2160
gccgtctatt actgtgcagc acaggacgct tatacgggag gttactttga ttactgggc	2220
caaggaacgc tggcacagt ctcgtctatg gatcccggca ccacaaccaa gcccgtgctg	2280
cggaccccaa gccctgtgca ccctaccggc accagccagc ctcagagacc cgaggactgc	2340
cggcctcgg gcagcgtgaa gggcacccggc ctggacttcg cctgcgacat ctactggca	2400
cctctggccg gaatatgcgt ggcactgctg ctgagcctca tcatcaccct gatctgttat	2460
caccgaagcc gcaagcgggt gtgtaaaagt ggaggcggaa gcttctggga ggagttttag	2520
agtttgcaga agcaggaggt gaagaacttg caccagcgtc tggaaaggca gcggccagag	2580
aacaaggca agaaccgcta caagaacatt ctccccttg accacagccg agtgcgtctg	2640
cagggacggg acagtaacat ccccggtcc gactacatca atgccaacta catcaagaac	2700
cagctgctag gccctgatga gaacgctaag acctacatcg ccagccaggg ctgtctggag	2760
gccacggta atgacttctg gcagatggcg tggcaggaga acagccgtgt catcgatcg	2820
accacccgag aggtggagaa aggccggaac aaatgcgtcc catactggcc cgaggtggc	2880
atgcagcgtg cttatggcc ctactctgtg accaactgca gggagcatga cacaaccgaa	2940

pctgb2014053452-seq1.txt

tacaaactcc	gtaccttaca	ggtctcccg	ctggacaatg	gagacctgat	tcgggagatc	3000
tggcattacc	agtacctgag	ctggcccgac	cacgggtcc	ccagtgagcc	tgggggtgtc	3060
ctcagcttcc	tggaccagat	caaccagcg	caggaagtc	tgcctcacgc	agggcccac	3120
atcgtcact	gcagcgccgg	catcgccgc	acaggcacca	tcattgtcat	cgacatgctc	3180
atggagaaca	tctccaccaa	gggcctggac	tgtgacattg	acatccagaa	gaccatccag	3240
atggtgcggg	cgcagcgctc	gggcatggtg	cagacggagg	cgcagtacaa	gttcatctac	3300
gtggccatcg	cccagttcat	tgaaaccact	aagaagaagc	tgtga		3345
<210>	39					
<211>	2757					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Nucleic acid sequences coding for CARS (MP16091.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33g1x-muCD8STK-LAIR1 tm-endo)					
<400>	39					
atgagcctgc	ccgtgaccgc	cctgctgctg	cccctggccc	tgctgctgca	cgccgcccaga	60
ccagacatcc	agatgaccca	gaccaccaggc	agcctgagcg	ccagcctggg	cgaccgggtg	120
accatcagct	gcagagccag	ccaggacatc	agcaagtacc	tgaactggta	ccagcagaag	180
cccgacggca	ccgtgaagct	gctgatctac	cacaccagcc	ggctgcacag	cggcgtgccc	240
agccggttca	gcggcagcgg	cagcggcacc	gactacagcc	tgaccatcag	caacctggag	300
caggaggaca	tcgcccaccta	cttctgccag	cagggcaaca	ccctgcccata	cacccctgg	360
ggcggcacca	agctggagat	caccaaggcc	ggaggcggag	gctctggcgg	aggcggctct	420
ggcggaggcg	gctctggcgg	aggcggcagc	gaggtgaagc	tgcaggagtc	tggcccaggc	480
ctgggtggccc	caagccagag	cctgagcgtg	acctgcaccg	tgagcggcgt	gagcctgccc	540
gactacggcg	tgagctggat	caggcagccc	ccacggaaagg	gcctggagtg	gctgggcgtg	600
atctggggca	gcgagaccac	ctactacaac	agcgcctga	agagccggct	gaccatcatc	660
aaggacaaca	gcaagagcca	ggtgttcctg	aagatgaaca	gcctgcagac	cgacgacacc	720
gccatctact	actgcgccaa	gcactactac	tatggcggca	gctacgctat	ggactactgg	780
ggccaggggca	ccagcgtgac	cgtgagctca	gatcccacca	cgacgcccagc	gccgcgacca	840
ccaacaccgg	cgcccaccat	cgcgtcgcag	cccctgtccc	tgcgccaga	ggcgtgcccgg	900
ccagcggcgg	ggggcgcagt	gcacacgagg	gggctggact	tcgcctgtga	tatcttttgg	960
gtgctggtgg	tggttggtgg	agtcctggct	tgctatagtct	tgcttagtaac	agtggccttt	1020
attattttct	gggtgaggag	agtgaagttc	agcaggagcg	cagacgcccc	cgcgtaccag	1080
cagggccaga	accagctcta	taacgagctc	aatctaggac	gaagagagga	gtacgatgtt	1140

pctgb2014053452-seq1.txt

ttggacaaga gacgtggccg ggaccctgag atgggggaa agccgagaag gaagaaccct	1200
caggaaggcc tgtacaatga actgcagaaa gataagatgg cgaggccct aagttagatt	1260
gggatgaaag gcgagcgccg gagggcaag gggcacatg gcctttacca gggctcagt	1320
acagccacca aggacaccta cgacgccctt cacatgcagg ccctgcctcc tcgcagagcc	1380
gagggcaggg gaagtcttct aacatgcggg gacgtggagg aaaatcccgg gcccatggcc	1440
gtgcccactc aggtcctggg gttgttgcta ctgtggctta cagatgccag atgtgacatc	1500
cagatgacac agtctccatc ttccctgtct gcatctgtcg gagatgcgt caccatcacc	1560
tgtcgagcaa gtgaggacat ttattttat ttagtgtggt atcagcagaa accagggaaag	1620
gcccctaagc tcctgatcta tgatacaa at cgcttggcag atggggtccc atcacggttc	1680
agtggctctg gatctggcac acagtatact ctaaccataa gtagcctgca acccgaagat	1740
ttcgcaacctt attattgtca acactataag aattatccgc tcacgttcgg tcaggggacc	1800
aagctggaaa tcaaaagatc tgggtggcga gggtcaggag gcggaggcag cggaggcggt	1860
ggctcggag gcggaggctc gagatctgag gtgcagttgg tggagtctgg gggcggcttg	1920
gtgcagcctg gagggtccct gaggctctcc tgtgcagcct caggattcac tctcagtaat	1980
tatggcatgc actggatcag gcaggctcca gggagggtc tggagtgggt ctcgtctatt	2040
agtcttaatg gtggtagcac ttactatcga gactccgtga agggccgatt cactatctcc	2100
agggacaatg caaaaagcac cctctacctt caaatgaata gtctgagggc cgaggacacg	2160
gccgtctatt actgtgcagc acaggacgct tatacggag gttactttga ttactgggc	2220
caaggaacgc tggcacagt ctcgtctatg gatcccgcca ccacaaccaa gcccgtgctg	2280
cggaccccaa gccctgtgca ccctaccggc accagccagc ctcagagacc cgaggactgc	2340
cggcctcggg gcagcgtgaa gggcacccggc ctggacttcg cctgcgacat tctcatcggg	2400
gtctcagttgg tcttcctctt ctgtctcctc ctcctggtcc tcttctgcct ccatgcctcag	2460
aatcagataa agcaggggcc ccccagaagc aaggacgagg agcagaagcc acagcagagg	2520
cctgacctgg ctgttgatgt tcttagagagg acagcagaca aggccacagt caatggactt	2580
cctgagaagg accggggagac cgacaccagc gccctggctg cagggagttc ccaggaggtg	2640
acgtatgctc agctggacca ctggccctc acacagagga cagcccgccg tgtgtccccca	2700
cagtccacaa agcccatggc cgagtccatc acgtatgcag ccgttgccag acactga	2757

<210> 40
<211> 4092
<212> DNA
<213> Artificial sequence

<220>
<223> Nucleic acid sequences coding for CARs

pctgb2014053452-seq1.txt
 (MP16092.SFG.acD19fmc63-CD8STK-CD28tmZ-2A-aCD33g1x-muCD8STK-LAIR1
 tm-endo-2A-PTPN6_SH2-dCD148)

<400>	40					
atgagcctgc	ccgtgaccgc	cctgctgctg	cccctggccc	tgctgctgca	cgccgccaga	60
ccagacatcc	agatgaccca	gaccaccagc	agcctgagcg	ccagcctggg	cgaccgggtg	120
accatcagct	gcagagccag	ccaggacatc	agcaagtacc	tgaactggta	ccagcagaag	180
cccgacggca	ccgtgaagct	gctgatctac	cacaccagcc	ggctgcacag	cggcgtgccc	240
agccggttca	gcggcagcgg	cagcggcacc	gactacagcc	tgaccatcag	caacctggag	300
caggaggaca	tcgcccaccta	cttctgccag	cagggcaaca	ccctgcccata	cacccctcgga	360
ggcggcacca	agctggagat	acccaaggcc	ggaggcggag	gctctggcgg	aggcggctct	420
ggcggaggcg	gctctggcgg	aggcggcagc	gaggtgaagc	tgcaggagtc	tggcccgaggc	480
ctggtggccc	caagccagag	cctgagcgtg	acctgcaccg	tgagcggcgt	gagcctgccc	540
gactacggcg	tgagctggat	caggcagccc	ccacggaagg	gcctggagtg	gctggggcgtg	600
atctggggca	gcgagaccac	ctactacaac	agcgcctga	agagccggct	gaccatcatc	660
aaggacaaca	gcaagagcca	ggtgttcctg	aagatgaaca	gcctgcagac	cgacgacacc	720
gccatctact	actgcgccaa	gcactactac	tatggcggca	gctacgctat	ggactactgg	780
ggccaggggca	ccagcgtgac	cgtgagctca	gatcccacca	cgacgcccagc	gccgcgacca	840
ccaacaccgg	cgcccaccat	cgcgtcgca	cccctgtccc	tgcgccaga	ggcgtgccgg	900
ccagcggcgg	ggggcgcagt	gcacacgagg	gggctggact	tcgcctgtga	tatctttgg	960
gtgctggtgg	tggttggtgg	agtccctggct	tgctatagct	tgcttagtaac	agtggccttt	1020
attattttct	gggtgaggag	agtgaagttc	agcaggagcg	cagacgcccc	cgcgtaccag	1080
cagggccaga	accagctcta	taacgagctc	aatctaggac	gaagagagga	gtacgatgtt	1140
ttggacaaga	gacgtggccg	ggaccctgag	atggggggaa	agccgagaag	gaagaaccct	1200
caggaaggcc	tgtacaatga	actgcagaaa	gataagatgg	cgaggcccta	cagtgagatt	1260
gggatgaaag	gcgagcgccg	gagggcaag	gggcacgatg	gcctttacca	gggtctcagt	1320
acagccacca	aggacaccta	cgacgcctt	cacatgcagg	ccctgcctcc	tcgcagagcc	1380
gagggcaggg	gaagtcttct	aacatgcggg	gacgtggagg	aaaatcccg	gcccattggcc	1440
gtgcccaactc	aggtcctggg	gttggtgcta	ctgtggctta	cagatgccag	atgtgacatc	1500
cagatgacac	agtctccatc	ttccctgtct	gcatctgtcg	gagatgcgt	caccatcacc	1560
tgtcgagcaa	gtgaggacat	ttattttaat	ttagtgtggt	atcagcagaa	accaggaaag	1620
gcccctaagc	tcctgatcta	tgatacaaat	cgcttggcag	atggggtccc	atcacggttc	1680
agtggctctg	gatctggcac	acagtatact	ctaaccataa	gtagcctgca	acccgaagat	1740
ttcgcaacct	attattgtca	acactataag	aattatccgc	tcacgttcgg	tcaggggacc	1800

pctgb2014053452-seq1.txt

aagctggaaa tcaaaagatc tggtgtggcgga gggtcaggag gcggaggcag cggaggcggt	1860
ggctcgggag gcggaggctc gagatctgag gtgcagttgg tggagtctgg gggcggcttg	1920
gtgcagcctg gagggtccct gaggctctcc tgtgcagcct caggattcac tctcagtaat	1980
tatggcatgc actggatcag gcaggctcca gggaaagggtc tggagtgggt ctcgtctatt	2040
agtcttaatg gtggtagcac ttactatcga gactccgtga agggccgatt cactatctcc	2100
agggacaatg caaaaagcac cctctacctt caaatgaata gtctgagggc cgaggacacg	2160
gccgtctatt actgtgcagc acaggacgct tatacgggag gttactttga ttactgggc	2220
caaggaacgc tggtcacagt ctcgtctatg gatcccgcca ccacaaccaa gcccgtgctg	2280
cggaccccaa gccctgtgca ccctaccggc accagccagc ctcagagacc cgaggactgc	2340
cggcctcggg gcagcgtgaa gggcaccggc ctggacttcg cctgcacat tctcatcggg	2400
gtctcagtgg tcttcctctt ctgtctcctc ctccctggtcc tcttctgcct ccatcgccag	2460
aatcagataa agcaggggccc ccccagaagc aaggacgagg agcagaagcc acagcagagg	2520
cctgacctgg ctgttgatgt tctagagagg acagcagaca aggccacagt caatggactt	2580
cctgagaagg accgggagac cgacaccagc gccctggctg cagggagttc ccaggaggtg	2640
acgtatgctc agctggacca ctgggccctc acacagagga cagccgggc tgtgtcccc	2700
cagtccacaa agcccatggc cgagtccatc acgtatgcag ccgttgccag acacaggcga	2760
gaaggaagag gtagcctgct gacttgcggg gacgtggaag agaaccagg gccatggtat	2820
catggccaca tgtctggcggt gcaggcagag acgctgctgc aggccaagg cgagccctgg	2880
acgtttcttg tgcgtgagag ctcagccag cctggagact tcgtgcttc tgtgctcagt	2940
gaccagccca aggctggccc aggctcccg ctcagggtca cccacatcaa ggtcatgtgc	3000
gagggtggac gctacacagt gggtggtttg gagaccttcg acagcctcac ggacctggtg	3060
gagcattca agaagacggg gattgaggag gcctcaggcg cctttgtcta cctgcggcag	3120
ccgtacagcg gtggcggtgg cagcttgag gcctacttca agaagcagca agctgactcc	3180
aactgtgggt tcgcagagga atacgaagat ctgaagcttg ttggaattag tcaacctaataa	3240
tatgcagcag aactggctga gaatagagga aagaatcgct ataataatgt tctgccctat	3300
gatatttccc gtgtcaaact ttccggccag acccattcaa cggatgacta catcaatgcc	3360
aactacatgc ctggctacca ctccaagaaa gattttatttgc ccacacaagg acctttaccg	3420
aacactttga aagatttttgcgtatggtt tgggagaaaa atgtatatgc catcattatg	3480
ttgactaaat gtgttgaaca gggagaacc aatgtgagg agtattggcc ctccaagcag	3540
gctcaggact atggagacat aactgtggca atgacatcag aaattgttct tccggaatgg	3600
accatcagag atttcacagt gaaaaatatc cagacaagt agagtcaccc tctgagacag	3660

pctgb2014053452-seq1.txt

ttccatttca	cctcctggcc	agaccacggt	gttcccgaca	ccactgacct	gctcatcaac	3720
ttccggtaacc	tcgttcgtga	ctacatgaag	cagagtcctc	ccgaatcgcc	gattctggtg	3780
cattgcagtg	ctggggtcgg	aaggacgggc	actttcattg	ccattgatcg	tctcatctac	3840
cagatagaga	atgagaacac	cgtggatgtg	tatggattg	tgtatgacct	tcgaatgcat	3900
aggccttaa	tggtgcagac	agaggaccag	tatgtttcc	tcaatcagtg	tgtttggat	3960
attgtcagat	cccagaaaga	ctcaaaagta	gatcttatct	accagaacac	aactgcaatg	4020
acaatctatg	aaaaccttgc	gcccgtgacc	acatttgaa	agaccaatgg	ttacatcgcc	4080
agcggtagct	aa					4092

<210> 41
 <211> 1341
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Single-chain variable fragment (scFv)
 SFG.aCD19-CD8STK-CD28tmZ-2A-aGD2-HCH2CH3pvaa-dCD148

<400> 41

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu
 1 5 10 15

His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
 20 25 30

Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
 35 40 45

Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr
 50 55 60

Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro
 65 70 75 80

Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
 85 90 95

Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
 100 105 110

Asn Thr Leu Pro Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Thr
 115 120 125

Lys Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
 130 135 140

pctgb2014053452-seq1.txt

Ser Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly
145 150 155 160

Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175

Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190

Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr
195 200 205

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser
210 215 220

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr
225 230 235 240

Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255

Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro
260 265 270

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
275 280 285

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
290 295 300

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp
305 310 315 320

Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335

Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg
340 345 350

Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
355 360 365

Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
370 375 380

Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro
385 390 395 400

pctgb2014053452-seq1.txt

Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
405 410 415

Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430

Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
435 440 445

Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly
450 455 460

Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Glu
465 470 475 480

Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser
485 490 495

Thr Gly Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro
500 505 510

Ser Gln Thr Leu Ser Ile Thr Cys Thr Val Ser Gly Phe Ser Leu Ala
515 520 525

Ser Tyr Asn Ile His Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu
530 535 540

Trp Leu Gly Val Ile Trp Ala Gly Gly Ser Thr Asn Tyr Asn Ser Ala
545 550 555 560

Leu Met Ser Arg Leu Thr Ile Ser Lys Asp Asn Ser Lys Asn Gln Val
565 570 575

Phe Leu Lys Met Ser Ser Leu Thr Ala Ala Asp Thr Ala Val Tyr Tyr
580 585 590

Cys Ala Lys Arg Ser Asp Asp Tyr Ser Trp Phe Ala Tyr Trp Gly Gln
595 600 605

Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly
610 615 620

Gly Ser Gly Gly Gly Ser Glu Asn Gln Met Thr Gln Ser Pro Ser
625 630 635 640

Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Met Thr Cys Arg Ala

pctgb2014053452-seq1.txt

645

650

655

Ser Ser Ser Val Ser Ser Ser Tyr Leu His Trp Tyr Gln Gln Lys Ser
660 665 670

Gly Lys Ala Pro Lys Val Trp Ile Tyr Ser Thr Ser Asn Leu Ala Ser
675 680 685

Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr
690 695 700

Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys
705 710 715 720

Gln Gln Tyr Ser Gly Tyr Pro Ile Thr Phe Gly Gln Gly Thr Lys Val
725 730 735

Glu Ile Lys Arg Ser Asp Pro Ala Glu Pro Lys Ser Pro Asp Lys Thr
740 745 750

His Thr Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val
755 760 765

Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ala Arg Thr
770 775 780

Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu
785 790 795 800

Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys
805 810 815

Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser
820 825 830

Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys
835 840 845

Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile
850 855 860

Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro
865 870 875 880

Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
885 890 895

pctgb2014053452-seq1.txt

Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn
900 905 910

Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser
915 920 925

Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg
930 935 940

Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu
945 950 955 960

His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Lys
965 970 975

Asp Pro Lys Ala Val Phe Gly Cys Ile Phe Gly Ala Leu Val Ile Val
980 985 990

Thr Val Gly Gly Phe Ile Phe Trp Arg Lys Lys Arg Lys Asp Ala Lys
995 1000 1005

Asn Asn Glu Val Ser Phe Ser Gln Ile Lys Pro Lys Lys Ser Lys
1010 1015 1020

Leu Ile Arg Val Glu Asn Phe Glu Ala Tyr Phe Lys Lys Gln Gln
1025 1030 1035

Ala Asp Ser Asn Cys Gly Phe Ala Glu Glu Tyr Glu Asp Leu Lys
1040 1045 1050

Leu Val Gly Ile Ser Gln Pro Lys Tyr Ala Ala Glu Leu Ala Glu
1055 1060 1065

Asn Arg Gly Lys Asn Arg Tyr Asn Asn Val Leu Pro Tyr Asp Ile
1070 1075 1080

Ser Arg Val Lys Leu Ser Val Gln Thr His Ser Thr Asp Asp Tyr
1085 1090 1095

Ile Asn Ala Asn Tyr Met Pro Gly Tyr His Ser Lys Lys Asp Phe
1100 1105 1110

Ile Ala Thr Gln Gly Pro Leu Pro Asn Thr Leu Lys Asp Phe Trp
1115 1120 1125

Arg Met Val Trp Glu Lys Asn Val Tyr Ala Ile Ile Met Leu Thr
1130 1135 1140

pctgb2014053452-seq1.txt

Lys Cys Val Glu Gln Gly Arg Thr Lys Cys Glu Glu Tyr Trp Pro
1145 1150 1155

Ser Lys Gln Ala Gln Asp Tyr Gly Asp Ile Thr Val Ala Met Thr
1160 1165 1170

Ser Glu Ile Val Leu Pro Glu Trp Thr Ile Arg Asp Phe Thr Val
1175 1180 1185

Lys Asn Ile Gln Thr Ser Glu Ser His Pro Leu Arg Gln Phe His
1190 1195 1200

Phe Thr Ser Trp Pro Asp His Gly Val Pro Asp Thr Thr Asp Leu
1205 1210 1215

Leu Ile Asn Phe Arg Tyr Leu Val Arg Asp Tyr Met Lys Gln Ser
1220 1225 1230

Pro Pro Glu Ser Pro Ile Leu Val His Cys Ser Ala Gly Val Gly
1235 1240 1245

Arg Thr Gly Thr Phe Ile Ala Ile Asp Arg Leu Ile Tyr Gln Ile
1250 1255 1260

Glu Asn Glu Asn Thr Val Asp Val Tyr Gly Ile Val Tyr Asp Leu
1265 1270 1275

Arg Met His Arg Pro Leu Met Val Gln Thr Glu Asp Gln Tyr Val
1280 1285 1290

Phe Leu Asn Gln Cys Val Leu Asp Ile Val Arg Ser Gln Lys Asp
1295 1300 1305

Ser Lys Val Asp Leu Ile Tyr Gln Asn Thr Thr Ala Met Thr Ile
1310 1315 1320

Tyr Glu Asn Leu Ala Pro Val Thr Thr Phe Gly Lys Thr Asn Gly
1325 1330 1335

Tyr Ile Ala
1340

<210> 42
<211> 4026
<212> DNA
<213> Artificial Sequence

<220>

pctgb2014053452-seq1.txt

<223> single-chain variable fragment (scFv)
SFG.aCD19-CD8STK-CD28tmZ-2A-aGD2-HCH2CH3pvaa-dCD148

<400> 42	atgagcctgc	ccgtgaccgc	cctgctgctg	cccctggccc	tgctgctgca	cgccgccaga	60
	ccagacatcc	agatgaccca	gaccaccagc	agcctgagcg	ccagcctggg	cgaccgggtg	120
	accatcagct	gcagagccag	ccaggacatc	agcaagtacc	tgaactggta	ccagcagaag	180
	cccgacggca	ccgtgaagct	gctgatctac	cacaccagcc	ggctgcacag	cggcgtgccc	240
	agccggttca	gcggcagcgg	cagcggcacc	gactacagcc	tgaccatcag	caacctggag	300
	caggaggaca	tcgcccaccta	cttctgccag	cagggcaaca	ccctgcccata	cacccctcgga	360
	ggcggcacca	agctggagat	acccaaggcc	ggaggcggag	gctctggcgg	aggcggctct	420
	ggcggaggcg	gctctggcgg	aggcggcagc	gaggtgaagc	tgcaggagtc	tggcccgaggc	480
	ctggtggccc	caagccagag	cctgagcgtg	acctgcaccg	tgagcggcgt	gagcctgccc	540
	gactacggcg	tgagctggat	caggcagccc	ccacggaagg	gcctggagtg	gctggccgtg	600
	atctggggca	gcgagaccac	ctactacaac	agcgcctga	agagccggct	gaccatcatc	660
	aaggacaaca	gcaagagcca	ggtgttcctg	aagatgaaca	gcctgcagac	cgacgacacc	720
	gccatctact	actgcgccaa	gcactactac	tatggcggca	gctacgctat	ggactactgg	780
	ggccaggggca	ccagcgtgac	cgtgagctca	gatcccacca	cgacgcccagc	gccgcgacca	840
	ccaacaccgg	cgcaccat	cgcgtcgag	cccctgtccc	tgcgccaga	ggcgtgcccgg	900
	ccagcggcgg	ggggcgcagt	gcacacgagg	gggctggact	tcgcctgtga	tatctttgg	960
	gtgctggtgg	tggttggtgg	agtctggct	tgctatagct	tgcttagtaac	agtggccttt	1020
	attattttct	gggtgaggag	agtgaagttc	agcaggagcg	cagacgcccc	cgcgtaccag	1080
	cagggccaga	accagctcta	taacgagctc	aatctaggac	gaagagagga	gtacgatgtt	1140
	ttggacaaga	gacgtggccg	ggaccctgag	atggggggaa	agccgagaag	gaagaaccct	1200
	caggaaggcc	tgtacaatga	actgcagaaa	gataagatgg	cgaggcccta	cagtgagatt	1260
	gggatgaaag	gcgagcgccg	gagggcaag	gggcacgatg	gcctttacca	gggtctcagt	1320
	acagccacca	aggacaccta	cgacgcctt	cacatgcagg	ccctgcctcc	tcgcagagcc	1380
	gagggcaggg	gaagtcttct	aacatgcggg	gacgtggagg	aaaatcccg	gccccatggag	1440
	accgacaccc	tgctgctgt	ggtgctgctg	ctgtgggtgc	caggcagcac	cggccaggtg	1500
	cagctgcagg	agtctggccc	aggcctggtg	aagcccagcc	agaccctgag	catcacctgc	1560
	accgtgagcg	gcttcagcct	ggccagctac	aacatccact	gggtgcggca	gccccccaggc	1620
	aagggcctgg	agtggctggg	cgtgatctgg	gctggcggca	gcaccaacta	caacagcgcc	1680
	ctgatgagcc	ggctgaccat	cagcaaggac	aacagcaaga	accaggttt	cctgaagatg	1740
	agcagcctga	cagccgccga	caccgcgtg	tactactgcg	ccaagcggag	cgacgactac	1800

pctgb2014053452-seq1.txt

agctggttcg cctactgggg ccagggcacc ctggtgaccg tgagctctgg cgaggcgcc	1860
tctggcggag gcggctctgg cgaggcgcc agcgagaacc agatgaccca gagccccagc	1920
agctttagcg ccagcgtggg cgaccgggtg accatgaccc gcagagccag cagcagcgtg	1980
agcagcagct acctgcactg gtaccagcag aagagcggca aggccccaaa ggtgtggatc	2040
tacagcacca gcaacctggc cagcggcgtg cccagccgt tcagcggcag cggcagcggc	2100
accgactaca ccctgaccat cagcagcctg cagcccgagg acttcgcccac ctactactgc	2160
cagcagtaca gcggctaccc catcaccttc ggccagggca ccaaggtgga gatcaagcgg	2220
tcggatcccg ccgagccaa atctcctgac aaaactcaca catgcccacc gtgcccagca	2280
cctcccggtt ccggcccgtc agtcttcctc ttccccccaa aacccaagga caccctcatg	2340
atcgcccgga cccctgaggt cacatgcgtg gtgggtggacg tgagccacga agaccctgag	2400
gtcaagttca actggtagt ggacggcgtg gaggtgcata atgccaagac aaagccgcgg	2460
gaggagcagt acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct gcaccaggac	2520
tggctgaatg gcaaggagta caagtgcag gtctccaaca aagccctccc agccccatc	2580
gagaaaaacca tctccaaagc caaagggcag ccccgagaac cacaggtgta caccctgccc	2640
ccatcccggtt atgagctgac caagaaccag gtcagcctga cctgcctggt caaaggcttc	2700
tatcccagcg acatgcgcgt ggagtgggag agcaatgggc aaccggagaa caactacaag	2760
accacgcctc ccgtgctgga ctccgacggc tccttcttcc tctacagcaa gtcaccgtg	2820
gacaagagca ggtggcagca ggggaacgtc ttctcatgct ccgtgatgca tgaggccctg	2880
cacaatcaat atacccagaa atctctgagt ctgagcccag gcaagaagga ccccaaggcg	2940
gtttttggct gtatcttgg tgccctgggtt attgtgactg tggaggctt catttctgg	3000
agaaagaaga gaaaaagatgc aaagaataat gaagtgtcct tttctcaaataa taaacctaaa	3060
aaatctaagt taatcagagt ggagaatttt gaggcctact tcaagaagca gcaagctgac	3120
tccaaactgtg gtttcgcaga ggaatacgaa gatctgaagc ttgttggaaat tagtcaacct	3180
aaatatgcag cagaactggc tgagaataga ggaaagaatc gctataataa ttttctgccc	3240
tatgatattt cccgtgtcaa actttcggtc cagaccattt caacggatga ctacatcaat	3300
gccaactaca tgcctggcta ccactccaag aaagattttt ttgccacaca aggaccttta	3360
ccgaacactt tgaaagattt ttggcgtatg gtttggaga aaaatgtata tgccatcatt	3420
atgttgacta aatgtgttga acagggaga accaaatgtg aggagtattt gccccttcaag	3480
caggctcagg actatggaga cataactgtg gcaatgacat cagaaattgt tcttccggaa	3540
tggaccatca gagatttcac agtggaaaaat atccagacaa gtgagagtca ccctctgaga	3600
cagttccatt tcacccctg gccagaccac ggtgttcccg acaccactga cctgctcatc	3660

pctgb2014053452-seq1.txt
aacttccgtt acctcggtcg tgactacatg aagcagagtc ctcccaatc gccgattctg 3720
gtgcattgca gtgcgtgggtt cgaaaggacg ggcactttca ttgccattga tcgtctcatc 3780
taccagatag agaatgagaa caccgtggat gtgtatggaa ttgtgtatga ctttcgaatg 3840
cataggcctt taatggtgca gacagaggac cagtatgttt tcctcaatca gtgtgtttt 3900
gatattgtca gatcccagaa agactcaaaa gtagatctta tctaccagaa cacaactgca 3960
atgacaatct atgaaaacct tgcccccgtg accacattt gaaagaccaa tggttacatc 4020
gcctaa 4026

<210> 43
<211> 1341
<212> PRT
<213> Artificial Sequence
<220>
<223> single-chain variable fragment (scFv)
SFG.aCD19-CD8STK-CD28tmZ-2A-aCD5-HCH2CH3pvaa-dCD148

<400> 43

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu
1 5 10 15

His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
20 25 30

Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45

Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr
50 55 60

Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro
65 70 75 80

Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95

Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110

Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125

Lys Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
130 135 140

Ser Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly
Page 82

pctgb2014053452-seq1.txt

145	150	155	160
Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly			
165	170	175	
Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg			
180	185	190	
Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr			
195	200	205	
Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser			
210	215	220	
Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr			
225	230	235	240
Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Gly Gly Ser Tyr Ala			
245	250	255	
Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro			
260	265	270	
Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala			
275	280	285	
Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly			
290	295	300	
Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp			
305	310	315	320
Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val			
325	330	335	
Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg			
340	345	350	
Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn			
355	360	365	
Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg			
370	375	380	
Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro			
385	390	395	400

pctgb2014053452-seq1.txt

Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
405 410 415

Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430

Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
435 440 445

Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly
450 455 460

Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Glu
465 470 475 480

Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser
485 490 495

Thr Gly Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Lys Pro
500 505 510

Ser Gln Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser
515 520 525

Thr Ser Gly Met Gly Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Gly
530 535 540

Leu Glu Trp Leu Ala His Ile Trp Trp Asp Asp Asp Val Tyr Tyr Asn
545 550 555 560

Pro Ser Leu Lys Asn Gln Leu Thr Ile Ser Lys Asp Ala Ser Arg Asp
565 570 575

Gln Val Phe Leu Lys Ile Thr Asn Leu Asp Thr Ala Asp Thr Ala Thr
580 585 590

Tyr Tyr Cys Val Arg Arg Arg Ala Thr Gly Thr Gly Phe Asp Tyr Trp
595 600 605

Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Gly Gly Gly Ser Gly
610 615 620

Gly Gly Gly Ser Gly Gly Gly Ser Asn Ile Val Met Thr Gln Ser
625 630 635 640

His Lys Phe Met Ser Thr Ser Val Gly Asp Arg Val Ser Ile Ala Cys
645 650 655

pctgb2014053452-seq1.txt

Lys Ala Ser Gln Asp Val Gly Thr Ala Val Ala Trp Tyr Gln Gln Lys
660 665 670

Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Trp Thr Ser Thr Arg His
675 680 685

Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe
690 695 700

Thr Leu Thr Ile Thr Asn Val Gln Ser Glu Asp Leu Ala Asp Tyr Phe
705 710 715 720

Cys His Gln Tyr Asn Ser Tyr Asn Thr Phe Gly Ser Gly Thr Arg Leu
725 730 735

Glu Leu Lys Arg Ser Asp Pro Ala Glu Pro Lys Ser Pro Asp Lys Thr
740 745 750

His Thr Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val
755 760 765

Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ala Arg Thr
770 775 780

Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu
785 790 795 800

Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys
805 810 815

Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser
820 825 830

Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys
835 840 845

Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile
850 855 860

Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro
865 870 875 880

Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
885 890 895

Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn
900 905 910

pctgb2014053452-seq1.txt

Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser
915 920 925

Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg
930 935 940

Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu
945 950 955 960

His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Lys
965 970 975

Asp Pro Lys Ala Val Phe Gly Cys Ile Phe Gly Ala Leu Val Ile Val
980 985 990

Thr Val Gly Gly Phe Ile Phe Trp Arg Lys Lys Arg Lys Asp Ala Lys
995 1000 1005

Asn Asn Glu Val Ser Phe Ser Gln Ile Lys Pro Lys Lys Ser Lys
1010 1015 1020

Leu Ile Arg Val Glu Asn Phe Glu Ala Tyr Phe Lys Lys Gln Gln
1025 1030 1035

Ala Asp Ser Asn Cys Gly Phe Ala Glu Glu Tyr Glu Asp Leu Lys
1040 1045 1050

Leu Val Gly Ile Ser Gln Pro Lys Tyr Ala Ala Glu Leu Ala Glu
1055 1060 1065

Asn Arg Gly Lys Asn Arg Tyr Asn Asn Val Leu Pro Tyr Asp Ile
1070 1075 1080

Ser Arg Val Lys Leu Ser Val Gln Thr His Ser Thr Asp Asp Tyr
1085 1090 1095

Ile Asn Ala Asn Tyr Met Pro Gly Tyr His Ser Lys Lys Asp Phe
1100 1105 1110

Ile Ala Thr Gln Gly Pro Leu Pro Asn Thr Leu Lys Asp Phe Trp
1115 1120 1125

Arg Met Val Trp Glu Lys Asn Val Tyr Ala Ile Ile Met Leu Thr
1130 1135 1140

Lys Cys Val Glu Gln Gly Arg Thr Lys Cys Glu Glu Tyr Trp Pro
Page 86

1150 pctgb2014053452-seq1.txt 1155

Ser Lys Gln Ala Gln Asp Tyr Gly Asp Ile Thr Val Ala Met Thr
 1160 1165 1170
 Ser Glu Ile Val Leu Pro Glu Trp Thr Ile Arg Asp Phe Thr Val
 1175 1180 1185 1190
 Lys Asn Ile Gln Thr Ser Glu Ser His Pro Leu Arg Gln Phe His
 1195 1200
 Phe Thr Ser Trp Pro Asp His Gly Val Pro Asp Thr Thr Asp Leu
 1205 1210 1215
 Leu Ile Asn Phe Arg Tyr Leu Val Arg Asp Tyr Met Lys Gln Ser
 1220 1225 1230
 Pro Pro Glu Ser Pro Ile Leu Val His Cys Ser Ala Gly Val Gly
 1235 1240 1245
 Arg Thr Gly Thr Phe Ile Ala Ile Asp Arg Leu Ile Tyr Gln Ile
 1250 1255 1260
 Glu Asn Glu Asn Thr Val Asp Val Tyr Gly Ile Val Tyr Asp Leu
 1265 1270 1275
 Arg Met His Arg Pro Leu Met Val Gln Thr Glu Asp Gln Tyr Val
 1280 1285 1290
 Phe Leu Asn Gln Cys Val Leu Asp Ile Val Arg Ser Gln Lys Asp
 1295 1300 1305
 Ser Lys Val Asp Leu Ile Tyr Gln Asn Thr Thr Ala Met Thr Ile
 1310 1315 1320
 Tyr Glu Asn Leu Ala Pro Val Thr Thr Phe Gly Lys Thr Asn Gly
 1325 1330 1335
 Tyr Ile Ala
 1340

<210> 44
<211> 4026
<212> DNA
<213> Artificial Sequence

<220>
<223> Single-chain variable fragment (scFv)
SFG.aCD19-CD8STK-CD28tmZ-2A-aCD5-HCH2CH3pvaa-dCD148

pctgb2014053452-seq1.txt

<400> 44
atgagcctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca cgccgccaga 60
ccagacatcc agatgaccca gaccaccagc agcctgagcg ccagcctggg cgaccgggtg 120
accatca gctgatctac cacaccagcc ggctgcacag cggcgtgccc 240
cccgacggca ccgtgaagct gctgatctac cacaccagcc ggctgcacag cggcgtgccc 300
agccggttca gcggcagcgg cagcggcacc gactacagcc tgaccatcag caacctggag 360
caggaggaca tcgcccaccta cttctgccag cagggcaaca ccctgcccata cacttcgga 420
ggcggcacca agctggagat caccaaggcc ggaggcggag gctctggcgg aggccgctct 480
ggcggaggcg gctctggcgg aggccgagc gaggtgaagc tgcaggagtc tggcccgagc 540
ctggcggccca caagccagag cctgagcgtg acctgcaccg tgagcggcgt gagcctgccc 600
gactacggcg tgagctggat caggcagccc ccacggaagg gcctggagtg gctggcgtg 660
atctggggca gcgagaccac ctactacaac agcgcctga agagccggct gaccatcatc 720
aaggacaaca gcaagagcca ggtgttcctg aagatgaaca gcctgcagac cgacgacacc 780
gccatctact actgcgccaa gcactactac tatggcggca gctacgctat ggactactgg 840
ggccaggggca ccagcgtgac cgtgagctca gatcccacca cgacgcccagc gccgcgacca 900
ccaacaccgg cgccaccat cgcgtcgag cccctgtccc tgcgcccaga ggcgtgcccgg 960
ccagcggcgg gggcgcagt gcacacgagg gggctggact tcgcctgtga tatctttgg 1020
gtgctggcgg tgggtggcgg agtcctggct tgctatagct tgcttagtaac agtggccctt 1080
attattttct gggtgaggag agtgaagttc agcaggagcg cagacgcccc cgcttaccag 1140
cagggccaga accagctcta taacgagctc aatctaggac gaagagagga gtacgatgtt 1200
ttggacaaga gacgtggccg ggaccctgag atggggggaa agccgagaag gaagaaccct 1260
caggaaggcc tgtacaatga actgcagaaa gataagatgg cggaggccta cagttagatt 1320
gggatgaaag gcgagcgcgg gagggcaag gggcacatg gcctttacca gggctcagt 1380
acagccacca aggacaccta cgacgcctt cacatgcagg ccctgcctcc tcgcagagcc 1440
gagggcaggg gaagtcttct aacatgcggg gacgtggagg aaaatccgg gcccattggag 1500
accgacaccc tgctgctgtg ggtgctgctg ctgtgggtgc ccggcagcac cggccaggtg 1560
accctgaagg agagcggtcc cggcatcctg aagcccagcc agaccctgag cctgaccctgc 1620
agcttcagcg gcttcagcct gacgaccagc ggcattggcg tggctggat tcggcagccc 1680
agcggcaagg gcctggagtg gctggccac atctggtggg acgacgacgt gtactacaac 1740
cccagcctga agaaccagct gacccatcagc aaggacgcca gccgggacca ggtgttcctg 1800
aagatcacca acctggacac cggcgcacacc gccacctact actgcgtgcg ggcggccggc 1860
accggcaccg gcttcgacta ctggggccag ggcaccaccc tgaccgtgag cagcggtggc

pctgb2014053452-seq1.txt

ggtgtgcagcg	gcggcggcgg	aagcggaggt	ggtgtgcagca	acatcgtgat	gacccagagc	1920
cacaagttca	tgagcaccag	cgtggcgac	cgggtgagca	tcgcctgaa	ggccagccag	1980
gacgtggca	ccgcccgtggc	ctggtaccag	cagaagcctg	gccagagccc	caagctgctg	2040
atctactgga	ccagcacccg	gcacaccggc	gtgcccgacc	ggttcaccgg	cagcggcagc	2100
ggcaccgact	tcaccctgac	catcaccaac	gtgcagagcg	aggacctggc	cgactacttc	2160
tgccaccagt	acaacagcta	caacaccccttc	ggcagcggca	cccggctgga	gctgaagcgg	2220
tcggatccc	ccgagccaa	atctcctgac	aaaactcaca	catgcccacc	gtgcccagca	2280
cctccctgtgg	ccggcccg	tc	ttccccccaa	aacccaagga	caccctcatg	2340
atcgccccga	cccctgaggt	cacatgcgtg	gtgggtggacg	tgagccacga	agaccctgag	2400
gtcaagttca	actggtacgt	ggacggcgtg	gaggtgcata	atgccaagac	aaagccgcgg	2460
gaggagcagt	acaacagcac	gtaccgtgtg	gtcagcgtcc	tcaccgtcct	gcaccaggac	2520
tggctgaatg	gcaaggagta	caagtgc	gtctccaaca	aagccctccc	agccccatc	2580
gagaaaaacca	tctccaaagc	caaagggcag	ccccgagaac	cacaggtgta	caccctgccc	2640
ccatcccggg	atgagctgac	caagaaccag	gtcagcctga	cctgcctggt	caaaggcttc	2700
tatcccagcg	acatcgccgt	ggagtggag	agcaatgggc	aaccggagaa	caactacaag	2760
accacgcctc	ccgtgctgga	ctccgacggc	tccttcttcc	tctacagcaa	gctcaccgtg	2820
gacaagagca	ggtgtgcagca	ggggAACGTC	ttctcatgct	ccgtgatgca	tgaggccctg	2880
cacaatca	atacccagaa	atctctgagt	ctgagcccag	gcaagaagga	ccccaaaggcg	2940
gtttttggct	gtatcttgg	tgccctggtt	attgtgactg	tgggaggctt	catcttctgg	3000
agaaagaaga	ggaaagatgc	aaagaataat	gaagtgtcct	tttctcaa	taaacctaaa	3060
aaatctaagt	taatcagagt	ggagaatttt	gaggcctact	tcaagaagca	gcaagctgac	3120
tccaaactgtg	ggttcgcaga	ggaatacgaa	gatctgaagc	ttgttggaa	tagtcaacct	3180
aaatatgcag	cagaactggc	tgagaataga	ggaaagaatc	gctataataa	tgttctgccc	3240
tatgatattt	cccggtcaa	acttcggc	cagaccatt	caacggatga	ctacatcaat	3300
gccaactaca	tgcctggcta	ccactccaag	aaagatttt	ttgccacaca	aggaccttta	3360
ccgaacactt	tgaaagattt	ttggcgtatg	gtttggaga	aaaatgtata	tgccatcatt	3420
atgttgcata	aatgtgttga	acagggaga	accaaatgtg	aggagtattg	gccctccaag	3480
caggctcagg	actatggaga	cataactgtg	gcaatgacat	cagaattgt	tctccggaa	3540
tggaccatca	gagatttcac	agtaaaaat	atccagacaa	gtgagagtca	ccctctgaga	3600
cagttccatt	tcacccctg	gccagaccac	ggtgttccc	acaccactga	cctgctcatc	3660
aacttccgt	acctcggtcg	tgactacatg	aagcagagtc	ctcccaatc	gccgattctg	3720

pctgb2014053452-seq1.txt

gtgcattgca	gtgctggggt	cggaaggacg	ggcactttca	ttgccattga	tcgtctcatc	3780
taccagatag	agaatgagaa	caccgtggat	gtgtatggga	ttgtgtatga	ccttcgaatg	3840
cataggcctt	taatggtgca	gacagaggac	cagtatgtt	tcctcaatca	gtgtgtttg	3900
gatattgtca	gatcccagaa	agactcaaaa	gtagatctt	tctaccagaa	cacaactgca	3960
atgacaatct	atgaaaacct	tgcgcccgtg	accacattt	gaaagaccaa	tggttacatc	4020
gcctaa						4026

<210> 45
<211> 1342
<212> PRT
<213> Artificial sequence

<220>
<223> Single-chain variable fragment (scFv)
SFG.aCD19-CD8STK-CD28tmZ-2A-aEGFRVIII-HCH2CH3pva-a-dCD148

<400> 45

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu
1 5 10 15

His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
20 25 30

Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45

Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr
50 55 60

Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro
65 70 75 80

Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95

Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110

Asn Thr Leu Pro Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125

Lys Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
130 135 140

Ser Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly
145 150 155 160

pctgb2014053452-seq1.txt

Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175

Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190

Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr
195 200 205

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser
210 215 220

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr
225 230 235 240

Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255

Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro
260 265 270

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
275 280 285

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
290 295 300

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp
305 310 315 320

Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335

Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg
340 345 350

Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
355 360 365

Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
370 375 380

Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro
385 390 395 400

Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
405 410 415

pctgb2014053452-seq1.txt

Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430

Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
435 440 445

Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly
450 455 460

Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Glu
465 470 475 480

Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser
485 490 495

Thr Gly Gln Val Lys Leu Gln Gln Ser Gly Gly Gly Leu Val Lys Pro
500 505 510

Gly Ala Ser Leu Lys Leu Ser Cys Val Thr Ser Gly Phe Thr Phe Arg
515 520 525

Lys Phe Gly Met Ser Trp Val Arg Gln Thr Ser Asp Lys Arg Leu Glu
530 535 540

Trp Val Ala Ser Ile Ser Thr Gly Gly Tyr Asn Thr Tyr Tyr Ser Asp
545 550 555 560

Asn Val Lys Gly Arg Phe Thr Ile Ser Arg Glu Asn Ala Lys Asn Thr
565 570 575

Leu Tyr Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Leu Tyr
580 585 590

Tyr Cys Thr Arg Gly Tyr Ser Ser Thr Ser Tyr Ala Met Asp Tyr Trp
595 600 605

Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly
610 615 620

Gly Gly Gly Ser Gly Gly Gly Ser Asp Ile Glu Leu Thr Gln Ser
625 630 635 640

Pro Ala Ser Leu Ser Val Ala Thr Gly Glu Lys Val Thr Ile Arg Cys
645 650 655

Met Thr Ser Thr Asp Ile Asp Asp Asp Met Asn Trp Tyr Gln Gln Lys
Page 92

pctgb2014053452-seq1.txt
660 665 670

Pro Gly Glu Pro Pro Lys Phe Leu Ile Ser Glu Gly Asn Thr Leu Arg
675 680 685

Pro Gly Val Pro Ser Arg Phe Ser Ser Ser Gly Thr Gly Thr Asp Phe
690 695 700

Val Phe Thr Ile Glu Asn Thr Leu Ser Glu Asp Val Gly Asp Tyr Tyr
705 710 715 720

Cys Leu Gln Ser Phe Asn Val Pro Leu Thr Phe Gly Asp Gly Thr Lys
725 730 735

Leu Glu Ile Lys Arg Ser Asp Pro Ala Glu Pro Lys Ser Pro Asp Lys
740 745 750

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser
755 760 765

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ala Arg
770 775 780

Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro
785 790 795 800

Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala
805 810 815

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val
820 825 830

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr
835 840 845

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr
850 855 860

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu
865 870 875 880

Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys
885 890 895

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
900 905 910

pctgb2014053452-seq1.txt

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp
915 920 925

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser
930 935 940

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala
945 950 955 960

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
965 970 975

Lys Asp Pro Lys Ala Val Phe Gly Cys Ile Phe Gly Ala Leu Val Ile
980 985 990

Val Thr Val Gly Gly Phe Ile Phe Trp Arg Lys Lys Arg Lys Asp Ala
995 1000 1005

Lys Asn Asn Glu Val Ser Phe Ser Gln Ile Lys Pro Lys Lys Ser
1010 1015 1020

Lys Leu Ile Arg Val Glu Asn Phe Glu Ala Tyr Phe Lys Lys Gln
1025 1030 1035

Gln Ala Asp Ser Asn Cys Gly Phe Ala Glu Glu Tyr Glu Asp Leu
1040 1045 1050

Lys Leu Val Gly Ile Ser Gln Pro Lys Tyr Ala Ala Glu Leu Ala
1055 1060 1065

Glu Asn Arg Gly Lys Asn Arg Tyr Asn Asn Val Leu Pro Tyr Asp
1070 1075 1080

Ile Ser Arg Val Lys Leu Ser Val Gln Thr His Ser Thr Asp Asp
1085 1090 1095

Tyr Ile Asn Ala Asn Tyr Met Pro Gly Tyr His Ser Lys Lys Asp
1100 1105 1110

Phe Ile Ala Thr Gln Gly Pro Leu Pro Asn Thr Leu Lys Asp Phe
1115 1120 1125

Trp Arg Met Val Trp Glu Lys Asn Val Tyr Ala Ile Ile Met Leu
1130 1135 1140

Thr Lys Cys Val Glu Gln Gly Arg Thr Lys Cys Glu Glu Tyr Trp
1145 1150 1155

pctgb2014053452-seq1.txt

Pro Ser Lys Gln Ala Gln Asp Tyr Gly Asp Ile Thr Val Ala Met
1160 1165 1170

Thr Ser Glu Ile Val Leu Pro Glu Trp Thr Ile Arg Asp Phe Thr
1175 1180 1185

Val Lys Asn Ile Gln Thr Ser Glu Ser His Pro Leu Arg Gln Phe
1190 1195 1200

His Phe Thr Ser Trp Pro Asp His Gly Val Pro Asp Thr Thr Asp
1205 1210 1215

Leu Leu Ile Asn Phe Arg Tyr Leu Val Arg Asp Tyr Met Lys Gln
1220 1225 1230

Ser Pro Pro Glu Ser Pro Ile Leu Val His Cys Ser Ala Gly Val
1235 1240 1245

Gly Arg Thr Gly Thr Phe Ile Ala Ile Asp Arg Leu Ile Tyr Gln
1250 1255 1260

Ile Glu Asn Glu Asn Thr Val Asp Val Tyr Gly Ile Val Tyr Asp
1265 1270 1275

Leu Arg Met His Arg Pro Leu Met Val Gln Thr Glu Asp Gln Tyr
1280 1285 1290

Val Phe Leu Asn Gln Cys Val Leu Asp Ile Val Arg Ser Gln Lys
1295 1300 1305

Asp Ser Lys Val Asp Leu Ile Tyr Gln Asn Thr Thr Ala Met Thr
1310 1315 1320

Ile Tyr Glu Asn Leu Ala Pro Val Thr Thr Phe Gly Lys Thr Asn
1325 1330 1335

Gly Tyr Ile Ala
1340

<210> 46
<211> 4029
<212> DNA
<213> Artificial Sequence

<220>
<223> single-chain variable fragment (scFv)
SFG.aCD19-CD8STK-CD28tmZ-2A-aEGFRVIII-HCH2CH3pvaa-dCD148

<400> 46

pctgb2014053452-seq1.txt

atgagcctgc	ccgtgaccgc	cctgctgctg	cccctggccc	tgctgctgca	cgccgccaga	60
ccagacatcc	agatgaccca	gaccaccagc	gcctgagcg	ccagcctggg	cgaccgggtg	120
accatcagct	gcagagccag	ccaggacatc	agcaagtacc	tgaactggta	ccagcagaag	180
cccgacggca	ccgtgaagct	gctgatctac	cacaccagcc	ggctgcacag	cggcgtgccc	240
agccggttca	gccccggcgg	cagcggcacc	gactacagcc	tgaccatcag	caacctggag	300
caggaggaca	tcgcccaccta	cttctgccag	cagggcaaca	ccctgccccta	cacccctcgga	360
ggcggcacca	agctggagat	caccaaggcc	ggaggcggag	gctctggcgg	aggcggctct	420
ggcggaggcg	gctctggcgg	aggcggcagc	gaggtgaagc	tgcaggagtc	tggcccaggc	480
ctgggtggccc	caagccagag	cctgagcgtg	acctgcaccg	tgagcggcgt	gagcctgccc	540
gactacggcg	tgagctggat	caggcagccc	ccacggaagg	gcctggagtg	gctggcgtg	600
atctggggca	gcgagaccac	ctactacaac	agcgccctga	agagccggct	gaccatcatc	660
aaggacaaca	gcaagagcca	ggtgttcctg	aagatgaaca	gcctgcagac	cgacgacacc	720
gccatctact	actgcgccaa	gcactactac	tatggcggca	gctacgctat	ggactactgg	780
ggccagggca	ccagcgtgac	cgtgagctca	gatcccacca	cgacgcccagc	gccgcgacca	840
ccaacacccg	cgccccaccat	cgcgtcgcag	cccctgtccc	tgcccccaga	ggcgtgcccgg	900
ccagcggcgg	ggggcgcagt	gcacacgagg	gggctggact	tcgcctgtga	tatctttgg	960
gtgctggtgg	tgggtggtgg	agtccctggct	tgctatacgat	tgcttagtaac	agtggccctt	1020
attattttct	gggtgaggag	agtgaagttc	agcaggagcg	cagacgcccc	cgcgtaccag	1080
cagggccaga	accagctcta	taacgagctc	aatctaggac	gaagagagga	gtacgtatgtt	1140
ttggacaaga	gacgtggccg	ggaccctgag	atggggggaa	agccgagaag	gaagaaccct	1200
caggaaggcc	tgtacaatga	actgcagaaa	gataagatgg	cgaggcccta	cagtgagatt	1260
gggatgaaag	gcgagcgccg	gaggggcaag	gggcacgatg	gcctttacca	gggtctcagt	1320
acagccacca	aggacaccta	cgacgcccctt	cacatgcagg	ccctgcctcc	tcgcagagcc	1380
gagggcaggg	gaagtcttct	aacatgcggg	gacgtggagg	aaaatcccgg	gccccatggag	1440
accgacaccc	tgctgctgtg	ggtgctgctg	ctgtgggtgc	ccggcagcac	cggccaggtg	1500
aagctgcagc	agagcggcgg	aggcctggtg	aagcccggcg	ccagcctgaa	gctgagctgc	1560
gtgaccagcg	gcttcacctt	ccggaagttc	ggcatgagct	gggtgcggca	gaccagcgac	1620
aagcggctgg	agtgggtggc	cagcatcagc	accggcggct	acaacaccta	ctacagcgac	1680
aacgtgaagg	gccgggatcac	catcagccgg	gagaacgcca	agaacaccct	gtacctgcag	1740
atgagcagcc	tgaagagcga	ggacaccgcc	ctgtactact	gcacccgggg	ctacagcagc	1800
accagctacg	ctatggacta	ctggggccag	ggcaccaccg	tgacagttag	cagcggcgga	1860
ggaggcagtg	gtgggggtgg	atctggcgg	ggtggcagcg	acatcgagct	gacccagagc	1920

pctgb2014053452-seq1.txt

cccgccagcc tgagcgtggc caccggcgag aaggtgacca tccgggtcat gaccagcacc	1980
gacatcgacg acgacatgaa ctggtaccag cagaagcccc gcgagcccc aaagttcctg	2040
atcagcgagg gcaacaccct gcggcccgcc gtgccagcc ggttcagcag cagcggcacc	2100
ggcaccgact tcgtgttac catcgagaac accctgagcg aggacgtggg cgactactac	2160
tgcctgcaga gcttcaacgt gcccctgacc ttcggcagcg gcaccaagct ggagatcaag	2220
cggtcggatc ccgcccggcc caaatctcct gacaaaactc acacatgccc accgtgccc	2280
gcacccccc tggccggccc gtcagtcttc ctctcccccaaaaacccaa ggacaccctc	2340
atgatcgccc ggacccctga ggtcacatgc gtgggtgtgg acgtgagcca cgaagaccct	2400
gaggtcaagt tcaactggta cgtggacggc gtggaggtgc ataatgccaa gacaaagccg	2460
cgggaggagc agtacaacag cacgtaccgt gtggtcagcg tcctcaccgt cctgcaccag	2520
gactggctga atggcaagga gtacaagtgc aaggtctcca acaaagccct cccagcccc	2580
atcgagaaaa ccatctccaa agccaaaggg cagccccgag aaccacaggt gtacaccctg	2640
cccccatccc gggatgagct gaccaagaac caggtcagcc tgacctgcct ggtcaaaggc	2700
ttctatccca gcgacatcgc cgtggagtgg gagagcaatg ggcaaccgga gaacaactac	2760
aagaccacgc ctcccgtgct ggactccgac ggctccttct tcctctacag caagctcacc	2820
gtggacaaga gcaggtggca gcaggggaac gtcttctcat gctccgtat gcatgaggcc	2880
ctgcacaatc actataccca gaaatctctg agtctgagcc caggcaagaa ggaccccaag	2940
gcggttttg gctgtatctt tgggccctg gttattgtga ctgtggagg cttcatcttc	3000
tggagaaaga agagggaaaga tgcaaagaat aatgaagtgt cctttctca aattaaacct	3060
aaaaaaatcta agttaatcag agtggagaat tttgaggcct acttcaagaa gcagcaagct	3120
gactccaact gtgggttcgc agaggaatac gaagatctga agttgttg aattagtcaa	3180
cctaaatatg cagcagaact ggctgagaat agagggaaaga atcgctataa taatgttctg	3240
ccctatgata tttccgtgt caaactttcg gtccagaccc attcaacgga tgactacatc	3300
aatgccaact acatgcctgg ctaccactcc aagaaagatt ttattgccac acaaggacct	3360
ttaccgaaca ctttgaaga aaaaaatgt atatgccatc attatgtga ctaaatgtgt tgaacaggaa agaaccaa atgtgaggatgttgc	3420
aagcaggctc aggactatgg agacataact gtggcaatga catcagaaat tggccctcc	3480
aatgtggacca tcagagattt cacagtggaa aatatccaga caagtggagatcaccctcg	3540
agacagttcc atttcacccctc ctggccagac cacgggttcc ccgacaccac tgacctgctc	3600
atcaacttcc ggtacctcgatcgt tcgtgactac atgaagcaga gtcctccga atcgccgatt	3660
ctgggtgcatt gcagtgtgg ggtcgaaagg acgggcactt tcattgccat tgatcgtctc	3720
	3780

pctgb2014053452-seq1.txt
atctaccaga tagagaatga gaacaccgtg gatgtgtatg ggattgtgta tgaccttcga 3840
atgcataggc cttaatggt gcagacagag gaccagtatg ttttcctcaa tcagtgtgtt 3900
ttggatattg tcagatccca gaaagactca aaagtagatc ttatctacca gaacacaact 3960
gcaatgacaa tctatgaaaa cttgcgccc gtgaccacat ttggaaagac caatggttac 4020
atcgccctaa 4029

<210> 47
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Immunoreceptor tyrosine-based inhibition motif (ITIM)

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa may be Ser, Ile, Val or Leu

<220>
<221> misc_feature
<222> (2)..(2)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> misc_feature
<222> (4)..(5)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa may be Ile, Val or Leu

<400> 47

Xaa Xaa Tyr Xaa Xaa Xaa
1 5

<210> 48
<211> 1114
<212> PRT
<213> Artificial Sequence

<220>
<223> Amino acid sequence of a AND NOT gate
(16076.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33g1x-muCD8STK-tm-dPTP
N6)

<400> 48

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu
1 5 10 15

His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
Page 98

20

pctgb2014053452-seq1.txt
25 30

Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45

Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr
50 55 60

Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro
65 70 75 80

Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95

Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110

Asn Thr Leu Pro Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125

Lys Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
130 135 140

Ser Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly
145 150 155 160

Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175

Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190

Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr
195 200 205

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser
210 215 220

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr
225 230 235 240

Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255

Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro
260 265 270

pctgb2014053452-seq1.txt

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
275 280 285

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
290 295 300

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp
305 310 315 320

Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335

Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg
340 345 350

Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
355 360 365

Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
370 375 380

Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro
385 390 395 400

Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
405 410 415

Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430

Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
435 440 445

Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly
450 455 460

Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala
465 470 475 480

Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr Asp Ala
485 490 495

Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510

Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr
515 520 525

pctgb2014053452-seq1.txt

Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
530 535 540

Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe
545 550 555 560

Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser Leu
565 570 575

Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr
580 585 590

Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly
595 600 605

Gly Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly
610 615 620

Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu
625 630 635 640

Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe
645 650 655

Thr Leu Ser Asn Tyr Gly Met His Trp Ile Arg Gln Ala Pro Gly Lys
660 665 670

Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685

Tyr Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala
690 695 700

Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
705 710 715 720

Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735

Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro
740 745 750

Ala Thr Thr Thr Lys Pro Val Leu Arg Thr Pro Ser Pro Val His Pro
755 760 765

Thr Gly Thr Ser Gln Pro Gln Arg Pro Glu Asp Cys Arg Pro Arg Gly
770 775 780

pctgb2014053452-seq1.txt

Ser Val Lys Gly Thr Gly Leu Asp Phe Ala Cys Asp Ile Tyr Trp Ala
785 790 795 800

Pro Leu Ala Gly Ile Cys Val Ala Leu Leu Leu Ser Leu Ile Ile Thr
805 810 815

Leu Ile Cys Tyr His Arg Ser Arg Lys Arg Val Cys Lys Ser Gly Gly
820 825 830

Gly Ser Phe Trp Glu Glu Phe Glu Ser Leu Gln Lys Gln Glu Val Lys
835 840 845

Asn Leu His Gln Arg Leu Glu Gly Gln Arg Pro Glu Asn Lys Gly Lys
850 855 860

Asn Arg Tyr Lys Asn Ile Leu Pro Phe Asp His Ser Arg Val Ile Leu
865 870 875 880

Gln Gly Arg Asp Ser Asn Ile Pro Gly Ser Asp Tyr Ile Asn Ala Asn
885 890 895

Tyr Ile Lys Asn Gln Leu Leu Gly Pro Asp Glu Asn Ala Lys Thr Tyr
900 905 910

Ile Ala Ser Gln Gly Cys Leu Glu Ala Thr Val Asn Asp Phe Trp Gln
915 920 925

Met Ala Trp Gln Glu Asn Ser Arg Val Ile Val Met Thr Thr Arg Glu
930 935 940

Val Glu Lys Gly Arg Asn Lys Cys Val Pro Tyr Trp Pro Glu Val Gly
945 950 955 960

Met Gln Arg Ala Tyr Gly Pro Tyr Ser Val Thr Asn Cys Gly Glu His
965 970 975

Asp Thr Thr Glu Tyr Lys Leu Arg Thr Leu Gln Val Ser Pro Leu Asp
980 985 990

Asn Gly Asp Leu Ile Arg Glu Ile Trp His Tyr Gln Tyr Leu Ser Trp
995 1000 1005

Pro Asp His Gly Val Pro Ser Glu Pro Gly Gly Val Leu Ser Phe
1010 1015 1020

Leu Asp Gln Ile Asn Gln Arg Gln Glu Ser Leu Pro His Ala Gly

1025 1030 pctgb2014053452-seq1.txt
1035

Pro Ile Ile Val His Cys Ser Ala Gly Ile Gly Arg Thr Gly Thr
1040 1045 1050

Ile Ile Val Ile Asp Met Leu Met Glu Asn Ile Ser Thr Lys Gly
1055 1060 1065

Leu Asp Cys Asp Ile Asp Ile Gln Lys Thr Ile Gln Met Val Arg
1070 1075 1080

Ala Gln Arg Ser Gly Met Val Gln Thr Glu Ala Gln Tyr Lys Phe
1085 1090 1095

Ile Tyr Val Ala Ile Ala Gln Phe Ile Glu Thr Thr Lys Lys Lys
1100 1105 1110

Leu

<210> 49
<211> 918
<212> PRT
<213> Artificial sequence

<220>
<223> Amino acid sequence of a AND NOT gate
(MP16091.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33g1x-muCD8STK-LAIR1
tm-endo)

<400> 49

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu
1 5 10 15

His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
20 25 30

Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45

Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr
50 55 60

Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro
65 70 75 80

Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95

pctgb2014053452-seq1.txt

Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110

Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125

Lys Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
130 135 140

Ser Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly
145 150 155 160

Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175

Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190

Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr
195 200 205

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser
210 215 220

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr
225 230 235 240

Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255

Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro
260 265 270

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
275 280 285

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
290 295 300

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp
305 310 315 320

Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335

Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg
340 345 350

pctgb2014053452-seq1.txt

Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
355 360 365

Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
370 375 380

Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro
385 390 395 400

Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
405 410 415

Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430

Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
435 440 445

Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly
450 455 460

Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala
465 470 475 480

Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr Asp Ala
485 490 495

Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510

Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr
515 520 525

Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
530 535 540

Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe
545 550 555 560

Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser Leu
565 570 575

Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr
580 585 590

Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly
595 600 605

pctgb2014053452-seq1.txt

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly
610 615 620

Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu
625 630 635 640

Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe
645 650 655

Thr Leu Ser Asn Tyr Gly Met His Trp Ile Arg Gln Ala Pro Gly Lys
660 665 670

Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685

Tyr Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala
690 695 700

Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
705 710 715 720

Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735

Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro
740 745 750

Ala Thr Thr Thr Lys Pro Val Leu Arg Thr Pro Ser Pro Val His Pro
755 760 765

Thr Gly Thr Ser Gln Pro Gln Arg Pro Glu Asp Cys Arg Pro Arg Gly
770 775 780

Ser Val Lys Gly Thr Gly Leu Asp Phe Ala Cys Asp Ile Leu Ile Gly
785 790 795 800

Val Ser Val Val Phe Leu Phe Cys Leu Leu Leu Val Leu Phe Cys
805 810 815

Leu His Arg Gln Asn Gln Ile Lys Gln Gly Pro Pro Arg Ser Lys Asp
820 825 830

Glu Glu Gln Lys Pro Gln Gln Arg Pro Asp Leu Ala Val Asp Val Leu
835 840 845

Glu Arg Thr Ala Asp Lys Ala Thr Val Asn Gly Leu Pro Glu Lys Asp

pctgb2014053452-seq1.txt
850 855 860

Arg Glu Thr Asp Thr Ser Ala Leu Ala Ala Gly Ser Ser Gln Glu Val
865 870 875 880

Thr Tyr Ala Gln Leu Asp His Trp Ala Leu Thr Gln Arg Thr Ala Arg
885 890 895

Ala Val Ser Pro Gln Ser Thr Lys Pro Met Ala Glu Ser Ile Thr Tyr
900 905 910

Ala Ala Val Ala Arg His
915

<210> 50
<211> 1362
<212> PRT
<213> Artificial Sequence

<220>
<223> Amino acid sequence of a AND NOT gate
(MP16092_SFG_aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33g1x-muCD8STK-LAIR1
tm-endo-2A-PTPN6_SH2-dCD148)

<400> 50

Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu
1 5 10 15

His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
20 25 30

Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45

Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr
50 55 60

Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro
65 70 75 80

Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95

Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110

Asn Thr Leu Pro Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125

pctgb2014053452-seq1.txt

Lys Ala Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
130 135 140

Ser Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly
145 150 155 160

Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175

Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190

Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr
195 200 205

Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser
210 215 220

Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr
225 230 235 240

Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Gly Ser Tyr Ala
245 250 255

Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro
260 265 270

Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
275 280 285

Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly
290 295 300

Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp
305 310 315 320

Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335

Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg
340 345 350

Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
355 360 365

Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg
370 375 380

pctgb2014053452-seq1.txt

Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro
385 390 395 400

Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
405 410 415

Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430

Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
435 440 445

Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly
450 455 460

Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala
465 470 475 480

Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr Asp Ala
485 490 495

Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510

Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr
515 520 525

Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
530 535 540

Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe
545 550 555 560

Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser Leu
565 570 575

Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr
580 585 590

Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly
595 600 605

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly
610 615 620

Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu
625 630 635 640

pctgb2014053452-seq1.txt

Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe
645 650 655

Thr Leu Ser Asn Tyr Gly Met His Trp Ile Arg Gln Ala Pro Gly Lys
660 665 670

Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685

Tyr Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala
690 695 700

Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
705 710 715 720

Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735

Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro
740 745 750

Thr Thr Thr Lys Pro Val Leu Arg Thr Pro Ser Pro Val His Pro Thr
755 760 765

Gly Thr Ser Gln Pro Gln Arg Pro Glu Asp Cys Arg Pro Arg Gly Ser
770 775 780

Val Lys Gly Thr Gly Leu Asp Phe Ala Cys Asp Ile Leu Ile Gly Val
785 790 795 800

Ser Val Val Phe Leu Phe Cys Leu Leu Leu Val Leu Phe Cys Leu
805 810 815

His Arg Gln Asn Gln Ile Lys Gln Gly Pro Pro Arg Ser Lys Asp Glu
820 825 830

Glu Gln Lys Pro Gln Gln Arg Pro Asp Leu Ala Val Asp Val Leu Glu
835 840 845

Arg Thr Ala Asp Lys Ala Thr Val Asn Gly Leu Pro Glu Lys Asp Arg
850 855 860

Glu Thr Asp Thr Ser Ala Leu Ala Ala Gly Ser Ser Gln Glu Val Thr
865 870 875 880

Tyr Ala Gln Leu Asp His Trp Ala Leu Thr Gln Arg Thr Ala Arg Ala

Val Ser Pro Gln Ser Thr Lys Pro Met Ala Glu Ser Ile Thr Tyr Ala
900 905 910

Ala Val Ala Arg His Arg Ala Glu Gly Arg Gly Ser Leu Leu Thr Cys
915 920 925

Gly Asp Val Glu Glu Asn Pro Gly Pro Trp Tyr His Gly His Met Ser
930 935 940

Gly Gly Gln Ala Glu Thr Leu Leu Gln Ala Lys Gly Glu Pro Trp Thr
945 950 955 960

Phe Leu Val Arg Glu Ser Leu Ser Gln Pro Gly Asp Phe Val Leu Ser
965 970 975

Val Leu Ser Asp Gln Pro Lys Ala Gly Pro Gly Ser Pro Leu Arg Val
980 985 990

Thr His Ile Lys Val Met Cys Glu Gly Gly Arg Tyr Thr Val Gly Gly
995 1000 1005

Leu Glu Thr Phe Asp Ser Leu Thr Asp Leu Val Glu His Phe Lys
1010 1015 1020

Lys Thr Gly Ile Glu Glu Ala Ser Gly Ala Phe Val Tyr Leu Arg
1025 1030 1035

Gln Pro Tyr Ser Gly Gly Gly Ser Phe Glu Ala Tyr Phe Lys
1040 1045 1050

Lys Gln Gln Ala Asp Ser Asn Cys Gly Phe Ala Glu Glu Tyr Glu
1055 1060 1065

Asp Leu Lys Leu Val Gly Ile Ser Gln Pro Lys Tyr Ala Ala Glu
1070 1075 1080

Leu Ala Glu Asn Arg Gly Lys Asn Arg Tyr Asn Asn Val Leu Pro
1085 1090 1095

Tyr Asp Ile Ser Arg Val Lys Leu Ser Val Gln Thr His Ser Thr
1100 1105 1110

Asp Asp Tyr Ile Asn Ala Asn Tyr Met Pro Gly Tyr His Ser Lys
1115 1120 1125

pctgb2014053452-seq1.txt

Lys Asp Phe Ile Ala Thr Gln Gly Pro Leu Pro Asn Thr Leu Lys
1130 1135 1140

Asp Phe Trp Arg Met Val Trp Glu Lys Asn Val Tyr Ala Ile Ile
1145 1150 1155

Met Leu Thr Lys Cys Val Glu Gln Gly Arg Thr Lys Cys Glu Glu
1160 1165 1170

Tyr Trp Pro Ser Lys Gln Ala Gln Asp Tyr Gly Asp Ile Thr Val
1175 1180 1185

Ala Met Thr Ser Glu Ile Val Leu Pro Glu Trp Thr Ile Arg Asp
1190 1195 1200

Phe Thr Val Lys Asn Ile Gln Thr Ser Glu Ser His Pro Leu Arg
1205 1210 1215

Gln Phe His Phe Thr Ser Trp Pro Asp His Gly Val Pro Asp Thr
1220 1225 1230

Thr Asp Leu Leu Ile Asn Phe Arg Tyr Leu Val Arg Asp Tyr Met
1235 1240 1245

Lys Gln Ser Pro Pro Glu Ser Pro Ile Leu Val His Cys Ser Ala
1250 1255 1260

Gly Val Gly Arg Thr Gly Thr Phe Ile Ala Ile Asp Arg Leu Ile
1265 1270 1275

Tyr Gln Ile Glu Asn Glu Asn Thr Val Asp Val Tyr Gly Ile Val
1280 1285 1290

Tyr Asp Leu Arg Met His Arg Pro Leu Met Val Gln Thr Glu Asp
1295 1300 1305

Gln Tyr Val Phe Leu Asn Gln Cys Val Leu Asp Ile Val Arg Ser
1310 1315 1320

Gln Lys Asp Ser Lys Val Asp Leu Ile Tyr Gln Asn Thr Thr Ala
1325 1330 1335

Met Thr Ile Tyr Glu Asn Leu Ala Pro Val Thr Thr Phe Gly Lys
1340 1345 1350

Thr Asn Gly Tyr Ile Ala Ser Gly Ser
1355 1360

pctgb2014053452-seq1.txt

<210> 51
<211> 424
<212> PRT
<213> Artificial sequence

<220>
<223> APRIL-based (A proliferation-inducing ligand-based) CAR, CD8 stalk APRIL CAR

<400> 51

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15

Gly Ser Thr Gly Ser Val Leu His Leu Val Pro Ile Asn Ala Thr Ser
20 25 30

Lys Asp Asp Ser Asp Val Thr Glu Val Met Trp Gln Pro Ala Leu Arg
35 40 45

Arg Gly Arg Gly Leu Gln Ala Gln Gly Tyr Gly Val Arg Ile Gln Asp
50 55 60

Ala Gly Val Tyr Leu Leu Tyr Ser Gln Val Leu Phe Gln Asp Val Thr
65 70 75 80

Phe Thr Met Gly Gln Val Val Ser Arg Glu Gly Gln Gly Arg Gln Glu
85 90 95

Thr Leu Phe Arg Cys Ile Arg Ser Met Pro Ser His Pro Asp Arg Ala
100 105 110

Tyr Asn Ser Cys Tyr Ser Ala Gly Val Phe His Leu His Gln Gly Asp
115 120 125

Ile Leu Ser Val Ile Ile Pro Arg Ala Arg Ala Lys Leu Asn Leu Ser
130 135 140

Pro His Gly Thr Phe Leu Gly Phe Val Lys Leu Ser Gly Gly Ser
145 150 155 160

Asp Pro Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr
165 170 175

Ile Ala Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala
180 185 190

Ala Gly Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile
195 200 205

pctgb2014053452-seq1.txt

Phe Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu
210 215 220

Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser
225 230 235 240

Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr Pro Arg Arg Pro Gly
245 250 255

Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala
260 265 270

Ala Tyr Arg Ser Arg Asp Gln Arg Leu Pro Pro Asp Ala His Lys Pro
275 280 285

Pro Gly Gly Gly Ser Phe Arg Thr Pro Ile Gln Glu Glu Gln Ala Asp
290 295 300

Ala His Ser Thr Leu Ala Lys Ile Arg Val Lys Phe Ser Arg Ser Ala
305 310 315 320

Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu
325 330 335

Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly
340 345 350

Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu
355 360 365

Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser
370 375 380

Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly
385 390 395 400

Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu
405 410 415

His Met Gln Ala Leu Pro Pro Arg
420

<210> 52
<211> 398
<212> PRT
<213> Artificial sequence

<220>

<223> APRIL-based (A proliferation-inducing ligand-based) CAR, APRIL IgG1 hinge based CAR

<400> 52

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15

Gly Ser Thr Gly Ser Val Leu His Leu Val Pro Ile Asn Ala Thr Ser
20 25 30

Lys Asp Asp Ser Asp Val Thr Glu Val Met Trp Gln Pro Ala Leu Arg
35 40 45

Arg Gly Arg Gly Leu Gln Ala Gln Gly Tyr Gly Val Arg Ile Gln Asp
50 55 60

Ala Gly Val Tyr Leu Leu Tyr Ser Gln Val Leu Phe Gln Asp Val Thr
65 70 75 80

Phe Thr Met Gly Gln Val Val Ser Arg Glu Gly Gln Gly Arg Gln Glu
85 90 95

Thr Leu Phe Arg Cys Ile Arg Ser Met Pro Ser His Pro Asp Arg Ala
100 105 110

Tyr Asn Ser Cys Tyr Ser Ala Gly Val Phe His Leu His Gln Gly Asp
115 120 125

Ile Leu Ser Val Ile Ile Pro Arg Ala Arg Ala Lys Leu Asn Leu Ser
130 135 140

Pro His Gly Thr Phe Leu Gly Phe Val Lys Leu Ser Gly Gly Ser
145 150 155 160

Asp Pro Ala Glu Pro Lys Ser Pro Asp Lys Thr His Thr Cys Pro Pro
165 170 175

Cys Pro Lys Asp Pro Lys Phe Trp Val Leu Val Val Val Gly Gly Val
180 185 190

Leu Ala Cys Tyr Ser Leu Leu Val Thr Val Ala Phe Ile Ile Phe Trp
195 200 205

Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn Met
210 215 220

Thr Pro Arg Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala
225 230 235 240

pctgb2014053452-seq1.txt

Pro Pro Arg Asp Phe Ala Ala Tyr Arg Ser Arg Asp Gln Arg Leu Pro
245 250 255

Pro Asp Ala His Lys Pro Pro Gly Gly Gly Ser Phe Arg Thr Pro Ile
260 265 270

Gln Glu Glu Gln Ala Asp Ala His Ser Thr Leu Ala Lys Ile Arg Val
275 280 285

Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn
290 295 300

Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val
305 310 315 320

Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg
325 330 335

Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys
340 345 350

Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg
355 360 365

Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys
370 375 380

Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
385 390 395

<210> 53
<211> 614
<212> PRT
<213> Artificial Sequence

<220>
<223> APRIL-based (A proliferation-inducing ligand-based) CAR, APRIL
Fc-pvaa based CAR

<400> 53

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15

Gly Ser Thr Gly Ser Val Leu His Leu Val Pro Ile Asn Ala Thr Ser
20 25 30

Lys Asp Asp Ser Asp Val Thr Glu Val Met Trp Gln Pro Ala Leu Arg
35 40 45

pctgb2014053452-seq1.txt

Arg Gly Arg Gly Leu Gln Ala Gln Gly Tyr Gly Val Arg Ile Gln Asp
50 55 60

Ala Gly Val Tyr Leu Leu Tyr Ser Gln Val Leu Phe Gln Asp Val Thr
65 70 75 80

Phe Thr Met Gly Gln Val Val Ser Arg Glu Gly Gln Gly Arg Gln Glu
85 90 95

Thr Leu Phe Arg Cys Ile Arg Ser Met Pro Ser His Pro Asp Arg Ala
100 105 110

Tyr Asn Ser Cys Tyr Ser Ala Gly Val Phe His Leu His Gln Gly Asp
115 120 125

Ile Leu Ser Val Ile Ile Pro Arg Ala Arg Ala Lys Leu Asn Leu Ser
130 135 140

Pro His Gly Thr Phe Leu Gly Phe Val Lys Leu Ser Gly Gly Ser
145 150 155 160

Asp Pro Ala Glu Pro Lys Ser Pro Asp Lys Thr His Thr Cys Pro Pro
165 170 175

Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro
180 185 190

Lys Pro Lys Asp Thr Leu Met Ile Ala Arg Thr Pro Glu Val Thr Cys
195 200 205

Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
210 215 220

Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
225 230 235 240

Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
245 250 255

His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn
260 265 270

Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
275 280 285

Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu

pctgb2014053452-seq1.txt

290

295

300

Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr
305 310 315 320

Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
325 330 335

Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
340 345 350

Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn
355 360 365

Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr
370 375 380

Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Lys Asp Pro Lys Phe Trp
385 390 395 400

Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
405 410 415

Thr Val Ala Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu
420 425 430

Leu His Ser Asp Tyr Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr
435 440 445

Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala Ala Tyr
450 455 460

Arg Ser Arg Asp Gln Arg Leu Pro Pro Asp Ala His Lys Pro Pro Gly
465 470 475 480

Gly Gly Ser Phe Arg Thr Pro Ile Gln Glu Glu Gln Ala Asp Ala His
485 490 495

Ser Thr Leu Ala Lys Ile Arg Val Lys Phe Ser Arg Ser Ala Asp Ala
500 505 510

Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu
515 520 525

Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp
530 535 540

pctgb2014053452-seq1.txt

Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu
545 550 555 560

Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile
565 570 575

Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr
580 585 590

Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met
595 600 605

Gln Ala Leu Pro Pro Arg
610